Loading...
1#include <linux/linkage.h>
2#include <linux/errno.h>
3#include <linux/signal.h>
4#include <linux/sched.h>
5#include <linux/ioport.h>
6#include <linux/interrupt.h>
7#include <linux/timex.h>
8#include <linux/random.h>
9#include <linux/kprobes.h>
10#include <linux/init.h>
11#include <linux/kernel_stat.h>
12#include <linux/device.h>
13#include <linux/bitops.h>
14#include <linux/acpi.h>
15#include <linux/io.h>
16#include <linux/delay.h>
17
18#include <linux/atomic.h>
19#include <asm/timer.h>
20#include <asm/hw_irq.h>
21#include <asm/pgtable.h>
22#include <asm/desc.h>
23#include <asm/apic.h>
24#include <asm/setup.h>
25#include <asm/i8259.h>
26#include <asm/traps.h>
27#include <asm/prom.h>
28
29/*
30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31 * (these are usually mapped to vectors 0x30-0x3f)
32 */
33
34/*
35 * The IO-APIC gives us many more interrupt sources. Most of these
36 * are unused but an SMP system is supposed to have enough memory ...
37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38 * across the spectrum, so we really want to be prepared to get all
39 * of these. Plus, more powerful systems might have more than 64
40 * IO-APIC registers.
41 *
42 * (these are usually mapped into the 0x30-0xff vector range)
43 */
44
45#ifdef CONFIG_X86_32
46/*
47 * Note that on a 486, we don't want to do a SIGFPE on an irq13
48 * as the irq is unreliable, and exception 16 works correctly
49 * (ie as explained in the intel literature). On a 386, you
50 * can't use exception 16 due to bad IBM design, so we have to
51 * rely on the less exact irq13.
52 *
53 * Careful.. Not only is IRQ13 unreliable, but it is also
54 * leads to races. IBM designers who came up with it should
55 * be shot.
56 */
57
58static irqreturn_t math_error_irq(int cpl, void *dev_id)
59{
60 outb(0, 0xF0);
61 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
62 return IRQ_NONE;
63 math_error(get_irq_regs(), 0, X86_TRAP_MF);
64 return IRQ_HANDLED;
65}
66
67/*
68 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
69 * so allow interrupt sharing.
70 */
71static struct irqaction fpu_irq = {
72 .handler = math_error_irq,
73 .name = "fpu",
74 .flags = IRQF_NO_THREAD,
75};
76#endif
77
78/*
79 * IRQ2 is cascade interrupt to second interrupt controller
80 */
81static struct irqaction irq2 = {
82 .handler = no_action,
83 .name = "cascade",
84 .flags = IRQF_NO_THREAD,
85};
86
87DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
88 [0 ... NR_VECTORS - 1] = -1,
89};
90
91int vector_used_by_percpu_irq(unsigned int vector)
92{
93 int cpu;
94
95 for_each_online_cpu(cpu) {
96 if (per_cpu(vector_irq, cpu)[vector] != -1)
97 return 1;
98 }
99
100 return 0;
101}
102
103void __init init_ISA_irqs(void)
104{
105 struct irq_chip *chip = legacy_pic->chip;
106 const char *name = chip->name;
107 int i;
108
109#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
110 init_bsp_APIC();
111#endif
112 legacy_pic->init(0);
113
114 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
115 irq_set_chip_and_handler_name(i, chip, handle_level_irq, name);
116}
117
118void __init init_IRQ(void)
119{
120 int i;
121
122 /*
123 * We probably need a better place for this, but it works for
124 * now ...
125 */
126 x86_add_irq_domains();
127
128 /*
129 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
130 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
131 * then this configuration will likely be static after the boot. If
132 * these IRQ's are handled by more mordern controllers like IO-APIC,
133 * then this vector space can be freed and re-used dynamically as the
134 * irq's migrate etc.
135 */
136 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
137 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
138
139 x86_init.irqs.intr_init();
140}
141
142/*
143 * Setup the vector to irq mappings.
144 */
145void setup_vector_irq(int cpu)
146{
147#ifndef CONFIG_X86_IO_APIC
148 int irq;
149
150 /*
151 * On most of the platforms, legacy PIC delivers the interrupts on the
152 * boot cpu. But there are certain platforms where PIC interrupts are
153 * delivered to multiple cpu's. If the legacy IRQ is handled by the
154 * legacy PIC, for the new cpu that is coming online, setup the static
155 * legacy vector to irq mapping:
156 */
157 for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
158 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
159#endif
160
161 __setup_vector_irq(cpu);
162}
163
164static void __init smp_intr_init(void)
165{
166#ifdef CONFIG_SMP
167#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
168 /*
169 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
170 * IPI, driven by wakeup.
171 */
172 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
173
174 /* IPIs for invalidation */
175#define ALLOC_INVTLB_VEC(NR) \
176 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \
177 invalidate_interrupt##NR)
178
179 switch (NUM_INVALIDATE_TLB_VECTORS) {
180 default:
181 ALLOC_INVTLB_VEC(31);
182 case 31:
183 ALLOC_INVTLB_VEC(30);
184 case 30:
185 ALLOC_INVTLB_VEC(29);
186 case 29:
187 ALLOC_INVTLB_VEC(28);
188 case 28:
189 ALLOC_INVTLB_VEC(27);
190 case 27:
191 ALLOC_INVTLB_VEC(26);
192 case 26:
193 ALLOC_INVTLB_VEC(25);
194 case 25:
195 ALLOC_INVTLB_VEC(24);
196 case 24:
197 ALLOC_INVTLB_VEC(23);
198 case 23:
199 ALLOC_INVTLB_VEC(22);
200 case 22:
201 ALLOC_INVTLB_VEC(21);
202 case 21:
203 ALLOC_INVTLB_VEC(20);
204 case 20:
205 ALLOC_INVTLB_VEC(19);
206 case 19:
207 ALLOC_INVTLB_VEC(18);
208 case 18:
209 ALLOC_INVTLB_VEC(17);
210 case 17:
211 ALLOC_INVTLB_VEC(16);
212 case 16:
213 ALLOC_INVTLB_VEC(15);
214 case 15:
215 ALLOC_INVTLB_VEC(14);
216 case 14:
217 ALLOC_INVTLB_VEC(13);
218 case 13:
219 ALLOC_INVTLB_VEC(12);
220 case 12:
221 ALLOC_INVTLB_VEC(11);
222 case 11:
223 ALLOC_INVTLB_VEC(10);
224 case 10:
225 ALLOC_INVTLB_VEC(9);
226 case 9:
227 ALLOC_INVTLB_VEC(8);
228 case 8:
229 ALLOC_INVTLB_VEC(7);
230 case 7:
231 ALLOC_INVTLB_VEC(6);
232 case 6:
233 ALLOC_INVTLB_VEC(5);
234 case 5:
235 ALLOC_INVTLB_VEC(4);
236 case 4:
237 ALLOC_INVTLB_VEC(3);
238 case 3:
239 ALLOC_INVTLB_VEC(2);
240 case 2:
241 ALLOC_INVTLB_VEC(1);
242 case 1:
243 ALLOC_INVTLB_VEC(0);
244 break;
245 }
246
247 /* IPI for generic function call */
248 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
249
250 /* IPI for generic single function call */
251 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
252 call_function_single_interrupt);
253
254 /* Low priority IPI to cleanup after moving an irq */
255 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
256 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
257
258 /* IPI used for rebooting/stopping */
259 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
260#endif
261#endif /* CONFIG_SMP */
262}
263
264static void __init apic_intr_init(void)
265{
266 smp_intr_init();
267
268#ifdef CONFIG_X86_THERMAL_VECTOR
269 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
270#endif
271#ifdef CONFIG_X86_MCE_THRESHOLD
272 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
273#endif
274
275#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
276 /* self generated IPI for local APIC timer */
277 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
278
279 /* IPI for X86 platform specific use */
280 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
281
282 /* IPI vectors for APIC spurious and error interrupts */
283 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
284 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
285
286 /* IRQ work interrupts: */
287# ifdef CONFIG_IRQ_WORK
288 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
289# endif
290
291#endif
292}
293
294void __init native_init_IRQ(void)
295{
296 int i;
297
298 /* Execute any quirks before the call gates are initialised: */
299 x86_init.irqs.pre_vector_init();
300
301 apic_intr_init();
302
303 /*
304 * Cover the whole vector space, no vector can escape
305 * us. (some of these will be overridden and become
306 * 'special' SMP interrupts)
307 */
308 i = FIRST_EXTERNAL_VECTOR;
309 for_each_clear_bit_from(i, used_vectors, NR_VECTORS) {
310 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
311 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
312 }
313
314 if (!acpi_ioapic && !of_ioapic)
315 setup_irq(2, &irq2);
316
317#ifdef CONFIG_X86_32
318 /*
319 * External FPU? Set up irq13 if so, for
320 * original braindamaged IBM FERR coupling.
321 */
322 if (boot_cpu_data.hard_math && !cpu_has_fpu)
323 setup_irq(FPU_IRQ, &fpu_irq);
324
325 irq_ctx_init(smp_processor_id());
326#endif
327}
1#include <linux/linkage.h>
2#include <linux/errno.h>
3#include <linux/signal.h>
4#include <linux/sched.h>
5#include <linux/ioport.h>
6#include <linux/interrupt.h>
7#include <linux/timex.h>
8#include <linux/random.h>
9#include <linux/kprobes.h>
10#include <linux/init.h>
11#include <linux/kernel_stat.h>
12#include <linux/device.h>
13#include <linux/bitops.h>
14#include <linux/acpi.h>
15#include <linux/io.h>
16#include <linux/delay.h>
17
18#include <linux/atomic.h>
19#include <asm/timer.h>
20#include <asm/hw_irq.h>
21#include <asm/pgtable.h>
22#include <asm/desc.h>
23#include <asm/apic.h>
24#include <asm/setup.h>
25#include <asm/i8259.h>
26#include <asm/traps.h>
27#include <asm/prom.h>
28
29/*
30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31 * (these are usually mapped to vectors 0x30-0x3f)
32 */
33
34/*
35 * The IO-APIC gives us many more interrupt sources. Most of these
36 * are unused but an SMP system is supposed to have enough memory ...
37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38 * across the spectrum, so we really want to be prepared to get all
39 * of these. Plus, more powerful systems might have more than 64
40 * IO-APIC registers.
41 *
42 * (these are usually mapped into the 0x30-0xff vector range)
43 */
44
45/*
46 * IRQ2 is cascade interrupt to second interrupt controller
47 */
48static struct irqaction irq2 = {
49 .handler = no_action,
50 .name = "cascade",
51 .flags = IRQF_NO_THREAD,
52};
53
54DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
55 [0 ... NR_VECTORS - 1] = VECTOR_UNUSED,
56};
57
58int vector_used_by_percpu_irq(unsigned int vector)
59{
60 int cpu;
61
62 for_each_online_cpu(cpu) {
63 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
64 return 1;
65 }
66
67 return 0;
68}
69
70void __init init_ISA_irqs(void)
71{
72 struct irq_chip *chip = legacy_pic->chip;
73 int i;
74
75#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
76 init_bsp_APIC();
77#endif
78 legacy_pic->init(0);
79
80 for (i = 0; i < nr_legacy_irqs(); i++)
81 irq_set_chip_and_handler(i, chip, handle_level_irq);
82}
83
84void __init init_IRQ(void)
85{
86 int i;
87
88 /*
89 * On cpu 0, Assign ISA_IRQ_VECTOR(irq) to IRQ 0..15.
90 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
91 * then this configuration will likely be static after the boot. If
92 * these IRQ's are handled by more mordern controllers like IO-APIC,
93 * then this vector space can be freed and re-used dynamically as the
94 * irq's migrate etc.
95 */
96 for (i = 0; i < nr_legacy_irqs(); i++)
97 per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);
98
99 x86_init.irqs.intr_init();
100}
101
102static void __init smp_intr_init(void)
103{
104#ifdef CONFIG_SMP
105 /*
106 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
107 * IPI, driven by wakeup.
108 */
109 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
110
111 /* IPI for generic function call */
112 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
113
114 /* IPI for generic single function call */
115 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
116 call_function_single_interrupt);
117
118 /* Low priority IPI to cleanup after moving an irq */
119 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
120 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
121
122 /* IPI used for rebooting/stopping */
123 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
124#endif /* CONFIG_SMP */
125}
126
127static void __init apic_intr_init(void)
128{
129 smp_intr_init();
130
131#ifdef CONFIG_X86_THERMAL_VECTOR
132 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
133#endif
134#ifdef CONFIG_X86_MCE_THRESHOLD
135 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
136#endif
137
138#ifdef CONFIG_X86_MCE_AMD
139 alloc_intr_gate(DEFERRED_ERROR_VECTOR, deferred_error_interrupt);
140#endif
141
142#ifdef CONFIG_X86_LOCAL_APIC
143 /* self generated IPI for local APIC timer */
144 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
145
146 /* IPI for X86 platform specific use */
147 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
148#ifdef CONFIG_HAVE_KVM
149 /* IPI for KVM to deliver posted interrupt */
150 alloc_intr_gate(POSTED_INTR_VECTOR, kvm_posted_intr_ipi);
151 /* IPI for KVM to deliver interrupt to wake up tasks */
152 alloc_intr_gate(POSTED_INTR_WAKEUP_VECTOR, kvm_posted_intr_wakeup_ipi);
153#endif
154
155 /* IPI vectors for APIC spurious and error interrupts */
156 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
157 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
158
159 /* IRQ work interrupts: */
160# ifdef CONFIG_IRQ_WORK
161 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
162# endif
163
164#endif
165}
166
167void __init native_init_IRQ(void)
168{
169 int i;
170
171 /* Execute any quirks before the call gates are initialised: */
172 x86_init.irqs.pre_vector_init();
173
174 apic_intr_init();
175
176 /*
177 * Cover the whole vector space, no vector can escape
178 * us. (some of these will be overridden and become
179 * 'special' SMP interrupts)
180 */
181 i = FIRST_EXTERNAL_VECTOR;
182#ifndef CONFIG_X86_LOCAL_APIC
183#define first_system_vector NR_VECTORS
184#endif
185 for_each_clear_bit_from(i, used_vectors, first_system_vector) {
186 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
187 set_intr_gate(i, irq_entries_start +
188 8 * (i - FIRST_EXTERNAL_VECTOR));
189 }
190#ifdef CONFIG_X86_LOCAL_APIC
191 for_each_clear_bit_from(i, used_vectors, NR_VECTORS)
192 set_intr_gate(i, spurious_interrupt);
193#endif
194
195 if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs())
196 setup_irq(2, &irq2);
197
198#ifdef CONFIG_X86_32
199 irq_ctx_init(smp_processor_id());
200#endif
201}