Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/fs/befs/btree.c
  3 *
  4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
  5 *
  6 * Licensed under the GNU GPL. See the file COPYING for details.
  7 *
  8 * 2002-02-05: Sergey S. Kostyliov added binary search within
  9 * 		btree nodes.
 10 *
 11 * Many thanks to:
 12 *
 13 * Dominic Giampaolo, author of "Practical File System
 14 * Design with the Be File System", for such a helpful book.
 15 * 
 16 * Marcus J. Ranum, author of the b+tree package in 
 17 * comp.sources.misc volume 10. This code is not copied from that
 18 * work, but it is partially based on it.
 19 *
 20 * Makoto Kato, author of the original BeFS for linux filesystem
 21 * driver.
 22 */
 23
 24#include <linux/kernel.h>
 25#include <linux/string.h>
 26#include <linux/slab.h>
 27#include <linux/mm.h>
 28#include <linux/buffer_head.h>
 29
 30#include "befs.h"
 31#include "btree.h"
 32#include "datastream.h"
 33
 34/*
 35 * The btree functions in this file are built on top of the
 36 * datastream.c interface, which is in turn built on top of the
 37 * io.c interface.
 38 */
 39
 40/* Befs B+tree structure:
 41 * 
 42 * The first thing in the tree is the tree superblock. It tells you
 43 * all kinds of useful things about the tree, like where the rootnode
 44 * is located, and the size of the nodes (always 1024 with current version
 45 * of BeOS).
 46 *
 47 * The rest of the tree consists of a series of nodes. Nodes contain a header
 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 
 49 * containing the ending offsets for each of the keys, and an array of
 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 
 51 * the childnode they point to, and the values are offsets into the 
 52 * datastream containing the tree. 
 53 */
 54
 55/* Note:
 56 * 
 57 * The book states 2 confusing things about befs b+trees. First, 
 58 * it states that the overflow field of node headers is used by internal nodes
 59 * to point to another node that "effectively continues this one". Here is what
 60 * I believe that means. Each key in internal nodes points to another node that
 61 * contains key values less than itself. Inspection reveals that the last key 
 62 * in the internal node is not the last key in the index. Keys that are 
 63 * greater than the last key in the internal node go into the overflow node. 
 64 * I imagine there is a performance reason for this.
 65 *
 66 * Second, it states that the header of a btree node is sufficient to 
 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 
 68 * After figuring out the first, it becomes obvious that internal nodes have
 69 * overflow nodes and leafnodes do not.
 70 */
 71
 72/* 
 73 * Currently, this code is only good for directory B+trees.
 74 * In order to be used for other BFS indexes, it needs to be extended to handle
 75 * duplicate keys and non-string keytypes (int32, int64, float, double).
 76 */
 77
 78/*
 79 * In memory structure of each btree node
 80 */
 81typedef struct {
 82	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
 83	struct buffer_head *bh;
 84	befs_btree_nodehead *od_node;	/* on disk node */
 85} befs_btree_node;
 86
 87/* local constants */
 88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
 89
 90/* local functions */
 91static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
 92			       befs_btree_super * bt_super,
 93			       befs_btree_node * this_node,
 94			       befs_off_t * node_off);
 95
 96static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
 97			      befs_btree_super * sup);
 98
 99static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100			     befs_btree_node * node, befs_off_t node_off);
101
102static int befs_leafnode(befs_btree_node * node);
103
104static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105
106static fs64 *befs_bt_valarray(befs_btree_node * node);
107
108static char *befs_bt_keydata(befs_btree_node * node);
109
110static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111			 const char *findkey, befs_off_t * value);
112
113static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114			     int index, u16 * keylen);
115
116static int befs_compare_strings(const void *key1, int keylen1,
117				const void *key2, int keylen2);
118
119/**
120 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
121 * @sb: Filesystem superblock
122 * @ds: Datastream to read from
123 * @sup: Buffer in which to place the btree superblock
124 *
125 * Calls befs_read_datastream to read in the btree superblock and
126 * makes sure it is in cpu byteorder, byteswapping if necessary.
127 *
128 * On success, returns BEFS_OK and *@sup contains the btree superblock,
129 * in cpu byte order.
130 *
131 * On failure, BEFS_ERR is returned.
132 */
133static int
134befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135		   befs_btree_super * sup)
136{
137	struct buffer_head *bh = NULL;
138	befs_disk_btree_super *od_sup = NULL;
139
140	befs_debug(sb, "---> befs_btree_read_super()");
141
142	bh = befs_read_datastream(sb, ds, 0, NULL);
143
144	if (!bh) {
145		befs_error(sb, "Couldn't read index header.");
146		goto error;
147	}
148	od_sup = (befs_disk_btree_super *) bh->b_data;
149	befs_dump_index_entry(sb, od_sup);
150
151	sup->magic = fs32_to_cpu(sb, od_sup->magic);
152	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157	sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158
159	brelse(bh);
160	if (sup->magic != BEFS_BTREE_MAGIC) {
161		befs_error(sb, "Index header has bad magic.");
162		goto error;
163	}
164
165	befs_debug(sb, "<--- befs_btree_read_super()");
166	return BEFS_OK;
167
168      error:
169	befs_debug(sb, "<--- befs_btree_read_super() ERROR");
170	return BEFS_ERR;
171}
172
173/**
174 * befs_bt_read_node - read in btree node and convert to cpu byteorder
175 * @sb: Filesystem superblock
176 * @ds: Datastream to read from
177 * @node: Buffer in which to place the btree node
178 * @node_off: Starting offset (in bytes) of the node in @ds
179 *
180 * Calls befs_read_datastream to read in the indicated btree node and
181 * makes sure its header fields are in cpu byteorder, byteswapping if
182 * necessary.
183 * Note: node->bh must be NULL when this function called first
184 * time. Don't forget brelse(node->bh) after last call.
185 *
186 * On success, returns BEFS_OK and *@node contains the btree node that
187 * starts at @node_off, with the node->head fields in cpu byte order.
188 *
189 * On failure, BEFS_ERR is returned.
190 */
191
192static int
193befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194		  befs_btree_node * node, befs_off_t node_off)
195{
196	uint off = 0;
197
198	befs_debug(sb, "---> befs_bt_read_node()");
199
200	if (node->bh)
201		brelse(node->bh);
202
203	node->bh = befs_read_datastream(sb, ds, node_off, &off);
204	if (!node->bh) {
205		befs_error(sb, "befs_bt_read_node() failed to read "
206			   "node at %Lu", node_off);
207		befs_debug(sb, "<--- befs_bt_read_node() ERROR");
208
209		return BEFS_ERR;
210	}
211	node->od_node =
212	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213
214	befs_dump_index_node(sb, node->od_node);
215
216	node->head.left = fs64_to_cpu(sb, node->od_node->left);
217	node->head.right = fs64_to_cpu(sb, node->od_node->right);
218	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219	node->head.all_key_count =
220	    fs16_to_cpu(sb, node->od_node->all_key_count);
221	node->head.all_key_length =
222	    fs16_to_cpu(sb, node->od_node->all_key_length);
223
224	befs_debug(sb, "<--- befs_btree_read_node()");
225	return BEFS_OK;
226}
227
228/**
229 * befs_btree_find - Find a key in a befs B+tree
230 * @sb: Filesystem superblock
231 * @ds: Datastream containing btree
232 * @key: Key string to lookup in btree
233 * @value: Value stored with @key
234 *
235 * On success, returns BEFS_OK and sets *@value to the value stored
236 * with @key (usually the disk block number of an inode).
237 *
238 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239 * 
240 * Algorithm: 
241 *   Read the superblock and rootnode of the b+tree.
242 *   Drill down through the interior nodes using befs_find_key().
243 *   Once at the correct leaf node, use befs_find_key() again to get the
244 *   actuall value stored with the key.
245 */
246int
247befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248		const char *key, befs_off_t * value)
249{
250	befs_btree_node *this_node = NULL;
251	befs_btree_super bt_super;
252	befs_off_t node_off;
253	int res;
254
255	befs_debug(sb, "---> befs_btree_find() Key: %s", key);
256
257	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258		befs_error(sb,
259			   "befs_btree_find() failed to read index superblock");
260		goto error;
261	}
262
263	this_node = kmalloc(sizeof (befs_btree_node),
264						GFP_NOFS);
265	if (!this_node) {
266		befs_error(sb, "befs_btree_find() failed to allocate %u "
267			   "bytes of memory", sizeof (befs_btree_node));
268		goto error;
269	}
270
271	this_node->bh = NULL;
272
273	/* read in root node */
274	node_off = bt_super.root_node_ptr;
275	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276		befs_error(sb, "befs_btree_find() failed to read "
277			   "node at %Lu", node_off);
278		goto error_alloc;
279	}
280
281	while (!befs_leafnode(this_node)) {
282		res = befs_find_key(sb, this_node, key, &node_off);
283		if (res == BEFS_BT_NOT_FOUND)
284			node_off = this_node->head.overflow;
285		/* if no match, go to overflow node */
286		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287			befs_error(sb, "befs_btree_find() failed to read "
288				   "node at %Lu", node_off);
289			goto error_alloc;
290		}
291	}
292
293	/* at the correct leaf node now */
294
295	res = befs_find_key(sb, this_node, key, value);
296
297	brelse(this_node->bh);
298	kfree(this_node);
299
300	if (res != BEFS_BT_MATCH) {
301		befs_debug(sb, "<--- befs_btree_find() Key %s not found", key);
302		*value = 0;
303		return BEFS_BT_NOT_FOUND;
304	}
305	befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu",
306		   key, *value);
307	return BEFS_OK;
308
309      error_alloc:
310	kfree(this_node);
311      error:
312	*value = 0;
313	befs_debug(sb, "<--- befs_btree_find() ERROR");
314	return BEFS_ERR;
315}
316
317/**
318 * befs_find_key - Search for a key within a node
319 * @sb: Filesystem superblock
320 * @node: Node to find the key within
321 * @key: Keystring to search for
322 * @value: If key is found, the value stored with the key is put here
323 *
324 * finds exact match if one exists, and returns BEFS_BT_MATCH
325 * If no exact match, finds first key in node that is greater
326 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327 * (for partial match, I guess). Can you think of something better to
328 * call it?
329 *
330 * If no key was a match or greater than the search key, return
331 * BEFS_BT_NOT_FOUND.
332 *
333 * Use binary search instead of a linear.
334 */
335static int
336befs_find_key(struct super_block *sb, befs_btree_node * node,
337	      const char *findkey, befs_off_t * value)
338{
339	int first, last, mid;
340	int eq;
341	u16 keylen;
342	int findkey_len;
343	char *thiskey;
344	fs64 *valarray;
345
346	befs_debug(sb, "---> befs_find_key() %s", findkey);
347
348	*value = 0;
349
350	findkey_len = strlen(findkey);
351
352	/* if node can not contain key, just skeep this node */
353	last = node->head.all_key_count - 1;
354	thiskey = befs_bt_get_key(sb, node, last, &keylen);
355
356	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357	if (eq < 0) {
358		befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
359		return BEFS_BT_NOT_FOUND;
360	}
361
362	valarray = befs_bt_valarray(node);
363
364	/* simple binary search */
365	first = 0;
366	mid = 0;
367	while (last >= first) {
368		mid = (last + first) / 2;
369		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370			   mid);
371		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372		eq = befs_compare_strings(thiskey, keylen, findkey,
373					  findkey_len);
374
375		if (eq == 0) {
376			befs_debug(sb, "<--- befs_find_key() found %s at %d",
377				   thiskey, mid);
378
379			*value = fs64_to_cpu(sb, valarray[mid]);
380			return BEFS_BT_MATCH;
381		}
382		if (eq > 0)
383			last = mid - 1;
384		else
385			first = mid + 1;
386	}
387	if (eq < 0)
388		*value = fs64_to_cpu(sb, valarray[mid + 1]);
389	else
390		*value = fs64_to_cpu(sb, valarray[mid]);
391	befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
392	return BEFS_BT_PARMATCH;
393}
394
395/**
396 * befs_btree_read - Traverse leafnodes of a btree
397 * @sb: Filesystem superblock
398 * @ds: Datastream containing btree
399 * @key_no: Key number (alphabetical order) of key to read
400 * @bufsize: Size of the buffer to return key in
401 * @keybuf: Pointer to a buffer to put the key in
402 * @keysize: Length of the returned key
403 * @value: Value stored with the returned key
404 *
405 * Heres how it works: Key_no is the index of the key/value pair to 
406 * return in keybuf/value.
407 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 
408 * the number of charecters in the key (just a convenience).
409 *
410 * Algorithm:
411 *   Get the first leafnode of the tree. See if the requested key is in that
412 *   node. If not, follow the node->right link to the next leafnode. Repeat 
413 *   until the (key_no)th key is found or the tree is out of keys.
414 */
415int
416befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418		befs_off_t * value)
419{
420	befs_btree_node *this_node;
421	befs_btree_super bt_super;
422	befs_off_t node_off = 0;
423	int cur_key;
424	fs64 *valarray;
425	char *keystart;
426	u16 keylen;
427	int res;
428
429	uint key_sum = 0;
430
431	befs_debug(sb, "---> befs_btree_read()");
432
433	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434		befs_error(sb,
435			   "befs_btree_read() failed to read index superblock");
436		goto error;
437	}
438
439	if ((this_node = (befs_btree_node *)
440	     kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
441		befs_error(sb, "befs_btree_read() failed to allocate %u "
442			   "bytes of memory", sizeof (befs_btree_node));
443		goto error;
444	}
445
446	node_off = bt_super.root_node_ptr;
447	this_node->bh = NULL;
448
449	/* seeks down to first leafnode, reads it into this_node */
450	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
451	if (res == BEFS_BT_EMPTY) {
452		brelse(this_node->bh);
453		kfree(this_node);
454		*value = 0;
455		*keysize = 0;
456		befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
457		return BEFS_BT_EMPTY;
458	} else if (res == BEFS_ERR) {
459		goto error_alloc;
460	}
461
462	/* find the leaf node containing the key_no key */
463
464	while (key_sum + this_node->head.all_key_count <= key_no) {
465
466		/* no more nodes to look in: key_no is too large */
467		if (this_node->head.right == befs_bt_inval) {
468			*keysize = 0;
469			*value = 0;
470			befs_debug(sb,
471				   "<--- befs_btree_read() END of keys at %Lu",
 
472				   key_sum + this_node->head.all_key_count);
473			brelse(this_node->bh);
474			kfree(this_node);
475			return BEFS_BT_END;
476		}
477
478		key_sum += this_node->head.all_key_count;
479		node_off = this_node->head.right;
480
481		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
482			befs_error(sb, "befs_btree_read() failed to read "
483				   "node at %Lu", node_off);
484			goto error_alloc;
485		}
486	}
487
488	/* how many keys into this_node is key_no */
489	cur_key = key_no - key_sum;
490
491	/* get pointers to datastructures within the node body */
492	valarray = befs_bt_valarray(this_node);
493
494	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
495
496	befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);
 
 
497
498	if (bufsize < keylen + 1) {
499		befs_error(sb, "befs_btree_read() keybuf too small (%u) "
500			   "for key of size %d", bufsize, keylen);
501		brelse(this_node->bh);
502		goto error_alloc;
503	};
504
505	strncpy(keybuf, keystart, keylen);
506	*value = fs64_to_cpu(sb, valarray[cur_key]);
507	*keysize = keylen;
508	keybuf[keylen] = '\0';
509
510	befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
511		   cur_key, keylen, keybuf, *value);
512
513	brelse(this_node->bh);
514	kfree(this_node);
515
516	befs_debug(sb, "<--- befs_btree_read()");
517
518	return BEFS_OK;
519
520      error_alloc:
521	kfree(this_node);
522
523      error:
524	*keysize = 0;
525	*value = 0;
526	befs_debug(sb, "<--- befs_btree_read() ERROR");
527	return BEFS_ERR;
528}
529
530/**
531 * befs_btree_seekleaf - Find the first leafnode in the btree
532 * @sb: Filesystem superblock
533 * @ds: Datastream containing btree
534 * @bt_super: Pointer to the superblock of the btree
535 * @this_node: Buffer to return the leafnode in
536 * @node_off: Pointer to offset of current node within datastream. Modified
537 * 		by the function.
538 *
539 *
540 * Helper function for btree traverse. Moves the current position to the 
541 * start of the first leaf node.
542 *
543 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
544 */
545static int
546befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
547		    befs_btree_super * bt_super, befs_btree_node * this_node,
548		    befs_off_t * node_off)
549{
550
551	befs_debug(sb, "---> befs_btree_seekleaf()");
552
553	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
554		befs_error(sb, "befs_btree_seekleaf() failed to read "
555			   "node at %Lu", *node_off);
556		goto error;
557	}
558	befs_debug(sb, "Seekleaf to root node %Lu", *node_off);
559
560	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
561		befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY");
562		return BEFS_BT_EMPTY;
563	}
564
565	while (!befs_leafnode(this_node)) {
566
567		if (this_node->head.all_key_count == 0) {
568			befs_debug(sb, "befs_btree_seekleaf() encountered "
569				   "an empty interior node: %Lu. Using Overflow "
570				   "node: %Lu", *node_off,
571				   this_node->head.overflow);
572			*node_off = this_node->head.overflow;
573		} else {
574			fs64 *valarray = befs_bt_valarray(this_node);
575			*node_off = fs64_to_cpu(sb, valarray[0]);
576		}
577		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
578			befs_error(sb, "befs_btree_seekleaf() failed to read "
579				   "node at %Lu", *node_off);
580			goto error;
581		}
582
583		befs_debug(sb, "Seekleaf to child node %Lu", *node_off);
584	}
585	befs_debug(sb, "Node %Lu is a leaf node", *node_off);
586
587	return BEFS_OK;
588
589      error:
590	befs_debug(sb, "<--- befs_btree_seekleaf() ERROR");
591	return BEFS_ERR;
592}
593
594/**
595 * befs_leafnode - Determine if the btree node is a leaf node or an 
596 * interior node
597 * @node: Pointer to node structure to test
598 * 
599 * Return 1 if leaf, 0 if interior
600 */
601static int
602befs_leafnode(befs_btree_node * node)
603{
604	/* all interior nodes (and only interior nodes) have an overflow node */
605	if (node->head.overflow == befs_bt_inval)
606		return 1;
607	else
608		return 0;
609}
610
611/**
612 * befs_bt_keylen_index - Finds start of keylen index in a node
613 * @node: Pointer to the node structure to find the keylen index within
614 *
615 * Returns a pointer to the start of the key length index array
616 * of the B+tree node *@node
617 *
618 * "The length of all the keys in the node is added to the size of the
619 * header and then rounded up to a multiple of four to get the beginning
620 * of the key length index" (p.88, practical filesystem design).
621 *
622 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
623 */
624static fs16 *
625befs_bt_keylen_index(befs_btree_node * node)
626{
627	const int keylen_align = 8;
628	unsigned long int off =
629	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
630	ulong tmp = off % keylen_align;
631
632	if (tmp)
633		off += keylen_align - tmp;
634
635	return (fs16 *) ((void *) node->od_node + off);
636}
637
638/**
639 * befs_bt_valarray - Finds the start of value array in a node
640 * @node: Pointer to the node structure to find the value array within
641 *
642 * Returns a pointer to the start of the value array
643 * of the node pointed to by the node header
644 */
645static fs64 *
646befs_bt_valarray(befs_btree_node * node)
647{
648	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
649	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
650
651	return (fs64 *) (keylen_index_start + keylen_index_size);
652}
653
654/**
655 * befs_bt_keydata - Finds start of keydata array in a node
656 * @node: Pointer to the node structure to find the keydata array within
657 *
658 * Returns a pointer to the start of the keydata array
659 * of the node pointed to by the node header 
660 */
661static char *
662befs_bt_keydata(befs_btree_node * node)
663{
664	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
665}
666
667/**
668 * befs_bt_get_key - returns a pointer to the start of a key
669 * @sb: filesystem superblock
670 * @node: node in which to look for the key
671 * @index: the index of the key to get
672 * @keylen: modified to be the length of the key at @index
673 *
674 * Returns a valid pointer into @node on success.
675 * Returns NULL on failure (bad input) and sets *@keylen = 0
676 */
677static char *
678befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
679		int index, u16 * keylen)
680{
681	int prev_key_end;
682	char *keystart;
683	fs16 *keylen_index;
684
685	if (index < 0 || index > node->head.all_key_count) {
686		*keylen = 0;
687		return NULL;
688	}
689
690	keystart = befs_bt_keydata(node);
691	keylen_index = befs_bt_keylen_index(node);
692
693	if (index == 0)
694		prev_key_end = 0;
695	else
696		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
697
698	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
699
700	return keystart + prev_key_end;
701}
702
703/**
704 * befs_compare_strings - compare two strings
705 * @key1: pointer to the first key to be compared 
706 * @keylen1: length in bytes of key1
707 * @key2: pointer to the second key to be compared
708 * @kelen2: length in bytes of key2
709 *
710 * Returns 0 if @key1 and @key2 are equal.
711 * Returns >0 if @key1 is greater.
712 * Returns <0 if @key2 is greater..
713 */
714static int
715befs_compare_strings(const void *key1, int keylen1,
716		     const void *key2, int keylen2)
717{
718	int len = min_t(int, keylen1, keylen2);
719	int result = strncmp(key1, key2, len);
720	if (result == 0)
721		result = keylen1 - keylen2;
722	return result;
723}
724
725/* These will be used for non-string keyed btrees */
726#if 0
727static int
728btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
729{
730	return *(int32_t *) key1 - *(int32_t *) key2;
731}
732
733static int
734btree_compare_uint32(cont void *key1, int keylen1,
735		     const void *key2, int keylen2)
736{
737	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
738		return 0;
739	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
740		return 1;
741
742	return -1;
743}
744static int
745btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
746{
747	if (*(int64_t *) key1 == *(int64_t *) key2)
748		return 0;
749	else if (*(int64_t *) key1 > *(int64_t *) key2)
750		return 1;
751
752	return -1;
753}
754
755static int
756btree_compare_uint64(cont void *key1, int keylen1,
757		     const void *key2, int keylen2)
758{
759	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
760		return 0;
761	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
762		return 1;
763
764	return -1;
765}
766
767static int
768btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
769{
770	float result = *(float *) key1 - *(float *) key2;
771	if (result == 0.0f)
772		return 0;
773
774	return (result < 0.0f) ? -1 : 1;
775}
776
777static int
778btree_compare_double(cont void *key1, int keylen1,
779		     const void *key2, int keylen2)
780{
781	double result = *(double *) key1 - *(double *) key2;
782	if (result == 0.0)
783		return 0;
784
785	return (result < 0.0) ? -1 : 1;
786}
787#endif				//0
v3.15
  1/*
  2 * linux/fs/befs/btree.c
  3 *
  4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
  5 *
  6 * Licensed under the GNU GPL. See the file COPYING for details.
  7 *
  8 * 2002-02-05: Sergey S. Kostyliov added binary search within
  9 * 		btree nodes.
 10 *
 11 * Many thanks to:
 12 *
 13 * Dominic Giampaolo, author of "Practical File System
 14 * Design with the Be File System", for such a helpful book.
 15 * 
 16 * Marcus J. Ranum, author of the b+tree package in 
 17 * comp.sources.misc volume 10. This code is not copied from that
 18 * work, but it is partially based on it.
 19 *
 20 * Makoto Kato, author of the original BeFS for linux filesystem
 21 * driver.
 22 */
 23
 24#include <linux/kernel.h>
 25#include <linux/string.h>
 26#include <linux/slab.h>
 27#include <linux/mm.h>
 28#include <linux/buffer_head.h>
 29
 30#include "befs.h"
 31#include "btree.h"
 32#include "datastream.h"
 33
 34/*
 35 * The btree functions in this file are built on top of the
 36 * datastream.c interface, which is in turn built on top of the
 37 * io.c interface.
 38 */
 39
 40/* Befs B+tree structure:
 41 * 
 42 * The first thing in the tree is the tree superblock. It tells you
 43 * all kinds of useful things about the tree, like where the rootnode
 44 * is located, and the size of the nodes (always 1024 with current version
 45 * of BeOS).
 46 *
 47 * The rest of the tree consists of a series of nodes. Nodes contain a header
 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 
 49 * containing the ending offsets for each of the keys, and an array of
 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 
 51 * the childnode they point to, and the values are offsets into the 
 52 * datastream containing the tree. 
 53 */
 54
 55/* Note:
 56 * 
 57 * The book states 2 confusing things about befs b+trees. First, 
 58 * it states that the overflow field of node headers is used by internal nodes
 59 * to point to another node that "effectively continues this one". Here is what
 60 * I believe that means. Each key in internal nodes points to another node that
 61 * contains key values less than itself. Inspection reveals that the last key 
 62 * in the internal node is not the last key in the index. Keys that are 
 63 * greater than the last key in the internal node go into the overflow node. 
 64 * I imagine there is a performance reason for this.
 65 *
 66 * Second, it states that the header of a btree node is sufficient to 
 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 
 68 * After figuring out the first, it becomes obvious that internal nodes have
 69 * overflow nodes and leafnodes do not.
 70 */
 71
 72/* 
 73 * Currently, this code is only good for directory B+trees.
 74 * In order to be used for other BFS indexes, it needs to be extended to handle
 75 * duplicate keys and non-string keytypes (int32, int64, float, double).
 76 */
 77
 78/*
 79 * In memory structure of each btree node
 80 */
 81typedef struct {
 82	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
 83	struct buffer_head *bh;
 84	befs_btree_nodehead *od_node;	/* on disk node */
 85} befs_btree_node;
 86
 87/* local constants */
 88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
 89
 90/* local functions */
 91static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
 92			       befs_btree_super * bt_super,
 93			       befs_btree_node * this_node,
 94			       befs_off_t * node_off);
 95
 96static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
 97			      befs_btree_super * sup);
 98
 99static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100			     befs_btree_node * node, befs_off_t node_off);
101
102static int befs_leafnode(befs_btree_node * node);
103
104static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105
106static fs64 *befs_bt_valarray(befs_btree_node * node);
107
108static char *befs_bt_keydata(befs_btree_node * node);
109
110static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111			 const char *findkey, befs_off_t * value);
112
113static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114			     int index, u16 * keylen);
115
116static int befs_compare_strings(const void *key1, int keylen1,
117				const void *key2, int keylen2);
118
119/**
120 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
121 * @sb: Filesystem superblock
122 * @ds: Datastream to read from
123 * @sup: Buffer in which to place the btree superblock
124 *
125 * Calls befs_read_datastream to read in the btree superblock and
126 * makes sure it is in cpu byteorder, byteswapping if necessary.
127 *
128 * On success, returns BEFS_OK and *@sup contains the btree superblock,
129 * in cpu byte order.
130 *
131 * On failure, BEFS_ERR is returned.
132 */
133static int
134befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135		   befs_btree_super * sup)
136{
137	struct buffer_head *bh = NULL;
138	befs_disk_btree_super *od_sup = NULL;
139
140	befs_debug(sb, "---> %s", __func__);
141
142	bh = befs_read_datastream(sb, ds, 0, NULL);
143
144	if (!bh) {
145		befs_error(sb, "Couldn't read index header.");
146		goto error;
147	}
148	od_sup = (befs_disk_btree_super *) bh->b_data;
149	befs_dump_index_entry(sb, od_sup);
150
151	sup->magic = fs32_to_cpu(sb, od_sup->magic);
152	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157	sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158
159	brelse(bh);
160	if (sup->magic != BEFS_BTREE_MAGIC) {
161		befs_error(sb, "Index header has bad magic.");
162		goto error;
163	}
164
165	befs_debug(sb, "<--- %s", __func__);
166	return BEFS_OK;
167
168      error:
169	befs_debug(sb, "<--- %s ERROR", __func__);
170	return BEFS_ERR;
171}
172
173/**
174 * befs_bt_read_node - read in btree node and convert to cpu byteorder
175 * @sb: Filesystem superblock
176 * @ds: Datastream to read from
177 * @node: Buffer in which to place the btree node
178 * @node_off: Starting offset (in bytes) of the node in @ds
179 *
180 * Calls befs_read_datastream to read in the indicated btree node and
181 * makes sure its header fields are in cpu byteorder, byteswapping if
182 * necessary.
183 * Note: node->bh must be NULL when this function called first
184 * time. Don't forget brelse(node->bh) after last call.
185 *
186 * On success, returns BEFS_OK and *@node contains the btree node that
187 * starts at @node_off, with the node->head fields in cpu byte order.
188 *
189 * On failure, BEFS_ERR is returned.
190 */
191
192static int
193befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194		  befs_btree_node * node, befs_off_t node_off)
195{
196	uint off = 0;
197
198	befs_debug(sb, "---> %s", __func__);
199
200	if (node->bh)
201		brelse(node->bh);
202
203	node->bh = befs_read_datastream(sb, ds, node_off, &off);
204	if (!node->bh) {
205		befs_error(sb, "%s failed to read "
206			   "node at %llu", __func__, node_off);
207		befs_debug(sb, "<--- %s ERROR", __func__);
208
209		return BEFS_ERR;
210	}
211	node->od_node =
212	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213
214	befs_dump_index_node(sb, node->od_node);
215
216	node->head.left = fs64_to_cpu(sb, node->od_node->left);
217	node->head.right = fs64_to_cpu(sb, node->od_node->right);
218	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219	node->head.all_key_count =
220	    fs16_to_cpu(sb, node->od_node->all_key_count);
221	node->head.all_key_length =
222	    fs16_to_cpu(sb, node->od_node->all_key_length);
223
224	befs_debug(sb, "<--- %s", __func__);
225	return BEFS_OK;
226}
227
228/**
229 * befs_btree_find - Find a key in a befs B+tree
230 * @sb: Filesystem superblock
231 * @ds: Datastream containing btree
232 * @key: Key string to lookup in btree
233 * @value: Value stored with @key
234 *
235 * On success, returns BEFS_OK and sets *@value to the value stored
236 * with @key (usually the disk block number of an inode).
237 *
238 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239 * 
240 * Algorithm: 
241 *   Read the superblock and rootnode of the b+tree.
242 *   Drill down through the interior nodes using befs_find_key().
243 *   Once at the correct leaf node, use befs_find_key() again to get the
244 *   actuall value stored with the key.
245 */
246int
247befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248		const char *key, befs_off_t * value)
249{
250	befs_btree_node *this_node = NULL;
251	befs_btree_super bt_super;
252	befs_off_t node_off;
253	int res;
254
255	befs_debug(sb, "---> %s Key: %s", __func__, key);
256
257	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258		befs_error(sb,
259			   "befs_btree_find() failed to read index superblock");
260		goto error;
261	}
262
263	this_node = kmalloc(sizeof (befs_btree_node),
264						GFP_NOFS);
265	if (!this_node) {
266		befs_error(sb, "befs_btree_find() failed to allocate %zu "
267			   "bytes of memory", sizeof (befs_btree_node));
268		goto error;
269	}
270
271	this_node->bh = NULL;
272
273	/* read in root node */
274	node_off = bt_super.root_node_ptr;
275	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276		befs_error(sb, "befs_btree_find() failed to read "
277			   "node at %llu", node_off);
278		goto error_alloc;
279	}
280
281	while (!befs_leafnode(this_node)) {
282		res = befs_find_key(sb, this_node, key, &node_off);
283		if (res == BEFS_BT_NOT_FOUND)
284			node_off = this_node->head.overflow;
285		/* if no match, go to overflow node */
286		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287			befs_error(sb, "befs_btree_find() failed to read "
288				   "node at %llu", node_off);
289			goto error_alloc;
290		}
291	}
292
293	/* at the correct leaf node now */
294
295	res = befs_find_key(sb, this_node, key, value);
296
297	brelse(this_node->bh);
298	kfree(this_node);
299
300	if (res != BEFS_BT_MATCH) {
301		befs_debug(sb, "<--- %s Key %s not found", __func__, key);
302		*value = 0;
303		return BEFS_BT_NOT_FOUND;
304	}
305	befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
306		   key, *value);
307	return BEFS_OK;
308
309      error_alloc:
310	kfree(this_node);
311      error:
312	*value = 0;
313	befs_debug(sb, "<--- %s ERROR", __func__);
314	return BEFS_ERR;
315}
316
317/**
318 * befs_find_key - Search for a key within a node
319 * @sb: Filesystem superblock
320 * @node: Node to find the key within
321 * @key: Keystring to search for
322 * @value: If key is found, the value stored with the key is put here
323 *
324 * finds exact match if one exists, and returns BEFS_BT_MATCH
325 * If no exact match, finds first key in node that is greater
326 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327 * (for partial match, I guess). Can you think of something better to
328 * call it?
329 *
330 * If no key was a match or greater than the search key, return
331 * BEFS_BT_NOT_FOUND.
332 *
333 * Use binary search instead of a linear.
334 */
335static int
336befs_find_key(struct super_block *sb, befs_btree_node * node,
337	      const char *findkey, befs_off_t * value)
338{
339	int first, last, mid;
340	int eq;
341	u16 keylen;
342	int findkey_len;
343	char *thiskey;
344	fs64 *valarray;
345
346	befs_debug(sb, "---> %s %s", __func__, findkey);
347
348	*value = 0;
349
350	findkey_len = strlen(findkey);
351
352	/* if node can not contain key, just skeep this node */
353	last = node->head.all_key_count - 1;
354	thiskey = befs_bt_get_key(sb, node, last, &keylen);
355
356	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357	if (eq < 0) {
358		befs_debug(sb, "<--- %s %s not found", __func__, findkey);
359		return BEFS_BT_NOT_FOUND;
360	}
361
362	valarray = befs_bt_valarray(node);
363
364	/* simple binary search */
365	first = 0;
366	mid = 0;
367	while (last >= first) {
368		mid = (last + first) / 2;
369		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370			   mid);
371		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372		eq = befs_compare_strings(thiskey, keylen, findkey,
373					  findkey_len);
374
375		if (eq == 0) {
376			befs_debug(sb, "<--- %s found %s at %d",
377				   __func__, thiskey, mid);
378
379			*value = fs64_to_cpu(sb, valarray[mid]);
380			return BEFS_BT_MATCH;
381		}
382		if (eq > 0)
383			last = mid - 1;
384		else
385			first = mid + 1;
386	}
387	if (eq < 0)
388		*value = fs64_to_cpu(sb, valarray[mid + 1]);
389	else
390		*value = fs64_to_cpu(sb, valarray[mid]);
391	befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid);
392	return BEFS_BT_PARMATCH;
393}
394
395/**
396 * befs_btree_read - Traverse leafnodes of a btree
397 * @sb: Filesystem superblock
398 * @ds: Datastream containing btree
399 * @key_no: Key number (alphabetical order) of key to read
400 * @bufsize: Size of the buffer to return key in
401 * @keybuf: Pointer to a buffer to put the key in
402 * @keysize: Length of the returned key
403 * @value: Value stored with the returned key
404 *
405 * Heres how it works: Key_no is the index of the key/value pair to 
406 * return in keybuf/value.
407 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 
408 * the number of charecters in the key (just a convenience).
409 *
410 * Algorithm:
411 *   Get the first leafnode of the tree. See if the requested key is in that
412 *   node. If not, follow the node->right link to the next leafnode. Repeat 
413 *   until the (key_no)th key is found or the tree is out of keys.
414 */
415int
416befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418		befs_off_t * value)
419{
420	befs_btree_node *this_node;
421	befs_btree_super bt_super;
422	befs_off_t node_off = 0;
423	int cur_key;
424	fs64 *valarray;
425	char *keystart;
426	u16 keylen;
427	int res;
428
429	uint key_sum = 0;
430
431	befs_debug(sb, "---> %s", __func__);
432
433	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434		befs_error(sb,
435			   "befs_btree_read() failed to read index superblock");
436		goto error;
437	}
438
439	if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
440		befs_error(sb, "befs_btree_read() failed to allocate %zu "
 
441			   "bytes of memory", sizeof (befs_btree_node));
442		goto error;
443	}
444
445	node_off = bt_super.root_node_ptr;
446	this_node->bh = NULL;
447
448	/* seeks down to first leafnode, reads it into this_node */
449	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
450	if (res == BEFS_BT_EMPTY) {
451		brelse(this_node->bh);
452		kfree(this_node);
453		*value = 0;
454		*keysize = 0;
455		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
456		return BEFS_BT_EMPTY;
457	} else if (res == BEFS_ERR) {
458		goto error_alloc;
459	}
460
461	/* find the leaf node containing the key_no key */
462
463	while (key_sum + this_node->head.all_key_count <= key_no) {
464
465		/* no more nodes to look in: key_no is too large */
466		if (this_node->head.right == befs_bt_inval) {
467			*keysize = 0;
468			*value = 0;
469			befs_debug(sb,
470				   "<--- %s END of keys at %llu", __func__,
471				   (unsigned long long)
472				   key_sum + this_node->head.all_key_count);
473			brelse(this_node->bh);
474			kfree(this_node);
475			return BEFS_BT_END;
476		}
477
478		key_sum += this_node->head.all_key_count;
479		node_off = this_node->head.right;
480
481		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
482			befs_error(sb, "%s failed to read node at %llu",
483				  __func__, (unsigned long long)node_off);
484			goto error_alloc;
485		}
486	}
487
488	/* how many keys into this_node is key_no */
489	cur_key = key_no - key_sum;
490
491	/* get pointers to datastructures within the node body */
492	valarray = befs_bt_valarray(this_node);
493
494	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
495
496	befs_debug(sb, "Read [%llu,%d]: keysize %d",
497		   (long long unsigned int)node_off, (int)cur_key,
498		   (int)keylen);
499
500	if (bufsize < keylen + 1) {
501		befs_error(sb, "%s keybuf too small (%zu) "
502			   "for key of size %d", __func__, bufsize, keylen);
503		brelse(this_node->bh);
504		goto error_alloc;
505	};
506
507	strncpy(keybuf, keystart, keylen);
508	*value = fs64_to_cpu(sb, valarray[cur_key]);
509	*keysize = keylen;
510	keybuf[keylen] = '\0';
511
512	befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
513		   cur_key, keylen, keybuf, *value);
514
515	brelse(this_node->bh);
516	kfree(this_node);
517
518	befs_debug(sb, "<--- %s", __func__);
519
520	return BEFS_OK;
521
522      error_alloc:
523	kfree(this_node);
524
525      error:
526	*keysize = 0;
527	*value = 0;
528	befs_debug(sb, "<--- %s ERROR", __func__);
529	return BEFS_ERR;
530}
531
532/**
533 * befs_btree_seekleaf - Find the first leafnode in the btree
534 * @sb: Filesystem superblock
535 * @ds: Datastream containing btree
536 * @bt_super: Pointer to the superblock of the btree
537 * @this_node: Buffer to return the leafnode in
538 * @node_off: Pointer to offset of current node within datastream. Modified
539 * 		by the function.
540 *
541 *
542 * Helper function for btree traverse. Moves the current position to the 
543 * start of the first leaf node.
544 *
545 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
546 */
547static int
548befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
549		    befs_btree_super * bt_super, befs_btree_node * this_node,
550		    befs_off_t * node_off)
551{
552
553	befs_debug(sb, "---> %s", __func__);
554
555	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
556		befs_error(sb, "%s failed to read "
557			   "node at %llu", __func__, *node_off);
558		goto error;
559	}
560	befs_debug(sb, "Seekleaf to root node %llu", *node_off);
561
562	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
563		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
564		return BEFS_BT_EMPTY;
565	}
566
567	while (!befs_leafnode(this_node)) {
568
569		if (this_node->head.all_key_count == 0) {
570			befs_debug(sb, "%s encountered "
571				   "an empty interior node: %llu. Using Overflow "
572				   "node: %llu", __func__, *node_off,
573				   this_node->head.overflow);
574			*node_off = this_node->head.overflow;
575		} else {
576			fs64 *valarray = befs_bt_valarray(this_node);
577			*node_off = fs64_to_cpu(sb, valarray[0]);
578		}
579		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
580			befs_error(sb, "%s failed to read "
581				   "node at %llu", __func__, *node_off);
582			goto error;
583		}
584
585		befs_debug(sb, "Seekleaf to child node %llu", *node_off);
586	}
587	befs_debug(sb, "Node %llu is a leaf node", *node_off);
588
589	return BEFS_OK;
590
591      error:
592	befs_debug(sb, "<--- %s ERROR", __func__);
593	return BEFS_ERR;
594}
595
596/**
597 * befs_leafnode - Determine if the btree node is a leaf node or an 
598 * interior node
599 * @node: Pointer to node structure to test
600 * 
601 * Return 1 if leaf, 0 if interior
602 */
603static int
604befs_leafnode(befs_btree_node * node)
605{
606	/* all interior nodes (and only interior nodes) have an overflow node */
607	if (node->head.overflow == befs_bt_inval)
608		return 1;
609	else
610		return 0;
611}
612
613/**
614 * befs_bt_keylen_index - Finds start of keylen index in a node
615 * @node: Pointer to the node structure to find the keylen index within
616 *
617 * Returns a pointer to the start of the key length index array
618 * of the B+tree node *@node
619 *
620 * "The length of all the keys in the node is added to the size of the
621 * header and then rounded up to a multiple of four to get the beginning
622 * of the key length index" (p.88, practical filesystem design).
623 *
624 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
625 */
626static fs16 *
627befs_bt_keylen_index(befs_btree_node * node)
628{
629	const int keylen_align = 8;
630	unsigned long int off =
631	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
632	ulong tmp = off % keylen_align;
633
634	if (tmp)
635		off += keylen_align - tmp;
636
637	return (fs16 *) ((void *) node->od_node + off);
638}
639
640/**
641 * befs_bt_valarray - Finds the start of value array in a node
642 * @node: Pointer to the node structure to find the value array within
643 *
644 * Returns a pointer to the start of the value array
645 * of the node pointed to by the node header
646 */
647static fs64 *
648befs_bt_valarray(befs_btree_node * node)
649{
650	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
651	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
652
653	return (fs64 *) (keylen_index_start + keylen_index_size);
654}
655
656/**
657 * befs_bt_keydata - Finds start of keydata array in a node
658 * @node: Pointer to the node structure to find the keydata array within
659 *
660 * Returns a pointer to the start of the keydata array
661 * of the node pointed to by the node header 
662 */
663static char *
664befs_bt_keydata(befs_btree_node * node)
665{
666	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
667}
668
669/**
670 * befs_bt_get_key - returns a pointer to the start of a key
671 * @sb: filesystem superblock
672 * @node: node in which to look for the key
673 * @index: the index of the key to get
674 * @keylen: modified to be the length of the key at @index
675 *
676 * Returns a valid pointer into @node on success.
677 * Returns NULL on failure (bad input) and sets *@keylen = 0
678 */
679static char *
680befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
681		int index, u16 * keylen)
682{
683	int prev_key_end;
684	char *keystart;
685	fs16 *keylen_index;
686
687	if (index < 0 || index > node->head.all_key_count) {
688		*keylen = 0;
689		return NULL;
690	}
691
692	keystart = befs_bt_keydata(node);
693	keylen_index = befs_bt_keylen_index(node);
694
695	if (index == 0)
696		prev_key_end = 0;
697	else
698		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
699
700	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
701
702	return keystart + prev_key_end;
703}
704
705/**
706 * befs_compare_strings - compare two strings
707 * @key1: pointer to the first key to be compared 
708 * @keylen1: length in bytes of key1
709 * @key2: pointer to the second key to be compared
710 * @kelen2: length in bytes of key2
711 *
712 * Returns 0 if @key1 and @key2 are equal.
713 * Returns >0 if @key1 is greater.
714 * Returns <0 if @key2 is greater..
715 */
716static int
717befs_compare_strings(const void *key1, int keylen1,
718		     const void *key2, int keylen2)
719{
720	int len = min_t(int, keylen1, keylen2);
721	int result = strncmp(key1, key2, len);
722	if (result == 0)
723		result = keylen1 - keylen2;
724	return result;
725}
726
727/* These will be used for non-string keyed btrees */
728#if 0
729static int
730btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
731{
732	return *(int32_t *) key1 - *(int32_t *) key2;
733}
734
735static int
736btree_compare_uint32(cont void *key1, int keylen1,
737		     const void *key2, int keylen2)
738{
739	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
740		return 0;
741	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
742		return 1;
743
744	return -1;
745}
746static int
747btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
748{
749	if (*(int64_t *) key1 == *(int64_t *) key2)
750		return 0;
751	else if (*(int64_t *) key1 > *(int64_t *) key2)
752		return 1;
753
754	return -1;
755}
756
757static int
758btree_compare_uint64(cont void *key1, int keylen1,
759		     const void *key2, int keylen2)
760{
761	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
762		return 0;
763	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
764		return 1;
765
766	return -1;
767}
768
769static int
770btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
771{
772	float result = *(float *) key1 - *(float *) key2;
773	if (result == 0.0f)
774		return 0;
775
776	return (result < 0.0f) ? -1 : 1;
777}
778
779static int
780btree_compare_double(cont void *key1, int keylen1,
781		     const void *key2, int keylen2)
782{
783	double result = *(double *) key1 - *(double *) key2;
784	if (result == 0.0)
785		return 0;
786
787	return (result < 0.0) ? -1 : 1;
788}
789#endif				//0