Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
 
  30
  31#include "xhci.h"
 
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
 
 
 
 
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
  42/*
  43 * handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56		      u32 mask, u32 done, int usec)
  57{
  58	u32	result;
  59
  60	do {
  61		result = xhci_readl(xhci, ptr);
  62		if (result == ~(u32)0)		/* card removed */
  63			return -ENODEV;
  64		result &= mask;
  65		if (result == done)
  66			return 0;
  67		udelay(1);
  68		usec--;
  69	} while (usec > 0);
  70	return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78	u32 halted;
  79	u32 cmd;
  80	u32 mask;
  81
  82	mask = ~(XHCI_IRQS);
  83	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84	if (!halted)
  85		mask &= ~CMD_RUN;
  86
  87	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88	cmd &= mask;
  89	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102	int ret;
 103	xhci_dbg(xhci, "// Halt the HC\n");
 104	xhci_quiesce(xhci);
 105
 106	ret = handshake(xhci, &xhci->op_regs->status,
 107			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108	if (!ret) {
 109		xhci->xhc_state |= XHCI_STATE_HALTED;
 110		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111	} else
 112		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113				XHCI_MAX_HALT_USEC);
 114	return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122	u32 temp;
 123	int ret;
 124
 125	temp = xhci_readl(xhci, &xhci->op_regs->command);
 126	temp |= (CMD_RUN);
 127	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128			temp);
 129	xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131	/*
 132	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133	 * running.
 134	 */
 135	ret = handshake(xhci, &xhci->op_regs->status,
 136			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137	if (ret == -ETIMEDOUT)
 138		xhci_err(xhci, "Host took too long to start, "
 139				"waited %u microseconds.\n",
 140				XHCI_MAX_HALT_USEC);
 141	if (!ret)
 142		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 158
 159	state = xhci_readl(xhci, &xhci->op_regs->status);
 160	if ((state & STS_HALT) == 0) {
 161		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162		return 0;
 163	}
 164
 165	xhci_dbg(xhci, "// Reset the HC\n");
 166	command = xhci_readl(xhci, &xhci->op_regs->command);
 167	command |= CMD_RESET;
 168	xhci_writel(xhci, command, &xhci->op_regs->command);
 169
 170	ret = handshake(xhci, &xhci->op_regs->command,
 171			CMD_RESET, 0, 10 * 1000 * 1000);
 172	if (ret)
 173		return ret;
 174
 175	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 176	/*
 177	 * xHCI cannot write to any doorbells or operational registers other
 178	 * than status until the "Controller Not Ready" flag is cleared.
 179	 */
 180	ret = handshake(xhci, &xhci->op_regs->status,
 181			STS_CNR, 0, 10 * 1000 * 1000);
 182
 183	for (i = 0; i < 2; ++i) {
 184		xhci->bus_state[i].port_c_suspend = 0;
 185		xhci->bus_state[i].suspended_ports = 0;
 186		xhci->bus_state[i].resuming_ports = 0;
 187	}
 188
 189	return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 194{
 195	int i;
 196
 197	if (!xhci->msix_entries)
 198		return -EINVAL;
 199
 200	for (i = 0; i < xhci->msix_count; i++)
 201		if (xhci->msix_entries[i].vector)
 202			free_irq(xhci->msix_entries[i].vector,
 203					xhci_to_hcd(xhci));
 204	return 0;
 205}
 206
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212	int ret;
 213	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215	ret = pci_enable_msi(pdev);
 216	if (ret) {
 217		xhci_dbg(xhci, "failed to allocate MSI entry\n");
 
 218		return ret;
 219	}
 220
 221	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222				0, "xhci_hcd", xhci_to_hcd(xhci));
 223	if (ret) {
 224		xhci_dbg(xhci, "disable MSI interrupt\n");
 
 225		pci_disable_msi(pdev);
 226	}
 227
 228	return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238	int ret;
 239
 240	/* return if using legacy interrupt */
 241	if (xhci_to_hcd(xhci)->irq > 0)
 242		return;
 243
 244	ret = xhci_free_msi(xhci);
 245	if (!ret)
 246		return;
 247	if (pdev->irq > 0)
 248		free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250	return;
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258	int i, ret = 0;
 259	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262	/*
 263	 * calculate number of msi-x vectors supported.
 264	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 266	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267	 *   Add additional 1 vector to ensure always available interrupt.
 268	 */
 269	xhci->msix_count = min(num_online_cpus() + 1,
 270				HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272	xhci->msix_entries =
 273		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274				GFP_KERNEL);
 275	if (!xhci->msix_entries) {
 276		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277		return -ENOMEM;
 278	}
 279
 280	for (i = 0; i < xhci->msix_count; i++) {
 281		xhci->msix_entries[i].entry = i;
 282		xhci->msix_entries[i].vector = 0;
 283	}
 284
 285	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286	if (ret) {
 287		xhci_dbg(xhci, "Failed to enable MSI-X\n");
 
 288		goto free_entries;
 289	}
 290
 291	for (i = 0; i < xhci->msix_count; i++) {
 292		ret = request_irq(xhci->msix_entries[i].vector,
 293				(irq_handler_t)xhci_msi_irq,
 294				0, "xhci_hcd", xhci_to_hcd(xhci));
 295		if (ret)
 296			goto disable_msix;
 297	}
 298
 299	hcd->msix_enabled = 1;
 300	return ret;
 301
 302disable_msix:
 303	xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304	xhci_free_irq(xhci);
 305	pci_disable_msix(pdev);
 306free_entries:
 307	kfree(xhci->msix_entries);
 308	xhci->msix_entries = NULL;
 309	return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 
 
 
 318	xhci_free_irq(xhci);
 319
 320	if (xhci->msix_entries) {
 321		pci_disable_msix(pdev);
 322		kfree(xhci->msix_entries);
 323		xhci->msix_entries = NULL;
 324	} else {
 325		pci_disable_msi(pdev);
 326	}
 327
 328	hcd->msix_enabled = 0;
 329	return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334	int i;
 335
 336	if (xhci->msix_entries) {
 337		for (i = 0; i < xhci->msix_count; i++)
 338			synchronize_irq(xhci->msix_entries[i].vector);
 339	}
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346	int ret;
 347
 
 
 
 
 
 348	/*
 349	 * Some Fresco Logic host controllers advertise MSI, but fail to
 350	 * generate interrupts.  Don't even try to enable MSI.
 351	 */
 352	if (xhci->quirks & XHCI_BROKEN_MSI)
 353		return 0;
 354
 355	/* unregister the legacy interrupt */
 356	if (hcd->irq)
 357		free_irq(hcd->irq, hcd);
 358	hcd->irq = 0;
 359
 360	ret = xhci_setup_msix(xhci);
 361	if (ret)
 362		/* fall back to msi*/
 363		ret = xhci_setup_msi(xhci);
 364
 365	if (!ret)
 366		/* hcd->irq is 0, we have MSI */
 367		return 0;
 368
 369	if (!pdev->irq) {
 370		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371		return -EINVAL;
 372	}
 373
 
 
 
 
 
 374	/* fall back to legacy interrupt*/
 375	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376			hcd->irq_descr, hcd);
 377	if (ret) {
 378		xhci_err(xhci, "request interrupt %d failed\n",
 379				pdev->irq);
 380		return ret;
 381	}
 382	hcd->irq = pdev->irq;
 383	return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390	return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405	struct xhci_hcd *xhci;
 406	struct usb_hcd *hcd;
 407	u32 temp;
 408	int i;
 409
 410	xhci = (struct xhci_hcd *)arg;
 411
 412	for (i = 0; i < xhci->num_usb3_ports; i++) {
 413		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 414		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415			/*
 416			 * Compliance Mode Detected. Letting USB Core
 417			 * handle the Warm Reset
 418			 */
 419			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 
 420					i + 1);
 421			xhci_dbg(xhci, "Attempting Recovery routine!\n");
 
 422			hcd = xhci->shared_hcd;
 423
 424			if (hcd->state == HC_STATE_SUSPENDED)
 425				usb_hcd_resume_root_hub(hcd);
 426
 427			usb_hcd_poll_rh_status(hcd);
 428		}
 429	}
 430
 431	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432		mod_timer(&xhci->comp_mode_recovery_timer,
 433			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448	xhci->port_status_u0 = 0;
 449	init_timer(&xhci->comp_mode_recovery_timer);
 450
 451	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453	xhci->comp_mode_recovery_timer.expires = jiffies +
 454			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456	set_timer_slack(&xhci->comp_mode_recovery_timer,
 457			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458	add_timer(&xhci->comp_mode_recovery_timer);
 459	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470	const char *dmi_product_name, *dmi_sys_vendor;
 471
 472	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474	if (!dmi_product_name || !dmi_sys_vendor)
 475		return false;
 476
 477	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478		return false;
 479
 480	if (strstr(dmi_product_name, "Z420") ||
 481			strstr(dmi_product_name, "Z620") ||
 482			strstr(dmi_product_name, "Z820"))
 
 483		return true;
 484
 485	return false;
 486}
 487
 488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 489{
 490	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 491}
 492
 493
 494/*
 495 * Initialize memory for HCD and xHC (one-time init).
 496 *
 497 * Program the PAGESIZE register, initialize the device context array, create
 498 * device contexts (?), set up a command ring segment (or two?), create event
 499 * ring (one for now).
 500 */
 501int xhci_init(struct usb_hcd *hcd)
 502{
 503	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 504	int retval = 0;
 505
 506	xhci_dbg(xhci, "xhci_init\n");
 507	spin_lock_init(&xhci->lock);
 508	if (xhci->hci_version == 0x95 && link_quirk) {
 509		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 510		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 511	} else {
 512		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 513	}
 514	retval = xhci_mem_init(xhci, GFP_KERNEL);
 515	xhci_dbg(xhci, "Finished xhci_init\n");
 516
 517	/* Initializing Compliance Mode Recovery Data If Needed */
 518	if (compliance_mode_recovery_timer_quirk_check()) {
 519		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 520		compliance_mode_recovery_timer_init(xhci);
 521	}
 522
 523	return retval;
 524}
 525
 526/*-------------------------------------------------------------------------*/
 527
 528
 529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 530static void xhci_event_ring_work(unsigned long arg)
 531{
 532	unsigned long flags;
 533	int temp;
 534	u64 temp_64;
 535	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 536	int i, j;
 537
 538	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 539
 540	spin_lock_irqsave(&xhci->lock, flags);
 541	temp = xhci_readl(xhci, &xhci->op_regs->status);
 542	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 543	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 544			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 545		xhci_dbg(xhci, "HW died, polling stopped.\n");
 546		spin_unlock_irqrestore(&xhci->lock, flags);
 547		return;
 548	}
 549
 550	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 551	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 552	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 553	xhci->error_bitmask = 0;
 554	xhci_dbg(xhci, "Event ring:\n");
 555	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 556	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 557	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 558	temp_64 &= ~ERST_PTR_MASK;
 559	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 560	xhci_dbg(xhci, "Command ring:\n");
 561	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 562	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 563	xhci_dbg_cmd_ptrs(xhci);
 564	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 565		if (!xhci->devs[i])
 566			continue;
 567		for (j = 0; j < 31; ++j) {
 568			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 569		}
 570	}
 571	spin_unlock_irqrestore(&xhci->lock, flags);
 572
 573	if (!xhci->zombie)
 574		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 575	else
 576		xhci_dbg(xhci, "Quit polling the event ring.\n");
 577}
 578#endif
 579
 580static int xhci_run_finished(struct xhci_hcd *xhci)
 581{
 582	if (xhci_start(xhci)) {
 583		xhci_halt(xhci);
 584		return -ENODEV;
 585	}
 586	xhci->shared_hcd->state = HC_STATE_RUNNING;
 587	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 588
 589	if (xhci->quirks & XHCI_NEC_HOST)
 590		xhci_ring_cmd_db(xhci);
 591
 592	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 593	return 0;
 594}
 595
 596/*
 597 * Start the HC after it was halted.
 598 *
 599 * This function is called by the USB core when the HC driver is added.
 600 * Its opposite is xhci_stop().
 601 *
 602 * xhci_init() must be called once before this function can be called.
 603 * Reset the HC, enable device slot contexts, program DCBAAP, and
 604 * set command ring pointer and event ring pointer.
 605 *
 606 * Setup MSI-X vectors and enable interrupts.
 607 */
 608int xhci_run(struct usb_hcd *hcd)
 609{
 610	u32 temp;
 611	u64 temp_64;
 612	int ret;
 613	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 614
 615	/* Start the xHCI host controller running only after the USB 2.0 roothub
 616	 * is setup.
 617	 */
 618
 619	hcd->uses_new_polling = 1;
 620	if (!usb_hcd_is_primary_hcd(hcd))
 621		return xhci_run_finished(xhci);
 622
 623	xhci_dbg(xhci, "xhci_run\n");
 624
 625	ret = xhci_try_enable_msi(hcd);
 626	if (ret)
 627		return ret;
 628
 629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 630	init_timer(&xhci->event_ring_timer);
 631	xhci->event_ring_timer.data = (unsigned long) xhci;
 632	xhci->event_ring_timer.function = xhci_event_ring_work;
 633	/* Poll the event ring */
 634	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 635	xhci->zombie = 0;
 636	xhci_dbg(xhci, "Setting event ring polling timer\n");
 637	add_timer(&xhci->event_ring_timer);
 638#endif
 639
 640	xhci_dbg(xhci, "Command ring memory map follows:\n");
 641	xhci_debug_ring(xhci, xhci->cmd_ring);
 642	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 643	xhci_dbg_cmd_ptrs(xhci);
 644
 645	xhci_dbg(xhci, "ERST memory map follows:\n");
 646	xhci_dbg_erst(xhci, &xhci->erst);
 647	xhci_dbg(xhci, "Event ring:\n");
 648	xhci_debug_ring(xhci, xhci->event_ring);
 649	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 650	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 651	temp_64 &= ~ERST_PTR_MASK;
 652	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 
 653
 654	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 655	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 656	temp &= ~ER_IRQ_INTERVAL_MASK;
 657	temp |= (u32) 160;
 658	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 659
 660	/* Set the HCD state before we enable the irqs */
 661	temp = xhci_readl(xhci, &xhci->op_regs->command);
 662	temp |= (CMD_EIE);
 663	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 664			temp);
 665	xhci_writel(xhci, temp, &xhci->op_regs->command);
 666
 667	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 668	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 
 669			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 670	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 671			&xhci->ir_set->irq_pending);
 672	xhci_print_ir_set(xhci, 0);
 673
 674	if (xhci->quirks & XHCI_NEC_HOST)
 675		xhci_queue_vendor_command(xhci, 0, 0, 0,
 676				TRB_TYPE(TRB_NEC_GET_FW));
 677
 678	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 
 679	return 0;
 680}
 681
 682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 683{
 684	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 685
 686	spin_lock_irq(&xhci->lock);
 687	xhci_halt(xhci);
 688
 689	/* The shared_hcd is going to be deallocated shortly (the USB core only
 690	 * calls this function when allocation fails in usb_add_hcd(), or
 691	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 692	 */
 693	xhci->shared_hcd = NULL;
 694	spin_unlock_irq(&xhci->lock);
 695}
 696
 697/*
 698 * Stop xHCI driver.
 699 *
 700 * This function is called by the USB core when the HC driver is removed.
 701 * Its opposite is xhci_run().
 702 *
 703 * Disable device contexts, disable IRQs, and quiesce the HC.
 704 * Reset the HC, finish any completed transactions, and cleanup memory.
 705 */
 706void xhci_stop(struct usb_hcd *hcd)
 707{
 708	u32 temp;
 709	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 710
 711	if (!usb_hcd_is_primary_hcd(hcd)) {
 712		xhci_only_stop_hcd(xhci->shared_hcd);
 713		return;
 714	}
 715
 716	spin_lock_irq(&xhci->lock);
 717	/* Make sure the xHC is halted for a USB3 roothub
 718	 * (xhci_stop() could be called as part of failed init).
 719	 */
 720	xhci_halt(xhci);
 721	xhci_reset(xhci);
 722	spin_unlock_irq(&xhci->lock);
 723
 724	xhci_cleanup_msix(xhci);
 725
 726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 727	/* Tell the event ring poll function not to reschedule */
 728	xhci->zombie = 1;
 729	del_timer_sync(&xhci->event_ring_timer);
 730#endif
 731
 732	/* Deleting Compliance Mode Recovery Timer */
 733	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 734			(!(xhci_all_ports_seen_u0(xhci))))
 735		del_timer_sync(&xhci->comp_mode_recovery_timer);
 
 
 
 
 736
 737	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 738		usb_amd_dev_put();
 739
 740	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 741	temp = xhci_readl(xhci, &xhci->op_regs->status);
 742	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 743	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 744	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 745			&xhci->ir_set->irq_pending);
 746	xhci_print_ir_set(xhci, 0);
 747
 748	xhci_dbg(xhci, "cleaning up memory\n");
 749	xhci_mem_cleanup(xhci);
 750	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 751		    xhci_readl(xhci, &xhci->op_regs->status));
 
 752}
 753
 754/*
 755 * Shutdown HC (not bus-specific)
 756 *
 757 * This is called when the machine is rebooting or halting.  We assume that the
 758 * machine will be powered off, and the HC's internal state will be reset.
 759 * Don't bother to free memory.
 760 *
 761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 762 */
 763void xhci_shutdown(struct usb_hcd *hcd)
 764{
 765	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 766
 767	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 768		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 769
 770	spin_lock_irq(&xhci->lock);
 771	xhci_halt(xhci);
 
 
 
 772	spin_unlock_irq(&xhci->lock);
 773
 774	xhci_cleanup_msix(xhci);
 775
 776	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 777		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 
 
 778}
 779
 780#ifdef CONFIG_PM
 781static void xhci_save_registers(struct xhci_hcd *xhci)
 782{
 783	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 784	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 785	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 786	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 787	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 788	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 789	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 790	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 791	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_restore_registers(struct xhci_hcd *xhci)
 795{
 796	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 797	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 798	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 799	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 800	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 801	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 802	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 803	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 804	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 805}
 806
 807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 808{
 809	u64	val_64;
 810
 811	/* step 2: initialize command ring buffer */
 812	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 813	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 814		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 815				      xhci->cmd_ring->dequeue) &
 816		 (u64) ~CMD_RING_RSVD_BITS) |
 817		xhci->cmd_ring->cycle_state;
 818	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 819			(long unsigned long) val_64);
 820	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 821}
 822
 823/*
 824 * The whole command ring must be cleared to zero when we suspend the host.
 825 *
 826 * The host doesn't save the command ring pointer in the suspend well, so we
 827 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 828 * aligned, because of the reserved bits in the command ring dequeue pointer
 829 * register.  Therefore, we can't just set the dequeue pointer back in the
 830 * middle of the ring (TRBs are 16-byte aligned).
 831 */
 832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 833{
 834	struct xhci_ring *ring;
 835	struct xhci_segment *seg;
 836
 837	ring = xhci->cmd_ring;
 838	seg = ring->deq_seg;
 839	do {
 840		memset(seg->trbs, 0,
 841			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 842		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 843			cpu_to_le32(~TRB_CYCLE);
 844		seg = seg->next;
 845	} while (seg != ring->deq_seg);
 846
 847	/* Reset the software enqueue and dequeue pointers */
 848	ring->deq_seg = ring->first_seg;
 849	ring->dequeue = ring->first_seg->trbs;
 850	ring->enq_seg = ring->deq_seg;
 851	ring->enqueue = ring->dequeue;
 852
 853	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 854	/*
 855	 * Ring is now zeroed, so the HW should look for change of ownership
 856	 * when the cycle bit is set to 1.
 857	 */
 858	ring->cycle_state = 1;
 859
 860	/*
 861	 * Reset the hardware dequeue pointer.
 862	 * Yes, this will need to be re-written after resume, but we're paranoid
 863	 * and want to make sure the hardware doesn't access bogus memory
 864	 * because, say, the BIOS or an SMI started the host without changing
 865	 * the command ring pointers.
 866	 */
 867	xhci_set_cmd_ring_deq(xhci);
 868}
 869
 870/*
 871 * Stop HC (not bus-specific)
 872 *
 873 * This is called when the machine transition into S3/S4 mode.
 874 *
 875 */
 876int xhci_suspend(struct xhci_hcd *xhci)
 877{
 878	int			rc = 0;
 
 879	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 880	u32			command;
 881
 
 
 
 
 
 
 
 
 
 882	spin_lock_irq(&xhci->lock);
 883	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 885	/* step 1: stop endpoint */
 886	/* skipped assuming that port suspend has done */
 887
 888	/* step 2: clear Run/Stop bit */
 889	command = xhci_readl(xhci, &xhci->op_regs->command);
 890	command &= ~CMD_RUN;
 891	xhci_writel(xhci, command, &xhci->op_regs->command);
 892	if (handshake(xhci, &xhci->op_regs->status,
 893		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 
 
 
 
 894		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 895		spin_unlock_irq(&xhci->lock);
 896		return -ETIMEDOUT;
 897	}
 898	xhci_clear_command_ring(xhci);
 899
 900	/* step 3: save registers */
 901	xhci_save_registers(xhci);
 902
 903	/* step 4: set CSS flag */
 904	command = xhci_readl(xhci, &xhci->op_regs->command);
 905	command |= CMD_CSS;
 906	xhci_writel(xhci, command, &xhci->op_regs->command);
 907	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
 
 908		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 909		spin_unlock_irq(&xhci->lock);
 910		return -ETIMEDOUT;
 911	}
 912	spin_unlock_irq(&xhci->lock);
 913
 914	/*
 915	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 916	 * is about to be suspended.
 917	 */
 918	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 919			(!(xhci_all_ports_seen_u0(xhci)))) {
 920		del_timer_sync(&xhci->comp_mode_recovery_timer);
 921		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 
 
 922	}
 923
 924	/* step 5: remove core well power */
 925	/* synchronize irq when using MSI-X */
 926	xhci_msix_sync_irqs(xhci);
 927
 928	return rc;
 929}
 930
 931/*
 932 * start xHC (not bus-specific)
 933 *
 934 * This is called when the machine transition from S3/S4 mode.
 935 *
 936 */
 937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 938{
 939	u32			command, temp = 0;
 940	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 941	struct usb_hcd		*secondary_hcd;
 942	int			retval = 0;
 
 943
 944	/* Wait a bit if either of the roothubs need to settle from the
 945	 * transition into bus suspend.
 946	 */
 947	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 948			time_before(jiffies,
 949				xhci->bus_state[1].next_statechange))
 950		msleep(100);
 951
 952	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 953	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 954
 955	spin_lock_irq(&xhci->lock);
 956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 957		hibernated = true;
 958
 959	if (!hibernated) {
 960		/* step 1: restore register */
 961		xhci_restore_registers(xhci);
 962		/* step 2: initialize command ring buffer */
 963		xhci_set_cmd_ring_deq(xhci);
 964		/* step 3: restore state and start state*/
 965		/* step 3: set CRS flag */
 966		command = xhci_readl(xhci, &xhci->op_regs->command);
 967		command |= CMD_CRS;
 968		xhci_writel(xhci, command, &xhci->op_regs->command);
 969		if (handshake(xhci, &xhci->op_regs->status,
 970			      STS_RESTORE, 0, 10 * 1000)) {
 971			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 972			spin_unlock_irq(&xhci->lock);
 973			return -ETIMEDOUT;
 974		}
 975		temp = xhci_readl(xhci, &xhci->op_regs->status);
 976	}
 977
 978	/* If restore operation fails, re-initialize the HC during resume */
 979	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 980		/* Let the USB core know _both_ roothubs lost power. */
 981		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 982		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 983
 984		xhci_dbg(xhci, "Stop HCD\n");
 985		xhci_halt(xhci);
 986		xhci_reset(xhci);
 987		spin_unlock_irq(&xhci->lock);
 988		xhci_cleanup_msix(xhci);
 989
 990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 991		/* Tell the event ring poll function not to reschedule */
 992		xhci->zombie = 1;
 993		del_timer_sync(&xhci->event_ring_timer);
 994#endif
 995
 996		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 997		temp = xhci_readl(xhci, &xhci->op_regs->status);
 998		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 999		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001				&xhci->ir_set->irq_pending);
1002		xhci_print_ir_set(xhci, 0);
1003
1004		xhci_dbg(xhci, "cleaning up memory\n");
1005		xhci_mem_cleanup(xhci);
1006		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007			    xhci_readl(xhci, &xhci->op_regs->status));
1008
1009		/* USB core calls the PCI reinit and start functions twice:
1010		 * first with the primary HCD, and then with the secondary HCD.
1011		 * If we don't do the same, the host will never be started.
1012		 */
1013		if (!usb_hcd_is_primary_hcd(hcd))
1014			secondary_hcd = hcd;
1015		else
1016			secondary_hcd = xhci->shared_hcd;
1017
1018		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019		retval = xhci_init(hcd->primary_hcd);
1020		if (retval)
1021			return retval;
 
 
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = xhci_readl(xhci, &xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	xhci_writel(xhci, command, &xhci->op_regs->command);
1037	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064		compliance_mode_recovery_timer_init(xhci);
1065
 
 
 
 
 
1066	return retval;
1067}
1068#endif	/* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index  = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084	unsigned int index;
1085	if (usb_endpoint_xfer_control(desc))
1086		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087	else
1088		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090	return index;
1091}
1092
 
 
 
 
 
 
 
 
 
 
1093/* Find the flag for this endpoint (for use in the control context).  Use the
1094 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099	return 1 << (xhci_get_endpoint_index(desc) + 1);
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context).  Use the
1103 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108	return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index.  Basically, this is the
1112 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119	return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127		const char *func) {
1128	struct xhci_hcd	*xhci;
1129	struct xhci_virt_device	*virt_dev;
1130
1131	if (!hcd || (check_ep && !ep) || !udev) {
1132		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133				func);
1134		return -EINVAL;
1135	}
1136	if (!udev->parent) {
1137		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138				func);
1139		return 0;
1140	}
1141
1142	xhci = hcd_to_xhci(hcd);
1143	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144		return -ENODEV;
1145
1146	if (check_virt_dev) {
1147		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149						"device\n", func);
1150			return -EINVAL;
1151		}
1152
1153		virt_dev = xhci->devs[udev->slot_id];
1154		if (virt_dev->udev != udev) {
1155			printk(KERN_DEBUG "xHCI %s called with udev and "
1156					  "virt_dev does not match\n", func);
1157			return -EINVAL;
1158		}
1159	}
1160
 
 
 
1161	return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165		struct usb_device *udev, struct xhci_command *command,
1166		bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor.  If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175		unsigned int ep_index, struct urb *urb)
1176{
1177	struct xhci_container_ctx *in_ctx;
1178	struct xhci_container_ctx *out_ctx;
1179	struct xhci_input_control_ctx *ctrl_ctx;
1180	struct xhci_ep_ctx *ep_ctx;
1181	int max_packet_size;
1182	int hw_max_packet_size;
1183	int ret = 0;
1184
1185	out_ctx = xhci->devs[slot_id]->out_ctx;
1186	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189	if (hw_max_packet_size != max_packet_size) {
1190		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
1192				max_packet_size);
1193		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
1194				hw_max_packet_size);
1195		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
1196
 
 
 
 
 
 
 
 
 
 
 
1197		/* Set up the modified control endpoint 0 */
1198		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199				xhci->devs[slot_id]->out_ctx, ep_index);
1200		in_ctx = xhci->devs[slot_id]->in_ctx;
1201		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205		/* Set up the input context flags for the command */
1206		/* FIXME: This won't work if a non-default control endpoint
1207		 * changes max packet sizes.
1208		 */
1209		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211		ctrl_ctx->drop_flags = 0;
1212
1213		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219				true, false);
1220
1221		/* Clean up the input context for later use by bandwidth
1222		 * functions.
1223		 */
1224		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236	struct xhci_td *buffer;
1237	unsigned long flags;
1238	int ret = 0;
1239	unsigned int slot_id, ep_index;
1240	struct urb_priv	*urb_priv;
1241	int size, i;
1242
1243	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244					true, true, __func__) <= 0)
1245		return -EINVAL;
1246
1247	slot_id = urb->dev->slot_id;
1248	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251		if (!in_interrupt())
1252			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253		ret = -ESHUTDOWN;
1254		goto exit;
1255	}
1256
1257	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258		size = urb->number_of_packets;
1259	else
1260		size = 1;
1261
1262	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263				  size * sizeof(struct xhci_td *), mem_flags);
1264	if (!urb_priv)
1265		return -ENOMEM;
1266
1267	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268	if (!buffer) {
1269		kfree(urb_priv);
1270		return -ENOMEM;
1271	}
1272
1273	for (i = 0; i < size; i++) {
1274		urb_priv->td[i] = buffer;
1275		buffer++;
1276	}
1277
1278	urb_priv->length = size;
1279	urb_priv->td_cnt = 0;
1280	urb->hcpriv = urb_priv;
1281
1282	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283		/* Check to see if the max packet size for the default control
1284		 * endpoint changed during FS device enumeration
1285		 */
1286		if (urb->dev->speed == USB_SPEED_FULL) {
1287			ret = xhci_check_maxpacket(xhci, slot_id,
1288					ep_index, urb);
1289			if (ret < 0) {
1290				xhci_urb_free_priv(xhci, urb_priv);
1291				urb->hcpriv = NULL;
1292				return ret;
1293			}
1294		}
1295
1296		/* We have a spinlock and interrupts disabled, so we must pass
1297		 * atomic context to this function, which may allocate memory.
1298		 */
1299		spin_lock_irqsave(&xhci->lock, flags);
1300		if (xhci->xhc_state & XHCI_STATE_DYING)
1301			goto dying;
1302		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303				slot_id, ep_index);
1304		if (ret)
1305			goto free_priv;
1306		spin_unlock_irqrestore(&xhci->lock, flags);
1307	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308		spin_lock_irqsave(&xhci->lock, flags);
1309		if (xhci->xhc_state & XHCI_STATE_DYING)
1310			goto dying;
1311		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312				EP_GETTING_STREAMS) {
1313			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314					"is transitioning to using streams.\n");
1315			ret = -EINVAL;
1316		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317				EP_GETTING_NO_STREAMS) {
1318			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319					"is transitioning to "
1320					"not having streams.\n");
1321			ret = -EINVAL;
1322		} else {
1323			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324					slot_id, ep_index);
1325		}
1326		if (ret)
1327			goto free_priv;
1328		spin_unlock_irqrestore(&xhci->lock, flags);
1329	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330		spin_lock_irqsave(&xhci->lock, flags);
1331		if (xhci->xhc_state & XHCI_STATE_DYING)
1332			goto dying;
1333		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334				slot_id, ep_index);
1335		if (ret)
1336			goto free_priv;
1337		spin_unlock_irqrestore(&xhci->lock, flags);
1338	} else {
1339		spin_lock_irqsave(&xhci->lock, flags);
1340		if (xhci->xhc_state & XHCI_STATE_DYING)
1341			goto dying;
1342		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343				slot_id, ep_index);
1344		if (ret)
1345			goto free_priv;
1346		spin_unlock_irqrestore(&xhci->lock, flags);
1347	}
1348exit:
1349	return ret;
1350dying:
1351	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352			"non-responsive xHCI host.\n",
1353			urb->ep->desc.bEndpointAddress, urb);
1354	ret = -ESHUTDOWN;
1355free_priv:
1356	xhci_urb_free_priv(xhci, urb_priv);
1357	urb->hcpriv = NULL;
1358	spin_unlock_irqrestore(&xhci->lock, flags);
1359	return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367		struct urb *urb)
1368{
1369	unsigned int slot_id;
1370	unsigned int ep_index;
1371	unsigned int stream_id;
1372	struct xhci_virt_ep *ep;
1373
1374	slot_id = urb->dev->slot_id;
1375	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376	stream_id = urb->stream_id;
1377	ep = &xhci->devs[slot_id]->eps[ep_index];
1378	/* Common case: no streams */
1379	if (!(ep->ep_state & EP_HAS_STREAMS))
1380		return ep->ring;
1381
1382	if (stream_id == 0) {
1383		xhci_warn(xhci,
1384				"WARN: Slot ID %u, ep index %u has streams, "
1385				"but URB has no stream ID.\n",
1386				slot_id, ep_index);
1387		return NULL;
1388	}
1389
1390	if (stream_id < ep->stream_info->num_streams)
1391		return ep->stream_info->stream_rings[stream_id];
1392
1393	xhci_warn(xhci,
1394			"WARN: Slot ID %u, ep index %u has "
1395			"stream IDs 1 to %u allocated, "
1396			"but stream ID %u is requested.\n",
1397			slot_id, ep_index,
1398			ep->stream_info->num_streams - 1,
1399			stream_id);
1400	return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring.  Since the ring is a contiguous structure, they can't be physically
1411 * removed.  Instead, there are two options:
1412 *
1413 *  1) If the HC is in the middle of processing the URB to be canceled, we
1414 *     simply move the ring's dequeue pointer past those TRBs using the Set
1415 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416 *     when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420 *     HC will need to invalidate the any TRBs it has cached after the stop
1421 *     endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 *  3) The TD may have completed by the time the Stop Endpoint Command
1424 *     completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436	unsigned long flags;
1437	int ret, i;
1438	u32 temp;
1439	struct xhci_hcd *xhci;
1440	struct urb_priv	*urb_priv;
1441	struct xhci_td *td;
1442	unsigned int ep_index;
1443	struct xhci_ring *ep_ring;
1444	struct xhci_virt_ep *ep;
1445
1446	xhci = hcd_to_xhci(hcd);
1447	spin_lock_irqsave(&xhci->lock, flags);
1448	/* Make sure the URB hasn't completed or been unlinked already */
1449	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450	if (ret || !urb->hcpriv)
1451		goto done;
1452	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454		xhci_dbg(xhci, "HW died, freeing TD.\n");
 
1455		urb_priv = urb->hcpriv;
1456		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457			td = urb_priv->td[i];
1458			if (!list_empty(&td->td_list))
1459				list_del_init(&td->td_list);
1460			if (!list_empty(&td->cancelled_td_list))
1461				list_del_init(&td->cancelled_td_list);
1462		}
1463
1464		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465		spin_unlock_irqrestore(&xhci->lock, flags);
1466		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467		xhci_urb_free_priv(xhci, urb_priv);
1468		return ret;
1469	}
1470	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473				"non-responsive xHCI host.\n",
 
1474				urb->ep->desc.bEndpointAddress, urb);
1475		/* Let the stop endpoint command watchdog timer (which set this
1476		 * state) finish cleaning up the endpoint TD lists.  We must
1477		 * have caught it in the middle of dropping a lock and giving
1478		 * back an URB.
1479		 */
1480		goto done;
1481	}
1482
1483	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486	if (!ep_ring) {
1487		ret = -EINVAL;
1488		goto done;
1489	}
1490
1491	urb_priv = urb->hcpriv;
1492	i = urb_priv->td_cnt;
1493	if (i < urb_priv->length)
1494		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495				"starting at offset 0x%llx\n",
 
1496				urb, urb->dev->devpath,
1497				urb->ep->desc.bEndpointAddress,
1498				(unsigned long long) xhci_trb_virt_to_dma(
1499					urb_priv->td[i]->start_seg,
1500					urb_priv->td[i]->first_trb));
1501
1502	for (; i < urb_priv->length; i++) {
1503		td = urb_priv->td[i];
1504		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505	}
1506
1507	/* Queue a stop endpoint command, but only if this is
1508	 * the first cancellation to be handled.
1509	 */
1510	if (!(ep->ep_state & EP_HALT_PENDING)) {
1511		ep->ep_state |= EP_HALT_PENDING;
1512		ep->stop_cmds_pending++;
1513		ep->stop_cmd_timer.expires = jiffies +
1514			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515		add_timer(&ep->stop_cmd_timer);
1516		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517		xhci_ring_cmd_db(xhci);
1518	}
1519done:
1520	spin_unlock_irqrestore(&xhci->lock, flags);
1521	return ret;
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538		struct usb_host_endpoint *ep)
1539{
1540	struct xhci_hcd *xhci;
1541	struct xhci_container_ctx *in_ctx, *out_ctx;
1542	struct xhci_input_control_ctx *ctrl_ctx;
1543	struct xhci_slot_ctx *slot_ctx;
1544	unsigned int last_ctx;
1545	unsigned int ep_index;
1546	struct xhci_ep_ctx *ep_ctx;
1547	u32 drop_flag;
1548	u32 new_add_flags, new_drop_flags, new_slot_info;
1549	int ret;
1550
1551	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552	if (ret <= 0)
1553		return ret;
1554	xhci = hcd_to_xhci(hcd);
1555	if (xhci->xhc_state & XHCI_STATE_DYING)
1556		return -ENODEV;
1557
1558	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562				__func__, drop_flag);
1563		return 0;
1564	}
1565
1566	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1569	ep_index = xhci_get_endpoint_index(&ep->desc);
1570	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571	/* If the HC already knows the endpoint is disabled,
1572	 * or the HCD has noted it is disabled, ignore this request
1573	 */
1574	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577	    xhci_get_endpoint_flag(&ep->desc)) {
1578		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579				__func__, ep);
1580		return 0;
1581	}
1582
1583	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591	/* Update the last valid endpoint context, if we deleted the last one */
1592	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593	    LAST_CTX(last_ctx)) {
1594		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596	}
1597	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602			(unsigned int) ep->desc.bEndpointAddress,
1603			udev->slot_id,
1604			(unsigned int) new_drop_flags,
1605			(unsigned int) new_add_flags,
1606			(unsigned int) new_slot_info);
1607	return 0;
1608}
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624		struct usb_host_endpoint *ep)
1625{
1626	struct xhci_hcd *xhci;
1627	struct xhci_container_ctx *in_ctx, *out_ctx;
1628	unsigned int ep_index;
1629	struct xhci_ep_ctx *ep_ctx;
1630	struct xhci_slot_ctx *slot_ctx;
1631	struct xhci_input_control_ctx *ctrl_ctx;
1632	u32 added_ctxs;
1633	unsigned int last_ctx;
1634	u32 new_add_flags, new_drop_flags, new_slot_info;
1635	struct xhci_virt_device *virt_dev;
1636	int ret = 0;
1637
1638	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639	if (ret <= 0) {
1640		/* So we won't queue a reset ep command for a root hub */
1641		ep->hcpriv = NULL;
1642		return ret;
1643	}
1644	xhci = hcd_to_xhci(hcd);
1645	if (xhci->xhc_state & XHCI_STATE_DYING)
1646		return -ENODEV;
1647
1648	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651		/* FIXME when we have to issue an evaluate endpoint command to
1652		 * deal with ep0 max packet size changing once we get the
1653		 * descriptors
1654		 */
1655		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656				__func__, added_ctxs);
1657		return 0;
1658	}
1659
1660	virt_dev = xhci->devs[udev->slot_id];
1661	in_ctx = virt_dev->in_ctx;
1662	out_ctx = virt_dev->out_ctx;
1663	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664	ep_index = xhci_get_endpoint_index(&ep->desc);
1665	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 
 
 
1666
 
1667	/* If this endpoint is already in use, and the upper layers are trying
1668	 * to add it again without dropping it, reject the addition.
1669	 */
1670	if (virt_dev->eps[ep_index].ring &&
1671			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672				xhci_get_endpoint_flag(&ep->desc))) {
1673		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674				"without dropping it.\n",
1675				(unsigned int) ep->desc.bEndpointAddress);
1676		return -EINVAL;
1677	}
1678
1679	/* If the HCD has already noted the endpoint is enabled,
1680	 * ignore this request.
1681	 */
1682	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683	    xhci_get_endpoint_flag(&ep->desc)) {
1684		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685				__func__, ep);
1686		return 0;
1687	}
1688
1689	/*
1690	 * Configuration and alternate setting changes must be done in
1691	 * process context, not interrupt context (or so documenation
1692	 * for usb_set_interface() and usb_set_configuration() claim).
1693	 */
1694	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696				__func__, ep->desc.bEndpointAddress);
1697		return -ENOMEM;
1698	}
1699
1700	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705	 * this re-adds a new state for the endpoint from the new endpoint
1706	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707	 * drop flags alone.
1708	 */
1709	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712	/* Update the last valid endpoint context, if we just added one past */
1713	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714	    LAST_CTX(last_ctx)) {
1715		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717	}
1718	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720	/* Store the usb_device pointer for later use */
1721	ep->hcpriv = udev;
1722
1723	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724			(unsigned int) ep->desc.bEndpointAddress,
1725			udev->slot_id,
1726			(unsigned int) new_drop_flags,
1727			(unsigned int) new_add_flags,
1728			(unsigned int) new_slot_info);
1729	return 0;
1730}
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734	struct xhci_input_control_ctx *ctrl_ctx;
1735	struct xhci_ep_ctx *ep_ctx;
1736	struct xhci_slot_ctx *slot_ctx;
1737	int i;
1738
 
 
 
 
 
 
 
1739	/* When a device's add flag and drop flag are zero, any subsequent
1740	 * configure endpoint command will leave that endpoint's state
1741	 * untouched.  Make sure we don't leave any old state in the input
1742	 * endpoint contexts.
1743	 */
1744	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745	ctrl_ctx->drop_flags = 0;
1746	ctrl_ctx->add_flags = 0;
1747	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749	/* Endpoint 0 is always valid */
1750	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751	for (i = 1; i < 31; ++i) {
1752		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753		ep_ctx->ep_info = 0;
1754		ep_ctx->ep_info2 = 0;
1755		ep_ctx->deq = 0;
1756		ep_ctx->tx_info = 0;
1757	}
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761		struct usb_device *udev, u32 *cmd_status)
1762{
1763	int ret;
1764
1765	switch (*cmd_status) {
1766	case COMP_ENOMEM:
1767		dev_warn(&udev->dev, "Not enough host controller resources "
1768				"for new device state.\n");
1769		ret = -ENOMEM;
1770		/* FIXME: can we allocate more resources for the HC? */
1771		break;
1772	case COMP_BW_ERR:
1773	case COMP_2ND_BW_ERR:
1774		dev_warn(&udev->dev, "Not enough bandwidth "
1775				"for new device state.\n");
1776		ret = -ENOSPC;
1777		/* FIXME: can we go back to the old state? */
1778		break;
1779	case COMP_TRB_ERR:
1780		/* the HCD set up something wrong */
1781		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782				"add flag = 1, "
1783				"and endpoint is not disabled.\n");
1784		ret = -EINVAL;
1785		break;
1786	case COMP_DEV_ERR:
1787		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788				"configure command.\n");
1789		ret = -ENODEV;
1790		break;
1791	case COMP_SUCCESS:
1792		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1793		ret = 0;
1794		break;
1795	default:
1796		xhci_err(xhci, "ERROR: unexpected command completion "
1797				"code 0x%x.\n", *cmd_status);
1798		ret = -EINVAL;
1799		break;
1800	}
1801	return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805		struct usb_device *udev, u32 *cmd_status)
1806{
1807	int ret;
1808	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810	switch (*cmd_status) {
1811	case COMP_EINVAL:
1812		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813				"context command.\n");
1814		ret = -EINVAL;
1815		break;
1816	case COMP_EBADSLT:
1817		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818				"evaluate context command.\n");
 
 
1819	case COMP_CTX_STATE:
1820		dev_warn(&udev->dev, "WARN: invalid context state for "
1821				"evaluate context command.\n");
1822		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823		ret = -EINVAL;
1824		break;
1825	case COMP_DEV_ERR:
1826		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827				"context command.\n");
1828		ret = -ENODEV;
1829		break;
1830	case COMP_MEL_ERR:
1831		/* Max Exit Latency too large error */
1832		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833		ret = -EINVAL;
1834		break;
1835	case COMP_SUCCESS:
1836		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1837		ret = 0;
1838		break;
1839	default:
1840		xhci_err(xhci, "ERROR: unexpected command completion "
1841				"code 0x%x.\n", *cmd_status);
1842		ret = -EINVAL;
1843		break;
1844	}
1845	return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849		struct xhci_container_ctx *in_ctx)
1850{
1851	struct xhci_input_control_ctx *ctrl_ctx;
1852	u32 valid_add_flags;
1853	u32 valid_drop_flags;
1854
1855	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857	 * (bit 1).  The default control endpoint is added during the Address
1858	 * Device command and is never removed until the slot is disabled.
1859	 */
1860	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863	/* Use hweight32 to count the number of ones in the add flags, or
1864	 * number of endpoints added.  Don't count endpoints that are changed
1865	 * (both added and dropped).
1866	 */
1867	return hweight32(valid_add_flags) -
1868		hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872		struct xhci_container_ctx *in_ctx)
1873{
1874	struct xhci_input_control_ctx *ctrl_ctx;
1875	u32 valid_add_flags;
1876	u32 valid_drop_flags;
1877
1878	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882	return hweight32(valid_drop_flags) -
1883		hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes.  We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 *  - the first configure endpoint command drops more endpoints than it adds
1893 *  - a second configure endpoint command that adds more endpoints is queued
1894 *  - the first configure endpoint command fails, so the config is unchanged
1895 *  - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900		struct xhci_container_ctx *in_ctx)
1901{
1902	u32 added_eps;
1903
1904	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906		xhci_dbg(xhci, "Not enough ep ctxs: "
1907				"%u active, need to add %u, limit is %u.\n",
 
1908				xhci->num_active_eps, added_eps,
1909				xhci->limit_active_eps);
1910		return -ENOMEM;
1911	}
1912	xhci->num_active_eps += added_eps;
1913	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1914			xhci->num_active_eps);
1915	return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925		struct xhci_container_ctx *in_ctx)
1926{
1927	u32 num_failed_eps;
1928
1929	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930	xhci->num_active_eps -= num_failed_eps;
1931	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1932			num_failed_eps,
1933			xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943		struct xhci_container_ctx *in_ctx)
1944{
1945	u32 num_dropped_eps;
1946
1947	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948	xhci->num_active_eps -= num_dropped_eps;
1949	if (num_dropped_eps)
1950		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1951				num_dropped_eps,
1952				xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957	switch (udev->speed) {
1958	case USB_SPEED_LOW:
1959	case USB_SPEED_FULL:
1960		return FS_BLOCK;
1961	case USB_SPEED_HIGH:
1962		return HS_BLOCK;
1963	case USB_SPEED_SUPER:
1964		return SS_BLOCK;
1965	case USB_SPEED_UNKNOWN:
1966	case USB_SPEED_WIRELESS:
1967	default:
1968		/* Should never happen */
1969		return 1;
1970	}
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
 
1974{
1975	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976		return LS_OVERHEAD;
1977	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978		return FS_OVERHEAD;
1979	return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987		struct xhci_virt_device *virt_dev,
1988		int old_active_eps)
1989{
1990	struct xhci_interval_bw_table *bw_table;
1991	struct xhci_tt_bw_info *tt_info;
1992
1993	/* Find the bandwidth table for the root port this TT is attached to. */
1994	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995	tt_info = virt_dev->tt_info;
1996	/* If this TT already had active endpoints, the bandwidth for this TT
1997	 * has already been added.  Removing all periodic endpoints (and thus
1998	 * making the TT enactive) will only decrease the bandwidth used.
1999	 */
2000	if (old_active_eps)
2001		return 0;
2002	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004			return -ENOMEM;
2005		return 0;
2006	}
2007	/* Not sure why we would have no new active endpoints...
2008	 *
2009	 * Maybe because of an Evaluate Context change for a hub update or a
2010	 * control endpoint 0 max packet size change?
2011	 * FIXME: skip the bandwidth calculation in that case.
2012	 */
2013	return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017		struct xhci_virt_device *virt_dev)
2018{
2019	unsigned int bw_reserved;
2020
2021	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023		return -ENOMEM;
2024
2025	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027		return -ENOMEM;
2028
2029	return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval.  The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario.  Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval.  In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in.  For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so.  The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit.  This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval.  We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval.  Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074		struct xhci_virt_device *virt_dev,
2075		int old_active_eps)
2076{
2077	unsigned int bw_reserved;
2078	unsigned int max_bandwidth;
2079	unsigned int bw_used;
2080	unsigned int block_size;
2081	struct xhci_interval_bw_table *bw_table;
2082	unsigned int packet_size = 0;
2083	unsigned int overhead = 0;
2084	unsigned int packets_transmitted = 0;
2085	unsigned int packets_remaining = 0;
2086	unsigned int i;
2087
2088	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089		return xhci_check_ss_bw(xhci, virt_dev);
2090
2091	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092		max_bandwidth = HS_BW_LIMIT;
2093		/* Convert percent of bus BW reserved to blocks reserved */
2094		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095	} else {
2096		max_bandwidth = FS_BW_LIMIT;
2097		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098	}
2099
2100	bw_table = virt_dev->bw_table;
2101	/* We need to translate the max packet size and max ESIT payloads into
2102	 * the units the hardware uses.
2103	 */
2104	block_size = xhci_get_block_size(virt_dev->udev);
2105
2106	/* If we are manipulating a LS/FS device under a HS hub, double check
2107	 * that the HS bus has enough bandwidth if we are activing a new TT.
2108	 */
2109	if (virt_dev->tt_info) {
2110		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2111				virt_dev->real_port);
2112		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114					"newly activated TT.\n");
2115			return -ENOMEM;
2116		}
2117		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
 
2118				virt_dev->tt_info->slot_id,
2119				virt_dev->tt_info->ttport);
2120	} else {
2121		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2122				virt_dev->real_port);
2123	}
2124
2125	/* Add in how much bandwidth will be used for interval zero, or the
2126	 * rounded max ESIT payload + number of packets * largest overhead.
2127	 */
2128	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129		bw_table->interval_bw[0].num_packets *
2130		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133		unsigned int bw_added;
2134		unsigned int largest_mps;
2135		unsigned int interval_overhead;
2136
2137		/*
2138		 * How many packets could we transmit in this interval?
2139		 * If packets didn't fit in the previous interval, we will need
2140		 * to transmit that many packets twice within this interval.
2141		 */
2142		packets_remaining = 2 * packets_remaining +
2143			bw_table->interval_bw[i].num_packets;
2144
2145		/* Find the largest max packet size of this or the previous
2146		 * interval.
2147		 */
2148		if (list_empty(&bw_table->interval_bw[i].endpoints))
2149			largest_mps = 0;
2150		else {
2151			struct xhci_virt_ep *virt_ep;
2152			struct list_head *ep_entry;
2153
2154			ep_entry = bw_table->interval_bw[i].endpoints.next;
2155			virt_ep = list_entry(ep_entry,
2156					struct xhci_virt_ep, bw_endpoint_list);
2157			/* Convert to blocks, rounding up */
2158			largest_mps = DIV_ROUND_UP(
2159					virt_ep->bw_info.max_packet_size,
2160					block_size);
2161		}
2162		if (largest_mps > packet_size)
2163			packet_size = largest_mps;
2164
2165		/* Use the larger overhead of this or the previous interval. */
2166		interval_overhead = xhci_get_largest_overhead(
2167				&bw_table->interval_bw[i]);
2168		if (interval_overhead > overhead)
2169			overhead = interval_overhead;
2170
2171		/* How many packets can we evenly distribute across
2172		 * (1 << (i + 1)) possible scheduling opportunities?
2173		 */
2174		packets_transmitted = packets_remaining >> (i + 1);
2175
2176		/* Add in the bandwidth used for those scheduled packets */
2177		bw_added = packets_transmitted * (overhead + packet_size);
2178
2179		/* How many packets do we have remaining to transmit? */
2180		packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182		/* What largest max packet size should those packets have? */
2183		/* If we've transmitted all packets, don't carry over the
2184		 * largest packet size.
2185		 */
2186		if (packets_remaining == 0) {
2187			packet_size = 0;
2188			overhead = 0;
2189		} else if (packets_transmitted > 0) {
2190			/* Otherwise if we do have remaining packets, and we've
2191			 * scheduled some packets in this interval, take the
2192			 * largest max packet size from endpoints with this
2193			 * interval.
2194			 */
2195			packet_size = largest_mps;
2196			overhead = interval_overhead;
2197		}
2198		/* Otherwise carry over packet_size and overhead from the last
2199		 * time we had a remainder.
2200		 */
2201		bw_used += bw_added;
2202		if (bw_used > max_bandwidth) {
2203			xhci_warn(xhci, "Not enough bandwidth. "
2204					"Proposed: %u, Max: %u\n",
2205				bw_used, max_bandwidth);
2206			return -ENOMEM;
2207		}
2208	}
2209	/*
2210	 * Ok, we know we have some packets left over after even-handedly
2211	 * scheduling interval 15.  We don't know which microframes they will
2212	 * fit into, so we over-schedule and say they will be scheduled every
2213	 * microframe.
2214	 */
2215	if (packets_remaining > 0)
2216		bw_used += overhead + packet_size;
2217
2218	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219		unsigned int port_index = virt_dev->real_port - 1;
2220
2221		/* OK, we're manipulating a HS device attached to a
2222		 * root port bandwidth domain.  Include the number of active TTs
2223		 * in the bandwidth used.
2224		 */
2225		bw_used += TT_HS_OVERHEAD *
2226			xhci->rh_bw[port_index].num_active_tts;
2227	}
2228
2229	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230		"Available: %u " "percent\n",
 
2231		bw_used, max_bandwidth, bw_reserved,
2232		(max_bandwidth - bw_used - bw_reserved) * 100 /
2233		max_bandwidth);
2234
2235	bw_used += bw_reserved;
2236	if (bw_used > max_bandwidth) {
2237		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238				bw_used, max_bandwidth);
2239		return -ENOMEM;
2240	}
2241
2242	bw_table->bw_used = bw_used;
2243	return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249					ep_type != ISOC_IN_EP &&
2250					ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262	if (ep_bw->ep_interval == 0)
2263		return SS_OVERHEAD_BURST +
2264			(ep_bw->mult * ep_bw->num_packets *
2265					(SS_OVERHEAD + mps));
2266	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268				1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273		struct xhci_bw_info *ep_bw,
2274		struct xhci_interval_bw_table *bw_table,
2275		struct usb_device *udev,
2276		struct xhci_virt_ep *virt_ep,
2277		struct xhci_tt_bw_info *tt_info)
2278{
2279	struct xhci_interval_bw	*interval_bw;
2280	int normalized_interval;
2281
2282	if (xhci_is_async_ep(ep_bw->type))
2283		return;
2284
2285	if (udev->speed == USB_SPEED_SUPER) {
2286		if (xhci_is_sync_in_ep(ep_bw->type))
2287			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288				xhci_get_ss_bw_consumed(ep_bw);
2289		else
2290			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291				xhci_get_ss_bw_consumed(ep_bw);
2292		return;
2293	}
2294
2295	/* SuperSpeed endpoints never get added to intervals in the table, so
2296	 * this check is only valid for HS/FS/LS devices.
2297	 */
2298	if (list_empty(&virt_ep->bw_endpoint_list))
2299		return;
2300	/* For LS/FS devices, we need to translate the interval expressed in
2301	 * microframes to frames.
2302	 */
2303	if (udev->speed == USB_SPEED_HIGH)
2304		normalized_interval = ep_bw->ep_interval;
2305	else
2306		normalized_interval = ep_bw->ep_interval - 3;
2307
2308	if (normalized_interval == 0)
2309		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310	interval_bw = &bw_table->interval_bw[normalized_interval];
2311	interval_bw->num_packets -= ep_bw->num_packets;
2312	switch (udev->speed) {
2313	case USB_SPEED_LOW:
2314		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315		break;
2316	case USB_SPEED_FULL:
2317		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318		break;
2319	case USB_SPEED_HIGH:
2320		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321		break;
2322	case USB_SPEED_SUPER:
2323	case USB_SPEED_UNKNOWN:
2324	case USB_SPEED_WIRELESS:
2325		/* Should never happen because only LS/FS/HS endpoints will get
2326		 * added to the endpoint list.
2327		 */
2328		return;
2329	}
2330	if (tt_info)
2331		tt_info->active_eps -= 1;
2332	list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336		struct xhci_bw_info *ep_bw,
2337		struct xhci_interval_bw_table *bw_table,
2338		struct usb_device *udev,
2339		struct xhci_virt_ep *virt_ep,
2340		struct xhci_tt_bw_info *tt_info)
2341{
2342	struct xhci_interval_bw	*interval_bw;
2343	struct xhci_virt_ep *smaller_ep;
2344	int normalized_interval;
2345
2346	if (xhci_is_async_ep(ep_bw->type))
2347		return;
2348
2349	if (udev->speed == USB_SPEED_SUPER) {
2350		if (xhci_is_sync_in_ep(ep_bw->type))
2351			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352				xhci_get_ss_bw_consumed(ep_bw);
2353		else
2354			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355				xhci_get_ss_bw_consumed(ep_bw);
2356		return;
2357	}
2358
2359	/* For LS/FS devices, we need to translate the interval expressed in
2360	 * microframes to frames.
2361	 */
2362	if (udev->speed == USB_SPEED_HIGH)
2363		normalized_interval = ep_bw->ep_interval;
2364	else
2365		normalized_interval = ep_bw->ep_interval - 3;
2366
2367	if (normalized_interval == 0)
2368		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369	interval_bw = &bw_table->interval_bw[normalized_interval];
2370	interval_bw->num_packets += ep_bw->num_packets;
2371	switch (udev->speed) {
2372	case USB_SPEED_LOW:
2373		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374		break;
2375	case USB_SPEED_FULL:
2376		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377		break;
2378	case USB_SPEED_HIGH:
2379		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380		break;
2381	case USB_SPEED_SUPER:
2382	case USB_SPEED_UNKNOWN:
2383	case USB_SPEED_WIRELESS:
2384		/* Should never happen because only LS/FS/HS endpoints will get
2385		 * added to the endpoint list.
2386		 */
2387		return;
2388	}
2389
2390	if (tt_info)
2391		tt_info->active_eps += 1;
2392	/* Insert the endpoint into the list, largest max packet size first. */
2393	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394			bw_endpoint_list) {
2395		if (ep_bw->max_packet_size >=
2396				smaller_ep->bw_info.max_packet_size) {
2397			/* Add the new ep before the smaller endpoint */
2398			list_add_tail(&virt_ep->bw_endpoint_list,
2399					&smaller_ep->bw_endpoint_list);
2400			return;
2401		}
2402	}
2403	/* Add the new endpoint at the end of the list. */
2404	list_add_tail(&virt_ep->bw_endpoint_list,
2405			&interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev,
2410		int old_active_eps)
2411{
2412	struct xhci_root_port_bw_info *rh_bw_info;
2413	if (!virt_dev->tt_info)
2414		return;
2415
2416	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417	if (old_active_eps == 0 &&
2418				virt_dev->tt_info->active_eps != 0) {
2419		rh_bw_info->num_active_tts += 1;
2420		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421	} else if (old_active_eps != 0 &&
2422				virt_dev->tt_info->active_eps == 0) {
2423		rh_bw_info->num_active_tts -= 1;
2424		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425	}
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429		struct xhci_virt_device *virt_dev,
2430		struct xhci_container_ctx *in_ctx)
2431{
2432	struct xhci_bw_info ep_bw_info[31];
2433	int i;
2434	struct xhci_input_control_ctx *ctrl_ctx;
2435	int old_active_eps = 0;
2436
2437	if (virt_dev->tt_info)
2438		old_active_eps = virt_dev->tt_info->active_eps;
2439
2440	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
2441
2442	for (i = 0; i < 31; i++) {
2443		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444			continue;
2445
2446		/* Make a copy of the BW info in case we need to revert this */
2447		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448				sizeof(ep_bw_info[i]));
2449		/* Drop the endpoint from the interval table if the endpoint is
2450		 * being dropped or changed.
2451		 */
2452		if (EP_IS_DROPPED(ctrl_ctx, i))
2453			xhci_drop_ep_from_interval_table(xhci,
2454					&virt_dev->eps[i].bw_info,
2455					virt_dev->bw_table,
2456					virt_dev->udev,
2457					&virt_dev->eps[i],
2458					virt_dev->tt_info);
2459	}
2460	/* Overwrite the information stored in the endpoints' bw_info */
2461	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462	for (i = 0; i < 31; i++) {
2463		/* Add any changed or added endpoints to the interval table */
2464		if (EP_IS_ADDED(ctrl_ctx, i))
2465			xhci_add_ep_to_interval_table(xhci,
2466					&virt_dev->eps[i].bw_info,
2467					virt_dev->bw_table,
2468					virt_dev->udev,
2469					&virt_dev->eps[i],
2470					virt_dev->tt_info);
2471	}
2472
2473	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474		/* Ok, this fits in the bandwidth we have.
2475		 * Update the number of active TTs.
2476		 */
2477		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478		return 0;
2479	}
2480
2481	/* We don't have enough bandwidth for this, revert the stored info. */
2482	for (i = 0; i < 31; i++) {
2483		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484			continue;
2485
2486		/* Drop the new copies of any added or changed endpoints from
2487		 * the interval table.
2488		 */
2489		if (EP_IS_ADDED(ctrl_ctx, i)) {
2490			xhci_drop_ep_from_interval_table(xhci,
2491					&virt_dev->eps[i].bw_info,
2492					virt_dev->bw_table,
2493					virt_dev->udev,
2494					&virt_dev->eps[i],
2495					virt_dev->tt_info);
2496		}
2497		/* Revert the endpoint back to its old information */
2498		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499				sizeof(ep_bw_info[i]));
2500		/* Add any changed or dropped endpoints back into the table */
2501		if (EP_IS_DROPPED(ctrl_ctx, i))
2502			xhci_add_ep_to_interval_table(xhci,
2503					&virt_dev->eps[i].bw_info,
2504					virt_dev->bw_table,
2505					virt_dev->udev,
2506					&virt_dev->eps[i],
2507					virt_dev->tt_info);
2508	}
2509	return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517		struct usb_device *udev,
2518		struct xhci_command *command,
2519		bool ctx_change, bool must_succeed)
2520{
2521	int ret;
2522	int timeleft;
2523	unsigned long flags;
2524	struct xhci_container_ctx *in_ctx;
 
2525	struct completion *cmd_completion;
2526	u32 *cmd_status;
2527	struct xhci_virt_device *virt_dev;
2528	union xhci_trb *cmd_trb;
2529
2530	spin_lock_irqsave(&xhci->lock, flags);
2531	virt_dev = xhci->devs[udev->slot_id];
2532
2533	if (command)
2534		in_ctx = command->in_ctx;
2535	else
2536		in_ctx = virt_dev->in_ctx;
 
 
 
 
 
 
 
2537
2538	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539			xhci_reserve_host_resources(xhci, in_ctx)) {
2540		spin_unlock_irqrestore(&xhci->lock, flags);
2541		xhci_warn(xhci, "Not enough host resources, "
2542				"active endpoint contexts = %u\n",
2543				xhci->num_active_eps);
2544		return -ENOMEM;
2545	}
2546	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549			xhci_free_host_resources(xhci, in_ctx);
2550		spin_unlock_irqrestore(&xhci->lock, flags);
2551		xhci_warn(xhci, "Not enough bandwidth\n");
2552		return -ENOMEM;
2553	}
2554
2555	if (command) {
2556		cmd_completion = command->completion;
2557		cmd_status = &command->status;
2558		command->command_trb = xhci->cmd_ring->enqueue;
2559
2560		/* Enqueue pointer can be left pointing to the link TRB,
2561		 * we must handle that
2562		 */
2563		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564			command->command_trb =
2565				xhci->cmd_ring->enq_seg->next->trbs;
2566
2567		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568	} else {
2569		cmd_completion = &virt_dev->cmd_completion;
2570		cmd_status = &virt_dev->cmd_status;
2571	}
2572	init_completion(cmd_completion);
2573
2574	cmd_trb = xhci->cmd_ring->dequeue;
2575	if (!ctx_change)
2576		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2577				udev->slot_id, must_succeed);
2578	else
2579		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2580				udev->slot_id, must_succeed);
2581	if (ret < 0) {
2582		if (command)
2583			list_del(&command->cmd_list);
2584		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585			xhci_free_host_resources(xhci, in_ctx);
2586		spin_unlock_irqrestore(&xhci->lock, flags);
2587		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
2588		return -ENOMEM;
2589	}
2590	xhci_ring_cmd_db(xhci);
2591	spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593	/* Wait for the configure endpoint command to complete */
2594	timeleft = wait_for_completion_interruptible_timeout(
2595			cmd_completion,
2596			XHCI_CMD_DEFAULT_TIMEOUT);
2597	if (timeleft <= 0) {
2598		xhci_warn(xhci, "%s while waiting for %s command\n",
2599				timeleft == 0 ? "Timeout" : "Signal",
2600				ctx_change == 0 ?
2601					"configure endpoint" :
2602					"evaluate context");
2603		/* cancel the configure endpoint command */
2604		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605		if (ret < 0)
2606			return ret;
2607		return -ETIME;
2608	}
2609
2610	if (!ctx_change)
2611		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2612	else
2613		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2614
2615	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616		spin_lock_irqsave(&xhci->lock, flags);
2617		/* If the command failed, remove the reserved resources.
2618		 * Otherwise, clean up the estimate to include dropped eps.
2619		 */
2620		if (ret)
2621			xhci_free_host_resources(xhci, in_ctx);
2622		else
2623			xhci_finish_resource_reservation(xhci, in_ctx);
2624		spin_unlock_irqrestore(&xhci->lock, flags);
2625	}
2626	return ret;
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface.  Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641	int i;
2642	int ret = 0;
2643	struct xhci_hcd *xhci;
2644	struct xhci_virt_device	*virt_dev;
2645	struct xhci_input_control_ctx *ctrl_ctx;
2646	struct xhci_slot_ctx *slot_ctx;
2647
2648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649	if (ret <= 0)
2650		return ret;
2651	xhci = hcd_to_xhci(hcd);
2652	if (xhci->xhc_state & XHCI_STATE_DYING)
2653		return -ENODEV;
2654
2655	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656	virt_dev = xhci->devs[udev->slot_id];
2657
2658	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
2660	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664	/* Don't issue the command if there's no endpoints to update. */
2665	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666			ctrl_ctx->drop_flags == 0)
2667		return 0;
2668
2669	xhci_dbg(xhci, "New Input Control Context:\n");
2670	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2673
2674	ret = xhci_configure_endpoint(xhci, udev, NULL,
2675			false, false);
2676	if (ret) {
2677		/* Callee should call reset_bandwidth() */
2678		return ret;
2679	}
2680
2681	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685	/* Free any rings that were dropped, but not changed. */
2686	for (i = 1; i < 31; ++i) {
2687		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
2690	}
2691	xhci_zero_in_ctx(xhci, virt_dev);
2692	/*
2693	 * Install any rings for completely new endpoints or changed endpoints,
2694	 * and free or cache any old rings from changed endpoints.
2695	 */
2696	for (i = 1; i < 31; ++i) {
2697		if (!virt_dev->eps[i].new_ring)
2698			continue;
2699		/* Only cache or free the old ring if it exists.
2700		 * It may not if this is the first add of an endpoint.
2701		 */
2702		if (virt_dev->eps[i].ring) {
2703			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704		}
 
2705		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706		virt_dev->eps[i].new_ring = NULL;
2707	}
2708
2709	return ret;
2710}
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	struct xhci_hcd *xhci;
2715	struct xhci_virt_device	*virt_dev;
2716	int i, ret;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return;
2721	xhci = hcd_to_xhci(hcd);
2722
2723	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724	virt_dev = xhci->devs[udev->slot_id];
2725	/* Free any rings allocated for added endpoints */
2726	for (i = 0; i < 31; ++i) {
2727		if (virt_dev->eps[i].new_ring) {
2728			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729			virt_dev->eps[i].new_ring = NULL;
2730		}
2731	}
2732	xhci_zero_in_ctx(xhci, virt_dev);
2733}
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736		struct xhci_container_ctx *in_ctx,
2737		struct xhci_container_ctx *out_ctx,
 
2738		u32 add_flags, u32 drop_flags)
2739{
2740	struct xhci_input_control_ctx *ctrl_ctx;
2741	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744	xhci_slot_copy(xhci, in_ctx, out_ctx);
2745	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747	xhci_dbg(xhci, "Input Context:\n");
2748	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752		unsigned int slot_id, unsigned int ep_index,
2753		struct xhci_dequeue_state *deq_state)
2754{
 
2755	struct xhci_container_ctx *in_ctx;
2756	struct xhci_ep_ctx *ep_ctx;
2757	u32 added_ctxs;
2758	dma_addr_t addr;
2759
 
 
 
 
 
 
 
 
2760	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761			xhci->devs[slot_id]->out_ctx, ep_index);
2762	in_ctx = xhci->devs[slot_id]->in_ctx;
2763	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765			deq_state->new_deq_ptr);
2766	if (addr == 0) {
2767		xhci_warn(xhci, "WARN Cannot submit config ep after "
2768				"reset ep command\n");
2769		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770				deq_state->new_deq_seg,
2771				deq_state->new_deq_ptr);
2772		return;
2773	}
2774	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
 
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782		struct usb_device *udev, unsigned int ep_index)
2783{
2784	struct xhci_dequeue_state deq_state;
2785	struct xhci_virt_ep *ep;
2786
2787	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
 
2788	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789	/* We need to move the HW's dequeue pointer past this TD,
2790	 * or it will attempt to resend it on the next doorbell ring.
2791	 */
2792	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793			ep_index, ep->stopped_stream, ep->stopped_td,
2794			&deq_state);
2795
2796	/* HW with the reset endpoint quirk will use the saved dequeue state to
2797	 * issue a configure endpoint command later.
2798	 */
2799	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800		xhci_dbg(xhci, "Queueing new dequeue state\n");
 
2801		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802				ep_index, ep->stopped_stream, &deq_state);
2803	} else {
2804		/* Better hope no one uses the input context between now and the
2805		 * reset endpoint completion!
2806		 * XXX: No idea how this hardware will react when stream rings
2807		 * are enabled.
2808		 */
2809		xhci_dbg(xhci, "Setting up input context for "
2810				"configure endpoint command\n");
 
2811		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812				ep_index, &deq_state);
2813	}
2814}
2815
2816/* Deal with stalled endpoints.  The core should have sent the control message
2817 * to clear the halt condition.  However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
2820 * Context: in_interrupt
2821 */
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823		struct usb_host_endpoint *ep)
2824{
2825	struct xhci_hcd *xhci;
2826	struct usb_device *udev;
2827	unsigned int ep_index;
2828	unsigned long flags;
2829	int ret;
2830	struct xhci_virt_ep *virt_ep;
2831
2832	xhci = hcd_to_xhci(hcd);
2833	udev = (struct usb_device *) ep->hcpriv;
2834	/* Called with a root hub endpoint (or an endpoint that wasn't added
2835	 * with xhci_add_endpoint()
2836	 */
2837	if (!ep->hcpriv)
2838		return;
2839	ep_index = xhci_get_endpoint_index(&ep->desc);
2840	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841	if (!virt_ep->stopped_td) {
2842		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843				ep->desc.bEndpointAddress);
 
2844		return;
2845	}
2846	if (usb_endpoint_xfer_control(&ep->desc)) {
2847		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
 
2848		return;
2849	}
2850
2851	xhci_dbg(xhci, "Queueing reset endpoint command\n");
 
2852	spin_lock_irqsave(&xhci->lock, flags);
2853	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2854	/*
2855	 * Can't change the ring dequeue pointer until it's transitioned to the
2856	 * stopped state, which is only upon a successful reset endpoint
2857	 * command.  Better hope that last command worked!
2858	 */
2859	if (!ret) {
2860		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861		kfree(virt_ep->stopped_td);
2862		xhci_ring_cmd_db(xhci);
2863	}
2864	virt_ep->stopped_td = NULL;
2865	virt_ep->stopped_trb = NULL;
2866	virt_ep->stopped_stream = 0;
2867	spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869	if (ret)
2870		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874		struct usb_device *udev, struct usb_host_endpoint *ep,
2875		unsigned int slot_id)
2876{
2877	int ret;
2878	unsigned int ep_index;
2879	unsigned int ep_state;
2880
2881	if (!ep)
2882		return -EINVAL;
2883	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884	if (ret <= 0)
2885		return -EINVAL;
2886	if (ep->ss_ep_comp.bmAttributes == 0) {
2887		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888				" descriptor for ep 0x%x does not support streams\n",
2889				ep->desc.bEndpointAddress);
2890		return -EINVAL;
2891	}
2892
2893	ep_index = xhci_get_endpoint_index(&ep->desc);
2894	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895	if (ep_state & EP_HAS_STREAMS ||
2896			ep_state & EP_GETTING_STREAMS) {
2897		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898				"already has streams set up.\n",
2899				ep->desc.bEndpointAddress);
2900		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901				"dynamic stream context array reallocation.\n");
2902		return -EINVAL;
2903	}
2904	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906				"endpoint 0x%x; URBs are pending.\n",
2907				ep->desc.bEndpointAddress);
2908		return -EINVAL;
2909	}
2910	return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916	unsigned int max_streams;
2917
2918	/* The stream context array size must be a power of two */
2919	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920	/*
2921	 * Find out how many primary stream array entries the host controller
2922	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2923	 * level page entries), but that's an optional feature for xHCI host
2924	 * controllers. xHCs must support at least 4 stream IDs.
2925	 */
2926	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927	if (*num_stream_ctxs > max_streams) {
2928		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929				max_streams);
2930		*num_stream_ctxs = max_streams;
2931		*num_streams = max_streams;
2932	}
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940		struct usb_device *udev,
2941		struct usb_host_endpoint **eps, unsigned int num_eps,
2942		unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944	unsigned int max_streams;
2945	unsigned int endpoint_flag;
2946	int i;
2947	int ret;
2948
2949	for (i = 0; i < num_eps; i++) {
2950		ret = xhci_check_streams_endpoint(xhci, udev,
2951				eps[i], udev->slot_id);
2952		if (ret < 0)
2953			return ret;
2954
2955		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956		if (max_streams < (*num_streams - 1)) {
2957			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958					eps[i]->desc.bEndpointAddress,
2959					max_streams);
2960			*num_streams = max_streams+1;
2961		}
2962
2963		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964		if (*changed_ep_bitmask & endpoint_flag)
2965			return -EINVAL;
2966		*changed_ep_bitmask |= endpoint_flag;
2967	}
2968	return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972		struct usb_device *udev,
2973		struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975	u32 changed_ep_bitmask = 0;
2976	unsigned int slot_id;
2977	unsigned int ep_index;
2978	unsigned int ep_state;
2979	int i;
2980
2981	slot_id = udev->slot_id;
2982	if (!xhci->devs[slot_id])
2983		return 0;
2984
2985	for (i = 0; i < num_eps; i++) {
2986		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988		/* Are streams already being freed for the endpoint? */
2989		if (ep_state & EP_GETTING_NO_STREAMS) {
2990			xhci_warn(xhci, "WARN Can't disable streams for "
2991					"endpoint 0x%x\n, "
2992					"streams are being disabled already.",
2993					eps[i]->desc.bEndpointAddress);
2994			return 0;
2995		}
2996		/* Are there actually any streams to free? */
2997		if (!(ep_state & EP_HAS_STREAMS) &&
2998				!(ep_state & EP_GETTING_STREAMS)) {
2999			xhci_warn(xhci, "WARN Can't disable streams for "
3000					"endpoint 0x%x\n, "
3001					"streams are already disabled!",
3002					eps[i]->desc.bEndpointAddress);
3003			xhci_warn(xhci, "WARN xhci_free_streams() called "
3004					"with non-streams endpoint\n");
3005			return 0;
3006		}
3007		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008	}
3009	return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029		struct usb_host_endpoint **eps, unsigned int num_eps,
3030		unsigned int num_streams, gfp_t mem_flags)
3031{
3032	int i, ret;
3033	struct xhci_hcd *xhci;
3034	struct xhci_virt_device *vdev;
3035	struct xhci_command *config_cmd;
 
3036	unsigned int ep_index;
3037	unsigned int num_stream_ctxs;
3038	unsigned long flags;
3039	u32 changed_ep_bitmask = 0;
3040
3041	if (!eps)
3042		return -EINVAL;
3043
3044	/* Add one to the number of streams requested to account for
3045	 * stream 0 that is reserved for xHCI usage.
3046	 */
3047	num_streams += 1;
3048	xhci = hcd_to_xhci(hcd);
3049	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050			num_streams);
3051
 
 
 
 
 
 
3052	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053	if (!config_cmd) {
3054		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3055		return -ENOMEM;
3056	}
 
 
 
 
 
 
 
3057
3058	/* Check to make sure all endpoints are not already configured for
3059	 * streams.  While we're at it, find the maximum number of streams that
3060	 * all the endpoints will support and check for duplicate endpoints.
3061	 */
3062	spin_lock_irqsave(&xhci->lock, flags);
3063	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064			num_eps, &num_streams, &changed_ep_bitmask);
3065	if (ret < 0) {
3066		xhci_free_command(xhci, config_cmd);
3067		spin_unlock_irqrestore(&xhci->lock, flags);
3068		return ret;
3069	}
3070	if (num_streams <= 1) {
3071		xhci_warn(xhci, "WARN: endpoints can't handle "
3072				"more than one stream.\n");
3073		xhci_free_command(xhci, config_cmd);
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		return -EINVAL;
3076	}
3077	vdev = xhci->devs[udev->slot_id];
3078	/* Mark each endpoint as being in transition, so
3079	 * xhci_urb_enqueue() will reject all URBs.
3080	 */
3081	for (i = 0; i < num_eps; i++) {
3082		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084	}
3085	spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087	/* Setup internal data structures and allocate HW data structures for
3088	 * streams (but don't install the HW structures in the input context
3089	 * until we're sure all memory allocation succeeded).
3090	 */
3091	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093			num_stream_ctxs, num_streams);
3094
3095	for (i = 0; i < num_eps; i++) {
3096		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3097		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098				num_stream_ctxs,
3099				num_streams, mem_flags);
3100		if (!vdev->eps[ep_index].stream_info)
3101			goto cleanup;
3102		/* Set maxPstreams in endpoint context and update deq ptr to
3103		 * point to stream context array. FIXME
3104		 */
3105	}
3106
3107	/* Set up the input context for a configure endpoint command. */
3108	for (i = 0; i < num_eps; i++) {
3109		struct xhci_ep_ctx *ep_ctx;
3110
3111		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115				vdev->out_ctx, ep_index);
3116		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117				vdev->eps[ep_index].stream_info);
3118	}
3119	/* Tell the HW to drop its old copy of the endpoint context info
3120	 * and add the updated copy from the input context.
3121	 */
3122	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3124
3125	/* Issue and wait for the configure endpoint command */
3126	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127			false, false);
3128
3129	/* xHC rejected the configure endpoint command for some reason, so we
3130	 * leave the old ring intact and free our internal streams data
3131	 * structure.
3132	 */
3133	if (ret < 0)
3134		goto cleanup;
3135
3136	spin_lock_irqsave(&xhci->lock, flags);
3137	for (i = 0; i < num_eps; i++) {
3138		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141			 udev->slot_id, ep_index);
3142		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143	}
3144	xhci_free_command(xhci, config_cmd);
3145	spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147	/* Subtract 1 for stream 0, which drivers can't use */
3148	return num_streams - 1;
3149
3150cleanup:
3151	/* If it didn't work, free the streams! */
3152	for (i = 0; i < num_eps; i++) {
3153		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155		vdev->eps[ep_index].stream_info = NULL;
3156		/* FIXME Unset maxPstreams in endpoint context and
3157		 * update deq ptr to point to normal string ring.
3158		 */
3159		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161		xhci_endpoint_zero(xhci, vdev, eps[i]);
3162	}
3163	xhci_free_command(xhci, config_cmd);
3164	return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174		struct usb_host_endpoint **eps, unsigned int num_eps,
3175		gfp_t mem_flags)
3176{
3177	int i, ret;
3178	struct xhci_hcd *xhci;
3179	struct xhci_virt_device *vdev;
3180	struct xhci_command *command;
 
3181	unsigned int ep_index;
3182	unsigned long flags;
3183	u32 changed_ep_bitmask;
3184
3185	xhci = hcd_to_xhci(hcd);
3186	vdev = xhci->devs[udev->slot_id];
3187
3188	/* Set up a configure endpoint command to remove the streams rings */
3189	spin_lock_irqsave(&xhci->lock, flags);
3190	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191			udev, eps, num_eps);
3192	if (changed_ep_bitmask == 0) {
3193		spin_unlock_irqrestore(&xhci->lock, flags);
3194		return -EINVAL;
3195	}
3196
3197	/* Use the xhci_command structure from the first endpoint.  We may have
3198	 * allocated too many, but the driver may call xhci_free_streams() for
3199	 * each endpoint it grouped into one call to xhci_alloc_streams().
3200	 */
3201	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
3203	for (i = 0; i < num_eps; i++) {
3204		struct xhci_ep_ctx *ep_ctx;
3205
3206		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209			EP_GETTING_NO_STREAMS;
3210
3211		xhci_endpoint_copy(xhci, command->in_ctx,
3212				vdev->out_ctx, ep_index);
3213		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214				&vdev->eps[ep_index]);
3215	}
3216	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3218	spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220	/* Issue and wait for the configure endpoint command,
3221	 * which must succeed.
3222	 */
3223	ret = xhci_configure_endpoint(xhci, udev, command,
3224			false, true);
3225
3226	/* xHC rejected the configure endpoint command for some reason, so we
3227	 * leave the streams rings intact.
3228	 */
3229	if (ret < 0)
3230		return ret;
3231
3232	spin_lock_irqsave(&xhci->lock, flags);
3233	for (i = 0; i < num_eps; i++) {
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236		vdev->eps[ep_index].stream_info = NULL;
3237		/* FIXME Unset maxPstreams in endpoint context and
3238		 * update deq ptr to point to normal string ring.
3239		 */
3240		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242	}
3243	spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245	return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command.  The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258	int i;
3259	unsigned int num_dropped_eps = 0;
3260	unsigned int drop_flags = 0;
3261
3262	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263		if (virt_dev->eps[i].ring) {
3264			drop_flags |= 1 << i;
3265			num_dropped_eps++;
3266		}
3267	}
3268	xhci->num_active_eps -= num_dropped_eps;
3269	if (num_dropped_eps)
3270		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271				"%u now active.\n",
 
3272				num_dropped_eps, drop_flags,
3273				xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint.  The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration.  If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish.  Remove all structures
3286 * associated with the endpoints that were disabled.  Clear the input device
3287 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3295{
3296	int ret, i;
3297	unsigned long flags;
3298	struct xhci_hcd *xhci;
3299	unsigned int slot_id;
3300	struct xhci_virt_device *virt_dev;
3301	struct xhci_command *reset_device_cmd;
3302	int timeleft;
3303	int last_freed_endpoint;
3304	struct xhci_slot_ctx *slot_ctx;
3305	int old_active_eps = 0;
3306
3307	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308	if (ret <= 0)
3309		return ret;
3310	xhci = hcd_to_xhci(hcd);
3311	slot_id = udev->slot_id;
3312	virt_dev = xhci->devs[slot_id];
3313	if (!virt_dev) {
3314		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315				"not exist. Re-allocate the device\n", slot_id);
3316		ret = xhci_alloc_dev(hcd, udev);
3317		if (ret == 1)
3318			return 0;
3319		else
3320			return -EINVAL;
3321	}
3322
3323	if (virt_dev->udev != udev) {
3324		/* If the virt_dev and the udev does not match, this virt_dev
3325		 * may belong to another udev.
3326		 * Re-allocate the device.
3327		 */
3328		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329				"not match the udev. Re-allocate the device\n",
3330				slot_id);
3331		ret = xhci_alloc_dev(hcd, udev);
3332		if (ret == 1)
3333			return 0;
3334		else
3335			return -EINVAL;
3336	}
3337
3338	/* If device is not setup, there is no point in resetting it */
3339	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341						SLOT_STATE_DISABLED)
3342		return 0;
3343
3344	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345	/* Allocate the command structure that holds the struct completion.
3346	 * Assume we're in process context, since the normal device reset
3347	 * process has to wait for the device anyway.  Storage devices are
3348	 * reset as part of error handling, so use GFP_NOIO instead of
3349	 * GFP_KERNEL.
3350	 */
3351	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352	if (!reset_device_cmd) {
3353		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354		return -ENOMEM;
3355	}
3356
3357	/* Attempt to submit the Reset Device command to the command ring */
3358	spin_lock_irqsave(&xhci->lock, flags);
3359	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361	/* Enqueue pointer can be left pointing to the link TRB,
3362	 * we must handle that
3363	 */
3364	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365		reset_device_cmd->command_trb =
3366			xhci->cmd_ring->enq_seg->next->trbs;
3367
3368	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369	ret = xhci_queue_reset_device(xhci, slot_id);
3370	if (ret) {
3371		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372		list_del(&reset_device_cmd->cmd_list);
3373		spin_unlock_irqrestore(&xhci->lock, flags);
3374		goto command_cleanup;
3375	}
3376	xhci_ring_cmd_db(xhci);
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	/* Wait for the Reset Device command to finish */
3380	timeleft = wait_for_completion_interruptible_timeout(
3381			reset_device_cmd->completion,
3382			USB_CTRL_SET_TIMEOUT);
3383	if (timeleft <= 0) {
3384		xhci_warn(xhci, "%s while waiting for reset device command\n",
3385				timeleft == 0 ? "Timeout" : "Signal");
3386		spin_lock_irqsave(&xhci->lock, flags);
3387		/* The timeout might have raced with the event ring handler, so
3388		 * only delete from the list if the item isn't poisoned.
3389		 */
3390		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391			list_del(&reset_device_cmd->cmd_list);
3392		spin_unlock_irqrestore(&xhci->lock, flags);
3393		ret = -ETIME;
3394		goto command_cleanup;
3395	}
3396
3397	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398	 * unless we tried to reset a slot ID that wasn't enabled,
3399	 * or the device wasn't in the addressed or configured state.
3400	 */
3401	ret = reset_device_cmd->status;
3402	switch (ret) {
3403	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3406				slot_id,
3407				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408		xhci_info(xhci, "Not freeing device rings.\n");
3409		/* Don't treat this as an error.  May change my mind later. */
3410		ret = 0;
3411		goto command_cleanup;
3412	case COMP_SUCCESS:
3413		xhci_dbg(xhci, "Successful reset device command.\n");
3414		break;
3415	default:
3416		if (xhci_is_vendor_info_code(xhci, ret))
3417			break;
3418		xhci_warn(xhci, "Unknown completion code %u for "
3419				"reset device command.\n", ret);
3420		ret = -EINVAL;
3421		goto command_cleanup;
3422	}
3423
3424	/* Free up host controller endpoint resources */
3425	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426		spin_lock_irqsave(&xhci->lock, flags);
3427		/* Don't delete the default control endpoint resources */
3428		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429		spin_unlock_irqrestore(&xhci->lock, flags);
3430	}
3431
3432	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433	last_freed_endpoint = 1;
3434	for (i = 1; i < 31; ++i) {
3435		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
3438			xhci_free_stream_info(xhci, ep->stream_info);
3439			ep->stream_info = NULL;
3440			ep->ep_state &= ~EP_HAS_STREAMS;
3441		}
3442
3443		if (ep->ring) {
3444			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445			last_freed_endpoint = i;
3446		}
3447		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448			xhci_drop_ep_from_interval_table(xhci,
3449					&virt_dev->eps[i].bw_info,
3450					virt_dev->bw_table,
3451					udev,
3452					&virt_dev->eps[i],
3453					virt_dev->tt_info);
3454		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455	}
3456	/* If necessary, update the number of active TTs on this root port */
3457	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461	ret = 0;
3462
3463command_cleanup:
3464	xhci_free_command(xhci, reset_device_cmd);
3465	return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled.  Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476	struct xhci_virt_device *virt_dev;
3477	unsigned long flags;
3478	u32 state;
3479	int i, ret;
3480
 
 
 
 
 
 
 
 
 
 
3481	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482	/* If the host is halted due to driver unload, we still need to free the
3483	 * device.
3484	 */
3485	if (ret <= 0 && ret != -ENODEV)
3486		return;
3487
3488	virt_dev = xhci->devs[udev->slot_id];
3489
3490	/* Stop any wayward timer functions (which may grab the lock) */
3491	for (i = 0; i < 31; ++i) {
3492		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494	}
3495
3496	if (udev->usb2_hw_lpm_enabled) {
3497		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498		udev->usb2_hw_lpm_enabled = 0;
3499	}
3500
3501	spin_lock_irqsave(&xhci->lock, flags);
3502	/* Don't disable the slot if the host controller is dead. */
3503	state = xhci_readl(xhci, &xhci->op_regs->status);
3504	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3506		xhci_free_virt_device(xhci, udev->slot_id);
3507		spin_unlock_irqrestore(&xhci->lock, flags);
3508		return;
3509	}
3510
3511	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3512		spin_unlock_irqrestore(&xhci->lock, flags);
3513		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514		return;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
3518	/*
3519	 * Event command completion handler will free any data structures
3520	 * associated with the slot.  XXX Can free sleep?
3521	 */
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533		xhci_dbg(xhci, "Not enough ep ctxs: "
3534				"%u active, need to add 1, limit is %u.\n",
 
3535				xhci->num_active_eps, xhci->limit_active_eps);
3536		return -ENOMEM;
3537	}
3538	xhci->num_active_eps += 1;
3539	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
3540			xhci->num_active_eps);
3541	return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed.  Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3552	unsigned long flags;
3553	int timeleft;
3554	int ret;
3555	union xhci_trb *cmd_trb;
3556
3557	spin_lock_irqsave(&xhci->lock, flags);
3558	cmd_trb = xhci->cmd_ring->dequeue;
3559	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560	if (ret) {
3561		spin_unlock_irqrestore(&xhci->lock, flags);
3562		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563		return 0;
3564	}
3565	xhci_ring_cmd_db(xhci);
3566	spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568	/* XXX: how much time for xHC slot assignment? */
3569	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570			XHCI_CMD_DEFAULT_TIMEOUT);
3571	if (timeleft <= 0) {
3572		xhci_warn(xhci, "%s while waiting for a slot\n",
3573				timeleft == 0 ? "Timeout" : "Signal");
3574		/* cancel the enable slot request */
3575		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576	}
3577
3578	if (!xhci->slot_id) {
3579		xhci_err(xhci, "Error while assigning device slot ID\n");
3580		return 0;
3581	}
3582
3583	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584		spin_lock_irqsave(&xhci->lock, flags);
3585		ret = xhci_reserve_host_control_ep_resources(xhci);
3586		if (ret) {
3587			spin_unlock_irqrestore(&xhci->lock, flags);
3588			xhci_warn(xhci, "Not enough host resources, "
3589					"active endpoint contexts = %u\n",
3590					xhci->num_active_eps);
3591			goto disable_slot;
3592		}
3593		spin_unlock_irqrestore(&xhci->lock, flags);
3594	}
3595	/* Use GFP_NOIO, since this function can be called from
3596	 * xhci_discover_or_reset_device(), which may be called as part of
3597	 * mass storage driver error handling.
3598	 */
3599	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601		goto disable_slot;
3602	}
3603	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
3604	/* Is this a LS or FS device under a HS hub? */
3605	/* Hub or peripherial? */
3606	return 1;
3607
3608disable_slot:
3609	/* Disable slot, if we can do it without mem alloc */
3610	spin_lock_irqsave(&xhci->lock, flags);
3611	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612		xhci_ring_cmd_db(xhci);
3613	spin_unlock_irqrestore(&xhci->lock, flags);
3614	return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3627{
 
3628	unsigned long flags;
3629	int timeleft;
3630	struct xhci_virt_device *virt_dev;
3631	int ret = 0;
3632	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633	struct xhci_slot_ctx *slot_ctx;
3634	struct xhci_input_control_ctx *ctrl_ctx;
3635	u64 temp_64;
3636	union xhci_trb *cmd_trb;
3637
3638	if (!udev->slot_id) {
3639		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
 
3640		return -EINVAL;
3641	}
3642
3643	virt_dev = xhci->devs[udev->slot_id];
3644
3645	if (WARN_ON(!virt_dev)) {
3646		/*
3647		 * In plug/unplug torture test with an NEC controller,
3648		 * a zero-dereference was observed once due to virt_dev = 0.
3649		 * Print useful debug rather than crash if it is observed again!
3650		 */
3651		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652			udev->slot_id);
3653		return -EINVAL;
3654	}
3655
3656	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
3657	/*
3658	 * If this is the first Set Address since device plug-in or
3659	 * virt_device realloaction after a resume with an xHCI power loss,
3660	 * then set up the slot context.
3661	 */
3662	if (!slot_ctx->dev_info)
3663		xhci_setup_addressable_virt_dev(xhci, udev);
3664	/* Otherwise, update the control endpoint ring enqueue pointer. */
3665	else
3666		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669	ctrl_ctx->drop_flags = 0;
3670
3671	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
3673
3674	spin_lock_irqsave(&xhci->lock, flags);
3675	cmd_trb = xhci->cmd_ring->dequeue;
3676	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677					udev->slot_id);
3678	if (ret) {
3679		spin_unlock_irqrestore(&xhci->lock, flags);
3680		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3681		return ret;
3682	}
3683	xhci_ring_cmd_db(xhci);
3684	spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688			XHCI_CMD_DEFAULT_TIMEOUT);
3689	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690	 * the SetAddress() "recovery interval" required by USB and aborting the
3691	 * command on a timeout.
3692	 */
3693	if (timeleft <= 0) {
3694		xhci_warn(xhci, "%s while waiting for address device command\n",
3695				timeleft == 0 ? "Timeout" : "Signal");
3696		/* cancel the address device command */
3697		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698		if (ret < 0)
3699			return ret;
3700		return -ETIME;
3701	}
3702
3703	switch (virt_dev->cmd_status) {
3704	case COMP_CTX_STATE:
3705	case COMP_EBADSLT:
3706		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707				udev->slot_id);
3708		ret = -EINVAL;
3709		break;
3710	case COMP_TX_ERR:
3711		dev_warn(&udev->dev, "Device not responding to set address.\n");
3712		ret = -EPROTO;
3713		break;
3714	case COMP_DEV_ERR:
3715		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716				"device command.\n");
3717		ret = -ENODEV;
3718		break;
3719	case COMP_SUCCESS:
3720		xhci_dbg(xhci, "Successful Address Device command\n");
 
3721		break;
3722	default:
3723		xhci_err(xhci, "ERROR: unexpected command completion "
3724				"code 0x%x.\n", virt_dev->cmd_status);
 
3725		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
 
3727		ret = -EINVAL;
3728		break;
3729	}
3730	if (ret) {
3731		return ret;
3732	}
3733	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736		 udev->slot_id,
3737		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738		 (unsigned long long)
3739		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
3741			(unsigned long long)virt_dev->out_ctx->dma);
3742	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
3744	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746	/*
3747	 * USB core uses address 1 for the roothubs, so we add one to the
3748	 * address given back to us by the HC.
3749	 */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	/* Use kernel assigned address for devices; store xHC assigned
3752	 * address locally. */
3753	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754		+ 1;
3755	/* Zero the input context control for later use */
3756	ctrl_ctx->add_flags = 0;
3757	ctrl_ctx->drop_flags = 0;
3758
3759	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
3760
3761	return 0;
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772					struct usb_device *udev)
3773{
3774	int u2del, besl, besl_host;
3775	int besl_device = 0;
3776	u32 field;
3777
3778	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781	if (field & USB_BESL_SUPPORT) {
3782		for (besl_host = 0; besl_host < 16; besl_host++) {
3783			if (xhci_besl_encoding[besl_host] >= u2del)
3784				break;
3785		}
3786		/* Use baseline BESL value as default */
3787		if (field & USB_BESL_BASELINE_VALID)
3788			besl_device = USB_GET_BESL_BASELINE(field);
3789		else if (field & USB_BESL_DEEP_VALID)
3790			besl_device = USB_GET_BESL_DEEP(field);
3791	} else {
3792		if (u2del <= 50)
3793			besl_host = 0;
3794		else
3795			besl_host = (u2del - 51) / 75 + 1;
3796	}
3797
3798	besl = besl_host + besl_device;
3799	if (besl > 15)
3800		besl = 15;
3801
3802	return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806					struct usb_device *udev)
3807{
3808	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3809	struct dev_info	*dev_info;
3810	__le32 __iomem	**port_array;
3811	__le32 __iomem	*addr, *pm_addr;
3812	u32		temp, dev_id;
3813	unsigned int	port_num;
3814	unsigned long	flags;
3815	int		hird;
3816	int		ret;
3817
3818	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819			!udev->lpm_capable)
3820		return -EINVAL;
3821
3822	/* we only support lpm for non-hub device connected to root hub yet */
3823	if (!udev->parent || udev->parent->parent ||
3824			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825		return -EINVAL;
3826
3827	spin_lock_irqsave(&xhci->lock, flags);
3828
3829	/* Look for devices in lpm_failed_devs list */
3830	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831			le16_to_cpu(udev->descriptor.idProduct);
3832	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833		if (dev_info->dev_id == dev_id) {
3834			ret = -EINVAL;
3835			goto finish;
3836		}
3837	}
3838
3839	port_array = xhci->usb2_ports;
3840	port_num = udev->portnum - 1;
3841
3842	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844		ret = -EINVAL;
3845		goto finish;
3846	}
3847
3848	/*
3849	 * Test USB 2.0 software LPM.
3850	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852	 * in the June 2011 errata release.
3853	 */
3854	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855	/*
3856	 * Set L1 Device Slot and HIRD/BESL.
3857	 * Check device's USB 2.0 extension descriptor to determine whether
3858	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859	 */
3860	pm_addr = port_array[port_num] + 1;
3861	hird = xhci_calculate_hird_besl(xhci, udev);
3862	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863	xhci_writel(xhci, temp, pm_addr);
3864
3865	/* Set port link state to U2(L1) */
3866	addr = port_array[port_num];
3867	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869	/* wait for ACK */
3870	spin_unlock_irqrestore(&xhci->lock, flags);
3871	msleep(10);
3872	spin_lock_irqsave(&xhci->lock, flags);
3873
3874	/* Check L1 Status */
3875	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876	if (ret != -ETIMEDOUT) {
3877		/* enter L1 successfully */
3878		temp = xhci_readl(xhci, addr);
3879		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880				port_num, temp);
3881		ret = 0;
3882	} else {
3883		temp = xhci_readl(xhci, pm_addr);
3884		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885				port_num, temp & PORT_L1S_MASK);
3886		ret = -EINVAL;
3887	}
3888
3889	/* Resume the port */
3890	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892	spin_unlock_irqrestore(&xhci->lock, flags);
3893	msleep(10);
3894	spin_lock_irqsave(&xhci->lock, flags);
3895
3896	/* Clear PLC */
3897	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899	/* Check PORTSC to make sure the device is in the right state */
3900	if (!ret) {
3901		temp = xhci_readl(xhci, addr);
3902		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3903		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904				(temp & PORT_PLS_MASK) != XDEV_U0) {
3905			xhci_dbg(xhci, "port L1 resume fail\n");
3906			ret = -EINVAL;
3907		}
3908	}
3909
3910	if (ret) {
3911		/* Insert dev to lpm_failed_devs list */
3912		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913				"re-enumerate\n");
3914		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915		if (!dev_info) {
3916			ret = -ENOMEM;
3917			goto finish;
3918		}
3919		dev_info->dev_id = dev_id;
3920		INIT_LIST_HEAD(&dev_info->list);
3921		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922	} else {
3923		xhci_ring_device(xhci, udev->slot_id);
3924	}
3925
3926finish:
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932			struct usb_device *udev, int enable)
3933{
3934	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3935	__le32 __iomem	**port_array;
3936	__le32 __iomem	*pm_addr;
3937	u32		temp;
3938	unsigned int	port_num;
3939	unsigned long	flags;
3940	int		hird;
 
3941
3942	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3943			!udev->lpm_capable)
3944		return -EPERM;
3945
3946	if (!udev->parent || udev->parent->parent ||
3947			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948		return -EPERM;
3949
3950	if (udev->usb2_hw_lpm_capable != 1)
3951		return -EPERM;
3952
3953	spin_lock_irqsave(&xhci->lock, flags);
3954
3955	port_array = xhci->usb2_ports;
3956	port_num = udev->portnum - 1;
3957	pm_addr = port_array[port_num] + 1;
3958	temp = xhci_readl(xhci, pm_addr);
 
 
3959
3960	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961			enable ? "enable" : "disable", port_num);
3962
3963	hird = xhci_calculate_hird_besl(xhci, udev);
3964
3965	if (enable) {
3966		temp &= ~PORT_HIRD_MASK;
3967		temp |= PORT_HIRD(hird) | PORT_RWE;
3968		xhci_writel(xhci, temp, pm_addr);
3969		temp = xhci_readl(xhci, pm_addr);
3970		temp |= PORT_HLE;
3971		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3972	} else {
3973		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
3975	}
3976
3977	spin_unlock_irqrestore(&xhci->lock, flags);
3978	return 0;
3979}
3980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3982{
3983	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3984	int		ret;
3985
3986	ret = xhci_usb2_software_lpm_test(hcd, udev);
3987	if (!ret) {
3988		xhci_dbg(xhci, "software LPM test succeed\n");
3989		if (xhci->hw_lpm_support == 1) {
3990			udev->usb2_hw_lpm_capable = 1;
3991			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992			if (!ret)
3993				udev->usb2_hw_lpm_enabled = 1;
3994		}
 
 
 
 
 
 
 
 
 
3995	}
3996
3997	return 0;
3998}
3999
4000#else
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003				struct usb_device *udev, int enable)
4004{
4005	return 0;
4006}
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010	return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020		struct usb_endpoint_descriptor *desc)
4021{
4022	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026		enum usb3_link_state state)
4027{
4028	unsigned long long sel;
4029	unsigned long long pel;
4030	unsigned int max_sel_pel;
4031	char *state_name;
4032
4033	switch (state) {
4034	case USB3_LPM_U1:
4035		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4036		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039		state_name = "U1";
4040		break;
4041	case USB3_LPM_U2:
4042		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045		state_name = "U2";
4046		break;
4047	default:
4048		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049				__func__);
4050		return USB3_LPM_DISABLED;
4051	}
4052
4053	if (sel <= max_sel_pel && pel <= max_sel_pel)
4054		return USB3_LPM_DEVICE_INITIATED;
4055
4056	if (sel > max_sel_pel)
4057		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058				"due to long SEL %llu ms\n",
4059				state_name, sel);
4060	else
4061		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062				"due to long PEL %llu\n ms",
4063				state_name, pel);
4064	return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 *  - For control endpoints, U1 system exit latency (SEL) * 3
4070 *  - For bulk endpoints, U1 SEL * 5
4071 *  - For interrupt endpoints:
4072 *    - Notification EPs, U1 SEL * 3
4073 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4077		struct usb_endpoint_descriptor *desc)
4078{
4079	unsigned long long timeout_ns;
4080	int ep_type;
4081	int intr_type;
4082
4083	ep_type = usb_endpoint_type(desc);
4084	switch (ep_type) {
4085	case USB_ENDPOINT_XFER_CONTROL:
4086		timeout_ns = udev->u1_params.sel * 3;
4087		break;
4088	case USB_ENDPOINT_XFER_BULK:
4089		timeout_ns = udev->u1_params.sel * 5;
4090		break;
4091	case USB_ENDPOINT_XFER_INT:
4092		intr_type = usb_endpoint_interrupt_type(desc);
4093		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094			timeout_ns = udev->u1_params.sel * 3;
4095			break;
4096		}
4097		/* Otherwise the calculation is the same as isoc eps */
4098	case USB_ENDPOINT_XFER_ISOC:
4099		timeout_ns = xhci_service_interval_to_ns(desc);
4100		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101		if (timeout_ns < udev->u1_params.sel * 2)
4102			timeout_ns = udev->u1_params.sel * 2;
4103		break;
4104	default:
4105		return 0;
4106	}
4107
4108	/* The U1 timeout is encoded in 1us intervals. */
4109	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4111	if (timeout_ns == USB3_LPM_DISABLED)
4112		timeout_ns++;
4113
4114	/* If the necessary timeout value is bigger than what we can set in the
4115	 * USB 3.0 hub, we have to disable hub-initiated U1.
4116	 */
4117	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118		return timeout_ns;
4119	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120			"due to long timeout %llu ms\n", timeout_ns);
4121	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 *  - largest bInterval of any active periodic endpoint (to avoid going
4128 *    into lower power link states between intervals).
4129 *  - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4132		struct usb_endpoint_descriptor *desc)
4133{
4134	unsigned long long timeout_ns;
4135	unsigned long long u2_del_ns;
4136
4137	timeout_ns = 10 * 1000 * 1000;
4138
4139	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140			(xhci_service_interval_to_ns(desc) > timeout_ns))
4141		timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144	if (u2_del_ns > timeout_ns)
4145		timeout_ns = u2_del_ns;
4146
4147	/* The U2 timeout is encoded in 256us intervals */
4148	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149	/* If the necessary timeout value is bigger than what we can set in the
4150	 * USB 3.0 hub, we have to disable hub-initiated U2.
4151	 */
4152	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153		return timeout_ns;
4154	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155			"due to long timeout %llu ms\n", timeout_ns);
4156	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160		struct usb_device *udev,
4161		struct usb_endpoint_descriptor *desc,
4162		enum usb3_link_state state,
4163		u16 *timeout)
4164{
4165	if (state == USB3_LPM_U1) {
4166		if (xhci->quirks & XHCI_INTEL_HOST)
4167			return xhci_calculate_intel_u1_timeout(udev, desc);
4168	} else {
4169		if (xhci->quirks & XHCI_INTEL_HOST)
4170			return xhci_calculate_intel_u2_timeout(udev, desc);
4171	}
4172
4173	return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177		struct usb_device *udev,
4178		struct usb_endpoint_descriptor *desc,
4179		enum usb3_link_state state,
4180		u16 *timeout)
4181{
4182	u16 alt_timeout;
4183
4184	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185		desc, state, timeout);
4186
4187	/* If we found we can't enable hub-initiated LPM, or
4188	 * the U1 or U2 exit latency was too high to allow
4189	 * device-initiated LPM as well, just stop searching.
4190	 */
4191	if (alt_timeout == USB3_LPM_DISABLED ||
4192			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193		*timeout = alt_timeout;
4194		return -E2BIG;
4195	}
4196	if (alt_timeout > *timeout)
4197		*timeout = alt_timeout;
4198	return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202		struct usb_device *udev,
4203		struct usb_host_interface *alt,
4204		enum usb3_link_state state,
4205		u16 *timeout)
4206{
4207	int j;
4208
4209	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210		if (xhci_update_timeout_for_endpoint(xhci, udev,
4211					&alt->endpoint[j].desc, state, timeout))
4212			return -E2BIG;
4213		continue;
4214	}
4215	return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
4219		enum usb3_link_state state)
4220{
4221	struct usb_device *parent;
4222	unsigned int num_hubs;
4223
4224	if (state == USB3_LPM_U2)
4225		return 0;
4226
4227	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228	for (parent = udev->parent, num_hubs = 0; parent->parent;
4229			parent = parent->parent)
4230		num_hubs++;
4231
4232	if (num_hubs < 2)
4233		return 0;
4234
4235	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236			" below second-tier hub.\n");
4237	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238			"to decrease power consumption.\n");
4239	return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243		struct usb_device *udev,
4244		enum usb3_link_state state)
4245{
4246	if (xhci->quirks & XHCI_INTEL_HOST)
4247		return xhci_check_intel_tier_policy(udev, state);
4248	return -EINVAL;
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257			struct usb_device *udev, enum usb3_link_state state)
4258{
4259	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260	struct usb_host_config *config;
4261	char *state_name;
4262	int i;
4263	u16 timeout = USB3_LPM_DISABLED;
4264
4265	if (state == USB3_LPM_U1)
4266		state_name = "U1";
4267	else if (state == USB3_LPM_U2)
4268		state_name = "U2";
4269	else {
4270		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271				state);
4272		return timeout;
4273	}
4274
4275	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276		return timeout;
4277
4278	/* Gather some information about the currently installed configuration
4279	 * and alternate interface settings.
4280	 */
4281	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282			state, &timeout))
4283		return timeout;
4284
4285	config = udev->actconfig;
4286	if (!config)
4287		return timeout;
4288
4289	for (i = 0; i < USB_MAXINTERFACES; i++) {
4290		struct usb_driver *driver;
4291		struct usb_interface *intf = config->interface[i];
4292
4293		if (!intf)
4294			continue;
4295
4296		/* Check if any currently bound drivers want hub-initiated LPM
4297		 * disabled.
4298		 */
4299		if (intf->dev.driver) {
4300			driver = to_usb_driver(intf->dev.driver);
4301			if (driver && driver->disable_hub_initiated_lpm) {
4302				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303						"at request of driver %s\n",
4304						state_name, driver->name);
4305				return xhci_get_timeout_no_hub_lpm(udev, state);
4306			}
4307		}
4308
4309		/* Not sure how this could happen... */
4310		if (!intf->cur_altsetting)
4311			continue;
4312
4313		if (xhci_update_timeout_for_interface(xhci, udev,
4314					intf->cur_altsetting,
4315					state, &timeout))
4316			return timeout;
4317	}
4318	return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326			struct usb_device *udev, u16 max_exit_latency)
4327{
4328	struct xhci_virt_device *virt_dev;
4329	struct xhci_command *command;
4330	struct xhci_input_control_ctx *ctrl_ctx;
4331	struct xhci_slot_ctx *slot_ctx;
4332	unsigned long flags;
4333	int ret;
4334
4335	spin_lock_irqsave(&xhci->lock, flags);
4336	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337		spin_unlock_irqrestore(&xhci->lock, flags);
4338		return 0;
4339	}
4340
4341	/* Attempt to issue an Evaluate Context command to change the MEL. */
4342	virt_dev = xhci->devs[udev->slot_id];
4343	command = xhci->lpm_command;
4344	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345	spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357	/* Issue and wait for the evaluate context command. */
4358	ret = xhci_configure_endpoint(xhci, udev, command,
4359			true, true);
4360	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363	if (!ret) {
4364		spin_lock_irqsave(&xhci->lock, flags);
4365		virt_dev->current_mel = max_exit_latency;
4366		spin_unlock_irqrestore(&xhci->lock, flags);
4367	}
4368	return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372		enum usb3_link_state state_changed,
4373		u16 hub_encoded_timeout)
4374{
4375	unsigned long long u1_mel_us = 0;
4376	unsigned long long u2_mel_us = 0;
4377	unsigned long long mel_us = 0;
4378	bool disabling_u1;
4379	bool disabling_u2;
4380	bool enabling_u1;
4381	bool enabling_u2;
4382
4383	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384			hub_encoded_timeout == USB3_LPM_DISABLED);
4385	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386			hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389			hub_encoded_timeout != USB3_LPM_DISABLED);
4390	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391			hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393	/* If U1 was already enabled and we're not disabling it,
4394	 * or we're going to enable U1, account for the U1 max exit latency.
4395	 */
4396	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397			enabling_u1)
4398		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400			enabling_u2)
4401		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403	if (u1_mel_us > u2_mel_us)
4404		mel_us = u1_mel_us;
4405	else
4406		mel_us = u2_mel_us;
4407	/* xHCI host controller max exit latency field is only 16 bits wide. */
4408	if (mel_us > MAX_EXIT) {
4409		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410				"is too big.\n", mel_us);
4411		return -E2BIG;
4412	}
4413	return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418			struct usb_device *udev, enum usb3_link_state state)
4419{
4420	struct xhci_hcd	*xhci;
4421	u16 hub_encoded_timeout;
4422	int mel;
4423	int ret;
4424
4425	xhci = hcd_to_xhci(hcd);
4426	/* The LPM timeout values are pretty host-controller specific, so don't
4427	 * enable hub-initiated timeouts unless the vendor has provided
4428	 * information about their timeout algorithm.
4429	 */
4430	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431			!xhci->devs[udev->slot_id])
4432		return USB3_LPM_DISABLED;
4433
4434	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436	if (mel < 0) {
4437		/* Max Exit Latency is too big, disable LPM. */
4438		hub_encoded_timeout = USB3_LPM_DISABLED;
4439		mel = 0;
4440	}
4441
4442	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443	if (ret)
4444		return ret;
4445	return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449			struct usb_device *udev, enum usb3_link_state state)
4450{
4451	struct xhci_hcd	*xhci;
4452	u16 mel;
4453	int ret;
4454
4455	xhci = hcd_to_xhci(hcd);
4456	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457			!xhci->devs[udev->slot_id])
4458		return 0;
4459
4460	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462	if (ret)
4463		return ret;
4464	return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469			struct usb_device *udev, enum usb3_link_state state)
4470{
4471	return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475			struct usb_device *udev, enum usb3_link_state state)
4476{
4477	return 0;
4478}
4479#endif	/* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487			struct usb_tt *tt, gfp_t mem_flags)
4488{
4489	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490	struct xhci_virt_device *vdev;
4491	struct xhci_command *config_cmd;
4492	struct xhci_input_control_ctx *ctrl_ctx;
4493	struct xhci_slot_ctx *slot_ctx;
4494	unsigned long flags;
4495	unsigned think_time;
4496	int ret;
4497
4498	/* Ignore root hubs */
4499	if (!hdev->parent)
4500		return 0;
4501
4502	vdev = xhci->devs[hdev->slot_id];
4503	if (!vdev) {
4504		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505		return -EINVAL;
4506	}
4507	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508	if (!config_cmd) {
4509		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4510		return -ENOMEM;
4511	}
 
 
 
 
 
 
 
4512
4513	spin_lock_irqsave(&xhci->lock, flags);
4514	if (hdev->speed == USB_SPEED_HIGH &&
4515			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517		xhci_free_command(xhci, config_cmd);
4518		spin_unlock_irqrestore(&xhci->lock, flags);
4519		return -ENOMEM;
4520	}
4521
4522	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4527	if (tt->multi)
4528		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4529	if (xhci->hci_version > 0x95) {
4530		xhci_dbg(xhci, "xHCI version %x needs hub "
4531				"TT think time and number of ports\n",
4532				(unsigned int) xhci->hci_version);
4533		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534		/* Set TT think time - convert from ns to FS bit times.
4535		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537		 *
4538		 * xHCI 1.0: this field shall be 0 if the device is not a
4539		 * High-spped hub.
4540		 */
4541		think_time = tt->think_time;
4542		if (think_time != 0)
4543			think_time = (think_time / 666) - 1;
4544		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545			slot_ctx->tt_info |=
4546				cpu_to_le32(TT_THINK_TIME(think_time));
4547	} else {
4548		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549				"TT think time or number of ports\n",
4550				(unsigned int) xhci->hci_version);
4551	}
4552	slot_ctx->dev_state = 0;
4553	spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555	xhci_dbg(xhci, "Set up %s for hub device.\n",
4556			(xhci->hci_version > 0x95) ?
4557			"configure endpoint" : "evaluate context");
4558	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561	/* Issue and wait for the configure endpoint or
4562	 * evaluate context command.
4563	 */
4564	if (xhci->hci_version > 0x95)
4565		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566				false, false);
4567	else
4568		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569				true, false);
4570
4571	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574	xhci_free_command(xhci, config_cmd);
4575	return ret;
4576}
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581	/* EHCI mods by the periodic size.  Why? */
4582	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587	struct xhci_hcd		*xhci;
4588	struct device		*dev = hcd->self.controller;
4589	int			retval;
4590	u32			temp;
4591
4592	/* Accept arbitrarily long scatter-gather lists */
4593	hcd->self.sg_tablesize = ~0;
4594
 
 
 
 
 
 
4595	if (usb_hcd_is_primary_hcd(hcd)) {
4596		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597		if (!xhci)
4598			return -ENOMEM;
4599		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600		xhci->main_hcd = hcd;
4601		/* Mark the first roothub as being USB 2.0.
4602		 * The xHCI driver will register the USB 3.0 roothub.
4603		 */
4604		hcd->speed = HCD_USB2;
4605		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606		/*
4607		 * USB 2.0 roothub under xHCI has an integrated TT,
4608		 * (rate matching hub) as opposed to having an OHCI/UHCI
4609		 * companion controller.
4610		 */
4611		hcd->has_tt = 1;
4612	} else {
4613		/* xHCI private pointer was set in xhci_pci_probe for the second
4614		 * registered roothub.
4615		 */
4616		xhci = hcd_to_xhci(hcd);
4617		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618		if (HCC_64BIT_ADDR(temp)) {
4619			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621		} else {
4622			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623		}
4624		return 0;
4625	}
4626
4627	xhci->cap_regs = hcd->regs;
4628	xhci->op_regs = hcd->regs +
4629		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630	xhci->run_regs = hcd->regs +
4631		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632	/* Cache read-only capability registers */
4633	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4639	xhci_print_registers(xhci);
4640
 
 
4641	get_quirks(dev, xhci);
4642
 
 
 
 
 
 
 
4643	/* Make sure the HC is halted. */
4644	retval = xhci_halt(xhci);
4645	if (retval)
4646		goto error;
4647
4648	xhci_dbg(xhci, "Resetting HCD\n");
4649	/* Reset the internal HC memory state and registers. */
4650	retval = xhci_reset(xhci);
4651	if (retval)
4652		goto error;
4653	xhci_dbg(xhci, "Reset complete\n");
4654
4655	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656	if (HCC_64BIT_ADDR(temp)) {
 
 
4657		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659	} else {
4660		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4661	}
4662
4663	xhci_dbg(xhci, "Calling HCD init\n");
4664	/* Initialize HCD and host controller data structures. */
4665	retval = xhci_init(hcd);
4666	if (retval)
4667		goto error;
4668	xhci_dbg(xhci, "Called HCD init\n");
4669	return 0;
4670error:
4671	kfree(xhci);
4672	return retval;
4673}
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681	int retval;
4682
4683	retval = xhci_register_pci();
4684	if (retval < 0) {
4685		printk(KERN_DEBUG "Problem registering PCI driver.");
4686		return retval;
4687	}
4688	retval = xhci_register_plat();
4689	if (retval < 0) {
4690		printk(KERN_DEBUG "Problem registering platform driver.");
4691		goto unreg_pci;
4692	}
4693	/*
4694	 * Check the compiler generated sizes of structures that must be laid
4695	 * out in specific ways for hardware access.
4696	 */
4697	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700	/* xhci_device_control has eight fields, and also
4701	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702	 */
4703	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4710	return 0;
4711unreg_pci:
4712	xhci_unregister_pci();
4713	return retval;
4714}
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
4718{
4719	xhci_unregister_pci();
4720	xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);
v3.15
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34
  35#define DRIVER_AUTHOR "Sarah Sharp"
  36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  37
  38/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  39static int link_quirk;
  40module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  41MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  42
  43static unsigned int quirks;
  44module_param(quirks, uint, S_IRUGO);
  45MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  46
  47/* TODO: copied from ehci-hcd.c - can this be refactored? */
  48/*
  49 * xhci_handshake - spin reading hc until handshake completes or fails
  50 * @ptr: address of hc register to be read
  51 * @mask: bits to look at in result of read
  52 * @done: value of those bits when handshake succeeds
  53 * @usec: timeout in microseconds
  54 *
  55 * Returns negative errno, or zero on success
  56 *
  57 * Success happens when the "mask" bits have the specified value (hardware
  58 * handshake done).  There are two failure modes:  "usec" have passed (major
  59 * hardware flakeout), or the register reads as all-ones (hardware removed).
  60 */
  61int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  62		      u32 mask, u32 done, int usec)
  63{
  64	u32	result;
  65
  66	do {
  67		result = readl(ptr);
  68		if (result == ~(u32)0)		/* card removed */
  69			return -ENODEV;
  70		result &= mask;
  71		if (result == done)
  72			return 0;
  73		udelay(1);
  74		usec--;
  75	} while (usec > 0);
  76	return -ETIMEDOUT;
  77}
  78
  79/*
  80 * Disable interrupts and begin the xHCI halting process.
  81 */
  82void xhci_quiesce(struct xhci_hcd *xhci)
  83{
  84	u32 halted;
  85	u32 cmd;
  86	u32 mask;
  87
  88	mask = ~(XHCI_IRQS);
  89	halted = readl(&xhci->op_regs->status) & STS_HALT;
  90	if (!halted)
  91		mask &= ~CMD_RUN;
  92
  93	cmd = readl(&xhci->op_regs->command);
  94	cmd &= mask;
  95	writel(cmd, &xhci->op_regs->command);
  96}
  97
  98/*
  99 * Force HC into halt state.
 100 *
 101 * Disable any IRQs and clear the run/stop bit.
 102 * HC will complete any current and actively pipelined transactions, and
 103 * should halt within 16 ms of the run/stop bit being cleared.
 104 * Read HC Halted bit in the status register to see when the HC is finished.
 105 */
 106int xhci_halt(struct xhci_hcd *xhci)
 107{
 108	int ret;
 109	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 110	xhci_quiesce(xhci);
 111
 112	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 113			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 114	if (!ret) {
 115		xhci->xhc_state |= XHCI_STATE_HALTED;
 116		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 117	} else
 118		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 119				XHCI_MAX_HALT_USEC);
 120	return ret;
 121}
 122
 123/*
 124 * Set the run bit and wait for the host to be running.
 125 */
 126static int xhci_start(struct xhci_hcd *xhci)
 127{
 128	u32 temp;
 129	int ret;
 130
 131	temp = readl(&xhci->op_regs->command);
 132	temp |= (CMD_RUN);
 133	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 134			temp);
 135	writel(temp, &xhci->op_regs->command);
 136
 137	/*
 138	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 139	 * running.
 140	 */
 141	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 142			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 143	if (ret == -ETIMEDOUT)
 144		xhci_err(xhci, "Host took too long to start, "
 145				"waited %u microseconds.\n",
 146				XHCI_MAX_HALT_USEC);
 147	if (!ret)
 148		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 149	return ret;
 150}
 151
 152/*
 153 * Reset a halted HC.
 154 *
 155 * This resets pipelines, timers, counters, state machines, etc.
 156 * Transactions will be terminated immediately, and operational registers
 157 * will be set to their defaults.
 158 */
 159int xhci_reset(struct xhci_hcd *xhci)
 160{
 161	u32 command;
 162	u32 state;
 163	int ret, i;
 164
 165	state = readl(&xhci->op_regs->status);
 166	if ((state & STS_HALT) == 0) {
 167		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 168		return 0;
 169	}
 170
 171	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 172	command = readl(&xhci->op_regs->command);
 173	command |= CMD_RESET;
 174	writel(command, &xhci->op_regs->command);
 175
 176	ret = xhci_handshake(xhci, &xhci->op_regs->command,
 177			CMD_RESET, 0, 10 * 1000 * 1000);
 178	if (ret)
 179		return ret;
 180
 181	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 182			 "Wait for controller to be ready for doorbell rings");
 183	/*
 184	 * xHCI cannot write to any doorbells or operational registers other
 185	 * than status until the "Controller Not Ready" flag is cleared.
 186	 */
 187	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 188			STS_CNR, 0, 10 * 1000 * 1000);
 189
 190	for (i = 0; i < 2; ++i) {
 191		xhci->bus_state[i].port_c_suspend = 0;
 192		xhci->bus_state[i].suspended_ports = 0;
 193		xhci->bus_state[i].resuming_ports = 0;
 194	}
 195
 196	return ret;
 197}
 198
 199#ifdef CONFIG_PCI
 200static int xhci_free_msi(struct xhci_hcd *xhci)
 201{
 202	int i;
 203
 204	if (!xhci->msix_entries)
 205		return -EINVAL;
 206
 207	for (i = 0; i < xhci->msix_count; i++)
 208		if (xhci->msix_entries[i].vector)
 209			free_irq(xhci->msix_entries[i].vector,
 210					xhci_to_hcd(xhci));
 211	return 0;
 212}
 213
 214/*
 215 * Set up MSI
 216 */
 217static int xhci_setup_msi(struct xhci_hcd *xhci)
 218{
 219	int ret;
 220	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 221
 222	ret = pci_enable_msi(pdev);
 223	if (ret) {
 224		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 225				"failed to allocate MSI entry");
 226		return ret;
 227	}
 228
 229	ret = request_irq(pdev->irq, xhci_msi_irq,
 230				0, "xhci_hcd", xhci_to_hcd(xhci));
 231	if (ret) {
 232		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 233				"disable MSI interrupt");
 234		pci_disable_msi(pdev);
 235	}
 236
 237	return ret;
 238}
 239
 240/*
 241 * Free IRQs
 242 * free all IRQs request
 243 */
 244static void xhci_free_irq(struct xhci_hcd *xhci)
 245{
 246	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 247	int ret;
 248
 249	/* return if using legacy interrupt */
 250	if (xhci_to_hcd(xhci)->irq > 0)
 251		return;
 252
 253	ret = xhci_free_msi(xhci);
 254	if (!ret)
 255		return;
 256	if (pdev->irq > 0)
 257		free_irq(pdev->irq, xhci_to_hcd(xhci));
 258
 259	return;
 260}
 261
 262/*
 263 * Set up MSI-X
 264 */
 265static int xhci_setup_msix(struct xhci_hcd *xhci)
 266{
 267	int i, ret = 0;
 268	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 269	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 270
 271	/*
 272	 * calculate number of msi-x vectors supported.
 273	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 274	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 275	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 276	 *   Add additional 1 vector to ensure always available interrupt.
 277	 */
 278	xhci->msix_count = min(num_online_cpus() + 1,
 279				HCS_MAX_INTRS(xhci->hcs_params1));
 280
 281	xhci->msix_entries =
 282		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 283				GFP_KERNEL);
 284	if (!xhci->msix_entries) {
 285		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 286		return -ENOMEM;
 287	}
 288
 289	for (i = 0; i < xhci->msix_count; i++) {
 290		xhci->msix_entries[i].entry = i;
 291		xhci->msix_entries[i].vector = 0;
 292	}
 293
 294	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 295	if (ret) {
 296		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 297				"Failed to enable MSI-X");
 298		goto free_entries;
 299	}
 300
 301	for (i = 0; i < xhci->msix_count; i++) {
 302		ret = request_irq(xhci->msix_entries[i].vector,
 303				xhci_msi_irq,
 304				0, "xhci_hcd", xhci_to_hcd(xhci));
 305		if (ret)
 306			goto disable_msix;
 307	}
 308
 309	hcd->msix_enabled = 1;
 310	return ret;
 311
 312disable_msix:
 313	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 314	xhci_free_irq(xhci);
 315	pci_disable_msix(pdev);
 316free_entries:
 317	kfree(xhci->msix_entries);
 318	xhci->msix_entries = NULL;
 319	return ret;
 320}
 321
 322/* Free any IRQs and disable MSI-X */
 323static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 324{
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	if (xhci->quirks & XHCI_PLAT)
 329		return;
 330
 331	xhci_free_irq(xhci);
 332
 333	if (xhci->msix_entries) {
 334		pci_disable_msix(pdev);
 335		kfree(xhci->msix_entries);
 336		xhci->msix_entries = NULL;
 337	} else {
 338		pci_disable_msi(pdev);
 339	}
 340
 341	hcd->msix_enabled = 0;
 342	return;
 343}
 344
 345static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 346{
 347	int i;
 348
 349	if (xhci->msix_entries) {
 350		for (i = 0; i < xhci->msix_count; i++)
 351			synchronize_irq(xhci->msix_entries[i].vector);
 352	}
 353}
 354
 355static int xhci_try_enable_msi(struct usb_hcd *hcd)
 356{
 357	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 358	struct pci_dev  *pdev;
 359	int ret;
 360
 361	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 362	if (xhci->quirks & XHCI_PLAT)
 363		return 0;
 364
 365	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 366	/*
 367	 * Some Fresco Logic host controllers advertise MSI, but fail to
 368	 * generate interrupts.  Don't even try to enable MSI.
 369	 */
 370	if (xhci->quirks & XHCI_BROKEN_MSI)
 371		goto legacy_irq;
 372
 373	/* unregister the legacy interrupt */
 374	if (hcd->irq)
 375		free_irq(hcd->irq, hcd);
 376	hcd->irq = 0;
 377
 378	ret = xhci_setup_msix(xhci);
 379	if (ret)
 380		/* fall back to msi*/
 381		ret = xhci_setup_msi(xhci);
 382
 383	if (!ret)
 384		/* hcd->irq is 0, we have MSI */
 385		return 0;
 386
 387	if (!pdev->irq) {
 388		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 389		return -EINVAL;
 390	}
 391
 392 legacy_irq:
 393	if (!strlen(hcd->irq_descr))
 394		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 395			 hcd->driver->description, hcd->self.busnum);
 396
 397	/* fall back to legacy interrupt*/
 398	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 399			hcd->irq_descr, hcd);
 400	if (ret) {
 401		xhci_err(xhci, "request interrupt %d failed\n",
 402				pdev->irq);
 403		return ret;
 404	}
 405	hcd->irq = pdev->irq;
 406	return 0;
 407}
 408
 409#else
 410
 411static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 412{
 413	return 0;
 414}
 415
 416static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 417{
 418}
 419
 420static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 421{
 422}
 423
 424#endif
 425
 426static void compliance_mode_recovery(unsigned long arg)
 427{
 428	struct xhci_hcd *xhci;
 429	struct usb_hcd *hcd;
 430	u32 temp;
 431	int i;
 432
 433	xhci = (struct xhci_hcd *)arg;
 434
 435	for (i = 0; i < xhci->num_usb3_ports; i++) {
 436		temp = readl(xhci->usb3_ports[i]);
 437		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 438			/*
 439			 * Compliance Mode Detected. Letting USB Core
 440			 * handle the Warm Reset
 441			 */
 442			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 443					"Compliance mode detected->port %d",
 444					i + 1);
 445			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 446					"Attempting compliance mode recovery");
 447			hcd = xhci->shared_hcd;
 448
 449			if (hcd->state == HC_STATE_SUSPENDED)
 450				usb_hcd_resume_root_hub(hcd);
 451
 452			usb_hcd_poll_rh_status(hcd);
 453		}
 454	}
 455
 456	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 457		mod_timer(&xhci->comp_mode_recovery_timer,
 458			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 459}
 460
 461/*
 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 463 * that causes ports behind that hardware to enter compliance mode sometimes.
 464 * The quirk creates a timer that polls every 2 seconds the link state of
 465 * each host controller's port and recovers it by issuing a Warm reset
 466 * if Compliance mode is detected, otherwise the port will become "dead" (no
 467 * device connections or disconnections will be detected anymore). Becasue no
 468 * status event is generated when entering compliance mode (per xhci spec),
 469 * this quirk is needed on systems that have the failing hardware installed.
 470 */
 471static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 472{
 473	xhci->port_status_u0 = 0;
 474	init_timer(&xhci->comp_mode_recovery_timer);
 475
 476	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 477	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 478	xhci->comp_mode_recovery_timer.expires = jiffies +
 479			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 480
 481	set_timer_slack(&xhci->comp_mode_recovery_timer,
 482			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 483	add_timer(&xhci->comp_mode_recovery_timer);
 484	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 485			"Compliance mode recovery timer initialized");
 486}
 487
 488/*
 489 * This function identifies the systems that have installed the SN65LVPE502CP
 490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 491 * Systems:
 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 493 */
 494bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 495{
 496	const char *dmi_product_name, *dmi_sys_vendor;
 497
 498	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 499	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 500	if (!dmi_product_name || !dmi_sys_vendor)
 501		return false;
 502
 503	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 504		return false;
 505
 506	if (strstr(dmi_product_name, "Z420") ||
 507			strstr(dmi_product_name, "Z620") ||
 508			strstr(dmi_product_name, "Z820") ||
 509			strstr(dmi_product_name, "Z1 Workstation"))
 510		return true;
 511
 512	return false;
 513}
 514
 515static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 516{
 517	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 518}
 519
 520
 521/*
 522 * Initialize memory for HCD and xHC (one-time init).
 523 *
 524 * Program the PAGESIZE register, initialize the device context array, create
 525 * device contexts (?), set up a command ring segment (or two?), create event
 526 * ring (one for now).
 527 */
 528int xhci_init(struct usb_hcd *hcd)
 529{
 530	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 531	int retval = 0;
 532
 533	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 534	spin_lock_init(&xhci->lock);
 535	if (xhci->hci_version == 0x95 && link_quirk) {
 536		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 537				"QUIRK: Not clearing Link TRB chain bits.");
 538		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 539	} else {
 540		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 541				"xHCI doesn't need link TRB QUIRK");
 542	}
 543	retval = xhci_mem_init(xhci, GFP_KERNEL);
 544	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 545
 546	/* Initializing Compliance Mode Recovery Data If Needed */
 547	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 548		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 549		compliance_mode_recovery_timer_init(xhci);
 550	}
 551
 552	return retval;
 553}
 554
 555/*-------------------------------------------------------------------------*/
 556
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static int xhci_run_finished(struct xhci_hcd *xhci)
 559{
 560	if (xhci_start(xhci)) {
 561		xhci_halt(xhci);
 562		return -ENODEV;
 563	}
 564	xhci->shared_hcd->state = HC_STATE_RUNNING;
 565	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 566
 567	if (xhci->quirks & XHCI_NEC_HOST)
 568		xhci_ring_cmd_db(xhci);
 569
 570	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 571			"Finished xhci_run for USB3 roothub");
 572	return 0;
 573}
 574
 575/*
 576 * Start the HC after it was halted.
 577 *
 578 * This function is called by the USB core when the HC driver is added.
 579 * Its opposite is xhci_stop().
 580 *
 581 * xhci_init() must be called once before this function can be called.
 582 * Reset the HC, enable device slot contexts, program DCBAAP, and
 583 * set command ring pointer and event ring pointer.
 584 *
 585 * Setup MSI-X vectors and enable interrupts.
 586 */
 587int xhci_run(struct usb_hcd *hcd)
 588{
 589	u32 temp;
 590	u64 temp_64;
 591	int ret;
 592	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 593
 594	/* Start the xHCI host controller running only after the USB 2.0 roothub
 595	 * is setup.
 596	 */
 597
 598	hcd->uses_new_polling = 1;
 599	if (!usb_hcd_is_primary_hcd(hcd))
 600		return xhci_run_finished(xhci);
 601
 602	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 603
 604	ret = xhci_try_enable_msi(hcd);
 605	if (ret)
 606		return ret;
 607
 
 
 
 
 
 
 
 
 
 
 
 608	xhci_dbg(xhci, "Command ring memory map follows:\n");
 609	xhci_debug_ring(xhci, xhci->cmd_ring);
 610	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 611	xhci_dbg_cmd_ptrs(xhci);
 612
 613	xhci_dbg(xhci, "ERST memory map follows:\n");
 614	xhci_dbg_erst(xhci, &xhci->erst);
 615	xhci_dbg(xhci, "Event ring:\n");
 616	xhci_debug_ring(xhci, xhci->event_ring);
 617	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 618	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 619	temp_64 &= ~ERST_PTR_MASK;
 620	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 622
 623	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 624			"// Set the interrupt modulation register");
 625	temp = readl(&xhci->ir_set->irq_control);
 626	temp &= ~ER_IRQ_INTERVAL_MASK;
 627	temp |= (u32) 160;
 628	writel(temp, &xhci->ir_set->irq_control);
 629
 630	/* Set the HCD state before we enable the irqs */
 631	temp = readl(&xhci->op_regs->command);
 632	temp |= (CMD_EIE);
 633	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 634			"// Enable interrupts, cmd = 0x%x.", temp);
 635	writel(temp, &xhci->op_regs->command);
 636
 637	temp = readl(&xhci->ir_set->irq_pending);
 638	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 639			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 640			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 641	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 642	xhci_print_ir_set(xhci, 0);
 643
 644	if (xhci->quirks & XHCI_NEC_HOST)
 645		xhci_queue_vendor_command(xhci, 0, 0, 0,
 646				TRB_TYPE(TRB_NEC_GET_FW));
 647
 648	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 649			"Finished xhci_run for USB2 roothub");
 650	return 0;
 651}
 652
 653static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 654{
 655	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 656
 657	spin_lock_irq(&xhci->lock);
 658	xhci_halt(xhci);
 659
 660	/* The shared_hcd is going to be deallocated shortly (the USB core only
 661	 * calls this function when allocation fails in usb_add_hcd(), or
 662	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 663	 */
 664	xhci->shared_hcd = NULL;
 665	spin_unlock_irq(&xhci->lock);
 666}
 667
 668/*
 669 * Stop xHCI driver.
 670 *
 671 * This function is called by the USB core when the HC driver is removed.
 672 * Its opposite is xhci_run().
 673 *
 674 * Disable device contexts, disable IRQs, and quiesce the HC.
 675 * Reset the HC, finish any completed transactions, and cleanup memory.
 676 */
 677void xhci_stop(struct usb_hcd *hcd)
 678{
 679	u32 temp;
 680	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 681
 682	if (!usb_hcd_is_primary_hcd(hcd)) {
 683		xhci_only_stop_hcd(xhci->shared_hcd);
 684		return;
 685	}
 686
 687	spin_lock_irq(&xhci->lock);
 688	/* Make sure the xHC is halted for a USB3 roothub
 689	 * (xhci_stop() could be called as part of failed init).
 690	 */
 691	xhci_halt(xhci);
 692	xhci_reset(xhci);
 693	spin_unlock_irq(&xhci->lock);
 694
 695	xhci_cleanup_msix(xhci);
 696
 
 
 
 
 
 
 697	/* Deleting Compliance Mode Recovery Timer */
 698	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 699			(!(xhci_all_ports_seen_u0(xhci)))) {
 700		del_timer_sync(&xhci->comp_mode_recovery_timer);
 701		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 702				"%s: compliance mode recovery timer deleted",
 703				__func__);
 704	}
 705
 706	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 707		usb_amd_dev_put();
 708
 709	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 710			"// Disabling event ring interrupts");
 711	temp = readl(&xhci->op_regs->status);
 712	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 713	temp = readl(&xhci->ir_set->irq_pending);
 714	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 715	xhci_print_ir_set(xhci, 0);
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 718	xhci_mem_cleanup(xhci);
 719	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 720			"xhci_stop completed - status = %x",
 721			readl(&xhci->op_regs->status));
 722}
 723
 724/*
 725 * Shutdown HC (not bus-specific)
 726 *
 727 * This is called when the machine is rebooting or halting.  We assume that the
 728 * machine will be powered off, and the HC's internal state will be reset.
 729 * Don't bother to free memory.
 730 *
 731 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 732 */
 733void xhci_shutdown(struct usb_hcd *hcd)
 734{
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 736
 737	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 738		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 739
 740	spin_lock_irq(&xhci->lock);
 741	xhci_halt(xhci);
 742	/* Workaround for spurious wakeups at shutdown with HSW */
 743	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 744		xhci_reset(xhci);
 745	spin_unlock_irq(&xhci->lock);
 746
 747	xhci_cleanup_msix(xhci);
 748
 749	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 750			"xhci_shutdown completed - status = %x",
 751			readl(&xhci->op_regs->status));
 752
 753	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 754	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 755		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 756}
 757
 758#ifdef CONFIG_PM
 759static void xhci_save_registers(struct xhci_hcd *xhci)
 760{
 761	xhci->s3.command = readl(&xhci->op_regs->command);
 762	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 763	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 764	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 765	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 766	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 767	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 768	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 769	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 770}
 771
 772static void xhci_restore_registers(struct xhci_hcd *xhci)
 773{
 774	writel(xhci->s3.command, &xhci->op_regs->command);
 775	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 776	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 777	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 778	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 779	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 780	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 781	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 782	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 783}
 784
 785static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 786{
 787	u64	val_64;
 788
 789	/* step 2: initialize command ring buffer */
 790	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 791	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 792		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 793				      xhci->cmd_ring->dequeue) &
 794		 (u64) ~CMD_RING_RSVD_BITS) |
 795		xhci->cmd_ring->cycle_state;
 796	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 797			"// Setting command ring address to 0x%llx",
 798			(long unsigned long) val_64);
 799	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 800}
 801
 802/*
 803 * The whole command ring must be cleared to zero when we suspend the host.
 804 *
 805 * The host doesn't save the command ring pointer in the suspend well, so we
 806 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 807 * aligned, because of the reserved bits in the command ring dequeue pointer
 808 * register.  Therefore, we can't just set the dequeue pointer back in the
 809 * middle of the ring (TRBs are 16-byte aligned).
 810 */
 811static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 812{
 813	struct xhci_ring *ring;
 814	struct xhci_segment *seg;
 815
 816	ring = xhci->cmd_ring;
 817	seg = ring->deq_seg;
 818	do {
 819		memset(seg->trbs, 0,
 820			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 821		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 822			cpu_to_le32(~TRB_CYCLE);
 823		seg = seg->next;
 824	} while (seg != ring->deq_seg);
 825
 826	/* Reset the software enqueue and dequeue pointers */
 827	ring->deq_seg = ring->first_seg;
 828	ring->dequeue = ring->first_seg->trbs;
 829	ring->enq_seg = ring->deq_seg;
 830	ring->enqueue = ring->dequeue;
 831
 832	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 833	/*
 834	 * Ring is now zeroed, so the HW should look for change of ownership
 835	 * when the cycle bit is set to 1.
 836	 */
 837	ring->cycle_state = 1;
 838
 839	/*
 840	 * Reset the hardware dequeue pointer.
 841	 * Yes, this will need to be re-written after resume, but we're paranoid
 842	 * and want to make sure the hardware doesn't access bogus memory
 843	 * because, say, the BIOS or an SMI started the host without changing
 844	 * the command ring pointers.
 845	 */
 846	xhci_set_cmd_ring_deq(xhci);
 847}
 848
 849/*
 850 * Stop HC (not bus-specific)
 851 *
 852 * This is called when the machine transition into S3/S4 mode.
 853 *
 854 */
 855int xhci_suspend(struct xhci_hcd *xhci)
 856{
 857	int			rc = 0;
 858	unsigned int		delay = XHCI_MAX_HALT_USEC;
 859	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 860	u32			command;
 861
 862	if (hcd->state != HC_STATE_SUSPENDED ||
 863			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 864		return -EINVAL;
 865
 866	/* Don't poll the roothubs on bus suspend. */
 867	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 868	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 869	del_timer_sync(&hcd->rh_timer);
 870
 871	spin_lock_irq(&xhci->lock);
 872	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 873	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 874	/* step 1: stop endpoint */
 875	/* skipped assuming that port suspend has done */
 876
 877	/* step 2: clear Run/Stop bit */
 878	command = readl(&xhci->op_regs->command);
 879	command &= ~CMD_RUN;
 880	writel(command, &xhci->op_regs->command);
 881
 882	/* Some chips from Fresco Logic need an extraordinary delay */
 883	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 884
 885	if (xhci_handshake(xhci, &xhci->op_regs->status,
 886		      STS_HALT, STS_HALT, delay)) {
 887		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 888		spin_unlock_irq(&xhci->lock);
 889		return -ETIMEDOUT;
 890	}
 891	xhci_clear_command_ring(xhci);
 892
 893	/* step 3: save registers */
 894	xhci_save_registers(xhci);
 895
 896	/* step 4: set CSS flag */
 897	command = readl(&xhci->op_regs->command);
 898	command |= CMD_CSS;
 899	writel(command, &xhci->op_regs->command);
 900	if (xhci_handshake(xhci, &xhci->op_regs->status,
 901				STS_SAVE, 0, 10 * 1000)) {
 902		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 903		spin_unlock_irq(&xhci->lock);
 904		return -ETIMEDOUT;
 905	}
 906	spin_unlock_irq(&xhci->lock);
 907
 908	/*
 909	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 910	 * is about to be suspended.
 911	 */
 912	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 913			(!(xhci_all_ports_seen_u0(xhci)))) {
 914		del_timer_sync(&xhci->comp_mode_recovery_timer);
 915		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 916				"%s: compliance mode recovery timer deleted",
 917				__func__);
 918	}
 919
 920	/* step 5: remove core well power */
 921	/* synchronize irq when using MSI-X */
 922	xhci_msix_sync_irqs(xhci);
 923
 924	return rc;
 925}
 926
 927/*
 928 * start xHC (not bus-specific)
 929 *
 930 * This is called when the machine transition from S3/S4 mode.
 931 *
 932 */
 933int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 934{
 935	u32			command, temp = 0;
 936	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 937	struct usb_hcd		*secondary_hcd;
 938	int			retval = 0;
 939	bool			comp_timer_running = false;
 940
 941	/* Wait a bit if either of the roothubs need to settle from the
 942	 * transition into bus suspend.
 943	 */
 944	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 945			time_before(jiffies,
 946				xhci->bus_state[1].next_statechange))
 947		msleep(100);
 948
 949	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 950	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 951
 952	spin_lock_irq(&xhci->lock);
 953	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 954		hibernated = true;
 955
 956	if (!hibernated) {
 957		/* step 1: restore register */
 958		xhci_restore_registers(xhci);
 959		/* step 2: initialize command ring buffer */
 960		xhci_set_cmd_ring_deq(xhci);
 961		/* step 3: restore state and start state*/
 962		/* step 3: set CRS flag */
 963		command = readl(&xhci->op_regs->command);
 964		command |= CMD_CRS;
 965		writel(command, &xhci->op_regs->command);
 966		if (xhci_handshake(xhci, &xhci->op_regs->status,
 967			      STS_RESTORE, 0, 10 * 1000)) {
 968			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 969			spin_unlock_irq(&xhci->lock);
 970			return -ETIMEDOUT;
 971		}
 972		temp = readl(&xhci->op_regs->status);
 973	}
 974
 975	/* If restore operation fails, re-initialize the HC during resume */
 976	if ((temp & STS_SRE) || hibernated) {
 977
 978		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 979				!(xhci_all_ports_seen_u0(xhci))) {
 980			del_timer_sync(&xhci->comp_mode_recovery_timer);
 981			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 982				"Compliance Mode Recovery Timer deleted!");
 983		}
 984
 985		/* Let the USB core know _both_ roothubs lost power. */
 986		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 987		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 988
 989		xhci_dbg(xhci, "Stop HCD\n");
 990		xhci_halt(xhci);
 991		xhci_reset(xhci);
 992		spin_unlock_irq(&xhci->lock);
 993		xhci_cleanup_msix(xhci);
 994
 
 
 
 
 
 
 995		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 996		temp = readl(&xhci->op_regs->status);
 997		writel(temp & ~STS_EINT, &xhci->op_regs->status);
 998		temp = readl(&xhci->ir_set->irq_pending);
 999		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1000		xhci_print_ir_set(xhci, 0);
1001
1002		xhci_dbg(xhci, "cleaning up memory\n");
1003		xhci_mem_cleanup(xhci);
1004		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005			    readl(&xhci->op_regs->status));
1006
1007		/* USB core calls the PCI reinit and start functions twice:
1008		 * first with the primary HCD, and then with the secondary HCD.
1009		 * If we don't do the same, the host will never be started.
1010		 */
1011		if (!usb_hcd_is_primary_hcd(hcd))
1012			secondary_hcd = hcd;
1013		else
1014			secondary_hcd = xhci->shared_hcd;
1015
1016		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017		retval = xhci_init(hcd->primary_hcd);
1018		if (retval)
1019			return retval;
1020		comp_timer_running = true;
1021
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = readl(&xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	writel(command, &xhci->op_regs->command);
1037	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064		compliance_mode_recovery_timer_init(xhci);
1065
1066	/* Re-enable port polling. */
1067	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069	usb_hcd_poll_rh_status(hcd);
1070
1071	return retval;
1072}
1073#endif	/* CONFIG_PM */
1074
1075/*-------------------------------------------------------------------------*/
1076
1077/**
1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1080 * value to right shift 1 for the bitmask.
1081 *
1082 * Index  = (epnum * 2) + direction - 1,
1083 * where direction = 0 for OUT, 1 for IN.
1084 * For control endpoints, the IN index is used (OUT index is unused), so
1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086 */
1087unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088{
1089	unsigned int index;
1090	if (usb_endpoint_xfer_control(desc))
1091		index = (unsigned int) (usb_endpoint_num(desc)*2);
1092	else
1093		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095	return index;
1096}
1097
1098/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099 * address from the XHCI endpoint index.
1100 */
1101unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102{
1103	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105	return direction | number;
1106}
1107
1108/* Find the flag for this endpoint (for use in the control context).  Use the
1109 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110 * bit 1, etc.
1111 */
1112unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113{
1114	return 1 << (xhci_get_endpoint_index(desc) + 1);
1115}
1116
1117/* Find the flag for this endpoint (for use in the control context).  Use the
1118 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1119 * bit 1, etc.
1120 */
1121unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122{
1123	return 1 << (ep_index + 1);
1124}
1125
1126/* Compute the last valid endpoint context index.  Basically, this is the
1127 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1128 * we find the most significant bit set in the added contexts flags.
1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131 */
1132unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133{
1134	return fls(added_ctxs) - 1;
1135}
1136
1137/* Returns 1 if the arguments are OK;
1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139 */
1140static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142		const char *func) {
1143	struct xhci_hcd	*xhci;
1144	struct xhci_virt_device	*virt_dev;
1145
1146	if (!hcd || (check_ep && !ep) || !udev) {
1147		pr_debug("xHCI %s called with invalid args\n", func);
 
1148		return -EINVAL;
1149	}
1150	if (!udev->parent) {
1151		pr_debug("xHCI %s called for root hub\n", func);
 
1152		return 0;
1153	}
1154
1155	xhci = hcd_to_xhci(hcd);
 
 
 
1156	if (check_virt_dev) {
1157		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159					func);
1160			return -EINVAL;
1161		}
1162
1163		virt_dev = xhci->devs[udev->slot_id];
1164		if (virt_dev->udev != udev) {
1165			xhci_dbg(xhci, "xHCI %s called with udev and "
1166					  "virt_dev does not match\n", func);
1167			return -EINVAL;
1168		}
1169	}
1170
1171	if (xhci->xhc_state & XHCI_STATE_HALTED)
1172		return -ENODEV;
1173
1174	return 1;
1175}
1176
1177static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178		struct usb_device *udev, struct xhci_command *command,
1179		bool ctx_change, bool must_succeed);
1180
1181/*
1182 * Full speed devices may have a max packet size greater than 8 bytes, but the
1183 * USB core doesn't know that until it reads the first 8 bytes of the
1184 * descriptor.  If the usb_device's max packet size changes after that point,
1185 * we need to issue an evaluate context command and wait on it.
1186 */
1187static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188		unsigned int ep_index, struct urb *urb)
1189{
1190	struct xhci_container_ctx *in_ctx;
1191	struct xhci_container_ctx *out_ctx;
1192	struct xhci_input_control_ctx *ctrl_ctx;
1193	struct xhci_ep_ctx *ep_ctx;
1194	int max_packet_size;
1195	int hw_max_packet_size;
1196	int ret = 0;
1197
1198	out_ctx = xhci->devs[slot_id]->out_ctx;
1199	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202	if (hw_max_packet_size != max_packet_size) {
1203		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204				"Max Packet Size for ep 0 changed.");
1205		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1206				"Max packet size in usb_device = %d",
1207				max_packet_size);
1208		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1209				"Max packet size in xHCI HW = %d",
1210				hw_max_packet_size);
1211		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212				"Issuing evaluate context command.");
1213
1214		/* Set up the input context flags for the command */
1215		/* FIXME: This won't work if a non-default control endpoint
1216		 * changes max packet sizes.
1217		 */
1218		in_ctx = xhci->devs[slot_id]->in_ctx;
1219		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220		if (!ctrl_ctx) {
1221			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222					__func__);
1223			return -ENOMEM;
1224		}
1225		/* Set up the modified control endpoint 0 */
1226		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227				xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
 
 
 
 
 
1233		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234		ctrl_ctx->drop_flags = 0;
1235
1236		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242				true, false);
1243
1244		/* Clean up the input context for later use by bandwidth
1245		 * functions.
1246		 */
1247		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248	}
1249	return ret;
1250}
1251
1252/*
1253 * non-error returns are a promise to giveback() the urb later
1254 * we drop ownership so next owner (or urb unlink) can get it
1255 */
1256int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257{
1258	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259	struct xhci_td *buffer;
1260	unsigned long flags;
1261	int ret = 0;
1262	unsigned int slot_id, ep_index;
1263	struct urb_priv	*urb_priv;
1264	int size, i;
1265
1266	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267					true, true, __func__) <= 0)
1268		return -EINVAL;
1269
1270	slot_id = urb->dev->slot_id;
1271	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273	if (!HCD_HW_ACCESSIBLE(hcd)) {
1274		if (!in_interrupt())
1275			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276		ret = -ESHUTDOWN;
1277		goto exit;
1278	}
1279
1280	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281		size = urb->number_of_packets;
1282	else
1283		size = 1;
1284
1285	urb_priv = kzalloc(sizeof(struct urb_priv) +
1286				  size * sizeof(struct xhci_td *), mem_flags);
1287	if (!urb_priv)
1288		return -ENOMEM;
1289
1290	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291	if (!buffer) {
1292		kfree(urb_priv);
1293		return -ENOMEM;
1294	}
1295
1296	for (i = 0; i < size; i++) {
1297		urb_priv->td[i] = buffer;
1298		buffer++;
1299	}
1300
1301	urb_priv->length = size;
1302	urb_priv->td_cnt = 0;
1303	urb->hcpriv = urb_priv;
1304
1305	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306		/* Check to see if the max packet size for the default control
1307		 * endpoint changed during FS device enumeration
1308		 */
1309		if (urb->dev->speed == USB_SPEED_FULL) {
1310			ret = xhci_check_maxpacket(xhci, slot_id,
1311					ep_index, urb);
1312			if (ret < 0) {
1313				xhci_urb_free_priv(xhci, urb_priv);
1314				urb->hcpriv = NULL;
1315				return ret;
1316			}
1317		}
1318
1319		/* We have a spinlock and interrupts disabled, so we must pass
1320		 * atomic context to this function, which may allocate memory.
1321		 */
1322		spin_lock_irqsave(&xhci->lock, flags);
1323		if (xhci->xhc_state & XHCI_STATE_DYING)
1324			goto dying;
1325		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326				slot_id, ep_index);
1327		if (ret)
1328			goto free_priv;
1329		spin_unlock_irqrestore(&xhci->lock, flags);
1330	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331		spin_lock_irqsave(&xhci->lock, flags);
1332		if (xhci->xhc_state & XHCI_STATE_DYING)
1333			goto dying;
1334		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335				EP_GETTING_STREAMS) {
1336			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337					"is transitioning to using streams.\n");
1338			ret = -EINVAL;
1339		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340				EP_GETTING_NO_STREAMS) {
1341			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342					"is transitioning to "
1343					"not having streams.\n");
1344			ret = -EINVAL;
1345		} else {
1346			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347					slot_id, ep_index);
1348		}
1349		if (ret)
1350			goto free_priv;
1351		spin_unlock_irqrestore(&xhci->lock, flags);
1352	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353		spin_lock_irqsave(&xhci->lock, flags);
1354		if (xhci->xhc_state & XHCI_STATE_DYING)
1355			goto dying;
1356		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357				slot_id, ep_index);
1358		if (ret)
1359			goto free_priv;
1360		spin_unlock_irqrestore(&xhci->lock, flags);
1361	} else {
1362		spin_lock_irqsave(&xhci->lock, flags);
1363		if (xhci->xhc_state & XHCI_STATE_DYING)
1364			goto dying;
1365		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366				slot_id, ep_index);
1367		if (ret)
1368			goto free_priv;
1369		spin_unlock_irqrestore(&xhci->lock, flags);
1370	}
1371exit:
1372	return ret;
1373dying:
1374	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375			"non-responsive xHCI host.\n",
1376			urb->ep->desc.bEndpointAddress, urb);
1377	ret = -ESHUTDOWN;
1378free_priv:
1379	xhci_urb_free_priv(xhci, urb_priv);
1380	urb->hcpriv = NULL;
1381	spin_unlock_irqrestore(&xhci->lock, flags);
1382	return ret;
1383}
1384
1385/* Get the right ring for the given URB.
1386 * If the endpoint supports streams, boundary check the URB's stream ID.
1387 * If the endpoint doesn't support streams, return the singular endpoint ring.
1388 */
1389static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390		struct urb *urb)
1391{
1392	unsigned int slot_id;
1393	unsigned int ep_index;
1394	unsigned int stream_id;
1395	struct xhci_virt_ep *ep;
1396
1397	slot_id = urb->dev->slot_id;
1398	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399	stream_id = urb->stream_id;
1400	ep = &xhci->devs[slot_id]->eps[ep_index];
1401	/* Common case: no streams */
1402	if (!(ep->ep_state & EP_HAS_STREAMS))
1403		return ep->ring;
1404
1405	if (stream_id == 0) {
1406		xhci_warn(xhci,
1407				"WARN: Slot ID %u, ep index %u has streams, "
1408				"but URB has no stream ID.\n",
1409				slot_id, ep_index);
1410		return NULL;
1411	}
1412
1413	if (stream_id < ep->stream_info->num_streams)
1414		return ep->stream_info->stream_rings[stream_id];
1415
1416	xhci_warn(xhci,
1417			"WARN: Slot ID %u, ep index %u has "
1418			"stream IDs 1 to %u allocated, "
1419			"but stream ID %u is requested.\n",
1420			slot_id, ep_index,
1421			ep->stream_info->num_streams - 1,
1422			stream_id);
1423	return NULL;
1424}
1425
1426/*
1427 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1428 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1429 * should pick up where it left off in the TD, unless a Set Transfer Ring
1430 * Dequeue Pointer is issued.
1431 *
1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433 * the ring.  Since the ring is a contiguous structure, they can't be physically
1434 * removed.  Instead, there are two options:
1435 *
1436 *  1) If the HC is in the middle of processing the URB to be canceled, we
1437 *     simply move the ring's dequeue pointer past those TRBs using the Set
1438 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1439 *     when drivers timeout on the last submitted URB and attempt to cancel.
1440 *
1441 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1443 *     HC will need to invalidate the any TRBs it has cached after the stop
1444 *     endpoint command, as noted in the xHCI 0.95 errata.
1445 *
1446 *  3) The TD may have completed by the time the Stop Endpoint Command
1447 *     completes, so software needs to handle that case too.
1448 *
1449 * This function should protect against the TD enqueueing code ringing the
1450 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451 * It also needs to account for multiple cancellations on happening at the same
1452 * time for the same endpoint.
1453 *
1454 * Note that this function can be called in any context, or so says
1455 * usb_hcd_unlink_urb()
1456 */
1457int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458{
1459	unsigned long flags;
1460	int ret, i;
1461	u32 temp;
1462	struct xhci_hcd *xhci;
1463	struct urb_priv	*urb_priv;
1464	struct xhci_td *td;
1465	unsigned int ep_index;
1466	struct xhci_ring *ep_ring;
1467	struct xhci_virt_ep *ep;
1468
1469	xhci = hcd_to_xhci(hcd);
1470	spin_lock_irqsave(&xhci->lock, flags);
1471	/* Make sure the URB hasn't completed or been unlinked already */
1472	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473	if (ret || !urb->hcpriv)
1474		goto done;
1475	temp = readl(&xhci->op_regs->status);
1476	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478				"HW died, freeing TD.");
1479		urb_priv = urb->hcpriv;
1480		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481			td = urb_priv->td[i];
1482			if (!list_empty(&td->td_list))
1483				list_del_init(&td->td_list);
1484			if (!list_empty(&td->cancelled_td_list))
1485				list_del_init(&td->cancelled_td_list);
1486		}
1487
1488		usb_hcd_unlink_urb_from_ep(hcd, urb);
1489		spin_unlock_irqrestore(&xhci->lock, flags);
1490		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491		xhci_urb_free_priv(xhci, urb_priv);
1492		return ret;
1493	}
1494	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1496		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497				"Ep 0x%x: URB %p to be canceled on "
1498				"non-responsive xHCI host.",
1499				urb->ep->desc.bEndpointAddress, urb);
1500		/* Let the stop endpoint command watchdog timer (which set this
1501		 * state) finish cleaning up the endpoint TD lists.  We must
1502		 * have caught it in the middle of dropping a lock and giving
1503		 * back an URB.
1504		 */
1505		goto done;
1506	}
1507
1508	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511	if (!ep_ring) {
1512		ret = -EINVAL;
1513		goto done;
1514	}
1515
1516	urb_priv = urb->hcpriv;
1517	i = urb_priv->td_cnt;
1518	if (i < urb_priv->length)
1519		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520				"Cancel URB %p, dev %s, ep 0x%x, "
1521				"starting at offset 0x%llx",
1522				urb, urb->dev->devpath,
1523				urb->ep->desc.bEndpointAddress,
1524				(unsigned long long) xhci_trb_virt_to_dma(
1525					urb_priv->td[i]->start_seg,
1526					urb_priv->td[i]->first_trb));
1527
1528	for (; i < urb_priv->length; i++) {
1529		td = urb_priv->td[i];
1530		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531	}
1532
1533	/* Queue a stop endpoint command, but only if this is
1534	 * the first cancellation to be handled.
1535	 */
1536	if (!(ep->ep_state & EP_HALT_PENDING)) {
1537		ep->ep_state |= EP_HALT_PENDING;
1538		ep->stop_cmds_pending++;
1539		ep->stop_cmd_timer.expires = jiffies +
1540			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541		add_timer(&ep->stop_cmd_timer);
1542		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543		xhci_ring_cmd_db(xhci);
1544	}
1545done:
1546	spin_unlock_irqrestore(&xhci->lock, flags);
1547	return ret;
1548}
1549
1550/* Drop an endpoint from a new bandwidth configuration for this device.
1551 * Only one call to this function is allowed per endpoint before
1552 * check_bandwidth() or reset_bandwidth() must be called.
1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554 * add the endpoint to the schedule with possibly new parameters denoted by a
1555 * different endpoint descriptor in usb_host_endpoint.
1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557 * not allowed.
1558 *
1559 * The USB core will not allow URBs to be queued to an endpoint that is being
1560 * disabled, so there's no need for mutual exclusion to protect
1561 * the xhci->devs[slot_id] structure.
1562 */
1563int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564		struct usb_host_endpoint *ep)
1565{
1566	struct xhci_hcd *xhci;
1567	struct xhci_container_ctx *in_ctx, *out_ctx;
1568	struct xhci_input_control_ctx *ctrl_ctx;
1569	struct xhci_slot_ctx *slot_ctx;
1570	unsigned int last_ctx;
1571	unsigned int ep_index;
1572	struct xhci_ep_ctx *ep_ctx;
1573	u32 drop_flag;
1574	u32 new_add_flags, new_drop_flags, new_slot_info;
1575	int ret;
1576
1577	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578	if (ret <= 0)
1579		return ret;
1580	xhci = hcd_to_xhci(hcd);
1581	if (xhci->xhc_state & XHCI_STATE_DYING)
1582		return -ENODEV;
1583
1584	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588				__func__, drop_flag);
1589		return 0;
1590	}
1591
1592	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595	if (!ctrl_ctx) {
1596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597				__func__);
1598		return 0;
1599	}
1600
1601	ep_index = xhci_get_endpoint_index(&ep->desc);
1602	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603	/* If the HC already knows the endpoint is disabled,
1604	 * or the HCD has noted it is disabled, ignore this request
1605	 */
1606	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607	     cpu_to_le32(EP_STATE_DISABLED)) ||
1608	    le32_to_cpu(ctrl_ctx->drop_flags) &
1609	    xhci_get_endpoint_flag(&ep->desc)) {
1610		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611				__func__, ep);
1612		return 0;
1613	}
1614
1615	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623	/* Update the last valid endpoint context, if we deleted the last one */
1624	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625	    LAST_CTX(last_ctx)) {
1626		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628	}
1629	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634			(unsigned int) ep->desc.bEndpointAddress,
1635			udev->slot_id,
1636			(unsigned int) new_drop_flags,
1637			(unsigned int) new_add_flags,
1638			(unsigned int) new_slot_info);
1639	return 0;
1640}
1641
1642/* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656		struct usb_host_endpoint *ep)
1657{
1658	struct xhci_hcd *xhci;
1659	struct xhci_container_ctx *in_ctx, *out_ctx;
1660	unsigned int ep_index;
 
1661	struct xhci_slot_ctx *slot_ctx;
1662	struct xhci_input_control_ctx *ctrl_ctx;
1663	u32 added_ctxs;
1664	unsigned int last_ctx;
1665	u32 new_add_flags, new_drop_flags, new_slot_info;
1666	struct xhci_virt_device *virt_dev;
1667	int ret = 0;
1668
1669	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670	if (ret <= 0) {
1671		/* So we won't queue a reset ep command for a root hub */
1672		ep->hcpriv = NULL;
1673		return ret;
1674	}
1675	xhci = hcd_to_xhci(hcd);
1676	if (xhci->xhc_state & XHCI_STATE_DYING)
1677		return -ENODEV;
1678
1679	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682		/* FIXME when we have to issue an evaluate endpoint command to
1683		 * deal with ep0 max packet size changing once we get the
1684		 * descriptors
1685		 */
1686		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687				__func__, added_ctxs);
1688		return 0;
1689	}
1690
1691	virt_dev = xhci->devs[udev->slot_id];
1692	in_ctx = virt_dev->in_ctx;
1693	out_ctx = virt_dev->out_ctx;
1694	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695	if (!ctrl_ctx) {
1696		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697				__func__);
1698		return 0;
1699	}
1700
1701	ep_index = xhci_get_endpoint_index(&ep->desc);
1702	/* If this endpoint is already in use, and the upper layers are trying
1703	 * to add it again without dropping it, reject the addition.
1704	 */
1705	if (virt_dev->eps[ep_index].ring &&
1706			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1707				xhci_get_endpoint_flag(&ep->desc))) {
1708		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709				"without dropping it.\n",
1710				(unsigned int) ep->desc.bEndpointAddress);
1711		return -EINVAL;
1712	}
1713
1714	/* If the HCD has already noted the endpoint is enabled,
1715	 * ignore this request.
1716	 */
1717	if (le32_to_cpu(ctrl_ctx->add_flags) &
1718	    xhci_get_endpoint_flag(&ep->desc)) {
1719		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720				__func__, ep);
1721		return 0;
1722	}
1723
1724	/*
1725	 * Configuration and alternate setting changes must be done in
1726	 * process context, not interrupt context (or so documenation
1727	 * for usb_set_interface() and usb_set_configuration() claim).
1728	 */
1729	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731				__func__, ep->desc.bEndpointAddress);
1732		return -ENOMEM;
1733	}
1734
1735	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738	/* If xhci_endpoint_disable() was called for this endpoint, but the
1739	 * xHC hasn't been notified yet through the check_bandwidth() call,
1740	 * this re-adds a new state for the endpoint from the new endpoint
1741	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1742	 * drop flags alone.
1743	 */
1744	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747	/* Update the last valid endpoint context, if we just added one past */
1748	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749	    LAST_CTX(last_ctx)) {
1750		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752	}
1753	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755	/* Store the usb_device pointer for later use */
1756	ep->hcpriv = udev;
1757
1758	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759			(unsigned int) ep->desc.bEndpointAddress,
1760			udev->slot_id,
1761			(unsigned int) new_drop_flags,
1762			(unsigned int) new_add_flags,
1763			(unsigned int) new_slot_info);
1764	return 0;
1765}
1766
1767static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768{
1769	struct xhci_input_control_ctx *ctrl_ctx;
1770	struct xhci_ep_ctx *ep_ctx;
1771	struct xhci_slot_ctx *slot_ctx;
1772	int i;
1773
1774	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775	if (!ctrl_ctx) {
1776		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777				__func__);
1778		return;
1779	}
1780
1781	/* When a device's add flag and drop flag are zero, any subsequent
1782	 * configure endpoint command will leave that endpoint's state
1783	 * untouched.  Make sure we don't leave any old state in the input
1784	 * endpoint contexts.
1785	 */
 
1786	ctrl_ctx->drop_flags = 0;
1787	ctrl_ctx->add_flags = 0;
1788	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790	/* Endpoint 0 is always valid */
1791	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792	for (i = 1; i < 31; ++i) {
1793		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794		ep_ctx->ep_info = 0;
1795		ep_ctx->ep_info2 = 0;
1796		ep_ctx->deq = 0;
1797		ep_ctx->tx_info = 0;
1798	}
1799}
1800
1801static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802		struct usb_device *udev, u32 *cmd_status)
1803{
1804	int ret;
1805
1806	switch (*cmd_status) {
1807	case COMP_ENOMEM:
1808		dev_warn(&udev->dev, "Not enough host controller resources "
1809				"for new device state.\n");
1810		ret = -ENOMEM;
1811		/* FIXME: can we allocate more resources for the HC? */
1812		break;
1813	case COMP_BW_ERR:
1814	case COMP_2ND_BW_ERR:
1815		dev_warn(&udev->dev, "Not enough bandwidth "
1816				"for new device state.\n");
1817		ret = -ENOSPC;
1818		/* FIXME: can we go back to the old state? */
1819		break;
1820	case COMP_TRB_ERR:
1821		/* the HCD set up something wrong */
1822		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823				"add flag = 1, "
1824				"and endpoint is not disabled.\n");
1825		ret = -EINVAL;
1826		break;
1827	case COMP_DEV_ERR:
1828		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829				"configure command.\n");
1830		ret = -ENODEV;
1831		break;
1832	case COMP_SUCCESS:
1833		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834				"Successful Endpoint Configure command");
1835		ret = 0;
1836		break;
1837	default:
1838		xhci_err(xhci, "ERROR: unexpected command completion "
1839				"code 0x%x.\n", *cmd_status);
1840		ret = -EINVAL;
1841		break;
1842	}
1843	return ret;
1844}
1845
1846static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847		struct usb_device *udev, u32 *cmd_status)
1848{
1849	int ret;
1850	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852	switch (*cmd_status) {
1853	case COMP_EINVAL:
1854		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855				"context command.\n");
1856		ret = -EINVAL;
1857		break;
1858	case COMP_EBADSLT:
1859		dev_warn(&udev->dev, "WARN: slot not enabled for"
1860				"evaluate context command.\n");
1861		ret = -EINVAL;
1862		break;
1863	case COMP_CTX_STATE:
1864		dev_warn(&udev->dev, "WARN: invalid context state for "
1865				"evaluate context command.\n");
1866		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867		ret = -EINVAL;
1868		break;
1869	case COMP_DEV_ERR:
1870		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871				"context command.\n");
1872		ret = -ENODEV;
1873		break;
1874	case COMP_MEL_ERR:
1875		/* Max Exit Latency too large error */
1876		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877		ret = -EINVAL;
1878		break;
1879	case COMP_SUCCESS:
1880		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881				"Successful evaluate context command");
1882		ret = 0;
1883		break;
1884	default:
1885		xhci_err(xhci, "ERROR: unexpected command completion "
1886				"code 0x%x.\n", *cmd_status);
1887		ret = -EINVAL;
1888		break;
1889	}
1890	return ret;
1891}
1892
1893static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894		struct xhci_input_control_ctx *ctrl_ctx)
1895{
 
1896	u32 valid_add_flags;
1897	u32 valid_drop_flags;
1898
 
1899	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1900	 * (bit 1).  The default control endpoint is added during the Address
1901	 * Device command and is never removed until the slot is disabled.
1902	 */
1903	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906	/* Use hweight32 to count the number of ones in the add flags, or
1907	 * number of endpoints added.  Don't count endpoints that are changed
1908	 * (both added and dropped).
1909	 */
1910	return hweight32(valid_add_flags) -
1911		hweight32(valid_add_flags & valid_drop_flags);
1912}
1913
1914static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915		struct xhci_input_control_ctx *ctrl_ctx)
1916{
 
1917	u32 valid_add_flags;
1918	u32 valid_drop_flags;
1919
1920	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
1922
1923	return hweight32(valid_drop_flags) -
1924		hweight32(valid_add_flags & valid_drop_flags);
1925}
1926
1927/*
1928 * We need to reserve the new number of endpoints before the configure endpoint
1929 * command completes.  We can't subtract the dropped endpoints from the number
1930 * of active endpoints until the command completes because we can oversubscribe
1931 * the host in this case:
1932 *
1933 *  - the first configure endpoint command drops more endpoints than it adds
1934 *  - a second configure endpoint command that adds more endpoints is queued
1935 *  - the first configure endpoint command fails, so the config is unchanged
1936 *  - the second command may succeed, even though there isn't enough resources
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941		struct xhci_input_control_ctx *ctrl_ctx)
1942{
1943	u32 added_eps;
1944
1945	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948				"Not enough ep ctxs: "
1949				"%u active, need to add %u, limit is %u.",
1950				xhci->num_active_eps, added_eps,
1951				xhci->limit_active_eps);
1952		return -ENOMEM;
1953	}
1954	xhci->num_active_eps += added_eps;
1955	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956			"Adding %u ep ctxs, %u now active.", added_eps,
1957			xhci->num_active_eps);
1958	return 0;
1959}
1960
1961/*
1962 * The configure endpoint was failed by the xHC for some other reason, so we
1963 * need to revert the resources that failed configuration would have used.
1964 *
1965 * Must be called with xhci->lock held.
1966 */
1967static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968		struct xhci_input_control_ctx *ctrl_ctx)
1969{
1970	u32 num_failed_eps;
1971
1972	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973	xhci->num_active_eps -= num_failed_eps;
1974	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975			"Removing %u failed ep ctxs, %u now active.",
1976			num_failed_eps,
1977			xhci->num_active_eps);
1978}
1979
1980/*
1981 * Now that the command has completed, clean up the active endpoint count by
1982 * subtracting out the endpoints that were dropped (but not changed).
1983 *
1984 * Must be called with xhci->lock held.
1985 */
1986static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987		struct xhci_input_control_ctx *ctrl_ctx)
1988{
1989	u32 num_dropped_eps;
1990
1991	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992	xhci->num_active_eps -= num_dropped_eps;
1993	if (num_dropped_eps)
1994		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995				"Removing %u dropped ep ctxs, %u now active.",
1996				num_dropped_eps,
1997				xhci->num_active_eps);
1998}
1999
2000static unsigned int xhci_get_block_size(struct usb_device *udev)
2001{
2002	switch (udev->speed) {
2003	case USB_SPEED_LOW:
2004	case USB_SPEED_FULL:
2005		return FS_BLOCK;
2006	case USB_SPEED_HIGH:
2007		return HS_BLOCK;
2008	case USB_SPEED_SUPER:
2009		return SS_BLOCK;
2010	case USB_SPEED_UNKNOWN:
2011	case USB_SPEED_WIRELESS:
2012	default:
2013		/* Should never happen */
2014		return 1;
2015	}
2016}
2017
2018static unsigned int
2019xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020{
2021	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022		return LS_OVERHEAD;
2023	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024		return FS_OVERHEAD;
2025	return HS_OVERHEAD;
2026}
2027
2028/* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
2032static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033		struct xhci_virt_device *virt_dev,
2034		int old_active_eps)
2035{
2036	struct xhci_interval_bw_table *bw_table;
2037	struct xhci_tt_bw_info *tt_info;
2038
2039	/* Find the bandwidth table for the root port this TT is attached to. */
2040	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041	tt_info = virt_dev->tt_info;
2042	/* If this TT already had active endpoints, the bandwidth for this TT
2043	 * has already been added.  Removing all periodic endpoints (and thus
2044	 * making the TT enactive) will only decrease the bandwidth used.
2045	 */
2046	if (old_active_eps)
2047		return 0;
2048	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050			return -ENOMEM;
2051		return 0;
2052	}
2053	/* Not sure why we would have no new active endpoints...
2054	 *
2055	 * Maybe because of an Evaluate Context change for a hub update or a
2056	 * control endpoint 0 max packet size change?
2057	 * FIXME: skip the bandwidth calculation in that case.
2058	 */
2059	return 0;
2060}
2061
2062static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063		struct xhci_virt_device *virt_dev)
2064{
2065	unsigned int bw_reserved;
2066
2067	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069		return -ENOMEM;
2070
2071	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073		return -ENOMEM;
2074
2075	return 0;
2076}
2077
2078/*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval.  The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario.  Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval.  In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in.  For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so.  The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit.  This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval.  We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval.  Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
2119static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120		struct xhci_virt_device *virt_dev,
2121		int old_active_eps)
2122{
2123	unsigned int bw_reserved;
2124	unsigned int max_bandwidth;
2125	unsigned int bw_used;
2126	unsigned int block_size;
2127	struct xhci_interval_bw_table *bw_table;
2128	unsigned int packet_size = 0;
2129	unsigned int overhead = 0;
2130	unsigned int packets_transmitted = 0;
2131	unsigned int packets_remaining = 0;
2132	unsigned int i;
2133
2134	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135		return xhci_check_ss_bw(xhci, virt_dev);
2136
2137	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138		max_bandwidth = HS_BW_LIMIT;
2139		/* Convert percent of bus BW reserved to blocks reserved */
2140		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141	} else {
2142		max_bandwidth = FS_BW_LIMIT;
2143		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144	}
2145
2146	bw_table = virt_dev->bw_table;
2147	/* We need to translate the max packet size and max ESIT payloads into
2148	 * the units the hardware uses.
2149	 */
2150	block_size = xhci_get_block_size(virt_dev->udev);
2151
2152	/* If we are manipulating a LS/FS device under a HS hub, double check
2153	 * that the HS bus has enough bandwidth if we are activing a new TT.
2154	 */
2155	if (virt_dev->tt_info) {
2156		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157				"Recalculating BW for rootport %u",
2158				virt_dev->real_port);
2159		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161					"newly activated TT.\n");
2162			return -ENOMEM;
2163		}
2164		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165				"Recalculating BW for TT slot %u port %u",
2166				virt_dev->tt_info->slot_id,
2167				virt_dev->tt_info->ttport);
2168	} else {
2169		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170				"Recalculating BW for rootport %u",
2171				virt_dev->real_port);
2172	}
2173
2174	/* Add in how much bandwidth will be used for interval zero, or the
2175	 * rounded max ESIT payload + number of packets * largest overhead.
2176	 */
2177	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178		bw_table->interval_bw[0].num_packets *
2179		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182		unsigned int bw_added;
2183		unsigned int largest_mps;
2184		unsigned int interval_overhead;
2185
2186		/*
2187		 * How many packets could we transmit in this interval?
2188		 * If packets didn't fit in the previous interval, we will need
2189		 * to transmit that many packets twice within this interval.
2190		 */
2191		packets_remaining = 2 * packets_remaining +
2192			bw_table->interval_bw[i].num_packets;
2193
2194		/* Find the largest max packet size of this or the previous
2195		 * interval.
2196		 */
2197		if (list_empty(&bw_table->interval_bw[i].endpoints))
2198			largest_mps = 0;
2199		else {
2200			struct xhci_virt_ep *virt_ep;
2201			struct list_head *ep_entry;
2202
2203			ep_entry = bw_table->interval_bw[i].endpoints.next;
2204			virt_ep = list_entry(ep_entry,
2205					struct xhci_virt_ep, bw_endpoint_list);
2206			/* Convert to blocks, rounding up */
2207			largest_mps = DIV_ROUND_UP(
2208					virt_ep->bw_info.max_packet_size,
2209					block_size);
2210		}
2211		if (largest_mps > packet_size)
2212			packet_size = largest_mps;
2213
2214		/* Use the larger overhead of this or the previous interval. */
2215		interval_overhead = xhci_get_largest_overhead(
2216				&bw_table->interval_bw[i]);
2217		if (interval_overhead > overhead)
2218			overhead = interval_overhead;
2219
2220		/* How many packets can we evenly distribute across
2221		 * (1 << (i + 1)) possible scheduling opportunities?
2222		 */
2223		packets_transmitted = packets_remaining >> (i + 1);
2224
2225		/* Add in the bandwidth used for those scheduled packets */
2226		bw_added = packets_transmitted * (overhead + packet_size);
2227
2228		/* How many packets do we have remaining to transmit? */
2229		packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231		/* What largest max packet size should those packets have? */
2232		/* If we've transmitted all packets, don't carry over the
2233		 * largest packet size.
2234		 */
2235		if (packets_remaining == 0) {
2236			packet_size = 0;
2237			overhead = 0;
2238		} else if (packets_transmitted > 0) {
2239			/* Otherwise if we do have remaining packets, and we've
2240			 * scheduled some packets in this interval, take the
2241			 * largest max packet size from endpoints with this
2242			 * interval.
2243			 */
2244			packet_size = largest_mps;
2245			overhead = interval_overhead;
2246		}
2247		/* Otherwise carry over packet_size and overhead from the last
2248		 * time we had a remainder.
2249		 */
2250		bw_used += bw_added;
2251		if (bw_used > max_bandwidth) {
2252			xhci_warn(xhci, "Not enough bandwidth. "
2253					"Proposed: %u, Max: %u\n",
2254				bw_used, max_bandwidth);
2255			return -ENOMEM;
2256		}
2257	}
2258	/*
2259	 * Ok, we know we have some packets left over after even-handedly
2260	 * scheduling interval 15.  We don't know which microframes they will
2261	 * fit into, so we over-schedule and say they will be scheduled every
2262	 * microframe.
2263	 */
2264	if (packets_remaining > 0)
2265		bw_used += overhead + packet_size;
2266
2267	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268		unsigned int port_index = virt_dev->real_port - 1;
2269
2270		/* OK, we're manipulating a HS device attached to a
2271		 * root port bandwidth domain.  Include the number of active TTs
2272		 * in the bandwidth used.
2273		 */
2274		bw_used += TT_HS_OVERHEAD *
2275			xhci->rh_bw[port_index].num_active_tts;
2276	}
2277
2278	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280		"Available: %u " "percent",
2281		bw_used, max_bandwidth, bw_reserved,
2282		(max_bandwidth - bw_used - bw_reserved) * 100 /
2283		max_bandwidth);
2284
2285	bw_used += bw_reserved;
2286	if (bw_used > max_bandwidth) {
2287		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288				bw_used, max_bandwidth);
2289		return -ENOMEM;
2290	}
2291
2292	bw_table->bw_used = bw_used;
2293	return 0;
2294}
2295
2296static bool xhci_is_async_ep(unsigned int ep_type)
2297{
2298	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299					ep_type != ISOC_IN_EP &&
2300					ep_type != INT_IN_EP);
2301}
2302
2303static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304{
2305	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306}
2307
2308static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309{
2310	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312	if (ep_bw->ep_interval == 0)
2313		return SS_OVERHEAD_BURST +
2314			(ep_bw->mult * ep_bw->num_packets *
2315					(SS_OVERHEAD + mps));
2316	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318				1 << ep_bw->ep_interval);
2319
2320}
2321
2322void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323		struct xhci_bw_info *ep_bw,
2324		struct xhci_interval_bw_table *bw_table,
2325		struct usb_device *udev,
2326		struct xhci_virt_ep *virt_ep,
2327		struct xhci_tt_bw_info *tt_info)
2328{
2329	struct xhci_interval_bw	*interval_bw;
2330	int normalized_interval;
2331
2332	if (xhci_is_async_ep(ep_bw->type))
2333		return;
2334
2335	if (udev->speed == USB_SPEED_SUPER) {
2336		if (xhci_is_sync_in_ep(ep_bw->type))
2337			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338				xhci_get_ss_bw_consumed(ep_bw);
2339		else
2340			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341				xhci_get_ss_bw_consumed(ep_bw);
2342		return;
2343	}
2344
2345	/* SuperSpeed endpoints never get added to intervals in the table, so
2346	 * this check is only valid for HS/FS/LS devices.
2347	 */
2348	if (list_empty(&virt_ep->bw_endpoint_list))
2349		return;
2350	/* For LS/FS devices, we need to translate the interval expressed in
2351	 * microframes to frames.
2352	 */
2353	if (udev->speed == USB_SPEED_HIGH)
2354		normalized_interval = ep_bw->ep_interval;
2355	else
2356		normalized_interval = ep_bw->ep_interval - 3;
2357
2358	if (normalized_interval == 0)
2359		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360	interval_bw = &bw_table->interval_bw[normalized_interval];
2361	interval_bw->num_packets -= ep_bw->num_packets;
2362	switch (udev->speed) {
2363	case USB_SPEED_LOW:
2364		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365		break;
2366	case USB_SPEED_FULL:
2367		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368		break;
2369	case USB_SPEED_HIGH:
2370		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371		break;
2372	case USB_SPEED_SUPER:
2373	case USB_SPEED_UNKNOWN:
2374	case USB_SPEED_WIRELESS:
2375		/* Should never happen because only LS/FS/HS endpoints will get
2376		 * added to the endpoint list.
2377		 */
2378		return;
2379	}
2380	if (tt_info)
2381		tt_info->active_eps -= 1;
2382	list_del_init(&virt_ep->bw_endpoint_list);
2383}
2384
2385static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386		struct xhci_bw_info *ep_bw,
2387		struct xhci_interval_bw_table *bw_table,
2388		struct usb_device *udev,
2389		struct xhci_virt_ep *virt_ep,
2390		struct xhci_tt_bw_info *tt_info)
2391{
2392	struct xhci_interval_bw	*interval_bw;
2393	struct xhci_virt_ep *smaller_ep;
2394	int normalized_interval;
2395
2396	if (xhci_is_async_ep(ep_bw->type))
2397		return;
2398
2399	if (udev->speed == USB_SPEED_SUPER) {
2400		if (xhci_is_sync_in_ep(ep_bw->type))
2401			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402				xhci_get_ss_bw_consumed(ep_bw);
2403		else
2404			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405				xhci_get_ss_bw_consumed(ep_bw);
2406		return;
2407	}
2408
2409	/* For LS/FS devices, we need to translate the interval expressed in
2410	 * microframes to frames.
2411	 */
2412	if (udev->speed == USB_SPEED_HIGH)
2413		normalized_interval = ep_bw->ep_interval;
2414	else
2415		normalized_interval = ep_bw->ep_interval - 3;
2416
2417	if (normalized_interval == 0)
2418		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419	interval_bw = &bw_table->interval_bw[normalized_interval];
2420	interval_bw->num_packets += ep_bw->num_packets;
2421	switch (udev->speed) {
2422	case USB_SPEED_LOW:
2423		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424		break;
2425	case USB_SPEED_FULL:
2426		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427		break;
2428	case USB_SPEED_HIGH:
2429		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430		break;
2431	case USB_SPEED_SUPER:
2432	case USB_SPEED_UNKNOWN:
2433	case USB_SPEED_WIRELESS:
2434		/* Should never happen because only LS/FS/HS endpoints will get
2435		 * added to the endpoint list.
2436		 */
2437		return;
2438	}
2439
2440	if (tt_info)
2441		tt_info->active_eps += 1;
2442	/* Insert the endpoint into the list, largest max packet size first. */
2443	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444			bw_endpoint_list) {
2445		if (ep_bw->max_packet_size >=
2446				smaller_ep->bw_info.max_packet_size) {
2447			/* Add the new ep before the smaller endpoint */
2448			list_add_tail(&virt_ep->bw_endpoint_list,
2449					&smaller_ep->bw_endpoint_list);
2450			return;
2451		}
2452	}
2453	/* Add the new endpoint at the end of the list. */
2454	list_add_tail(&virt_ep->bw_endpoint_list,
2455			&interval_bw->endpoints);
2456}
2457
2458void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459		struct xhci_virt_device *virt_dev,
2460		int old_active_eps)
2461{
2462	struct xhci_root_port_bw_info *rh_bw_info;
2463	if (!virt_dev->tt_info)
2464		return;
2465
2466	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467	if (old_active_eps == 0 &&
2468				virt_dev->tt_info->active_eps != 0) {
2469		rh_bw_info->num_active_tts += 1;
2470		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471	} else if (old_active_eps != 0 &&
2472				virt_dev->tt_info->active_eps == 0) {
2473		rh_bw_info->num_active_tts -= 1;
2474		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475	}
2476}
2477
2478static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479		struct xhci_virt_device *virt_dev,
2480		struct xhci_container_ctx *in_ctx)
2481{
2482	struct xhci_bw_info ep_bw_info[31];
2483	int i;
2484	struct xhci_input_control_ctx *ctrl_ctx;
2485	int old_active_eps = 0;
2486
2487	if (virt_dev->tt_info)
2488		old_active_eps = virt_dev->tt_info->active_eps;
2489
2490	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491	if (!ctrl_ctx) {
2492		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493				__func__);
2494		return -ENOMEM;
2495	}
2496
2497	for (i = 0; i < 31; i++) {
2498		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499			continue;
2500
2501		/* Make a copy of the BW info in case we need to revert this */
2502		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503				sizeof(ep_bw_info[i]));
2504		/* Drop the endpoint from the interval table if the endpoint is
2505		 * being dropped or changed.
2506		 */
2507		if (EP_IS_DROPPED(ctrl_ctx, i))
2508			xhci_drop_ep_from_interval_table(xhci,
2509					&virt_dev->eps[i].bw_info,
2510					virt_dev->bw_table,
2511					virt_dev->udev,
2512					&virt_dev->eps[i],
2513					virt_dev->tt_info);
2514	}
2515	/* Overwrite the information stored in the endpoints' bw_info */
2516	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517	for (i = 0; i < 31; i++) {
2518		/* Add any changed or added endpoints to the interval table */
2519		if (EP_IS_ADDED(ctrl_ctx, i))
2520			xhci_add_ep_to_interval_table(xhci,
2521					&virt_dev->eps[i].bw_info,
2522					virt_dev->bw_table,
2523					virt_dev->udev,
2524					&virt_dev->eps[i],
2525					virt_dev->tt_info);
2526	}
2527
2528	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529		/* Ok, this fits in the bandwidth we have.
2530		 * Update the number of active TTs.
2531		 */
2532		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533		return 0;
2534	}
2535
2536	/* We don't have enough bandwidth for this, revert the stored info. */
2537	for (i = 0; i < 31; i++) {
2538		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539			continue;
2540
2541		/* Drop the new copies of any added or changed endpoints from
2542		 * the interval table.
2543		 */
2544		if (EP_IS_ADDED(ctrl_ctx, i)) {
2545			xhci_drop_ep_from_interval_table(xhci,
2546					&virt_dev->eps[i].bw_info,
2547					virt_dev->bw_table,
2548					virt_dev->udev,
2549					&virt_dev->eps[i],
2550					virt_dev->tt_info);
2551		}
2552		/* Revert the endpoint back to its old information */
2553		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554				sizeof(ep_bw_info[i]));
2555		/* Add any changed or dropped endpoints back into the table */
2556		if (EP_IS_DROPPED(ctrl_ctx, i))
2557			xhci_add_ep_to_interval_table(xhci,
2558					&virt_dev->eps[i].bw_info,
2559					virt_dev->bw_table,
2560					virt_dev->udev,
2561					&virt_dev->eps[i],
2562					virt_dev->tt_info);
2563	}
2564	return -ENOMEM;
2565}
2566
2567
2568/* Issue a configure endpoint command or evaluate context command
2569 * and wait for it to finish.
2570 */
2571static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572		struct usb_device *udev,
2573		struct xhci_command *command,
2574		bool ctx_change, bool must_succeed)
2575{
2576	int ret;
2577	int timeleft;
2578	unsigned long flags;
2579	struct xhci_container_ctx *in_ctx;
2580	struct xhci_input_control_ctx *ctrl_ctx;
2581	struct completion *cmd_completion;
2582	u32 *cmd_status;
2583	struct xhci_virt_device *virt_dev;
2584	union xhci_trb *cmd_trb;
2585
2586	spin_lock_irqsave(&xhci->lock, flags);
2587	virt_dev = xhci->devs[udev->slot_id];
2588
2589	if (command)
2590		in_ctx = command->in_ctx;
2591	else
2592		in_ctx = virt_dev->in_ctx;
2593	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594	if (!ctrl_ctx) {
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597				__func__);
2598		return -ENOMEM;
2599	}
2600
2601	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603		spin_unlock_irqrestore(&xhci->lock, flags);
2604		xhci_warn(xhci, "Not enough host resources, "
2605				"active endpoint contexts = %u\n",
2606				xhci->num_active_eps);
2607		return -ENOMEM;
2608	}
2609	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612			xhci_free_host_resources(xhci, ctrl_ctx);
2613		spin_unlock_irqrestore(&xhci->lock, flags);
2614		xhci_warn(xhci, "Not enough bandwidth\n");
2615		return -ENOMEM;
2616	}
2617
2618	if (command) {
2619		cmd_completion = command->completion;
2620		cmd_status = &command->status;
2621		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
 
 
 
 
 
 
 
 
2622		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623	} else {
2624		cmd_completion = &virt_dev->cmd_completion;
2625		cmd_status = &virt_dev->cmd_status;
2626	}
2627	init_completion(cmd_completion);
2628
2629	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630	if (!ctx_change)
2631		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632				udev->slot_id, must_succeed);
2633	else
2634		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635				udev->slot_id, must_succeed);
2636	if (ret < 0) {
2637		if (command)
2638			list_del(&command->cmd_list);
2639		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640			xhci_free_host_resources(xhci, ctrl_ctx);
2641		spin_unlock_irqrestore(&xhci->lock, flags);
2642		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2643				"FIXME allocate a new ring segment");
2644		return -ENOMEM;
2645	}
2646	xhci_ring_cmd_db(xhci);
2647	spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649	/* Wait for the configure endpoint command to complete */
2650	timeleft = wait_for_completion_interruptible_timeout(
2651			cmd_completion,
2652			XHCI_CMD_DEFAULT_TIMEOUT);
2653	if (timeleft <= 0) {
2654		xhci_warn(xhci, "%s while waiting for %s command\n",
2655				timeleft == 0 ? "Timeout" : "Signal",
2656				ctx_change == 0 ?
2657					"configure endpoint" :
2658					"evaluate context");
2659		/* cancel the configure endpoint command */
2660		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661		if (ret < 0)
2662			return ret;
2663		return -ETIME;
2664	}
2665
2666	if (!ctx_change)
2667		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668	else
2669		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670
2671	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672		spin_lock_irqsave(&xhci->lock, flags);
2673		/* If the command failed, remove the reserved resources.
2674		 * Otherwise, clean up the estimate to include dropped eps.
2675		 */
2676		if (ret)
2677			xhci_free_host_resources(xhci, ctrl_ctx);
2678		else
2679			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680		spin_unlock_irqrestore(&xhci->lock, flags);
2681	}
2682	return ret;
2683}
2684
2685static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686	struct xhci_virt_device *vdev, int i)
2687{
2688	struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690	if (ep->ep_state & EP_HAS_STREAMS) {
2691		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692				xhci_get_endpoint_address(i));
2693		xhci_free_stream_info(xhci, ep->stream_info);
2694		ep->stream_info = NULL;
2695		ep->ep_state &= ~EP_HAS_STREAMS;
2696	}
2697}
2698
2699/* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface.  Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710{
2711	int i;
2712	int ret = 0;
2713	struct xhci_hcd *xhci;
2714	struct xhci_virt_device	*virt_dev;
2715	struct xhci_input_control_ctx *ctrl_ctx;
2716	struct xhci_slot_ctx *slot_ctx;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return ret;
2721	xhci = hcd_to_xhci(hcd);
2722	if (xhci->xhc_state & XHCI_STATE_DYING)
2723		return -ENODEV;
2724
2725	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726	virt_dev = xhci->devs[udev->slot_id];
2727
2728	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730	if (!ctrl_ctx) {
2731		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732				__func__);
2733		return -ENOMEM;
2734	}
2735	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738
2739	/* Don't issue the command if there's no endpoints to update. */
2740	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741			ctrl_ctx->drop_flags == 0)
2742		return 0;
2743
2744	xhci_dbg(xhci, "New Input Control Context:\n");
2745	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748
2749	ret = xhci_configure_endpoint(xhci, udev, NULL,
2750			false, false);
2751	if (ret) {
2752		/* Callee should call reset_bandwidth() */
2753		return ret;
2754	}
2755
2756	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2759
2760	/* Free any rings that were dropped, but not changed. */
2761	for (i = 1; i < 31; ++i) {
2762		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766		}
2767	}
2768	xhci_zero_in_ctx(xhci, virt_dev);
2769	/*
2770	 * Install any rings for completely new endpoints or changed endpoints,
2771	 * and free or cache any old rings from changed endpoints.
2772	 */
2773	for (i = 1; i < 31; ++i) {
2774		if (!virt_dev->eps[i].new_ring)
2775			continue;
2776		/* Only cache or free the old ring if it exists.
2777		 * It may not if this is the first add of an endpoint.
2778		 */
2779		if (virt_dev->eps[i].ring) {
2780			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781		}
2782		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784		virt_dev->eps[i].new_ring = NULL;
2785	}
2786
2787	return ret;
2788}
2789
2790void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791{
2792	struct xhci_hcd *xhci;
2793	struct xhci_virt_device	*virt_dev;
2794	int i, ret;
2795
2796	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797	if (ret <= 0)
2798		return;
2799	xhci = hcd_to_xhci(hcd);
2800
2801	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802	virt_dev = xhci->devs[udev->slot_id];
2803	/* Free any rings allocated for added endpoints */
2804	for (i = 0; i < 31; ++i) {
2805		if (virt_dev->eps[i].new_ring) {
2806			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807			virt_dev->eps[i].new_ring = NULL;
2808		}
2809	}
2810	xhci_zero_in_ctx(xhci, virt_dev);
2811}
2812
2813static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814		struct xhci_container_ctx *in_ctx,
2815		struct xhci_container_ctx *out_ctx,
2816		struct xhci_input_control_ctx *ctrl_ctx,
2817		u32 add_flags, u32 drop_flags)
2818{
 
 
2819	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821	xhci_slot_copy(xhci, in_ctx, out_ctx);
2822	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824	xhci_dbg(xhci, "Input Context:\n");
2825	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826}
2827
2828static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829		unsigned int slot_id, unsigned int ep_index,
2830		struct xhci_dequeue_state *deq_state)
2831{
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	struct xhci_container_ctx *in_ctx;
2834	struct xhci_ep_ctx *ep_ctx;
2835	u32 added_ctxs;
2836	dma_addr_t addr;
2837
2838	in_ctx = xhci->devs[slot_id]->in_ctx;
2839	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840	if (!ctrl_ctx) {
2841		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842				__func__);
2843		return;
2844	}
2845
2846	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847			xhci->devs[slot_id]->out_ctx, ep_index);
 
2848	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850			deq_state->new_deq_ptr);
2851	if (addr == 0) {
2852		xhci_warn(xhci, "WARN Cannot submit config ep after "
2853				"reset ep command\n");
2854		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855				deq_state->new_deq_seg,
2856				deq_state->new_deq_ptr);
2857		return;
2858	}
2859	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864			added_ctxs, added_ctxs);
2865}
2866
2867void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868		struct usb_device *udev, unsigned int ep_index)
2869{
2870	struct xhci_dequeue_state deq_state;
2871	struct xhci_virt_ep *ep;
2872
2873	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874			"Cleaning up stalled endpoint ring");
2875	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876	/* We need to move the HW's dequeue pointer past this TD,
2877	 * or it will attempt to resend it on the next doorbell ring.
2878	 */
2879	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880			ep_index, ep->stopped_stream, ep->stopped_td,
2881			&deq_state);
2882
2883	/* HW with the reset endpoint quirk will use the saved dequeue state to
2884	 * issue a configure endpoint command later.
2885	 */
2886	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888				"Queueing new dequeue state");
2889		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890				ep_index, ep->stopped_stream, &deq_state);
2891	} else {
2892		/* Better hope no one uses the input context between now and the
2893		 * reset endpoint completion!
2894		 * XXX: No idea how this hardware will react when stream rings
2895		 * are enabled.
2896		 */
2897		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898				"Setting up input context for "
2899				"configure endpoint command");
2900		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901				ep_index, &deq_state);
2902	}
2903}
2904
2905/* Deal with stalled endpoints.  The core should have sent the control message
2906 * to clear the halt condition.  However, we need to make the xHCI hardware
2907 * reset its sequence number, since a device will expect a sequence number of
2908 * zero after the halt condition is cleared.
2909 * Context: in_interrupt
2910 */
2911void xhci_endpoint_reset(struct usb_hcd *hcd,
2912		struct usb_host_endpoint *ep)
2913{
2914	struct xhci_hcd *xhci;
2915	struct usb_device *udev;
2916	unsigned int ep_index;
2917	unsigned long flags;
2918	int ret;
2919	struct xhci_virt_ep *virt_ep;
2920
2921	xhci = hcd_to_xhci(hcd);
2922	udev = (struct usb_device *) ep->hcpriv;
2923	/* Called with a root hub endpoint (or an endpoint that wasn't added
2924	 * with xhci_add_endpoint()
2925	 */
2926	if (!ep->hcpriv)
2927		return;
2928	ep_index = xhci_get_endpoint_index(&ep->desc);
2929	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930	if (!virt_ep->stopped_td) {
2931		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932			"Endpoint 0x%x not halted, refusing to reset.",
2933			ep->desc.bEndpointAddress);
2934		return;
2935	}
2936	if (usb_endpoint_xfer_control(&ep->desc)) {
2937		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938				"Control endpoint stall already handled.");
2939		return;
2940	}
2941
2942	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943			"Queueing reset endpoint command");
2944	spin_lock_irqsave(&xhci->lock, flags);
2945	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2946	/*
2947	 * Can't change the ring dequeue pointer until it's transitioned to the
2948	 * stopped state, which is only upon a successful reset endpoint
2949	 * command.  Better hope that last command worked!
2950	 */
2951	if (!ret) {
2952		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953		kfree(virt_ep->stopped_td);
2954		xhci_ring_cmd_db(xhci);
2955	}
2956	virt_ep->stopped_td = NULL;
 
2957	virt_ep->stopped_stream = 0;
2958	spin_unlock_irqrestore(&xhci->lock, flags);
2959
2960	if (ret)
2961		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2962}
2963
2964static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2965		struct usb_device *udev, struct usb_host_endpoint *ep,
2966		unsigned int slot_id)
2967{
2968	int ret;
2969	unsigned int ep_index;
2970	unsigned int ep_state;
2971
2972	if (!ep)
2973		return -EINVAL;
2974	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2975	if (ret <= 0)
2976		return -EINVAL;
2977	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2978		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2979				" descriptor for ep 0x%x does not support streams\n",
2980				ep->desc.bEndpointAddress);
2981		return -EINVAL;
2982	}
2983
2984	ep_index = xhci_get_endpoint_index(&ep->desc);
2985	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2986	if (ep_state & EP_HAS_STREAMS ||
2987			ep_state & EP_GETTING_STREAMS) {
2988		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2989				"already has streams set up.\n",
2990				ep->desc.bEndpointAddress);
2991		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2992				"dynamic stream context array reallocation.\n");
2993		return -EINVAL;
2994	}
2995	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2996		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2997				"endpoint 0x%x; URBs are pending.\n",
2998				ep->desc.bEndpointAddress);
2999		return -EINVAL;
3000	}
3001	return 0;
3002}
3003
3004static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3005		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3006{
3007	unsigned int max_streams;
3008
3009	/* The stream context array size must be a power of two */
3010	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3011	/*
3012	 * Find out how many primary stream array entries the host controller
3013	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3014	 * level page entries), but that's an optional feature for xHCI host
3015	 * controllers. xHCs must support at least 4 stream IDs.
3016	 */
3017	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3018	if (*num_stream_ctxs > max_streams) {
3019		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3020				max_streams);
3021		*num_stream_ctxs = max_streams;
3022		*num_streams = max_streams;
3023	}
3024}
3025
3026/* Returns an error code if one of the endpoint already has streams.
3027 * This does not change any data structures, it only checks and gathers
3028 * information.
3029 */
3030static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3031		struct usb_device *udev,
3032		struct usb_host_endpoint **eps, unsigned int num_eps,
3033		unsigned int *num_streams, u32 *changed_ep_bitmask)
3034{
3035	unsigned int max_streams;
3036	unsigned int endpoint_flag;
3037	int i;
3038	int ret;
3039
3040	for (i = 0; i < num_eps; i++) {
3041		ret = xhci_check_streams_endpoint(xhci, udev,
3042				eps[i], udev->slot_id);
3043		if (ret < 0)
3044			return ret;
3045
3046		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3047		if (max_streams < (*num_streams - 1)) {
3048			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3049					eps[i]->desc.bEndpointAddress,
3050					max_streams);
3051			*num_streams = max_streams+1;
3052		}
3053
3054		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3055		if (*changed_ep_bitmask & endpoint_flag)
3056			return -EINVAL;
3057		*changed_ep_bitmask |= endpoint_flag;
3058	}
3059	return 0;
3060}
3061
3062static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3063		struct usb_device *udev,
3064		struct usb_host_endpoint **eps, unsigned int num_eps)
3065{
3066	u32 changed_ep_bitmask = 0;
3067	unsigned int slot_id;
3068	unsigned int ep_index;
3069	unsigned int ep_state;
3070	int i;
3071
3072	slot_id = udev->slot_id;
3073	if (!xhci->devs[slot_id])
3074		return 0;
3075
3076	for (i = 0; i < num_eps; i++) {
3077		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3079		/* Are streams already being freed for the endpoint? */
3080		if (ep_state & EP_GETTING_NO_STREAMS) {
3081			xhci_warn(xhci, "WARN Can't disable streams for "
3082					"endpoint 0x%x, "
3083					"streams are being disabled already\n",
3084					eps[i]->desc.bEndpointAddress);
3085			return 0;
3086		}
3087		/* Are there actually any streams to free? */
3088		if (!(ep_state & EP_HAS_STREAMS) &&
3089				!(ep_state & EP_GETTING_STREAMS)) {
3090			xhci_warn(xhci, "WARN Can't disable streams for "
3091					"endpoint 0x%x, "
3092					"streams are already disabled!\n",
3093					eps[i]->desc.bEndpointAddress);
3094			xhci_warn(xhci, "WARN xhci_free_streams() called "
3095					"with non-streams endpoint\n");
3096			return 0;
3097		}
3098		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3099	}
3100	return changed_ep_bitmask;
3101}
3102
3103/*
3104 * The USB device drivers use this function (though the HCD interface in USB
3105 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3106 * coordinate mass storage command queueing across multiple endpoints (basically
3107 * a stream ID == a task ID).
3108 *
3109 * Setting up streams involves allocating the same size stream context array
3110 * for each endpoint and issuing a configure endpoint command for all endpoints.
3111 *
3112 * Don't allow the call to succeed if one endpoint only supports one stream
3113 * (which means it doesn't support streams at all).
3114 *
3115 * Drivers may get less stream IDs than they asked for, if the host controller
3116 * hardware or endpoints claim they can't support the number of requested
3117 * stream IDs.
3118 */
3119int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3120		struct usb_host_endpoint **eps, unsigned int num_eps,
3121		unsigned int num_streams, gfp_t mem_flags)
3122{
3123	int i, ret;
3124	struct xhci_hcd *xhci;
3125	struct xhci_virt_device *vdev;
3126	struct xhci_command *config_cmd;
3127	struct xhci_input_control_ctx *ctrl_ctx;
3128	unsigned int ep_index;
3129	unsigned int num_stream_ctxs;
3130	unsigned long flags;
3131	u32 changed_ep_bitmask = 0;
3132
3133	if (!eps)
3134		return -EINVAL;
3135
3136	/* Add one to the number of streams requested to account for
3137	 * stream 0 that is reserved for xHCI usage.
3138	 */
3139	num_streams += 1;
3140	xhci = hcd_to_xhci(hcd);
3141	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142			num_streams);
3143
3144	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3146		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3147		return -ENOSYS;
3148	}
3149
3150	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3151	if (!config_cmd) {
3152		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3153		return -ENOMEM;
3154	}
3155	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3156	if (!ctrl_ctx) {
3157		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3158				__func__);
3159		xhci_free_command(xhci, config_cmd);
3160		return -ENOMEM;
3161	}
3162
3163	/* Check to make sure all endpoints are not already configured for
3164	 * streams.  While we're at it, find the maximum number of streams that
3165	 * all the endpoints will support and check for duplicate endpoints.
3166	 */
3167	spin_lock_irqsave(&xhci->lock, flags);
3168	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3169			num_eps, &num_streams, &changed_ep_bitmask);
3170	if (ret < 0) {
3171		xhci_free_command(xhci, config_cmd);
3172		spin_unlock_irqrestore(&xhci->lock, flags);
3173		return ret;
3174	}
3175	if (num_streams <= 1) {
3176		xhci_warn(xhci, "WARN: endpoints can't handle "
3177				"more than one stream.\n");
3178		xhci_free_command(xhci, config_cmd);
3179		spin_unlock_irqrestore(&xhci->lock, flags);
3180		return -EINVAL;
3181	}
3182	vdev = xhci->devs[udev->slot_id];
3183	/* Mark each endpoint as being in transition, so
3184	 * xhci_urb_enqueue() will reject all URBs.
3185	 */
3186	for (i = 0; i < num_eps; i++) {
3187		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3189	}
3190	spin_unlock_irqrestore(&xhci->lock, flags);
3191
3192	/* Setup internal data structures and allocate HW data structures for
3193	 * streams (but don't install the HW structures in the input context
3194	 * until we're sure all memory allocation succeeded).
3195	 */
3196	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3197	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3198			num_stream_ctxs, num_streams);
3199
3200	for (i = 0; i < num_eps; i++) {
3201		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3203				num_stream_ctxs,
3204				num_streams, mem_flags);
3205		if (!vdev->eps[ep_index].stream_info)
3206			goto cleanup;
3207		/* Set maxPstreams in endpoint context and update deq ptr to
3208		 * point to stream context array. FIXME
3209		 */
3210	}
3211
3212	/* Set up the input context for a configure endpoint command. */
3213	for (i = 0; i < num_eps; i++) {
3214		struct xhci_ep_ctx *ep_ctx;
3215
3216		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3217		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3218
3219		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3220				vdev->out_ctx, ep_index);
3221		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3222				vdev->eps[ep_index].stream_info);
3223	}
3224	/* Tell the HW to drop its old copy of the endpoint context info
3225	 * and add the updated copy from the input context.
3226	 */
3227	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3228			vdev->out_ctx, ctrl_ctx,
3229			changed_ep_bitmask, changed_ep_bitmask);
3230
3231	/* Issue and wait for the configure endpoint command */
3232	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3233			false, false);
3234
3235	/* xHC rejected the configure endpoint command for some reason, so we
3236	 * leave the old ring intact and free our internal streams data
3237	 * structure.
3238	 */
3239	if (ret < 0)
3240		goto cleanup;
3241
3242	spin_lock_irqsave(&xhci->lock, flags);
3243	for (i = 0; i < num_eps; i++) {
3244		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3246		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3247			 udev->slot_id, ep_index);
3248		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3249	}
3250	xhci_free_command(xhci, config_cmd);
3251	spin_unlock_irqrestore(&xhci->lock, flags);
3252
3253	/* Subtract 1 for stream 0, which drivers can't use */
3254	return num_streams - 1;
3255
3256cleanup:
3257	/* If it didn't work, free the streams! */
3258	for (i = 0; i < num_eps; i++) {
3259		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3260		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3261		vdev->eps[ep_index].stream_info = NULL;
3262		/* FIXME Unset maxPstreams in endpoint context and
3263		 * update deq ptr to point to normal string ring.
3264		 */
3265		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3266		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3267		xhci_endpoint_zero(xhci, vdev, eps[i]);
3268	}
3269	xhci_free_command(xhci, config_cmd);
3270	return -ENOMEM;
3271}
3272
3273/* Transition the endpoint from using streams to being a "normal" endpoint
3274 * without streams.
3275 *
3276 * Modify the endpoint context state, submit a configure endpoint command,
3277 * and free all endpoint rings for streams if that completes successfully.
3278 */
3279int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3280		struct usb_host_endpoint **eps, unsigned int num_eps,
3281		gfp_t mem_flags)
3282{
3283	int i, ret;
3284	struct xhci_hcd *xhci;
3285	struct xhci_virt_device *vdev;
3286	struct xhci_command *command;
3287	struct xhci_input_control_ctx *ctrl_ctx;
3288	unsigned int ep_index;
3289	unsigned long flags;
3290	u32 changed_ep_bitmask;
3291
3292	xhci = hcd_to_xhci(hcd);
3293	vdev = xhci->devs[udev->slot_id];
3294
3295	/* Set up a configure endpoint command to remove the streams rings */
3296	spin_lock_irqsave(&xhci->lock, flags);
3297	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3298			udev, eps, num_eps);
3299	if (changed_ep_bitmask == 0) {
3300		spin_unlock_irqrestore(&xhci->lock, flags);
3301		return -EINVAL;
3302	}
3303
3304	/* Use the xhci_command structure from the first endpoint.  We may have
3305	 * allocated too many, but the driver may call xhci_free_streams() for
3306	 * each endpoint it grouped into one call to xhci_alloc_streams().
3307	 */
3308	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3309	command = vdev->eps[ep_index].stream_info->free_streams_command;
3310	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3311	if (!ctrl_ctx) {
3312		spin_unlock_irqrestore(&xhci->lock, flags);
3313		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3314				__func__);
3315		return -EINVAL;
3316	}
3317
3318	for (i = 0; i < num_eps; i++) {
3319		struct xhci_ep_ctx *ep_ctx;
3320
3321		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3322		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3323		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3324			EP_GETTING_NO_STREAMS;
3325
3326		xhci_endpoint_copy(xhci, command->in_ctx,
3327				vdev->out_ctx, ep_index);
3328		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3329				&vdev->eps[ep_index]);
3330	}
3331	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3332			vdev->out_ctx, ctrl_ctx,
3333			changed_ep_bitmask, changed_ep_bitmask);
3334	spin_unlock_irqrestore(&xhci->lock, flags);
3335
3336	/* Issue and wait for the configure endpoint command,
3337	 * which must succeed.
3338	 */
3339	ret = xhci_configure_endpoint(xhci, udev, command,
3340			false, true);
3341
3342	/* xHC rejected the configure endpoint command for some reason, so we
3343	 * leave the streams rings intact.
3344	 */
3345	if (ret < 0)
3346		return ret;
3347
3348	spin_lock_irqsave(&xhci->lock, flags);
3349	for (i = 0; i < num_eps; i++) {
3350		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3352		vdev->eps[ep_index].stream_info = NULL;
3353		/* FIXME Unset maxPstreams in endpoint context and
3354		 * update deq ptr to point to normal string ring.
3355		 */
3356		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3357		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3358	}
3359	spin_unlock_irqrestore(&xhci->lock, flags);
3360
3361	return 0;
3362}
3363
3364/*
3365 * Deletes endpoint resources for endpoints that were active before a Reset
3366 * Device command, or a Disable Slot command.  The Reset Device command leaves
3367 * the control endpoint intact, whereas the Disable Slot command deletes it.
3368 *
3369 * Must be called with xhci->lock held.
3370 */
3371void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3372	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3373{
3374	int i;
3375	unsigned int num_dropped_eps = 0;
3376	unsigned int drop_flags = 0;
3377
3378	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3379		if (virt_dev->eps[i].ring) {
3380			drop_flags |= 1 << i;
3381			num_dropped_eps++;
3382		}
3383	}
3384	xhci->num_active_eps -= num_dropped_eps;
3385	if (num_dropped_eps)
3386		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3387				"Dropped %u ep ctxs, flags = 0x%x, "
3388				"%u now active.",
3389				num_dropped_eps, drop_flags,
3390				xhci->num_active_eps);
3391}
3392
3393/*
3394 * This submits a Reset Device Command, which will set the device state to 0,
3395 * set the device address to 0, and disable all the endpoints except the default
3396 * control endpoint.  The USB core should come back and call
3397 * xhci_address_device(), and then re-set up the configuration.  If this is
3398 * called because of a usb_reset_and_verify_device(), then the old alternate
3399 * settings will be re-installed through the normal bandwidth allocation
3400 * functions.
3401 *
3402 * Wait for the Reset Device command to finish.  Remove all structures
3403 * associated with the endpoints that were disabled.  Clear the input device
3404 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3405 *
3406 * If the virt_dev to be reset does not exist or does not match the udev,
3407 * it means the device is lost, possibly due to the xHC restore error and
3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3409 * re-allocate the device.
3410 */
3411int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3412{
3413	int ret, i;
3414	unsigned long flags;
3415	struct xhci_hcd *xhci;
3416	unsigned int slot_id;
3417	struct xhci_virt_device *virt_dev;
3418	struct xhci_command *reset_device_cmd;
3419	int timeleft;
3420	int last_freed_endpoint;
3421	struct xhci_slot_ctx *slot_ctx;
3422	int old_active_eps = 0;
3423
3424	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3425	if (ret <= 0)
3426		return ret;
3427	xhci = hcd_to_xhci(hcd);
3428	slot_id = udev->slot_id;
3429	virt_dev = xhci->devs[slot_id];
3430	if (!virt_dev) {
3431		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3432				"not exist. Re-allocate the device\n", slot_id);
3433		ret = xhci_alloc_dev(hcd, udev);
3434		if (ret == 1)
3435			return 0;
3436		else
3437			return -EINVAL;
3438	}
3439
3440	if (virt_dev->udev != udev) {
3441		/* If the virt_dev and the udev does not match, this virt_dev
3442		 * may belong to another udev.
3443		 * Re-allocate the device.
3444		 */
3445		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3446				"not match the udev. Re-allocate the device\n",
3447				slot_id);
3448		ret = xhci_alloc_dev(hcd, udev);
3449		if (ret == 1)
3450			return 0;
3451		else
3452			return -EINVAL;
3453	}
3454
3455	/* If device is not setup, there is no point in resetting it */
3456	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3457	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3458						SLOT_STATE_DISABLED)
3459		return 0;
3460
3461	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3462	/* Allocate the command structure that holds the struct completion.
3463	 * Assume we're in process context, since the normal device reset
3464	 * process has to wait for the device anyway.  Storage devices are
3465	 * reset as part of error handling, so use GFP_NOIO instead of
3466	 * GFP_KERNEL.
3467	 */
3468	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3469	if (!reset_device_cmd) {
3470		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3471		return -ENOMEM;
3472	}
3473
3474	/* Attempt to submit the Reset Device command to the command ring */
3475	spin_lock_irqsave(&xhci->lock, flags);
3476	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
 
 
 
 
 
 
 
3477
3478	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3479	ret = xhci_queue_reset_device(xhci, slot_id);
3480	if (ret) {
3481		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3482		list_del(&reset_device_cmd->cmd_list);
3483		spin_unlock_irqrestore(&xhci->lock, flags);
3484		goto command_cleanup;
3485	}
3486	xhci_ring_cmd_db(xhci);
3487	spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489	/* Wait for the Reset Device command to finish */
3490	timeleft = wait_for_completion_interruptible_timeout(
3491			reset_device_cmd->completion,
3492			XHCI_CMD_DEFAULT_TIMEOUT);
3493	if (timeleft <= 0) {
3494		xhci_warn(xhci, "%s while waiting for reset device command\n",
3495				timeleft == 0 ? "Timeout" : "Signal");
3496		spin_lock_irqsave(&xhci->lock, flags);
3497		/* The timeout might have raced with the event ring handler, so
3498		 * only delete from the list if the item isn't poisoned.
3499		 */
3500		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3501			list_del(&reset_device_cmd->cmd_list);
3502		spin_unlock_irqrestore(&xhci->lock, flags);
3503		ret = -ETIME;
3504		goto command_cleanup;
3505	}
3506
3507	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508	 * unless we tried to reset a slot ID that wasn't enabled,
3509	 * or the device wasn't in the addressed or configured state.
3510	 */
3511	ret = reset_device_cmd->status;
3512	switch (ret) {
3513	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3515		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516				slot_id,
3517				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518		xhci_dbg(xhci, "Not freeing device rings.\n");
3519		/* Don't treat this as an error.  May change my mind later. */
3520		ret = 0;
3521		goto command_cleanup;
3522	case COMP_SUCCESS:
3523		xhci_dbg(xhci, "Successful reset device command.\n");
3524		break;
3525	default:
3526		if (xhci_is_vendor_info_code(xhci, ret))
3527			break;
3528		xhci_warn(xhci, "Unknown completion code %u for "
3529				"reset device command.\n", ret);
3530		ret = -EINVAL;
3531		goto command_cleanup;
3532	}
3533
3534	/* Free up host controller endpoint resources */
3535	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536		spin_lock_irqsave(&xhci->lock, flags);
3537		/* Don't delete the default control endpoint resources */
3538		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539		spin_unlock_irqrestore(&xhci->lock, flags);
3540	}
3541
3542	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543	last_freed_endpoint = 1;
3544	for (i = 1; i < 31; ++i) {
3545		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546
3547		if (ep->ep_state & EP_HAS_STREAMS) {
3548			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549					xhci_get_endpoint_address(i));
3550			xhci_free_stream_info(xhci, ep->stream_info);
3551			ep->stream_info = NULL;
3552			ep->ep_state &= ~EP_HAS_STREAMS;
3553		}
3554
3555		if (ep->ring) {
3556			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557			last_freed_endpoint = i;
3558		}
3559		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560			xhci_drop_ep_from_interval_table(xhci,
3561					&virt_dev->eps[i].bw_info,
3562					virt_dev->bw_table,
3563					udev,
3564					&virt_dev->eps[i],
3565					virt_dev->tt_info);
3566		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567	}
3568	/* If necessary, update the number of active TTs on this root port */
3569	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570
3571	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573	ret = 0;
3574
3575command_cleanup:
3576	xhci_free_command(xhci, reset_device_cmd);
3577	return ret;
3578}
3579
3580/*
3581 * At this point, the struct usb_device is about to go away, the device has
3582 * disconnected, and all traffic has been stopped and the endpoints have been
3583 * disabled.  Free any HC data structures associated with that device.
3584 */
3585void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586{
3587	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588	struct xhci_virt_device *virt_dev;
3589	unsigned long flags;
3590	u32 state;
3591	int i, ret;
3592
3593#ifndef CONFIG_USB_DEFAULT_PERSIST
3594	/*
3595	 * We called pm_runtime_get_noresume when the device was attached.
3596	 * Decrement the counter here to allow controller to runtime suspend
3597	 * if no devices remain.
3598	 */
3599	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3600		pm_runtime_put_noidle(hcd->self.controller);
3601#endif
3602
3603	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3604	/* If the host is halted due to driver unload, we still need to free the
3605	 * device.
3606	 */
3607	if (ret <= 0 && ret != -ENODEV)
3608		return;
3609
3610	virt_dev = xhci->devs[udev->slot_id];
3611
3612	/* Stop any wayward timer functions (which may grab the lock) */
3613	for (i = 0; i < 31; ++i) {
3614		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3615		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3616	}
3617
 
 
 
 
 
3618	spin_lock_irqsave(&xhci->lock, flags);
3619	/* Don't disable the slot if the host controller is dead. */
3620	state = readl(&xhci->op_regs->status);
3621	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3622			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3623		xhci_free_virt_device(xhci, udev->slot_id);
3624		spin_unlock_irqrestore(&xhci->lock, flags);
3625		return;
3626	}
3627
3628	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3629		spin_unlock_irqrestore(&xhci->lock, flags);
3630		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631		return;
3632	}
3633	xhci_ring_cmd_db(xhci);
3634	spin_unlock_irqrestore(&xhci->lock, flags);
3635	/*
3636	 * Event command completion handler will free any data structures
3637	 * associated with the slot.  XXX Can free sleep?
3638	 */
3639}
3640
3641/*
3642 * Checks if we have enough host controller resources for the default control
3643 * endpoint.
3644 *
3645 * Must be called with xhci->lock held.
3646 */
3647static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3648{
3649	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3650		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3651				"Not enough ep ctxs: "
3652				"%u active, need to add 1, limit is %u.",
3653				xhci->num_active_eps, xhci->limit_active_eps);
3654		return -ENOMEM;
3655	}
3656	xhci->num_active_eps += 1;
3657	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658			"Adding 1 ep ctx, %u now active.",
3659			xhci->num_active_eps);
3660	return 0;
3661}
3662
3663
3664/*
3665 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3666 * timed out, or allocating memory failed.  Returns 1 on success.
3667 */
3668int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3669{
3670	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3671	unsigned long flags;
3672	int timeleft;
3673	int ret;
3674	union xhci_trb *cmd_trb;
3675
3676	spin_lock_irqsave(&xhci->lock, flags);
3677	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3678	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3679	if (ret) {
3680		spin_unlock_irqrestore(&xhci->lock, flags);
3681		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3682		return 0;
3683	}
3684	xhci_ring_cmd_db(xhci);
3685	spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687	/* XXX: how much time for xHC slot assignment? */
3688	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689			XHCI_CMD_DEFAULT_TIMEOUT);
3690	if (timeleft <= 0) {
3691		xhci_warn(xhci, "%s while waiting for a slot\n",
3692				timeleft == 0 ? "Timeout" : "Signal");
3693		/* cancel the enable slot request */
3694		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3695	}
3696
3697	if (!xhci->slot_id) {
3698		xhci_err(xhci, "Error while assigning device slot ID\n");
3699		return 0;
3700	}
3701
3702	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3703		spin_lock_irqsave(&xhci->lock, flags);
3704		ret = xhci_reserve_host_control_ep_resources(xhci);
3705		if (ret) {
3706			spin_unlock_irqrestore(&xhci->lock, flags);
3707			xhci_warn(xhci, "Not enough host resources, "
3708					"active endpoint contexts = %u\n",
3709					xhci->num_active_eps);
3710			goto disable_slot;
3711		}
3712		spin_unlock_irqrestore(&xhci->lock, flags);
3713	}
3714	/* Use GFP_NOIO, since this function can be called from
3715	 * xhci_discover_or_reset_device(), which may be called as part of
3716	 * mass storage driver error handling.
3717	 */
3718	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3719		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3720		goto disable_slot;
3721	}
3722	udev->slot_id = xhci->slot_id;
3723
3724#ifndef CONFIG_USB_DEFAULT_PERSIST
3725	/*
3726	 * If resetting upon resume, we can't put the controller into runtime
3727	 * suspend if there is a device attached.
3728	 */
3729	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3730		pm_runtime_get_noresume(hcd->self.controller);
3731#endif
3732
3733	/* Is this a LS or FS device under a HS hub? */
3734	/* Hub or peripherial? */
3735	return 1;
3736
3737disable_slot:
3738	/* Disable slot, if we can do it without mem alloc */
3739	spin_lock_irqsave(&xhci->lock, flags);
3740	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3741		xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743	return 0;
3744}
3745
3746/*
3747 * Issue an Address Device command and optionally send a corresponding
3748 * SetAddress request to the device.
3749 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3750 * we should only issue and wait on one address command at the same time.
 
 
 
3751 */
3752static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3753			     enum xhci_setup_dev setup)
3754{
3755	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3756	unsigned long flags;
3757	int timeleft;
3758	struct xhci_virt_device *virt_dev;
3759	int ret = 0;
3760	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3761	struct xhci_slot_ctx *slot_ctx;
3762	struct xhci_input_control_ctx *ctrl_ctx;
3763	u64 temp_64;
3764	union xhci_trb *cmd_trb;
3765
3766	if (!udev->slot_id) {
3767		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3768				"Bad Slot ID %d", udev->slot_id);
3769		return -EINVAL;
3770	}
3771
3772	virt_dev = xhci->devs[udev->slot_id];
3773
3774	if (WARN_ON(!virt_dev)) {
3775		/*
3776		 * In plug/unplug torture test with an NEC controller,
3777		 * a zero-dereference was observed once due to virt_dev = 0.
3778		 * Print useful debug rather than crash if it is observed again!
3779		 */
3780		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3781			udev->slot_id);
3782		return -EINVAL;
3783	}
3784
3785	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3786	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3787	if (!ctrl_ctx) {
3788		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3789				__func__);
3790		return -EINVAL;
3791	}
3792	/*
3793	 * If this is the first Set Address since device plug-in or
3794	 * virt_device realloaction after a resume with an xHCI power loss,
3795	 * then set up the slot context.
3796	 */
3797	if (!slot_ctx->dev_info)
3798		xhci_setup_addressable_virt_dev(xhci, udev);
3799	/* Otherwise, update the control endpoint ring enqueue pointer. */
3800	else
3801		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
3802	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3803	ctrl_ctx->drop_flags = 0;
3804
3805	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3806	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3807	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3808				le32_to_cpu(slot_ctx->dev_info) >> 27);
3809
3810	spin_lock_irqsave(&xhci->lock, flags);
3811	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3812	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3813					udev->slot_id, setup);
3814	if (ret) {
3815		spin_unlock_irqrestore(&xhci->lock, flags);
3816		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3817				"FIXME: allocate a command ring segment");
3818		return ret;
3819	}
3820	xhci_ring_cmd_db(xhci);
3821	spin_unlock_irqrestore(&xhci->lock, flags);
3822
3823	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3824	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3825			XHCI_CMD_DEFAULT_TIMEOUT);
3826	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3827	 * the SetAddress() "recovery interval" required by USB and aborting the
3828	 * command on a timeout.
3829	 */
3830	if (timeleft <= 0) {
3831		xhci_warn(xhci, "%s while waiting for setup %s command\n",
3832			  timeleft == 0 ? "Timeout" : "Signal", act);
3833		/* cancel the address device command */
3834		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3835		if (ret < 0)
3836			return ret;
3837		return -ETIME;
3838	}
3839
3840	switch (virt_dev->cmd_status) {
3841	case COMP_CTX_STATE:
3842	case COMP_EBADSLT:
3843		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3844			 act, udev->slot_id);
3845		ret = -EINVAL;
3846		break;
3847	case COMP_TX_ERR:
3848		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3849		ret = -EPROTO;
3850		break;
3851	case COMP_DEV_ERR:
3852		dev_warn(&udev->dev,
3853			 "ERROR: Incompatible device for setup %s command\n", act);
3854		ret = -ENODEV;
3855		break;
3856	case COMP_SUCCESS:
3857		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858			       "Successful setup %s command", act);
3859		break;
3860	default:
3861		xhci_err(xhci,
3862			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3863			 act, virt_dev->cmd_status);
3864		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3865		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3866		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3867		ret = -EINVAL;
3868		break;
3869	}
3870	if (ret) {
3871		return ret;
3872	}
3873	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3874	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875			"Op regs DCBAA ptr = %#016llx", temp_64);
3876	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877		"Slot ID %d dcbaa entry @%p = %#016llx",
3878		udev->slot_id,
3879		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3880		(unsigned long long)
3881		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3882	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883			"Output Context DMA address = %#08llx",
3884			(unsigned long long)virt_dev->out_ctx->dma);
3885	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3886	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3887	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3888				le32_to_cpu(slot_ctx->dev_info) >> 27);
3889	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3890	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3891	/*
3892	 * USB core uses address 1 for the roothubs, so we add one to the
3893	 * address given back to us by the HC.
3894	 */
3895	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3896	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3897				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
3898	/* Zero the input context control for later use */
3899	ctrl_ctx->add_flags = 0;
3900	ctrl_ctx->drop_flags = 0;
3901
3902	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903		       "Internal device address = %d",
3904		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3905
3906	return 0;
3907}
3908
3909int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3910{
3911	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3912}
3913
3914int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3915{
3916	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3917}
3918
3919/*
3920 * Transfer the port index into real index in the HW port status
3921 * registers. Caculate offset between the port's PORTSC register
3922 * and port status base. Divide the number of per port register
3923 * to get the real index. The raw port number bases 1.
3924 */
3925int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3926{
3927	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3929	__le32 __iomem *addr;
3930	int raw_port;
3931
3932	if (hcd->speed != HCD_USB3)
3933		addr = xhci->usb2_ports[port1 - 1];
3934	else
3935		addr = xhci->usb3_ports[port1 - 1];
3936
3937	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3938	return raw_port;
3939}
3940
3941/*
3942 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3943 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3944 */
3945static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3946			struct usb_device *udev, u16 max_exit_latency)
3947{
3948	struct xhci_virt_device *virt_dev;
3949	struct xhci_command *command;
3950	struct xhci_input_control_ctx *ctrl_ctx;
3951	struct xhci_slot_ctx *slot_ctx;
3952	unsigned long flags;
3953	int ret;
3954
3955	spin_lock_irqsave(&xhci->lock, flags);
3956	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3957		spin_unlock_irqrestore(&xhci->lock, flags);
3958		return 0;
3959	}
3960
3961	/* Attempt to issue an Evaluate Context command to change the MEL. */
3962	virt_dev = xhci->devs[udev->slot_id];
3963	command = xhci->lpm_command;
3964	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3965	if (!ctrl_ctx) {
3966		spin_unlock_irqrestore(&xhci->lock, flags);
3967		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3968				__func__);
3969		return -ENOMEM;
3970	}
3971
3972	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3973	spin_unlock_irqrestore(&xhci->lock, flags);
3974
3975	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3976	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3977	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3978	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3979
3980	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3981			"Set up evaluate context for LPM MEL change.");
3982	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3983	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3984
3985	/* Issue and wait for the evaluate context command. */
3986	ret = xhci_configure_endpoint(xhci, udev, command,
3987			true, true);
3988	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3989	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3990
3991	if (!ret) {
3992		spin_lock_irqsave(&xhci->lock, flags);
3993		virt_dev->current_mel = max_exit_latency;
3994		spin_unlock_irqrestore(&xhci->lock, flags);
3995	}
3996	return ret;
3997}
3998
3999#ifdef CONFIG_PM_RUNTIME
4000
4001/* BESL to HIRD Encoding array for USB2 LPM */
4002static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4003	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4004
4005/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4006static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4007					struct usb_device *udev)
4008{
4009	int u2del, besl, besl_host;
4010	int besl_device = 0;
4011	u32 field;
4012
4013	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4014	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016	if (field & USB_BESL_SUPPORT) {
4017		for (besl_host = 0; besl_host < 16; besl_host++) {
4018			if (xhci_besl_encoding[besl_host] >= u2del)
4019				break;
4020		}
4021		/* Use baseline BESL value as default */
4022		if (field & USB_BESL_BASELINE_VALID)
4023			besl_device = USB_GET_BESL_BASELINE(field);
4024		else if (field & USB_BESL_DEEP_VALID)
4025			besl_device = USB_GET_BESL_DEEP(field);
4026	} else {
4027		if (u2del <= 50)
4028			besl_host = 0;
4029		else
4030			besl_host = (u2del - 51) / 75 + 1;
4031	}
4032
4033	besl = besl_host + besl_device;
4034	if (besl > 15)
4035		besl = 15;
4036
4037	return besl;
4038}
4039
4040/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4041static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4042{
4043	u32 field;
4044	int l1;
4045	int besld = 0;
4046	int hirdm = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4047
4048	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
 
4049
4050	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4051	l1 = udev->l1_params.timeout / 256;
 
 
 
 
 
 
 
 
4052
4053	/* device has preferred BESLD */
4054	if (field & USB_BESL_DEEP_VALID) {
4055		besld = USB_GET_BESL_DEEP(field);
4056		hirdm = 1;
 
 
 
 
 
 
 
 
 
 
4057	}
4058
4059	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
 
 
4060}
4061
4062int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4063			struct usb_device *udev, int enable)
4064{
4065	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4066	__le32 __iomem	**port_array;
4067	__le32 __iomem	*pm_addr, *hlpm_addr;
4068	u32		pm_val, hlpm_val, field;
4069	unsigned int	port_num;
4070	unsigned long	flags;
4071	int		hird, exit_latency;
4072	int		ret;
4073
4074	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4075			!udev->lpm_capable)
4076		return -EPERM;
4077
4078	if (!udev->parent || udev->parent->parent ||
4079			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4080		return -EPERM;
4081
4082	if (udev->usb2_hw_lpm_capable != 1)
4083		return -EPERM;
4084
4085	spin_lock_irqsave(&xhci->lock, flags);
4086
4087	port_array = xhci->usb2_ports;
4088	port_num = udev->portnum - 1;
4089	pm_addr = port_array[port_num] + PORTPMSC;
4090	pm_val = readl(pm_addr);
4091	hlpm_addr = port_array[port_num] + PORTHLPMC;
4092	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093
4094	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4095			enable ? "enable" : "disable", port_num);
4096
 
 
4097	if (enable) {
4098		/* Host supports BESL timeout instead of HIRD */
4099		if (udev->usb2_hw_lpm_besl_capable) {
4100			/* if device doesn't have a preferred BESL value use a
4101			 * default one which works with mixed HIRD and BESL
4102			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4103			 */
4104			if ((field & USB_BESL_SUPPORT) &&
4105			    (field & USB_BESL_BASELINE_VALID))
4106				hird = USB_GET_BESL_BASELINE(field);
4107			else
4108				hird = udev->l1_params.besl;
4109
4110			exit_latency = xhci_besl_encoding[hird];
4111			spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4114			 * input context for link powermanagement evaluate
4115			 * context commands. It is protected by hcd->bandwidth
4116			 * mutex and is shared by all devices. We need to set
4117			 * the max ext latency in USB 2 BESL LPM as well, so
4118			 * use the same mutex and xhci_change_max_exit_latency()
4119			 */
4120			mutex_lock(hcd->bandwidth_mutex);
4121			ret = xhci_change_max_exit_latency(xhci, udev,
4122							   exit_latency);
4123			mutex_unlock(hcd->bandwidth_mutex);
4124
4125			if (ret < 0)
4126				return ret;
4127			spin_lock_irqsave(&xhci->lock, flags);
4128
4129			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4130			writel(hlpm_val, hlpm_addr);
4131			/* flush write */
4132			readl(hlpm_addr);
4133		} else {
4134			hird = xhci_calculate_hird_besl(xhci, udev);
4135		}
4136
4137		pm_val &= ~PORT_HIRD_MASK;
4138		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4139		writel(pm_val, pm_addr);
4140		pm_val = readl(pm_addr);
4141		pm_val |= PORT_HLE;
4142		writel(pm_val, pm_addr);
4143		/* flush write */
4144		readl(pm_addr);
4145	} else {
4146		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4147		writel(pm_val, pm_addr);
4148		/* flush write */
4149		readl(pm_addr);
4150		if (udev->usb2_hw_lpm_besl_capable) {
4151			spin_unlock_irqrestore(&xhci->lock, flags);
4152			mutex_lock(hcd->bandwidth_mutex);
4153			xhci_change_max_exit_latency(xhci, udev, 0);
4154			mutex_unlock(hcd->bandwidth_mutex);
4155			return 0;
4156		}
4157	}
4158
4159	spin_unlock_irqrestore(&xhci->lock, flags);
4160	return 0;
4161}
4162
4163/* check if a usb2 port supports a given extened capability protocol
4164 * only USB2 ports extended protocol capability values are cached.
4165 * Return 1 if capability is supported
4166 */
4167static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4168					   unsigned capability)
4169{
4170	u32 port_offset, port_count;
4171	int i;
4172
4173	for (i = 0; i < xhci->num_ext_caps; i++) {
4174		if (xhci->ext_caps[i] & capability) {
4175			/* port offsets starts at 1 */
4176			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4177			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4178			if (port >= port_offset &&
4179			    port < port_offset + port_count)
4180				return 1;
4181		}
4182	}
4183	return 0;
4184}
4185
4186int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4187{
4188	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4189	int		portnum = udev->portnum - 1;
4190
4191	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4192			!udev->lpm_capable)
4193		return 0;
4194
4195	/* we only support lpm for non-hub device connected to root hub yet */
4196	if (!udev->parent || udev->parent->parent ||
4197			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4198		return 0;
4199
4200	if (xhci->hw_lpm_support == 1 &&
4201			xhci_check_usb2_port_capability(
4202				xhci, portnum, XHCI_HLC)) {
4203		udev->usb2_hw_lpm_capable = 1;
4204		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206		if (xhci_check_usb2_port_capability(xhci, portnum,
4207					XHCI_BLC))
4208			udev->usb2_hw_lpm_besl_capable = 1;
4209	}
4210
4211	return 0;
4212}
4213
4214#else
4215
4216int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217				struct usb_device *udev, int enable)
4218{
4219	return 0;
4220}
4221
4222int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4223{
4224	return 0;
4225}
4226
4227#endif /* CONFIG_PM_RUNTIME */
4228
4229/*---------------------- USB 3.0 Link PM functions ------------------------*/
4230
4231#ifdef CONFIG_PM
4232/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4233static unsigned long long xhci_service_interval_to_ns(
4234		struct usb_endpoint_descriptor *desc)
4235{
4236	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4237}
4238
4239static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4240		enum usb3_link_state state)
4241{
4242	unsigned long long sel;
4243	unsigned long long pel;
4244	unsigned int max_sel_pel;
4245	char *state_name;
4246
4247	switch (state) {
4248	case USB3_LPM_U1:
4249		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4250		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4251		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4252		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4253		state_name = "U1";
4254		break;
4255	case USB3_LPM_U2:
4256		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4257		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4258		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4259		state_name = "U2";
4260		break;
4261	default:
4262		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4263				__func__);
4264		return USB3_LPM_DISABLED;
4265	}
4266
4267	if (sel <= max_sel_pel && pel <= max_sel_pel)
4268		return USB3_LPM_DEVICE_INITIATED;
4269
4270	if (sel > max_sel_pel)
4271		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4272				"due to long SEL %llu ms\n",
4273				state_name, sel);
4274	else
4275		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4276				"due to long PEL %llu ms\n",
4277				state_name, pel);
4278	return USB3_LPM_DISABLED;
4279}
4280
4281/* Returns the hub-encoded U1 timeout value.
4282 * The U1 timeout should be the maximum of the following values:
4283 *  - For control endpoints, U1 system exit latency (SEL) * 3
4284 *  - For bulk endpoints, U1 SEL * 5
4285 *  - For interrupt endpoints:
4286 *    - Notification EPs, U1 SEL * 3
4287 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4288 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4289 */
4290static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4291		struct usb_endpoint_descriptor *desc)
4292{
4293	unsigned long long timeout_ns;
4294	int ep_type;
4295	int intr_type;
4296
4297	ep_type = usb_endpoint_type(desc);
4298	switch (ep_type) {
4299	case USB_ENDPOINT_XFER_CONTROL:
4300		timeout_ns = udev->u1_params.sel * 3;
4301		break;
4302	case USB_ENDPOINT_XFER_BULK:
4303		timeout_ns = udev->u1_params.sel * 5;
4304		break;
4305	case USB_ENDPOINT_XFER_INT:
4306		intr_type = usb_endpoint_interrupt_type(desc);
4307		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4308			timeout_ns = udev->u1_params.sel * 3;
4309			break;
4310		}
4311		/* Otherwise the calculation is the same as isoc eps */
4312	case USB_ENDPOINT_XFER_ISOC:
4313		timeout_ns = xhci_service_interval_to_ns(desc);
4314		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4315		if (timeout_ns < udev->u1_params.sel * 2)
4316			timeout_ns = udev->u1_params.sel * 2;
4317		break;
4318	default:
4319		return 0;
4320	}
4321
4322	/* The U1 timeout is encoded in 1us intervals. */
4323	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4324	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4325	if (timeout_ns == USB3_LPM_DISABLED)
4326		timeout_ns++;
4327
4328	/* If the necessary timeout value is bigger than what we can set in the
4329	 * USB 3.0 hub, we have to disable hub-initiated U1.
4330	 */
4331	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4332		return timeout_ns;
4333	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4334			"due to long timeout %llu ms\n", timeout_ns);
4335	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4336}
4337
4338/* Returns the hub-encoded U2 timeout value.
4339 * The U2 timeout should be the maximum of:
4340 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4341 *  - largest bInterval of any active periodic endpoint (to avoid going
4342 *    into lower power link states between intervals).
4343 *  - the U2 Exit Latency of the device
4344 */
4345static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4346		struct usb_endpoint_descriptor *desc)
4347{
4348	unsigned long long timeout_ns;
4349	unsigned long long u2_del_ns;
4350
4351	timeout_ns = 10 * 1000 * 1000;
4352
4353	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4354			(xhci_service_interval_to_ns(desc) > timeout_ns))
4355		timeout_ns = xhci_service_interval_to_ns(desc);
4356
4357	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4358	if (u2_del_ns > timeout_ns)
4359		timeout_ns = u2_del_ns;
4360
4361	/* The U2 timeout is encoded in 256us intervals */
4362	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363	/* If the necessary timeout value is bigger than what we can set in the
4364	 * USB 3.0 hub, we have to disable hub-initiated U2.
4365	 */
4366	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367		return timeout_ns;
4368	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369			"due to long timeout %llu ms\n", timeout_ns);
4370	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371}
4372
4373static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374		struct usb_device *udev,
4375		struct usb_endpoint_descriptor *desc,
4376		enum usb3_link_state state,
4377		u16 *timeout)
4378{
4379	if (state == USB3_LPM_U1) {
4380		if (xhci->quirks & XHCI_INTEL_HOST)
4381			return xhci_calculate_intel_u1_timeout(udev, desc);
4382	} else {
4383		if (xhci->quirks & XHCI_INTEL_HOST)
4384			return xhci_calculate_intel_u2_timeout(udev, desc);
4385	}
4386
4387	return USB3_LPM_DISABLED;
4388}
4389
4390static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4391		struct usb_device *udev,
4392		struct usb_endpoint_descriptor *desc,
4393		enum usb3_link_state state,
4394		u16 *timeout)
4395{
4396	u16 alt_timeout;
4397
4398	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4399		desc, state, timeout);
4400
4401	/* If we found we can't enable hub-initiated LPM, or
4402	 * the U1 or U2 exit latency was too high to allow
4403	 * device-initiated LPM as well, just stop searching.
4404	 */
4405	if (alt_timeout == USB3_LPM_DISABLED ||
4406			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4407		*timeout = alt_timeout;
4408		return -E2BIG;
4409	}
4410	if (alt_timeout > *timeout)
4411		*timeout = alt_timeout;
4412	return 0;
4413}
4414
4415static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4416		struct usb_device *udev,
4417		struct usb_host_interface *alt,
4418		enum usb3_link_state state,
4419		u16 *timeout)
4420{
4421	int j;
4422
4423	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4424		if (xhci_update_timeout_for_endpoint(xhci, udev,
4425					&alt->endpoint[j].desc, state, timeout))
4426			return -E2BIG;
4427		continue;
4428	}
4429	return 0;
4430}
4431
4432static int xhci_check_intel_tier_policy(struct usb_device *udev,
4433		enum usb3_link_state state)
4434{
4435	struct usb_device *parent;
4436	unsigned int num_hubs;
4437
4438	if (state == USB3_LPM_U2)
4439		return 0;
4440
4441	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4442	for (parent = udev->parent, num_hubs = 0; parent->parent;
4443			parent = parent->parent)
4444		num_hubs++;
4445
4446	if (num_hubs < 2)
4447		return 0;
4448
4449	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4450			" below second-tier hub.\n");
4451	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4452			"to decrease power consumption.\n");
4453	return -E2BIG;
4454}
4455
4456static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4457		struct usb_device *udev,
4458		enum usb3_link_state state)
4459{
4460	if (xhci->quirks & XHCI_INTEL_HOST)
4461		return xhci_check_intel_tier_policy(udev, state);
4462	return -EINVAL;
4463}
4464
4465/* Returns the U1 or U2 timeout that should be enabled.
4466 * If the tier check or timeout setting functions return with a non-zero exit
4467 * code, that means the timeout value has been finalized and we shouldn't look
4468 * at any more endpoints.
4469 */
4470static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471			struct usb_device *udev, enum usb3_link_state state)
4472{
4473	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474	struct usb_host_config *config;
4475	char *state_name;
4476	int i;
4477	u16 timeout = USB3_LPM_DISABLED;
4478
4479	if (state == USB3_LPM_U1)
4480		state_name = "U1";
4481	else if (state == USB3_LPM_U2)
4482		state_name = "U2";
4483	else {
4484		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485				state);
4486		return timeout;
4487	}
4488
4489	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490		return timeout;
4491
4492	/* Gather some information about the currently installed configuration
4493	 * and alternate interface settings.
4494	 */
4495	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496			state, &timeout))
4497		return timeout;
4498
4499	config = udev->actconfig;
4500	if (!config)
4501		return timeout;
4502
4503	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504		struct usb_driver *driver;
4505		struct usb_interface *intf = config->interface[i];
4506
4507		if (!intf)
4508			continue;
4509
4510		/* Check if any currently bound drivers want hub-initiated LPM
4511		 * disabled.
4512		 */
4513		if (intf->dev.driver) {
4514			driver = to_usb_driver(intf->dev.driver);
4515			if (driver && driver->disable_hub_initiated_lpm) {
4516				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517						"at request of driver %s\n",
4518						state_name, driver->name);
4519				return xhci_get_timeout_no_hub_lpm(udev, state);
4520			}
4521		}
4522
4523		/* Not sure how this could happen... */
4524		if (!intf->cur_altsetting)
4525			continue;
4526
4527		if (xhci_update_timeout_for_interface(xhci, udev,
4528					intf->cur_altsetting,
4529					state, &timeout))
4530			return timeout;
4531	}
4532	return timeout;
4533}
4534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4535static int calculate_max_exit_latency(struct usb_device *udev,
4536		enum usb3_link_state state_changed,
4537		u16 hub_encoded_timeout)
4538{
4539	unsigned long long u1_mel_us = 0;
4540	unsigned long long u2_mel_us = 0;
4541	unsigned long long mel_us = 0;
4542	bool disabling_u1;
4543	bool disabling_u2;
4544	bool enabling_u1;
4545	bool enabling_u2;
4546
4547	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548			hub_encoded_timeout == USB3_LPM_DISABLED);
4549	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550			hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553			hub_encoded_timeout != USB3_LPM_DISABLED);
4554	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555			hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557	/* If U1 was already enabled and we're not disabling it,
4558	 * or we're going to enable U1, account for the U1 max exit latency.
4559	 */
4560	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561			enabling_u1)
4562		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564			enabling_u2)
4565		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567	if (u1_mel_us > u2_mel_us)
4568		mel_us = u1_mel_us;
4569	else
4570		mel_us = u2_mel_us;
4571	/* xHCI host controller max exit latency field is only 16 bits wide. */
4572	if (mel_us > MAX_EXIT) {
4573		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574				"is too big.\n", mel_us);
4575		return -E2BIG;
4576	}
4577	return mel_us;
4578}
4579
4580/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582			struct usb_device *udev, enum usb3_link_state state)
4583{
4584	struct xhci_hcd	*xhci;
4585	u16 hub_encoded_timeout;
4586	int mel;
4587	int ret;
4588
4589	xhci = hcd_to_xhci(hcd);
4590	/* The LPM timeout values are pretty host-controller specific, so don't
4591	 * enable hub-initiated timeouts unless the vendor has provided
4592	 * information about their timeout algorithm.
4593	 */
4594	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595			!xhci->devs[udev->slot_id])
4596		return USB3_LPM_DISABLED;
4597
4598	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600	if (mel < 0) {
4601		/* Max Exit Latency is too big, disable LPM. */
4602		hub_encoded_timeout = USB3_LPM_DISABLED;
4603		mel = 0;
4604	}
4605
4606	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607	if (ret)
4608		return ret;
4609	return hub_encoded_timeout;
4610}
4611
4612int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613			struct usb_device *udev, enum usb3_link_state state)
4614{
4615	struct xhci_hcd	*xhci;
4616	u16 mel;
4617	int ret;
4618
4619	xhci = hcd_to_xhci(hcd);
4620	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4621			!xhci->devs[udev->slot_id])
4622		return 0;
4623
4624	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4625	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4626	if (ret)
4627		return ret;
4628	return 0;
4629}
4630#else /* CONFIG_PM */
4631
4632int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4633			struct usb_device *udev, enum usb3_link_state state)
4634{
4635	return USB3_LPM_DISABLED;
4636}
4637
4638int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639			struct usb_device *udev, enum usb3_link_state state)
4640{
4641	return 0;
4642}
4643#endif	/* CONFIG_PM */
4644
4645/*-------------------------------------------------------------------------*/
4646
4647/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4648 * internal data structures for the device.
4649 */
4650int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4651			struct usb_tt *tt, gfp_t mem_flags)
4652{
4653	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4654	struct xhci_virt_device *vdev;
4655	struct xhci_command *config_cmd;
4656	struct xhci_input_control_ctx *ctrl_ctx;
4657	struct xhci_slot_ctx *slot_ctx;
4658	unsigned long flags;
4659	unsigned think_time;
4660	int ret;
4661
4662	/* Ignore root hubs */
4663	if (!hdev->parent)
4664		return 0;
4665
4666	vdev = xhci->devs[hdev->slot_id];
4667	if (!vdev) {
4668		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4669		return -EINVAL;
4670	}
4671	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4672	if (!config_cmd) {
4673		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4674		return -ENOMEM;
4675	}
4676	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4677	if (!ctrl_ctx) {
4678		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4679				__func__);
4680		xhci_free_command(xhci, config_cmd);
4681		return -ENOMEM;
4682	}
4683
4684	spin_lock_irqsave(&xhci->lock, flags);
4685	if (hdev->speed == USB_SPEED_HIGH &&
4686			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4687		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4688		xhci_free_command(xhci, config_cmd);
4689		spin_unlock_irqrestore(&xhci->lock, flags);
4690		return -ENOMEM;
4691	}
4692
4693	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
4694	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4695	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4696	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4697	if (tt->multi)
4698		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4699	if (xhci->hci_version > 0x95) {
4700		xhci_dbg(xhci, "xHCI version %x needs hub "
4701				"TT think time and number of ports\n",
4702				(unsigned int) xhci->hci_version);
4703		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4704		/* Set TT think time - convert from ns to FS bit times.
4705		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4706		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4707		 *
4708		 * xHCI 1.0: this field shall be 0 if the device is not a
4709		 * High-spped hub.
4710		 */
4711		think_time = tt->think_time;
4712		if (think_time != 0)
4713			think_time = (think_time / 666) - 1;
4714		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4715			slot_ctx->tt_info |=
4716				cpu_to_le32(TT_THINK_TIME(think_time));
4717	} else {
4718		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4719				"TT think time or number of ports\n",
4720				(unsigned int) xhci->hci_version);
4721	}
4722	slot_ctx->dev_state = 0;
4723	spin_unlock_irqrestore(&xhci->lock, flags);
4724
4725	xhci_dbg(xhci, "Set up %s for hub device.\n",
4726			(xhci->hci_version > 0x95) ?
4727			"configure endpoint" : "evaluate context");
4728	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4729	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4730
4731	/* Issue and wait for the configure endpoint or
4732	 * evaluate context command.
4733	 */
4734	if (xhci->hci_version > 0x95)
4735		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4736				false, false);
4737	else
4738		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4739				true, false);
4740
4741	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4742	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4743
4744	xhci_free_command(xhci, config_cmd);
4745	return ret;
4746}
4747
4748int xhci_get_frame(struct usb_hcd *hcd)
4749{
4750	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4751	/* EHCI mods by the periodic size.  Why? */
4752	return readl(&xhci->run_regs->microframe_index) >> 3;
4753}
4754
4755int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4756{
4757	struct xhci_hcd		*xhci;
4758	struct device		*dev = hcd->self.controller;
4759	int			retval;
 
4760
4761	/* Accept arbitrarily long scatter-gather lists */
4762	hcd->self.sg_tablesize = ~0;
4763
4764	/* support to build packet from discontinuous buffers */
4765	hcd->self.no_sg_constraint = 1;
4766
4767	/* XHCI controllers don't stop the ep queue on short packets :| */
4768	hcd->self.no_stop_on_short = 1;
4769
4770	if (usb_hcd_is_primary_hcd(hcd)) {
4771		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4772		if (!xhci)
4773			return -ENOMEM;
4774		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4775		xhci->main_hcd = hcd;
4776		/* Mark the first roothub as being USB 2.0.
4777		 * The xHCI driver will register the USB 3.0 roothub.
4778		 */
4779		hcd->speed = HCD_USB2;
4780		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4781		/*
4782		 * USB 2.0 roothub under xHCI has an integrated TT,
4783		 * (rate matching hub) as opposed to having an OHCI/UHCI
4784		 * companion controller.
4785		 */
4786		hcd->has_tt = 1;
4787	} else {
4788		/* xHCI private pointer was set in xhci_pci_probe for the second
4789		 * registered roothub.
4790		 */
 
 
 
 
 
 
 
 
4791		return 0;
4792	}
4793
4794	xhci->cap_regs = hcd->regs;
4795	xhci->op_regs = hcd->regs +
4796		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4797	xhci->run_regs = hcd->regs +
4798		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4799	/* Cache read-only capability registers */
4800	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4801	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4802	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4803	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4804	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4805	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4806	xhci_print_registers(xhci);
4807
4808	xhci->quirks = quirks;
4809
4810	get_quirks(dev, xhci);
4811
4812	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4813	 * success event after a short transfer. This quirk will ignore such
4814	 * spurious event.
4815	 */
4816	if (xhci->hci_version > 0x96)
4817		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4818
4819	/* Make sure the HC is halted. */
4820	retval = xhci_halt(xhci);
4821	if (retval)
4822		goto error;
4823
4824	xhci_dbg(xhci, "Resetting HCD\n");
4825	/* Reset the internal HC memory state and registers. */
4826	retval = xhci_reset(xhci);
4827	if (retval)
4828		goto error;
4829	xhci_dbg(xhci, "Reset complete\n");
4830
4831	/* Set dma_mask and coherent_dma_mask to 64-bits,
4832	 * if xHC supports 64-bit addressing */
4833	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4834			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4835		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4836		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
 
 
4837	}
4838
4839	xhci_dbg(xhci, "Calling HCD init\n");
4840	/* Initialize HCD and host controller data structures. */
4841	retval = xhci_init(hcd);
4842	if (retval)
4843		goto error;
4844	xhci_dbg(xhci, "Called HCD init\n");
4845	return 0;
4846error:
4847	kfree(xhci);
4848	return retval;
4849}
4850
4851MODULE_DESCRIPTION(DRIVER_DESC);
4852MODULE_AUTHOR(DRIVER_AUTHOR);
4853MODULE_LICENSE("GPL");
4854
4855static int __init xhci_hcd_init(void)
4856{
4857	int retval;
4858
4859	retval = xhci_register_pci();
4860	if (retval < 0) {
4861		pr_debug("Problem registering PCI driver.\n");
4862		return retval;
4863	}
4864	retval = xhci_register_plat();
4865	if (retval < 0) {
4866		pr_debug("Problem registering platform driver.\n");
4867		goto unreg_pci;
4868	}
4869	/*
4870	 * Check the compiler generated sizes of structures that must be laid
4871	 * out in specific ways for hardware access.
4872	 */
4873	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4874	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4875	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4876	/* xhci_device_control has eight fields, and also
4877	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4878	 */
4879	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4880	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4881	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4882	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4883	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4884	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4885	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4886	return 0;
4887unreg_pci:
4888	xhci_unregister_pci();
4889	return retval;
4890}
4891module_init(xhci_hcd_init);
4892
4893static void __exit xhci_hcd_cleanup(void)
4894{
4895	xhci_unregister_pci();
4896	xhci_unregister_plat();
4897}
4898module_exit(xhci_hcd_cleanup);