Loading...
1/*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20/* this file is part of ehci-hcd.c */
21
22/*-------------------------------------------------------------------------*/
23
24/*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37static int ehci_get_frame (struct usb_hcd *hcd);
38
39#ifdef CONFIG_PCI
40
41static unsigned ehci_read_frame_index(struct ehci_hcd *ehci)
42{
43 unsigned uf;
44
45 /*
46 * The MosChip MCS9990 controller updates its microframe counter
47 * a little before the frame counter, and occasionally we will read
48 * the invalid intermediate value. Avoid problems by checking the
49 * microframe number (the low-order 3 bits); if they are 0 then
50 * re-read the register to get the correct value.
51 */
52 uf = ehci_readl(ehci, &ehci->regs->frame_index);
53 if (unlikely(ehci->frame_index_bug && ((uf & 7) == 0)))
54 uf = ehci_readl(ehci, &ehci->regs->frame_index);
55 return uf;
56}
57
58#endif
59
60/*-------------------------------------------------------------------------*/
61
62/*
63 * periodic_next_shadow - return "next" pointer on shadow list
64 * @periodic: host pointer to qh/itd/sitd
65 * @tag: hardware tag for type of this record
66 */
67static union ehci_shadow *
68periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
69 __hc32 tag)
70{
71 switch (hc32_to_cpu(ehci, tag)) {
72 case Q_TYPE_QH:
73 return &periodic->qh->qh_next;
74 case Q_TYPE_FSTN:
75 return &periodic->fstn->fstn_next;
76 case Q_TYPE_ITD:
77 return &periodic->itd->itd_next;
78 // case Q_TYPE_SITD:
79 default:
80 return &periodic->sitd->sitd_next;
81 }
82}
83
84static __hc32 *
85shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
86 __hc32 tag)
87{
88 switch (hc32_to_cpu(ehci, tag)) {
89 /* our ehci_shadow.qh is actually software part */
90 case Q_TYPE_QH:
91 return &periodic->qh->hw->hw_next;
92 /* others are hw parts */
93 default:
94 return periodic->hw_next;
95 }
96}
97
98/* caller must hold ehci->lock */
99static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
100{
101 union ehci_shadow *prev_p = &ehci->pshadow[frame];
102 __hc32 *hw_p = &ehci->periodic[frame];
103 union ehci_shadow here = *prev_p;
104
105 /* find predecessor of "ptr"; hw and shadow lists are in sync */
106 while (here.ptr && here.ptr != ptr) {
107 prev_p = periodic_next_shadow(ehci, prev_p,
108 Q_NEXT_TYPE(ehci, *hw_p));
109 hw_p = shadow_next_periodic(ehci, &here,
110 Q_NEXT_TYPE(ehci, *hw_p));
111 here = *prev_p;
112 }
113 /* an interrupt entry (at list end) could have been shared */
114 if (!here.ptr)
115 return;
116
117 /* update shadow and hardware lists ... the old "next" pointers
118 * from ptr may still be in use, the caller updates them.
119 */
120 *prev_p = *periodic_next_shadow(ehci, &here,
121 Q_NEXT_TYPE(ehci, *hw_p));
122
123 if (!ehci->use_dummy_qh ||
124 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
125 != EHCI_LIST_END(ehci))
126 *hw_p = *shadow_next_periodic(ehci, &here,
127 Q_NEXT_TYPE(ehci, *hw_p));
128 else
129 *hw_p = ehci->dummy->qh_dma;
130}
131
132/* how many of the uframe's 125 usecs are allocated? */
133static unsigned short
134periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
135{
136 __hc32 *hw_p = &ehci->periodic [frame];
137 union ehci_shadow *q = &ehci->pshadow [frame];
138 unsigned usecs = 0;
139 struct ehci_qh_hw *hw;
140
141 while (q->ptr) {
142 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
143 case Q_TYPE_QH:
144 hw = q->qh->hw;
145 /* is it in the S-mask? */
146 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
147 usecs += q->qh->usecs;
148 /* ... or C-mask? */
149 if (hw->hw_info2 & cpu_to_hc32(ehci,
150 1 << (8 + uframe)))
151 usecs += q->qh->c_usecs;
152 hw_p = &hw->hw_next;
153 q = &q->qh->qh_next;
154 break;
155 // case Q_TYPE_FSTN:
156 default:
157 /* for "save place" FSTNs, count the relevant INTR
158 * bandwidth from the previous frame
159 */
160 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
161 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
162 }
163 hw_p = &q->fstn->hw_next;
164 q = &q->fstn->fstn_next;
165 break;
166 case Q_TYPE_ITD:
167 if (q->itd->hw_transaction[uframe])
168 usecs += q->itd->stream->usecs;
169 hw_p = &q->itd->hw_next;
170 q = &q->itd->itd_next;
171 break;
172 case Q_TYPE_SITD:
173 /* is it in the S-mask? (count SPLIT, DATA) */
174 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
175 1 << uframe)) {
176 if (q->sitd->hw_fullspeed_ep &
177 cpu_to_hc32(ehci, 1<<31))
178 usecs += q->sitd->stream->usecs;
179 else /* worst case for OUT start-split */
180 usecs += HS_USECS_ISO (188);
181 }
182
183 /* ... C-mask? (count CSPLIT, DATA) */
184 if (q->sitd->hw_uframe &
185 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
186 /* worst case for IN complete-split */
187 usecs += q->sitd->stream->c_usecs;
188 }
189
190 hw_p = &q->sitd->hw_next;
191 q = &q->sitd->sitd_next;
192 break;
193 }
194 }
195#ifdef DEBUG
196 if (usecs > ehci->uframe_periodic_max)
197 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
198 frame * 8 + uframe, usecs);
199#endif
200 return usecs;
201}
202
203/*-------------------------------------------------------------------------*/
204
205static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
206{
207 if (!dev1->tt || !dev2->tt)
208 return 0;
209 if (dev1->tt != dev2->tt)
210 return 0;
211 if (dev1->tt->multi)
212 return dev1->ttport == dev2->ttport;
213 else
214 return 1;
215}
216
217#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
218
219/* Which uframe does the low/fullspeed transfer start in?
220 *
221 * The parameter is the mask of ssplits in "H-frame" terms
222 * and this returns the transfer start uframe in "B-frame" terms,
223 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
224 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
225 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
226 */
227static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
228{
229 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
230 if (!smask) {
231 ehci_err(ehci, "invalid empty smask!\n");
232 /* uframe 7 can't have bw so this will indicate failure */
233 return 7;
234 }
235 return ffs(smask) - 1;
236}
237
238static const unsigned char
239max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
240
241/* carryover low/fullspeed bandwidth that crosses uframe boundries */
242static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
243{
244 int i;
245 for (i=0; i<7; i++) {
246 if (max_tt_usecs[i] < tt_usecs[i]) {
247 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
248 tt_usecs[i] = max_tt_usecs[i];
249 }
250 }
251}
252
253/* How many of the tt's periodic downstream 1000 usecs are allocated?
254 *
255 * While this measures the bandwidth in terms of usecs/uframe,
256 * the low/fullspeed bus has no notion of uframes, so any particular
257 * low/fullspeed transfer can "carry over" from one uframe to the next,
258 * since the TT just performs downstream transfers in sequence.
259 *
260 * For example two separate 100 usec transfers can start in the same uframe,
261 * and the second one would "carry over" 75 usecs into the next uframe.
262 */
263static void
264periodic_tt_usecs (
265 struct ehci_hcd *ehci,
266 struct usb_device *dev,
267 unsigned frame,
268 unsigned short tt_usecs[8]
269)
270{
271 __hc32 *hw_p = &ehci->periodic [frame];
272 union ehci_shadow *q = &ehci->pshadow [frame];
273 unsigned char uf;
274
275 memset(tt_usecs, 0, 16);
276
277 while (q->ptr) {
278 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
279 case Q_TYPE_ITD:
280 hw_p = &q->itd->hw_next;
281 q = &q->itd->itd_next;
282 continue;
283 case Q_TYPE_QH:
284 if (same_tt(dev, q->qh->dev)) {
285 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
286 tt_usecs[uf] += q->qh->tt_usecs;
287 }
288 hw_p = &q->qh->hw->hw_next;
289 q = &q->qh->qh_next;
290 continue;
291 case Q_TYPE_SITD:
292 if (same_tt(dev, q->sitd->urb->dev)) {
293 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
294 tt_usecs[uf] += q->sitd->stream->tt_usecs;
295 }
296 hw_p = &q->sitd->hw_next;
297 q = &q->sitd->sitd_next;
298 continue;
299 // case Q_TYPE_FSTN:
300 default:
301 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
302 frame);
303 hw_p = &q->fstn->hw_next;
304 q = &q->fstn->fstn_next;
305 }
306 }
307
308 carryover_tt_bandwidth(tt_usecs);
309
310 if (max_tt_usecs[7] < tt_usecs[7])
311 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
312 frame, tt_usecs[7] - max_tt_usecs[7]);
313}
314
315/*
316 * Return true if the device's tt's downstream bus is available for a
317 * periodic transfer of the specified length (usecs), starting at the
318 * specified frame/uframe. Note that (as summarized in section 11.19
319 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
320 * uframe.
321 *
322 * The uframe parameter is when the fullspeed/lowspeed transfer
323 * should be executed in "B-frame" terms, which is the same as the
324 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
325 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
326 * See the EHCI spec sec 4.5 and fig 4.7.
327 *
328 * This checks if the full/lowspeed bus, at the specified starting uframe,
329 * has the specified bandwidth available, according to rules listed
330 * in USB 2.0 spec section 11.18.1 fig 11-60.
331 *
332 * This does not check if the transfer would exceed the max ssplit
333 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
334 * since proper scheduling limits ssplits to less than 16 per uframe.
335 */
336static int tt_available (
337 struct ehci_hcd *ehci,
338 unsigned period,
339 struct usb_device *dev,
340 unsigned frame,
341 unsigned uframe,
342 u16 usecs
343)
344{
345 if ((period == 0) || (uframe >= 7)) /* error */
346 return 0;
347
348 for (; frame < ehci->periodic_size; frame += period) {
349 unsigned short tt_usecs[8];
350
351 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
352
353 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
354 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
355 frame, usecs, uframe,
356 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
357 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
358
359 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
360 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
361 frame, uframe);
362 return 0;
363 }
364
365 /* special case for isoc transfers larger than 125us:
366 * the first and each subsequent fully used uframe
367 * must be empty, so as to not illegally delay
368 * already scheduled transactions
369 */
370 if (125 < usecs) {
371 int ufs = (usecs / 125);
372 int i;
373 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
374 if (0 < tt_usecs[i]) {
375 ehci_vdbg(ehci,
376 "multi-uframe xfer can't fit "
377 "in frame %d uframe %d\n",
378 frame, i);
379 return 0;
380 }
381 }
382
383 tt_usecs[uframe] += usecs;
384
385 carryover_tt_bandwidth(tt_usecs);
386
387 /* fail if the carryover pushed bw past the last uframe's limit */
388 if (max_tt_usecs[7] < tt_usecs[7]) {
389 ehci_vdbg(ehci,
390 "tt unavailable usecs %d frame %d uframe %d\n",
391 usecs, frame, uframe);
392 return 0;
393 }
394 }
395
396 return 1;
397}
398
399#else
400
401/* return true iff the device's transaction translator is available
402 * for a periodic transfer starting at the specified frame, using
403 * all the uframes in the mask.
404 */
405static int tt_no_collision (
406 struct ehci_hcd *ehci,
407 unsigned period,
408 struct usb_device *dev,
409 unsigned frame,
410 u32 uf_mask
411)
412{
413 if (period == 0) /* error */
414 return 0;
415
416 /* note bandwidth wastage: split never follows csplit
417 * (different dev or endpoint) until the next uframe.
418 * calling convention doesn't make that distinction.
419 */
420 for (; frame < ehci->periodic_size; frame += period) {
421 union ehci_shadow here;
422 __hc32 type;
423 struct ehci_qh_hw *hw;
424
425 here = ehci->pshadow [frame];
426 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
427 while (here.ptr) {
428 switch (hc32_to_cpu(ehci, type)) {
429 case Q_TYPE_ITD:
430 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
431 here = here.itd->itd_next;
432 continue;
433 case Q_TYPE_QH:
434 hw = here.qh->hw;
435 if (same_tt (dev, here.qh->dev)) {
436 u32 mask;
437
438 mask = hc32_to_cpu(ehci,
439 hw->hw_info2);
440 /* "knows" no gap is needed */
441 mask |= mask >> 8;
442 if (mask & uf_mask)
443 break;
444 }
445 type = Q_NEXT_TYPE(ehci, hw->hw_next);
446 here = here.qh->qh_next;
447 continue;
448 case Q_TYPE_SITD:
449 if (same_tt (dev, here.sitd->urb->dev)) {
450 u16 mask;
451
452 mask = hc32_to_cpu(ehci, here.sitd
453 ->hw_uframe);
454 /* FIXME assumes no gap for IN! */
455 mask |= mask >> 8;
456 if (mask & uf_mask)
457 break;
458 }
459 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
460 here = here.sitd->sitd_next;
461 continue;
462 // case Q_TYPE_FSTN:
463 default:
464 ehci_dbg (ehci,
465 "periodic frame %d bogus type %d\n",
466 frame, type);
467 }
468
469 /* collision or error */
470 return 0;
471 }
472 }
473
474 /* no collision */
475 return 1;
476}
477
478#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
479
480/*-------------------------------------------------------------------------*/
481
482static int enable_periodic (struct ehci_hcd *ehci)
483{
484 int status;
485
486 if (ehci->periodic_sched++)
487 return 0;
488
489 /* did clearing PSE did take effect yet?
490 * takes effect only at frame boundaries...
491 */
492 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
493 STS_PSS, 0, 9 * 125);
494 if (status) {
495 usb_hc_died(ehci_to_hcd(ehci));
496 return status;
497 }
498
499 ehci->command |= CMD_PSE;
500 ehci_writel(ehci, ehci->command, &ehci->regs->command);
501 /* posted write ... PSS happens later */
502
503 /* make sure ehci_work scans these */
504 ehci->next_uframe = ehci_read_frame_index(ehci)
505 % (ehci->periodic_size << 3);
506 if (unlikely(ehci->broken_periodic))
507 ehci->last_periodic_enable = ktime_get_real();
508 return 0;
509}
510
511static int disable_periodic (struct ehci_hcd *ehci)
512{
513 int status;
514
515 if (--ehci->periodic_sched)
516 return 0;
517
518 if (unlikely(ehci->broken_periodic)) {
519 /* delay experimentally determined */
520 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
521 ktime_t now = ktime_get_real();
522 s64 delay = ktime_us_delta(safe, now);
523
524 if (unlikely(delay > 0))
525 udelay(delay);
526 }
527
528 /* did setting PSE not take effect yet?
529 * takes effect only at frame boundaries...
530 */
531 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
532 STS_PSS, STS_PSS, 9 * 125);
533 if (status) {
534 usb_hc_died(ehci_to_hcd(ehci));
535 return status;
536 }
537
538 ehci->command &= ~CMD_PSE;
539 ehci_writel(ehci, ehci->command, &ehci->regs->command);
540 /* posted write ... */
541
542 free_cached_lists(ehci);
543
544 ehci->next_uframe = -1;
545 return 0;
546}
547
548/*-------------------------------------------------------------------------*/
549
550/* periodic schedule slots have iso tds (normal or split) first, then a
551 * sparse tree for active interrupt transfers.
552 *
553 * this just links in a qh; caller guarantees uframe masks are set right.
554 * no FSTN support (yet; ehci 0.96+)
555 */
556static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
557{
558 unsigned i;
559 unsigned period = qh->period;
560
561 dev_dbg (&qh->dev->dev,
562 "link qh%d-%04x/%p start %d [%d/%d us]\n",
563 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
564 & (QH_CMASK | QH_SMASK),
565 qh, qh->start, qh->usecs, qh->c_usecs);
566
567 /* high bandwidth, or otherwise every microframe */
568 if (period == 0)
569 period = 1;
570
571 for (i = qh->start; i < ehci->periodic_size; i += period) {
572 union ehci_shadow *prev = &ehci->pshadow[i];
573 __hc32 *hw_p = &ehci->periodic[i];
574 union ehci_shadow here = *prev;
575 __hc32 type = 0;
576
577 /* skip the iso nodes at list head */
578 while (here.ptr) {
579 type = Q_NEXT_TYPE(ehci, *hw_p);
580 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
581 break;
582 prev = periodic_next_shadow(ehci, prev, type);
583 hw_p = shadow_next_periodic(ehci, &here, type);
584 here = *prev;
585 }
586
587 /* sorting each branch by period (slow-->fast)
588 * enables sharing interior tree nodes
589 */
590 while (here.ptr && qh != here.qh) {
591 if (qh->period > here.qh->period)
592 break;
593 prev = &here.qh->qh_next;
594 hw_p = &here.qh->hw->hw_next;
595 here = *prev;
596 }
597 /* link in this qh, unless some earlier pass did that */
598 if (qh != here.qh) {
599 qh->qh_next = here;
600 if (here.qh)
601 qh->hw->hw_next = *hw_p;
602 wmb ();
603 prev->qh = qh;
604 *hw_p = QH_NEXT (ehci, qh->qh_dma);
605 }
606 }
607 qh->qh_state = QH_STATE_LINKED;
608 qh->xacterrs = 0;
609 qh_get (qh);
610
611 /* update per-qh bandwidth for usbfs */
612 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
613 ? ((qh->usecs + qh->c_usecs) / qh->period)
614 : (qh->usecs * 8);
615
616 /* maybe enable periodic schedule processing */
617 return enable_periodic(ehci);
618}
619
620static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
621{
622 unsigned i;
623 unsigned period;
624
625 // FIXME:
626 // IF this isn't high speed
627 // and this qh is active in the current uframe
628 // (and overlay token SplitXstate is false?)
629 // THEN
630 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
631
632 /* high bandwidth, or otherwise part of every microframe */
633 if ((period = qh->period) == 0)
634 period = 1;
635
636 for (i = qh->start; i < ehci->periodic_size; i += period)
637 periodic_unlink (ehci, i, qh);
638
639 /* update per-qh bandwidth for usbfs */
640 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
641 ? ((qh->usecs + qh->c_usecs) / qh->period)
642 : (qh->usecs * 8);
643
644 dev_dbg (&qh->dev->dev,
645 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
646 qh->period,
647 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
648 qh, qh->start, qh->usecs, qh->c_usecs);
649
650 /* qh->qh_next still "live" to HC */
651 qh->qh_state = QH_STATE_UNLINK;
652 qh->qh_next.ptr = NULL;
653 qh_put (qh);
654
655 /* maybe turn off periodic schedule */
656 return disable_periodic(ehci);
657}
658
659static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
660{
661 unsigned wait;
662 struct ehci_qh_hw *hw = qh->hw;
663 int rc;
664
665 /* If the QH isn't linked then there's nothing we can do
666 * unless we were called during a giveback, in which case
667 * qh_completions() has to deal with it.
668 */
669 if (qh->qh_state != QH_STATE_LINKED) {
670 if (qh->qh_state == QH_STATE_COMPLETING)
671 qh->needs_rescan = 1;
672 return;
673 }
674
675 qh_unlink_periodic (ehci, qh);
676
677 /* simple/paranoid: always delay, expecting the HC needs to read
678 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
679 * expect khubd to clean up after any CSPLITs we won't issue.
680 * active high speed queues may need bigger delays...
681 */
682 if (list_empty (&qh->qtd_list)
683 || (cpu_to_hc32(ehci, QH_CMASK)
684 & hw->hw_info2) != 0)
685 wait = 2;
686 else
687 wait = 55; /* worst case: 3 * 1024 */
688
689 udelay (wait);
690 qh->qh_state = QH_STATE_IDLE;
691 hw->hw_next = EHCI_LIST_END(ehci);
692 wmb ();
693
694 qh_completions(ehci, qh);
695
696 /* reschedule QH iff another request is queued */
697 if (!list_empty(&qh->qtd_list) &&
698 ehci->rh_state == EHCI_RH_RUNNING) {
699 rc = qh_schedule(ehci, qh);
700
701 /* An error here likely indicates handshake failure
702 * or no space left in the schedule. Neither fault
703 * should happen often ...
704 *
705 * FIXME kill the now-dysfunctional queued urbs
706 */
707 if (rc != 0)
708 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
709 qh, rc);
710 }
711}
712
713/*-------------------------------------------------------------------------*/
714
715static int check_period (
716 struct ehci_hcd *ehci,
717 unsigned frame,
718 unsigned uframe,
719 unsigned period,
720 unsigned usecs
721) {
722 int claimed;
723
724 /* complete split running into next frame?
725 * given FSTN support, we could sometimes check...
726 */
727 if (uframe >= 8)
728 return 0;
729
730 /* convert "usecs we need" to "max already claimed" */
731 usecs = ehci->uframe_periodic_max - usecs;
732
733 /* we "know" 2 and 4 uframe intervals were rejected; so
734 * for period 0, check _every_ microframe in the schedule.
735 */
736 if (unlikely (period == 0)) {
737 do {
738 for (uframe = 0; uframe < 7; uframe++) {
739 claimed = periodic_usecs (ehci, frame, uframe);
740 if (claimed > usecs)
741 return 0;
742 }
743 } while ((frame += 1) < ehci->periodic_size);
744
745 /* just check the specified uframe, at that period */
746 } else {
747 do {
748 claimed = periodic_usecs (ehci, frame, uframe);
749 if (claimed > usecs)
750 return 0;
751 } while ((frame += period) < ehci->periodic_size);
752 }
753
754 // success!
755 return 1;
756}
757
758static int check_intr_schedule (
759 struct ehci_hcd *ehci,
760 unsigned frame,
761 unsigned uframe,
762 const struct ehci_qh *qh,
763 __hc32 *c_maskp
764)
765{
766 int retval = -ENOSPC;
767 u8 mask = 0;
768
769 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
770 goto done;
771
772 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
773 goto done;
774 if (!qh->c_usecs) {
775 retval = 0;
776 *c_maskp = 0;
777 goto done;
778 }
779
780#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
781 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
782 qh->tt_usecs)) {
783 unsigned i;
784
785 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
786 for (i=uframe+1; i<8 && i<uframe+4; i++)
787 if (!check_period (ehci, frame, i,
788 qh->period, qh->c_usecs))
789 goto done;
790 else
791 mask |= 1 << i;
792
793 retval = 0;
794
795 *c_maskp = cpu_to_hc32(ehci, mask << 8);
796 }
797#else
798 /* Make sure this tt's buffer is also available for CSPLITs.
799 * We pessimize a bit; probably the typical full speed case
800 * doesn't need the second CSPLIT.
801 *
802 * NOTE: both SPLIT and CSPLIT could be checked in just
803 * one smart pass...
804 */
805 mask = 0x03 << (uframe + qh->gap_uf);
806 *c_maskp = cpu_to_hc32(ehci, mask << 8);
807
808 mask |= 1 << uframe;
809 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
810 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
811 qh->period, qh->c_usecs))
812 goto done;
813 if (!check_period (ehci, frame, uframe + qh->gap_uf,
814 qh->period, qh->c_usecs))
815 goto done;
816 retval = 0;
817 }
818#endif
819done:
820 return retval;
821}
822
823/* "first fit" scheduling policy used the first time through,
824 * or when the previous schedule slot can't be re-used.
825 */
826static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
827{
828 int status;
829 unsigned uframe;
830 __hc32 c_mask;
831 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
832 struct ehci_qh_hw *hw = qh->hw;
833
834 qh_refresh(ehci, qh);
835 hw->hw_next = EHCI_LIST_END(ehci);
836 frame = qh->start;
837
838 /* reuse the previous schedule slots, if we can */
839 if (frame < qh->period) {
840 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
841 status = check_intr_schedule (ehci, frame, --uframe,
842 qh, &c_mask);
843 } else {
844 uframe = 0;
845 c_mask = 0;
846 status = -ENOSPC;
847 }
848
849 /* else scan the schedule to find a group of slots such that all
850 * uframes have enough periodic bandwidth available.
851 */
852 if (status) {
853 /* "normal" case, uframing flexible except with splits */
854 if (qh->period) {
855 int i;
856
857 for (i = qh->period; status && i > 0; --i) {
858 frame = ++ehci->random_frame % qh->period;
859 for (uframe = 0; uframe < 8; uframe++) {
860 status = check_intr_schedule (ehci,
861 frame, uframe, qh,
862 &c_mask);
863 if (status == 0)
864 break;
865 }
866 }
867
868 /* qh->period == 0 means every uframe */
869 } else {
870 frame = 0;
871 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
872 }
873 if (status)
874 goto done;
875 qh->start = frame;
876
877 /* reset S-frame and (maybe) C-frame masks */
878 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
879 hw->hw_info2 |= qh->period
880 ? cpu_to_hc32(ehci, 1 << uframe)
881 : cpu_to_hc32(ehci, QH_SMASK);
882 hw->hw_info2 |= c_mask;
883 } else
884 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
885
886 /* stuff into the periodic schedule */
887 status = qh_link_periodic (ehci, qh);
888done:
889 return status;
890}
891
892static int intr_submit (
893 struct ehci_hcd *ehci,
894 struct urb *urb,
895 struct list_head *qtd_list,
896 gfp_t mem_flags
897) {
898 unsigned epnum;
899 unsigned long flags;
900 struct ehci_qh *qh;
901 int status;
902 struct list_head empty;
903
904 /* get endpoint and transfer/schedule data */
905 epnum = urb->ep->desc.bEndpointAddress;
906
907 spin_lock_irqsave (&ehci->lock, flags);
908
909 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
910 status = -ESHUTDOWN;
911 goto done_not_linked;
912 }
913 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
914 if (unlikely(status))
915 goto done_not_linked;
916
917 /* get qh and force any scheduling errors */
918 INIT_LIST_HEAD (&empty);
919 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
920 if (qh == NULL) {
921 status = -ENOMEM;
922 goto done;
923 }
924 if (qh->qh_state == QH_STATE_IDLE) {
925 if ((status = qh_schedule (ehci, qh)) != 0)
926 goto done;
927 }
928
929 /* then queue the urb's tds to the qh */
930 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
931 BUG_ON (qh == NULL);
932
933 /* ... update usbfs periodic stats */
934 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
935
936done:
937 if (unlikely(status))
938 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
939done_not_linked:
940 spin_unlock_irqrestore (&ehci->lock, flags);
941 if (status)
942 qtd_list_free (ehci, urb, qtd_list);
943
944 return status;
945}
946
947/*-------------------------------------------------------------------------*/
948
949/* ehci_iso_stream ops work with both ITD and SITD */
950
951static struct ehci_iso_stream *
952iso_stream_alloc (gfp_t mem_flags)
953{
954 struct ehci_iso_stream *stream;
955
956 stream = kzalloc(sizeof *stream, mem_flags);
957 if (likely (stream != NULL)) {
958 INIT_LIST_HEAD(&stream->td_list);
959 INIT_LIST_HEAD(&stream->free_list);
960 stream->next_uframe = -1;
961 stream->refcount = 1;
962 }
963 return stream;
964}
965
966static void
967iso_stream_init (
968 struct ehci_hcd *ehci,
969 struct ehci_iso_stream *stream,
970 struct usb_device *dev,
971 int pipe,
972 unsigned interval
973)
974{
975 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
976
977 u32 buf1;
978 unsigned epnum, maxp;
979 int is_input;
980 long bandwidth;
981
982 /*
983 * this might be a "high bandwidth" highspeed endpoint,
984 * as encoded in the ep descriptor's wMaxPacket field
985 */
986 epnum = usb_pipeendpoint (pipe);
987 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
988 maxp = usb_maxpacket(dev, pipe, !is_input);
989 if (is_input) {
990 buf1 = (1 << 11);
991 } else {
992 buf1 = 0;
993 }
994
995 /* knows about ITD vs SITD */
996 if (dev->speed == USB_SPEED_HIGH) {
997 unsigned multi = hb_mult(maxp);
998
999 stream->highspeed = 1;
1000
1001 maxp = max_packet(maxp);
1002 buf1 |= maxp;
1003 maxp *= multi;
1004
1005 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1006 stream->buf1 = cpu_to_hc32(ehci, buf1);
1007 stream->buf2 = cpu_to_hc32(ehci, multi);
1008
1009 /* usbfs wants to report the average usecs per frame tied up
1010 * when transfers on this endpoint are scheduled ...
1011 */
1012 stream->usecs = HS_USECS_ISO (maxp);
1013 bandwidth = stream->usecs * 8;
1014 bandwidth /= interval;
1015
1016 } else {
1017 u32 addr;
1018 int think_time;
1019 int hs_transfers;
1020
1021 addr = dev->ttport << 24;
1022 if (!ehci_is_TDI(ehci)
1023 || (dev->tt->hub !=
1024 ehci_to_hcd(ehci)->self.root_hub))
1025 addr |= dev->tt->hub->devnum << 16;
1026 addr |= epnum << 8;
1027 addr |= dev->devnum;
1028 stream->usecs = HS_USECS_ISO (maxp);
1029 think_time = dev->tt ? dev->tt->think_time : 0;
1030 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1031 dev->speed, is_input, 1, maxp));
1032 hs_transfers = max (1u, (maxp + 187) / 188);
1033 if (is_input) {
1034 u32 tmp;
1035
1036 addr |= 1 << 31;
1037 stream->c_usecs = stream->usecs;
1038 stream->usecs = HS_USECS_ISO (1);
1039 stream->raw_mask = 1;
1040
1041 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1042 tmp = (1 << (hs_transfers + 2)) - 1;
1043 stream->raw_mask |= tmp << (8 + 2);
1044 } else
1045 stream->raw_mask = smask_out [hs_transfers - 1];
1046 bandwidth = stream->usecs + stream->c_usecs;
1047 bandwidth /= interval << 3;
1048
1049 /* stream->splits gets created from raw_mask later */
1050 stream->address = cpu_to_hc32(ehci, addr);
1051 }
1052 stream->bandwidth = bandwidth;
1053
1054 stream->udev = dev;
1055
1056 stream->bEndpointAddress = is_input | epnum;
1057 stream->interval = interval;
1058 stream->maxp = maxp;
1059}
1060
1061static void
1062iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1063{
1064 stream->refcount--;
1065
1066 /* free whenever just a dev->ep reference remains.
1067 * not like a QH -- no persistent state (toggle, halt)
1068 */
1069 if (stream->refcount == 1) {
1070 // BUG_ON (!list_empty(&stream->td_list));
1071
1072 while (!list_empty (&stream->free_list)) {
1073 struct list_head *entry;
1074
1075 entry = stream->free_list.next;
1076 list_del (entry);
1077
1078 /* knows about ITD vs SITD */
1079 if (stream->highspeed) {
1080 struct ehci_itd *itd;
1081
1082 itd = list_entry (entry, struct ehci_itd,
1083 itd_list);
1084 dma_pool_free (ehci->itd_pool, itd,
1085 itd->itd_dma);
1086 } else {
1087 struct ehci_sitd *sitd;
1088
1089 sitd = list_entry (entry, struct ehci_sitd,
1090 sitd_list);
1091 dma_pool_free (ehci->sitd_pool, sitd,
1092 sitd->sitd_dma);
1093 }
1094 }
1095
1096 stream->bEndpointAddress &= 0x0f;
1097 if (stream->ep)
1098 stream->ep->hcpriv = NULL;
1099
1100 kfree(stream);
1101 }
1102}
1103
1104static inline struct ehci_iso_stream *
1105iso_stream_get (struct ehci_iso_stream *stream)
1106{
1107 if (likely (stream != NULL))
1108 stream->refcount++;
1109 return stream;
1110}
1111
1112static struct ehci_iso_stream *
1113iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1114{
1115 unsigned epnum;
1116 struct ehci_iso_stream *stream;
1117 struct usb_host_endpoint *ep;
1118 unsigned long flags;
1119
1120 epnum = usb_pipeendpoint (urb->pipe);
1121 if (usb_pipein(urb->pipe))
1122 ep = urb->dev->ep_in[epnum];
1123 else
1124 ep = urb->dev->ep_out[epnum];
1125
1126 spin_lock_irqsave (&ehci->lock, flags);
1127 stream = ep->hcpriv;
1128
1129 if (unlikely (stream == NULL)) {
1130 stream = iso_stream_alloc(GFP_ATOMIC);
1131 if (likely (stream != NULL)) {
1132 /* dev->ep owns the initial refcount */
1133 ep->hcpriv = stream;
1134 stream->ep = ep;
1135 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1136 urb->interval);
1137 }
1138
1139 /* if dev->ep [epnum] is a QH, hw is set */
1140 } else if (unlikely (stream->hw != NULL)) {
1141 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1142 urb->dev->devpath, epnum,
1143 usb_pipein(urb->pipe) ? "in" : "out");
1144 stream = NULL;
1145 }
1146
1147 /* caller guarantees an eventual matching iso_stream_put */
1148 stream = iso_stream_get (stream);
1149
1150 spin_unlock_irqrestore (&ehci->lock, flags);
1151 return stream;
1152}
1153
1154/*-------------------------------------------------------------------------*/
1155
1156/* ehci_iso_sched ops can be ITD-only or SITD-only */
1157
1158static struct ehci_iso_sched *
1159iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1160{
1161 struct ehci_iso_sched *iso_sched;
1162 int size = sizeof *iso_sched;
1163
1164 size += packets * sizeof (struct ehci_iso_packet);
1165 iso_sched = kzalloc(size, mem_flags);
1166 if (likely (iso_sched != NULL)) {
1167 INIT_LIST_HEAD (&iso_sched->td_list);
1168 }
1169 return iso_sched;
1170}
1171
1172static inline void
1173itd_sched_init(
1174 struct ehci_hcd *ehci,
1175 struct ehci_iso_sched *iso_sched,
1176 struct ehci_iso_stream *stream,
1177 struct urb *urb
1178)
1179{
1180 unsigned i;
1181 dma_addr_t dma = urb->transfer_dma;
1182
1183 /* how many uframes are needed for these transfers */
1184 iso_sched->span = urb->number_of_packets * stream->interval;
1185
1186 /* figure out per-uframe itd fields that we'll need later
1187 * when we fit new itds into the schedule.
1188 */
1189 for (i = 0; i < urb->number_of_packets; i++) {
1190 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1191 unsigned length;
1192 dma_addr_t buf;
1193 u32 trans;
1194
1195 length = urb->iso_frame_desc [i].length;
1196 buf = dma + urb->iso_frame_desc [i].offset;
1197
1198 trans = EHCI_ISOC_ACTIVE;
1199 trans |= buf & 0x0fff;
1200 if (unlikely (((i + 1) == urb->number_of_packets))
1201 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1202 trans |= EHCI_ITD_IOC;
1203 trans |= length << 16;
1204 uframe->transaction = cpu_to_hc32(ehci, trans);
1205
1206 /* might need to cross a buffer page within a uframe */
1207 uframe->bufp = (buf & ~(u64)0x0fff);
1208 buf += length;
1209 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1210 uframe->cross = 1;
1211 }
1212}
1213
1214static void
1215iso_sched_free (
1216 struct ehci_iso_stream *stream,
1217 struct ehci_iso_sched *iso_sched
1218)
1219{
1220 if (!iso_sched)
1221 return;
1222 // caller must hold ehci->lock!
1223 list_splice (&iso_sched->td_list, &stream->free_list);
1224 kfree (iso_sched);
1225}
1226
1227static int
1228itd_urb_transaction (
1229 struct ehci_iso_stream *stream,
1230 struct ehci_hcd *ehci,
1231 struct urb *urb,
1232 gfp_t mem_flags
1233)
1234{
1235 struct ehci_itd *itd;
1236 dma_addr_t itd_dma;
1237 int i;
1238 unsigned num_itds;
1239 struct ehci_iso_sched *sched;
1240 unsigned long flags;
1241
1242 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1243 if (unlikely (sched == NULL))
1244 return -ENOMEM;
1245
1246 itd_sched_init(ehci, sched, stream, urb);
1247
1248 if (urb->interval < 8)
1249 num_itds = 1 + (sched->span + 7) / 8;
1250 else
1251 num_itds = urb->number_of_packets;
1252
1253 /* allocate/init ITDs */
1254 spin_lock_irqsave (&ehci->lock, flags);
1255 for (i = 0; i < num_itds; i++) {
1256
1257 /* free_list.next might be cache-hot ... but maybe
1258 * the HC caches it too. avoid that issue for now.
1259 */
1260
1261 /* prefer previously-allocated itds */
1262 if (likely (!list_empty(&stream->free_list))) {
1263 itd = list_entry (stream->free_list.prev,
1264 struct ehci_itd, itd_list);
1265 list_del (&itd->itd_list);
1266 itd_dma = itd->itd_dma;
1267 } else {
1268 spin_unlock_irqrestore (&ehci->lock, flags);
1269 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1270 &itd_dma);
1271 spin_lock_irqsave (&ehci->lock, flags);
1272 if (!itd) {
1273 iso_sched_free(stream, sched);
1274 spin_unlock_irqrestore(&ehci->lock, flags);
1275 return -ENOMEM;
1276 }
1277 }
1278
1279 memset (itd, 0, sizeof *itd);
1280 itd->itd_dma = itd_dma;
1281 list_add (&itd->itd_list, &sched->td_list);
1282 }
1283 spin_unlock_irqrestore (&ehci->lock, flags);
1284
1285 /* temporarily store schedule info in hcpriv */
1286 urb->hcpriv = sched;
1287 urb->error_count = 0;
1288 return 0;
1289}
1290
1291/*-------------------------------------------------------------------------*/
1292
1293static inline int
1294itd_slot_ok (
1295 struct ehci_hcd *ehci,
1296 u32 mod,
1297 u32 uframe,
1298 u8 usecs,
1299 u32 period
1300)
1301{
1302 uframe %= period;
1303 do {
1304 /* can't commit more than uframe_periodic_max usec */
1305 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1306 > (ehci->uframe_periodic_max - usecs))
1307 return 0;
1308
1309 /* we know urb->interval is 2^N uframes */
1310 uframe += period;
1311 } while (uframe < mod);
1312 return 1;
1313}
1314
1315static inline int
1316sitd_slot_ok (
1317 struct ehci_hcd *ehci,
1318 u32 mod,
1319 struct ehci_iso_stream *stream,
1320 u32 uframe,
1321 struct ehci_iso_sched *sched,
1322 u32 period_uframes
1323)
1324{
1325 u32 mask, tmp;
1326 u32 frame, uf;
1327
1328 mask = stream->raw_mask << (uframe & 7);
1329
1330 /* for IN, don't wrap CSPLIT into the next frame */
1331 if (mask & ~0xffff)
1332 return 0;
1333
1334 /* check bandwidth */
1335 uframe %= period_uframes;
1336 frame = uframe >> 3;
1337
1338#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1339 /* The tt's fullspeed bus bandwidth must be available.
1340 * tt_available scheduling guarantees 10+% for control/bulk.
1341 */
1342 uf = uframe & 7;
1343 if (!tt_available(ehci, period_uframes >> 3,
1344 stream->udev, frame, uf, stream->tt_usecs))
1345 return 0;
1346#else
1347 /* tt must be idle for start(s), any gap, and csplit.
1348 * assume scheduling slop leaves 10+% for control/bulk.
1349 */
1350 if (!tt_no_collision(ehci, period_uframes >> 3,
1351 stream->udev, frame, mask))
1352 return 0;
1353#endif
1354
1355 /* this multi-pass logic is simple, but performance may
1356 * suffer when the schedule data isn't cached.
1357 */
1358 do {
1359 u32 max_used;
1360
1361 frame = uframe >> 3;
1362 uf = uframe & 7;
1363
1364 /* check starts (OUT uses more than one) */
1365 max_used = ehci->uframe_periodic_max - stream->usecs;
1366 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1367 if (periodic_usecs (ehci, frame, uf) > max_used)
1368 return 0;
1369 }
1370
1371 /* for IN, check CSPLIT */
1372 if (stream->c_usecs) {
1373 uf = uframe & 7;
1374 max_used = ehci->uframe_periodic_max - stream->c_usecs;
1375 do {
1376 tmp = 1 << uf;
1377 tmp <<= 8;
1378 if ((stream->raw_mask & tmp) == 0)
1379 continue;
1380 if (periodic_usecs (ehci, frame, uf)
1381 > max_used)
1382 return 0;
1383 } while (++uf < 8);
1384 }
1385
1386 /* we know urb->interval is 2^N uframes */
1387 uframe += period_uframes;
1388 } while (uframe < mod);
1389
1390 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1391 return 1;
1392}
1393
1394/*
1395 * This scheduler plans almost as far into the future as it has actual
1396 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1397 * "as small as possible" to be cache-friendlier.) That limits the size
1398 * transfers you can stream reliably; avoid more than 64 msec per urb.
1399 * Also avoid queue depths of less than ehci's worst irq latency (affected
1400 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1401 * and other factors); or more than about 230 msec total (for portability,
1402 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1403 */
1404
1405#define SCHEDULE_SLOP 80 /* microframes */
1406
1407static int
1408iso_stream_schedule (
1409 struct ehci_hcd *ehci,
1410 struct urb *urb,
1411 struct ehci_iso_stream *stream
1412)
1413{
1414 u32 now, next, start, period, span;
1415 int status;
1416 unsigned mod = ehci->periodic_size << 3;
1417 struct ehci_iso_sched *sched = urb->hcpriv;
1418
1419 period = urb->interval;
1420 span = sched->span;
1421 if (!stream->highspeed) {
1422 period <<= 3;
1423 span <<= 3;
1424 }
1425
1426 if (span > mod - SCHEDULE_SLOP) {
1427 ehci_dbg (ehci, "iso request %p too long\n", urb);
1428 status = -EFBIG;
1429 goto fail;
1430 }
1431
1432 now = ehci_read_frame_index(ehci) & (mod - 1);
1433
1434 /* Typical case: reuse current schedule, stream is still active.
1435 * Hopefully there are no gaps from the host falling behind
1436 * (irq delays etc), but if there are we'll take the next
1437 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1438 */
1439 if (likely (!list_empty (&stream->td_list))) {
1440 u32 excess;
1441
1442 /* For high speed devices, allow scheduling within the
1443 * isochronous scheduling threshold. For full speed devices
1444 * and Intel PCI-based controllers, don't (work around for
1445 * Intel ICH9 bug).
1446 */
1447 if (!stream->highspeed && ehci->fs_i_thresh)
1448 next = now + ehci->i_thresh;
1449 else
1450 next = now;
1451
1452 /* Fell behind (by up to twice the slop amount)?
1453 * We decide based on the time of the last currently-scheduled
1454 * slot, not the time of the next available slot.
1455 */
1456 excess = (stream->next_uframe - period - next) & (mod - 1);
1457 if (excess >= mod - 2 * SCHEDULE_SLOP)
1458 start = next + excess - mod + period *
1459 DIV_ROUND_UP(mod - excess, period);
1460 else
1461 start = next + excess + period;
1462 if (start - now >= mod) {
1463 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1464 urb, start - now - period, period,
1465 mod);
1466 status = -EFBIG;
1467 goto fail;
1468 }
1469 }
1470
1471 /* need to schedule; when's the next (u)frame we could start?
1472 * this is bigger than ehci->i_thresh allows; scheduling itself
1473 * isn't free, the slop should handle reasonably slow cpus. it
1474 * can also help high bandwidth if the dma and irq loads don't
1475 * jump until after the queue is primed.
1476 */
1477 else {
1478 int done = 0;
1479 start = SCHEDULE_SLOP + (now & ~0x07);
1480
1481 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1482
1483 /* find a uframe slot with enough bandwidth.
1484 * Early uframes are more precious because full-speed
1485 * iso IN transfers can't use late uframes,
1486 * and therefore they should be allocated last.
1487 */
1488 next = start;
1489 start += period;
1490 do {
1491 start--;
1492 /* check schedule: enough space? */
1493 if (stream->highspeed) {
1494 if (itd_slot_ok(ehci, mod, start,
1495 stream->usecs, period))
1496 done = 1;
1497 } else {
1498 if ((start % 8) >= 6)
1499 continue;
1500 if (sitd_slot_ok(ehci, mod, stream,
1501 start, sched, period))
1502 done = 1;
1503 }
1504 } while (start > next && !done);
1505
1506 /* no room in the schedule */
1507 if (!done) {
1508 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1509 urb, now, now + mod);
1510 status = -ENOSPC;
1511 goto fail;
1512 }
1513 }
1514
1515 /* Tried to schedule too far into the future? */
1516 if (unlikely(start - now + span - period
1517 >= mod - 2 * SCHEDULE_SLOP)) {
1518 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1519 urb, start - now, span - period,
1520 mod - 2 * SCHEDULE_SLOP);
1521 status = -EFBIG;
1522 goto fail;
1523 }
1524
1525 stream->next_uframe = start & (mod - 1);
1526
1527 /* report high speed start in uframes; full speed, in frames */
1528 urb->start_frame = stream->next_uframe;
1529 if (!stream->highspeed)
1530 urb->start_frame >>= 3;
1531 return 0;
1532
1533 fail:
1534 iso_sched_free(stream, sched);
1535 urb->hcpriv = NULL;
1536 return status;
1537}
1538
1539/*-------------------------------------------------------------------------*/
1540
1541static inline void
1542itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1543 struct ehci_itd *itd)
1544{
1545 int i;
1546
1547 /* it's been recently zeroed */
1548 itd->hw_next = EHCI_LIST_END(ehci);
1549 itd->hw_bufp [0] = stream->buf0;
1550 itd->hw_bufp [1] = stream->buf1;
1551 itd->hw_bufp [2] = stream->buf2;
1552
1553 for (i = 0; i < 8; i++)
1554 itd->index[i] = -1;
1555
1556 /* All other fields are filled when scheduling */
1557}
1558
1559static inline void
1560itd_patch(
1561 struct ehci_hcd *ehci,
1562 struct ehci_itd *itd,
1563 struct ehci_iso_sched *iso_sched,
1564 unsigned index,
1565 u16 uframe
1566)
1567{
1568 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1569 unsigned pg = itd->pg;
1570
1571 // BUG_ON (pg == 6 && uf->cross);
1572
1573 uframe &= 0x07;
1574 itd->index [uframe] = index;
1575
1576 itd->hw_transaction[uframe] = uf->transaction;
1577 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1578 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1579 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1580
1581 /* iso_frame_desc[].offset must be strictly increasing */
1582 if (unlikely (uf->cross)) {
1583 u64 bufp = uf->bufp + 4096;
1584
1585 itd->pg = ++pg;
1586 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1587 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1588 }
1589}
1590
1591static inline void
1592itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1593{
1594 union ehci_shadow *prev = &ehci->pshadow[frame];
1595 __hc32 *hw_p = &ehci->periodic[frame];
1596 union ehci_shadow here = *prev;
1597 __hc32 type = 0;
1598
1599 /* skip any iso nodes which might belong to previous microframes */
1600 while (here.ptr) {
1601 type = Q_NEXT_TYPE(ehci, *hw_p);
1602 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1603 break;
1604 prev = periodic_next_shadow(ehci, prev, type);
1605 hw_p = shadow_next_periodic(ehci, &here, type);
1606 here = *prev;
1607 }
1608
1609 itd->itd_next = here;
1610 itd->hw_next = *hw_p;
1611 prev->itd = itd;
1612 itd->frame = frame;
1613 wmb ();
1614 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1615}
1616
1617/* fit urb's itds into the selected schedule slot; activate as needed */
1618static int
1619itd_link_urb (
1620 struct ehci_hcd *ehci,
1621 struct urb *urb,
1622 unsigned mod,
1623 struct ehci_iso_stream *stream
1624)
1625{
1626 int packet;
1627 unsigned next_uframe, uframe, frame;
1628 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1629 struct ehci_itd *itd;
1630
1631 next_uframe = stream->next_uframe & (mod - 1);
1632
1633 if (unlikely (list_empty(&stream->td_list))) {
1634 ehci_to_hcd(ehci)->self.bandwidth_allocated
1635 += stream->bandwidth;
1636 ehci_vdbg (ehci,
1637 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1638 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1639 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1640 urb->interval,
1641 next_uframe >> 3, next_uframe & 0x7);
1642 }
1643
1644 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1645 if (ehci->amd_pll_fix == 1)
1646 usb_amd_quirk_pll_disable();
1647 }
1648
1649 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1650
1651 /* fill iTDs uframe by uframe */
1652 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1653 if (itd == NULL) {
1654 /* ASSERT: we have all necessary itds */
1655 // BUG_ON (list_empty (&iso_sched->td_list));
1656
1657 /* ASSERT: no itds for this endpoint in this uframe */
1658
1659 itd = list_entry (iso_sched->td_list.next,
1660 struct ehci_itd, itd_list);
1661 list_move_tail (&itd->itd_list, &stream->td_list);
1662 itd->stream = iso_stream_get (stream);
1663 itd->urb = urb;
1664 itd_init (ehci, stream, itd);
1665 }
1666
1667 uframe = next_uframe & 0x07;
1668 frame = next_uframe >> 3;
1669
1670 itd_patch(ehci, itd, iso_sched, packet, uframe);
1671
1672 next_uframe += stream->interval;
1673 next_uframe &= mod - 1;
1674 packet++;
1675
1676 /* link completed itds into the schedule */
1677 if (((next_uframe >> 3) != frame)
1678 || packet == urb->number_of_packets) {
1679 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1680 itd = NULL;
1681 }
1682 }
1683 stream->next_uframe = next_uframe;
1684
1685 /* don't need that schedule data any more */
1686 iso_sched_free (stream, iso_sched);
1687 urb->hcpriv = NULL;
1688
1689 timer_action (ehci, TIMER_IO_WATCHDOG);
1690 return enable_periodic(ehci);
1691}
1692
1693#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1694
1695/* Process and recycle a completed ITD. Return true iff its urb completed,
1696 * and hence its completion callback probably added things to the hardware
1697 * schedule.
1698 *
1699 * Note that we carefully avoid recycling this descriptor until after any
1700 * completion callback runs, so that it won't be reused quickly. That is,
1701 * assuming (a) no more than two urbs per frame on this endpoint, and also
1702 * (b) only this endpoint's completions submit URBs. It seems some silicon
1703 * corrupts things if you reuse completed descriptors very quickly...
1704 */
1705static unsigned
1706itd_complete (
1707 struct ehci_hcd *ehci,
1708 struct ehci_itd *itd
1709) {
1710 struct urb *urb = itd->urb;
1711 struct usb_iso_packet_descriptor *desc;
1712 u32 t;
1713 unsigned uframe;
1714 int urb_index = -1;
1715 struct ehci_iso_stream *stream = itd->stream;
1716 struct usb_device *dev;
1717 unsigned retval = false;
1718
1719 /* for each uframe with a packet */
1720 for (uframe = 0; uframe < 8; uframe++) {
1721 if (likely (itd->index[uframe] == -1))
1722 continue;
1723 urb_index = itd->index[uframe];
1724 desc = &urb->iso_frame_desc [urb_index];
1725
1726 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1727 itd->hw_transaction [uframe] = 0;
1728
1729 /* report transfer status */
1730 if (unlikely (t & ISO_ERRS)) {
1731 urb->error_count++;
1732 if (t & EHCI_ISOC_BUF_ERR)
1733 desc->status = usb_pipein (urb->pipe)
1734 ? -ENOSR /* hc couldn't read */
1735 : -ECOMM; /* hc couldn't write */
1736 else if (t & EHCI_ISOC_BABBLE)
1737 desc->status = -EOVERFLOW;
1738 else /* (t & EHCI_ISOC_XACTERR) */
1739 desc->status = -EPROTO;
1740
1741 /* HC need not update length with this error */
1742 if (!(t & EHCI_ISOC_BABBLE)) {
1743 desc->actual_length = EHCI_ITD_LENGTH(t);
1744 urb->actual_length += desc->actual_length;
1745 }
1746 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1747 desc->status = 0;
1748 desc->actual_length = EHCI_ITD_LENGTH(t);
1749 urb->actual_length += desc->actual_length;
1750 } else {
1751 /* URB was too late */
1752 desc->status = -EXDEV;
1753 }
1754 }
1755
1756 /* handle completion now? */
1757 if (likely ((urb_index + 1) != urb->number_of_packets))
1758 goto done;
1759
1760 /* ASSERT: it's really the last itd for this urb
1761 list_for_each_entry (itd, &stream->td_list, itd_list)
1762 BUG_ON (itd->urb == urb);
1763 */
1764
1765 /* give urb back to the driver; completion often (re)submits */
1766 dev = urb->dev;
1767 ehci_urb_done(ehci, urb, 0);
1768 retval = true;
1769 urb = NULL;
1770 (void) disable_periodic(ehci);
1771 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1772
1773 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1774 if (ehci->amd_pll_fix == 1)
1775 usb_amd_quirk_pll_enable();
1776 }
1777
1778 if (unlikely(list_is_singular(&stream->td_list))) {
1779 ehci_to_hcd(ehci)->self.bandwidth_allocated
1780 -= stream->bandwidth;
1781 ehci_vdbg (ehci,
1782 "deschedule devp %s ep%d%s-iso\n",
1783 dev->devpath, stream->bEndpointAddress & 0x0f,
1784 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1785 }
1786 iso_stream_put (ehci, stream);
1787
1788done:
1789 itd->urb = NULL;
1790 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1791 /* OK to recycle this ITD now. */
1792 itd->stream = NULL;
1793 list_move(&itd->itd_list, &stream->free_list);
1794 iso_stream_put(ehci, stream);
1795 } else {
1796 /* HW might remember this ITD, so we can't recycle it yet.
1797 * Move it to a safe place until a new frame starts.
1798 */
1799 list_move(&itd->itd_list, &ehci->cached_itd_list);
1800 if (stream->refcount == 2) {
1801 /* If iso_stream_put() were called here, stream
1802 * would be freed. Instead, just prevent reuse.
1803 */
1804 stream->ep->hcpriv = NULL;
1805 stream->ep = NULL;
1806 }
1807 }
1808 return retval;
1809}
1810
1811/*-------------------------------------------------------------------------*/
1812
1813static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1814 gfp_t mem_flags)
1815{
1816 int status = -EINVAL;
1817 unsigned long flags;
1818 struct ehci_iso_stream *stream;
1819
1820 /* Get iso_stream head */
1821 stream = iso_stream_find (ehci, urb);
1822 if (unlikely (stream == NULL)) {
1823 ehci_dbg (ehci, "can't get iso stream\n");
1824 return -ENOMEM;
1825 }
1826 if (unlikely (urb->interval != stream->interval)) {
1827 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1828 stream->interval, urb->interval);
1829 goto done;
1830 }
1831
1832#ifdef EHCI_URB_TRACE
1833 ehci_dbg (ehci,
1834 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1835 __func__, urb->dev->devpath, urb,
1836 usb_pipeendpoint (urb->pipe),
1837 usb_pipein (urb->pipe) ? "in" : "out",
1838 urb->transfer_buffer_length,
1839 urb->number_of_packets, urb->interval,
1840 stream);
1841#endif
1842
1843 /* allocate ITDs w/o locking anything */
1844 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1845 if (unlikely (status < 0)) {
1846 ehci_dbg (ehci, "can't init itds\n");
1847 goto done;
1848 }
1849
1850 /* schedule ... need to lock */
1851 spin_lock_irqsave (&ehci->lock, flags);
1852 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1853 status = -ESHUTDOWN;
1854 goto done_not_linked;
1855 }
1856 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1857 if (unlikely(status))
1858 goto done_not_linked;
1859 status = iso_stream_schedule(ehci, urb, stream);
1860 if (likely (status == 0))
1861 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1862 else
1863 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1864done_not_linked:
1865 spin_unlock_irqrestore (&ehci->lock, flags);
1866
1867done:
1868 if (unlikely (status < 0))
1869 iso_stream_put (ehci, stream);
1870 return status;
1871}
1872
1873/*-------------------------------------------------------------------------*/
1874
1875/*
1876 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1877 * TTs in USB 2.0 hubs. These need microframe scheduling.
1878 */
1879
1880static inline void
1881sitd_sched_init(
1882 struct ehci_hcd *ehci,
1883 struct ehci_iso_sched *iso_sched,
1884 struct ehci_iso_stream *stream,
1885 struct urb *urb
1886)
1887{
1888 unsigned i;
1889 dma_addr_t dma = urb->transfer_dma;
1890
1891 /* how many frames are needed for these transfers */
1892 iso_sched->span = urb->number_of_packets * stream->interval;
1893
1894 /* figure out per-frame sitd fields that we'll need later
1895 * when we fit new sitds into the schedule.
1896 */
1897 for (i = 0; i < urb->number_of_packets; i++) {
1898 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1899 unsigned length;
1900 dma_addr_t buf;
1901 u32 trans;
1902
1903 length = urb->iso_frame_desc [i].length & 0x03ff;
1904 buf = dma + urb->iso_frame_desc [i].offset;
1905
1906 trans = SITD_STS_ACTIVE;
1907 if (((i + 1) == urb->number_of_packets)
1908 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1909 trans |= SITD_IOC;
1910 trans |= length << 16;
1911 packet->transaction = cpu_to_hc32(ehci, trans);
1912
1913 /* might need to cross a buffer page within a td */
1914 packet->bufp = buf;
1915 packet->buf1 = (buf + length) & ~0x0fff;
1916 if (packet->buf1 != (buf & ~(u64)0x0fff))
1917 packet->cross = 1;
1918
1919 /* OUT uses multiple start-splits */
1920 if (stream->bEndpointAddress & USB_DIR_IN)
1921 continue;
1922 length = (length + 187) / 188;
1923 if (length > 1) /* BEGIN vs ALL */
1924 length |= 1 << 3;
1925 packet->buf1 |= length;
1926 }
1927}
1928
1929static int
1930sitd_urb_transaction (
1931 struct ehci_iso_stream *stream,
1932 struct ehci_hcd *ehci,
1933 struct urb *urb,
1934 gfp_t mem_flags
1935)
1936{
1937 struct ehci_sitd *sitd;
1938 dma_addr_t sitd_dma;
1939 int i;
1940 struct ehci_iso_sched *iso_sched;
1941 unsigned long flags;
1942
1943 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1944 if (iso_sched == NULL)
1945 return -ENOMEM;
1946
1947 sitd_sched_init(ehci, iso_sched, stream, urb);
1948
1949 /* allocate/init sITDs */
1950 spin_lock_irqsave (&ehci->lock, flags);
1951 for (i = 0; i < urb->number_of_packets; i++) {
1952
1953 /* NOTE: for now, we don't try to handle wraparound cases
1954 * for IN (using sitd->hw_backpointer, like a FSTN), which
1955 * means we never need two sitds for full speed packets.
1956 */
1957
1958 /* free_list.next might be cache-hot ... but maybe
1959 * the HC caches it too. avoid that issue for now.
1960 */
1961
1962 /* prefer previously-allocated sitds */
1963 if (!list_empty(&stream->free_list)) {
1964 sitd = list_entry (stream->free_list.prev,
1965 struct ehci_sitd, sitd_list);
1966 list_del (&sitd->sitd_list);
1967 sitd_dma = sitd->sitd_dma;
1968 } else {
1969 spin_unlock_irqrestore (&ehci->lock, flags);
1970 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1971 &sitd_dma);
1972 spin_lock_irqsave (&ehci->lock, flags);
1973 if (!sitd) {
1974 iso_sched_free(stream, iso_sched);
1975 spin_unlock_irqrestore(&ehci->lock, flags);
1976 return -ENOMEM;
1977 }
1978 }
1979
1980 memset (sitd, 0, sizeof *sitd);
1981 sitd->sitd_dma = sitd_dma;
1982 list_add (&sitd->sitd_list, &iso_sched->td_list);
1983 }
1984
1985 /* temporarily store schedule info in hcpriv */
1986 urb->hcpriv = iso_sched;
1987 urb->error_count = 0;
1988
1989 spin_unlock_irqrestore (&ehci->lock, flags);
1990 return 0;
1991}
1992
1993/*-------------------------------------------------------------------------*/
1994
1995static inline void
1996sitd_patch(
1997 struct ehci_hcd *ehci,
1998 struct ehci_iso_stream *stream,
1999 struct ehci_sitd *sitd,
2000 struct ehci_iso_sched *iso_sched,
2001 unsigned index
2002)
2003{
2004 struct ehci_iso_packet *uf = &iso_sched->packet [index];
2005 u64 bufp = uf->bufp;
2006
2007 sitd->hw_next = EHCI_LIST_END(ehci);
2008 sitd->hw_fullspeed_ep = stream->address;
2009 sitd->hw_uframe = stream->splits;
2010 sitd->hw_results = uf->transaction;
2011 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2012
2013 bufp = uf->bufp;
2014 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2015 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2016
2017 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2018 if (uf->cross)
2019 bufp += 4096;
2020 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2021 sitd->index = index;
2022}
2023
2024static inline void
2025sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2026{
2027 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2028 sitd->sitd_next = ehci->pshadow [frame];
2029 sitd->hw_next = ehci->periodic [frame];
2030 ehci->pshadow [frame].sitd = sitd;
2031 sitd->frame = frame;
2032 wmb ();
2033 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2034}
2035
2036/* fit urb's sitds into the selected schedule slot; activate as needed */
2037static int
2038sitd_link_urb (
2039 struct ehci_hcd *ehci,
2040 struct urb *urb,
2041 unsigned mod,
2042 struct ehci_iso_stream *stream
2043)
2044{
2045 int packet;
2046 unsigned next_uframe;
2047 struct ehci_iso_sched *sched = urb->hcpriv;
2048 struct ehci_sitd *sitd;
2049
2050 next_uframe = stream->next_uframe;
2051
2052 if (list_empty(&stream->td_list)) {
2053 /* usbfs ignores TT bandwidth */
2054 ehci_to_hcd(ehci)->self.bandwidth_allocated
2055 += stream->bandwidth;
2056 ehci_vdbg (ehci,
2057 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2058 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2059 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2060 (next_uframe >> 3) & (ehci->periodic_size - 1),
2061 stream->interval, hc32_to_cpu(ehci, stream->splits));
2062 }
2063
2064 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2065 if (ehci->amd_pll_fix == 1)
2066 usb_amd_quirk_pll_disable();
2067 }
2068
2069 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2070
2071 /* fill sITDs frame by frame */
2072 for (packet = 0, sitd = NULL;
2073 packet < urb->number_of_packets;
2074 packet++) {
2075
2076 /* ASSERT: we have all necessary sitds */
2077 BUG_ON (list_empty (&sched->td_list));
2078
2079 /* ASSERT: no itds for this endpoint in this frame */
2080
2081 sitd = list_entry (sched->td_list.next,
2082 struct ehci_sitd, sitd_list);
2083 list_move_tail (&sitd->sitd_list, &stream->td_list);
2084 sitd->stream = iso_stream_get (stream);
2085 sitd->urb = urb;
2086
2087 sitd_patch(ehci, stream, sitd, sched, packet);
2088 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2089 sitd);
2090
2091 next_uframe += stream->interval << 3;
2092 }
2093 stream->next_uframe = next_uframe & (mod - 1);
2094
2095 /* don't need that schedule data any more */
2096 iso_sched_free (stream, sched);
2097 urb->hcpriv = NULL;
2098
2099 timer_action (ehci, TIMER_IO_WATCHDOG);
2100 return enable_periodic(ehci);
2101}
2102
2103/*-------------------------------------------------------------------------*/
2104
2105#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2106 | SITD_STS_XACT | SITD_STS_MMF)
2107
2108/* Process and recycle a completed SITD. Return true iff its urb completed,
2109 * and hence its completion callback probably added things to the hardware
2110 * schedule.
2111 *
2112 * Note that we carefully avoid recycling this descriptor until after any
2113 * completion callback runs, so that it won't be reused quickly. That is,
2114 * assuming (a) no more than two urbs per frame on this endpoint, and also
2115 * (b) only this endpoint's completions submit URBs. It seems some silicon
2116 * corrupts things if you reuse completed descriptors very quickly...
2117 */
2118static unsigned
2119sitd_complete (
2120 struct ehci_hcd *ehci,
2121 struct ehci_sitd *sitd
2122) {
2123 struct urb *urb = sitd->urb;
2124 struct usb_iso_packet_descriptor *desc;
2125 u32 t;
2126 int urb_index = -1;
2127 struct ehci_iso_stream *stream = sitd->stream;
2128 struct usb_device *dev;
2129 unsigned retval = false;
2130
2131 urb_index = sitd->index;
2132 desc = &urb->iso_frame_desc [urb_index];
2133 t = hc32_to_cpup(ehci, &sitd->hw_results);
2134
2135 /* report transfer status */
2136 if (t & SITD_ERRS) {
2137 urb->error_count++;
2138 if (t & SITD_STS_DBE)
2139 desc->status = usb_pipein (urb->pipe)
2140 ? -ENOSR /* hc couldn't read */
2141 : -ECOMM; /* hc couldn't write */
2142 else if (t & SITD_STS_BABBLE)
2143 desc->status = -EOVERFLOW;
2144 else /* XACT, MMF, etc */
2145 desc->status = -EPROTO;
2146 } else {
2147 desc->status = 0;
2148 desc->actual_length = desc->length - SITD_LENGTH(t);
2149 urb->actual_length += desc->actual_length;
2150 }
2151
2152 /* handle completion now? */
2153 if ((urb_index + 1) != urb->number_of_packets)
2154 goto done;
2155
2156 /* ASSERT: it's really the last sitd for this urb
2157 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2158 BUG_ON (sitd->urb == urb);
2159 */
2160
2161 /* give urb back to the driver; completion often (re)submits */
2162 dev = urb->dev;
2163 ehci_urb_done(ehci, urb, 0);
2164 retval = true;
2165 urb = NULL;
2166 (void) disable_periodic(ehci);
2167 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2168
2169 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2170 if (ehci->amd_pll_fix == 1)
2171 usb_amd_quirk_pll_enable();
2172 }
2173
2174 if (list_is_singular(&stream->td_list)) {
2175 ehci_to_hcd(ehci)->self.bandwidth_allocated
2176 -= stream->bandwidth;
2177 ehci_vdbg (ehci,
2178 "deschedule devp %s ep%d%s-iso\n",
2179 dev->devpath, stream->bEndpointAddress & 0x0f,
2180 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2181 }
2182 iso_stream_put (ehci, stream);
2183
2184done:
2185 sitd->urb = NULL;
2186 if (ehci->clock_frame != sitd->frame) {
2187 /* OK to recycle this SITD now. */
2188 sitd->stream = NULL;
2189 list_move(&sitd->sitd_list, &stream->free_list);
2190 iso_stream_put(ehci, stream);
2191 } else {
2192 /* HW might remember this SITD, so we can't recycle it yet.
2193 * Move it to a safe place until a new frame starts.
2194 */
2195 list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2196 if (stream->refcount == 2) {
2197 /* If iso_stream_put() were called here, stream
2198 * would be freed. Instead, just prevent reuse.
2199 */
2200 stream->ep->hcpriv = NULL;
2201 stream->ep = NULL;
2202 }
2203 }
2204 return retval;
2205}
2206
2207
2208static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2209 gfp_t mem_flags)
2210{
2211 int status = -EINVAL;
2212 unsigned long flags;
2213 struct ehci_iso_stream *stream;
2214
2215 /* Get iso_stream head */
2216 stream = iso_stream_find (ehci, urb);
2217 if (stream == NULL) {
2218 ehci_dbg (ehci, "can't get iso stream\n");
2219 return -ENOMEM;
2220 }
2221 if (urb->interval != stream->interval) {
2222 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2223 stream->interval, urb->interval);
2224 goto done;
2225 }
2226
2227#ifdef EHCI_URB_TRACE
2228 ehci_dbg (ehci,
2229 "submit %p dev%s ep%d%s-iso len %d\n",
2230 urb, urb->dev->devpath,
2231 usb_pipeendpoint (urb->pipe),
2232 usb_pipein (urb->pipe) ? "in" : "out",
2233 urb->transfer_buffer_length);
2234#endif
2235
2236 /* allocate SITDs */
2237 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2238 if (status < 0) {
2239 ehci_dbg (ehci, "can't init sitds\n");
2240 goto done;
2241 }
2242
2243 /* schedule ... need to lock */
2244 spin_lock_irqsave (&ehci->lock, flags);
2245 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2246 status = -ESHUTDOWN;
2247 goto done_not_linked;
2248 }
2249 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2250 if (unlikely(status))
2251 goto done_not_linked;
2252 status = iso_stream_schedule(ehci, urb, stream);
2253 if (status == 0)
2254 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2255 else
2256 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2257done_not_linked:
2258 spin_unlock_irqrestore (&ehci->lock, flags);
2259
2260done:
2261 if (status < 0)
2262 iso_stream_put (ehci, stream);
2263 return status;
2264}
2265
2266/*-------------------------------------------------------------------------*/
2267
2268static void free_cached_lists(struct ehci_hcd *ehci)
2269{
2270 struct ehci_itd *itd, *n;
2271 struct ehci_sitd *sitd, *sn;
2272
2273 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2274 struct ehci_iso_stream *stream = itd->stream;
2275 itd->stream = NULL;
2276 list_move(&itd->itd_list, &stream->free_list);
2277 iso_stream_put(ehci, stream);
2278 }
2279
2280 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2281 struct ehci_iso_stream *stream = sitd->stream;
2282 sitd->stream = NULL;
2283 list_move(&sitd->sitd_list, &stream->free_list);
2284 iso_stream_put(ehci, stream);
2285 }
2286}
2287
2288/*-------------------------------------------------------------------------*/
2289
2290static void
2291scan_periodic (struct ehci_hcd *ehci)
2292{
2293 unsigned now_uframe, frame, clock, clock_frame, mod;
2294 unsigned modified;
2295
2296 mod = ehci->periodic_size << 3;
2297
2298 /*
2299 * When running, scan from last scan point up to "now"
2300 * else clean up by scanning everything that's left.
2301 * Touches as few pages as possible: cache-friendly.
2302 */
2303 now_uframe = ehci->next_uframe;
2304 if (ehci->rh_state == EHCI_RH_RUNNING) {
2305 clock = ehci_read_frame_index(ehci);
2306 clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2307 } else {
2308 clock = now_uframe + mod - 1;
2309 clock_frame = -1;
2310 }
2311 if (ehci->clock_frame != clock_frame) {
2312 free_cached_lists(ehci);
2313 ehci->clock_frame = clock_frame;
2314 }
2315 clock &= mod - 1;
2316 clock_frame = clock >> 3;
2317 ++ehci->periodic_stamp;
2318
2319 for (;;) {
2320 union ehci_shadow q, *q_p;
2321 __hc32 type, *hw_p;
2322 unsigned incomplete = false;
2323
2324 frame = now_uframe >> 3;
2325
2326restart:
2327 /* scan each element in frame's queue for completions */
2328 q_p = &ehci->pshadow [frame];
2329 hw_p = &ehci->periodic [frame];
2330 q.ptr = q_p->ptr;
2331 type = Q_NEXT_TYPE(ehci, *hw_p);
2332 modified = 0;
2333
2334 while (q.ptr != NULL) {
2335 unsigned uf;
2336 union ehci_shadow temp;
2337 int live;
2338
2339 live = (ehci->rh_state == EHCI_RH_RUNNING);
2340 switch (hc32_to_cpu(ehci, type)) {
2341 case Q_TYPE_QH:
2342 /* handle any completions */
2343 temp.qh = qh_get (q.qh);
2344 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2345 q = q.qh->qh_next;
2346 if (temp.qh->stamp != ehci->periodic_stamp) {
2347 modified = qh_completions(ehci, temp.qh);
2348 if (!modified)
2349 temp.qh->stamp = ehci->periodic_stamp;
2350 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2351 temp.qh->needs_rescan))
2352 intr_deschedule(ehci, temp.qh);
2353 }
2354 qh_put (temp.qh);
2355 break;
2356 case Q_TYPE_FSTN:
2357 /* for "save place" FSTNs, look at QH entries
2358 * in the previous frame for completions.
2359 */
2360 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2361 ehci_dbg(ehci,
2362 "ignoring completions from FSTNs\n");
2363 }
2364 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2365 q = q.fstn->fstn_next;
2366 break;
2367 case Q_TYPE_ITD:
2368 /* If this ITD is still active, leave it for
2369 * later processing ... check the next entry.
2370 * No need to check for activity unless the
2371 * frame is current.
2372 */
2373 if (frame == clock_frame && live) {
2374 rmb();
2375 for (uf = 0; uf < 8; uf++) {
2376 if (q.itd->hw_transaction[uf] &
2377 ITD_ACTIVE(ehci))
2378 break;
2379 }
2380 if (uf < 8) {
2381 incomplete = true;
2382 q_p = &q.itd->itd_next;
2383 hw_p = &q.itd->hw_next;
2384 type = Q_NEXT_TYPE(ehci,
2385 q.itd->hw_next);
2386 q = *q_p;
2387 break;
2388 }
2389 }
2390
2391 /* Take finished ITDs out of the schedule
2392 * and process them: recycle, maybe report
2393 * URB completion. HC won't cache the
2394 * pointer for much longer, if at all.
2395 */
2396 *q_p = q.itd->itd_next;
2397 if (!ehci->use_dummy_qh ||
2398 q.itd->hw_next != EHCI_LIST_END(ehci))
2399 *hw_p = q.itd->hw_next;
2400 else
2401 *hw_p = ehci->dummy->qh_dma;
2402 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2403 wmb();
2404 modified = itd_complete (ehci, q.itd);
2405 q = *q_p;
2406 break;
2407 case Q_TYPE_SITD:
2408 /* If this SITD is still active, leave it for
2409 * later processing ... check the next entry.
2410 * No need to check for activity unless the
2411 * frame is current.
2412 */
2413 if (((frame == clock_frame) ||
2414 (((frame + 1) & (ehci->periodic_size - 1))
2415 == clock_frame))
2416 && live
2417 && (q.sitd->hw_results &
2418 SITD_ACTIVE(ehci))) {
2419
2420 incomplete = true;
2421 q_p = &q.sitd->sitd_next;
2422 hw_p = &q.sitd->hw_next;
2423 type = Q_NEXT_TYPE(ehci,
2424 q.sitd->hw_next);
2425 q = *q_p;
2426 break;
2427 }
2428
2429 /* Take finished SITDs out of the schedule
2430 * and process them: recycle, maybe report
2431 * URB completion.
2432 */
2433 *q_p = q.sitd->sitd_next;
2434 if (!ehci->use_dummy_qh ||
2435 q.sitd->hw_next != EHCI_LIST_END(ehci))
2436 *hw_p = q.sitd->hw_next;
2437 else
2438 *hw_p = ehci->dummy->qh_dma;
2439 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2440 wmb();
2441 modified = sitd_complete (ehci, q.sitd);
2442 q = *q_p;
2443 break;
2444 default:
2445 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2446 type, frame, q.ptr);
2447 // BUG ();
2448 q.ptr = NULL;
2449 }
2450
2451 /* assume completion callbacks modify the queue */
2452 if (unlikely (modified)) {
2453 if (likely(ehci->periodic_sched > 0))
2454 goto restart;
2455 /* short-circuit this scan */
2456 now_uframe = clock;
2457 break;
2458 }
2459 }
2460
2461 /* If we can tell we caught up to the hardware, stop now.
2462 * We can't advance our scan without collecting the ISO
2463 * transfers that are still pending in this frame.
2464 */
2465 if (incomplete && ehci->rh_state == EHCI_RH_RUNNING) {
2466 ehci->next_uframe = now_uframe;
2467 break;
2468 }
2469
2470 // FIXME: this assumes we won't get lapped when
2471 // latencies climb; that should be rare, but...
2472 // detect it, and just go all the way around.
2473 // FLR might help detect this case, so long as latencies
2474 // don't exceed periodic_size msec (default 1.024 sec).
2475
2476 // FIXME: likewise assumes HC doesn't halt mid-scan
2477
2478 if (now_uframe == clock) {
2479 unsigned now;
2480
2481 if (ehci->rh_state != EHCI_RH_RUNNING
2482 || ehci->periodic_sched == 0)
2483 break;
2484 ehci->next_uframe = now_uframe;
2485 now = ehci_read_frame_index(ehci) & (mod - 1);
2486 if (now_uframe == now)
2487 break;
2488
2489 /* rescan the rest of this frame, then ... */
2490 clock = now;
2491 clock_frame = clock >> 3;
2492 if (ehci->clock_frame != clock_frame) {
2493 free_cached_lists(ehci);
2494 ehci->clock_frame = clock_frame;
2495 ++ehci->periodic_stamp;
2496 }
2497 } else {
2498 now_uframe++;
2499 now_uframe &= mod - 1;
2500 }
2501 }
2502}
1/*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20/* this file is part of ehci-hcd.c */
21
22/*-------------------------------------------------------------------------*/
23
24/*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37static int ehci_get_frame (struct usb_hcd *hcd);
38
39/*
40 * periodic_next_shadow - return "next" pointer on shadow list
41 * @periodic: host pointer to qh/itd/sitd
42 * @tag: hardware tag for type of this record
43 */
44static union ehci_shadow *
45periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 __hc32 tag)
47{
48 switch (hc32_to_cpu(ehci, tag)) {
49 case Q_TYPE_QH:
50 return &periodic->qh->qh_next;
51 case Q_TYPE_FSTN:
52 return &periodic->fstn->fstn_next;
53 case Q_TYPE_ITD:
54 return &periodic->itd->itd_next;
55 // case Q_TYPE_SITD:
56 default:
57 return &periodic->sitd->sitd_next;
58 }
59}
60
61static __hc32 *
62shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 __hc32 tag)
64{
65 switch (hc32_to_cpu(ehci, tag)) {
66 /* our ehci_shadow.qh is actually software part */
67 case Q_TYPE_QH:
68 return &periodic->qh->hw->hw_next;
69 /* others are hw parts */
70 default:
71 return periodic->hw_next;
72 }
73}
74
75/* caller must hold ehci->lock */
76static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
77{
78 union ehci_shadow *prev_p = &ehci->pshadow[frame];
79 __hc32 *hw_p = &ehci->periodic[frame];
80 union ehci_shadow here = *prev_p;
81
82 /* find predecessor of "ptr"; hw and shadow lists are in sync */
83 while (here.ptr && here.ptr != ptr) {
84 prev_p = periodic_next_shadow(ehci, prev_p,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 hw_p = shadow_next_periodic(ehci, &here,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 here = *prev_p;
89 }
90 /* an interrupt entry (at list end) could have been shared */
91 if (!here.ptr)
92 return;
93
94 /* update shadow and hardware lists ... the old "next" pointers
95 * from ptr may still be in use, the caller updates them.
96 */
97 *prev_p = *periodic_next_shadow(ehci, &here,
98 Q_NEXT_TYPE(ehci, *hw_p));
99
100 if (!ehci->use_dummy_qh ||
101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 != EHCI_LIST_END(ehci))
103 *hw_p = *shadow_next_periodic(ehci, &here,
104 Q_NEXT_TYPE(ehci, *hw_p));
105 else
106 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
107}
108
109/*-------------------------------------------------------------------------*/
110
111/* Bandwidth and TT management */
112
113/* Find the TT data structure for this device; create it if necessary */
114static struct ehci_tt *find_tt(struct usb_device *udev)
115{
116 struct usb_tt *utt = udev->tt;
117 struct ehci_tt *tt, **tt_index, **ptt;
118 unsigned port;
119 bool allocated_index = false;
120
121 if (!utt)
122 return NULL; /* Not below a TT */
123
124 /*
125 * Find/create our data structure.
126 * For hubs with a single TT, we get it directly.
127 * For hubs with multiple TTs, there's an extra level of pointers.
128 */
129 tt_index = NULL;
130 if (utt->multi) {
131 tt_index = utt->hcpriv;
132 if (!tt_index) { /* Create the index array */
133 tt_index = kzalloc(utt->hub->maxchild *
134 sizeof(*tt_index), GFP_ATOMIC);
135 if (!tt_index)
136 return ERR_PTR(-ENOMEM);
137 utt->hcpriv = tt_index;
138 allocated_index = true;
139 }
140 port = udev->ttport - 1;
141 ptt = &tt_index[port];
142 } else {
143 port = 0;
144 ptt = (struct ehci_tt **) &utt->hcpriv;
145 }
146
147 tt = *ptt;
148 if (!tt) { /* Create the ehci_tt */
149 struct ehci_hcd *ehci =
150 hcd_to_ehci(bus_to_hcd(udev->bus));
151
152 tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
153 if (!tt) {
154 if (allocated_index) {
155 utt->hcpriv = NULL;
156 kfree(tt_index);
157 }
158 return ERR_PTR(-ENOMEM);
159 }
160 list_add_tail(&tt->tt_list, &ehci->tt_list);
161 INIT_LIST_HEAD(&tt->ps_list);
162 tt->usb_tt = utt;
163 tt->tt_port = port;
164 *ptt = tt;
165 }
166
167 return tt;
168}
169
170/* Release the TT above udev, if it's not in use */
171static void drop_tt(struct usb_device *udev)
172{
173 struct usb_tt *utt = udev->tt;
174 struct ehci_tt *tt, **tt_index, **ptt;
175 int cnt, i;
176
177 if (!utt || !utt->hcpriv)
178 return; /* Not below a TT, or never allocated */
179
180 cnt = 0;
181 if (utt->multi) {
182 tt_index = utt->hcpriv;
183 ptt = &tt_index[udev->ttport - 1];
184
185 /* How many entries are left in tt_index? */
186 for (i = 0; i < utt->hub->maxchild; ++i)
187 cnt += !!tt_index[i];
188 } else {
189 tt_index = NULL;
190 ptt = (struct ehci_tt **) &utt->hcpriv;
191 }
192
193 tt = *ptt;
194 if (!tt || !list_empty(&tt->ps_list))
195 return; /* never allocated, or still in use */
196
197 list_del(&tt->tt_list);
198 *ptt = NULL;
199 kfree(tt);
200 if (cnt == 1) {
201 utt->hcpriv = NULL;
202 kfree(tt_index);
203 }
204}
205
206static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
207 struct ehci_per_sched *ps)
208{
209 dev_dbg(&ps->udev->dev,
210 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
211 ps->ep->desc.bEndpointAddress,
212 (sign >= 0 ? "reserve" : "release"), type,
213 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
214 ps->phase, ps->phase_uf, ps->period,
215 ps->usecs, ps->c_usecs, ps->cs_mask);
216}
217
218static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
219 struct ehci_qh *qh, int sign)
220{
221 unsigned start_uf;
222 unsigned i, j, m;
223 int usecs = qh->ps.usecs;
224 int c_usecs = qh->ps.c_usecs;
225 int tt_usecs = qh->ps.tt_usecs;
226 struct ehci_tt *tt;
227
228 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
229 return;
230 start_uf = qh->ps.bw_phase << 3;
231
232 bandwidth_dbg(ehci, sign, "intr", &qh->ps);
233
234 if (sign < 0) { /* Release bandwidth */
235 usecs = -usecs;
236 c_usecs = -c_usecs;
237 tt_usecs = -tt_usecs;
238 }
239
240 /* Entire transaction (high speed) or start-split (full/low speed) */
241 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
242 i += qh->ps.bw_uperiod)
243 ehci->bandwidth[i] += usecs;
244
245 /* Complete-split (full/low speed) */
246 if (qh->ps.c_usecs) {
247 /* NOTE: adjustments needed for FSTN */
248 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
249 i += qh->ps.bw_uperiod) {
250 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
251 if (qh->ps.cs_mask & m)
252 ehci->bandwidth[i+j] += c_usecs;
253 }
254 }
255 }
256
257 /* FS/LS bus bandwidth */
258 if (tt_usecs) {
259 tt = find_tt(qh->ps.udev);
260 if (sign > 0)
261 list_add_tail(&qh->ps.ps_list, &tt->ps_list);
262 else
263 list_del(&qh->ps.ps_list);
264
265 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
266 i += qh->ps.bw_period)
267 tt->bandwidth[i] += tt_usecs;
268 }
269}
270
271/*-------------------------------------------------------------------------*/
272
273static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
274 struct ehci_tt *tt)
275{
276 struct ehci_per_sched *ps;
277 unsigned uframe, uf, x;
278 u8 *budget_line;
279
280 if (!tt)
281 return;
282 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
283
284 /* Add up the contributions from all the endpoints using this TT */
285 list_for_each_entry(ps, &tt->ps_list, ps_list) {
286 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
287 uframe += ps->bw_uperiod) {
288 budget_line = &budget_table[uframe];
289 x = ps->tt_usecs;
290
291 /* propagate the time forward */
292 for (uf = ps->phase_uf; uf < 8; ++uf) {
293 x += budget_line[uf];
294
295 /* Each microframe lasts 125 us */
296 if (x <= 125) {
297 budget_line[uf] = x;
298 break;
299 } else {
300 budget_line[uf] = 125;
301 x -= 125;
302 }
303 }
304 }
305 }
306}
307
308static int __maybe_unused same_tt(struct usb_device *dev1,
309 struct usb_device *dev2)
310{
311 if (!dev1->tt || !dev2->tt)
312 return 0;
313 if (dev1->tt != dev2->tt)
314 return 0;
315 if (dev1->tt->multi)
316 return dev1->ttport == dev2->ttport;
317 else
318 return 1;
319}
320
321#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
322
323/* Which uframe does the low/fullspeed transfer start in?
324 *
325 * The parameter is the mask of ssplits in "H-frame" terms
326 * and this returns the transfer start uframe in "B-frame" terms,
327 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
328 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
329 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
330 */
331static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
332{
333 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
334 if (!smask) {
335 ehci_err(ehci, "invalid empty smask!\n");
336 /* uframe 7 can't have bw so this will indicate failure */
337 return 7;
338 }
339 return ffs(smask) - 1;
340}
341
342static const unsigned char
343max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
344
345/* carryover low/fullspeed bandwidth that crosses uframe boundries */
346static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
347{
348 int i;
349 for (i=0; i<7; i++) {
350 if (max_tt_usecs[i] < tt_usecs[i]) {
351 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
352 tt_usecs[i] = max_tt_usecs[i];
353 }
354 }
355}
356
357/*
358 * Return true if the device's tt's downstream bus is available for a
359 * periodic transfer of the specified length (usecs), starting at the
360 * specified frame/uframe. Note that (as summarized in section 11.19
361 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
362 * uframe.
363 *
364 * The uframe parameter is when the fullspeed/lowspeed transfer
365 * should be executed in "B-frame" terms, which is the same as the
366 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
367 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
368 * See the EHCI spec sec 4.5 and fig 4.7.
369 *
370 * This checks if the full/lowspeed bus, at the specified starting uframe,
371 * has the specified bandwidth available, according to rules listed
372 * in USB 2.0 spec section 11.18.1 fig 11-60.
373 *
374 * This does not check if the transfer would exceed the max ssplit
375 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
376 * since proper scheduling limits ssplits to less than 16 per uframe.
377 */
378static int tt_available (
379 struct ehci_hcd *ehci,
380 struct ehci_per_sched *ps,
381 struct ehci_tt *tt,
382 unsigned frame,
383 unsigned uframe
384)
385{
386 unsigned period = ps->bw_period;
387 unsigned usecs = ps->tt_usecs;
388
389 if ((period == 0) || (uframe >= 7)) /* error */
390 return 0;
391
392 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
393 frame += period) {
394 unsigned i, uf;
395 unsigned short tt_usecs[8];
396
397 if (tt->bandwidth[frame] + usecs > 900)
398 return 0;
399
400 uf = frame << 3;
401 for (i = 0; i < 8; (++i, ++uf))
402 tt_usecs[i] = ehci->tt_budget[uf];
403
404 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
405 return 0;
406
407 /* special case for isoc transfers larger than 125us:
408 * the first and each subsequent fully used uframe
409 * must be empty, so as to not illegally delay
410 * already scheduled transactions
411 */
412 if (125 < usecs) {
413 int ufs = (usecs / 125);
414
415 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
416 if (0 < tt_usecs[i])
417 return 0;
418 }
419
420 tt_usecs[uframe] += usecs;
421
422 carryover_tt_bandwidth(tt_usecs);
423
424 /* fail if the carryover pushed bw past the last uframe's limit */
425 if (max_tt_usecs[7] < tt_usecs[7])
426 return 0;
427 }
428
429 return 1;
430}
431
432#else
433
434/* return true iff the device's transaction translator is available
435 * for a periodic transfer starting at the specified frame, using
436 * all the uframes in the mask.
437 */
438static int tt_no_collision (
439 struct ehci_hcd *ehci,
440 unsigned period,
441 struct usb_device *dev,
442 unsigned frame,
443 u32 uf_mask
444)
445{
446 if (period == 0) /* error */
447 return 0;
448
449 /* note bandwidth wastage: split never follows csplit
450 * (different dev or endpoint) until the next uframe.
451 * calling convention doesn't make that distinction.
452 */
453 for (; frame < ehci->periodic_size; frame += period) {
454 union ehci_shadow here;
455 __hc32 type;
456 struct ehci_qh_hw *hw;
457
458 here = ehci->pshadow [frame];
459 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
460 while (here.ptr) {
461 switch (hc32_to_cpu(ehci, type)) {
462 case Q_TYPE_ITD:
463 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
464 here = here.itd->itd_next;
465 continue;
466 case Q_TYPE_QH:
467 hw = here.qh->hw;
468 if (same_tt(dev, here.qh->ps.udev)) {
469 u32 mask;
470
471 mask = hc32_to_cpu(ehci,
472 hw->hw_info2);
473 /* "knows" no gap is needed */
474 mask |= mask >> 8;
475 if (mask & uf_mask)
476 break;
477 }
478 type = Q_NEXT_TYPE(ehci, hw->hw_next);
479 here = here.qh->qh_next;
480 continue;
481 case Q_TYPE_SITD:
482 if (same_tt (dev, here.sitd->urb->dev)) {
483 u16 mask;
484
485 mask = hc32_to_cpu(ehci, here.sitd
486 ->hw_uframe);
487 /* FIXME assumes no gap for IN! */
488 mask |= mask >> 8;
489 if (mask & uf_mask)
490 break;
491 }
492 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
493 here = here.sitd->sitd_next;
494 continue;
495 // case Q_TYPE_FSTN:
496 default:
497 ehci_dbg (ehci,
498 "periodic frame %d bogus type %d\n",
499 frame, type);
500 }
501
502 /* collision or error */
503 return 0;
504 }
505 }
506
507 /* no collision */
508 return 1;
509}
510
511#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
512
513/*-------------------------------------------------------------------------*/
514
515static void enable_periodic(struct ehci_hcd *ehci)
516{
517 if (ehci->periodic_count++)
518 return;
519
520 /* Stop waiting to turn off the periodic schedule */
521 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
522
523 /* Don't start the schedule until PSS is 0 */
524 ehci_poll_PSS(ehci);
525 turn_on_io_watchdog(ehci);
526}
527
528static void disable_periodic(struct ehci_hcd *ehci)
529{
530 if (--ehci->periodic_count)
531 return;
532
533 /* Don't turn off the schedule until PSS is 1 */
534 ehci_poll_PSS(ehci);
535}
536
537/*-------------------------------------------------------------------------*/
538
539/* periodic schedule slots have iso tds (normal or split) first, then a
540 * sparse tree for active interrupt transfers.
541 *
542 * this just links in a qh; caller guarantees uframe masks are set right.
543 * no FSTN support (yet; ehci 0.96+)
544 */
545static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
546{
547 unsigned i;
548 unsigned period = qh->ps.period;
549
550 dev_dbg(&qh->ps.udev->dev,
551 "link qh%d-%04x/%p start %d [%d/%d us]\n",
552 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
553 & (QH_CMASK | QH_SMASK),
554 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
555
556 /* high bandwidth, or otherwise every microframe */
557 if (period == 0)
558 period = 1;
559
560 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
561 union ehci_shadow *prev = &ehci->pshadow[i];
562 __hc32 *hw_p = &ehci->periodic[i];
563 union ehci_shadow here = *prev;
564 __hc32 type = 0;
565
566 /* skip the iso nodes at list head */
567 while (here.ptr) {
568 type = Q_NEXT_TYPE(ehci, *hw_p);
569 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
570 break;
571 prev = periodic_next_shadow(ehci, prev, type);
572 hw_p = shadow_next_periodic(ehci, &here, type);
573 here = *prev;
574 }
575
576 /* sorting each branch by period (slow-->fast)
577 * enables sharing interior tree nodes
578 */
579 while (here.ptr && qh != here.qh) {
580 if (qh->ps.period > here.qh->ps.period)
581 break;
582 prev = &here.qh->qh_next;
583 hw_p = &here.qh->hw->hw_next;
584 here = *prev;
585 }
586 /* link in this qh, unless some earlier pass did that */
587 if (qh != here.qh) {
588 qh->qh_next = here;
589 if (here.qh)
590 qh->hw->hw_next = *hw_p;
591 wmb ();
592 prev->qh = qh;
593 *hw_p = QH_NEXT (ehci, qh->qh_dma);
594 }
595 }
596 qh->qh_state = QH_STATE_LINKED;
597 qh->xacterrs = 0;
598 qh->exception = 0;
599
600 /* update per-qh bandwidth for debugfs */
601 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
602 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
603 : (qh->ps.usecs * 8);
604
605 list_add(&qh->intr_node, &ehci->intr_qh_list);
606
607 /* maybe enable periodic schedule processing */
608 ++ehci->intr_count;
609 enable_periodic(ehci);
610}
611
612static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
613{
614 unsigned i;
615 unsigned period;
616
617 /*
618 * If qh is for a low/full-speed device, simply unlinking it
619 * could interfere with an ongoing split transaction. To unlink
620 * it safely would require setting the QH_INACTIVATE bit and
621 * waiting at least one frame, as described in EHCI 4.12.2.5.
622 *
623 * We won't bother with any of this. Instead, we assume that the
624 * only reason for unlinking an interrupt QH while the current URB
625 * is still active is to dequeue all the URBs (flush the whole
626 * endpoint queue).
627 *
628 * If rebalancing the periodic schedule is ever implemented, this
629 * approach will no longer be valid.
630 */
631
632 /* high bandwidth, or otherwise part of every microframe */
633 period = qh->ps.period ? : 1;
634
635 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
636 periodic_unlink (ehci, i, qh);
637
638 /* update per-qh bandwidth for debugfs */
639 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
640 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
641 : (qh->ps.usecs * 8);
642
643 dev_dbg(&qh->ps.udev->dev,
644 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
645 qh->ps.period,
646 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
647 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
648
649 /* qh->qh_next still "live" to HC */
650 qh->qh_state = QH_STATE_UNLINK;
651 qh->qh_next.ptr = NULL;
652
653 if (ehci->qh_scan_next == qh)
654 ehci->qh_scan_next = list_entry(qh->intr_node.next,
655 struct ehci_qh, intr_node);
656 list_del(&qh->intr_node);
657}
658
659static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
660{
661 if (qh->qh_state != QH_STATE_LINKED ||
662 list_empty(&qh->unlink_node))
663 return;
664
665 list_del_init(&qh->unlink_node);
666
667 /*
668 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
669 * avoiding unnecessary CPU wakeup
670 */
671}
672
673static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
674{
675 /* If the QH isn't linked then there's nothing we can do. */
676 if (qh->qh_state != QH_STATE_LINKED)
677 return;
678
679 /* if the qh is waiting for unlink, cancel it now */
680 cancel_unlink_wait_intr(ehci, qh);
681
682 qh_unlink_periodic (ehci, qh);
683
684 /* Make sure the unlinks are visible before starting the timer */
685 wmb();
686
687 /*
688 * The EHCI spec doesn't say how long it takes the controller to
689 * stop accessing an unlinked interrupt QH. The timer delay is
690 * 9 uframes; presumably that will be long enough.
691 */
692 qh->unlink_cycle = ehci->intr_unlink_cycle;
693
694 /* New entries go at the end of the intr_unlink list */
695 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
696
697 if (ehci->intr_unlinking)
698 ; /* Avoid recursive calls */
699 else if (ehci->rh_state < EHCI_RH_RUNNING)
700 ehci_handle_intr_unlinks(ehci);
701 else if (ehci->intr_unlink.next == &qh->unlink_node) {
702 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
703 ++ehci->intr_unlink_cycle;
704 }
705}
706
707/*
708 * It is common only one intr URB is scheduled on one qh, and
709 * given complete() is run in tasklet context, introduce a bit
710 * delay to avoid unlink qh too early.
711 */
712static void start_unlink_intr_wait(struct ehci_hcd *ehci,
713 struct ehci_qh *qh)
714{
715 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
716
717 /* New entries go at the end of the intr_unlink_wait list */
718 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
719
720 if (ehci->rh_state < EHCI_RH_RUNNING)
721 ehci_handle_start_intr_unlinks(ehci);
722 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
723 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
724 ++ehci->intr_unlink_wait_cycle;
725 }
726}
727
728static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
729{
730 struct ehci_qh_hw *hw = qh->hw;
731 int rc;
732
733 qh->qh_state = QH_STATE_IDLE;
734 hw->hw_next = EHCI_LIST_END(ehci);
735
736 if (!list_empty(&qh->qtd_list))
737 qh_completions(ehci, qh);
738
739 /* reschedule QH iff another request is queued */
740 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
741 rc = qh_schedule(ehci, qh);
742 if (rc == 0) {
743 qh_refresh(ehci, qh);
744 qh_link_periodic(ehci, qh);
745 }
746
747 /* An error here likely indicates handshake failure
748 * or no space left in the schedule. Neither fault
749 * should happen often ...
750 *
751 * FIXME kill the now-dysfunctional queued urbs
752 */
753 else {
754 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
755 qh, rc);
756 }
757 }
758
759 /* maybe turn off periodic schedule */
760 --ehci->intr_count;
761 disable_periodic(ehci);
762}
763
764/*-------------------------------------------------------------------------*/
765
766static int check_period (
767 struct ehci_hcd *ehci,
768 unsigned frame,
769 unsigned uframe,
770 unsigned uperiod,
771 unsigned usecs
772) {
773 /* complete split running into next frame?
774 * given FSTN support, we could sometimes check...
775 */
776 if (uframe >= 8)
777 return 0;
778
779 /* convert "usecs we need" to "max already claimed" */
780 usecs = ehci->uframe_periodic_max - usecs;
781
782 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
783 uframe += uperiod) {
784 if (ehci->bandwidth[uframe] > usecs)
785 return 0;
786 }
787
788 // success!
789 return 1;
790}
791
792static int check_intr_schedule (
793 struct ehci_hcd *ehci,
794 unsigned frame,
795 unsigned uframe,
796 struct ehci_qh *qh,
797 unsigned *c_maskp,
798 struct ehci_tt *tt
799)
800{
801 int retval = -ENOSPC;
802 u8 mask = 0;
803
804 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
805 goto done;
806
807 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
808 goto done;
809 if (!qh->ps.c_usecs) {
810 retval = 0;
811 *c_maskp = 0;
812 goto done;
813 }
814
815#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
816 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
817 unsigned i;
818
819 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
820 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
821 if (!check_period(ehci, frame, i,
822 qh->ps.bw_uperiod, qh->ps.c_usecs))
823 goto done;
824 else
825 mask |= 1 << i;
826
827 retval = 0;
828
829 *c_maskp = mask;
830 }
831#else
832 /* Make sure this tt's buffer is also available for CSPLITs.
833 * We pessimize a bit; probably the typical full speed case
834 * doesn't need the second CSPLIT.
835 *
836 * NOTE: both SPLIT and CSPLIT could be checked in just
837 * one smart pass...
838 */
839 mask = 0x03 << (uframe + qh->gap_uf);
840 *c_maskp = mask;
841
842 mask |= 1 << uframe;
843 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
844 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
845 qh->ps.bw_uperiod, qh->ps.c_usecs))
846 goto done;
847 if (!check_period(ehci, frame, uframe + qh->gap_uf,
848 qh->ps.bw_uperiod, qh->ps.c_usecs))
849 goto done;
850 retval = 0;
851 }
852#endif
853done:
854 return retval;
855}
856
857/* "first fit" scheduling policy used the first time through,
858 * or when the previous schedule slot can't be re-used.
859 */
860static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
861{
862 int status = 0;
863 unsigned uframe;
864 unsigned c_mask;
865 struct ehci_qh_hw *hw = qh->hw;
866 struct ehci_tt *tt;
867
868 hw->hw_next = EHCI_LIST_END(ehci);
869
870 /* reuse the previous schedule slots, if we can */
871 if (qh->ps.phase != NO_FRAME) {
872 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
873 return 0;
874 }
875
876 uframe = 0;
877 c_mask = 0;
878 tt = find_tt(qh->ps.udev);
879 if (IS_ERR(tt)) {
880 status = PTR_ERR(tt);
881 goto done;
882 }
883 compute_tt_budget(ehci->tt_budget, tt);
884
885 /* else scan the schedule to find a group of slots such that all
886 * uframes have enough periodic bandwidth available.
887 */
888 /* "normal" case, uframing flexible except with splits */
889 if (qh->ps.bw_period) {
890 int i;
891 unsigned frame;
892
893 for (i = qh->ps.bw_period; i > 0; --i) {
894 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
895 for (uframe = 0; uframe < 8; uframe++) {
896 status = check_intr_schedule(ehci,
897 frame, uframe, qh, &c_mask, tt);
898 if (status == 0)
899 goto got_it;
900 }
901 }
902
903 /* qh->ps.bw_period == 0 means every uframe */
904 } else {
905 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
906 }
907 if (status)
908 goto done;
909
910 got_it:
911 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
912 (qh->ps.period - 1) : 0);
913 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
914 qh->ps.phase_uf = uframe;
915 qh->ps.cs_mask = qh->ps.period ?
916 (c_mask << 8) | (1 << uframe) :
917 QH_SMASK;
918
919 /* reset S-frame and (maybe) C-frame masks */
920 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
921 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
922 reserve_release_intr_bandwidth(ehci, qh, 1);
923
924done:
925 return status;
926}
927
928static int intr_submit (
929 struct ehci_hcd *ehci,
930 struct urb *urb,
931 struct list_head *qtd_list,
932 gfp_t mem_flags
933) {
934 unsigned epnum;
935 unsigned long flags;
936 struct ehci_qh *qh;
937 int status;
938 struct list_head empty;
939
940 /* get endpoint and transfer/schedule data */
941 epnum = urb->ep->desc.bEndpointAddress;
942
943 spin_lock_irqsave (&ehci->lock, flags);
944
945 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
946 status = -ESHUTDOWN;
947 goto done_not_linked;
948 }
949 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
950 if (unlikely(status))
951 goto done_not_linked;
952
953 /* get qh and force any scheduling errors */
954 INIT_LIST_HEAD (&empty);
955 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
956 if (qh == NULL) {
957 status = -ENOMEM;
958 goto done;
959 }
960 if (qh->qh_state == QH_STATE_IDLE) {
961 if ((status = qh_schedule (ehci, qh)) != 0)
962 goto done;
963 }
964
965 /* then queue the urb's tds to the qh */
966 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
967 BUG_ON (qh == NULL);
968
969 /* stuff into the periodic schedule */
970 if (qh->qh_state == QH_STATE_IDLE) {
971 qh_refresh(ehci, qh);
972 qh_link_periodic(ehci, qh);
973 } else {
974 /* cancel unlink wait for the qh */
975 cancel_unlink_wait_intr(ehci, qh);
976 }
977
978 /* ... update usbfs periodic stats */
979 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
980
981done:
982 if (unlikely(status))
983 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
984done_not_linked:
985 spin_unlock_irqrestore (&ehci->lock, flags);
986 if (status)
987 qtd_list_free (ehci, urb, qtd_list);
988
989 return status;
990}
991
992static void scan_intr(struct ehci_hcd *ehci)
993{
994 struct ehci_qh *qh;
995
996 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
997 intr_node) {
998
999 /* clean any finished work for this qh */
1000 if (!list_empty(&qh->qtd_list)) {
1001 int temp;
1002
1003 /*
1004 * Unlinks could happen here; completion reporting
1005 * drops the lock. That's why ehci->qh_scan_next
1006 * always holds the next qh to scan; if the next qh
1007 * gets unlinked then ehci->qh_scan_next is adjusted
1008 * in qh_unlink_periodic().
1009 */
1010 temp = qh_completions(ehci, qh);
1011 if (unlikely(temp))
1012 start_unlink_intr(ehci, qh);
1013 else if (unlikely(list_empty(&qh->qtd_list) &&
1014 qh->qh_state == QH_STATE_LINKED))
1015 start_unlink_intr_wait(ehci, qh);
1016 }
1017 }
1018}
1019
1020/*-------------------------------------------------------------------------*/
1021
1022/* ehci_iso_stream ops work with both ITD and SITD */
1023
1024static struct ehci_iso_stream *
1025iso_stream_alloc (gfp_t mem_flags)
1026{
1027 struct ehci_iso_stream *stream;
1028
1029 stream = kzalloc(sizeof *stream, mem_flags);
1030 if (likely (stream != NULL)) {
1031 INIT_LIST_HEAD(&stream->td_list);
1032 INIT_LIST_HEAD(&stream->free_list);
1033 stream->next_uframe = NO_FRAME;
1034 stream->ps.phase = NO_FRAME;
1035 }
1036 return stream;
1037}
1038
1039static void
1040iso_stream_init (
1041 struct ehci_hcd *ehci,
1042 struct ehci_iso_stream *stream,
1043 struct urb *urb
1044)
1045{
1046 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1047
1048 struct usb_device *dev = urb->dev;
1049 u32 buf1;
1050 unsigned epnum, maxp;
1051 int is_input;
1052 unsigned tmp;
1053
1054 /*
1055 * this might be a "high bandwidth" highspeed endpoint,
1056 * as encoded in the ep descriptor's wMaxPacket field
1057 */
1058 epnum = usb_pipeendpoint(urb->pipe);
1059 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1060 maxp = usb_endpoint_maxp(&urb->ep->desc);
1061 if (is_input) {
1062 buf1 = (1 << 11);
1063 } else {
1064 buf1 = 0;
1065 }
1066
1067 /* knows about ITD vs SITD */
1068 if (dev->speed == USB_SPEED_HIGH) {
1069 unsigned multi = hb_mult(maxp);
1070
1071 stream->highspeed = 1;
1072
1073 maxp = max_packet(maxp);
1074 buf1 |= maxp;
1075 maxp *= multi;
1076
1077 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1078 stream->buf1 = cpu_to_hc32(ehci, buf1);
1079 stream->buf2 = cpu_to_hc32(ehci, multi);
1080
1081 /* usbfs wants to report the average usecs per frame tied up
1082 * when transfers on this endpoint are scheduled ...
1083 */
1084 stream->ps.usecs = HS_USECS_ISO(maxp);
1085
1086 /* period for bandwidth allocation */
1087 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1088 1 << (urb->ep->desc.bInterval - 1));
1089
1090 /* Allow urb->interval to override */
1091 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1092
1093 stream->uperiod = urb->interval;
1094 stream->ps.period = urb->interval >> 3;
1095 stream->bandwidth = stream->ps.usecs * 8 /
1096 stream->ps.bw_uperiod;
1097
1098 } else {
1099 u32 addr;
1100 int think_time;
1101 int hs_transfers;
1102
1103 addr = dev->ttport << 24;
1104 if (!ehci_is_TDI(ehci)
1105 || (dev->tt->hub !=
1106 ehci_to_hcd(ehci)->self.root_hub))
1107 addr |= dev->tt->hub->devnum << 16;
1108 addr |= epnum << 8;
1109 addr |= dev->devnum;
1110 stream->ps.usecs = HS_USECS_ISO(maxp);
1111 think_time = dev->tt ? dev->tt->think_time : 0;
1112 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1113 dev->speed, is_input, 1, maxp));
1114 hs_transfers = max (1u, (maxp + 187) / 188);
1115 if (is_input) {
1116 u32 tmp;
1117
1118 addr |= 1 << 31;
1119 stream->ps.c_usecs = stream->ps.usecs;
1120 stream->ps.usecs = HS_USECS_ISO(1);
1121 stream->ps.cs_mask = 1;
1122
1123 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1124 tmp = (1 << (hs_transfers + 2)) - 1;
1125 stream->ps.cs_mask |= tmp << (8 + 2);
1126 } else
1127 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1128
1129 /* period for bandwidth allocation */
1130 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1131 1 << (urb->ep->desc.bInterval - 1));
1132
1133 /* Allow urb->interval to override */
1134 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1135 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1136
1137 stream->ps.period = urb->interval;
1138 stream->uperiod = urb->interval << 3;
1139 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1140 stream->ps.bw_period;
1141
1142 /* stream->splits gets created from cs_mask later */
1143 stream->address = cpu_to_hc32(ehci, addr);
1144 }
1145
1146 stream->ps.udev = dev;
1147 stream->ps.ep = urb->ep;
1148
1149 stream->bEndpointAddress = is_input | epnum;
1150 stream->maxp = maxp;
1151}
1152
1153static struct ehci_iso_stream *
1154iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1155{
1156 unsigned epnum;
1157 struct ehci_iso_stream *stream;
1158 struct usb_host_endpoint *ep;
1159 unsigned long flags;
1160
1161 epnum = usb_pipeendpoint (urb->pipe);
1162 if (usb_pipein(urb->pipe))
1163 ep = urb->dev->ep_in[epnum];
1164 else
1165 ep = urb->dev->ep_out[epnum];
1166
1167 spin_lock_irqsave (&ehci->lock, flags);
1168 stream = ep->hcpriv;
1169
1170 if (unlikely (stream == NULL)) {
1171 stream = iso_stream_alloc(GFP_ATOMIC);
1172 if (likely (stream != NULL)) {
1173 ep->hcpriv = stream;
1174 iso_stream_init(ehci, stream, urb);
1175 }
1176
1177 /* if dev->ep [epnum] is a QH, hw is set */
1178 } else if (unlikely (stream->hw != NULL)) {
1179 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1180 urb->dev->devpath, epnum,
1181 usb_pipein(urb->pipe) ? "in" : "out");
1182 stream = NULL;
1183 }
1184
1185 spin_unlock_irqrestore (&ehci->lock, flags);
1186 return stream;
1187}
1188
1189/*-------------------------------------------------------------------------*/
1190
1191/* ehci_iso_sched ops can be ITD-only or SITD-only */
1192
1193static struct ehci_iso_sched *
1194iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1195{
1196 struct ehci_iso_sched *iso_sched;
1197 int size = sizeof *iso_sched;
1198
1199 size += packets * sizeof (struct ehci_iso_packet);
1200 iso_sched = kzalloc(size, mem_flags);
1201 if (likely (iso_sched != NULL)) {
1202 INIT_LIST_HEAD (&iso_sched->td_list);
1203 }
1204 return iso_sched;
1205}
1206
1207static inline void
1208itd_sched_init(
1209 struct ehci_hcd *ehci,
1210 struct ehci_iso_sched *iso_sched,
1211 struct ehci_iso_stream *stream,
1212 struct urb *urb
1213)
1214{
1215 unsigned i;
1216 dma_addr_t dma = urb->transfer_dma;
1217
1218 /* how many uframes are needed for these transfers */
1219 iso_sched->span = urb->number_of_packets * stream->uperiod;
1220
1221 /* figure out per-uframe itd fields that we'll need later
1222 * when we fit new itds into the schedule.
1223 */
1224 for (i = 0; i < urb->number_of_packets; i++) {
1225 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1226 unsigned length;
1227 dma_addr_t buf;
1228 u32 trans;
1229
1230 length = urb->iso_frame_desc [i].length;
1231 buf = dma + urb->iso_frame_desc [i].offset;
1232
1233 trans = EHCI_ISOC_ACTIVE;
1234 trans |= buf & 0x0fff;
1235 if (unlikely (((i + 1) == urb->number_of_packets))
1236 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1237 trans |= EHCI_ITD_IOC;
1238 trans |= length << 16;
1239 uframe->transaction = cpu_to_hc32(ehci, trans);
1240
1241 /* might need to cross a buffer page within a uframe */
1242 uframe->bufp = (buf & ~(u64)0x0fff);
1243 buf += length;
1244 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1245 uframe->cross = 1;
1246 }
1247}
1248
1249static void
1250iso_sched_free (
1251 struct ehci_iso_stream *stream,
1252 struct ehci_iso_sched *iso_sched
1253)
1254{
1255 if (!iso_sched)
1256 return;
1257 // caller must hold ehci->lock!
1258 list_splice (&iso_sched->td_list, &stream->free_list);
1259 kfree (iso_sched);
1260}
1261
1262static int
1263itd_urb_transaction (
1264 struct ehci_iso_stream *stream,
1265 struct ehci_hcd *ehci,
1266 struct urb *urb,
1267 gfp_t mem_flags
1268)
1269{
1270 struct ehci_itd *itd;
1271 dma_addr_t itd_dma;
1272 int i;
1273 unsigned num_itds;
1274 struct ehci_iso_sched *sched;
1275 unsigned long flags;
1276
1277 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1278 if (unlikely (sched == NULL))
1279 return -ENOMEM;
1280
1281 itd_sched_init(ehci, sched, stream, urb);
1282
1283 if (urb->interval < 8)
1284 num_itds = 1 + (sched->span + 7) / 8;
1285 else
1286 num_itds = urb->number_of_packets;
1287
1288 /* allocate/init ITDs */
1289 spin_lock_irqsave (&ehci->lock, flags);
1290 for (i = 0; i < num_itds; i++) {
1291
1292 /*
1293 * Use iTDs from the free list, but not iTDs that may
1294 * still be in use by the hardware.
1295 */
1296 if (likely(!list_empty(&stream->free_list))) {
1297 itd = list_first_entry(&stream->free_list,
1298 struct ehci_itd, itd_list);
1299 if (itd->frame == ehci->now_frame)
1300 goto alloc_itd;
1301 list_del (&itd->itd_list);
1302 itd_dma = itd->itd_dma;
1303 } else {
1304 alloc_itd:
1305 spin_unlock_irqrestore (&ehci->lock, flags);
1306 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1307 &itd_dma);
1308 spin_lock_irqsave (&ehci->lock, flags);
1309 if (!itd) {
1310 iso_sched_free(stream, sched);
1311 spin_unlock_irqrestore(&ehci->lock, flags);
1312 return -ENOMEM;
1313 }
1314 }
1315
1316 memset (itd, 0, sizeof *itd);
1317 itd->itd_dma = itd_dma;
1318 itd->frame = NO_FRAME;
1319 list_add (&itd->itd_list, &sched->td_list);
1320 }
1321 spin_unlock_irqrestore (&ehci->lock, flags);
1322
1323 /* temporarily store schedule info in hcpriv */
1324 urb->hcpriv = sched;
1325 urb->error_count = 0;
1326 return 0;
1327}
1328
1329/*-------------------------------------------------------------------------*/
1330
1331static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1332 struct ehci_iso_stream *stream, int sign)
1333{
1334 unsigned uframe;
1335 unsigned i, j;
1336 unsigned s_mask, c_mask, m;
1337 int usecs = stream->ps.usecs;
1338 int c_usecs = stream->ps.c_usecs;
1339 int tt_usecs = stream->ps.tt_usecs;
1340 struct ehci_tt *tt;
1341
1342 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1343 return;
1344 uframe = stream->ps.bw_phase << 3;
1345
1346 bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1347
1348 if (sign < 0) { /* Release bandwidth */
1349 usecs = -usecs;
1350 c_usecs = -c_usecs;
1351 tt_usecs = -tt_usecs;
1352 }
1353
1354 if (!stream->splits) { /* High speed */
1355 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1356 i += stream->ps.bw_uperiod)
1357 ehci->bandwidth[i] += usecs;
1358
1359 } else { /* Full speed */
1360 s_mask = stream->ps.cs_mask;
1361 c_mask = s_mask >> 8;
1362
1363 /* NOTE: adjustment needed for frame overflow */
1364 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1365 i += stream->ps.bw_uperiod) {
1366 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1367 (++j, m <<= 1)) {
1368 if (s_mask & m)
1369 ehci->bandwidth[i+j] += usecs;
1370 else if (c_mask & m)
1371 ehci->bandwidth[i+j] += c_usecs;
1372 }
1373 }
1374
1375 tt = find_tt(stream->ps.udev);
1376 if (sign > 0)
1377 list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1378 else
1379 list_del(&stream->ps.ps_list);
1380
1381 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1382 i += stream->ps.bw_period)
1383 tt->bandwidth[i] += tt_usecs;
1384 }
1385}
1386
1387static inline int
1388itd_slot_ok (
1389 struct ehci_hcd *ehci,
1390 struct ehci_iso_stream *stream,
1391 unsigned uframe
1392)
1393{
1394 unsigned usecs;
1395
1396 /* convert "usecs we need" to "max already claimed" */
1397 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1398
1399 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1400 uframe += stream->ps.bw_uperiod) {
1401 if (ehci->bandwidth[uframe] > usecs)
1402 return 0;
1403 }
1404 return 1;
1405}
1406
1407static inline int
1408sitd_slot_ok (
1409 struct ehci_hcd *ehci,
1410 struct ehci_iso_stream *stream,
1411 unsigned uframe,
1412 struct ehci_iso_sched *sched,
1413 struct ehci_tt *tt
1414)
1415{
1416 unsigned mask, tmp;
1417 unsigned frame, uf;
1418
1419 mask = stream->ps.cs_mask << (uframe & 7);
1420
1421 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1422 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1423 return 0;
1424
1425 /* for IN, don't wrap CSPLIT into the next frame */
1426 if (mask & ~0xffff)
1427 return 0;
1428
1429 /* check bandwidth */
1430 uframe &= stream->ps.bw_uperiod - 1;
1431 frame = uframe >> 3;
1432
1433#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1434 /* The tt's fullspeed bus bandwidth must be available.
1435 * tt_available scheduling guarantees 10+% for control/bulk.
1436 */
1437 uf = uframe & 7;
1438 if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1439 return 0;
1440#else
1441 /* tt must be idle for start(s), any gap, and csplit.
1442 * assume scheduling slop leaves 10+% for control/bulk.
1443 */
1444 if (!tt_no_collision(ehci, stream->ps.bw_period,
1445 stream->ps.udev, frame, mask))
1446 return 0;
1447#endif
1448
1449 do {
1450 unsigned max_used;
1451 unsigned i;
1452
1453 /* check starts (OUT uses more than one) */
1454 uf = uframe;
1455 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1456 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1457 if (ehci->bandwidth[uf] > max_used)
1458 return 0;
1459 }
1460
1461 /* for IN, check CSPLIT */
1462 if (stream->ps.c_usecs) {
1463 max_used = ehci->uframe_periodic_max -
1464 stream->ps.c_usecs;
1465 uf = uframe & ~7;
1466 tmp = 1 << (2+8);
1467 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1468 if ((stream->ps.cs_mask & tmp) == 0)
1469 continue;
1470 if (ehci->bandwidth[uf+i] > max_used)
1471 return 0;
1472 }
1473 }
1474
1475 uframe += stream->ps.bw_uperiod;
1476 } while (uframe < EHCI_BANDWIDTH_SIZE);
1477
1478 stream->ps.cs_mask <<= uframe & 7;
1479 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1480 return 1;
1481}
1482
1483/*
1484 * This scheduler plans almost as far into the future as it has actual
1485 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1486 * "as small as possible" to be cache-friendlier.) That limits the size
1487 * transfers you can stream reliably; avoid more than 64 msec per urb.
1488 * Also avoid queue depths of less than ehci's worst irq latency (affected
1489 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1490 * and other factors); or more than about 230 msec total (for portability,
1491 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1492 */
1493
1494static int
1495iso_stream_schedule (
1496 struct ehci_hcd *ehci,
1497 struct urb *urb,
1498 struct ehci_iso_stream *stream
1499)
1500{
1501 u32 now, base, next, start, period, span, now2;
1502 u32 wrap = 0, skip = 0;
1503 int status = 0;
1504 unsigned mod = ehci->periodic_size << 3;
1505 struct ehci_iso_sched *sched = urb->hcpriv;
1506 bool empty = list_empty(&stream->td_list);
1507 bool new_stream = false;
1508
1509 period = stream->uperiod;
1510 span = sched->span;
1511 if (!stream->highspeed)
1512 span <<= 3;
1513
1514 /* Start a new isochronous stream? */
1515 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1516 ehci_to_hcd(ehci), urb->ep))) {
1517
1518 /* Schedule the endpoint */
1519 if (stream->ps.phase == NO_FRAME) {
1520 int done = 0;
1521 struct ehci_tt *tt = find_tt(stream->ps.udev);
1522
1523 if (IS_ERR(tt)) {
1524 status = PTR_ERR(tt);
1525 goto fail;
1526 }
1527 compute_tt_budget(ehci->tt_budget, tt);
1528
1529 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1530
1531 /* find a uframe slot with enough bandwidth.
1532 * Early uframes are more precious because full-speed
1533 * iso IN transfers can't use late uframes,
1534 * and therefore they should be allocated last.
1535 */
1536 next = start;
1537 start += period;
1538 do {
1539 start--;
1540 /* check schedule: enough space? */
1541 if (stream->highspeed) {
1542 if (itd_slot_ok(ehci, stream, start))
1543 done = 1;
1544 } else {
1545 if ((start % 8) >= 6)
1546 continue;
1547 if (sitd_slot_ok(ehci, stream, start,
1548 sched, tt))
1549 done = 1;
1550 }
1551 } while (start > next && !done);
1552
1553 /* no room in the schedule */
1554 if (!done) {
1555 ehci_dbg(ehci, "iso sched full %p", urb);
1556 status = -ENOSPC;
1557 goto fail;
1558 }
1559 stream->ps.phase = (start >> 3) &
1560 (stream->ps.period - 1);
1561 stream->ps.bw_phase = stream->ps.phase &
1562 (stream->ps.bw_period - 1);
1563 stream->ps.phase_uf = start & 7;
1564 reserve_release_iso_bandwidth(ehci, stream, 1);
1565 }
1566
1567 /* New stream is already scheduled; use the upcoming slot */
1568 else {
1569 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1570 }
1571
1572 stream->next_uframe = start;
1573 new_stream = true;
1574 }
1575
1576 now = ehci_read_frame_index(ehci) & (mod - 1);
1577
1578 /* Take the isochronous scheduling threshold into account */
1579 if (ehci->i_thresh)
1580 next = now + ehci->i_thresh; /* uframe cache */
1581 else
1582 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1583
1584 /*
1585 * Use ehci->last_iso_frame as the base. There can't be any
1586 * TDs scheduled for earlier than that.
1587 */
1588 base = ehci->last_iso_frame << 3;
1589 next = (next - base) & (mod - 1);
1590 start = (stream->next_uframe - base) & (mod - 1);
1591
1592 if (unlikely(new_stream))
1593 goto do_ASAP;
1594
1595 /*
1596 * Typical case: reuse current schedule, stream may still be active.
1597 * Hopefully there are no gaps from the host falling behind
1598 * (irq delays etc). If there are, the behavior depends on
1599 * whether URB_ISO_ASAP is set.
1600 */
1601 now2 = (now - base) & (mod - 1);
1602
1603 /* Is the schedule already full? */
1604 if (unlikely(!empty && start < period)) {
1605 ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
1606 urb, stream->next_uframe, base, period, mod);
1607 status = -ENOSPC;
1608 goto fail;
1609 }
1610
1611 /* Is the next packet scheduled after the base time? */
1612 if (likely(!empty || start <= now2 + period)) {
1613
1614 /* URB_ISO_ASAP: make sure that start >= next */
1615 if (unlikely(start < next &&
1616 (urb->transfer_flags & URB_ISO_ASAP)))
1617 goto do_ASAP;
1618
1619 /* Otherwise use start, if it's not in the past */
1620 if (likely(start >= now2))
1621 goto use_start;
1622
1623 /* Otherwise we got an underrun while the queue was empty */
1624 } else {
1625 if (urb->transfer_flags & URB_ISO_ASAP)
1626 goto do_ASAP;
1627 wrap = mod;
1628 now2 += mod;
1629 }
1630
1631 /* How many uframes and packets do we need to skip? */
1632 skip = (now2 - start + period - 1) & -period;
1633 if (skip >= span) { /* Entirely in the past? */
1634 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1635 urb, start + base, span - period, now2 + base,
1636 base);
1637
1638 /* Try to keep the last TD intact for scanning later */
1639 skip = span - period;
1640
1641 /* Will it come before the current scan position? */
1642 if (empty) {
1643 skip = span; /* Skip the entire URB */
1644 status = 1; /* and give it back immediately */
1645 iso_sched_free(stream, sched);
1646 sched = NULL;
1647 }
1648 }
1649 urb->error_count = skip / period;
1650 if (sched)
1651 sched->first_packet = urb->error_count;
1652 goto use_start;
1653
1654 do_ASAP:
1655 /* Use the first slot after "next" */
1656 start = next + ((start - next) & (period - 1));
1657
1658 use_start:
1659 /* Tried to schedule too far into the future? */
1660 if (unlikely(start + span - period >= mod + wrap)) {
1661 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1662 urb, start, span - period, mod + wrap);
1663 status = -EFBIG;
1664 goto fail;
1665 }
1666
1667 start += base;
1668 stream->next_uframe = (start + skip) & (mod - 1);
1669
1670 /* report high speed start in uframes; full speed, in frames */
1671 urb->start_frame = start & (mod - 1);
1672 if (!stream->highspeed)
1673 urb->start_frame >>= 3;
1674
1675 /* Make sure scan_isoc() sees these */
1676 if (ehci->isoc_count == 0)
1677 ehci->last_iso_frame = now >> 3;
1678 return status;
1679
1680 fail:
1681 iso_sched_free(stream, sched);
1682 urb->hcpriv = NULL;
1683 return status;
1684}
1685
1686/*-------------------------------------------------------------------------*/
1687
1688static inline void
1689itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1690 struct ehci_itd *itd)
1691{
1692 int i;
1693
1694 /* it's been recently zeroed */
1695 itd->hw_next = EHCI_LIST_END(ehci);
1696 itd->hw_bufp [0] = stream->buf0;
1697 itd->hw_bufp [1] = stream->buf1;
1698 itd->hw_bufp [2] = stream->buf2;
1699
1700 for (i = 0; i < 8; i++)
1701 itd->index[i] = -1;
1702
1703 /* All other fields are filled when scheduling */
1704}
1705
1706static inline void
1707itd_patch(
1708 struct ehci_hcd *ehci,
1709 struct ehci_itd *itd,
1710 struct ehci_iso_sched *iso_sched,
1711 unsigned index,
1712 u16 uframe
1713)
1714{
1715 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1716 unsigned pg = itd->pg;
1717
1718 // BUG_ON (pg == 6 && uf->cross);
1719
1720 uframe &= 0x07;
1721 itd->index [uframe] = index;
1722
1723 itd->hw_transaction[uframe] = uf->transaction;
1724 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1725 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1726 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1727
1728 /* iso_frame_desc[].offset must be strictly increasing */
1729 if (unlikely (uf->cross)) {
1730 u64 bufp = uf->bufp + 4096;
1731
1732 itd->pg = ++pg;
1733 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1734 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1735 }
1736}
1737
1738static inline void
1739itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1740{
1741 union ehci_shadow *prev = &ehci->pshadow[frame];
1742 __hc32 *hw_p = &ehci->periodic[frame];
1743 union ehci_shadow here = *prev;
1744 __hc32 type = 0;
1745
1746 /* skip any iso nodes which might belong to previous microframes */
1747 while (here.ptr) {
1748 type = Q_NEXT_TYPE(ehci, *hw_p);
1749 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1750 break;
1751 prev = periodic_next_shadow(ehci, prev, type);
1752 hw_p = shadow_next_periodic(ehci, &here, type);
1753 here = *prev;
1754 }
1755
1756 itd->itd_next = here;
1757 itd->hw_next = *hw_p;
1758 prev->itd = itd;
1759 itd->frame = frame;
1760 wmb ();
1761 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1762}
1763
1764/* fit urb's itds into the selected schedule slot; activate as needed */
1765static void itd_link_urb(
1766 struct ehci_hcd *ehci,
1767 struct urb *urb,
1768 unsigned mod,
1769 struct ehci_iso_stream *stream
1770)
1771{
1772 int packet;
1773 unsigned next_uframe, uframe, frame;
1774 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1775 struct ehci_itd *itd;
1776
1777 next_uframe = stream->next_uframe & (mod - 1);
1778
1779 if (unlikely (list_empty(&stream->td_list)))
1780 ehci_to_hcd(ehci)->self.bandwidth_allocated
1781 += stream->bandwidth;
1782
1783 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1784 if (ehci->amd_pll_fix == 1)
1785 usb_amd_quirk_pll_disable();
1786 }
1787
1788 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1789
1790 /* fill iTDs uframe by uframe */
1791 for (packet = iso_sched->first_packet, itd = NULL;
1792 packet < urb->number_of_packets;) {
1793 if (itd == NULL) {
1794 /* ASSERT: we have all necessary itds */
1795 // BUG_ON (list_empty (&iso_sched->td_list));
1796
1797 /* ASSERT: no itds for this endpoint in this uframe */
1798
1799 itd = list_entry (iso_sched->td_list.next,
1800 struct ehci_itd, itd_list);
1801 list_move_tail (&itd->itd_list, &stream->td_list);
1802 itd->stream = stream;
1803 itd->urb = urb;
1804 itd_init (ehci, stream, itd);
1805 }
1806
1807 uframe = next_uframe & 0x07;
1808 frame = next_uframe >> 3;
1809
1810 itd_patch(ehci, itd, iso_sched, packet, uframe);
1811
1812 next_uframe += stream->uperiod;
1813 next_uframe &= mod - 1;
1814 packet++;
1815
1816 /* link completed itds into the schedule */
1817 if (((next_uframe >> 3) != frame)
1818 || packet == urb->number_of_packets) {
1819 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1820 itd = NULL;
1821 }
1822 }
1823 stream->next_uframe = next_uframe;
1824
1825 /* don't need that schedule data any more */
1826 iso_sched_free (stream, iso_sched);
1827 urb->hcpriv = stream;
1828
1829 ++ehci->isoc_count;
1830 enable_periodic(ehci);
1831}
1832
1833#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1834
1835/* Process and recycle a completed ITD. Return true iff its urb completed,
1836 * and hence its completion callback probably added things to the hardware
1837 * schedule.
1838 *
1839 * Note that we carefully avoid recycling this descriptor until after any
1840 * completion callback runs, so that it won't be reused quickly. That is,
1841 * assuming (a) no more than two urbs per frame on this endpoint, and also
1842 * (b) only this endpoint's completions submit URBs. It seems some silicon
1843 * corrupts things if you reuse completed descriptors very quickly...
1844 */
1845static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1846{
1847 struct urb *urb = itd->urb;
1848 struct usb_iso_packet_descriptor *desc;
1849 u32 t;
1850 unsigned uframe;
1851 int urb_index = -1;
1852 struct ehci_iso_stream *stream = itd->stream;
1853 struct usb_device *dev;
1854 bool retval = false;
1855
1856 /* for each uframe with a packet */
1857 for (uframe = 0; uframe < 8; uframe++) {
1858 if (likely (itd->index[uframe] == -1))
1859 continue;
1860 urb_index = itd->index[uframe];
1861 desc = &urb->iso_frame_desc [urb_index];
1862
1863 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1864 itd->hw_transaction [uframe] = 0;
1865
1866 /* report transfer status */
1867 if (unlikely (t & ISO_ERRS)) {
1868 urb->error_count++;
1869 if (t & EHCI_ISOC_BUF_ERR)
1870 desc->status = usb_pipein (urb->pipe)
1871 ? -ENOSR /* hc couldn't read */
1872 : -ECOMM; /* hc couldn't write */
1873 else if (t & EHCI_ISOC_BABBLE)
1874 desc->status = -EOVERFLOW;
1875 else /* (t & EHCI_ISOC_XACTERR) */
1876 desc->status = -EPROTO;
1877
1878 /* HC need not update length with this error */
1879 if (!(t & EHCI_ISOC_BABBLE)) {
1880 desc->actual_length = EHCI_ITD_LENGTH(t);
1881 urb->actual_length += desc->actual_length;
1882 }
1883 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1884 desc->status = 0;
1885 desc->actual_length = EHCI_ITD_LENGTH(t);
1886 urb->actual_length += desc->actual_length;
1887 } else {
1888 /* URB was too late */
1889 urb->error_count++;
1890 }
1891 }
1892
1893 /* handle completion now? */
1894 if (likely ((urb_index + 1) != urb->number_of_packets))
1895 goto done;
1896
1897 /* ASSERT: it's really the last itd for this urb
1898 list_for_each_entry (itd, &stream->td_list, itd_list)
1899 BUG_ON (itd->urb == urb);
1900 */
1901
1902 /* give urb back to the driver; completion often (re)submits */
1903 dev = urb->dev;
1904 ehci_urb_done(ehci, urb, 0);
1905 retval = true;
1906 urb = NULL;
1907
1908 --ehci->isoc_count;
1909 disable_periodic(ehci);
1910
1911 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1912 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1913 if (ehci->amd_pll_fix == 1)
1914 usb_amd_quirk_pll_enable();
1915 }
1916
1917 if (unlikely(list_is_singular(&stream->td_list)))
1918 ehci_to_hcd(ehci)->self.bandwidth_allocated
1919 -= stream->bandwidth;
1920
1921done:
1922 itd->urb = NULL;
1923
1924 /* Add to the end of the free list for later reuse */
1925 list_move_tail(&itd->itd_list, &stream->free_list);
1926
1927 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1928 if (list_empty(&stream->td_list)) {
1929 list_splice_tail_init(&stream->free_list,
1930 &ehci->cached_itd_list);
1931 start_free_itds(ehci);
1932 }
1933
1934 return retval;
1935}
1936
1937/*-------------------------------------------------------------------------*/
1938
1939static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1940 gfp_t mem_flags)
1941{
1942 int status = -EINVAL;
1943 unsigned long flags;
1944 struct ehci_iso_stream *stream;
1945
1946 /* Get iso_stream head */
1947 stream = iso_stream_find (ehci, urb);
1948 if (unlikely (stream == NULL)) {
1949 ehci_dbg (ehci, "can't get iso stream\n");
1950 return -ENOMEM;
1951 }
1952 if (unlikely(urb->interval != stream->uperiod)) {
1953 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1954 stream->uperiod, urb->interval);
1955 goto done;
1956 }
1957
1958#ifdef EHCI_URB_TRACE
1959 ehci_dbg (ehci,
1960 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1961 __func__, urb->dev->devpath, urb,
1962 usb_pipeendpoint (urb->pipe),
1963 usb_pipein (urb->pipe) ? "in" : "out",
1964 urb->transfer_buffer_length,
1965 urb->number_of_packets, urb->interval,
1966 stream);
1967#endif
1968
1969 /* allocate ITDs w/o locking anything */
1970 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1971 if (unlikely (status < 0)) {
1972 ehci_dbg (ehci, "can't init itds\n");
1973 goto done;
1974 }
1975
1976 /* schedule ... need to lock */
1977 spin_lock_irqsave (&ehci->lock, flags);
1978 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1979 status = -ESHUTDOWN;
1980 goto done_not_linked;
1981 }
1982 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1983 if (unlikely(status))
1984 goto done_not_linked;
1985 status = iso_stream_schedule(ehci, urb, stream);
1986 if (likely(status == 0)) {
1987 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1988 } else if (status > 0) {
1989 status = 0;
1990 ehci_urb_done(ehci, urb, 0);
1991 } else {
1992 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1993 }
1994 done_not_linked:
1995 spin_unlock_irqrestore (&ehci->lock, flags);
1996 done:
1997 return status;
1998}
1999
2000/*-------------------------------------------------------------------------*/
2001
2002/*
2003 * "Split ISO TDs" ... used for USB 1.1 devices going through the
2004 * TTs in USB 2.0 hubs. These need microframe scheduling.
2005 */
2006
2007static inline void
2008sitd_sched_init(
2009 struct ehci_hcd *ehci,
2010 struct ehci_iso_sched *iso_sched,
2011 struct ehci_iso_stream *stream,
2012 struct urb *urb
2013)
2014{
2015 unsigned i;
2016 dma_addr_t dma = urb->transfer_dma;
2017
2018 /* how many frames are needed for these transfers */
2019 iso_sched->span = urb->number_of_packets * stream->ps.period;
2020
2021 /* figure out per-frame sitd fields that we'll need later
2022 * when we fit new sitds into the schedule.
2023 */
2024 for (i = 0; i < urb->number_of_packets; i++) {
2025 struct ehci_iso_packet *packet = &iso_sched->packet [i];
2026 unsigned length;
2027 dma_addr_t buf;
2028 u32 trans;
2029
2030 length = urb->iso_frame_desc [i].length & 0x03ff;
2031 buf = dma + urb->iso_frame_desc [i].offset;
2032
2033 trans = SITD_STS_ACTIVE;
2034 if (((i + 1) == urb->number_of_packets)
2035 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2036 trans |= SITD_IOC;
2037 trans |= length << 16;
2038 packet->transaction = cpu_to_hc32(ehci, trans);
2039
2040 /* might need to cross a buffer page within a td */
2041 packet->bufp = buf;
2042 packet->buf1 = (buf + length) & ~0x0fff;
2043 if (packet->buf1 != (buf & ~(u64)0x0fff))
2044 packet->cross = 1;
2045
2046 /* OUT uses multiple start-splits */
2047 if (stream->bEndpointAddress & USB_DIR_IN)
2048 continue;
2049 length = (length + 187) / 188;
2050 if (length > 1) /* BEGIN vs ALL */
2051 length |= 1 << 3;
2052 packet->buf1 |= length;
2053 }
2054}
2055
2056static int
2057sitd_urb_transaction (
2058 struct ehci_iso_stream *stream,
2059 struct ehci_hcd *ehci,
2060 struct urb *urb,
2061 gfp_t mem_flags
2062)
2063{
2064 struct ehci_sitd *sitd;
2065 dma_addr_t sitd_dma;
2066 int i;
2067 struct ehci_iso_sched *iso_sched;
2068 unsigned long flags;
2069
2070 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
2071 if (iso_sched == NULL)
2072 return -ENOMEM;
2073
2074 sitd_sched_init(ehci, iso_sched, stream, urb);
2075
2076 /* allocate/init sITDs */
2077 spin_lock_irqsave (&ehci->lock, flags);
2078 for (i = 0; i < urb->number_of_packets; i++) {
2079
2080 /* NOTE: for now, we don't try to handle wraparound cases
2081 * for IN (using sitd->hw_backpointer, like a FSTN), which
2082 * means we never need two sitds for full speed packets.
2083 */
2084
2085 /*
2086 * Use siTDs from the free list, but not siTDs that may
2087 * still be in use by the hardware.
2088 */
2089 if (likely(!list_empty(&stream->free_list))) {
2090 sitd = list_first_entry(&stream->free_list,
2091 struct ehci_sitd, sitd_list);
2092 if (sitd->frame == ehci->now_frame)
2093 goto alloc_sitd;
2094 list_del (&sitd->sitd_list);
2095 sitd_dma = sitd->sitd_dma;
2096 } else {
2097 alloc_sitd:
2098 spin_unlock_irqrestore (&ehci->lock, flags);
2099 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
2100 &sitd_dma);
2101 spin_lock_irqsave (&ehci->lock, flags);
2102 if (!sitd) {
2103 iso_sched_free(stream, iso_sched);
2104 spin_unlock_irqrestore(&ehci->lock, flags);
2105 return -ENOMEM;
2106 }
2107 }
2108
2109 memset (sitd, 0, sizeof *sitd);
2110 sitd->sitd_dma = sitd_dma;
2111 sitd->frame = NO_FRAME;
2112 list_add (&sitd->sitd_list, &iso_sched->td_list);
2113 }
2114
2115 /* temporarily store schedule info in hcpriv */
2116 urb->hcpriv = iso_sched;
2117 urb->error_count = 0;
2118
2119 spin_unlock_irqrestore (&ehci->lock, flags);
2120 return 0;
2121}
2122
2123/*-------------------------------------------------------------------------*/
2124
2125static inline void
2126sitd_patch(
2127 struct ehci_hcd *ehci,
2128 struct ehci_iso_stream *stream,
2129 struct ehci_sitd *sitd,
2130 struct ehci_iso_sched *iso_sched,
2131 unsigned index
2132)
2133{
2134 struct ehci_iso_packet *uf = &iso_sched->packet [index];
2135 u64 bufp = uf->bufp;
2136
2137 sitd->hw_next = EHCI_LIST_END(ehci);
2138 sitd->hw_fullspeed_ep = stream->address;
2139 sitd->hw_uframe = stream->splits;
2140 sitd->hw_results = uf->transaction;
2141 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2142
2143 bufp = uf->bufp;
2144 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2145 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2146
2147 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2148 if (uf->cross)
2149 bufp += 4096;
2150 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2151 sitd->index = index;
2152}
2153
2154static inline void
2155sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2156{
2157 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2158 sitd->sitd_next = ehci->pshadow [frame];
2159 sitd->hw_next = ehci->periodic [frame];
2160 ehci->pshadow [frame].sitd = sitd;
2161 sitd->frame = frame;
2162 wmb ();
2163 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2164}
2165
2166/* fit urb's sitds into the selected schedule slot; activate as needed */
2167static void sitd_link_urb(
2168 struct ehci_hcd *ehci,
2169 struct urb *urb,
2170 unsigned mod,
2171 struct ehci_iso_stream *stream
2172)
2173{
2174 int packet;
2175 unsigned next_uframe;
2176 struct ehci_iso_sched *sched = urb->hcpriv;
2177 struct ehci_sitd *sitd;
2178
2179 next_uframe = stream->next_uframe;
2180
2181 if (list_empty(&stream->td_list))
2182 /* usbfs ignores TT bandwidth */
2183 ehci_to_hcd(ehci)->self.bandwidth_allocated
2184 += stream->bandwidth;
2185
2186 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2187 if (ehci->amd_pll_fix == 1)
2188 usb_amd_quirk_pll_disable();
2189 }
2190
2191 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2192
2193 /* fill sITDs frame by frame */
2194 for (packet = sched->first_packet, sitd = NULL;
2195 packet < urb->number_of_packets;
2196 packet++) {
2197
2198 /* ASSERT: we have all necessary sitds */
2199 BUG_ON (list_empty (&sched->td_list));
2200
2201 /* ASSERT: no itds for this endpoint in this frame */
2202
2203 sitd = list_entry (sched->td_list.next,
2204 struct ehci_sitd, sitd_list);
2205 list_move_tail (&sitd->sitd_list, &stream->td_list);
2206 sitd->stream = stream;
2207 sitd->urb = urb;
2208
2209 sitd_patch(ehci, stream, sitd, sched, packet);
2210 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2211 sitd);
2212
2213 next_uframe += stream->uperiod;
2214 }
2215 stream->next_uframe = next_uframe & (mod - 1);
2216
2217 /* don't need that schedule data any more */
2218 iso_sched_free (stream, sched);
2219 urb->hcpriv = stream;
2220
2221 ++ehci->isoc_count;
2222 enable_periodic(ehci);
2223}
2224
2225/*-------------------------------------------------------------------------*/
2226
2227#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2228 | SITD_STS_XACT | SITD_STS_MMF)
2229
2230/* Process and recycle a completed SITD. Return true iff its urb completed,
2231 * and hence its completion callback probably added things to the hardware
2232 * schedule.
2233 *
2234 * Note that we carefully avoid recycling this descriptor until after any
2235 * completion callback runs, so that it won't be reused quickly. That is,
2236 * assuming (a) no more than two urbs per frame on this endpoint, and also
2237 * (b) only this endpoint's completions submit URBs. It seems some silicon
2238 * corrupts things if you reuse completed descriptors very quickly...
2239 */
2240static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2241{
2242 struct urb *urb = sitd->urb;
2243 struct usb_iso_packet_descriptor *desc;
2244 u32 t;
2245 int urb_index = -1;
2246 struct ehci_iso_stream *stream = sitd->stream;
2247 struct usb_device *dev;
2248 bool retval = false;
2249
2250 urb_index = sitd->index;
2251 desc = &urb->iso_frame_desc [urb_index];
2252 t = hc32_to_cpup(ehci, &sitd->hw_results);
2253
2254 /* report transfer status */
2255 if (unlikely(t & SITD_ERRS)) {
2256 urb->error_count++;
2257 if (t & SITD_STS_DBE)
2258 desc->status = usb_pipein (urb->pipe)
2259 ? -ENOSR /* hc couldn't read */
2260 : -ECOMM; /* hc couldn't write */
2261 else if (t & SITD_STS_BABBLE)
2262 desc->status = -EOVERFLOW;
2263 else /* XACT, MMF, etc */
2264 desc->status = -EPROTO;
2265 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2266 /* URB was too late */
2267 urb->error_count++;
2268 } else {
2269 desc->status = 0;
2270 desc->actual_length = desc->length - SITD_LENGTH(t);
2271 urb->actual_length += desc->actual_length;
2272 }
2273
2274 /* handle completion now? */
2275 if ((urb_index + 1) != urb->number_of_packets)
2276 goto done;
2277
2278 /* ASSERT: it's really the last sitd for this urb
2279 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2280 BUG_ON (sitd->urb == urb);
2281 */
2282
2283 /* give urb back to the driver; completion often (re)submits */
2284 dev = urb->dev;
2285 ehci_urb_done(ehci, urb, 0);
2286 retval = true;
2287 urb = NULL;
2288
2289 --ehci->isoc_count;
2290 disable_periodic(ehci);
2291
2292 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2293 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2294 if (ehci->amd_pll_fix == 1)
2295 usb_amd_quirk_pll_enable();
2296 }
2297
2298 if (list_is_singular(&stream->td_list))
2299 ehci_to_hcd(ehci)->self.bandwidth_allocated
2300 -= stream->bandwidth;
2301
2302done:
2303 sitd->urb = NULL;
2304
2305 /* Add to the end of the free list for later reuse */
2306 list_move_tail(&sitd->sitd_list, &stream->free_list);
2307
2308 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2309 if (list_empty(&stream->td_list)) {
2310 list_splice_tail_init(&stream->free_list,
2311 &ehci->cached_sitd_list);
2312 start_free_itds(ehci);
2313 }
2314
2315 return retval;
2316}
2317
2318
2319static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2320 gfp_t mem_flags)
2321{
2322 int status = -EINVAL;
2323 unsigned long flags;
2324 struct ehci_iso_stream *stream;
2325
2326 /* Get iso_stream head */
2327 stream = iso_stream_find (ehci, urb);
2328 if (stream == NULL) {
2329 ehci_dbg (ehci, "can't get iso stream\n");
2330 return -ENOMEM;
2331 }
2332 if (urb->interval != stream->ps.period) {
2333 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2334 stream->ps.period, urb->interval);
2335 goto done;
2336 }
2337
2338#ifdef EHCI_URB_TRACE
2339 ehci_dbg (ehci,
2340 "submit %p dev%s ep%d%s-iso len %d\n",
2341 urb, urb->dev->devpath,
2342 usb_pipeendpoint (urb->pipe),
2343 usb_pipein (urb->pipe) ? "in" : "out",
2344 urb->transfer_buffer_length);
2345#endif
2346
2347 /* allocate SITDs */
2348 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2349 if (status < 0) {
2350 ehci_dbg (ehci, "can't init sitds\n");
2351 goto done;
2352 }
2353
2354 /* schedule ... need to lock */
2355 spin_lock_irqsave (&ehci->lock, flags);
2356 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2357 status = -ESHUTDOWN;
2358 goto done_not_linked;
2359 }
2360 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2361 if (unlikely(status))
2362 goto done_not_linked;
2363 status = iso_stream_schedule(ehci, urb, stream);
2364 if (likely(status == 0)) {
2365 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2366 } else if (status > 0) {
2367 status = 0;
2368 ehci_urb_done(ehci, urb, 0);
2369 } else {
2370 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2371 }
2372 done_not_linked:
2373 spin_unlock_irqrestore (&ehci->lock, flags);
2374 done:
2375 return status;
2376}
2377
2378/*-------------------------------------------------------------------------*/
2379
2380static void scan_isoc(struct ehci_hcd *ehci)
2381{
2382 unsigned uf, now_frame, frame;
2383 unsigned fmask = ehci->periodic_size - 1;
2384 bool modified, live;
2385
2386 /*
2387 * When running, scan from last scan point up to "now"
2388 * else clean up by scanning everything that's left.
2389 * Touches as few pages as possible: cache-friendly.
2390 */
2391 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2392 uf = ehci_read_frame_index(ehci);
2393 now_frame = (uf >> 3) & fmask;
2394 live = true;
2395 } else {
2396 now_frame = (ehci->last_iso_frame - 1) & fmask;
2397 live = false;
2398 }
2399 ehci->now_frame = now_frame;
2400
2401 frame = ehci->last_iso_frame;
2402 for (;;) {
2403 union ehci_shadow q, *q_p;
2404 __hc32 type, *hw_p;
2405
2406restart:
2407 /* scan each element in frame's queue for completions */
2408 q_p = &ehci->pshadow [frame];
2409 hw_p = &ehci->periodic [frame];
2410 q.ptr = q_p->ptr;
2411 type = Q_NEXT_TYPE(ehci, *hw_p);
2412 modified = false;
2413
2414 while (q.ptr != NULL) {
2415 switch (hc32_to_cpu(ehci, type)) {
2416 case Q_TYPE_ITD:
2417 /* If this ITD is still active, leave it for
2418 * later processing ... check the next entry.
2419 * No need to check for activity unless the
2420 * frame is current.
2421 */
2422 if (frame == now_frame && live) {
2423 rmb();
2424 for (uf = 0; uf < 8; uf++) {
2425 if (q.itd->hw_transaction[uf] &
2426 ITD_ACTIVE(ehci))
2427 break;
2428 }
2429 if (uf < 8) {
2430 q_p = &q.itd->itd_next;
2431 hw_p = &q.itd->hw_next;
2432 type = Q_NEXT_TYPE(ehci,
2433 q.itd->hw_next);
2434 q = *q_p;
2435 break;
2436 }
2437 }
2438
2439 /* Take finished ITDs out of the schedule
2440 * and process them: recycle, maybe report
2441 * URB completion. HC won't cache the
2442 * pointer for much longer, if at all.
2443 */
2444 *q_p = q.itd->itd_next;
2445 if (!ehci->use_dummy_qh ||
2446 q.itd->hw_next != EHCI_LIST_END(ehci))
2447 *hw_p = q.itd->hw_next;
2448 else
2449 *hw_p = cpu_to_hc32(ehci,
2450 ehci->dummy->qh_dma);
2451 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2452 wmb();
2453 modified = itd_complete (ehci, q.itd);
2454 q = *q_p;
2455 break;
2456 case Q_TYPE_SITD:
2457 /* If this SITD is still active, leave it for
2458 * later processing ... check the next entry.
2459 * No need to check for activity unless the
2460 * frame is current.
2461 */
2462 if (((frame == now_frame) ||
2463 (((frame + 1) & fmask) == now_frame))
2464 && live
2465 && (q.sitd->hw_results &
2466 SITD_ACTIVE(ehci))) {
2467
2468 q_p = &q.sitd->sitd_next;
2469 hw_p = &q.sitd->hw_next;
2470 type = Q_NEXT_TYPE(ehci,
2471 q.sitd->hw_next);
2472 q = *q_p;
2473 break;
2474 }
2475
2476 /* Take finished SITDs out of the schedule
2477 * and process them: recycle, maybe report
2478 * URB completion.
2479 */
2480 *q_p = q.sitd->sitd_next;
2481 if (!ehci->use_dummy_qh ||
2482 q.sitd->hw_next != EHCI_LIST_END(ehci))
2483 *hw_p = q.sitd->hw_next;
2484 else
2485 *hw_p = cpu_to_hc32(ehci,
2486 ehci->dummy->qh_dma);
2487 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2488 wmb();
2489 modified = sitd_complete (ehci, q.sitd);
2490 q = *q_p;
2491 break;
2492 default:
2493 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2494 type, frame, q.ptr);
2495 // BUG ();
2496 /* FALL THROUGH */
2497 case Q_TYPE_QH:
2498 case Q_TYPE_FSTN:
2499 /* End of the iTDs and siTDs */
2500 q.ptr = NULL;
2501 break;
2502 }
2503
2504 /* assume completion callbacks modify the queue */
2505 if (unlikely(modified && ehci->isoc_count > 0))
2506 goto restart;
2507 }
2508
2509 /* Stop when we have reached the current frame */
2510 if (frame == now_frame)
2511 break;
2512
2513 /* The last frame may still have active siTDs */
2514 ehci->last_iso_frame = frame;
2515 frame = (frame + 1) & fmask;
2516 }
2517}