Linux Audio

Check our new training course

Loading...
v3.5.6
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
 
 
  20#include <linux/uaccess.h>
  21#include "internal.h"
  22
  23#define rcu_dereference_locked_keyring(keyring)				\
  24	(rcu_dereference_protected(					\
  25		(keyring)->payload.subscriptions,			\
  26		rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
  27
  28#define rcu_deref_link_locked(klist, index, keyring)			\
  29	(rcu_dereference_protected(					\
  30		(klist)->keys[index],					\
  31		rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
  32
  33#define MAX_KEYRING_LINKS						\
  34	min_t(size_t, USHRT_MAX - 1,					\
  35	      ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *)))
  36
  37#define KEY_LINK_FIXQUOTA 1UL
  38
  39/*
  40 * When plumbing the depths of the key tree, this sets a hard limit
  41 * set on how deep we're willing to go.
  42 */
  43#define KEYRING_SEARCH_MAX_DEPTH 6
  44
  45/*
  46 * We keep all named keyrings in a hash to speed looking them up.
  47 */
  48#define KEYRING_NAME_HASH_SIZE	(1 << 5)
  49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  51static DEFINE_RWLOCK(keyring_name_lock);
  52
  53static inline unsigned keyring_hash(const char *desc)
  54{
  55	unsigned bucket = 0;
  56
  57	for (; *desc; desc++)
  58		bucket += (unsigned char)*desc;
  59
  60	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  61}
  62
  63/*
  64 * The keyring key type definition.  Keyrings are simply keys of this type and
  65 * can be treated as ordinary keys in addition to having their own special
  66 * operations.
  67 */
  68static int keyring_instantiate(struct key *keyring,
  69			       const void *data, size_t datalen);
  70static int keyring_match(const struct key *keyring, const void *criterion);
  71static void keyring_revoke(struct key *keyring);
  72static void keyring_destroy(struct key *keyring);
  73static void keyring_describe(const struct key *keyring, struct seq_file *m);
  74static long keyring_read(const struct key *keyring,
  75			 char __user *buffer, size_t buflen);
  76
  77struct key_type key_type_keyring = {
  78	.name		= "keyring",
  79	.def_datalen	= sizeof(struct keyring_list),
  80	.instantiate	= keyring_instantiate,
  81	.match		= keyring_match,
  82	.revoke		= keyring_revoke,
  83	.destroy	= keyring_destroy,
  84	.describe	= keyring_describe,
  85	.read		= keyring_read,
  86};
  87EXPORT_SYMBOL(key_type_keyring);
  88
  89/*
  90 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  91 * introducing a cycle.
  92 */
  93static DECLARE_RWSEM(keyring_serialise_link_sem);
  94
  95/*
  96 * Publish the name of a keyring so that it can be found by name (if it has
  97 * one).
  98 */
  99static void keyring_publish_name(struct key *keyring)
 100{
 101	int bucket;
 102
 103	if (keyring->description) {
 104		bucket = keyring_hash(keyring->description);
 105
 106		write_lock(&keyring_name_lock);
 107
 108		if (!keyring_name_hash[bucket].next)
 109			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 110
 111		list_add_tail(&keyring->type_data.link,
 112			      &keyring_name_hash[bucket]);
 113
 114		write_unlock(&keyring_name_lock);
 115	}
 116}
 117
 118/*
 119 * Initialise a keyring.
 120 *
 121 * Returns 0 on success, -EINVAL if given any data.
 122 */
 123static int keyring_instantiate(struct key *keyring,
 124			       const void *data, size_t datalen)
 125{
 126	int ret;
 127
 128	ret = -EINVAL;
 129	if (datalen == 0) {
 
 130		/* make the keyring available by name if it has one */
 131		keyring_publish_name(keyring);
 132		ret = 0;
 133	}
 134
 135	return ret;
 136}
 137
 138/*
 139 * Match keyrings on their name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140 */
 141static int keyring_match(const struct key *keyring, const void *description)
 142{
 143	return keyring->description &&
 144		strcmp(keyring->description, description) == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146
 147/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 149 * and dispose of its data.
 150 *
 151 * The garbage collector detects the final key_put(), removes the keyring from
 152 * the serial number tree and then does RCU synchronisation before coming here,
 153 * so we shouldn't need to worry about code poking around here with the RCU
 154 * readlock held by this time.
 155 */
 156static void keyring_destroy(struct key *keyring)
 157{
 158	struct keyring_list *klist;
 159	int loop;
 160
 161	if (keyring->description) {
 162		write_lock(&keyring_name_lock);
 163
 164		if (keyring->type_data.link.next != NULL &&
 165		    !list_empty(&keyring->type_data.link))
 166			list_del(&keyring->type_data.link);
 167
 168		write_unlock(&keyring_name_lock);
 169	}
 170
 171	klist = rcu_access_pointer(keyring->payload.subscriptions);
 172	if (klist) {
 173		for (loop = klist->nkeys - 1; loop >= 0; loop--)
 174			key_put(rcu_access_pointer(klist->keys[loop]));
 175		kfree(klist);
 176	}
 177}
 178
 179/*
 180 * Describe a keyring for /proc.
 181 */
 182static void keyring_describe(const struct key *keyring, struct seq_file *m)
 183{
 184	struct keyring_list *klist;
 185
 186	if (keyring->description)
 187		seq_puts(m, keyring->description);
 188	else
 189		seq_puts(m, "[anon]");
 190
 191	if (key_is_instantiated(keyring)) {
 192		rcu_read_lock();
 193		klist = rcu_dereference(keyring->payload.subscriptions);
 194		if (klist)
 195			seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
 196		else
 197			seq_puts(m, ": empty");
 198		rcu_read_unlock();
 199	}
 200}
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202/*
 203 * Read a list of key IDs from the keyring's contents in binary form
 204 *
 205 * The keyring's semaphore is read-locked by the caller.
 
 
 206 */
 207static long keyring_read(const struct key *keyring,
 208			 char __user *buffer, size_t buflen)
 209{
 210	struct keyring_list *klist;
 211	struct key *key;
 212	size_t qty, tmp;
 213	int loop, ret;
 214
 215	ret = 0;
 216	klist = rcu_dereference_locked_keyring(keyring);
 217	if (klist) {
 218		/* calculate how much data we could return */
 219		qty = klist->nkeys * sizeof(key_serial_t);
 220
 221		if (buffer && buflen > 0) {
 222			if (buflen > qty)
 223				buflen = qty;
 224
 225			/* copy the IDs of the subscribed keys into the
 226			 * buffer */
 227			ret = -EFAULT;
 228
 229			for (loop = 0; loop < klist->nkeys; loop++) {
 230				key = rcu_deref_link_locked(klist, loop,
 231							    keyring);
 232
 233				tmp = sizeof(key_serial_t);
 234				if (tmp > buflen)
 235					tmp = buflen;
 236
 237				if (copy_to_user(buffer,
 238						 &key->serial,
 239						 tmp) != 0)
 240					goto error;
 241
 242				buflen -= tmp;
 243				if (buflen == 0)
 244					break;
 245				buffer += tmp;
 246			}
 247		}
 248
 249		ret = qty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250	}
 251
 252error:
 253	return ret;
 254}
 255
 256/*
 257 * Allocate a keyring and link into the destination keyring.
 258 */
 259struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
 260			  const struct cred *cred, unsigned long flags,
 261			  struct key *dest)
 262{
 263	struct key *keyring;
 264	int ret;
 265
 266	keyring = key_alloc(&key_type_keyring, description,
 267			    uid, gid, cred,
 268			    (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
 269			    flags);
 270
 271	if (!IS_ERR(keyring)) {
 272		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 273		if (ret < 0) {
 274			key_put(keyring);
 275			keyring = ERR_PTR(ret);
 276		}
 277	}
 278
 279	return keyring;
 280}
 
 281
 282/**
 283 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 284 * @keyring_ref: A pointer to the keyring with possession indicator.
 285 * @cred: The credentials to use for permissions checks.
 286 * @type: The type of key to search for.
 287 * @description: Parameter for @match.
 288 * @match: Function to rule on whether or not a key is the one required.
 289 * @no_state_check: Don't check if a matching key is bad
 290 *
 291 * Search the supplied keyring tree for a key that matches the criteria given.
 292 * The root keyring and any linked keyrings must grant Search permission to the
 293 * caller to be searchable and keys can only be found if they too grant Search
 294 * to the caller. The possession flag on the root keyring pointer controls use
 295 * of the possessor bits in permissions checking of the entire tree.  In
 296 * addition, the LSM gets to forbid keyring searches and key matches.
 297 *
 298 * The search is performed as a breadth-then-depth search up to the prescribed
 299 * limit (KEYRING_SEARCH_MAX_DEPTH).
 300 *
 301 * Keys are matched to the type provided and are then filtered by the match
 302 * function, which is given the description to use in any way it sees fit.  The
 303 * match function may use any attributes of a key that it wishes to to
 304 * determine the match.  Normally the match function from the key type would be
 305 * used.
 306 *
 307 * RCU is used to prevent the keyring key lists from disappearing without the
 308 * need to take lots of locks.
 309 *
 310 * Returns a pointer to the found key and increments the key usage count if
 311 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 312 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 313 * specified keyring wasn't a keyring.
 314 *
 315 * In the case of a successful return, the possession attribute from
 316 * @keyring_ref is propagated to the returned key reference.
 317 */
 318key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 319			     const struct cred *cred,
 320			     struct key_type *type,
 321			     const void *description,
 322			     key_match_func_t match,
 323			     bool no_state_check)
 324{
 325	struct {
 326		/* Need a separate keylist pointer for RCU purposes */
 327		struct key *keyring;
 328		struct keyring_list *keylist;
 329		int kix;
 330	} stack[KEYRING_SEARCH_MAX_DEPTH];
 331
 332	struct keyring_list *keylist;
 333	struct timespec now;
 334	unsigned long possessed, kflags;
 335	struct key *keyring, *key;
 336	key_ref_t key_ref;
 337	long err;
 338	int sp, nkeys, kix;
 339
 340	keyring = key_ref_to_ptr(keyring_ref);
 341	possessed = is_key_possessed(keyring_ref);
 342	key_check(keyring);
 343
 344	/* top keyring must have search permission to begin the search */
 345	err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
 346	if (err < 0) {
 347		key_ref = ERR_PTR(err);
 348		goto error;
 349	}
 350
 351	key_ref = ERR_PTR(-ENOTDIR);
 352	if (keyring->type != &key_type_keyring)
 353		goto error;
 
 
 
 
 
 354
 355	rcu_read_lock();
 
 
 
 
 
 356
 357	now = current_kernel_time();
 358	err = -EAGAIN;
 359	sp = 0;
 360
 361	/* firstly we should check to see if this top-level keyring is what we
 362	 * are looking for */
 363	key_ref = ERR_PTR(-EAGAIN);
 364	kflags = keyring->flags;
 365	if (keyring->type == type && match(keyring, description)) {
 366		key = keyring;
 367		if (no_state_check)
 368			goto found;
 
 
 369
 370		/* check it isn't negative and hasn't expired or been
 371		 * revoked */
 372		if (kflags & (1 << KEY_FLAG_REVOKED))
 373			goto error_2;
 374		if (key->expiry && now.tv_sec >= key->expiry)
 375			goto error_2;
 376		key_ref = ERR_PTR(key->type_data.reject_error);
 377		if (kflags & (1 << KEY_FLAG_NEGATIVE))
 378			goto error_2;
 379		goto found;
 380	}
 381
 382	/* otherwise, the top keyring must not be revoked, expired, or
 383	 * negatively instantiated if we are to search it */
 384	key_ref = ERR_PTR(-EAGAIN);
 385	if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 386		      (1 << KEY_FLAG_REVOKED) |
 387		      (1 << KEY_FLAG_NEGATIVE)) ||
 388	    (keyring->expiry && now.tv_sec >= keyring->expiry))
 389		goto error_2;
 390
 391	/* start processing a new keyring */
 392descend:
 393	kflags = keyring->flags;
 394	if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 395		      (1 << KEY_FLAG_REVOKED)))
 396		goto not_this_keyring;
 397
 398	keylist = rcu_dereference(keyring->payload.subscriptions);
 399	if (!keylist)
 400		goto not_this_keyring;
 401
 402	/* iterate through the keys in this keyring first */
 403	nkeys = keylist->nkeys;
 404	smp_rmb();
 405	for (kix = 0; kix < nkeys; kix++) {
 406		key = rcu_dereference(keylist->keys[kix]);
 407		kflags = key->flags;
 
 
 
 
 408
 409		/* ignore keys not of this type */
 410		if (key->type != type)
 411			continue;
 
 
 
 
 412
 413		/* skip invalidated, revoked and expired keys */
 414		if (!no_state_check) {
 415			if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 416				      (1 << KEY_FLAG_REVOKED)))
 417				continue;
 
 
 
 
 
 
 
 418
 419			if (key->expiry && now.tv_sec >= key->expiry)
 420				continue;
 421		}
 
 
 422
 423		/* keys that don't match */
 424		if (!match(key, description))
 425			continue;
 
 426
 427		/* key must have search permissions */
 428		if (key_task_permission(make_key_ref(key, possessed),
 429					cred, KEY_SEARCH) < 0)
 430			continue;
 431
 432		if (no_state_check)
 
 
 
 
 
 
 
 
 433			goto found;
 434
 435		/* we set a different error code if we pass a negative key */
 436		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 437			err = key->type_data.reject_error;
 438			continue;
 439		}
 
 440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441		goto found;
 442	}
 443
 444	/* search through the keyrings nested in this one */
 445	kix = 0;
 446ascend:
 447	nkeys = keylist->nkeys;
 448	smp_rmb();
 449	for (; kix < nkeys; kix++) {
 450		key = rcu_dereference(keylist->keys[kix]);
 451		if (key->type != &key_type_keyring)
 452			continue;
 
 
 453
 454		/* recursively search nested keyrings
 455		 * - only search keyrings for which we have search permission
 
 
 456		 */
 457		if (sp >= KEYRING_SEARCH_MAX_DEPTH)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458			continue;
 459
 460		if (key_task_permission(make_key_ref(key, possessed),
 461					cred, KEY_SEARCH) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 462			continue;
 463
 464		/* stack the current position */
 465		stack[sp].keyring = keyring;
 466		stack[sp].keylist = keylist;
 467		stack[sp].kix = kix;
 468		sp++;
 469
 470		/* begin again with the new keyring */
 471		keyring = key;
 472		goto descend;
 473	}
 474
 475	/* the keyring we're looking at was disqualified or didn't contain a
 476	 * matching key */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477not_this_keyring:
 478	if (sp > 0) {
 479		/* resume the processing of a keyring higher up in the tree */
 480		sp--;
 481		keyring = stack[sp].keyring;
 482		keylist = stack[sp].keylist;
 483		kix = stack[sp].kix + 1;
 484		goto ascend;
 485	}
 486
 487	key_ref = ERR_PTR(err);
 488	goto error_2;
 
 
 
 
 
 489
 490	/* we found a viable match */
 491found:
 492	atomic_inc(&key->usage);
 493	key->last_used_at = now.tv_sec;
 494	keyring->last_used_at = now.tv_sec;
 495	while (sp > 0)
 496		stack[--sp].keyring->last_used_at = now.tv_sec;
 497	key_check(key);
 498	key_ref = make_key_ref(key, possessed);
 499error_2:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500	rcu_read_unlock();
 501error:
 502	return key_ref;
 503}
 504
 505/**
 506 * keyring_search - Search the supplied keyring tree for a matching key
 507 * @keyring: The root of the keyring tree to be searched.
 508 * @type: The type of keyring we want to find.
 509 * @description: The name of the keyring we want to find.
 510 *
 511 * As keyring_search_aux() above, but using the current task's credentials and
 512 * type's default matching function.
 513 */
 514key_ref_t keyring_search(key_ref_t keyring,
 515			 struct key_type *type,
 516			 const char *description)
 517{
 518	if (!type->match)
 
 
 
 
 
 
 
 
 
 
 519		return ERR_PTR(-ENOKEY);
 520
 521	return keyring_search_aux(keyring, current->cred,
 522				  type, description, type->match, false);
 523}
 524EXPORT_SYMBOL(keyring_search);
 525
 526/*
 527 * Search the given keyring only (no recursion).
 528 *
 529 * The caller must guarantee that the keyring is a keyring and that the
 530 * permission is granted to search the keyring as no check is made here.
 531 *
 532 * RCU is used to make it unnecessary to lock the keyring key list here.
 533 *
 534 * Returns a pointer to the found key with usage count incremented if
 535 * successful and returns -ENOKEY if not found.  Revoked keys and keys not
 536 * providing the requested permission are skipped over.
 537 *
 538 * If successful, the possession indicator is propagated from the keyring ref
 539 * to the returned key reference.
 540 */
 541key_ref_t __keyring_search_one(key_ref_t keyring_ref,
 542			       const struct key_type *ktype,
 543			       const char *description,
 544			       key_perm_t perm)
 545{
 546	struct keyring_list *klist;
 547	unsigned long possessed;
 548	struct key *keyring, *key;
 549	int nkeys, loop;
 550
 551	keyring = key_ref_to_ptr(keyring_ref);
 552	possessed = is_key_possessed(keyring_ref);
 553
 554	rcu_read_lock();
 
 555
 556	klist = rcu_dereference(keyring->payload.subscriptions);
 557	if (klist) {
 558		nkeys = klist->nkeys;
 559		smp_rmb();
 560		for (loop = 0; loop < nkeys ; loop++) {
 561			key = rcu_dereference(klist->keys[loop]);
 562			if (key->type == ktype &&
 563			    (!key->type->match ||
 564			     key->type->match(key, description)) &&
 565			    key_permission(make_key_ref(key, possessed),
 566					   perm) == 0 &&
 567			    !(key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 568					    (1 << KEY_FLAG_REVOKED)))
 569			    )
 570				goto found;
 571		}
 572	}
 573
 574	rcu_read_unlock();
 575	return ERR_PTR(-ENOKEY);
 
 
 
 576
 577found:
 578	atomic_inc(&key->usage);
 579	keyring->last_used_at = key->last_used_at =
 580		current_kernel_time().tv_sec;
 581	rcu_read_unlock();
 582	return make_key_ref(key, possessed);
 
 
 
 
 583}
 584
 585/*
 586 * Find a keyring with the specified name.
 587 *
 588 * All named keyrings in the current user namespace are searched, provided they
 589 * grant Search permission directly to the caller (unless this check is
 590 * skipped).  Keyrings whose usage points have reached zero or who have been
 591 * revoked are skipped.
 592 *
 593 * Returns a pointer to the keyring with the keyring's refcount having being
 594 * incremented on success.  -ENOKEY is returned if a key could not be found.
 595 */
 596struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
 597{
 598	struct key *keyring;
 599	int bucket;
 600
 601	if (!name)
 602		return ERR_PTR(-EINVAL);
 603
 604	bucket = keyring_hash(name);
 605
 606	read_lock(&keyring_name_lock);
 607
 608	if (keyring_name_hash[bucket].next) {
 609		/* search this hash bucket for a keyring with a matching name
 610		 * that's readable and that hasn't been revoked */
 611		list_for_each_entry(keyring,
 612				    &keyring_name_hash[bucket],
 613				    type_data.link
 614				    ) {
 615			if (keyring->user->user_ns != current_user_ns())
 616				continue;
 617
 618			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 619				continue;
 620
 621			if (strcmp(keyring->description, name) != 0)
 622				continue;
 623
 624			if (!skip_perm_check &&
 625			    key_permission(make_key_ref(keyring, 0),
 626					   KEY_SEARCH) < 0)
 627				continue;
 628
 629			/* we've got a match but we might end up racing with
 630			 * key_cleanup() if the keyring is currently 'dead'
 631			 * (ie. it has a zero usage count) */
 632			if (!atomic_inc_not_zero(&keyring->usage))
 633				continue;
 634			keyring->last_used_at = current_kernel_time().tv_sec;
 635			goto out;
 636		}
 637	}
 638
 639	keyring = ERR_PTR(-ENOKEY);
 640out:
 641	read_unlock(&keyring_name_lock);
 642	return keyring;
 643}
 644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645/*
 646 * See if a cycle will will be created by inserting acyclic tree B in acyclic
 647 * tree A at the topmost level (ie: as a direct child of A).
 648 *
 649 * Since we are adding B to A at the top level, checking for cycles should just
 650 * be a matter of seeing if node A is somewhere in tree B.
 651 */
 652static int keyring_detect_cycle(struct key *A, struct key *B)
 653{
 654	struct {
 655		struct keyring_list *keylist;
 656		int kix;
 657	} stack[KEYRING_SEARCH_MAX_DEPTH];
 658
 659	struct keyring_list *keylist;
 660	struct key *subtree, *key;
 661	int sp, nkeys, kix, ret;
 
 
 662
 663	rcu_read_lock();
 664
 665	ret = -EDEADLK;
 666	if (A == B)
 667		goto cycle_detected;
 668
 669	subtree = B;
 670	sp = 0;
 671
 672	/* start processing a new keyring */
 673descend:
 674	if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
 675		goto not_this_keyring;
 676
 677	keylist = rcu_dereference(subtree->payload.subscriptions);
 678	if (!keylist)
 679		goto not_this_keyring;
 680	kix = 0;
 681
 682ascend:
 683	/* iterate through the remaining keys in this keyring */
 684	nkeys = keylist->nkeys;
 685	smp_rmb();
 686	for (; kix < nkeys; kix++) {
 687		key = rcu_dereference(keylist->keys[kix]);
 688
 689		if (key == A)
 690			goto cycle_detected;
 691
 692		/* recursively check nested keyrings */
 693		if (key->type == &key_type_keyring) {
 694			if (sp >= KEYRING_SEARCH_MAX_DEPTH)
 695				goto too_deep;
 696
 697			/* stack the current position */
 698			stack[sp].keylist = keylist;
 699			stack[sp].kix = kix;
 700			sp++;
 701
 702			/* begin again with the new keyring */
 703			subtree = key;
 704			goto descend;
 705		}
 706	}
 707
 708	/* the keyring we're looking at was disqualified or didn't contain a
 709	 * matching key */
 710not_this_keyring:
 711	if (sp > 0) {
 712		/* resume the checking of a keyring higher up in the tree */
 713		sp--;
 714		keylist = stack[sp].keylist;
 715		kix = stack[sp].kix + 1;
 716		goto ascend;
 717	}
 718
 719	ret = 0; /* no cycles detected */
 720
 721error:
 722	rcu_read_unlock();
 723	return ret;
 724
 725too_deep:
 726	ret = -ELOOP;
 727	goto error;
 728
 729cycle_detected:
 730	ret = -EDEADLK;
 731	goto error;
 732}
 733
 734/*
 735 * Dispose of a keyring list after the RCU grace period, freeing the unlinked
 736 * key
 737 */
 738static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
 739{
 740	struct keyring_list *klist =
 741		container_of(rcu, struct keyring_list, rcu);
 742
 743	if (klist->delkey != USHRT_MAX)
 744		key_put(rcu_access_pointer(klist->keys[klist->delkey]));
 745	kfree(klist);
 746}
 747
 748/*
 749 * Preallocate memory so that a key can be linked into to a keyring.
 750 */
 751int __key_link_begin(struct key *keyring, const struct key_type *type,
 752		     const char *description, unsigned long *_prealloc)
 
 753	__acquires(&keyring->sem)
 
 754{
 755	struct keyring_list *klist, *nklist;
 756	unsigned long prealloc;
 757	unsigned max;
 758	time_t lowest_lru;
 759	size_t size;
 760	int loop, lru, ret;
 761
 762	kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
 763
 764	if (keyring->type != &key_type_keyring)
 765		return -ENOTDIR;
 766
 767	down_write(&keyring->sem);
 768
 769	ret = -EKEYREVOKED;
 770	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 771		goto error_krsem;
 772
 773	/* serialise link/link calls to prevent parallel calls causing a cycle
 774	 * when linking two keyring in opposite orders */
 775	if (type == &key_type_keyring)
 776		down_write(&keyring_serialise_link_sem);
 777
 778	klist = rcu_dereference_locked_keyring(keyring);
 779
 780	/* see if there's a matching key we can displace */
 781	lru = -1;
 782	if (klist && klist->nkeys > 0) {
 783		lowest_lru = TIME_T_MAX;
 784		for (loop = klist->nkeys - 1; loop >= 0; loop--) {
 785			struct key *key = rcu_deref_link_locked(klist, loop,
 786								keyring);
 787			if (key->type == type &&
 788			    strcmp(key->description, description) == 0) {
 789				/* Found a match - we'll replace the link with
 790				 * one to the new key.  We record the slot
 791				 * position.
 792				 */
 793				klist->delkey = loop;
 794				prealloc = 0;
 795				goto done;
 796			}
 797			if (key->last_used_at < lowest_lru) {
 798				lowest_lru = key->last_used_at;
 799				lru = loop;
 800			}
 801		}
 802	}
 803
 804	/* If the keyring is full then do an LRU discard */
 805	if (klist &&
 806	    klist->nkeys == klist->maxkeys &&
 807	    klist->maxkeys >= MAX_KEYRING_LINKS) {
 808		kdebug("LRU discard %d\n", lru);
 809		klist->delkey = lru;
 810		prealloc = 0;
 811		goto done;
 812	}
 813
 814	/* check that we aren't going to overrun the user's quota */
 815	ret = key_payload_reserve(keyring,
 816				  keyring->datalen + KEYQUOTA_LINK_BYTES);
 817	if (ret < 0)
 818		goto error_sem;
 
 819
 820	if (klist && klist->nkeys < klist->maxkeys) {
 821		/* there's sufficient slack space to append directly */
 822		klist->delkey = klist->nkeys;
 823		prealloc = KEY_LINK_FIXQUOTA;
 824	} else {
 825		/* grow the key list */
 826		max = 4;
 827		if (klist) {
 828			max += klist->maxkeys;
 829			if (max > MAX_KEYRING_LINKS)
 830				max = MAX_KEYRING_LINKS;
 831			BUG_ON(max <= klist->maxkeys);
 832		}
 833
 834		size = sizeof(*klist) + sizeof(struct key *) * max;
 835
 836		ret = -ENOMEM;
 837		nklist = kmalloc(size, GFP_KERNEL);
 838		if (!nklist)
 839			goto error_quota;
 840
 841		nklist->maxkeys = max;
 842		if (klist) {
 843			memcpy(nklist->keys, klist->keys,
 844			       sizeof(struct key *) * klist->nkeys);
 845			nklist->delkey = klist->nkeys;
 846			nklist->nkeys = klist->nkeys + 1;
 847			klist->delkey = USHRT_MAX;
 848		} else {
 849			nklist->nkeys = 1;
 850			nklist->delkey = 0;
 851		}
 852
 853		/* add the key into the new space */
 854		RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL);
 855		prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
 856	}
 857
 858done:
 859	*_prealloc = prealloc;
 860	kleave(" = 0");
 861	return 0;
 862
 863error_quota:
 864	/* undo the quota changes */
 865	key_payload_reserve(keyring,
 866			    keyring->datalen - KEYQUOTA_LINK_BYTES);
 867error_sem:
 868	if (type == &key_type_keyring)
 869		up_write(&keyring_serialise_link_sem);
 870error_krsem:
 871	up_write(&keyring->sem);
 872	kleave(" = %d", ret);
 873	return ret;
 874}
 875
 876/*
 877 * Check already instantiated keys aren't going to be a problem.
 878 *
 879 * The caller must have called __key_link_begin(). Don't need to call this for
 880 * keys that were created since __key_link_begin() was called.
 881 */
 882int __key_link_check_live_key(struct key *keyring, struct key *key)
 883{
 884	if (key->type == &key_type_keyring)
 885		/* check that we aren't going to create a cycle by linking one
 886		 * keyring to another */
 887		return keyring_detect_cycle(keyring, key);
 888	return 0;
 889}
 890
 891/*
 892 * Link a key into to a keyring.
 893 *
 894 * Must be called with __key_link_begin() having being called.  Discards any
 895 * already extant link to matching key if there is one, so that each keyring
 896 * holds at most one link to any given key of a particular type+description
 897 * combination.
 898 */
 899void __key_link(struct key *keyring, struct key *key,
 900		unsigned long *_prealloc)
 901{
 902	struct keyring_list *klist, *nklist;
 903	struct key *discard;
 904
 905	nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
 906	*_prealloc = 0;
 907
 908	kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
 909
 910	klist = rcu_dereference_locked_keyring(keyring);
 911
 912	atomic_inc(&key->usage);
 913	keyring->last_used_at = key->last_used_at =
 914		current_kernel_time().tv_sec;
 915
 916	/* there's a matching key we can displace or an empty slot in a newly
 917	 * allocated list we can fill */
 918	if (nklist) {
 919		kdebug("reissue %hu/%hu/%hu",
 920		       nklist->delkey, nklist->nkeys, nklist->maxkeys);
 921
 922		RCU_INIT_POINTER(nklist->keys[nklist->delkey], key);
 923
 924		rcu_assign_pointer(keyring->payload.subscriptions, nklist);
 925
 926		/* dispose of the old keyring list and, if there was one, the
 927		 * displaced key */
 928		if (klist) {
 929			kdebug("dispose %hu/%hu/%hu",
 930			       klist->delkey, klist->nkeys, klist->maxkeys);
 931			call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
 932		}
 933	} else if (klist->delkey < klist->nkeys) {
 934		kdebug("replace %hu/%hu/%hu",
 935		       klist->delkey, klist->nkeys, klist->maxkeys);
 936
 937		discard = rcu_dereference_protected(
 938			klist->keys[klist->delkey],
 939			rwsem_is_locked(&keyring->sem));
 940		rcu_assign_pointer(klist->keys[klist->delkey], key);
 941		/* The garbage collector will take care of RCU
 942		 * synchronisation */
 943		key_put(discard);
 944	} else {
 945		/* there's sufficient slack space to append directly */
 946		kdebug("append %hu/%hu/%hu",
 947		       klist->delkey, klist->nkeys, klist->maxkeys);
 948
 949		RCU_INIT_POINTER(klist->keys[klist->delkey], key);
 950		smp_wmb();
 951		klist->nkeys++;
 952	}
 953}
 954
 955/*
 956 * Finish linking a key into to a keyring.
 957 *
 958 * Must be called with __key_link_begin() having being called.
 959 */
 960void __key_link_end(struct key *keyring, struct key_type *type,
 961		    unsigned long prealloc)
 
 962	__releases(&keyring->sem)
 
 963{
 964	BUG_ON(type == NULL);
 965	BUG_ON(type->name == NULL);
 966	kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
 967
 968	if (type == &key_type_keyring)
 969		up_write(&keyring_serialise_link_sem);
 970
 971	if (prealloc) {
 972		if (prealloc & KEY_LINK_FIXQUOTA)
 973			key_payload_reserve(keyring,
 974					    keyring->datalen -
 975					    KEYQUOTA_LINK_BYTES);
 976		kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
 977	}
 978	up_write(&keyring->sem);
 979}
 980
 981/**
 982 * key_link - Link a key to a keyring
 983 * @keyring: The keyring to make the link in.
 984 * @key: The key to link to.
 985 *
 986 * Make a link in a keyring to a key, such that the keyring holds a reference
 987 * on that key and the key can potentially be found by searching that keyring.
 988 *
 989 * This function will write-lock the keyring's semaphore and will consume some
 990 * of the user's key data quota to hold the link.
 991 *
 992 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
 993 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
 994 * full, -EDQUOT if there is insufficient key data quota remaining to add
 995 * another link or -ENOMEM if there's insufficient memory.
 996 *
 997 * It is assumed that the caller has checked that it is permitted for a link to
 998 * be made (the keyring should have Write permission and the key Link
 999 * permission).
1000 */
1001int key_link(struct key *keyring, struct key *key)
1002{
1003	unsigned long prealloc;
1004	int ret;
1005
 
 
1006	key_check(keyring);
1007	key_check(key);
1008
1009	ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
 
 
 
 
1010	if (ret == 0) {
 
1011		ret = __key_link_check_live_key(keyring, key);
1012		if (ret == 0)
1013			__key_link(keyring, key, &prealloc);
1014		__key_link_end(keyring, key->type, prealloc);
1015	}
1016
 
1017	return ret;
1018}
1019EXPORT_SYMBOL(key_link);
1020
1021/**
1022 * key_unlink - Unlink the first link to a key from a keyring.
1023 * @keyring: The keyring to remove the link from.
1024 * @key: The key the link is to.
1025 *
1026 * Remove a link from a keyring to a key.
1027 *
1028 * This function will write-lock the keyring's semaphore.
1029 *
1030 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1031 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1032 * memory.
1033 *
1034 * It is assumed that the caller has checked that it is permitted for a link to
1035 * be removed (the keyring should have Write permission; no permissions are
1036 * required on the key).
1037 */
1038int key_unlink(struct key *keyring, struct key *key)
1039{
1040	struct keyring_list *klist, *nklist;
1041	int loop, ret;
1042
1043	key_check(keyring);
1044	key_check(key);
1045
1046	ret = -ENOTDIR;
1047	if (keyring->type != &key_type_keyring)
1048		goto error;
1049
1050	down_write(&keyring->sem);
1051
1052	klist = rcu_dereference_locked_keyring(keyring);
1053	if (klist) {
1054		/* search the keyring for the key */
1055		for (loop = 0; loop < klist->nkeys; loop++)
1056			if (rcu_access_pointer(klist->keys[loop]) == key)
1057				goto key_is_present;
1058	}
1059
1060	up_write(&keyring->sem);
1061	ret = -ENOENT;
1062	goto error;
1063
1064key_is_present:
1065	/* we need to copy the key list for RCU purposes */
1066	nklist = kmalloc(sizeof(*klist) +
1067			 sizeof(struct key *) * klist->maxkeys,
1068			 GFP_KERNEL);
1069	if (!nklist)
1070		goto nomem;
1071	nklist->maxkeys = klist->maxkeys;
1072	nklist->nkeys = klist->nkeys - 1;
1073
1074	if (loop > 0)
1075		memcpy(&nklist->keys[0],
1076		       &klist->keys[0],
1077		       loop * sizeof(struct key *));
1078
1079	if (loop < nklist->nkeys)
1080		memcpy(&nklist->keys[loop],
1081		       &klist->keys[loop + 1],
1082		       (nklist->nkeys - loop) * sizeof(struct key *));
1083
1084	/* adjust the user's quota */
1085	key_payload_reserve(keyring,
1086			    keyring->datalen - KEYQUOTA_LINK_BYTES);
1087
1088	rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1089
1090	up_write(&keyring->sem);
1091
1092	/* schedule for later cleanup */
1093	klist->delkey = loop;
1094	call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1095
 
 
1096	ret = 0;
1097
1098error:
1099	return ret;
1100nomem:
1101	ret = -ENOMEM;
1102	up_write(&keyring->sem);
1103	goto error;
1104}
1105EXPORT_SYMBOL(key_unlink);
1106
1107/*
1108 * Dispose of a keyring list after the RCU grace period, releasing the keys it
1109 * links to.
1110 */
1111static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1112{
1113	struct keyring_list *klist;
1114	int loop;
1115
1116	klist = container_of(rcu, struct keyring_list, rcu);
1117
1118	for (loop = klist->nkeys - 1; loop >= 0; loop--)
1119		key_put(rcu_access_pointer(klist->keys[loop]));
1120
1121	kfree(klist);
1122}
1123
1124/**
1125 * keyring_clear - Clear a keyring
1126 * @keyring: The keyring to clear.
1127 *
1128 * Clear the contents of the specified keyring.
1129 *
1130 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1131 */
1132int keyring_clear(struct key *keyring)
1133{
1134	struct keyring_list *klist;
1135	int ret;
1136
1137	ret = -ENOTDIR;
1138	if (keyring->type == &key_type_keyring) {
1139		/* detach the pointer block with the locks held */
1140		down_write(&keyring->sem);
1141
1142		klist = rcu_dereference_locked_keyring(keyring);
1143		if (klist) {
1144			/* adjust the quota */
1145			key_payload_reserve(keyring,
1146					    sizeof(struct keyring_list));
1147
1148			rcu_assign_pointer(keyring->payload.subscriptions,
1149					   NULL);
1150		}
1151
1152		up_write(&keyring->sem);
1153
1154		/* free the keys after the locks have been dropped */
1155		if (klist)
1156			call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1157
 
 
 
 
 
 
 
1158		ret = 0;
1159	}
1160
 
1161	return ret;
1162}
1163EXPORT_SYMBOL(keyring_clear);
1164
1165/*
1166 * Dispose of the links from a revoked keyring.
1167 *
1168 * This is called with the key sem write-locked.
1169 */
1170static void keyring_revoke(struct key *keyring)
1171{
1172	struct keyring_list *klist;
1173
1174	klist = rcu_dereference_locked_keyring(keyring);
 
 
 
 
 
 
1175
1176	/* adjust the quota */
1177	key_payload_reserve(keyring, 0);
 
 
1178
1179	if (klist) {
1180		rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1181		call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1182	}
 
 
 
 
 
 
 
 
 
1183}
1184
1185/*
1186 * Collect garbage from the contents of a keyring, replacing the old list with
1187 * a new one with the pointers all shuffled down.
1188 *
1189 * Dead keys are classed as oned that are flagged as being dead or are revoked,
1190 * expired or negative keys that were revoked or expired before the specified
1191 * limit.
1192 */
1193void keyring_gc(struct key *keyring, time_t limit)
1194{
1195	struct keyring_list *klist, *new;
1196	struct key *key;
1197	int loop, keep, max;
1198
1199	kenter("{%x,%s}", key_serial(keyring), keyring->description);
1200
1201	down_write(&keyring->sem);
1202
1203	klist = rcu_dereference_locked_keyring(keyring);
1204	if (!klist)
1205		goto no_klist;
1206
1207	/* work out how many subscriptions we're keeping */
1208	keep = 0;
1209	for (loop = klist->nkeys - 1; loop >= 0; loop--)
1210		if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring),
1211				 limit))
1212			keep++;
1213
1214	if (keep == klist->nkeys)
1215		goto just_return;
1216
1217	/* allocate a new keyring payload */
1218	max = roundup(keep, 4);
1219	new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1220		      GFP_KERNEL);
1221	if (!new)
1222		goto nomem;
1223	new->maxkeys = max;
1224	new->nkeys = 0;
1225	new->delkey = 0;
1226
1227	/* install the live keys
1228	 * - must take care as expired keys may be updated back to life
1229	 */
1230	keep = 0;
1231	for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1232		key = rcu_deref_link_locked(klist, loop, keyring);
1233		if (!key_is_dead(key, limit)) {
1234			if (keep >= max)
1235				goto discard_new;
1236			RCU_INIT_POINTER(new->keys[keep++], key_get(key));
1237		}
1238	}
1239	new->nkeys = keep;
1240
1241	/* adjust the quota */
1242	key_payload_reserve(keyring,
1243			    sizeof(struct keyring_list) +
1244			    KEYQUOTA_LINK_BYTES * keep);
1245
1246	if (keep == 0) {
1247		rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1248		kfree(new);
1249	} else {
1250		rcu_assign_pointer(keyring->payload.subscriptions, new);
1251	}
1252
1253	up_write(&keyring->sem);
1254
1255	call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1256	kleave(" [yes]");
1257	return;
1258
1259discard_new:
1260	new->nkeys = keep;
1261	keyring_clear_rcu_disposal(&new->rcu);
1262	up_write(&keyring->sem);
1263	kleave(" [discard]");
1264	return;
1265
1266just_return:
1267	up_write(&keyring->sem);
1268	kleave(" [no dead]");
1269	return;
1270
1271no_klist:
1272	up_write(&keyring->sem);
1273	kleave(" [no_klist]");
1274	return;
1275
1276nomem:
 
 
 
1277	up_write(&keyring->sem);
1278	kleave(" [oom]");
1279}
v3.15
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
  23#include "internal.h"
  24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE	(1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE	0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48	void *object = assoc_array_ptr_to_leaf(x);
  49	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53	if (key->type == &key_type_keyring)
  54		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55	return key;
  56}
  57
  58static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
  62{
  63	unsigned bucket = 0;
  64
  65	for (; *desc; desc++)
  66		bucket += (unsigned char)*desc;
  67
  68	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_instantiate(struct key *keyring,
  77			       struct key_preparsed_payload *prep);
 
  78static void keyring_revoke(struct key *keyring);
  79static void keyring_destroy(struct key *keyring);
  80static void keyring_describe(const struct key *keyring, struct seq_file *m);
  81static long keyring_read(const struct key *keyring,
  82			 char __user *buffer, size_t buflen);
  83
  84struct key_type key_type_keyring = {
  85	.name		= "keyring",
  86	.def_datalen	= 0,
  87	.instantiate	= keyring_instantiate,
  88	.match		= user_match,
  89	.revoke		= keyring_revoke,
  90	.destroy	= keyring_destroy,
  91	.describe	= keyring_describe,
  92	.read		= keyring_read,
  93};
  94EXPORT_SYMBOL(key_type_keyring);
  95
  96/*
  97 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  98 * introducing a cycle.
  99 */
 100static DECLARE_RWSEM(keyring_serialise_link_sem);
 101
 102/*
 103 * Publish the name of a keyring so that it can be found by name (if it has
 104 * one).
 105 */
 106static void keyring_publish_name(struct key *keyring)
 107{
 108	int bucket;
 109
 110	if (keyring->description) {
 111		bucket = keyring_hash(keyring->description);
 112
 113		write_lock(&keyring_name_lock);
 114
 115		if (!keyring_name_hash[bucket].next)
 116			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 117
 118		list_add_tail(&keyring->type_data.link,
 119			      &keyring_name_hash[bucket]);
 120
 121		write_unlock(&keyring_name_lock);
 122	}
 123}
 124
 125/*
 126 * Initialise a keyring.
 127 *
 128 * Returns 0 on success, -EINVAL if given any data.
 129 */
 130static int keyring_instantiate(struct key *keyring,
 131			       struct key_preparsed_payload *prep)
 132{
 133	int ret;
 134
 135	ret = -EINVAL;
 136	if (prep->datalen == 0) {
 137		assoc_array_init(&keyring->keys);
 138		/* make the keyring available by name if it has one */
 139		keyring_publish_name(keyring);
 140		ret = 0;
 141	}
 142
 143	return ret;
 144}
 145
 146/*
 147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 148 * fold the carry back too, but that requires inline asm.
 149 */
 150static u64 mult_64x32_and_fold(u64 x, u32 y)
 151{
 152	u64 hi = (u64)(u32)(x >> 32) * y;
 153	u64 lo = (u64)(u32)(x) * y;
 154	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 155}
 156
 157/*
 158 * Hash a key type and description.
 159 */
 160static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 161{
 162	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 163	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 164	const char *description = index_key->description;
 165	unsigned long hash, type;
 166	u32 piece;
 167	u64 acc;
 168	int n, desc_len = index_key->desc_len;
 169
 170	type = (unsigned long)index_key->type;
 171
 172	acc = mult_64x32_and_fold(type, desc_len + 13);
 173	acc = mult_64x32_and_fold(acc, 9207);
 174	for (;;) {
 175		n = desc_len;
 176		if (n <= 0)
 177			break;
 178		if (n > 4)
 179			n = 4;
 180		piece = 0;
 181		memcpy(&piece, description, n);
 182		description += n;
 183		desc_len -= n;
 184		acc = mult_64x32_and_fold(acc, piece);
 185		acc = mult_64x32_and_fold(acc, 9207);
 186	}
 187
 188	/* Fold the hash down to 32 bits if need be. */
 189	hash = acc;
 190	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 191		hash ^= acc >> 32;
 192
 193	/* Squidge all the keyrings into a separate part of the tree to
 194	 * ordinary keys by making sure the lowest level segment in the hash is
 195	 * zero for keyrings and non-zero otherwise.
 196	 */
 197	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 198		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 199	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 200		return (hash + (hash << level_shift)) & ~fan_mask;
 201	return hash;
 202}
 203
 204/*
 205 * Build the next index key chunk.
 206 *
 207 * On 32-bit systems the index key is laid out as:
 208 *
 209 *	0	4	5	9...
 210 *	hash	desclen	typeptr	desc[]
 211 *
 212 * On 64-bit systems:
 213 *
 214 *	0	8	9	17...
 215 *	hash	desclen	typeptr	desc[]
 216 *
 217 * We return it one word-sized chunk at a time.
 218 */
 219static unsigned long keyring_get_key_chunk(const void *data, int level)
 220{
 221	const struct keyring_index_key *index_key = data;
 222	unsigned long chunk = 0;
 223	long offset = 0;
 224	int desc_len = index_key->desc_len, n = sizeof(chunk);
 225
 226	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 227	switch (level) {
 228	case 0:
 229		return hash_key_type_and_desc(index_key);
 230	case 1:
 231		return ((unsigned long)index_key->type << 8) | desc_len;
 232	case 2:
 233		if (desc_len == 0)
 234			return (u8)((unsigned long)index_key->type >>
 235				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 236		n--;
 237		offset = 1;
 238	default:
 239		offset += sizeof(chunk) - 1;
 240		offset += (level - 3) * sizeof(chunk);
 241		if (offset >= desc_len)
 242			return 0;
 243		desc_len -= offset;
 244		if (desc_len > n)
 245			desc_len = n;
 246		offset += desc_len;
 247		do {
 248			chunk <<= 8;
 249			chunk |= ((u8*)index_key->description)[--offset];
 250		} while (--desc_len > 0);
 251
 252		if (level == 2) {
 253			chunk <<= 8;
 254			chunk |= (u8)((unsigned long)index_key->type >>
 255				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 256		}
 257		return chunk;
 258	}
 259}
 260
 261static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 262{
 263	const struct key *key = keyring_ptr_to_key(object);
 264	return keyring_get_key_chunk(&key->index_key, level);
 265}
 266
 267static bool keyring_compare_object(const void *object, const void *data)
 268{
 269	const struct keyring_index_key *index_key = data;
 270	const struct key *key = keyring_ptr_to_key(object);
 271
 272	return key->index_key.type == index_key->type &&
 273		key->index_key.desc_len == index_key->desc_len &&
 274		memcmp(key->index_key.description, index_key->description,
 275		       index_key->desc_len) == 0;
 276}
 277
 278/*
 279 * Compare the index keys of a pair of objects and determine the bit position
 280 * at which they differ - if they differ.
 281 */
 282static int keyring_diff_objects(const void *object, const void *data)
 283{
 284	const struct key *key_a = keyring_ptr_to_key(object);
 285	const struct keyring_index_key *a = &key_a->index_key;
 286	const struct keyring_index_key *b = data;
 287	unsigned long seg_a, seg_b;
 288	int level, i;
 289
 290	level = 0;
 291	seg_a = hash_key_type_and_desc(a);
 292	seg_b = hash_key_type_and_desc(b);
 293	if ((seg_a ^ seg_b) != 0)
 294		goto differ;
 295
 296	/* The number of bits contributed by the hash is controlled by a
 297	 * constant in the assoc_array headers.  Everything else thereafter we
 298	 * can deal with as being machine word-size dependent.
 299	 */
 300	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 301	seg_a = a->desc_len;
 302	seg_b = b->desc_len;
 303	if ((seg_a ^ seg_b) != 0)
 304		goto differ;
 305
 306	/* The next bit may not work on big endian */
 307	level++;
 308	seg_a = (unsigned long)a->type;
 309	seg_b = (unsigned long)b->type;
 310	if ((seg_a ^ seg_b) != 0)
 311		goto differ;
 312
 313	level += sizeof(unsigned long);
 314	if (a->desc_len == 0)
 315		goto same;
 316
 317	i = 0;
 318	if (((unsigned long)a->description | (unsigned long)b->description) &
 319	    (sizeof(unsigned long) - 1)) {
 320		do {
 321			seg_a = *(unsigned long *)(a->description + i);
 322			seg_b = *(unsigned long *)(b->description + i);
 323			if ((seg_a ^ seg_b) != 0)
 324				goto differ_plus_i;
 325			i += sizeof(unsigned long);
 326		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 327	}
 328
 329	for (; i < a->desc_len; i++) {
 330		seg_a = *(unsigned char *)(a->description + i);
 331		seg_b = *(unsigned char *)(b->description + i);
 332		if ((seg_a ^ seg_b) != 0)
 333			goto differ_plus_i;
 334	}
 335
 336same:
 337	return -1;
 338
 339differ_plus_i:
 340	level += i;
 341differ:
 342	i = level * 8 + __ffs(seg_a ^ seg_b);
 343	return i;
 344}
 345
 346/*
 347 * Free an object after stripping the keyring flag off of the pointer.
 348 */
 349static void keyring_free_object(void *object)
 350{
 351	key_put(keyring_ptr_to_key(object));
 352}
 353
 354/*
 355 * Operations for keyring management by the index-tree routines.
 356 */
 357static const struct assoc_array_ops keyring_assoc_array_ops = {
 358	.get_key_chunk		= keyring_get_key_chunk,
 359	.get_object_key_chunk	= keyring_get_object_key_chunk,
 360	.compare_object		= keyring_compare_object,
 361	.diff_objects		= keyring_diff_objects,
 362	.free_object		= keyring_free_object,
 363};
 364
 365/*
 366 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 367 * and dispose of its data.
 368 *
 369 * The garbage collector detects the final key_put(), removes the keyring from
 370 * the serial number tree and then does RCU synchronisation before coming here,
 371 * so we shouldn't need to worry about code poking around here with the RCU
 372 * readlock held by this time.
 373 */
 374static void keyring_destroy(struct key *keyring)
 375{
 
 
 
 376	if (keyring->description) {
 377		write_lock(&keyring_name_lock);
 378
 379		if (keyring->type_data.link.next != NULL &&
 380		    !list_empty(&keyring->type_data.link))
 381			list_del(&keyring->type_data.link);
 382
 383		write_unlock(&keyring_name_lock);
 384	}
 385
 386	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 
 
 
 
 
 387}
 388
 389/*
 390 * Describe a keyring for /proc.
 391 */
 392static void keyring_describe(const struct key *keyring, struct seq_file *m)
 393{
 
 
 394	if (keyring->description)
 395		seq_puts(m, keyring->description);
 396	else
 397		seq_puts(m, "[anon]");
 398
 399	if (key_is_instantiated(keyring)) {
 400		if (keyring->keys.nr_leaves_on_tree != 0)
 401			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 
 
 402		else
 403			seq_puts(m, ": empty");
 
 404	}
 405}
 406
 407struct keyring_read_iterator_context {
 408	size_t			qty;
 409	size_t			count;
 410	key_serial_t __user	*buffer;
 411};
 412
 413static int keyring_read_iterator(const void *object, void *data)
 414{
 415	struct keyring_read_iterator_context *ctx = data;
 416	const struct key *key = keyring_ptr_to_key(object);
 417	int ret;
 418
 419	kenter("{%s,%d},,{%zu/%zu}",
 420	       key->type->name, key->serial, ctx->count, ctx->qty);
 421
 422	if (ctx->count >= ctx->qty)
 423		return 1;
 424
 425	ret = put_user(key->serial, ctx->buffer);
 426	if (ret < 0)
 427		return ret;
 428	ctx->buffer++;
 429	ctx->count += sizeof(key->serial);
 430	return 0;
 431}
 432
 433/*
 434 * Read a list of key IDs from the keyring's contents in binary form
 435 *
 436 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 437 * from modifying it under us - which could cause us to read key IDs multiple
 438 * times.
 439 */
 440static long keyring_read(const struct key *keyring,
 441			 char __user *buffer, size_t buflen)
 442{
 443	struct keyring_read_iterator_context ctx;
 444	unsigned long nr_keys;
 445	int ret;
 
 446
 447	kenter("{%d},,%zu", key_serial(keyring), buflen);
 448
 449	if (buflen & (sizeof(key_serial_t) - 1))
 450		return -EINVAL;
 451
 452	nr_keys = keyring->keys.nr_leaves_on_tree;
 453	if (nr_keys == 0)
 454		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456	/* Calculate how much data we could return */
 457	ctx.qty = nr_keys * sizeof(key_serial_t);
 458
 459	if (!buffer || !buflen)
 460		return ctx.qty;
 461
 462	if (buflen > ctx.qty)
 463		ctx.qty = buflen;
 464
 465	/* Copy the IDs of the subscribed keys into the buffer */
 466	ctx.buffer = (key_serial_t __user *)buffer;
 467	ctx.count = 0;
 468	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
 469	if (ret < 0) {
 470		kleave(" = %d [iterate]", ret);
 471		return ret;
 472	}
 473
 474	kleave(" = %zu [ok]", ctx.count);
 475	return ctx.count;
 476}
 477
 478/*
 479 * Allocate a keyring and link into the destination keyring.
 480 */
 481struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 482			  const struct cred *cred, key_perm_t perm,
 483			  unsigned long flags, struct key *dest)
 484{
 485	struct key *keyring;
 486	int ret;
 487
 488	keyring = key_alloc(&key_type_keyring, description,
 489			    uid, gid, cred, perm, flags);
 
 
 
 490	if (!IS_ERR(keyring)) {
 491		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 492		if (ret < 0) {
 493			key_put(keyring);
 494			keyring = ERR_PTR(ret);
 495		}
 496	}
 497
 498	return keyring;
 499}
 500EXPORT_SYMBOL(keyring_alloc);
 501
 502/*
 503 * Iteration function to consider each key found.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504 */
 505static int keyring_search_iterator(const void *object, void *iterator_data)
 
 
 
 
 
 506{
 507	struct keyring_search_context *ctx = iterator_data;
 508	const struct key *key = keyring_ptr_to_key(object);
 509	unsigned long kflags = key->flags;
 
 
 
 510
 511	kenter("{%d}", key->serial);
 
 
 
 
 
 
 
 
 
 
 512
 513	/* ignore keys not of this type */
 514	if (key->type != ctx->index_key.type) {
 515		kleave(" = 0 [!type]");
 516		return 0;
 
 517	}
 518
 519	/* skip invalidated, revoked and expired keys */
 520	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 521		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 522			      (1 << KEY_FLAG_REVOKED))) {
 523			ctx->result = ERR_PTR(-EKEYREVOKED);
 524			kleave(" = %d [invrev]", ctx->skipped_ret);
 525			goto skipped;
 526		}
 527
 528		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
 529			ctx->result = ERR_PTR(-EKEYEXPIRED);
 530			kleave(" = %d [expire]", ctx->skipped_ret);
 531			goto skipped;
 532		}
 533	}
 534
 535	/* keys that don't match */
 536	if (!ctx->match(key, ctx->match_data)) {
 537		kleave(" = 0 [!match]");
 538		return 0;
 539	}
 540
 541	/* key must have search permissions */
 542	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 543	    key_task_permission(make_key_ref(key, ctx->possessed),
 544				ctx->cred, KEY_SEARCH) < 0) {
 545		ctx->result = ERR_PTR(-EACCES);
 546		kleave(" = %d [!perm]", ctx->skipped_ret);
 547		goto skipped;
 548	}
 549
 550	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 551		/* we set a different error code if we pass a negative key */
 552		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 553			smp_rmb();
 554			ctx->result = ERR_PTR(key->type_data.reject_error);
 555			kleave(" = %d [neg]", ctx->skipped_ret);
 556			goto skipped;
 557		}
 
 
 558	}
 559
 560	/* Found */
 561	ctx->result = make_key_ref(key, ctx->possessed);
 562	kleave(" = 1 [found]");
 563	return 1;
 
 
 
 
 
 
 
 
 
 
 
 564
 565skipped:
 566	return ctx->skipped_ret;
 567}
 568
 569/*
 570 * Search inside a keyring for a key.  We can search by walking to it
 571 * directly based on its index-key or we can iterate over the entire
 572 * tree looking for it, based on the match function.
 573 */
 574static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 575{
 576	if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
 577	    KEYRING_SEARCH_LOOKUP_DIRECT) {
 578		const void *object;
 579
 580		object = assoc_array_find(&keyring->keys,
 581					  &keyring_assoc_array_ops,
 582					  &ctx->index_key);
 583		return object ? ctx->iterator(object, ctx) : 0;
 584	}
 585	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 586}
 587
 588/*
 589 * Search a tree of keyrings that point to other keyrings up to the maximum
 590 * depth.
 591 */
 592static bool search_nested_keyrings(struct key *keyring,
 593				   struct keyring_search_context *ctx)
 594{
 595	struct {
 596		struct key *keyring;
 597		struct assoc_array_node *node;
 598		int slot;
 599	} stack[KEYRING_SEARCH_MAX_DEPTH];
 600
 601	struct assoc_array_shortcut *shortcut;
 602	struct assoc_array_node *node;
 603	struct assoc_array_ptr *ptr;
 604	struct key *key;
 605	int sp = 0, slot;
 606
 607	kenter("{%d},{%s,%s}",
 608	       keyring->serial,
 609	       ctx->index_key.type->name,
 610	       ctx->index_key.description);
 611
 612	if (ctx->index_key.description)
 613		ctx->index_key.desc_len = strlen(ctx->index_key.description);
 
 
 614
 615	/* Check to see if this top-level keyring is what we are looking for
 616	 * and whether it is valid or not.
 617	 */
 618	if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
 619	    keyring_compare_object(keyring, &ctx->index_key)) {
 620		ctx->skipped_ret = 2;
 621		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
 622		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 623		case 1:
 624			goto found;
 625		case 2:
 626			return false;
 627		default:
 628			break;
 
 629		}
 630	}
 631
 632	ctx->skipped_ret = 0;
 633	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
 634		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
 635
 636	/* Start processing a new keyring */
 637descend_to_keyring:
 638	kdebug("descend to %d", keyring->serial);
 639	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 640			      (1 << KEY_FLAG_REVOKED)))
 641		goto not_this_keyring;
 642
 643	/* Search through the keys in this keyring before its searching its
 644	 * subtrees.
 645	 */
 646	if (search_keyring(keyring, ctx))
 647		goto found;
 
 648
 649	/* Then manually iterate through the keyrings nested in this one.
 650	 *
 651	 * Start from the root node of the index tree.  Because of the way the
 652	 * hash function has been set up, keyrings cluster on the leftmost
 653	 * branch of the root node (root slot 0) or in the root node itself.
 654	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 655	 * slots 1-15).
 656	 */
 657	ptr = ACCESS_ONCE(keyring->keys.root);
 658	if (!ptr)
 659		goto not_this_keyring;
 660
 661	if (assoc_array_ptr_is_shortcut(ptr)) {
 662		/* If the root is a shortcut, either the keyring only contains
 663		 * keyring pointers (everything clusters behind root slot 0) or
 664		 * doesn't contain any keyring pointers.
 665		 */
 666		shortcut = assoc_array_ptr_to_shortcut(ptr);
 667		smp_read_barrier_depends();
 668		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 669			goto not_this_keyring;
 670
 671		ptr = ACCESS_ONCE(shortcut->next_node);
 672		node = assoc_array_ptr_to_node(ptr);
 673		goto begin_node;
 674	}
 675
 676	node = assoc_array_ptr_to_node(ptr);
 677	smp_read_barrier_depends();
 678
 679	ptr = node->slots[0];
 680	if (!assoc_array_ptr_is_meta(ptr))
 681		goto begin_node;
 682
 683descend_to_node:
 684	/* Descend to a more distal node in this keyring's content tree and go
 685	 * through that.
 686	 */
 687	kdebug("descend");
 688	if (assoc_array_ptr_is_shortcut(ptr)) {
 689		shortcut = assoc_array_ptr_to_shortcut(ptr);
 690		smp_read_barrier_depends();
 691		ptr = ACCESS_ONCE(shortcut->next_node);
 692		BUG_ON(!assoc_array_ptr_is_node(ptr));
 693	}
 694	node = assoc_array_ptr_to_node(ptr);
 695
 696begin_node:
 697	kdebug("begin_node");
 698	smp_read_barrier_depends();
 699	slot = 0;
 700ascend_to_node:
 701	/* Go through the slots in a node */
 702	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 703		ptr = ACCESS_ONCE(node->slots[slot]);
 704
 705		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 706			goto descend_to_node;
 707
 708		if (!keyring_ptr_is_keyring(ptr))
 709			continue;
 710
 711		key = keyring_ptr_to_key(ptr);
 712
 713		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 714			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 715				ctx->result = ERR_PTR(-ELOOP);
 716				return false;
 717			}
 718			goto not_this_keyring;
 719		}
 720
 721		/* Search a nested keyring */
 722		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 723		    key_task_permission(make_key_ref(key, ctx->possessed),
 724					ctx->cred, KEY_SEARCH) < 0)
 725			continue;
 726
 727		/* stack the current position */
 728		stack[sp].keyring = keyring;
 729		stack[sp].node = node;
 730		stack[sp].slot = slot;
 731		sp++;
 732
 733		/* begin again with the new keyring */
 734		keyring = key;
 735		goto descend_to_keyring;
 736	}
 737
 738	/* We've dealt with all the slots in the current node, so now we need
 739	 * to ascend to the parent and continue processing there.
 740	 */
 741	ptr = ACCESS_ONCE(node->back_pointer);
 742	slot = node->parent_slot;
 743
 744	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 745		shortcut = assoc_array_ptr_to_shortcut(ptr);
 746		smp_read_barrier_depends();
 747		ptr = ACCESS_ONCE(shortcut->back_pointer);
 748		slot = shortcut->parent_slot;
 749	}
 750	if (!ptr)
 751		goto not_this_keyring;
 752	node = assoc_array_ptr_to_node(ptr);
 753	smp_read_barrier_depends();
 754	slot++;
 755
 756	/* If we've ascended to the root (zero backpointer), we must have just
 757	 * finished processing the leftmost branch rather than the root slots -
 758	 * so there can't be any more keyrings for us to find.
 759	 */
 760	if (node->back_pointer) {
 761		kdebug("ascend %d", slot);
 762		goto ascend_to_node;
 763	}
 764
 765	/* The keyring we're looking at was disqualified or didn't contain a
 766	 * matching key.
 767	 */
 768not_this_keyring:
 769	kdebug("not_this_keyring %d", sp);
 770	if (sp <= 0) {
 771		kleave(" = false");
 772		return false;
 
 
 
 773	}
 774
 775	/* Resume the processing of a keyring higher up in the tree */
 776	sp--;
 777	keyring = stack[sp].keyring;
 778	node = stack[sp].node;
 779	slot = stack[sp].slot + 1;
 780	kdebug("ascend to %d [%d]", keyring->serial, slot);
 781	goto ascend_to_node;
 782
 783	/* We found a viable match */
 784found:
 785	key = key_ref_to_ptr(ctx->result);
 
 
 
 
 786	key_check(key);
 787	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 788		key->last_used_at = ctx->now.tv_sec;
 789		keyring->last_used_at = ctx->now.tv_sec;
 790		while (sp > 0)
 791			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 792	}
 793	kleave(" = true");
 794	return true;
 795}
 796
 797/**
 798 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 799 * @keyring_ref: A pointer to the keyring with possession indicator.
 800 * @ctx: The keyring search context.
 801 *
 802 * Search the supplied keyring tree for a key that matches the criteria given.
 803 * The root keyring and any linked keyrings must grant Search permission to the
 804 * caller to be searchable and keys can only be found if they too grant Search
 805 * to the caller. The possession flag on the root keyring pointer controls use
 806 * of the possessor bits in permissions checking of the entire tree.  In
 807 * addition, the LSM gets to forbid keyring searches and key matches.
 808 *
 809 * The search is performed as a breadth-then-depth search up to the prescribed
 810 * limit (KEYRING_SEARCH_MAX_DEPTH).
 811 *
 812 * Keys are matched to the type provided and are then filtered by the match
 813 * function, which is given the description to use in any way it sees fit.  The
 814 * match function may use any attributes of a key that it wishes to to
 815 * determine the match.  Normally the match function from the key type would be
 816 * used.
 817 *
 818 * RCU can be used to prevent the keyring key lists from disappearing without
 819 * the need to take lots of locks.
 820 *
 821 * Returns a pointer to the found key and increments the key usage count if
 822 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 823 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 824 * specified keyring wasn't a keyring.
 825 *
 826 * In the case of a successful return, the possession attribute from
 827 * @keyring_ref is propagated to the returned key reference.
 828 */
 829key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 830			     struct keyring_search_context *ctx)
 831{
 832	struct key *keyring;
 833	long err;
 834
 835	ctx->iterator = keyring_search_iterator;
 836	ctx->possessed = is_key_possessed(keyring_ref);
 837	ctx->result = ERR_PTR(-EAGAIN);
 838
 839	keyring = key_ref_to_ptr(keyring_ref);
 840	key_check(keyring);
 841
 842	if (keyring->type != &key_type_keyring)
 843		return ERR_PTR(-ENOTDIR);
 844
 845	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 846		err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
 847		if (err < 0)
 848			return ERR_PTR(err);
 849	}
 850
 851	rcu_read_lock();
 852	ctx->now = current_kernel_time();
 853	if (search_nested_keyrings(keyring, ctx))
 854		__key_get(key_ref_to_ptr(ctx->result));
 855	rcu_read_unlock();
 856	return ctx->result;
 
 857}
 858
 859/**
 860 * keyring_search - Search the supplied keyring tree for a matching key
 861 * @keyring: The root of the keyring tree to be searched.
 862 * @type: The type of keyring we want to find.
 863 * @description: The name of the keyring we want to find.
 864 *
 865 * As keyring_search_aux() above, but using the current task's credentials and
 866 * type's default matching function and preferred search method.
 867 */
 868key_ref_t keyring_search(key_ref_t keyring,
 869			 struct key_type *type,
 870			 const char *description)
 871{
 872	struct keyring_search_context ctx = {
 873		.index_key.type		= type,
 874		.index_key.description	= description,
 875		.cred			= current_cred(),
 876		.match			= type->match,
 877		.match_data		= description,
 878		.flags			= (type->def_lookup_type |
 879					   KEYRING_SEARCH_DO_STATE_CHECK),
 880	};
 881
 882	if (!ctx.match)
 883		return ERR_PTR(-ENOKEY);
 884
 885	return keyring_search_aux(keyring, &ctx);
 
 886}
 887EXPORT_SYMBOL(keyring_search);
 888
 889/*
 890 * Search the given keyring for a key that might be updated.
 891 *
 892 * The caller must guarantee that the keyring is a keyring and that the
 893 * permission is granted to modify the keyring as no check is made here.  The
 894 * caller must also hold a lock on the keyring semaphore.
 
 895 *
 896 * Returns a pointer to the found key with usage count incremented if
 897 * successful and returns NULL if not found.  Revoked and invalidated keys are
 898 * skipped over.
 899 *
 900 * If successful, the possession indicator is propagated from the keyring ref
 901 * to the returned key reference.
 902 */
 903key_ref_t find_key_to_update(key_ref_t keyring_ref,
 904			     const struct keyring_index_key *index_key)
 
 
 905{
 
 
 906	struct key *keyring, *key;
 907	const void *object;
 908
 909	keyring = key_ref_to_ptr(keyring_ref);
 
 910
 911	kenter("{%d},{%s,%s}",
 912	       keyring->serial, index_key->type->name, index_key->description);
 913
 914	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 915				  index_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917	if (object)
 918		goto found;
 919
 920	kleave(" = NULL");
 921	return NULL;
 922
 923found:
 924	key = keyring_ptr_to_key(object);
 925	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 926			  (1 << KEY_FLAG_REVOKED))) {
 927		kleave(" = NULL [x]");
 928		return NULL;
 929	}
 930	__key_get(key);
 931	kleave(" = {%d}", key->serial);
 932	return make_key_ref(key, is_key_possessed(keyring_ref));
 933}
 934
 935/*
 936 * Find a keyring with the specified name.
 937 *
 938 * All named keyrings in the current user namespace are searched, provided they
 939 * grant Search permission directly to the caller (unless this check is
 940 * skipped).  Keyrings whose usage points have reached zero or who have been
 941 * revoked are skipped.
 942 *
 943 * Returns a pointer to the keyring with the keyring's refcount having being
 944 * incremented on success.  -ENOKEY is returned if a key could not be found.
 945 */
 946struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
 947{
 948	struct key *keyring;
 949	int bucket;
 950
 951	if (!name)
 952		return ERR_PTR(-EINVAL);
 953
 954	bucket = keyring_hash(name);
 955
 956	read_lock(&keyring_name_lock);
 957
 958	if (keyring_name_hash[bucket].next) {
 959		/* search this hash bucket for a keyring with a matching name
 960		 * that's readable and that hasn't been revoked */
 961		list_for_each_entry(keyring,
 962				    &keyring_name_hash[bucket],
 963				    type_data.link
 964				    ) {
 965			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
 966				continue;
 967
 968			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 969				continue;
 970
 971			if (strcmp(keyring->description, name) != 0)
 972				continue;
 973
 974			if (!skip_perm_check &&
 975			    key_permission(make_key_ref(keyring, 0),
 976					   KEY_SEARCH) < 0)
 977				continue;
 978
 979			/* we've got a match but we might end up racing with
 980			 * key_cleanup() if the keyring is currently 'dead'
 981			 * (ie. it has a zero usage count) */
 982			if (!atomic_inc_not_zero(&keyring->usage))
 983				continue;
 984			keyring->last_used_at = current_kernel_time().tv_sec;
 985			goto out;
 986		}
 987	}
 988
 989	keyring = ERR_PTR(-ENOKEY);
 990out:
 991	read_unlock(&keyring_name_lock);
 992	return keyring;
 993}
 994
 995static int keyring_detect_cycle_iterator(const void *object,
 996					 void *iterator_data)
 997{
 998	struct keyring_search_context *ctx = iterator_data;
 999	const struct key *key = keyring_ptr_to_key(object);
1000
1001	kenter("{%d}", key->serial);
1002
1003	/* We might get a keyring with matching index-key that is nonetheless a
1004	 * different keyring. */
1005	if (key != ctx->match_data)
1006		return 0;
1007
1008	ctx->result = ERR_PTR(-EDEADLK);
1009	return 1;
1010}
1011
1012/*
1013 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1014 * tree A at the topmost level (ie: as a direct child of A).
1015 *
1016 * Since we are adding B to A at the top level, checking for cycles should just
1017 * be a matter of seeing if node A is somewhere in tree B.
1018 */
1019static int keyring_detect_cycle(struct key *A, struct key *B)
1020{
1021	struct keyring_search_context ctx = {
1022		.index_key	= A->index_key,
1023		.match_data	= A,
1024		.iterator	= keyring_detect_cycle_iterator,
1025		.flags		= (KEYRING_SEARCH_LOOKUP_DIRECT |
1026				   KEYRING_SEARCH_NO_STATE_CHECK |
1027				   KEYRING_SEARCH_NO_UPDATE_TIME |
1028				   KEYRING_SEARCH_NO_CHECK_PERM |
1029				   KEYRING_SEARCH_DETECT_TOO_DEEP),
1030	};
1031
1032	rcu_read_lock();
1033	search_nested_keyrings(B, &ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	rcu_read_unlock();
1035	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036}
1037
1038/*
1039 * Preallocate memory so that a key can be linked into to a keyring.
1040 */
1041int __key_link_begin(struct key *keyring,
1042		     const struct keyring_index_key *index_key,
1043		     struct assoc_array_edit **_edit)
1044	__acquires(&keyring->sem)
1045	__acquires(&keyring_serialise_link_sem)
1046{
1047	struct assoc_array_edit *edit;
1048	int ret;
1049
1050	kenter("%d,%s,%s,",
1051	       keyring->serial, index_key->type->name, index_key->description);
 
1052
1053	BUG_ON(index_key->desc_len == 0);
1054
1055	if (keyring->type != &key_type_keyring)
1056		return -ENOTDIR;
1057
1058	down_write(&keyring->sem);
1059
1060	ret = -EKEYREVOKED;
1061	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1062		goto error_krsem;
1063
1064	/* serialise link/link calls to prevent parallel calls causing a cycle
1065	 * when linking two keyring in opposite orders */
1066	if (index_key->type == &key_type_keyring)
1067		down_write(&keyring_serialise_link_sem);
1068
1069	/* Create an edit script that will insert/replace the key in the
1070	 * keyring tree.
1071	 */
1072	edit = assoc_array_insert(&keyring->keys,
1073				  &keyring_assoc_array_ops,
1074				  index_key,
1075				  NULL);
1076	if (IS_ERR(edit)) {
1077		ret = PTR_ERR(edit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078		goto error_sem;
1079	}
1080
1081	/* If we're not replacing a link in-place then we're going to need some
1082	 * extra quota.
1083	 */
1084	if (!edit->dead_leaf) {
1085		ret = key_payload_reserve(keyring,
1086					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1087		if (ret < 0)
1088			goto error_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089	}
1090
1091	*_edit = edit;
 
1092	kleave(" = 0");
1093	return 0;
1094
1095error_cancel:
1096	assoc_array_cancel_edit(edit);
 
 
1097error_sem:
1098	if (index_key->type == &key_type_keyring)
1099		up_write(&keyring_serialise_link_sem);
1100error_krsem:
1101	up_write(&keyring->sem);
1102	kleave(" = %d", ret);
1103	return ret;
1104}
1105
1106/*
1107 * Check already instantiated keys aren't going to be a problem.
1108 *
1109 * The caller must have called __key_link_begin(). Don't need to call this for
1110 * keys that were created since __key_link_begin() was called.
1111 */
1112int __key_link_check_live_key(struct key *keyring, struct key *key)
1113{
1114	if (key->type == &key_type_keyring)
1115		/* check that we aren't going to create a cycle by linking one
1116		 * keyring to another */
1117		return keyring_detect_cycle(keyring, key);
1118	return 0;
1119}
1120
1121/*
1122 * Link a key into to a keyring.
1123 *
1124 * Must be called with __key_link_begin() having being called.  Discards any
1125 * already extant link to matching key if there is one, so that each keyring
1126 * holds at most one link to any given key of a particular type+description
1127 * combination.
1128 */
1129void __key_link(struct key *key, struct assoc_array_edit **_edit)
 
1130{
1131	__key_get(key);
1132	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1133	assoc_array_apply_edit(*_edit);
1134	*_edit = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135}
1136
1137/*
1138 * Finish linking a key into to a keyring.
1139 *
1140 * Must be called with __key_link_begin() having being called.
1141 */
1142void __key_link_end(struct key *keyring,
1143		    const struct keyring_index_key *index_key,
1144		    struct assoc_array_edit *edit)
1145	__releases(&keyring->sem)
1146	__releases(&keyring_serialise_link_sem)
1147{
1148	BUG_ON(index_key->type == NULL);
1149	kenter("%d,%s,", keyring->serial, index_key->type->name);
 
1150
1151	if (index_key->type == &key_type_keyring)
1152		up_write(&keyring_serialise_link_sem);
1153
1154	if (edit && !edit->dead_leaf) {
1155		key_payload_reserve(keyring,
1156				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1157		assoc_array_cancel_edit(edit);
 
 
1158	}
1159	up_write(&keyring->sem);
1160}
1161
1162/**
1163 * key_link - Link a key to a keyring
1164 * @keyring: The keyring to make the link in.
1165 * @key: The key to link to.
1166 *
1167 * Make a link in a keyring to a key, such that the keyring holds a reference
1168 * on that key and the key can potentially be found by searching that keyring.
1169 *
1170 * This function will write-lock the keyring's semaphore and will consume some
1171 * of the user's key data quota to hold the link.
1172 *
1173 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1174 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1175 * full, -EDQUOT if there is insufficient key data quota remaining to add
1176 * another link or -ENOMEM if there's insufficient memory.
1177 *
1178 * It is assumed that the caller has checked that it is permitted for a link to
1179 * be made (the keyring should have Write permission and the key Link
1180 * permission).
1181 */
1182int key_link(struct key *keyring, struct key *key)
1183{
1184	struct assoc_array_edit *edit;
1185	int ret;
1186
1187	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1188
1189	key_check(keyring);
1190	key_check(key);
1191
1192	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1193	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1194		return -EPERM;
1195
1196	ret = __key_link_begin(keyring, &key->index_key, &edit);
1197	if (ret == 0) {
1198		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1199		ret = __key_link_check_live_key(keyring, key);
1200		if (ret == 0)
1201			__key_link(key, &edit);
1202		__key_link_end(keyring, &key->index_key, edit);
1203	}
1204
1205	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1206	return ret;
1207}
1208EXPORT_SYMBOL(key_link);
1209
1210/**
1211 * key_unlink - Unlink the first link to a key from a keyring.
1212 * @keyring: The keyring to remove the link from.
1213 * @key: The key the link is to.
1214 *
1215 * Remove a link from a keyring to a key.
1216 *
1217 * This function will write-lock the keyring's semaphore.
1218 *
1219 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1220 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1221 * memory.
1222 *
1223 * It is assumed that the caller has checked that it is permitted for a link to
1224 * be removed (the keyring should have Write permission; no permissions are
1225 * required on the key).
1226 */
1227int key_unlink(struct key *keyring, struct key *key)
1228{
1229	struct assoc_array_edit *edit;
1230	int ret;
1231
1232	key_check(keyring);
1233	key_check(key);
1234
 
1235	if (keyring->type != &key_type_keyring)
1236		return -ENOTDIR;
1237
1238	down_write(&keyring->sem);
1239
1240	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1241				  &key->index_key);
1242	if (IS_ERR(edit)) {
1243		ret = PTR_ERR(edit);
1244		goto error;
 
1245	}
 
 
1246	ret = -ENOENT;
1247	if (edit == NULL)
1248		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249
1250	assoc_array_apply_edit(edit);
1251	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1252	ret = 0;
1253
1254error:
 
 
 
1255	up_write(&keyring->sem);
1256	return ret;
1257}
1258EXPORT_SYMBOL(key_unlink);
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/**
1261 * keyring_clear - Clear a keyring
1262 * @keyring: The keyring to clear.
1263 *
1264 * Clear the contents of the specified keyring.
1265 *
1266 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1267 */
1268int keyring_clear(struct key *keyring)
1269{
1270	struct assoc_array_edit *edit;
1271	int ret;
1272
1273	if (keyring->type != &key_type_keyring)
1274		return -ENOTDIR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275
1276	down_write(&keyring->sem);
 
 
1277
1278	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1279	if (IS_ERR(edit)) {
1280		ret = PTR_ERR(edit);
1281	} else {
1282		if (edit)
1283			assoc_array_apply_edit(edit);
1284		key_payload_reserve(keyring, 0);
1285		ret = 0;
1286	}
1287
1288	up_write(&keyring->sem);
1289	return ret;
1290}
1291EXPORT_SYMBOL(keyring_clear);
1292
1293/*
1294 * Dispose of the links from a revoked keyring.
1295 *
1296 * This is called with the key sem write-locked.
1297 */
1298static void keyring_revoke(struct key *keyring)
1299{
1300	struct assoc_array_edit *edit;
1301
1302	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1303	if (!IS_ERR(edit)) {
1304		if (edit)
1305			assoc_array_apply_edit(edit);
1306		key_payload_reserve(keyring, 0);
1307	}
1308}
1309
1310static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1311{
1312	struct key *key = keyring_ptr_to_key(object);
1313	time_t *limit = iterator_data;
1314
1315	if (key_is_dead(key, *limit))
1316		return false;
1317	key_get(key);
1318	return true;
1319}
1320
1321static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1322{
1323	const struct key *key = keyring_ptr_to_key(object);
1324	time_t *limit = iterator_data;
1325
1326	key_check(key);
1327	return key_is_dead(key, *limit);
1328}
1329
1330/*
1331 * Garbage collect pointers from a keyring.
 
1332 *
1333 * Not called with any locks held.  The keyring's key struct will not be
1334 * deallocated under us as only our caller may deallocate it.
 
1335 */
1336void keyring_gc(struct key *keyring, time_t limit)
1337{
1338	int result;
 
 
1339
1340	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1341
1342	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1343			      (1 << KEY_FLAG_REVOKED)))
1344		goto dont_gc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345
1346	/* scan the keyring looking for dead keys */
1347	rcu_read_lock();
1348	result = assoc_array_iterate(&keyring->keys,
1349				     keyring_gc_check_iterator, &limit);
1350	rcu_read_unlock();
1351	if (result == true)
1352		goto do_gc;
 
 
 
 
 
 
 
 
1353
1354dont_gc:
1355	kleave(" [no gc]");
 
1356	return;
1357
1358do_gc:
1359	down_write(&keyring->sem);
1360	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1361		       keyring_gc_select_iterator, &limit);
1362	up_write(&keyring->sem);
1363	kleave(" [gc]");
1364}