Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (C) 2013 Broadcom Corporation
   3 * Copyright 2013 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include "clk-kona.h"
  16
  17#include <linux/delay.h>
  18#include <linux/kernel.h>
  19#include <linux/clk.h>
  20
  21/*
  22 * "Policies" affect the frequencies of bus clocks provided by a
  23 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
  24 * "Normal", and "Turbo".)  A lower policy number has lower power
  25 * consumption, and policy 2 is the default.
  26 */
  27#define CCU_POLICY_COUNT	4
  28
  29#define CCU_ACCESS_PASSWORD      0xA5A500
  30#define CLK_GATE_DELAY_LOOP      2000
  31
  32/* Bitfield operations */
  33
  34/* Produces a mask of set bits covering a range of a 32-bit value */
  35static inline u32 bitfield_mask(u32 shift, u32 width)
  36{
  37	return ((1 << width) - 1) << shift;
  38}
  39
  40/* Extract the value of a bitfield found within a given register value */
  41static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
  42{
  43	return (reg_val & bitfield_mask(shift, width)) >> shift;
  44}
  45
  46/* Replace the value of a bitfield found within a given register value */
  47static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
  48{
  49	u32 mask = bitfield_mask(shift, width);
  50
  51	return (reg_val & ~mask) | (val << shift);
  52}
  53
  54/* Divider and scaling helpers */
  55
  56/* Convert a divider into the scaled divisor value it represents. */
  57static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
  58{
  59	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
  60}
  61
  62/*
  63 * Build a scaled divider value as close as possible to the
  64 * given whole part (div_value) and fractional part (expressed
  65 * in billionths).
  66 */
  67u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
  68{
  69	u64 combined;
  70
  71	BUG_ON(!div_value);
  72	BUG_ON(billionths >= BILLION);
  73
  74	combined = (u64)div_value * BILLION + billionths;
  75	combined <<= div->u.s.frac_width;
  76
  77	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
  78}
  79
  80/* The scaled minimum divisor representable by a divider */
  81static inline u64
  82scaled_div_min(struct bcm_clk_div *div)
  83{
  84	if (divider_is_fixed(div))
  85		return (u64)div->u.fixed;
  86
  87	return scaled_div_value(div, 0);
  88}
  89
  90/* The scaled maximum divisor representable by a divider */
  91u64 scaled_div_max(struct bcm_clk_div *div)
  92{
  93	u32 reg_div;
  94
  95	if (divider_is_fixed(div))
  96		return (u64)div->u.fixed;
  97
  98	reg_div = ((u32)1 << div->u.s.width) - 1;
  99
 100	return scaled_div_value(div, reg_div);
 101}
 102
 103/*
 104 * Convert a scaled divisor into its divider representation as
 105 * stored in a divider register field.
 106 */
 107static inline u32
 108divider(struct bcm_clk_div *div, u64 scaled_div)
 109{
 110	BUG_ON(scaled_div < scaled_div_min(div));
 111	BUG_ON(scaled_div > scaled_div_max(div));
 112
 113	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
 114}
 115
 116/* Return a rate scaled for use when dividing by a scaled divisor. */
 117static inline u64
 118scale_rate(struct bcm_clk_div *div, u32 rate)
 119{
 120	if (divider_is_fixed(div))
 121		return (u64)rate;
 122
 123	return (u64)rate << div->u.s.frac_width;
 124}
 125
 126/* CCU access */
 127
 128/* Read a 32-bit register value from a CCU's address space. */
 129static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
 130{
 131	return readl(ccu->base + reg_offset);
 132}
 133
 134/* Write a 32-bit register value into a CCU's address space. */
 135static inline void
 136__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
 137{
 138	writel(reg_val, ccu->base + reg_offset);
 139}
 140
 141static inline unsigned long ccu_lock(struct ccu_data *ccu)
 142{
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&ccu->lock, flags);
 146
 147	return flags;
 148}
 149static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
 150{
 151	spin_unlock_irqrestore(&ccu->lock, flags);
 152}
 153
 154/*
 155 * Enable/disable write access to CCU protected registers.  The
 156 * WR_ACCESS register for all CCUs is at offset 0.
 157 */
 158static inline void __ccu_write_enable(struct ccu_data *ccu)
 159{
 160	if (ccu->write_enabled) {
 161		pr_err("%s: access already enabled for %s\n", __func__,
 162			ccu->name);
 163		return;
 164	}
 165	ccu->write_enabled = true;
 166	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
 167}
 168
 169static inline void __ccu_write_disable(struct ccu_data *ccu)
 170{
 171	if (!ccu->write_enabled) {
 172		pr_err("%s: access wasn't enabled for %s\n", __func__,
 173			ccu->name);
 174		return;
 175	}
 176
 177	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
 178	ccu->write_enabled = false;
 179}
 180
 181/*
 182 * Poll a register in a CCU's address space, returning when the
 183 * specified bit in that register's value is set (or clear).  Delay
 184 * a microsecond after each read of the register.  Returns true if
 185 * successful, or false if we gave up trying.
 186 *
 187 * Caller must ensure the CCU lock is held.
 188 */
 189static inline bool
 190__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
 191{
 192	unsigned int tries;
 193	u32 bit_mask = 1 << bit;
 194
 195	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
 196		u32 val;
 197		bool bit_val;
 198
 199		val = __ccu_read(ccu, reg_offset);
 200		bit_val = (val & bit_mask) != 0;
 201		if (bit_val == want)
 202			return true;
 203		udelay(1);
 204	}
 205	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
 206		ccu->name, reg_offset, bit, want ? "set" : "clear");
 207
 208	return false;
 209}
 210
 211/* Policy operations */
 212
 213static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
 214{
 215	struct bcm_policy_ctl *control = &ccu->policy.control;
 216	u32 offset;
 217	u32 go_bit;
 218	u32 mask;
 219	bool ret;
 220
 221	/* If we don't need to control policy for this CCU, we're done. */
 222	if (!policy_ctl_exists(control))
 223		return true;
 224
 225	offset = control->offset;
 226	go_bit = control->go_bit;
 227
 228	/* Ensure we're not busy before we start */
 229	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 230	if (!ret) {
 231		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
 232			__func__, ccu->name);
 233		return false;
 234	}
 235
 236	/*
 237	 * If it's a synchronous request, we'll wait for the voltage
 238	 * and frequency of the active load to stabilize before
 239	 * returning.  To do this we select the active load by
 240	 * setting the ATL bit.
 241	 *
 242	 * An asynchronous request instead ramps the voltage in the
 243	 * background, and when that process stabilizes, the target
 244	 * load is copied to the active load and the CCU frequency
 245	 * is switched.  We do this by selecting the target load
 246	 * (ATL bit clear) and setting the request auto-copy (AC bit
 247	 * set).
 248	 *
 249	 * Note, we do NOT read-modify-write this register.
 250	 */
 251	mask = (u32)1 << go_bit;
 252	if (sync)
 253		mask |= 1 << control->atl_bit;
 254	else
 255		mask |= 1 << control->ac_bit;
 256	__ccu_write(ccu, offset, mask);
 257
 258	/* Wait for indication that operation is complete. */
 259	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 260	if (!ret)
 261		pr_err("%s: ccu %s policy engine never started\n",
 262			__func__, ccu->name);
 263
 264	return ret;
 265}
 266
 267static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
 268{
 269	struct bcm_lvm_en *enable = &ccu->policy.enable;
 270	u32 offset;
 271	u32 enable_bit;
 272	bool ret;
 273
 274	/* If we don't need to control policy for this CCU, we're done. */
 275	if (!policy_lvm_en_exists(enable))
 276		return true;
 277
 278	/* Ensure we're not busy before we start */
 279	offset = enable->offset;
 280	enable_bit = enable->bit;
 281	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 282	if (!ret) {
 283		pr_err("%s: ccu %s policy engine already stopped\n",
 284			__func__, ccu->name);
 285		return false;
 286	}
 287
 288	/* Now set the bit to stop the engine (NO read-modify-write) */
 289	__ccu_write(ccu, offset, (u32)1 << enable_bit);
 290
 291	/* Wait for indication that it has stopped. */
 292	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 293	if (!ret)
 294		pr_err("%s: ccu %s policy engine never stopped\n",
 295			__func__, ccu->name);
 296
 297	return ret;
 298}
 299
 300/*
 301 * A CCU has four operating conditions ("policies"), and some clocks
 302 * can be disabled or enabled based on which policy is currently in
 303 * effect.  Such clocks have a bit in a "policy mask" register for
 304 * each policy indicating whether the clock is enabled for that
 305 * policy or not.  The bit position for a clock is the same for all
 306 * four registers, and the 32-bit registers are at consecutive
 307 * addresses.
 308 */
 309static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
 310{
 311	u32 offset;
 312	u32 mask;
 313	int i;
 314	bool ret;
 315
 316	if (!policy_exists(policy))
 317		return true;
 318
 319	/*
 320	 * We need to stop the CCU policy engine to allow update
 321	 * of our policy bits.
 322	 */
 323	if (!__ccu_policy_engine_stop(ccu)) {
 324		pr_err("%s: unable to stop CCU %s policy engine\n",
 325			__func__, ccu->name);
 326		return false;
 327	}
 328
 329	/*
 330	 * For now, if a clock defines its policy bit we just mark
 331	 * it "enabled" for all four policies.
 332	 */
 333	offset = policy->offset;
 334	mask = (u32)1 << policy->bit;
 335	for (i = 0; i < CCU_POLICY_COUNT; i++) {
 336		u32 reg_val;
 337
 338		reg_val = __ccu_read(ccu, offset);
 339		reg_val |= mask;
 340		__ccu_write(ccu, offset, reg_val);
 341		offset += sizeof(u32);
 342	}
 343
 344	/* We're done updating; fire up the policy engine again. */
 345	ret = __ccu_policy_engine_start(ccu, true);
 346	if (!ret)
 347		pr_err("%s: unable to restart CCU %s policy engine\n",
 348			__func__, ccu->name);
 349
 350	return ret;
 351}
 352
 353/* Gate operations */
 354
 355/* Determine whether a clock is gated.  CCU lock must be held.  */
 356static bool
 357__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 358{
 359	u32 bit_mask;
 360	u32 reg_val;
 361
 362	/* If there is no gate we can assume it's enabled. */
 363	if (!gate_exists(gate))
 364		return true;
 365
 366	bit_mask = 1 << gate->status_bit;
 367	reg_val = __ccu_read(ccu, gate->offset);
 368
 369	return (reg_val & bit_mask) != 0;
 370}
 371
 372/* Determine whether a clock is gated. */
 373static bool
 374is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 375{
 376	long flags;
 377	bool ret;
 378
 379	/* Avoid taking the lock if we can */
 380	if (!gate_exists(gate))
 381		return true;
 382
 383	flags = ccu_lock(ccu);
 384	ret = __is_clk_gate_enabled(ccu, gate);
 385	ccu_unlock(ccu, flags);
 386
 387	return ret;
 388}
 389
 390/*
 391 * Commit our desired gate state to the hardware.
 392 * Returns true if successful, false otherwise.
 393 */
 394static bool
 395__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 396{
 397	u32 reg_val;
 398	u32 mask;
 399	bool enabled = false;
 400
 401	BUG_ON(!gate_exists(gate));
 402	if (!gate_is_sw_controllable(gate))
 403		return true;		/* Nothing we can change */
 404
 405	reg_val = __ccu_read(ccu, gate->offset);
 406
 407	/* For a hardware/software gate, set which is in control */
 408	if (gate_is_hw_controllable(gate)) {
 409		mask = (u32)1 << gate->hw_sw_sel_bit;
 410		if (gate_is_sw_managed(gate))
 411			reg_val |= mask;
 412		else
 413			reg_val &= ~mask;
 414	}
 415
 416	/*
 417	 * If software is in control, enable or disable the gate.
 418	 * If hardware is, clear the enabled bit for good measure.
 419	 * If a software controlled gate can't be disabled, we're
 420	 * required to write a 0 into the enable bit (but the gate
 421	 * will be enabled).
 422	 */
 423	mask = (u32)1 << gate->en_bit;
 424	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
 425			!gate_is_no_disable(gate))
 426		reg_val |= mask;
 427	else
 428		reg_val &= ~mask;
 429
 430	__ccu_write(ccu, gate->offset, reg_val);
 431
 432	/* For a hardware controlled gate, we're done */
 433	if (!gate_is_sw_managed(gate))
 434		return true;
 435
 436	/* Otherwise wait for the gate to be in desired state */
 437	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
 438}
 439
 440/*
 441 * Initialize a gate.  Our desired state (hardware/software select,
 442 * and if software, its enable state) is committed to hardware
 443 * without the usual checks to see if it's already set up that way.
 444 * Returns true if successful, false otherwise.
 445 */
 446static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 447{
 448	if (!gate_exists(gate))
 449		return true;
 450	return __gate_commit(ccu, gate);
 451}
 452
 453/*
 454 * Set a gate to enabled or disabled state.  Does nothing if the
 455 * gate is not currently under software control, or if it is already
 456 * in the requested state.  Returns true if successful, false
 457 * otherwise.  CCU lock must be held.
 458 */
 459static bool
 460__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
 461{
 462	bool ret;
 463
 464	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 465		return true;	/* Nothing to do */
 466
 467	if (!enable && gate_is_no_disable(gate)) {
 468		pr_warn("%s: invalid gate disable request (ignoring)\n",
 469			__func__);
 470		return true;
 471	}
 472
 473	if (enable == gate_is_enabled(gate))
 474		return true;	/* No change */
 475
 476	gate_flip_enabled(gate);
 477	ret = __gate_commit(ccu, gate);
 478	if (!ret)
 479		gate_flip_enabled(gate);	/* Revert the change */
 480
 481	return ret;
 482}
 483
 484/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
 485static int clk_gate(struct ccu_data *ccu, const char *name,
 486			struct bcm_clk_gate *gate, bool enable)
 487{
 488	unsigned long flags;
 489	bool success;
 490
 491	/*
 492	 * Avoid taking the lock if we can.  We quietly ignore
 493	 * requests to change state that don't make sense.
 494	 */
 495	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 496		return 0;
 497	if (!enable && gate_is_no_disable(gate))
 498		return 0;
 499
 500	flags = ccu_lock(ccu);
 501	__ccu_write_enable(ccu);
 502
 503	success = __clk_gate(ccu, gate, enable);
 504
 505	__ccu_write_disable(ccu);
 506	ccu_unlock(ccu, flags);
 507
 508	if (success)
 509		return 0;
 510
 511	pr_err("%s: failed to %s gate for %s\n", __func__,
 512		enable ? "enable" : "disable", name);
 513
 514	return -EIO;
 515}
 516
 517/* Hysteresis operations */
 518
 519/*
 520 * If a clock gate requires a turn-off delay it will have
 521 * "hysteresis" register bits defined.  The first, if set, enables
 522 * the delay; and if enabled, the second bit determines whether the
 523 * delay is "low" or "high" (1 means high).  For now, if it's
 524 * defined for a clock, we set it.
 525 */
 526static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
 527{
 528	u32 offset;
 529	u32 reg_val;
 530	u32 mask;
 531
 532	if (!hyst_exists(hyst))
 533		return true;
 534
 535	offset = hyst->offset;
 536	mask = (u32)1 << hyst->en_bit;
 537	mask |= (u32)1 << hyst->val_bit;
 538
 539	reg_val = __ccu_read(ccu, offset);
 540	reg_val |= mask;
 541	__ccu_write(ccu, offset, reg_val);
 542
 543	return true;
 544}
 545
 546/* Trigger operations */
 547
 548/*
 549 * Caller must ensure CCU lock is held and access is enabled.
 550 * Returns true if successful, false otherwise.
 551 */
 552static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
 553{
 554	/* Trigger the clock and wait for it to finish */
 555	__ccu_write(ccu, trig->offset, 1 << trig->bit);
 556
 557	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
 558}
 559
 560/* Divider operations */
 561
 562/* Read a divider value and return the scaled divisor it represents. */
 563static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
 564{
 565	unsigned long flags;
 566	u32 reg_val;
 567	u32 reg_div;
 568
 569	if (divider_is_fixed(div))
 570		return (u64)div->u.fixed;
 571
 572	flags = ccu_lock(ccu);
 573	reg_val = __ccu_read(ccu, div->u.s.offset);
 574	ccu_unlock(ccu, flags);
 575
 576	/* Extract the full divider field from the register value */
 577	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
 578
 579	/* Return the scaled divisor value it represents */
 580	return scaled_div_value(div, reg_div);
 581}
 582
 583/*
 584 * Convert a divider's scaled divisor value into its recorded form
 585 * and commit it into the hardware divider register.
 586 *
 587 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 588 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 589 */
 590static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 591			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 592{
 593	bool enabled;
 594	u32 reg_div;
 595	u32 reg_val;
 596	int ret = 0;
 597
 598	BUG_ON(divider_is_fixed(div));
 599
 600	/*
 601	 * If we're just initializing the divider, and no initial
 602	 * state was defined in the device tree, we just find out
 603	 * what its current value is rather than updating it.
 604	 */
 605	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
 606		reg_val = __ccu_read(ccu, div->u.s.offset);
 607		reg_div = bitfield_extract(reg_val, div->u.s.shift,
 608						div->u.s.width);
 609		div->u.s.scaled_div = scaled_div_value(div, reg_div);
 610
 611		return 0;
 612	}
 613
 614	/* Convert the scaled divisor to the value we need to record */
 615	reg_div = divider(div, div->u.s.scaled_div);
 616
 617	/* Clock needs to be enabled before changing the rate */
 618	enabled = __is_clk_gate_enabled(ccu, gate);
 619	if (!enabled && !__clk_gate(ccu, gate, true)) {
 620		ret = -ENXIO;
 621		goto out;
 622	}
 623
 624	/* Replace the divider value and record the result */
 625	reg_val = __ccu_read(ccu, div->u.s.offset);
 626	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
 627					reg_div);
 628	__ccu_write(ccu, div->u.s.offset, reg_val);
 629
 630	/* If the trigger fails we still want to disable the gate */
 631	if (!__clk_trigger(ccu, trig))
 632		ret = -EIO;
 633
 634	/* Disable the clock again if it was disabled to begin with */
 635	if (!enabled && !__clk_gate(ccu, gate, false))
 636		ret = ret ? ret : -ENXIO;	/* return first error */
 637out:
 638	return ret;
 639}
 640
 641/*
 642 * Initialize a divider by committing our desired state to hardware
 643 * without the usual checks to see if it's already set up that way.
 644 * Returns true if successful, false otherwise.
 645 */
 646static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 647			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 648{
 649	if (!divider_exists(div) || divider_is_fixed(div))
 650		return true;
 651	return !__div_commit(ccu, gate, div, trig);
 652}
 653
 654static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 655			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
 656			u64 scaled_div)
 657{
 658	unsigned long flags;
 659	u64 previous;
 660	int ret;
 661
 662	BUG_ON(divider_is_fixed(div));
 663
 664	previous = div->u.s.scaled_div;
 665	if (previous == scaled_div)
 666		return 0;	/* No change */
 667
 668	div->u.s.scaled_div = scaled_div;
 669
 670	flags = ccu_lock(ccu);
 671	__ccu_write_enable(ccu);
 672
 673	ret = __div_commit(ccu, gate, div, trig);
 674
 675	__ccu_write_disable(ccu);
 676	ccu_unlock(ccu, flags);
 677
 678	if (ret)
 679		div->u.s.scaled_div = previous;		/* Revert the change */
 680
 681	return ret;
 682
 683}
 684
 685/* Common clock rate helpers */
 686
 687/*
 688 * Implement the common clock framework recalc_rate method, taking
 689 * into account a divider and an optional pre-divider.  The
 690 * pre-divider register pointer may be NULL.
 691 */
 692static unsigned long clk_recalc_rate(struct ccu_data *ccu,
 693			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
 694			unsigned long parent_rate)
 695{
 696	u64 scaled_parent_rate;
 697	u64 scaled_div;
 698	u64 result;
 699
 700	if (!divider_exists(div))
 701		return parent_rate;
 702
 703	if (parent_rate > (unsigned long)LONG_MAX)
 704		return 0;	/* actually this would be a caller bug */
 705
 706	/*
 707	 * If there is a pre-divider, divide the scaled parent rate
 708	 * by the pre-divider value first.  In this case--to improve
 709	 * accuracy--scale the parent rate by *both* the pre-divider
 710	 * value and the divider before actually computing the
 711	 * result of the pre-divider.
 712	 *
 713	 * If there's only one divider, just scale the parent rate.
 714	 */
 715	if (pre_div && divider_exists(pre_div)) {
 716		u64 scaled_rate;
 717
 718		scaled_rate = scale_rate(pre_div, parent_rate);
 719		scaled_rate = scale_rate(div, scaled_rate);
 720		scaled_div = divider_read_scaled(ccu, pre_div);
 721		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 722							scaled_div);
 723	} else  {
 724		scaled_parent_rate = scale_rate(div, parent_rate);
 725	}
 726
 727	/*
 728	 * Get the scaled divisor value, and divide the scaled
 729	 * parent rate by that to determine this clock's resulting
 730	 * rate.
 731	 */
 732	scaled_div = divider_read_scaled(ccu, div);
 733	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
 734
 735	return (unsigned long)result;
 736}
 737
 738/*
 739 * Compute the output rate produced when a given parent rate is fed
 740 * into two dividers.  The pre-divider can be NULL, and even if it's
 741 * non-null it may be nonexistent.  It's also OK for the divider to
 742 * be nonexistent, and in that case the pre-divider is also ignored.
 743 *
 744 * If scaled_div is non-null, it is used to return the scaled divisor
 745 * value used by the (downstream) divider to produce that rate.
 746 */
 747static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
 748				struct bcm_clk_div *pre_div,
 749				unsigned long rate, unsigned long parent_rate,
 750				u64 *scaled_div)
 751{
 752	u64 scaled_parent_rate;
 753	u64 min_scaled_div;
 754	u64 max_scaled_div;
 755	u64 best_scaled_div;
 756	u64 result;
 757
 758	BUG_ON(!divider_exists(div));
 759	BUG_ON(!rate);
 760	BUG_ON(parent_rate > (u64)LONG_MAX);
 761
 762	/*
 763	 * If there is a pre-divider, divide the scaled parent rate
 764	 * by the pre-divider value first.  In this case--to improve
 765	 * accuracy--scale the parent rate by *both* the pre-divider
 766	 * value and the divider before actually computing the
 767	 * result of the pre-divider.
 768	 *
 769	 * If there's only one divider, just scale the parent rate.
 770	 *
 771	 * For simplicity we treat the pre-divider as fixed (for now).
 772	 */
 773	if (divider_exists(pre_div)) {
 774		u64 scaled_rate;
 775		u64 scaled_pre_div;
 776
 777		scaled_rate = scale_rate(pre_div, parent_rate);
 778		scaled_rate = scale_rate(div, scaled_rate);
 779		scaled_pre_div = divider_read_scaled(ccu, pre_div);
 780		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 781							scaled_pre_div);
 782	} else {
 783		scaled_parent_rate = scale_rate(div, parent_rate);
 784	}
 785
 786	/*
 787	 * Compute the best possible divider and ensure it is in
 788	 * range.  A fixed divider can't be changed, so just report
 789	 * the best we can do.
 790	 */
 791	if (!divider_is_fixed(div)) {
 792		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
 793							rate);
 794		min_scaled_div = scaled_div_min(div);
 795		max_scaled_div = scaled_div_max(div);
 796		if (best_scaled_div > max_scaled_div)
 797			best_scaled_div = max_scaled_div;
 798		else if (best_scaled_div < min_scaled_div)
 799			best_scaled_div = min_scaled_div;
 800	} else {
 801		best_scaled_div = divider_read_scaled(ccu, div);
 802	}
 803
 804	/* OK, figure out the resulting rate */
 805	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
 806
 807	if (scaled_div)
 808		*scaled_div = best_scaled_div;
 809
 810	return (long)result;
 811}
 812
 813/* Common clock parent helpers */
 814
 815/*
 816 * For a given parent selector (register field) value, find the
 817 * index into a selector's parent_sel array that contains it.
 818 * Returns the index, or BAD_CLK_INDEX if it's not found.
 819 */
 820static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
 821{
 822	u8 i;
 823
 824	BUG_ON(sel->parent_count > (u32)U8_MAX);
 825	for (i = 0; i < sel->parent_count; i++)
 826		if (sel->parent_sel[i] == parent_sel)
 827			return i;
 828	return BAD_CLK_INDEX;
 829}
 830
 831/*
 832 * Fetch the current value of the selector, and translate that into
 833 * its corresponding index in the parent array we registered with
 834 * the clock framework.
 835 *
 836 * Returns parent array index that corresponds with the value found,
 837 * or BAD_CLK_INDEX if the found value is out of range.
 838 */
 839static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
 840{
 841	unsigned long flags;
 842	u32 reg_val;
 843	u32 parent_sel;
 844	u8 index;
 845
 846	/* If there's no selector, there's only one parent */
 847	if (!selector_exists(sel))
 848		return 0;
 849
 850	/* Get the value in the selector register */
 851	flags = ccu_lock(ccu);
 852	reg_val = __ccu_read(ccu, sel->offset);
 853	ccu_unlock(ccu, flags);
 854
 855	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 856
 857	/* Look up that selector's parent array index and return it */
 858	index = parent_index(sel, parent_sel);
 859	if (index == BAD_CLK_INDEX)
 860		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
 861			__func__, parent_sel, ccu->name, sel->offset);
 862
 863	return index;
 864}
 865
 866/*
 867 * Commit our desired selector value to the hardware.
 868 *
 869 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 870 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 871 */
 872static int
 873__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 874			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 875{
 876	u32 parent_sel;
 877	u32 reg_val;
 878	bool enabled;
 879	int ret = 0;
 880
 881	BUG_ON(!selector_exists(sel));
 882
 883	/*
 884	 * If we're just initializing the selector, and no initial
 885	 * state was defined in the device tree, we just find out
 886	 * what its current value is rather than updating it.
 887	 */
 888	if (sel->clk_index == BAD_CLK_INDEX) {
 889		u8 index;
 890
 891		reg_val = __ccu_read(ccu, sel->offset);
 892		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 893		index = parent_index(sel, parent_sel);
 894		if (index == BAD_CLK_INDEX)
 895			return -EINVAL;
 896		sel->clk_index = index;
 897
 898		return 0;
 899	}
 900
 901	BUG_ON((u32)sel->clk_index >= sel->parent_count);
 902	parent_sel = sel->parent_sel[sel->clk_index];
 903
 904	/* Clock needs to be enabled before changing the parent */
 905	enabled = __is_clk_gate_enabled(ccu, gate);
 906	if (!enabled && !__clk_gate(ccu, gate, true))
 907		return -ENXIO;
 908
 909	/* Replace the selector value and record the result */
 910	reg_val = __ccu_read(ccu, sel->offset);
 911	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
 912	__ccu_write(ccu, sel->offset, reg_val);
 913
 914	/* If the trigger fails we still want to disable the gate */
 915	if (!__clk_trigger(ccu, trig))
 916		ret = -EIO;
 917
 918	/* Disable the clock again if it was disabled to begin with */
 919	if (!enabled && !__clk_gate(ccu, gate, false))
 920		ret = ret ? ret : -ENXIO;	/* return first error */
 921
 922	return ret;
 923}
 924
 925/*
 926 * Initialize a selector by committing our desired state to hardware
 927 * without the usual checks to see if it's already set up that way.
 928 * Returns true if successful, false otherwise.
 929 */
 930static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 931			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 932{
 933	if (!selector_exists(sel))
 934		return true;
 935	return !__sel_commit(ccu, gate, sel, trig);
 936}
 937
 938/*
 939 * Write a new value into a selector register to switch to a
 940 * different parent clock.  Returns 0 on success, or an error code
 941 * (from __sel_commit()) otherwise.
 942 */
 943static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 944			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
 945			u8 index)
 946{
 947	unsigned long flags;
 948	u8 previous;
 949	int ret;
 950
 951	previous = sel->clk_index;
 952	if (previous == index)
 953		return 0;	/* No change */
 954
 955	sel->clk_index = index;
 956
 957	flags = ccu_lock(ccu);
 958	__ccu_write_enable(ccu);
 959
 960	ret = __sel_commit(ccu, gate, sel, trig);
 961
 962	__ccu_write_disable(ccu);
 963	ccu_unlock(ccu, flags);
 964
 965	if (ret)
 966		sel->clk_index = previous;	/* Revert the change */
 967
 968	return ret;
 969}
 970
 971/* Clock operations */
 972
 973static int kona_peri_clk_enable(struct clk_hw *hw)
 974{
 975	struct kona_clk *bcm_clk = to_kona_clk(hw);
 976	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 977
 978	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
 979}
 980
 981static void kona_peri_clk_disable(struct clk_hw *hw)
 982{
 983	struct kona_clk *bcm_clk = to_kona_clk(hw);
 984	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 985
 986	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
 987}
 988
 989static int kona_peri_clk_is_enabled(struct clk_hw *hw)
 990{
 991	struct kona_clk *bcm_clk = to_kona_clk(hw);
 992	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 993
 994	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
 995}
 996
 997static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
 998			unsigned long parent_rate)
 999{
1000	struct kona_clk *bcm_clk = to_kona_clk(hw);
1001	struct peri_clk_data *data = bcm_clk->u.peri;
1002
1003	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1004				parent_rate);
1005}
1006
1007static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1008			unsigned long *parent_rate)
1009{
1010	struct kona_clk *bcm_clk = to_kona_clk(hw);
1011	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1012
1013	if (!divider_exists(div))
1014		return clk_hw_get_rate(hw);
1015
1016	/* Quietly avoid a zero rate */
1017	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1018				rate ? rate : 1, *parent_rate, NULL);
1019}
1020
1021static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1022					struct clk_rate_request *req)
1023{
1024	struct kona_clk *bcm_clk = to_kona_clk(hw);
1025	struct clk_hw *current_parent;
1026	unsigned long parent_rate;
1027	unsigned long best_delta;
1028	unsigned long best_rate;
1029	u32 parent_count;
1030	long rate;
1031	u32 which;
1032
1033	/*
1034	 * If there is no other parent to choose, use the current one.
1035	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1036	 */
1037	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1038	parent_count = (u32)bcm_clk->init_data.num_parents;
1039	if (parent_count < 2) {
1040		rate = kona_peri_clk_round_rate(hw, req->rate,
1041						&req->best_parent_rate);
1042		if (rate < 0)
1043			return rate;
1044
1045		req->rate = rate;
1046		return 0;
1047	}
1048
1049	/* Unless we can do better, stick with current parent */
1050	current_parent = clk_hw_get_parent(hw);
1051	parent_rate = clk_hw_get_rate(current_parent);
1052	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1053	best_delta = abs(best_rate - req->rate);
1054
1055	/* Check whether any other parent clock can produce a better result */
1056	for (which = 0; which < parent_count; which++) {
1057		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1058		unsigned long delta;
1059		unsigned long other_rate;
1060
1061		BUG_ON(!parent);
1062		if (parent == current_parent)
1063			continue;
1064
1065		/* We don't support CLK_SET_RATE_PARENT */
1066		parent_rate = clk_hw_get_rate(parent);
1067		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1068						      &parent_rate);
1069		delta = abs(other_rate - req->rate);
1070		if (delta < best_delta) {
1071			best_delta = delta;
1072			best_rate = other_rate;
1073			req->best_parent_hw = parent;
1074			req->best_parent_rate = parent_rate;
1075		}
1076	}
1077
1078	req->rate = best_rate;
1079	return 0;
1080}
1081
1082static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1083{
1084	struct kona_clk *bcm_clk = to_kona_clk(hw);
1085	struct peri_clk_data *data = bcm_clk->u.peri;
1086	struct bcm_clk_sel *sel = &data->sel;
1087	struct bcm_clk_trig *trig;
1088	int ret;
1089
1090	BUG_ON(index >= sel->parent_count);
1091
1092	/* If there's only one parent we don't require a selector */
1093	if (!selector_exists(sel))
1094		return 0;
1095
1096	/*
1097	 * The regular trigger is used by default, but if there's a
1098	 * pre-trigger we want to use that instead.
1099	 */
1100	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1101					       : &data->trig;
1102
1103	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1104	if (ret == -ENXIO) {
1105		pr_err("%s: gating failure for %s\n", __func__,
1106			bcm_clk->init_data.name);
1107		ret = -EIO;	/* Don't proliferate weird errors */
1108	} else if (ret == -EIO) {
1109		pr_err("%s: %strigger failed for %s\n", __func__,
1110			trig == &data->pre_trig ? "pre-" : "",
1111			bcm_clk->init_data.name);
1112	}
1113
1114	return ret;
1115}
1116
1117static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1118{
1119	struct kona_clk *bcm_clk = to_kona_clk(hw);
1120	struct peri_clk_data *data = bcm_clk->u.peri;
1121	u8 index;
1122
1123	index = selector_read_index(bcm_clk->ccu, &data->sel);
1124
1125	/* Not all callers would handle an out-of-range value gracefully */
1126	return index == BAD_CLK_INDEX ? 0 : index;
1127}
1128
1129static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1130			unsigned long parent_rate)
1131{
1132	struct kona_clk *bcm_clk = to_kona_clk(hw);
1133	struct peri_clk_data *data = bcm_clk->u.peri;
1134	struct bcm_clk_div *div = &data->div;
1135	u64 scaled_div = 0;
1136	int ret;
1137
1138	if (parent_rate > (unsigned long)LONG_MAX)
1139		return -EINVAL;
1140
1141	if (rate == clk_hw_get_rate(hw))
1142		return 0;
1143
1144	if (!divider_exists(div))
1145		return rate == parent_rate ? 0 : -EINVAL;
1146
1147	/*
1148	 * A fixed divider can't be changed.  (Nor can a fixed
1149	 * pre-divider be, but for now we never actually try to
1150	 * change that.)  Tolerate a request for a no-op change.
1151	 */
1152	if (divider_is_fixed(&data->div))
1153		return rate == parent_rate ? 0 : -EINVAL;
1154
1155	/*
1156	 * Get the scaled divisor value needed to achieve a clock
1157	 * rate as close as possible to what was requested, given
1158	 * the parent clock rate supplied.
1159	 */
1160	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1161				rate ? rate : 1, parent_rate, &scaled_div);
1162
1163	/*
1164	 * We aren't updating any pre-divider at this point, so
1165	 * we'll use the regular trigger.
1166	 */
1167	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1168				&data->trig, scaled_div);
1169	if (ret == -ENXIO) {
1170		pr_err("%s: gating failure for %s\n", __func__,
1171			bcm_clk->init_data.name);
1172		ret = -EIO;	/* Don't proliferate weird errors */
1173	} else if (ret == -EIO) {
1174		pr_err("%s: trigger failed for %s\n", __func__,
1175			bcm_clk->init_data.name);
1176	}
1177
1178	return ret;
1179}
1180
1181struct clk_ops kona_peri_clk_ops = {
1182	.enable = kona_peri_clk_enable,
1183	.disable = kona_peri_clk_disable,
1184	.is_enabled = kona_peri_clk_is_enabled,
1185	.recalc_rate = kona_peri_clk_recalc_rate,
1186	.determine_rate = kona_peri_clk_determine_rate,
1187	.set_parent = kona_peri_clk_set_parent,
1188	.get_parent = kona_peri_clk_get_parent,
1189	.set_rate = kona_peri_clk_set_rate,
1190};
1191
1192/* Put a peripheral clock into its initial state */
1193static bool __peri_clk_init(struct kona_clk *bcm_clk)
1194{
1195	struct ccu_data *ccu = bcm_clk->ccu;
1196	struct peri_clk_data *peri = bcm_clk->u.peri;
1197	const char *name = bcm_clk->init_data.name;
1198	struct bcm_clk_trig *trig;
1199
1200	BUG_ON(bcm_clk->type != bcm_clk_peri);
1201
1202	if (!policy_init(ccu, &peri->policy)) {
1203		pr_err("%s: error initializing policy for %s\n",
1204			__func__, name);
1205		return false;
1206	}
1207	if (!gate_init(ccu, &peri->gate)) {
1208		pr_err("%s: error initializing gate for %s\n", __func__, name);
1209		return false;
1210	}
1211	if (!hyst_init(ccu, &peri->hyst)) {
1212		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1213		return false;
1214	}
1215	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1216		pr_err("%s: error initializing divider for %s\n", __func__,
1217			name);
1218		return false;
1219	}
1220
1221	/*
1222	 * For the pre-divider and selector, the pre-trigger is used
1223	 * if it's present, otherwise we just use the regular trigger.
1224	 */
1225	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1226					       : &peri->trig;
1227
1228	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1229		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1230			name);
1231		return false;
1232	}
1233
1234	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1235		pr_err("%s: error initializing selector for %s\n", __func__,
1236			name);
1237		return false;
1238	}
1239
1240	return true;
1241}
1242
1243static bool __kona_clk_init(struct kona_clk *bcm_clk)
1244{
1245	switch (bcm_clk->type) {
1246	case bcm_clk_peri:
1247		return __peri_clk_init(bcm_clk);
1248	default:
1249		BUG();
1250	}
1251	return false;
1252}
1253
1254/* Set a CCU and all its clocks into their desired initial state */
1255bool __init kona_ccu_init(struct ccu_data *ccu)
1256{
1257	unsigned long flags;
1258	unsigned int which;
1259	struct kona_clk *kona_clks = ccu->kona_clks;
1260	bool success = true;
1261
1262	flags = ccu_lock(ccu);
1263	__ccu_write_enable(ccu);
1264
1265	for (which = 0; which < ccu->clk_num; which++) {
1266		struct kona_clk *bcm_clk = &kona_clks[which];
1267
1268		if (!bcm_clk->ccu)
1269			continue;
1270
1271		success &= __kona_clk_init(bcm_clk);
1272	}
1273
1274	__ccu_write_disable(ccu);
1275	ccu_unlock(ccu, flags);
1276	return success;
1277}