Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *	http://www.sata-io.org (SATA)
  37 *	http://www.compactflash.org (CF)
  38 *	http://www.qic.org (QIC157 - Tape and DSC)
  39 *	http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
 
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80	.prereset		= ata_std_prereset,
  81	.postreset		= ata_std_postreset,
  82	.error_handler		= ata_std_error_handler,
 
 
  83};
  84
  85const struct ata_port_operations sata_port_ops = {
  86	.inherits		= &ata_base_port_ops,
  87
  88	.qc_defer		= ata_std_qc_defer,
  89	.hardreset		= sata_std_hardreset,
  90};
  91
  92static unsigned int ata_dev_init_params(struct ata_device *dev,
  93					u16 heads, u16 sectors);
  94static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  95static void ata_dev_xfermask(struct ata_device *dev);
  96static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  97
  98atomic_t ata_print_id = ATOMIC_INIT(0);
  99
 100struct ata_force_param {
 101	const char	*name;
 102	unsigned int	cbl;
 103	int		spd_limit;
 104	unsigned long	xfer_mask;
 105	unsigned int	horkage_on;
 106	unsigned int	horkage_off;
 107	unsigned int	lflags;
 108};
 109
 110struct ata_force_ent {
 111	int			port;
 112	int			device;
 113	struct ata_force_param	param;
 114};
 115
 116static struct ata_force_ent *ata_force_tbl;
 117static int ata_force_tbl_size;
 118
 119static char ata_force_param_buf[PAGE_SIZE] __initdata;
 120/* param_buf is thrown away after initialization, disallow read */
 121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 123
 124static int atapi_enabled = 1;
 125module_param(atapi_enabled, int, 0444);
 126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 127
 128static int atapi_dmadir = 0;
 129module_param(atapi_dmadir, int, 0444);
 130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 131
 132int atapi_passthru16 = 1;
 133module_param(atapi_passthru16, int, 0444);
 134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 135
 136int libata_fua = 0;
 137module_param_named(fua, libata_fua, int, 0444);
 138MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 139
 140static int ata_ignore_hpa;
 141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 143
 144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 145module_param_named(dma, libata_dma_mask, int, 0444);
 146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 147
 148static int ata_probe_timeout;
 149module_param(ata_probe_timeout, int, 0444);
 150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 151
 152int libata_noacpi = 0;
 153module_param_named(noacpi, libata_noacpi, int, 0444);
 154MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 155
 156int libata_allow_tpm = 0;
 157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 159
 160static int atapi_an;
 161module_param(atapi_an, int, 0444);
 162MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 163
 164MODULE_AUTHOR("Jeff Garzik");
 165MODULE_DESCRIPTION("Library module for ATA devices");
 166MODULE_LICENSE("GPL");
 167MODULE_VERSION(DRV_VERSION);
 168
 169
 170static bool ata_sstatus_online(u32 sstatus)
 171{
 172	return (sstatus & 0xf) == 0x3;
 173}
 174
 175/**
 176 *	ata_link_next - link iteration helper
 177 *	@link: the previous link, NULL to start
 178 *	@ap: ATA port containing links to iterate
 179 *	@mode: iteration mode, one of ATA_LITER_*
 180 *
 181 *	LOCKING:
 182 *	Host lock or EH context.
 183 *
 184 *	RETURNS:
 185 *	Pointer to the next link.
 186 */
 187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 188			       enum ata_link_iter_mode mode)
 189{
 190	BUG_ON(mode != ATA_LITER_EDGE &&
 191	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 192
 193	/* NULL link indicates start of iteration */
 194	if (!link)
 195		switch (mode) {
 196		case ATA_LITER_EDGE:
 197		case ATA_LITER_PMP_FIRST:
 198			if (sata_pmp_attached(ap))
 199				return ap->pmp_link;
 200			/* fall through */
 201		case ATA_LITER_HOST_FIRST:
 202			return &ap->link;
 203		}
 204
 205	/* we just iterated over the host link, what's next? */
 206	if (link == &ap->link)
 207		switch (mode) {
 208		case ATA_LITER_HOST_FIRST:
 209			if (sata_pmp_attached(ap))
 210				return ap->pmp_link;
 211			/* fall through */
 212		case ATA_LITER_PMP_FIRST:
 213			if (unlikely(ap->slave_link))
 214				return ap->slave_link;
 215			/* fall through */
 216		case ATA_LITER_EDGE:
 217			return NULL;
 218		}
 219
 220	/* slave_link excludes PMP */
 221	if (unlikely(link == ap->slave_link))
 222		return NULL;
 223
 224	/* we were over a PMP link */
 225	if (++link < ap->pmp_link + ap->nr_pmp_links)
 226		return link;
 227
 228	if (mode == ATA_LITER_PMP_FIRST)
 229		return &ap->link;
 230
 231	return NULL;
 232}
 233
 234/**
 235 *	ata_dev_next - device iteration helper
 236 *	@dev: the previous device, NULL to start
 237 *	@link: ATA link containing devices to iterate
 238 *	@mode: iteration mode, one of ATA_DITER_*
 239 *
 240 *	LOCKING:
 241 *	Host lock or EH context.
 242 *
 243 *	RETURNS:
 244 *	Pointer to the next device.
 245 */
 246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 247				enum ata_dev_iter_mode mode)
 248{
 249	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 250	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 251
 252	/* NULL dev indicates start of iteration */
 253	if (!dev)
 254		switch (mode) {
 255		case ATA_DITER_ENABLED:
 256		case ATA_DITER_ALL:
 257			dev = link->device;
 258			goto check;
 259		case ATA_DITER_ENABLED_REVERSE:
 260		case ATA_DITER_ALL_REVERSE:
 261			dev = link->device + ata_link_max_devices(link) - 1;
 262			goto check;
 263		}
 264
 265 next:
 266	/* move to the next one */
 267	switch (mode) {
 268	case ATA_DITER_ENABLED:
 269	case ATA_DITER_ALL:
 270		if (++dev < link->device + ata_link_max_devices(link))
 271			goto check;
 272		return NULL;
 273	case ATA_DITER_ENABLED_REVERSE:
 274	case ATA_DITER_ALL_REVERSE:
 275		if (--dev >= link->device)
 276			goto check;
 277		return NULL;
 278	}
 279
 280 check:
 281	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 282	    !ata_dev_enabled(dev))
 283		goto next;
 284	return dev;
 285}
 286
 287/**
 288 *	ata_dev_phys_link - find physical link for a device
 289 *	@dev: ATA device to look up physical link for
 290 *
 291 *	Look up physical link which @dev is attached to.  Note that
 292 *	this is different from @dev->link only when @dev is on slave
 293 *	link.  For all other cases, it's the same as @dev->link.
 294 *
 295 *	LOCKING:
 296 *	Don't care.
 297 *
 298 *	RETURNS:
 299 *	Pointer to the found physical link.
 300 */
 301struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 302{
 303	struct ata_port *ap = dev->link->ap;
 304
 305	if (!ap->slave_link)
 306		return dev->link;
 307	if (!dev->devno)
 308		return &ap->link;
 309	return ap->slave_link;
 310}
 311
 312/**
 313 *	ata_force_cbl - force cable type according to libata.force
 314 *	@ap: ATA port of interest
 315 *
 316 *	Force cable type according to libata.force and whine about it.
 317 *	The last entry which has matching port number is used, so it
 318 *	can be specified as part of device force parameters.  For
 319 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 320 *	same effect.
 321 *
 322 *	LOCKING:
 323 *	EH context.
 324 */
 325void ata_force_cbl(struct ata_port *ap)
 326{
 327	int i;
 328
 329	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 330		const struct ata_force_ent *fe = &ata_force_tbl[i];
 331
 332		if (fe->port != -1 && fe->port != ap->print_id)
 333			continue;
 334
 335		if (fe->param.cbl == ATA_CBL_NONE)
 336			continue;
 337
 338		ap->cbl = fe->param.cbl;
 339		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 340		return;
 341	}
 342}
 343
 344/**
 345 *	ata_force_link_limits - force link limits according to libata.force
 346 *	@link: ATA link of interest
 347 *
 348 *	Force link flags and SATA spd limit according to libata.force
 349 *	and whine about it.  When only the port part is specified
 350 *	(e.g. 1:), the limit applies to all links connected to both
 351 *	the host link and all fan-out ports connected via PMP.  If the
 352 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 353 *	first fan-out link not the host link.  Device number 15 always
 354 *	points to the host link whether PMP is attached or not.  If the
 355 *	controller has slave link, device number 16 points to it.
 356 *
 357 *	LOCKING:
 358 *	EH context.
 359 */
 360static void ata_force_link_limits(struct ata_link *link)
 361{
 362	bool did_spd = false;
 363	int linkno = link->pmp;
 364	int i;
 365
 366	if (ata_is_host_link(link))
 367		linkno += 15;
 368
 369	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 370		const struct ata_force_ent *fe = &ata_force_tbl[i];
 371
 372		if (fe->port != -1 && fe->port != link->ap->print_id)
 373			continue;
 374
 375		if (fe->device != -1 && fe->device != linkno)
 376			continue;
 377
 378		/* only honor the first spd limit */
 379		if (!did_spd && fe->param.spd_limit) {
 380			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 381			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 382					fe->param.name);
 383			did_spd = true;
 384		}
 385
 386		/* let lflags stack */
 387		if (fe->param.lflags) {
 388			link->flags |= fe->param.lflags;
 389			ata_link_notice(link,
 390					"FORCE: link flag 0x%x forced -> 0x%x\n",
 391					fe->param.lflags, link->flags);
 392		}
 393	}
 394}
 395
 396/**
 397 *	ata_force_xfermask - force xfermask according to libata.force
 398 *	@dev: ATA device of interest
 399 *
 400 *	Force xfer_mask according to libata.force and whine about it.
 401 *	For consistency with link selection, device number 15 selects
 402 *	the first device connected to the host link.
 403 *
 404 *	LOCKING:
 405 *	EH context.
 406 */
 407static void ata_force_xfermask(struct ata_device *dev)
 408{
 409	int devno = dev->link->pmp + dev->devno;
 410	int alt_devno = devno;
 411	int i;
 412
 413	/* allow n.15/16 for devices attached to host port */
 414	if (ata_is_host_link(dev->link))
 415		alt_devno += 15;
 416
 417	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 418		const struct ata_force_ent *fe = &ata_force_tbl[i];
 419		unsigned long pio_mask, mwdma_mask, udma_mask;
 420
 421		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 422			continue;
 423
 424		if (fe->device != -1 && fe->device != devno &&
 425		    fe->device != alt_devno)
 426			continue;
 427
 428		if (!fe->param.xfer_mask)
 429			continue;
 430
 431		ata_unpack_xfermask(fe->param.xfer_mask,
 432				    &pio_mask, &mwdma_mask, &udma_mask);
 433		if (udma_mask)
 434			dev->udma_mask = udma_mask;
 435		else if (mwdma_mask) {
 436			dev->udma_mask = 0;
 437			dev->mwdma_mask = mwdma_mask;
 438		} else {
 439			dev->udma_mask = 0;
 440			dev->mwdma_mask = 0;
 441			dev->pio_mask = pio_mask;
 442		}
 443
 444		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 445			       fe->param.name);
 446		return;
 447	}
 448}
 449
 450/**
 451 *	ata_force_horkage - force horkage according to libata.force
 452 *	@dev: ATA device of interest
 453 *
 454 *	Force horkage according to libata.force and whine about it.
 455 *	For consistency with link selection, device number 15 selects
 456 *	the first device connected to the host link.
 457 *
 458 *	LOCKING:
 459 *	EH context.
 460 */
 461static void ata_force_horkage(struct ata_device *dev)
 462{
 463	int devno = dev->link->pmp + dev->devno;
 464	int alt_devno = devno;
 465	int i;
 466
 467	/* allow n.15/16 for devices attached to host port */
 468	if (ata_is_host_link(dev->link))
 469		alt_devno += 15;
 470
 471	for (i = 0; i < ata_force_tbl_size; i++) {
 472		const struct ata_force_ent *fe = &ata_force_tbl[i];
 473
 474		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 475			continue;
 476
 477		if (fe->device != -1 && fe->device != devno &&
 478		    fe->device != alt_devno)
 479			continue;
 480
 481		if (!(~dev->horkage & fe->param.horkage_on) &&
 482		    !(dev->horkage & fe->param.horkage_off))
 483			continue;
 484
 485		dev->horkage |= fe->param.horkage_on;
 486		dev->horkage &= ~fe->param.horkage_off;
 487
 488		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 489			       fe->param.name);
 490	}
 491}
 492
 493/**
 494 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 495 *	@opcode: SCSI opcode
 496 *
 497 *	Determine ATAPI command type from @opcode.
 498 *
 499 *	LOCKING:
 500 *	None.
 501 *
 502 *	RETURNS:
 503 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 504 */
 505int atapi_cmd_type(u8 opcode)
 506{
 507	switch (opcode) {
 508	case GPCMD_READ_10:
 509	case GPCMD_READ_12:
 510		return ATAPI_READ;
 511
 512	case GPCMD_WRITE_10:
 513	case GPCMD_WRITE_12:
 514	case GPCMD_WRITE_AND_VERIFY_10:
 515		return ATAPI_WRITE;
 516
 517	case GPCMD_READ_CD:
 518	case GPCMD_READ_CD_MSF:
 519		return ATAPI_READ_CD;
 520
 521	case ATA_16:
 522	case ATA_12:
 523		if (atapi_passthru16)
 524			return ATAPI_PASS_THRU;
 525		/* fall thru */
 526	default:
 527		return ATAPI_MISC;
 528	}
 529}
 530
 531/**
 532 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 533 *	@tf: Taskfile to convert
 534 *	@pmp: Port multiplier port
 535 *	@is_cmd: This FIS is for command
 536 *	@fis: Buffer into which data will output
 537 *
 538 *	Converts a standard ATA taskfile to a Serial ATA
 539 *	FIS structure (Register - Host to Device).
 540 *
 541 *	LOCKING:
 542 *	Inherited from caller.
 543 */
 544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 545{
 546	fis[0] = 0x27;			/* Register - Host to Device FIS */
 547	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 548	if (is_cmd)
 549		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 550
 551	fis[2] = tf->command;
 552	fis[3] = tf->feature;
 553
 554	fis[4] = tf->lbal;
 555	fis[5] = tf->lbam;
 556	fis[6] = tf->lbah;
 557	fis[7] = tf->device;
 558
 559	fis[8] = tf->hob_lbal;
 560	fis[9] = tf->hob_lbam;
 561	fis[10] = tf->hob_lbah;
 562	fis[11] = tf->hob_feature;
 563
 564	fis[12] = tf->nsect;
 565	fis[13] = tf->hob_nsect;
 566	fis[14] = 0;
 567	fis[15] = tf->ctl;
 568
 569	fis[16] = 0;
 570	fis[17] = 0;
 571	fis[18] = 0;
 572	fis[19] = 0;
 573}
 574
 575/**
 576 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 577 *	@fis: Buffer from which data will be input
 578 *	@tf: Taskfile to output
 579 *
 580 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 581 *
 582 *	LOCKING:
 583 *	Inherited from caller.
 584 */
 585
 586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 587{
 588	tf->command	= fis[2];	/* status */
 589	tf->feature	= fis[3];	/* error */
 590
 591	tf->lbal	= fis[4];
 592	tf->lbam	= fis[5];
 593	tf->lbah	= fis[6];
 594	tf->device	= fis[7];
 595
 596	tf->hob_lbal	= fis[8];
 597	tf->hob_lbam	= fis[9];
 598	tf->hob_lbah	= fis[10];
 599
 600	tf->nsect	= fis[12];
 601	tf->hob_nsect	= fis[13];
 602}
 603
 604static const u8 ata_rw_cmds[] = {
 605	/* pio multi */
 606	ATA_CMD_READ_MULTI,
 607	ATA_CMD_WRITE_MULTI,
 608	ATA_CMD_READ_MULTI_EXT,
 609	ATA_CMD_WRITE_MULTI_EXT,
 610	0,
 611	0,
 612	0,
 613	ATA_CMD_WRITE_MULTI_FUA_EXT,
 614	/* pio */
 615	ATA_CMD_PIO_READ,
 616	ATA_CMD_PIO_WRITE,
 617	ATA_CMD_PIO_READ_EXT,
 618	ATA_CMD_PIO_WRITE_EXT,
 619	0,
 620	0,
 621	0,
 622	0,
 623	/* dma */
 624	ATA_CMD_READ,
 625	ATA_CMD_WRITE,
 626	ATA_CMD_READ_EXT,
 627	ATA_CMD_WRITE_EXT,
 628	0,
 629	0,
 630	0,
 631	ATA_CMD_WRITE_FUA_EXT
 632};
 633
 634/**
 635 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 636 *	@tf: command to examine and configure
 637 *	@dev: device tf belongs to
 638 *
 639 *	Examine the device configuration and tf->flags to calculate
 640 *	the proper read/write commands and protocol to use.
 641 *
 642 *	LOCKING:
 643 *	caller.
 644 */
 645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 646{
 647	u8 cmd;
 648
 649	int index, fua, lba48, write;
 650
 651	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 652	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 653	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 654
 655	if (dev->flags & ATA_DFLAG_PIO) {
 656		tf->protocol = ATA_PROT_PIO;
 657		index = dev->multi_count ? 0 : 8;
 658	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 659		/* Unable to use DMA due to host limitation */
 660		tf->protocol = ATA_PROT_PIO;
 661		index = dev->multi_count ? 0 : 8;
 662	} else {
 663		tf->protocol = ATA_PROT_DMA;
 664		index = 16;
 665	}
 666
 667	cmd = ata_rw_cmds[index + fua + lba48 + write];
 668	if (cmd) {
 669		tf->command = cmd;
 670		return 0;
 671	}
 672	return -1;
 673}
 674
 675/**
 676 *	ata_tf_read_block - Read block address from ATA taskfile
 677 *	@tf: ATA taskfile of interest
 678 *	@dev: ATA device @tf belongs to
 679 *
 680 *	LOCKING:
 681 *	None.
 682 *
 683 *	Read block address from @tf.  This function can handle all
 684 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 685 *	flags select the address format to use.
 686 *
 687 *	RETURNS:
 688 *	Block address read from @tf.
 689 */
 690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 691{
 692	u64 block = 0;
 693
 694	if (tf->flags & ATA_TFLAG_LBA) {
 695		if (tf->flags & ATA_TFLAG_LBA48) {
 696			block |= (u64)tf->hob_lbah << 40;
 697			block |= (u64)tf->hob_lbam << 32;
 698			block |= (u64)tf->hob_lbal << 24;
 699		} else
 700			block |= (tf->device & 0xf) << 24;
 701
 702		block |= tf->lbah << 16;
 703		block |= tf->lbam << 8;
 704		block |= tf->lbal;
 705	} else {
 706		u32 cyl, head, sect;
 707
 708		cyl = tf->lbam | (tf->lbah << 8);
 709		head = tf->device & 0xf;
 710		sect = tf->lbal;
 711
 712		if (!sect) {
 713			ata_dev_warn(dev,
 714				     "device reported invalid CHS sector 0\n");
 715			sect = 1; /* oh well */
 716		}
 717
 718		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 719	}
 720
 721	return block;
 722}
 723
 724/**
 725 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 726 *	@tf: Target ATA taskfile
 727 *	@dev: ATA device @tf belongs to
 728 *	@block: Block address
 729 *	@n_block: Number of blocks
 730 *	@tf_flags: RW/FUA etc...
 731 *	@tag: tag
 732 *
 733 *	LOCKING:
 734 *	None.
 735 *
 736 *	Build ATA taskfile @tf for read/write request described by
 737 *	@block, @n_block, @tf_flags and @tag on @dev.
 738 *
 739 *	RETURNS:
 740 *
 741 *	0 on success, -ERANGE if the request is too large for @dev,
 742 *	-EINVAL if the request is invalid.
 743 */
 744int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 745		    u64 block, u32 n_block, unsigned int tf_flags,
 746		    unsigned int tag)
 747{
 748	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 749	tf->flags |= tf_flags;
 750
 751	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 752		/* yay, NCQ */
 753		if (!lba_48_ok(block, n_block))
 754			return -ERANGE;
 755
 756		tf->protocol = ATA_PROT_NCQ;
 757		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 758
 759		if (tf->flags & ATA_TFLAG_WRITE)
 760			tf->command = ATA_CMD_FPDMA_WRITE;
 761		else
 762			tf->command = ATA_CMD_FPDMA_READ;
 763
 764		tf->nsect = tag << 3;
 765		tf->hob_feature = (n_block >> 8) & 0xff;
 766		tf->feature = n_block & 0xff;
 767
 768		tf->hob_lbah = (block >> 40) & 0xff;
 769		tf->hob_lbam = (block >> 32) & 0xff;
 770		tf->hob_lbal = (block >> 24) & 0xff;
 771		tf->lbah = (block >> 16) & 0xff;
 772		tf->lbam = (block >> 8) & 0xff;
 773		tf->lbal = block & 0xff;
 774
 775		tf->device = 1 << 6;
 776		if (tf->flags & ATA_TFLAG_FUA)
 777			tf->device |= 1 << 7;
 778	} else if (dev->flags & ATA_DFLAG_LBA) {
 779		tf->flags |= ATA_TFLAG_LBA;
 780
 781		if (lba_28_ok(block, n_block)) {
 782			/* use LBA28 */
 783			tf->device |= (block >> 24) & 0xf;
 784		} else if (lba_48_ok(block, n_block)) {
 785			if (!(dev->flags & ATA_DFLAG_LBA48))
 786				return -ERANGE;
 787
 788			/* use LBA48 */
 789			tf->flags |= ATA_TFLAG_LBA48;
 790
 791			tf->hob_nsect = (n_block >> 8) & 0xff;
 792
 793			tf->hob_lbah = (block >> 40) & 0xff;
 794			tf->hob_lbam = (block >> 32) & 0xff;
 795			tf->hob_lbal = (block >> 24) & 0xff;
 796		} else
 797			/* request too large even for LBA48 */
 798			return -ERANGE;
 799
 800		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 801			return -EINVAL;
 802
 803		tf->nsect = n_block & 0xff;
 804
 805		tf->lbah = (block >> 16) & 0xff;
 806		tf->lbam = (block >> 8) & 0xff;
 807		tf->lbal = block & 0xff;
 808
 809		tf->device |= ATA_LBA;
 810	} else {
 811		/* CHS */
 812		u32 sect, head, cyl, track;
 813
 814		/* The request -may- be too large for CHS addressing. */
 815		if (!lba_28_ok(block, n_block))
 816			return -ERANGE;
 817
 818		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 819			return -EINVAL;
 820
 821		/* Convert LBA to CHS */
 822		track = (u32)block / dev->sectors;
 823		cyl   = track / dev->heads;
 824		head  = track % dev->heads;
 825		sect  = (u32)block % dev->sectors + 1;
 826
 827		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 828			(u32)block, track, cyl, head, sect);
 829
 830		/* Check whether the converted CHS can fit.
 831		   Cylinder: 0-65535
 832		   Head: 0-15
 833		   Sector: 1-255*/
 834		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 835			return -ERANGE;
 836
 837		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 838		tf->lbal = sect;
 839		tf->lbam = cyl;
 840		tf->lbah = cyl >> 8;
 841		tf->device |= head;
 842	}
 843
 844	return 0;
 845}
 846
 847/**
 848 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 849 *	@pio_mask: pio_mask
 850 *	@mwdma_mask: mwdma_mask
 851 *	@udma_mask: udma_mask
 852 *
 853 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 854 *	unsigned int xfer_mask.
 855 *
 856 *	LOCKING:
 857 *	None.
 858 *
 859 *	RETURNS:
 860 *	Packed xfer_mask.
 861 */
 862unsigned long ata_pack_xfermask(unsigned long pio_mask,
 863				unsigned long mwdma_mask,
 864				unsigned long udma_mask)
 865{
 866	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 867		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 868		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 869}
 870
 871/**
 872 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 873 *	@xfer_mask: xfer_mask to unpack
 874 *	@pio_mask: resulting pio_mask
 875 *	@mwdma_mask: resulting mwdma_mask
 876 *	@udma_mask: resulting udma_mask
 877 *
 878 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 879 *	Any NULL distination masks will be ignored.
 880 */
 881void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 882			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 883{
 884	if (pio_mask)
 885		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 886	if (mwdma_mask)
 887		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 888	if (udma_mask)
 889		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 890}
 891
 892static const struct ata_xfer_ent {
 893	int shift, bits;
 894	u8 base;
 895} ata_xfer_tbl[] = {
 896	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 897	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 898	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 899	{ -1, },
 900};
 901
 902/**
 903 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 904 *	@xfer_mask: xfer_mask of interest
 905 *
 906 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 907 *	bit of @xfer_mask is considered.
 908 *
 909 *	LOCKING:
 910 *	None.
 911 *
 912 *	RETURNS:
 913 *	Matching XFER_* value, 0xff if no match found.
 914 */
 915u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 916{
 917	int highbit = fls(xfer_mask) - 1;
 918	const struct ata_xfer_ent *ent;
 919
 920	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 921		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 922			return ent->base + highbit - ent->shift;
 923	return 0xff;
 924}
 925
 926/**
 927 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 928 *	@xfer_mode: XFER_* of interest
 929 *
 930 *	Return matching xfer_mask for @xfer_mode.
 931 *
 932 *	LOCKING:
 933 *	None.
 934 *
 935 *	RETURNS:
 936 *	Matching xfer_mask, 0 if no match found.
 937 */
 938unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 939{
 940	const struct ata_xfer_ent *ent;
 941
 942	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 943		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 944			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 945				& ~((1 << ent->shift) - 1);
 946	return 0;
 947}
 948
 949/**
 950 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 951 *	@xfer_mode: XFER_* of interest
 952 *
 953 *	Return matching xfer_shift for @xfer_mode.
 954 *
 955 *	LOCKING:
 956 *	None.
 957 *
 958 *	RETURNS:
 959 *	Matching xfer_shift, -1 if no match found.
 960 */
 961int ata_xfer_mode2shift(unsigned long xfer_mode)
 962{
 963	const struct ata_xfer_ent *ent;
 964
 965	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 966		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 967			return ent->shift;
 968	return -1;
 969}
 970
 971/**
 972 *	ata_mode_string - convert xfer_mask to string
 973 *	@xfer_mask: mask of bits supported; only highest bit counts.
 974 *
 975 *	Determine string which represents the highest speed
 976 *	(highest bit in @modemask).
 977 *
 978 *	LOCKING:
 979 *	None.
 980 *
 981 *	RETURNS:
 982 *	Constant C string representing highest speed listed in
 983 *	@mode_mask, or the constant C string "<n/a>".
 984 */
 985const char *ata_mode_string(unsigned long xfer_mask)
 986{
 987	static const char * const xfer_mode_str[] = {
 988		"PIO0",
 989		"PIO1",
 990		"PIO2",
 991		"PIO3",
 992		"PIO4",
 993		"PIO5",
 994		"PIO6",
 995		"MWDMA0",
 996		"MWDMA1",
 997		"MWDMA2",
 998		"MWDMA3",
 999		"MWDMA4",
1000		"UDMA/16",
1001		"UDMA/25",
1002		"UDMA/33",
1003		"UDMA/44",
1004		"UDMA/66",
1005		"UDMA/100",
1006		"UDMA/133",
1007		"UDMA7",
1008	};
1009	int highbit;
1010
1011	highbit = fls(xfer_mask) - 1;
1012	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013		return xfer_mode_str[highbit];
1014	return "<n/a>";
1015}
1016
1017const char *sata_spd_string(unsigned int spd)
1018{
1019	static const char * const spd_str[] = {
1020		"1.5 Gbps",
1021		"3.0 Gbps",
1022		"6.0 Gbps",
1023	};
1024
1025	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026		return "<unknown>";
1027	return spd_str[spd - 1];
1028}
1029
1030/**
1031 *	ata_dev_classify - determine device type based on ATA-spec signature
1032 *	@tf: ATA taskfile register set for device to be identified
1033 *
1034 *	Determine from taskfile register contents whether a device is
1035 *	ATA or ATAPI, as per "Signature and persistence" section
1036 *	of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 *	LOCKING:
1039 *	None.
1040 *
1041 *	RETURNS:
1042 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 *	%ATA_DEV_UNKNOWN the event of failure.
1044 */
1045unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046{
1047	/* Apple's open source Darwin code hints that some devices only
1048	 * put a proper signature into the LBA mid/high registers,
1049	 * So, we only check those.  It's sufficient for uniqueness.
1050	 *
1051	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052	 * signatures for ATA and ATAPI devices attached on SerialATA,
1053	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1054	 * spec has never mentioned about using different signatures
1055	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1056	 * Multiplier specification began to use 0x69/0x96 to identify
1057	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059	 * 0x69/0x96 shortly and described them as reserved for
1060	 * SerialATA.
1061	 *
1062	 * We follow the current spec and consider that 0x69/0x96
1063	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065	 * SEMB signature.  This is worked around in
1066	 * ata_dev_read_id().
1067	 */
1068	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069		DPRINTK("found ATA device by sig\n");
1070		return ATA_DEV_ATA;
1071	}
1072
1073	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074		DPRINTK("found ATAPI device by sig\n");
1075		return ATA_DEV_ATAPI;
1076	}
1077
1078	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079		DPRINTK("found PMP device by sig\n");
1080		return ATA_DEV_PMP;
1081	}
1082
1083	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085		return ATA_DEV_SEMB;
1086	}
1087
1088	DPRINTK("unknown device\n");
1089	return ATA_DEV_UNKNOWN;
1090}
1091
1092/**
1093 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1094 *	@id: IDENTIFY DEVICE results we will examine
1095 *	@s: string into which data is output
1096 *	@ofs: offset into identify device page
1097 *	@len: length of string to return. must be an even number.
1098 *
1099 *	The strings in the IDENTIFY DEVICE page are broken up into
1100 *	16-bit chunks.  Run through the string, and output each
1101 *	8-bit chunk linearly, regardless of platform.
1102 *
1103 *	LOCKING:
1104 *	caller.
1105 */
1106
1107void ata_id_string(const u16 *id, unsigned char *s,
1108		   unsigned int ofs, unsigned int len)
1109{
1110	unsigned int c;
1111
1112	BUG_ON(len & 1);
1113
1114	while (len > 0) {
1115		c = id[ofs] >> 8;
1116		*s = c;
1117		s++;
1118
1119		c = id[ofs] & 0xff;
1120		*s = c;
1121		s++;
1122
1123		ofs++;
1124		len -= 2;
1125	}
1126}
1127
1128/**
1129 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 *	@id: IDENTIFY DEVICE results we will examine
1131 *	@s: string into which data is output
1132 *	@ofs: offset into identify device page
1133 *	@len: length of string to return. must be an odd number.
1134 *
1135 *	This function is identical to ata_id_string except that it
1136 *	trims trailing spaces and terminates the resulting string with
1137 *	null.  @len must be actual maximum length (even number) + 1.
1138 *
1139 *	LOCKING:
1140 *	caller.
1141 */
1142void ata_id_c_string(const u16 *id, unsigned char *s,
1143		     unsigned int ofs, unsigned int len)
1144{
1145	unsigned char *p;
1146
1147	ata_id_string(id, s, ofs, len - 1);
1148
1149	p = s + strnlen(s, len - 1);
1150	while (p > s && p[-1] == ' ')
1151		p--;
1152	*p = '\0';
1153}
1154
1155static u64 ata_id_n_sectors(const u16 *id)
1156{
1157	if (ata_id_has_lba(id)) {
1158		if (ata_id_has_lba48(id))
1159			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160		else
1161			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162	} else {
1163		if (ata_id_current_chs_valid(id))
1164			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165			       id[ATA_ID_CUR_SECTORS];
1166		else
1167			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168			       id[ATA_ID_SECTORS];
1169	}
1170}
1171
1172u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173{
1174	u64 sectors = 0;
1175
1176	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179	sectors |= (tf->lbah & 0xff) << 16;
1180	sectors |= (tf->lbam & 0xff) << 8;
1181	sectors |= (tf->lbal & 0xff);
1182
1183	return sectors;
1184}
1185
1186u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187{
1188	u64 sectors = 0;
1189
1190	sectors |= (tf->device & 0x0f) << 24;
1191	sectors |= (tf->lbah & 0xff) << 16;
1192	sectors |= (tf->lbam & 0xff) << 8;
1193	sectors |= (tf->lbal & 0xff);
1194
1195	return sectors;
1196}
1197
1198/**
1199 *	ata_read_native_max_address - Read native max address
1200 *	@dev: target device
1201 *	@max_sectors: out parameter for the result native max address
1202 *
1203 *	Perform an LBA48 or LBA28 native size query upon the device in
1204 *	question.
1205 *
1206 *	RETURNS:
1207 *	0 on success, -EACCES if command is aborted by the drive.
1208 *	-EIO on other errors.
1209 */
1210static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211{
1212	unsigned int err_mask;
1213	struct ata_taskfile tf;
1214	int lba48 = ata_id_has_lba48(dev->id);
1215
1216	ata_tf_init(dev, &tf);
1217
1218	/* always clear all address registers */
1219	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221	if (lba48) {
1222		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223		tf.flags |= ATA_TFLAG_LBA48;
1224	} else
1225		tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227	tf.protocol |= ATA_PROT_NODATA;
1228	tf.device |= ATA_LBA;
1229
1230	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231	if (err_mask) {
1232		ata_dev_warn(dev,
1233			     "failed to read native max address (err_mask=0x%x)\n",
1234			     err_mask);
1235		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236			return -EACCES;
1237		return -EIO;
1238	}
1239
1240	if (lba48)
1241		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1242	else
1243		*max_sectors = ata_tf_to_lba(&tf) + 1;
1244	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245		(*max_sectors)--;
1246	return 0;
1247}
1248
1249/**
1250 *	ata_set_max_sectors - Set max sectors
1251 *	@dev: target device
1252 *	@new_sectors: new max sectors value to set for the device
1253 *
1254 *	Set max sectors of @dev to @new_sectors.
1255 *
1256 *	RETURNS:
1257 *	0 on success, -EACCES if command is aborted or denied (due to
1258 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1259 *	errors.
1260 */
1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262{
1263	unsigned int err_mask;
1264	struct ata_taskfile tf;
1265	int lba48 = ata_id_has_lba48(dev->id);
1266
1267	new_sectors--;
1268
1269	ata_tf_init(dev, &tf);
1270
1271	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273	if (lba48) {
1274		tf.command = ATA_CMD_SET_MAX_EXT;
1275		tf.flags |= ATA_TFLAG_LBA48;
1276
1277		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280	} else {
1281		tf.command = ATA_CMD_SET_MAX;
1282
1283		tf.device |= (new_sectors >> 24) & 0xf;
1284	}
1285
1286	tf.protocol |= ATA_PROT_NODATA;
1287	tf.device |= ATA_LBA;
1288
1289	tf.lbal = (new_sectors >> 0) & 0xff;
1290	tf.lbam = (new_sectors >> 8) & 0xff;
1291	tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294	if (err_mask) {
1295		ata_dev_warn(dev,
1296			     "failed to set max address (err_mask=0x%x)\n",
1297			     err_mask);
1298		if (err_mask == AC_ERR_DEV &&
1299		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300			return -EACCES;
1301		return -EIO;
1302	}
1303
1304	return 0;
1305}
1306
1307/**
1308 *	ata_hpa_resize		-	Resize a device with an HPA set
1309 *	@dev: Device to resize
1310 *
1311 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 *	it if required to the full size of the media. The caller must check
1313 *	the drive has the HPA feature set enabled.
1314 *
1315 *	RETURNS:
1316 *	0 on success, -errno on failure.
1317 */
1318static int ata_hpa_resize(struct ata_device *dev)
1319{
1320	struct ata_eh_context *ehc = &dev->link->eh_context;
1321	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323	u64 sectors = ata_id_n_sectors(dev->id);
1324	u64 native_sectors;
1325	int rc;
1326
1327	/* do we need to do it? */
1328	if (dev->class != ATA_DEV_ATA ||
1329	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331		return 0;
1332
1333	/* read native max address */
1334	rc = ata_read_native_max_address(dev, &native_sectors);
1335	if (rc) {
1336		/* If device aborted the command or HPA isn't going to
1337		 * be unlocked, skip HPA resizing.
1338		 */
1339		if (rc == -EACCES || !unlock_hpa) {
1340			ata_dev_warn(dev,
1341				     "HPA support seems broken, skipping HPA handling\n");
1342			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344			/* we can continue if device aborted the command */
1345			if (rc == -EACCES)
1346				rc = 0;
1347		}
1348
1349		return rc;
1350	}
1351	dev->n_native_sectors = native_sectors;
1352
1353	/* nothing to do? */
1354	if (native_sectors <= sectors || !unlock_hpa) {
1355		if (!print_info || native_sectors == sectors)
1356			return 0;
1357
1358		if (native_sectors > sectors)
1359			ata_dev_info(dev,
1360				"HPA detected: current %llu, native %llu\n",
1361				(unsigned long long)sectors,
1362				(unsigned long long)native_sectors);
1363		else if (native_sectors < sectors)
1364			ata_dev_warn(dev,
1365				"native sectors (%llu) is smaller than sectors (%llu)\n",
1366				(unsigned long long)native_sectors,
1367				(unsigned long long)sectors);
1368		return 0;
1369	}
1370
1371	/* let's unlock HPA */
1372	rc = ata_set_max_sectors(dev, native_sectors);
1373	if (rc == -EACCES) {
1374		/* if device aborted the command, skip HPA resizing */
1375		ata_dev_warn(dev,
1376			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377			     (unsigned long long)sectors,
1378			     (unsigned long long)native_sectors);
1379		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380		return 0;
1381	} else if (rc)
1382		return rc;
1383
1384	/* re-read IDENTIFY data */
1385	rc = ata_dev_reread_id(dev, 0);
1386	if (rc) {
1387		ata_dev_err(dev,
1388			    "failed to re-read IDENTIFY data after HPA resizing\n");
1389		return rc;
1390	}
1391
1392	if (print_info) {
1393		u64 new_sectors = ata_id_n_sectors(dev->id);
1394		ata_dev_info(dev,
1395			"HPA unlocked: %llu -> %llu, native %llu\n",
1396			(unsigned long long)sectors,
1397			(unsigned long long)new_sectors,
1398			(unsigned long long)native_sectors);
1399	}
1400
1401	return 0;
1402}
1403
1404/**
1405 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1406 *	@id: IDENTIFY DEVICE page to dump
1407 *
1408 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 *	page.
1410 *
1411 *	LOCKING:
1412 *	caller.
1413 */
1414
1415static inline void ata_dump_id(const u16 *id)
1416{
1417	DPRINTK("49==0x%04x  "
1418		"53==0x%04x  "
1419		"63==0x%04x  "
1420		"64==0x%04x  "
1421		"75==0x%04x  \n",
1422		id[49],
1423		id[53],
1424		id[63],
1425		id[64],
1426		id[75]);
1427	DPRINTK("80==0x%04x  "
1428		"81==0x%04x  "
1429		"82==0x%04x  "
1430		"83==0x%04x  "
1431		"84==0x%04x  \n",
1432		id[80],
1433		id[81],
1434		id[82],
1435		id[83],
1436		id[84]);
1437	DPRINTK("88==0x%04x  "
1438		"93==0x%04x\n",
1439		id[88],
1440		id[93]);
1441}
1442
1443/**
1444 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 *	@id: IDENTIFY data to compute xfer mask from
1446 *
1447 *	Compute the xfermask for this device. This is not as trivial
1448 *	as it seems if we must consider early devices correctly.
1449 *
1450 *	FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 *	LOCKING:
1453 *	None.
1454 *
1455 *	RETURNS:
1456 *	Computed xfermask
1457 */
1458unsigned long ata_id_xfermask(const u16 *id)
1459{
1460	unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462	/* Usual case. Word 53 indicates word 64 is valid */
1463	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465		pio_mask <<= 3;
1466		pio_mask |= 0x7;
1467	} else {
1468		/* If word 64 isn't valid then Word 51 high byte holds
1469		 * the PIO timing number for the maximum. Turn it into
1470		 * a mask.
1471		 */
1472		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473		if (mode < 5)	/* Valid PIO range */
1474			pio_mask = (2 << mode) - 1;
1475		else
1476			pio_mask = 1;
1477
1478		/* But wait.. there's more. Design your standards by
1479		 * committee and you too can get a free iordy field to
1480		 * process. However its the speeds not the modes that
1481		 * are supported... Note drivers using the timing API
1482		 * will get this right anyway
1483		 */
1484	}
1485
1486	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488	if (ata_id_is_cfa(id)) {
1489		/*
1490		 *	Process compact flash extended modes
1491		 */
1492		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495		if (pio)
1496			pio_mask |= (1 << 5);
1497		if (pio > 1)
1498			pio_mask |= (1 << 6);
1499		if (dma)
1500			mwdma_mask |= (1 << 3);
1501		if (dma > 1)
1502			mwdma_mask |= (1 << 4);
1503	}
1504
1505	udma_mask = 0;
1506	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513{
1514	struct completion *waiting = qc->private_data;
1515
1516	complete(waiting);
1517}
1518
1519/**
1520 *	ata_exec_internal_sg - execute libata internal command
1521 *	@dev: Device to which the command is sent
1522 *	@tf: Taskfile registers for the command and the result
1523 *	@cdb: CDB for packet command
1524 *	@dma_dir: Data tranfer direction of the command
1525 *	@sgl: sg list for the data buffer of the command
1526 *	@n_elem: Number of sg entries
1527 *	@timeout: Timeout in msecs (0 for default)
1528 *
1529 *	Executes libata internal command with timeout.  @tf contains
1530 *	command on entry and result on return.  Timeout and error
1531 *	conditions are reported via return value.  No recovery action
1532 *	is taken after a command times out.  It's caller's duty to
1533 *	clean up after timeout.
1534 *
1535 *	LOCKING:
1536 *	None.  Should be called with kernel context, might sleep.
1537 *
1538 *	RETURNS:
1539 *	Zero on success, AC_ERR_* mask on failure
1540 */
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542			      struct ata_taskfile *tf, const u8 *cdb,
1543			      int dma_dir, struct scatterlist *sgl,
1544			      unsigned int n_elem, unsigned long timeout)
1545{
1546	struct ata_link *link = dev->link;
1547	struct ata_port *ap = link->ap;
1548	u8 command = tf->command;
1549	int auto_timeout = 0;
1550	struct ata_queued_cmd *qc;
1551	unsigned int tag, preempted_tag;
1552	u32 preempted_sactive, preempted_qc_active;
1553	int preempted_nr_active_links;
1554	DECLARE_COMPLETION_ONSTACK(wait);
1555	unsigned long flags;
1556	unsigned int err_mask;
1557	int rc;
1558
1559	spin_lock_irqsave(ap->lock, flags);
1560
1561	/* no internal command while frozen */
1562	if (ap->pflags & ATA_PFLAG_FROZEN) {
1563		spin_unlock_irqrestore(ap->lock, flags);
1564		return AC_ERR_SYSTEM;
1565	}
1566
1567	/* initialize internal qc */
1568
1569	/* XXX: Tag 0 is used for drivers with legacy EH as some
1570	 * drivers choke if any other tag is given.  This breaks
1571	 * ata_tag_internal() test for those drivers.  Don't use new
1572	 * EH stuff without converting to it.
1573	 */
1574	if (ap->ops->error_handler)
1575		tag = ATA_TAG_INTERNAL;
1576	else
1577		tag = 0;
1578
1579	if (test_and_set_bit(tag, &ap->qc_allocated))
1580		BUG();
1581	qc = __ata_qc_from_tag(ap, tag);
1582
1583	qc->tag = tag;
1584	qc->scsicmd = NULL;
1585	qc->ap = ap;
1586	qc->dev = dev;
1587	ata_qc_reinit(qc);
1588
1589	preempted_tag = link->active_tag;
1590	preempted_sactive = link->sactive;
1591	preempted_qc_active = ap->qc_active;
1592	preempted_nr_active_links = ap->nr_active_links;
1593	link->active_tag = ATA_TAG_POISON;
1594	link->sactive = 0;
1595	ap->qc_active = 0;
1596	ap->nr_active_links = 0;
1597
1598	/* prepare & issue qc */
1599	qc->tf = *tf;
1600	if (cdb)
1601		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
 
 
 
 
 
 
1602	qc->flags |= ATA_QCFLAG_RESULT_TF;
1603	qc->dma_dir = dma_dir;
1604	if (dma_dir != DMA_NONE) {
1605		unsigned int i, buflen = 0;
1606		struct scatterlist *sg;
1607
1608		for_each_sg(sgl, sg, n_elem, i)
1609			buflen += sg->length;
1610
1611		ata_sg_init(qc, sgl, n_elem);
1612		qc->nbytes = buflen;
1613	}
1614
1615	qc->private_data = &wait;
1616	qc->complete_fn = ata_qc_complete_internal;
1617
1618	ata_qc_issue(qc);
1619
1620	spin_unlock_irqrestore(ap->lock, flags);
1621
1622	if (!timeout) {
1623		if (ata_probe_timeout)
1624			timeout = ata_probe_timeout * 1000;
1625		else {
1626			timeout = ata_internal_cmd_timeout(dev, command);
1627			auto_timeout = 1;
1628		}
1629	}
1630
1631	if (ap->ops->error_handler)
1632		ata_eh_release(ap);
1633
1634	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636	if (ap->ops->error_handler)
1637		ata_eh_acquire(ap);
1638
1639	ata_sff_flush_pio_task(ap);
1640
1641	if (!rc) {
1642		spin_lock_irqsave(ap->lock, flags);
1643
1644		/* We're racing with irq here.  If we lose, the
1645		 * following test prevents us from completing the qc
1646		 * twice.  If we win, the port is frozen and will be
1647		 * cleaned up by ->post_internal_cmd().
1648		 */
1649		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650			qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652			if (ap->ops->error_handler)
1653				ata_port_freeze(ap);
1654			else
1655				ata_qc_complete(qc);
1656
1657			if (ata_msg_warn(ap))
1658				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659					     command);
1660		}
1661
1662		spin_unlock_irqrestore(ap->lock, flags);
1663	}
1664
1665	/* do post_internal_cmd */
1666	if (ap->ops->post_internal_cmd)
1667		ap->ops->post_internal_cmd(qc);
1668
1669	/* perform minimal error analysis */
1670	if (qc->flags & ATA_QCFLAG_FAILED) {
1671		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672			qc->err_mask |= AC_ERR_DEV;
1673
1674		if (!qc->err_mask)
1675			qc->err_mask |= AC_ERR_OTHER;
1676
1677		if (qc->err_mask & ~AC_ERR_OTHER)
1678			qc->err_mask &= ~AC_ERR_OTHER;
1679	}
1680
1681	/* finish up */
1682	spin_lock_irqsave(ap->lock, flags);
1683
1684	*tf = qc->result_tf;
1685	err_mask = qc->err_mask;
1686
1687	ata_qc_free(qc);
1688	link->active_tag = preempted_tag;
1689	link->sactive = preempted_sactive;
1690	ap->qc_active = preempted_qc_active;
1691	ap->nr_active_links = preempted_nr_active_links;
1692
1693	spin_unlock_irqrestore(ap->lock, flags);
1694
1695	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696		ata_internal_cmd_timed_out(dev, command);
1697
1698	return err_mask;
1699}
1700
1701/**
1702 *	ata_exec_internal - execute libata internal command
1703 *	@dev: Device to which the command is sent
1704 *	@tf: Taskfile registers for the command and the result
1705 *	@cdb: CDB for packet command
1706 *	@dma_dir: Data tranfer direction of the command
1707 *	@buf: Data buffer of the command
1708 *	@buflen: Length of data buffer
1709 *	@timeout: Timeout in msecs (0 for default)
1710 *
1711 *	Wrapper around ata_exec_internal_sg() which takes simple
1712 *	buffer instead of sg list.
1713 *
1714 *	LOCKING:
1715 *	None.  Should be called with kernel context, might sleep.
1716 *
1717 *	RETURNS:
1718 *	Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721			   struct ata_taskfile *tf, const u8 *cdb,
1722			   int dma_dir, void *buf, unsigned int buflen,
1723			   unsigned long timeout)
1724{
1725	struct scatterlist *psg = NULL, sg;
1726	unsigned int n_elem = 0;
1727
1728	if (dma_dir != DMA_NONE) {
1729		WARN_ON(!buf);
1730		sg_init_one(&sg, buf, buflen);
1731		psg = &sg;
1732		n_elem++;
1733	}
1734
1735	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736				    timeout);
1737}
1738
1739/**
1740 *	ata_do_simple_cmd - execute simple internal command
1741 *	@dev: Device to which the command is sent
1742 *	@cmd: Opcode to execute
1743 *
1744 *	Execute a 'simple' command, that only consists of the opcode
1745 *	'cmd' itself, without filling any other registers
1746 *
1747 *	LOCKING:
1748 *	Kernel thread context (may sleep).
1749 *
1750 *	RETURNS:
1751 *	Zero on success, AC_ERR_* mask on failure
1752 */
1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754{
1755	struct ata_taskfile tf;
1756
1757	ata_tf_init(dev, &tf);
1758
1759	tf.command = cmd;
1760	tf.flags |= ATA_TFLAG_DEVICE;
1761	tf.protocol = ATA_PROT_NODATA;
1762
1763	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764}
1765
1766/**
1767 *	ata_pio_need_iordy	-	check if iordy needed
1768 *	@adev: ATA device
1769 *
1770 *	Check if the current speed of the device requires IORDY. Used
1771 *	by various controllers for chip configuration.
1772 */
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
1775	/* Don't set IORDY if we're preparing for reset.  IORDY may
1776	 * lead to controller lock up on certain controllers if the
1777	 * port is not occupied.  See bko#11703 for details.
1778	 */
1779	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780		return 0;
1781	/* Controller doesn't support IORDY.  Probably a pointless
1782	 * check as the caller should know this.
1783	 */
1784	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785		return 0;
1786	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1787	if (ata_id_is_cfa(adev->id)
1788	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789		return 0;
1790	/* PIO3 and higher it is mandatory */
1791	if (adev->pio_mode > XFER_PIO_2)
1792		return 1;
1793	/* We turn it on when possible */
1794	if (ata_id_has_iordy(adev->id))
1795		return 1;
1796	return 0;
1797}
1798
1799/**
1800 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1801 *	@adev: ATA device
1802 *
1803 *	Compute the highest mode possible if we are not using iordy. Return
1804 *	-1 if no iordy mode is available.
1805 */
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1808	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1809	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1810		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811		/* Is the speed faster than the drive allows non IORDY ? */
1812		if (pio) {
1813			/* This is cycle times not frequency - watch the logic! */
1814			if (pio > 240)	/* PIO2 is 240nS per cycle */
1815				return 3 << ATA_SHIFT_PIO;
1816			return 7 << ATA_SHIFT_PIO;
1817		}
1818	}
1819	return 3 << ATA_SHIFT_PIO;
1820}
1821
1822/**
1823 *	ata_do_dev_read_id		-	default ID read method
1824 *	@dev: device
1825 *	@tf: proposed taskfile
1826 *	@id: data buffer
1827 *
1828 *	Issue the identify taskfile and hand back the buffer containing
1829 *	identify data. For some RAID controllers and for pre ATA devices
1830 *	this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833					struct ata_taskfile *tf, u16 *id)
1834{
1835	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1839/**
1840 *	ata_dev_read_id - Read ID data from the specified device
1841 *	@dev: target device
1842 *	@p_class: pointer to class of the target device (may be changed)
1843 *	@flags: ATA_READID_* flags
1844 *	@id: buffer to read IDENTIFY data into
1845 *
1846 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1847 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 *	for pre-ATA4 drives.
1850 *
1851 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 *	now we abort if we hit that case.
1853 *
1854 *	LOCKING:
1855 *	Kernel thread context (may sleep)
1856 *
1857 *	RETURNS:
1858 *	0 on success, -errno otherwise.
1859 */
1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861		    unsigned int flags, u16 *id)
1862{
1863	struct ata_port *ap = dev->link->ap;
1864	unsigned int class = *p_class;
1865	struct ata_taskfile tf;
1866	unsigned int err_mask = 0;
1867	const char *reason;
1868	bool is_semb = class == ATA_DEV_SEMB;
1869	int may_fallback = 1, tried_spinup = 0;
1870	int rc;
1871
1872	if (ata_msg_ctl(ap))
1873		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874
1875retry:
1876	ata_tf_init(dev, &tf);
1877
1878	switch (class) {
1879	case ATA_DEV_SEMB:
1880		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1881	case ATA_DEV_ATA:
1882		tf.command = ATA_CMD_ID_ATA;
1883		break;
1884	case ATA_DEV_ATAPI:
1885		tf.command = ATA_CMD_ID_ATAPI;
1886		break;
1887	default:
1888		rc = -ENODEV;
1889		reason = "unsupported class";
1890		goto err_out;
1891	}
1892
1893	tf.protocol = ATA_PROT_PIO;
1894
1895	/* Some devices choke if TF registers contain garbage.  Make
1896	 * sure those are properly initialized.
1897	 */
1898	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900	/* Device presence detection is unreliable on some
1901	 * controllers.  Always poll IDENTIFY if available.
1902	 */
1903	tf.flags |= ATA_TFLAG_POLLING;
1904
1905	if (ap->ops->read_id)
1906		err_mask = ap->ops->read_id(dev, &tf, id);
1907	else
1908		err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910	if (err_mask) {
1911		if (err_mask & AC_ERR_NODEV_HINT) {
1912			ata_dev_dbg(dev, "NODEV after polling detection\n");
1913			return -ENOENT;
1914		}
1915
1916		if (is_semb) {
1917			ata_dev_info(dev,
1918		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919			/* SEMB is not supported yet */
1920			*p_class = ATA_DEV_SEMB_UNSUP;
1921			return 0;
1922		}
1923
1924		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925			/* Device or controller might have reported
1926			 * the wrong device class.  Give a shot at the
1927			 * other IDENTIFY if the current one is
1928			 * aborted by the device.
1929			 */
1930			if (may_fallback) {
1931				may_fallback = 0;
1932
1933				if (class == ATA_DEV_ATA)
1934					class = ATA_DEV_ATAPI;
1935				else
1936					class = ATA_DEV_ATA;
1937				goto retry;
1938			}
1939
1940			/* Control reaches here iff the device aborted
1941			 * both flavors of IDENTIFYs which happens
1942			 * sometimes with phantom devices.
1943			 */
1944			ata_dev_dbg(dev,
1945				    "both IDENTIFYs aborted, assuming NODEV\n");
1946			return -ENOENT;
1947		}
1948
1949		rc = -EIO;
1950		reason = "I/O error";
1951		goto err_out;
1952	}
1953
1954	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956			    "class=%d may_fallback=%d tried_spinup=%d\n",
1957			    class, may_fallback, tried_spinup);
1958		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960	}
1961
1962	/* Falling back doesn't make sense if ID data was read
1963	 * successfully at least once.
1964	 */
1965	may_fallback = 0;
1966
1967	swap_buf_le16(id, ATA_ID_WORDS);
1968
1969	/* sanity check */
1970	rc = -EINVAL;
1971	reason = "device reports invalid type";
1972
1973	if (class == ATA_DEV_ATA) {
1974		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975			goto err_out;
1976		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977							ata_id_is_ata(id)) {
1978			ata_dev_dbg(dev,
1979				"host indicates ignore ATA devices, ignored\n");
1980			return -ENOENT;
1981		}
1982	} else {
1983		if (ata_id_is_ata(id))
1984			goto err_out;
1985	}
1986
1987	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988		tried_spinup = 1;
1989		/*
1990		 * Drive powered-up in standby mode, and requires a specific
1991		 * SET_FEATURES spin-up subcommand before it will accept
1992		 * anything other than the original IDENTIFY command.
1993		 */
1994		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995		if (err_mask && id[2] != 0x738c) {
1996			rc = -EIO;
1997			reason = "SPINUP failed";
1998			goto err_out;
1999		}
2000		/*
2001		 * If the drive initially returned incomplete IDENTIFY info,
2002		 * we now must reissue the IDENTIFY command.
2003		 */
2004		if (id[2] == 0x37c8)
2005			goto retry;
2006	}
2007
2008	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009		/*
2010		 * The exact sequence expected by certain pre-ATA4 drives is:
2011		 * SRST RESET
2012		 * IDENTIFY (optional in early ATA)
2013		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014		 * anything else..
2015		 * Some drives were very specific about that exact sequence.
2016		 *
2017		 * Note that ATA4 says lba is mandatory so the second check
2018		 * should never trigger.
2019		 */
2020		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022			if (err_mask) {
2023				rc = -EIO;
2024				reason = "INIT_DEV_PARAMS failed";
2025				goto err_out;
2026			}
2027
2028			/* current CHS translation info (id[53-58]) might be
2029			 * changed. reread the identify device info.
2030			 */
2031			flags &= ~ATA_READID_POSTRESET;
2032			goto retry;
2033		}
2034	}
2035
2036	*p_class = class;
2037
2038	return 0;
2039
2040 err_out:
2041	if (ata_msg_warn(ap))
2042		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043			     reason, err_mask);
2044	return rc;
2045}
2046
2047static int ata_do_link_spd_horkage(struct ata_device *dev)
2048{
2049	struct ata_link *plink = ata_dev_phys_link(dev);
2050	u32 target, target_limit;
2051
2052	if (!sata_scr_valid(plink))
2053		return 0;
2054
2055	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2056		target = 1;
2057	else
2058		return 0;
2059
2060	target_limit = (1 << target) - 1;
2061
2062	/* if already on stricter limit, no need to push further */
2063	if (plink->sata_spd_limit <= target_limit)
2064		return 0;
2065
2066	plink->sata_spd_limit = target_limit;
2067
2068	/* Request another EH round by returning -EAGAIN if link is
2069	 * going faster than the target speed.  Forward progress is
2070	 * guaranteed by setting sata_spd_limit to target_limit above.
2071	 */
2072	if (plink->sata_spd > target) {
2073		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2074			     sata_spd_string(target));
2075		return -EAGAIN;
2076	}
2077	return 0;
2078}
2079
2080static inline u8 ata_dev_knobble(struct ata_device *dev)
2081{
2082	struct ata_port *ap = dev->link->ap;
2083
2084	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2085		return 0;
2086
2087	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2088}
2089
2090static int ata_dev_config_ncq(struct ata_device *dev,
2091			       char *desc, size_t desc_sz)
2092{
2093	struct ata_port *ap = dev->link->ap;
2094	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2095	unsigned int err_mask;
2096	char *aa_desc = "";
2097
2098	if (!ata_id_has_ncq(dev->id)) {
2099		desc[0] = '\0';
2100		return 0;
2101	}
2102	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2103		snprintf(desc, desc_sz, "NCQ (not used)");
2104		return 0;
2105	}
2106	if (ap->flags & ATA_FLAG_NCQ) {
2107		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2108		dev->flags |= ATA_DFLAG_NCQ;
2109	}
2110
2111	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2112		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2113		ata_id_has_fpdma_aa(dev->id)) {
2114		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2115			SATA_FPDMA_AA);
2116		if (err_mask) {
2117			ata_dev_err(dev,
2118				    "failed to enable AA (error_mask=0x%x)\n",
2119				    err_mask);
2120			if (err_mask != AC_ERR_DEV) {
2121				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2122				return -EIO;
2123			}
2124		} else
2125			aa_desc = ", AA";
2126	}
2127
2128	if (hdepth >= ddepth)
2129		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2130	else
2131		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2132			ddepth, aa_desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	return 0;
2134}
2135
2136/**
2137 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2138 *	@dev: Target device to configure
2139 *
2140 *	Configure @dev according to @dev->id.  Generic and low-level
2141 *	driver specific fixups are also applied.
2142 *
2143 *	LOCKING:
2144 *	Kernel thread context (may sleep)
2145 *
2146 *	RETURNS:
2147 *	0 on success, -errno otherwise
2148 */
2149int ata_dev_configure(struct ata_device *dev)
2150{
2151	struct ata_port *ap = dev->link->ap;
2152	struct ata_eh_context *ehc = &dev->link->eh_context;
2153	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2154	const u16 *id = dev->id;
2155	unsigned long xfer_mask;
 
2156	char revbuf[7];		/* XYZ-99\0 */
2157	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2158	char modelbuf[ATA_ID_PROD_LEN+1];
2159	int rc;
2160
2161	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2162		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2163		return 0;
2164	}
2165
2166	if (ata_msg_probe(ap))
2167		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2168
2169	/* set horkage */
2170	dev->horkage |= ata_dev_blacklisted(dev);
2171	ata_force_horkage(dev);
2172
2173	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2174		ata_dev_info(dev, "unsupported device, disabling\n");
2175		ata_dev_disable(dev);
2176		return 0;
2177	}
2178
2179	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2180	    dev->class == ATA_DEV_ATAPI) {
2181		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2182			     atapi_enabled ? "not supported with this driver"
2183			     : "disabled");
2184		ata_dev_disable(dev);
2185		return 0;
2186	}
2187
2188	rc = ata_do_link_spd_horkage(dev);
2189	if (rc)
2190		return rc;
2191
 
 
 
 
 
 
 
 
 
 
2192	/* let ACPI work its magic */
2193	rc = ata_acpi_on_devcfg(dev);
2194	if (rc)
2195		return rc;
2196
2197	/* massage HPA, do it early as it might change IDENTIFY data */
2198	rc = ata_hpa_resize(dev);
2199	if (rc)
2200		return rc;
2201
2202	/* print device capabilities */
2203	if (ata_msg_probe(ap))
2204		ata_dev_dbg(dev,
2205			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2206			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2207			    __func__,
2208			    id[49], id[82], id[83], id[84],
2209			    id[85], id[86], id[87], id[88]);
2210
2211	/* initialize to-be-configured parameters */
2212	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2213	dev->max_sectors = 0;
2214	dev->cdb_len = 0;
2215	dev->n_sectors = 0;
2216	dev->cylinders = 0;
2217	dev->heads = 0;
2218	dev->sectors = 0;
2219	dev->multi_count = 0;
2220
2221	/*
2222	 * common ATA, ATAPI feature tests
2223	 */
2224
2225	/* find max transfer mode; for printk only */
2226	xfer_mask = ata_id_xfermask(id);
2227
2228	if (ata_msg_probe(ap))
2229		ata_dump_id(id);
2230
2231	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2232	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2233			sizeof(fwrevbuf));
2234
2235	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2236			sizeof(modelbuf));
2237
2238	/* ATA-specific feature tests */
2239	if (dev->class == ATA_DEV_ATA) {
2240		if (ata_id_is_cfa(id)) {
2241			/* CPRM may make this media unusable */
2242			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2243				ata_dev_warn(dev,
2244	"supports DRM functions and may not be fully accessible\n");
2245			snprintf(revbuf, 7, "CFA");
2246		} else {
2247			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2248			/* Warn the user if the device has TPM extensions */
2249			if (ata_id_has_tpm(id))
2250				ata_dev_warn(dev,
2251	"supports DRM functions and may not be fully accessible\n");
2252		}
2253
2254		dev->n_sectors = ata_id_n_sectors(id);
2255
2256		/* get current R/W Multiple count setting */
2257		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258			unsigned int max = dev->id[47] & 0xff;
2259			unsigned int cnt = dev->id[59] & 0xff;
2260			/* only recognize/allow powers of two here */
2261			if (is_power_of_2(max) && is_power_of_2(cnt))
2262				if (cnt <= max)
2263					dev->multi_count = cnt;
2264		}
2265
2266		if (ata_id_has_lba(id)) {
2267			const char *lba_desc;
2268			char ncq_desc[24];
2269
2270			lba_desc = "LBA";
2271			dev->flags |= ATA_DFLAG_LBA;
2272			if (ata_id_has_lba48(id)) {
2273				dev->flags |= ATA_DFLAG_LBA48;
2274				lba_desc = "LBA48";
2275
2276				if (dev->n_sectors >= (1UL << 28) &&
2277				    ata_id_has_flush_ext(id))
2278					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279			}
2280
2281			/* config NCQ */
2282			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283			if (rc)
2284				return rc;
2285
2286			/* print device info to dmesg */
2287			if (ata_msg_drv(ap) && print_info) {
2288				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2289					     revbuf, modelbuf, fwrevbuf,
2290					     ata_mode_string(xfer_mask));
2291				ata_dev_info(dev,
2292					     "%llu sectors, multi %u: %s %s\n",
2293					(unsigned long long)dev->n_sectors,
2294					dev->multi_count, lba_desc, ncq_desc);
2295			}
2296		} else {
2297			/* CHS */
2298
2299			/* Default translation */
2300			dev->cylinders	= id[1];
2301			dev->heads	= id[3];
2302			dev->sectors	= id[6];
2303
2304			if (ata_id_current_chs_valid(id)) {
2305				/* Current CHS translation is valid. */
2306				dev->cylinders = id[54];
2307				dev->heads     = id[55];
2308				dev->sectors   = id[56];
2309			}
2310
2311			/* print device info to dmesg */
2312			if (ata_msg_drv(ap) && print_info) {
2313				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314					     revbuf,	modelbuf, fwrevbuf,
2315					     ata_mode_string(xfer_mask));
2316				ata_dev_info(dev,
2317					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2318					     (unsigned long long)dev->n_sectors,
2319					     dev->multi_count, dev->cylinders,
2320					     dev->heads, dev->sectors);
2321			}
2322		}
2323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2324		dev->cdb_len = 16;
2325	}
2326
2327	/* ATAPI-specific feature tests */
2328	else if (dev->class == ATA_DEV_ATAPI) {
2329		const char *cdb_intr_string = "";
2330		const char *atapi_an_string = "";
2331		const char *dma_dir_string = "";
2332		u32 sntf;
2333
2334		rc = atapi_cdb_len(id);
2335		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2336			if (ata_msg_warn(ap))
2337				ata_dev_warn(dev, "unsupported CDB len\n");
2338			rc = -EINVAL;
2339			goto err_out_nosup;
2340		}
2341		dev->cdb_len = (unsigned int) rc;
2342
2343		/* Enable ATAPI AN if both the host and device have
2344		 * the support.  If PMP is attached, SNTF is required
2345		 * to enable ATAPI AN to discern between PHY status
2346		 * changed notifications and ATAPI ANs.
2347		 */
2348		if (atapi_an &&
2349		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350		    (!sata_pmp_attached(ap) ||
2351		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352			unsigned int err_mask;
2353
2354			/* issue SET feature command to turn this on */
2355			err_mask = ata_dev_set_feature(dev,
2356					SETFEATURES_SATA_ENABLE, SATA_AN);
2357			if (err_mask)
2358				ata_dev_err(dev,
2359					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2360					    err_mask);
2361			else {
2362				dev->flags |= ATA_DFLAG_AN;
2363				atapi_an_string = ", ATAPI AN";
2364			}
2365		}
2366
2367		if (ata_id_cdb_intr(dev->id)) {
2368			dev->flags |= ATA_DFLAG_CDB_INTR;
2369			cdb_intr_string = ", CDB intr";
2370		}
2371
2372		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373			dev->flags |= ATA_DFLAG_DMADIR;
2374			dma_dir_string = ", DMADIR";
2375		}
2376
 
 
 
 
 
2377		/* print device info to dmesg */
2378		if (ata_msg_drv(ap) && print_info)
2379			ata_dev_info(dev,
2380				     "ATAPI: %s, %s, max %s%s%s%s\n",
2381				     modelbuf, fwrevbuf,
2382				     ata_mode_string(xfer_mask),
2383				     cdb_intr_string, atapi_an_string,
2384				     dma_dir_string);
2385	}
2386
2387	/* determine max_sectors */
2388	dev->max_sectors = ATA_MAX_SECTORS;
2389	if (dev->flags & ATA_DFLAG_LBA48)
2390		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2391
2392	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2393	   200 sectors */
2394	if (ata_dev_knobble(dev)) {
2395		if (ata_msg_drv(ap) && print_info)
2396			ata_dev_info(dev, "applying bridge limits\n");
2397		dev->udma_mask &= ATA_UDMA5;
2398		dev->max_sectors = ATA_MAX_SECTORS;
2399	}
2400
2401	if ((dev->class == ATA_DEV_ATAPI) &&
2402	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2403		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2404		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405	}
2406
2407	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2408		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2409					 dev->max_sectors);
2410
 
 
 
2411	if (ap->ops->dev_config)
2412		ap->ops->dev_config(dev);
2413
2414	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2415		/* Let the user know. We don't want to disallow opens for
2416		   rescue purposes, or in case the vendor is just a blithering
2417		   idiot. Do this after the dev_config call as some controllers
2418		   with buggy firmware may want to avoid reporting false device
2419		   bugs */
2420
2421		if (print_info) {
2422			ata_dev_warn(dev,
2423"Drive reports diagnostics failure. This may indicate a drive\n");
2424			ata_dev_warn(dev,
2425"fault or invalid emulation. Contact drive vendor for information.\n");
2426		}
2427	}
2428
2429	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2430		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2431		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2432	}
2433
2434	return 0;
2435
2436err_out_nosup:
2437	if (ata_msg_probe(ap))
2438		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2439	return rc;
2440}
2441
2442/**
2443 *	ata_cable_40wire	-	return 40 wire cable type
2444 *	@ap: port
2445 *
2446 *	Helper method for drivers which want to hardwire 40 wire cable
2447 *	detection.
2448 */
2449
2450int ata_cable_40wire(struct ata_port *ap)
2451{
2452	return ATA_CBL_PATA40;
2453}
2454
2455/**
2456 *	ata_cable_80wire	-	return 80 wire cable type
2457 *	@ap: port
2458 *
2459 *	Helper method for drivers which want to hardwire 80 wire cable
2460 *	detection.
2461 */
2462
2463int ata_cable_80wire(struct ata_port *ap)
2464{
2465	return ATA_CBL_PATA80;
2466}
2467
2468/**
2469 *	ata_cable_unknown	-	return unknown PATA cable.
2470 *	@ap: port
2471 *
2472 *	Helper method for drivers which have no PATA cable detection.
2473 */
2474
2475int ata_cable_unknown(struct ata_port *ap)
2476{
2477	return ATA_CBL_PATA_UNK;
2478}
2479
2480/**
2481 *	ata_cable_ignore	-	return ignored PATA cable.
2482 *	@ap: port
2483 *
2484 *	Helper method for drivers which don't use cable type to limit
2485 *	transfer mode.
2486 */
2487int ata_cable_ignore(struct ata_port *ap)
2488{
2489	return ATA_CBL_PATA_IGN;
2490}
2491
2492/**
2493 *	ata_cable_sata	-	return SATA cable type
2494 *	@ap: port
2495 *
2496 *	Helper method for drivers which have SATA cables
2497 */
2498
2499int ata_cable_sata(struct ata_port *ap)
2500{
2501	return ATA_CBL_SATA;
2502}
2503
2504/**
2505 *	ata_bus_probe - Reset and probe ATA bus
2506 *	@ap: Bus to probe
2507 *
2508 *	Master ATA bus probing function.  Initiates a hardware-dependent
2509 *	bus reset, then attempts to identify any devices found on
2510 *	the bus.
2511 *
2512 *	LOCKING:
2513 *	PCI/etc. bus probe sem.
2514 *
2515 *	RETURNS:
2516 *	Zero on success, negative errno otherwise.
2517 */
2518
2519int ata_bus_probe(struct ata_port *ap)
2520{
2521	unsigned int classes[ATA_MAX_DEVICES];
2522	int tries[ATA_MAX_DEVICES];
2523	int rc;
2524	struct ata_device *dev;
2525
2526	ata_for_each_dev(dev, &ap->link, ALL)
2527		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2528
2529 retry:
2530	ata_for_each_dev(dev, &ap->link, ALL) {
2531		/* If we issue an SRST then an ATA drive (not ATAPI)
2532		 * may change configuration and be in PIO0 timing. If
2533		 * we do a hard reset (or are coming from power on)
2534		 * this is true for ATA or ATAPI. Until we've set a
2535		 * suitable controller mode we should not touch the
2536		 * bus as we may be talking too fast.
2537		 */
2538		dev->pio_mode = XFER_PIO_0;
 
2539
2540		/* If the controller has a pio mode setup function
2541		 * then use it to set the chipset to rights. Don't
2542		 * touch the DMA setup as that will be dealt with when
2543		 * configuring devices.
2544		 */
2545		if (ap->ops->set_piomode)
2546			ap->ops->set_piomode(ap, dev);
2547	}
2548
2549	/* reset and determine device classes */
2550	ap->ops->phy_reset(ap);
2551
2552	ata_for_each_dev(dev, &ap->link, ALL) {
2553		if (dev->class != ATA_DEV_UNKNOWN)
2554			classes[dev->devno] = dev->class;
2555		else
2556			classes[dev->devno] = ATA_DEV_NONE;
2557
2558		dev->class = ATA_DEV_UNKNOWN;
2559	}
2560
2561	/* read IDENTIFY page and configure devices. We have to do the identify
2562	   specific sequence bass-ackwards so that PDIAG- is released by
2563	   the slave device */
2564
2565	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2566		if (tries[dev->devno])
2567			dev->class = classes[dev->devno];
2568
2569		if (!ata_dev_enabled(dev))
2570			continue;
2571
2572		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2573				     dev->id);
2574		if (rc)
2575			goto fail;
2576	}
2577
2578	/* Now ask for the cable type as PDIAG- should have been released */
2579	if (ap->ops->cable_detect)
2580		ap->cbl = ap->ops->cable_detect(ap);
2581
2582	/* We may have SATA bridge glue hiding here irrespective of
2583	 * the reported cable types and sensed types.  When SATA
2584	 * drives indicate we have a bridge, we don't know which end
2585	 * of the link the bridge is which is a problem.
2586	 */
2587	ata_for_each_dev(dev, &ap->link, ENABLED)
2588		if (ata_id_is_sata(dev->id))
2589			ap->cbl = ATA_CBL_SATA;
2590
2591	/* After the identify sequence we can now set up the devices. We do
2592	   this in the normal order so that the user doesn't get confused */
2593
2594	ata_for_each_dev(dev, &ap->link, ENABLED) {
2595		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2596		rc = ata_dev_configure(dev);
2597		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2598		if (rc)
2599			goto fail;
2600	}
2601
2602	/* configure transfer mode */
2603	rc = ata_set_mode(&ap->link, &dev);
2604	if (rc)
2605		goto fail;
2606
2607	ata_for_each_dev(dev, &ap->link, ENABLED)
2608		return 0;
2609
2610	return -ENODEV;
2611
2612 fail:
2613	tries[dev->devno]--;
2614
2615	switch (rc) {
2616	case -EINVAL:
2617		/* eeek, something went very wrong, give up */
2618		tries[dev->devno] = 0;
2619		break;
2620
2621	case -ENODEV:
2622		/* give it just one more chance */
2623		tries[dev->devno] = min(tries[dev->devno], 1);
2624	case -EIO:
2625		if (tries[dev->devno] == 1) {
2626			/* This is the last chance, better to slow
2627			 * down than lose it.
2628			 */
2629			sata_down_spd_limit(&ap->link, 0);
2630			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2631		}
2632	}
2633
2634	if (!tries[dev->devno])
2635		ata_dev_disable(dev);
2636
2637	goto retry;
2638}
2639
2640/**
2641 *	sata_print_link_status - Print SATA link status
2642 *	@link: SATA link to printk link status about
2643 *
2644 *	This function prints link speed and status of a SATA link.
2645 *
2646 *	LOCKING:
2647 *	None.
2648 */
2649static void sata_print_link_status(struct ata_link *link)
2650{
2651	u32 sstatus, scontrol, tmp;
2652
2653	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2654		return;
2655	sata_scr_read(link, SCR_CONTROL, &scontrol);
2656
2657	if (ata_phys_link_online(link)) {
2658		tmp = (sstatus >> 4) & 0xf;
2659		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2660			      sata_spd_string(tmp), sstatus, scontrol);
2661	} else {
2662		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2663			      sstatus, scontrol);
2664	}
2665}
2666
2667/**
2668 *	ata_dev_pair		-	return other device on cable
2669 *	@adev: device
2670 *
2671 *	Obtain the other device on the same cable, or if none is
2672 *	present NULL is returned
2673 */
2674
2675struct ata_device *ata_dev_pair(struct ata_device *adev)
2676{
2677	struct ata_link *link = adev->link;
2678	struct ata_device *pair = &link->device[1 - adev->devno];
2679	if (!ata_dev_enabled(pair))
2680		return NULL;
2681	return pair;
2682}
2683
2684/**
2685 *	sata_down_spd_limit - adjust SATA spd limit downward
2686 *	@link: Link to adjust SATA spd limit for
2687 *	@spd_limit: Additional limit
2688 *
2689 *	Adjust SATA spd limit of @link downward.  Note that this
2690 *	function only adjusts the limit.  The change must be applied
2691 *	using sata_set_spd().
2692 *
2693 *	If @spd_limit is non-zero, the speed is limited to equal to or
2694 *	lower than @spd_limit if such speed is supported.  If
2695 *	@spd_limit is slower than any supported speed, only the lowest
2696 *	supported speed is allowed.
2697 *
2698 *	LOCKING:
2699 *	Inherited from caller.
2700 *
2701 *	RETURNS:
2702 *	0 on success, negative errno on failure
2703 */
2704int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2705{
2706	u32 sstatus, spd, mask;
2707	int rc, bit;
2708
2709	if (!sata_scr_valid(link))
2710		return -EOPNOTSUPP;
2711
2712	/* If SCR can be read, use it to determine the current SPD.
2713	 * If not, use cached value in link->sata_spd.
2714	 */
2715	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716	if (rc == 0 && ata_sstatus_online(sstatus))
2717		spd = (sstatus >> 4) & 0xf;
2718	else
2719		spd = link->sata_spd;
2720
2721	mask = link->sata_spd_limit;
2722	if (mask <= 1)
2723		return -EINVAL;
2724
2725	/* unconditionally mask off the highest bit */
2726	bit = fls(mask) - 1;
2727	mask &= ~(1 << bit);
2728
2729	/* Mask off all speeds higher than or equal to the current
2730	 * one.  Force 1.5Gbps if current SPD is not available.
2731	 */
2732	if (spd > 1)
2733		mask &= (1 << (spd - 1)) - 1;
2734	else
2735		mask &= 1;
2736
2737	/* were we already at the bottom? */
2738	if (!mask)
2739		return -EINVAL;
2740
2741	if (spd_limit) {
2742		if (mask & ((1 << spd_limit) - 1))
2743			mask &= (1 << spd_limit) - 1;
2744		else {
2745			bit = ffs(mask) - 1;
2746			mask = 1 << bit;
2747		}
2748	}
2749
2750	link->sata_spd_limit = mask;
2751
2752	ata_link_warn(link, "limiting SATA link speed to %s\n",
2753		      sata_spd_string(fls(mask)));
2754
2755	return 0;
2756}
2757
2758static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2759{
2760	struct ata_link *host_link = &link->ap->link;
2761	u32 limit, target, spd;
2762
2763	limit = link->sata_spd_limit;
2764
2765	/* Don't configure downstream link faster than upstream link.
2766	 * It doesn't speed up anything and some PMPs choke on such
2767	 * configuration.
2768	 */
2769	if (!ata_is_host_link(link) && host_link->sata_spd)
2770		limit &= (1 << host_link->sata_spd) - 1;
2771
2772	if (limit == UINT_MAX)
2773		target = 0;
2774	else
2775		target = fls(limit);
2776
2777	spd = (*scontrol >> 4) & 0xf;
2778	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2779
2780	return spd != target;
2781}
2782
2783/**
2784 *	sata_set_spd_needed - is SATA spd configuration needed
2785 *	@link: Link in question
2786 *
2787 *	Test whether the spd limit in SControl matches
2788 *	@link->sata_spd_limit.  This function is used to determine
2789 *	whether hardreset is necessary to apply SATA spd
2790 *	configuration.
2791 *
2792 *	LOCKING:
2793 *	Inherited from caller.
2794 *
2795 *	RETURNS:
2796 *	1 if SATA spd configuration is needed, 0 otherwise.
2797 */
2798static int sata_set_spd_needed(struct ata_link *link)
2799{
2800	u32 scontrol;
2801
2802	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2803		return 1;
2804
2805	return __sata_set_spd_needed(link, &scontrol);
2806}
2807
2808/**
2809 *	sata_set_spd - set SATA spd according to spd limit
2810 *	@link: Link to set SATA spd for
2811 *
2812 *	Set SATA spd of @link according to sata_spd_limit.
2813 *
2814 *	LOCKING:
2815 *	Inherited from caller.
2816 *
2817 *	RETURNS:
2818 *	0 if spd doesn't need to be changed, 1 if spd has been
2819 *	changed.  Negative errno if SCR registers are inaccessible.
2820 */
2821int sata_set_spd(struct ata_link *link)
2822{
2823	u32 scontrol;
2824	int rc;
2825
2826	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2827		return rc;
2828
2829	if (!__sata_set_spd_needed(link, &scontrol))
2830		return 0;
2831
2832	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2833		return rc;
2834
2835	return 1;
2836}
2837
2838/*
2839 * This mode timing computation functionality is ported over from
2840 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2841 */
2842/*
2843 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2844 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2845 * for UDMA6, which is currently supported only by Maxtor drives.
2846 *
2847 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2848 */
2849
2850static const struct ata_timing ata_timing[] = {
2851/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2852	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2853	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2854	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2855	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2856	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2857	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2858	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2859
2860	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2861	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2862	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2863
2864	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2865	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2866	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2867	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2868	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2869
2870/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2871	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2872	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2873	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2874	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2875	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2876	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2877	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2878
2879	{ 0xFF }
2880};
2881
2882#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2883#define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2884
2885static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2886{
2887	q->setup	= EZ(t->setup      * 1000,  T);
2888	q->act8b	= EZ(t->act8b      * 1000,  T);
2889	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2890	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2891	q->active	= EZ(t->active     * 1000,  T);
2892	q->recover	= EZ(t->recover    * 1000,  T);
2893	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2894	q->cycle	= EZ(t->cycle      * 1000,  T);
2895	q->udma		= EZ(t->udma       * 1000, UT);
2896}
2897
2898void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899		      struct ata_timing *m, unsigned int what)
2900{
2901	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2902	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2903	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2904	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2905	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2906	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2908	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2909	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2910}
2911
2912const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2913{
2914	const struct ata_timing *t = ata_timing;
2915
2916	while (xfer_mode > t->mode)
2917		t++;
2918
2919	if (xfer_mode == t->mode)
2920		return t;
 
 
 
 
2921	return NULL;
2922}
2923
2924int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2925		       struct ata_timing *t, int T, int UT)
2926{
2927	const u16 *id = adev->id;
2928	const struct ata_timing *s;
2929	struct ata_timing p;
2930
2931	/*
2932	 * Find the mode.
2933	 */
2934
2935	if (!(s = ata_timing_find_mode(speed)))
2936		return -EINVAL;
2937
2938	memcpy(t, s, sizeof(*s));
2939
2940	/*
2941	 * If the drive is an EIDE drive, it can tell us it needs extended
2942	 * PIO/MW_DMA cycle timing.
2943	 */
2944
2945	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2946		memset(&p, 0, sizeof(p));
2947
2948		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2949			if (speed <= XFER_PIO_2)
2950				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2951			else if ((speed <= XFER_PIO_4) ||
2952				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2953				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2954		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2955			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2956
2957		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2958	}
2959
2960	/*
2961	 * Convert the timing to bus clock counts.
2962	 */
2963
2964	ata_timing_quantize(t, t, T, UT);
2965
2966	/*
2967	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2968	 * S.M.A.R.T * and some other commands. We have to ensure that the
2969	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2970	 */
2971
2972	if (speed > XFER_PIO_6) {
2973		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2974		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2975	}
2976
2977	/*
2978	 * Lengthen active & recovery time so that cycle time is correct.
2979	 */
2980
2981	if (t->act8b + t->rec8b < t->cyc8b) {
2982		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2983		t->rec8b = t->cyc8b - t->act8b;
2984	}
2985
2986	if (t->active + t->recover < t->cycle) {
2987		t->active += (t->cycle - (t->active + t->recover)) / 2;
2988		t->recover = t->cycle - t->active;
2989	}
2990
2991	/* In a few cases quantisation may produce enough errors to
2992	   leave t->cycle too low for the sum of active and recovery
2993	   if so we must correct this */
2994	if (t->active + t->recover > t->cycle)
2995		t->cycle = t->active + t->recover;
2996
2997	return 0;
2998}
2999
3000/**
3001 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3002 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3003 *	@cycle: cycle duration in ns
3004 *
3005 *	Return matching xfer mode for @cycle.  The returned mode is of
3006 *	the transfer type specified by @xfer_shift.  If @cycle is too
3007 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3008 *	than the fastest known mode, the fasted mode is returned.
3009 *
3010 *	LOCKING:
3011 *	None.
3012 *
3013 *	RETURNS:
3014 *	Matching xfer_mode, 0xff if no match found.
3015 */
3016u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3017{
3018	u8 base_mode = 0xff, last_mode = 0xff;
3019	const struct ata_xfer_ent *ent;
3020	const struct ata_timing *t;
3021
3022	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3023		if (ent->shift == xfer_shift)
3024			base_mode = ent->base;
3025
3026	for (t = ata_timing_find_mode(base_mode);
3027	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3028		unsigned short this_cycle;
3029
3030		switch (xfer_shift) {
3031		case ATA_SHIFT_PIO:
3032		case ATA_SHIFT_MWDMA:
3033			this_cycle = t->cycle;
3034			break;
3035		case ATA_SHIFT_UDMA:
3036			this_cycle = t->udma;
3037			break;
3038		default:
3039			return 0xff;
3040		}
3041
3042		if (cycle > this_cycle)
3043			break;
3044
3045		last_mode = t->mode;
3046	}
3047
3048	return last_mode;
3049}
3050
3051/**
3052 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3053 *	@dev: Device to adjust xfer masks
3054 *	@sel: ATA_DNXFER_* selector
3055 *
3056 *	Adjust xfer masks of @dev downward.  Note that this function
3057 *	does not apply the change.  Invoking ata_set_mode() afterwards
3058 *	will apply the limit.
3059 *
3060 *	LOCKING:
3061 *	Inherited from caller.
3062 *
3063 *	RETURNS:
3064 *	0 on success, negative errno on failure
3065 */
3066int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3067{
3068	char buf[32];
3069	unsigned long orig_mask, xfer_mask;
3070	unsigned long pio_mask, mwdma_mask, udma_mask;
3071	int quiet, highbit;
3072
3073	quiet = !!(sel & ATA_DNXFER_QUIET);
3074	sel &= ~ATA_DNXFER_QUIET;
3075
3076	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3077						  dev->mwdma_mask,
3078						  dev->udma_mask);
3079	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3080
3081	switch (sel) {
3082	case ATA_DNXFER_PIO:
3083		highbit = fls(pio_mask) - 1;
3084		pio_mask &= ~(1 << highbit);
3085		break;
3086
3087	case ATA_DNXFER_DMA:
3088		if (udma_mask) {
3089			highbit = fls(udma_mask) - 1;
3090			udma_mask &= ~(1 << highbit);
3091			if (!udma_mask)
3092				return -ENOENT;
3093		} else if (mwdma_mask) {
3094			highbit = fls(mwdma_mask) - 1;
3095			mwdma_mask &= ~(1 << highbit);
3096			if (!mwdma_mask)
3097				return -ENOENT;
3098		}
3099		break;
3100
3101	case ATA_DNXFER_40C:
3102		udma_mask &= ATA_UDMA_MASK_40C;
3103		break;
3104
3105	case ATA_DNXFER_FORCE_PIO0:
3106		pio_mask &= 1;
3107	case ATA_DNXFER_FORCE_PIO:
3108		mwdma_mask = 0;
3109		udma_mask = 0;
3110		break;
3111
3112	default:
3113		BUG();
3114	}
3115
3116	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3117
3118	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3119		return -ENOENT;
3120
3121	if (!quiet) {
3122		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3123			snprintf(buf, sizeof(buf), "%s:%s",
3124				 ata_mode_string(xfer_mask),
3125				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3126		else
3127			snprintf(buf, sizeof(buf), "%s",
3128				 ata_mode_string(xfer_mask));
3129
3130		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3131	}
3132
3133	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3134			    &dev->udma_mask);
3135
3136	return 0;
3137}
3138
3139static int ata_dev_set_mode(struct ata_device *dev)
3140{
3141	struct ata_port *ap = dev->link->ap;
3142	struct ata_eh_context *ehc = &dev->link->eh_context;
3143	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3144	const char *dev_err_whine = "";
3145	int ign_dev_err = 0;
3146	unsigned int err_mask = 0;
3147	int rc;
3148
3149	dev->flags &= ~ATA_DFLAG_PIO;
3150	if (dev->xfer_shift == ATA_SHIFT_PIO)
3151		dev->flags |= ATA_DFLAG_PIO;
3152
3153	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3154		dev_err_whine = " (SET_XFERMODE skipped)";
3155	else {
3156		if (nosetxfer)
3157			ata_dev_warn(dev,
3158				     "NOSETXFER but PATA detected - can't "
3159				     "skip SETXFER, might malfunction\n");
3160		err_mask = ata_dev_set_xfermode(dev);
3161	}
3162
3163	if (err_mask & ~AC_ERR_DEV)
3164		goto fail;
3165
3166	/* revalidate */
3167	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3168	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3169	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3170	if (rc)
3171		return rc;
3172
3173	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3174		/* Old CFA may refuse this command, which is just fine */
3175		if (ata_id_is_cfa(dev->id))
3176			ign_dev_err = 1;
3177		/* Catch several broken garbage emulations plus some pre
3178		   ATA devices */
3179		if (ata_id_major_version(dev->id) == 0 &&
3180					dev->pio_mode <= XFER_PIO_2)
3181			ign_dev_err = 1;
3182		/* Some very old devices and some bad newer ones fail
3183		   any kind of SET_XFERMODE request but support PIO0-2
3184		   timings and no IORDY */
3185		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3186			ign_dev_err = 1;
3187	}
3188	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3189	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3190	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3191	    dev->dma_mode == XFER_MW_DMA_0 &&
3192	    (dev->id[63] >> 8) & 1)
3193		ign_dev_err = 1;
3194
3195	/* if the device is actually configured correctly, ignore dev err */
3196	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3197		ign_dev_err = 1;
3198
3199	if (err_mask & AC_ERR_DEV) {
3200		if (!ign_dev_err)
3201			goto fail;
3202		else
3203			dev_err_whine = " (device error ignored)";
3204	}
3205
3206	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3207		dev->xfer_shift, (int)dev->xfer_mode);
3208
3209	ata_dev_info(dev, "configured for %s%s\n",
3210		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3211		     dev_err_whine);
3212
3213	return 0;
3214
3215 fail:
3216	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3217	return -EIO;
3218}
3219
3220/**
3221 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3222 *	@link: link on which timings will be programmed
3223 *	@r_failed_dev: out parameter for failed device
3224 *
3225 *	Standard implementation of the function used to tune and set
3226 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3227 *	ata_dev_set_mode() fails, pointer to the failing device is
3228 *	returned in @r_failed_dev.
3229 *
3230 *	LOCKING:
3231 *	PCI/etc. bus probe sem.
3232 *
3233 *	RETURNS:
3234 *	0 on success, negative errno otherwise
3235 */
3236
3237int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238{
3239	struct ata_port *ap = link->ap;
3240	struct ata_device *dev;
3241	int rc = 0, used_dma = 0, found = 0;
3242
3243	/* step 1: calculate xfer_mask */
3244	ata_for_each_dev(dev, link, ENABLED) {
3245		unsigned long pio_mask, dma_mask;
3246		unsigned int mode_mask;
3247
3248		mode_mask = ATA_DMA_MASK_ATA;
3249		if (dev->class == ATA_DEV_ATAPI)
3250			mode_mask = ATA_DMA_MASK_ATAPI;
3251		else if (ata_id_is_cfa(dev->id))
3252			mode_mask = ATA_DMA_MASK_CFA;
3253
3254		ata_dev_xfermask(dev);
3255		ata_force_xfermask(dev);
3256
3257		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3258
3259		if (libata_dma_mask & mode_mask)
3260			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3261						     dev->udma_mask);
3262		else
3263			dma_mask = 0;
3264
3265		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3266		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3267
3268		found = 1;
3269		if (ata_dma_enabled(dev))
3270			used_dma = 1;
3271	}
3272	if (!found)
3273		goto out;
3274
3275	/* step 2: always set host PIO timings */
3276	ata_for_each_dev(dev, link, ENABLED) {
3277		if (dev->pio_mode == 0xff) {
3278			ata_dev_warn(dev, "no PIO support\n");
3279			rc = -EINVAL;
3280			goto out;
3281		}
3282
3283		dev->xfer_mode = dev->pio_mode;
3284		dev->xfer_shift = ATA_SHIFT_PIO;
3285		if (ap->ops->set_piomode)
3286			ap->ops->set_piomode(ap, dev);
3287	}
3288
3289	/* step 3: set host DMA timings */
3290	ata_for_each_dev(dev, link, ENABLED) {
3291		if (!ata_dma_enabled(dev))
3292			continue;
3293
3294		dev->xfer_mode = dev->dma_mode;
3295		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3296		if (ap->ops->set_dmamode)
3297			ap->ops->set_dmamode(ap, dev);
3298	}
3299
3300	/* step 4: update devices' xfer mode */
3301	ata_for_each_dev(dev, link, ENABLED) {
3302		rc = ata_dev_set_mode(dev);
3303		if (rc)
3304			goto out;
3305	}
3306
3307	/* Record simplex status. If we selected DMA then the other
3308	 * host channels are not permitted to do so.
3309	 */
3310	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3311		ap->host->simplex_claimed = ap;
3312
3313 out:
3314	if (rc)
3315		*r_failed_dev = dev;
3316	return rc;
3317}
3318
3319/**
3320 *	ata_wait_ready - wait for link to become ready
3321 *	@link: link to be waited on
3322 *	@deadline: deadline jiffies for the operation
3323 *	@check_ready: callback to check link readiness
3324 *
3325 *	Wait for @link to become ready.  @check_ready should return
3326 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3327 *	link doesn't seem to be occupied, other errno for other error
3328 *	conditions.
3329 *
3330 *	Transient -ENODEV conditions are allowed for
3331 *	ATA_TMOUT_FF_WAIT.
3332 *
3333 *	LOCKING:
3334 *	EH context.
3335 *
3336 *	RETURNS:
3337 *	0 if @linke is ready before @deadline; otherwise, -errno.
3338 */
3339int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3340		   int (*check_ready)(struct ata_link *link))
3341{
3342	unsigned long start = jiffies;
3343	unsigned long nodev_deadline;
3344	int warned = 0;
3345
3346	/* choose which 0xff timeout to use, read comment in libata.h */
3347	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3348		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3349	else
3350		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3351
3352	/* Slave readiness can't be tested separately from master.  On
3353	 * M/S emulation configuration, this function should be called
3354	 * only on the master and it will handle both master and slave.
3355	 */
3356	WARN_ON(link == link->ap->slave_link);
3357
3358	if (time_after(nodev_deadline, deadline))
3359		nodev_deadline = deadline;
3360
3361	while (1) {
3362		unsigned long now = jiffies;
3363		int ready, tmp;
3364
3365		ready = tmp = check_ready(link);
3366		if (ready > 0)
3367			return 0;
3368
3369		/*
3370		 * -ENODEV could be transient.  Ignore -ENODEV if link
3371		 * is online.  Also, some SATA devices take a long
3372		 * time to clear 0xff after reset.  Wait for
3373		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3374		 * offline.
3375		 *
3376		 * Note that some PATA controllers (pata_ali) explode
3377		 * if status register is read more than once when
3378		 * there's no device attached.
3379		 */
3380		if (ready == -ENODEV) {
3381			if (ata_link_online(link))
3382				ready = 0;
3383			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3384				 !ata_link_offline(link) &&
3385				 time_before(now, nodev_deadline))
3386				ready = 0;
3387		}
3388
3389		if (ready)
3390			return ready;
3391		if (time_after(now, deadline))
3392			return -EBUSY;
3393
3394		if (!warned && time_after(now, start + 5 * HZ) &&
3395		    (deadline - now > 3 * HZ)) {
3396			ata_link_warn(link,
3397				"link is slow to respond, please be patient "
3398				"(ready=%d)\n", tmp);
3399			warned = 1;
3400		}
3401
3402		ata_msleep(link->ap, 50);
3403	}
3404}
3405
3406/**
3407 *	ata_wait_after_reset - wait for link to become ready after reset
3408 *	@link: link to be waited on
3409 *	@deadline: deadline jiffies for the operation
3410 *	@check_ready: callback to check link readiness
3411 *
3412 *	Wait for @link to become ready after reset.
3413 *
3414 *	LOCKING:
3415 *	EH context.
3416 *
3417 *	RETURNS:
3418 *	0 if @linke is ready before @deadline; otherwise, -errno.
3419 */
3420int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3421				int (*check_ready)(struct ata_link *link))
3422{
3423	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3424
3425	return ata_wait_ready(link, deadline, check_ready);
3426}
3427
3428/**
3429 *	sata_link_debounce - debounce SATA phy status
3430 *	@link: ATA link to debounce SATA phy status for
3431 *	@params: timing parameters { interval, duratinon, timeout } in msec
3432 *	@deadline: deadline jiffies for the operation
3433 *
3434 *	Make sure SStatus of @link reaches stable state, determined by
3435 *	holding the same value where DET is not 1 for @duration polled
3436 *	every @interval, before @timeout.  Timeout constraints the
3437 *	beginning of the stable state.  Because DET gets stuck at 1 on
3438 *	some controllers after hot unplugging, this functions waits
3439 *	until timeout then returns 0 if DET is stable at 1.
3440 *
3441 *	@timeout is further limited by @deadline.  The sooner of the
3442 *	two is used.
3443 *
3444 *	LOCKING:
3445 *	Kernel thread context (may sleep)
3446 *
3447 *	RETURNS:
3448 *	0 on success, -errno on failure.
3449 */
3450int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3451		       unsigned long deadline)
3452{
3453	unsigned long interval = params[0];
3454	unsigned long duration = params[1];
3455	unsigned long last_jiffies, t;
3456	u32 last, cur;
3457	int rc;
3458
3459	t = ata_deadline(jiffies, params[2]);
3460	if (time_before(t, deadline))
3461		deadline = t;
3462
3463	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3464		return rc;
3465	cur &= 0xf;
3466
3467	last = cur;
3468	last_jiffies = jiffies;
3469
3470	while (1) {
3471		ata_msleep(link->ap, interval);
3472		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3473			return rc;
3474		cur &= 0xf;
3475
3476		/* DET stable? */
3477		if (cur == last) {
3478			if (cur == 1 && time_before(jiffies, deadline))
3479				continue;
3480			if (time_after(jiffies,
3481				       ata_deadline(last_jiffies, duration)))
3482				return 0;
3483			continue;
3484		}
3485
3486		/* unstable, start over */
3487		last = cur;
3488		last_jiffies = jiffies;
3489
3490		/* Check deadline.  If debouncing failed, return
3491		 * -EPIPE to tell upper layer to lower link speed.
3492		 */
3493		if (time_after(jiffies, deadline))
3494			return -EPIPE;
3495	}
3496}
3497
3498/**
3499 *	sata_link_resume - resume SATA link
3500 *	@link: ATA link to resume SATA
3501 *	@params: timing parameters { interval, duratinon, timeout } in msec
3502 *	@deadline: deadline jiffies for the operation
3503 *
3504 *	Resume SATA phy @link and debounce it.
3505 *
3506 *	LOCKING:
3507 *	Kernel thread context (may sleep)
3508 *
3509 *	RETURNS:
3510 *	0 on success, -errno on failure.
3511 */
3512int sata_link_resume(struct ata_link *link, const unsigned long *params,
3513		     unsigned long deadline)
3514{
3515	int tries = ATA_LINK_RESUME_TRIES;
3516	u32 scontrol, serror;
3517	int rc;
3518
3519	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3520		return rc;
3521
3522	/*
3523	 * Writes to SControl sometimes get ignored under certain
3524	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3525	 * cleared.
3526	 */
3527	do {
3528		scontrol = (scontrol & 0x0f0) | 0x300;
3529		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530			return rc;
3531		/*
3532		 * Some PHYs react badly if SStatus is pounded
3533		 * immediately after resuming.  Delay 200ms before
3534		 * debouncing.
3535		 */
3536		ata_msleep(link->ap, 200);
3537
3538		/* is SControl restored correctly? */
3539		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3540			return rc;
3541	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3542
3543	if ((scontrol & 0xf0f) != 0x300) {
3544		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3545			     scontrol);
3546		return 0;
3547	}
3548
3549	if (tries < ATA_LINK_RESUME_TRIES)
3550		ata_link_warn(link, "link resume succeeded after %d retries\n",
3551			      ATA_LINK_RESUME_TRIES - tries);
3552
3553	if ((rc = sata_link_debounce(link, params, deadline)))
3554		return rc;
3555
3556	/* clear SError, some PHYs require this even for SRST to work */
3557	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3558		rc = sata_scr_write(link, SCR_ERROR, serror);
3559
3560	return rc != -EINVAL ? rc : 0;
3561}
3562
3563/**
3564 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3565 *	@link: ATA link to manipulate SControl for
3566 *	@policy: LPM policy to configure
3567 *	@spm_wakeup: initiate LPM transition to active state
3568 *
3569 *	Manipulate the IPM field of the SControl register of @link
3570 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3571 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3572 *	the link.  This function also clears PHYRDY_CHG before
3573 *	returning.
3574 *
3575 *	LOCKING:
3576 *	EH context.
3577 *
3578 *	RETURNS:
3579 *	0 on succes, -errno otherwise.
3580 */
3581int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3582		      bool spm_wakeup)
3583{
3584	struct ata_eh_context *ehc = &link->eh_context;
3585	bool woken_up = false;
3586	u32 scontrol;
3587	int rc;
3588
3589	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3590	if (rc)
3591		return rc;
3592
3593	switch (policy) {
3594	case ATA_LPM_MAX_POWER:
3595		/* disable all LPM transitions */
3596		scontrol |= (0x3 << 8);
3597		/* initiate transition to active state */
3598		if (spm_wakeup) {
3599			scontrol |= (0x4 << 12);
3600			woken_up = true;
3601		}
3602		break;
3603	case ATA_LPM_MED_POWER:
3604		/* allow LPM to PARTIAL */
3605		scontrol &= ~(0x1 << 8);
3606		scontrol |= (0x2 << 8);
3607		break;
3608	case ATA_LPM_MIN_POWER:
3609		if (ata_link_nr_enabled(link) > 0)
3610			/* no restrictions on LPM transitions */
3611			scontrol &= ~(0x3 << 8);
3612		else {
3613			/* empty port, power off */
3614			scontrol &= ~0xf;
3615			scontrol |= (0x1 << 2);
3616		}
3617		break;
3618	default:
3619		WARN_ON(1);
3620	}
3621
3622	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3623	if (rc)
3624		return rc;
3625
3626	/* give the link time to transit out of LPM state */
3627	if (woken_up)
3628		msleep(10);
3629
3630	/* clear PHYRDY_CHG from SError */
3631	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3632	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3633}
3634
3635/**
3636 *	ata_std_prereset - prepare for reset
3637 *	@link: ATA link to be reset
3638 *	@deadline: deadline jiffies for the operation
3639 *
3640 *	@link is about to be reset.  Initialize it.  Failure from
3641 *	prereset makes libata abort whole reset sequence and give up
3642 *	that port, so prereset should be best-effort.  It does its
3643 *	best to prepare for reset sequence but if things go wrong, it
3644 *	should just whine, not fail.
3645 *
3646 *	LOCKING:
3647 *	Kernel thread context (may sleep)
3648 *
3649 *	RETURNS:
3650 *	0 on success, -errno otherwise.
3651 */
3652int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653{
3654	struct ata_port *ap = link->ap;
3655	struct ata_eh_context *ehc = &link->eh_context;
3656	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657	int rc;
3658
3659	/* if we're about to do hardreset, nothing more to do */
3660	if (ehc->i.action & ATA_EH_HARDRESET)
3661		return 0;
3662
3663	/* if SATA, resume link */
3664	if (ap->flags & ATA_FLAG_SATA) {
3665		rc = sata_link_resume(link, timing, deadline);
3666		/* whine about phy resume failure but proceed */
3667		if (rc && rc != -EOPNOTSUPP)
3668			ata_link_warn(link,
3669				      "failed to resume link for reset (errno=%d)\n",
3670				      rc);
3671	}
3672
3673	/* no point in trying softreset on offline link */
3674	if (ata_phys_link_offline(link))
3675		ehc->i.action &= ~ATA_EH_SOFTRESET;
3676
3677	return 0;
3678}
3679
3680/**
3681 *	sata_link_hardreset - reset link via SATA phy reset
3682 *	@link: link to reset
3683 *	@timing: timing parameters { interval, duratinon, timeout } in msec
3684 *	@deadline: deadline jiffies for the operation
3685 *	@online: optional out parameter indicating link onlineness
3686 *	@check_ready: optional callback to check link readiness
3687 *
3688 *	SATA phy-reset @link using DET bits of SControl register.
3689 *	After hardreset, link readiness is waited upon using
3690 *	ata_wait_ready() if @check_ready is specified.  LLDs are
3691 *	allowed to not specify @check_ready and wait itself after this
3692 *	function returns.  Device classification is LLD's
3693 *	responsibility.
3694 *
3695 *	*@online is set to one iff reset succeeded and @link is online
3696 *	after reset.
3697 *
3698 *	LOCKING:
3699 *	Kernel thread context (may sleep)
3700 *
3701 *	RETURNS:
3702 *	0 on success, -errno otherwise.
3703 */
3704int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705			unsigned long deadline,
3706			bool *online, int (*check_ready)(struct ata_link *))
3707{
3708	u32 scontrol;
3709	int rc;
3710
3711	DPRINTK("ENTER\n");
3712
3713	if (online)
3714		*online = false;
3715
3716	if (sata_set_spd_needed(link)) {
3717		/* SATA spec says nothing about how to reconfigure
3718		 * spd.  To be on the safe side, turn off phy during
3719		 * reconfiguration.  This works for at least ICH7 AHCI
3720		 * and Sil3124.
3721		 */
3722		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723			goto out;
3724
3725		scontrol = (scontrol & 0x0f0) | 0x304;
3726
3727		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728			goto out;
3729
3730		sata_set_spd(link);
3731	}
3732
3733	/* issue phy wake/reset */
3734	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735		goto out;
3736
3737	scontrol = (scontrol & 0x0f0) | 0x301;
3738
3739	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740		goto out;
3741
3742	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743	 * 10.4.2 says at least 1 ms.
3744	 */
3745	ata_msleep(link->ap, 1);
3746
3747	/* bring link back */
3748	rc = sata_link_resume(link, timing, deadline);
3749	if (rc)
3750		goto out;
3751	/* if link is offline nothing more to do */
3752	if (ata_phys_link_offline(link))
3753		goto out;
3754
3755	/* Link is online.  From this point, -ENODEV too is an error. */
3756	if (online)
3757		*online = true;
3758
3759	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760		/* If PMP is supported, we have to do follow-up SRST.
3761		 * Some PMPs don't send D2H Reg FIS after hardreset if
3762		 * the first port is empty.  Wait only for
3763		 * ATA_TMOUT_PMP_SRST_WAIT.
3764		 */
3765		if (check_ready) {
3766			unsigned long pmp_deadline;
3767
3768			pmp_deadline = ata_deadline(jiffies,
3769						    ATA_TMOUT_PMP_SRST_WAIT);
3770			if (time_after(pmp_deadline, deadline))
3771				pmp_deadline = deadline;
3772			ata_wait_ready(link, pmp_deadline, check_ready);
3773		}
3774		rc = -EAGAIN;
3775		goto out;
3776	}
3777
3778	rc = 0;
3779	if (check_ready)
3780		rc = ata_wait_ready(link, deadline, check_ready);
3781 out:
3782	if (rc && rc != -EAGAIN) {
3783		/* online is set iff link is online && reset succeeded */
3784		if (online)
3785			*online = false;
3786		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3787	}
3788	DPRINTK("EXIT, rc=%d\n", rc);
3789	return rc;
3790}
3791
3792/**
3793 *	sata_std_hardreset - COMRESET w/o waiting or classification
3794 *	@link: link to reset
3795 *	@class: resulting class of attached device
3796 *	@deadline: deadline jiffies for the operation
3797 *
3798 *	Standard SATA COMRESET w/o waiting or classification.
3799 *
3800 *	LOCKING:
3801 *	Kernel thread context (may sleep)
3802 *
3803 *	RETURNS:
3804 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3805 */
3806int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807		       unsigned long deadline)
3808{
3809	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810	bool online;
3811	int rc;
3812
3813	/* do hardreset */
3814	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815	return online ? -EAGAIN : rc;
3816}
3817
3818/**
3819 *	ata_std_postreset - standard postreset callback
3820 *	@link: the target ata_link
3821 *	@classes: classes of attached devices
3822 *
3823 *	This function is invoked after a successful reset.  Note that
3824 *	the device might have been reset more than once using
3825 *	different reset methods before postreset is invoked.
3826 *
3827 *	LOCKING:
3828 *	Kernel thread context (may sleep)
3829 */
3830void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831{
3832	u32 serror;
3833
3834	DPRINTK("ENTER\n");
3835
3836	/* reset complete, clear SError */
3837	if (!sata_scr_read(link, SCR_ERROR, &serror))
3838		sata_scr_write(link, SCR_ERROR, serror);
3839
3840	/* print link status */
3841	sata_print_link_status(link);
3842
3843	DPRINTK("EXIT\n");
3844}
3845
3846/**
3847 *	ata_dev_same_device - Determine whether new ID matches configured device
3848 *	@dev: device to compare against
3849 *	@new_class: class of the new device
3850 *	@new_id: IDENTIFY page of the new device
3851 *
3852 *	Compare @new_class and @new_id against @dev and determine
3853 *	whether @dev is the device indicated by @new_class and
3854 *	@new_id.
3855 *
3856 *	LOCKING:
3857 *	None.
3858 *
3859 *	RETURNS:
3860 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3861 */
3862static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863			       const u16 *new_id)
3864{
3865	const u16 *old_id = dev->id;
3866	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868
3869	if (dev->class != new_class) {
3870		ata_dev_info(dev, "class mismatch %d != %d\n",
3871			     dev->class, new_class);
3872		return 0;
3873	}
3874
3875	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879
3880	if (strcmp(model[0], model[1])) {
3881		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3882			     model[0], model[1]);
3883		return 0;
3884	}
3885
3886	if (strcmp(serial[0], serial[1])) {
3887		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3888			     serial[0], serial[1]);
3889		return 0;
3890	}
3891
3892	return 1;
3893}
3894
3895/**
3896 *	ata_dev_reread_id - Re-read IDENTIFY data
3897 *	@dev: target ATA device
3898 *	@readid_flags: read ID flags
3899 *
3900 *	Re-read IDENTIFY page and make sure @dev is still attached to
3901 *	the port.
3902 *
3903 *	LOCKING:
3904 *	Kernel thread context (may sleep)
3905 *
3906 *	RETURNS:
3907 *	0 on success, negative errno otherwise
3908 */
3909int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910{
3911	unsigned int class = dev->class;
3912	u16 *id = (void *)dev->link->ap->sector_buf;
3913	int rc;
3914
3915	/* read ID data */
3916	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917	if (rc)
3918		return rc;
3919
3920	/* is the device still there? */
3921	if (!ata_dev_same_device(dev, class, id))
3922		return -ENODEV;
3923
3924	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925	return 0;
3926}
3927
3928/**
3929 *	ata_dev_revalidate - Revalidate ATA device
3930 *	@dev: device to revalidate
3931 *	@new_class: new class code
3932 *	@readid_flags: read ID flags
3933 *
3934 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3935 *	port and reconfigure it according to the new IDENTIFY page.
3936 *
3937 *	LOCKING:
3938 *	Kernel thread context (may sleep)
3939 *
3940 *	RETURNS:
3941 *	0 on success, negative errno otherwise
3942 */
3943int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944		       unsigned int readid_flags)
3945{
3946	u64 n_sectors = dev->n_sectors;
3947	u64 n_native_sectors = dev->n_native_sectors;
3948	int rc;
3949
3950	if (!ata_dev_enabled(dev))
3951		return -ENODEV;
3952
3953	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3954	if (ata_class_enabled(new_class) &&
3955	    new_class != ATA_DEV_ATA &&
3956	    new_class != ATA_DEV_ATAPI &&
3957	    new_class != ATA_DEV_SEMB) {
3958		ata_dev_info(dev, "class mismatch %u != %u\n",
3959			     dev->class, new_class);
3960		rc = -ENODEV;
3961		goto fail;
3962	}
3963
3964	/* re-read ID */
3965	rc = ata_dev_reread_id(dev, readid_flags);
3966	if (rc)
3967		goto fail;
3968
3969	/* configure device according to the new ID */
3970	rc = ata_dev_configure(dev);
3971	if (rc)
3972		goto fail;
3973
3974	/* verify n_sectors hasn't changed */
3975	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3976	    dev->n_sectors == n_sectors)
3977		return 0;
3978
3979	/* n_sectors has changed */
3980	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3981		     (unsigned long long)n_sectors,
3982		     (unsigned long long)dev->n_sectors);
3983
3984	/*
3985	 * Something could have caused HPA to be unlocked
3986	 * involuntarily.  If n_native_sectors hasn't changed and the
3987	 * new size matches it, keep the device.
3988	 */
3989	if (dev->n_native_sectors == n_native_sectors &&
3990	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3991		ata_dev_warn(dev,
3992			     "new n_sectors matches native, probably "
3993			     "late HPA unlock, n_sectors updated\n");
3994		/* use the larger n_sectors */
3995		return 0;
3996	}
3997
3998	/*
3999	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4000	 * unlocking HPA in those cases.
4001	 *
4002	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4003	 */
4004	if (dev->n_native_sectors == n_native_sectors &&
4005	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4006	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4007		ata_dev_warn(dev,
4008			     "old n_sectors matches native, probably "
4009			     "late HPA lock, will try to unlock HPA\n");
4010		/* try unlocking HPA */
4011		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4012		rc = -EIO;
4013	} else
4014		rc = -ENODEV;
4015
4016	/* restore original n_[native_]sectors and fail */
4017	dev->n_native_sectors = n_native_sectors;
4018	dev->n_sectors = n_sectors;
4019 fail:
4020	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4021	return rc;
4022}
4023
4024struct ata_blacklist_entry {
4025	const char *model_num;
4026	const char *model_rev;
4027	unsigned long horkage;
4028};
4029
4030static const struct ata_blacklist_entry ata_device_blacklist [] = {
4031	/* Devices with DMA related problems under Linux */
4032	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4033	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4034	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4035	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4036	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4037	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4038	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4039	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4040	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4041	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4042	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4043	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4044	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4045	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4046	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4047	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4048	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4049	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4050	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4051	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4052	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4053	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4054	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4055	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4056	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4057	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4058	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4059	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4060	{ "2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4061	/* Odd clown on sil3726/4726 PMPs */
4062	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4063
4064	/* Weird ATAPI devices */
4065	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4066	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
 
 
4067
4068	/* Devices we expect to fail diagnostics */
4069
4070	/* Devices where NCQ should be avoided */
4071	/* NCQ is slow */
4072	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4073	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4074	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4075	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4076	/* NCQ is broken */
4077	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4078	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4079	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4080	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4081	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4082
4083	/* Seagate NCQ + FLUSH CACHE firmware bug */
4084	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4085						ATA_HORKAGE_FIRMWARE_WARN },
4086
4087	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4088						ATA_HORKAGE_FIRMWARE_WARN },
4089
4090	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4091						ATA_HORKAGE_FIRMWARE_WARN },
4092
4093	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4094						ATA_HORKAGE_FIRMWARE_WARN },
4095
 
 
 
 
4096	/* Blacklist entries taken from Silicon Image 3124/3132
4097	   Windows driver .inf file - also several Linux problem reports */
4098	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4099	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4100	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4101
4102	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4104
4105	/* devices which puke on READ_NATIVE_MAX */
4106	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4107	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4110
4111	/* this one allows HPA unlocking but fails IOs on the area */
4112	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4113
4114	/* Devices which report 1 sector over size HPA */
4115	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4116	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4117	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4118
4119	/* Devices which get the IVB wrong */
4120	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121	/* Maybe we should just blacklist TSSTcorp... */
4122	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4123
4124	/* Devices that do not need bridging limits applied */
4125	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
 
4126
4127	/* Devices which aren't very happy with higher link speeds */
4128	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4129	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4130
4131	/*
4132	 * Devices which choke on SETXFER.  Applies only if both the
4133	 * device and controller are SATA.
4134	 */
4135	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4136	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4137	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4138	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4139	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4141	/* End Marker */
4142	{ }
4143};
4144
4145/**
4146 *	glob_match - match a text string against a glob-style pattern
4147 *	@text: the string to be examined
4148 *	@pattern: the glob-style pattern to be matched against
4149 *
4150 *	Either/both of text and pattern can be empty strings.
4151 *
4152 *	Match text against a glob-style pattern, with wildcards and simple sets:
4153 *
4154 *		?	matches any single character.
4155 *		*	matches any run of characters.
4156 *		[xyz]	matches a single character from the set: x, y, or z.
4157 *		[a-d]	matches a single character from the range: a, b, c, or d.
4158 *		[a-d0-9] matches a single character from either range.
4159 *
4160 *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4161 *	Behaviour with malformed patterns is undefined, though generally reasonable.
4162 *
4163 *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4164 *
4165 *	This function uses one level of recursion per '*' in pattern.
4166 *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4167 *	this will not cause stack problems for any reasonable use here.
4168 *
4169 *	RETURNS:
4170 *	0 on match, 1 otherwise.
4171 */
4172static int glob_match (const char *text, const char *pattern)
4173{
4174	do {
4175		/* Match single character or a '?' wildcard */
4176		if (*text == *pattern || *pattern == '?') {
4177			if (!*pattern++)
4178				return 0;  /* End of both strings: match */
4179		} else {
4180			/* Match single char against a '[' bracketed ']' pattern set */
4181			if (!*text || *pattern != '[')
4182				break;  /* Not a pattern set */
4183			while (*++pattern && *pattern != ']' && *text != *pattern) {
4184				if (*pattern == '-' && *(pattern - 1) != '[')
4185					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4186						++pattern;
4187						break;
4188					}
4189			}
4190			if (!*pattern || *pattern == ']')
4191				return 1;  /* No match */
4192			while (*pattern && *pattern++ != ']');
4193		}
4194	} while (*++text && *pattern);
4195
4196	/* Match any run of chars against a '*' wildcard */
4197	if (*pattern == '*') {
4198		if (!*++pattern)
4199			return 0;  /* Match: avoid recursion at end of pattern */
4200		/* Loop to handle additional pattern chars after the wildcard */
4201		while (*text) {
4202			if (glob_match(text, pattern) == 0)
4203				return 0;  /* Remainder matched */
4204			++text;  /* Absorb (match) this char and try again */
4205		}
4206	}
4207	if (!*text && !*pattern)
4208		return 0;  /* End of both strings: match */
4209	return 1;  /* No match */
4210}
4211
4212static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4213{
4214	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4215	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4216	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4217
4218	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4219	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4220
4221	while (ad->model_num) {
4222		if (!glob_match(model_num, ad->model_num)) {
4223			if (ad->model_rev == NULL)
4224				return ad->horkage;
4225			if (!glob_match(model_rev, ad->model_rev))
4226				return ad->horkage;
4227		}
4228		ad++;
4229	}
4230	return 0;
4231}
4232
4233static int ata_dma_blacklisted(const struct ata_device *dev)
4234{
4235	/* We don't support polling DMA.
4236	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4237	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4238	 */
4239	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4240	    (dev->flags & ATA_DFLAG_CDB_INTR))
4241		return 1;
4242	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4243}
4244
4245/**
4246 *	ata_is_40wire		-	check drive side detection
4247 *	@dev: device
4248 *
4249 *	Perform drive side detection decoding, allowing for device vendors
4250 *	who can't follow the documentation.
4251 */
4252
4253static int ata_is_40wire(struct ata_device *dev)
4254{
4255	if (dev->horkage & ATA_HORKAGE_IVB)
4256		return ata_drive_40wire_relaxed(dev->id);
4257	return ata_drive_40wire(dev->id);
4258}
4259
4260/**
4261 *	cable_is_40wire		-	40/80/SATA decider
4262 *	@ap: port to consider
4263 *
4264 *	This function encapsulates the policy for speed management
4265 *	in one place. At the moment we don't cache the result but
4266 *	there is a good case for setting ap->cbl to the result when
4267 *	we are called with unknown cables (and figuring out if it
4268 *	impacts hotplug at all).
4269 *
4270 *	Return 1 if the cable appears to be 40 wire.
4271 */
4272
4273static int cable_is_40wire(struct ata_port *ap)
4274{
4275	struct ata_link *link;
4276	struct ata_device *dev;
4277
4278	/* If the controller thinks we are 40 wire, we are. */
4279	if (ap->cbl == ATA_CBL_PATA40)
4280		return 1;
4281
4282	/* If the controller thinks we are 80 wire, we are. */
4283	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4284		return 0;
4285
4286	/* If the system is known to be 40 wire short cable (eg
4287	 * laptop), then we allow 80 wire modes even if the drive
4288	 * isn't sure.
4289	 */
4290	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4291		return 0;
4292
4293	/* If the controller doesn't know, we scan.
4294	 *
4295	 * Note: We look for all 40 wire detects at this point.  Any
4296	 *       80 wire detect is taken to be 80 wire cable because
4297	 * - in many setups only the one drive (slave if present) will
4298	 *   give a valid detect
4299	 * - if you have a non detect capable drive you don't want it
4300	 *   to colour the choice
4301	 */
4302	ata_for_each_link(link, ap, EDGE) {
4303		ata_for_each_dev(dev, link, ENABLED) {
4304			if (!ata_is_40wire(dev))
4305				return 0;
4306		}
4307	}
4308	return 1;
4309}
4310
4311/**
4312 *	ata_dev_xfermask - Compute supported xfermask of the given device
4313 *	@dev: Device to compute xfermask for
4314 *
4315 *	Compute supported xfermask of @dev and store it in
4316 *	dev->*_mask.  This function is responsible for applying all
4317 *	known limits including host controller limits, device
4318 *	blacklist, etc...
4319 *
4320 *	LOCKING:
4321 *	None.
4322 */
4323static void ata_dev_xfermask(struct ata_device *dev)
4324{
4325	struct ata_link *link = dev->link;
4326	struct ata_port *ap = link->ap;
4327	struct ata_host *host = ap->host;
4328	unsigned long xfer_mask;
4329
4330	/* controller modes available */
4331	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4332				      ap->mwdma_mask, ap->udma_mask);
4333
4334	/* drive modes available */
4335	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4336				       dev->mwdma_mask, dev->udma_mask);
4337	xfer_mask &= ata_id_xfermask(dev->id);
4338
4339	/*
4340	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4341	 *	cable
4342	 */
4343	if (ata_dev_pair(dev)) {
4344		/* No PIO5 or PIO6 */
4345		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4346		/* No MWDMA3 or MWDMA 4 */
4347		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4348	}
4349
4350	if (ata_dma_blacklisted(dev)) {
4351		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4352		ata_dev_warn(dev,
4353			     "device is on DMA blacklist, disabling DMA\n");
4354	}
4355
4356	if ((host->flags & ATA_HOST_SIMPLEX) &&
4357	    host->simplex_claimed && host->simplex_claimed != ap) {
4358		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4359		ata_dev_warn(dev,
4360			     "simplex DMA is claimed by other device, disabling DMA\n");
4361	}
4362
4363	if (ap->flags & ATA_FLAG_NO_IORDY)
4364		xfer_mask &= ata_pio_mask_no_iordy(dev);
4365
4366	if (ap->ops->mode_filter)
4367		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4368
4369	/* Apply cable rule here.  Don't apply it early because when
4370	 * we handle hot plug the cable type can itself change.
4371	 * Check this last so that we know if the transfer rate was
4372	 * solely limited by the cable.
4373	 * Unknown or 80 wire cables reported host side are checked
4374	 * drive side as well. Cases where we know a 40wire cable
4375	 * is used safely for 80 are not checked here.
4376	 */
4377	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4378		/* UDMA/44 or higher would be available */
4379		if (cable_is_40wire(ap)) {
4380			ata_dev_warn(dev,
4381				     "limited to UDMA/33 due to 40-wire cable\n");
4382			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4383		}
4384
4385	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4386			    &dev->mwdma_mask, &dev->udma_mask);
4387}
4388
4389/**
4390 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4391 *	@dev: Device to which command will be sent
4392 *
4393 *	Issue SET FEATURES - XFER MODE command to device @dev
4394 *	on port @ap.
4395 *
4396 *	LOCKING:
4397 *	PCI/etc. bus probe sem.
4398 *
4399 *	RETURNS:
4400 *	0 on success, AC_ERR_* mask otherwise.
4401 */
4402
4403static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4404{
4405	struct ata_taskfile tf;
4406	unsigned int err_mask;
4407
4408	/* set up set-features taskfile */
4409	DPRINTK("set features - xfer mode\n");
4410
4411	/* Some controllers and ATAPI devices show flaky interrupt
4412	 * behavior after setting xfer mode.  Use polling instead.
4413	 */
4414	ata_tf_init(dev, &tf);
4415	tf.command = ATA_CMD_SET_FEATURES;
4416	tf.feature = SETFEATURES_XFER;
4417	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4418	tf.protocol = ATA_PROT_NODATA;
4419	/* If we are using IORDY we must send the mode setting command */
4420	if (ata_pio_need_iordy(dev))
4421		tf.nsect = dev->xfer_mode;
4422	/* If the device has IORDY and the controller does not - turn it off */
4423 	else if (ata_id_has_iordy(dev->id))
4424		tf.nsect = 0x01;
4425	else /* In the ancient relic department - skip all of this */
4426		return 0;
4427
4428	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4429
4430	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4431	return err_mask;
4432}
4433
4434/**
4435 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4436 *	@dev: Device to which command will be sent
4437 *	@enable: Whether to enable or disable the feature
4438 *	@feature: The sector count represents the feature to set
4439 *
4440 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4441 *	on port @ap with sector count
4442 *
4443 *	LOCKING:
4444 *	PCI/etc. bus probe sem.
4445 *
4446 *	RETURNS:
4447 *	0 on success, AC_ERR_* mask otherwise.
4448 */
4449unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4450{
4451	struct ata_taskfile tf;
4452	unsigned int err_mask;
4453
4454	/* set up set-features taskfile */
4455	DPRINTK("set features - SATA features\n");
4456
4457	ata_tf_init(dev, &tf);
4458	tf.command = ATA_CMD_SET_FEATURES;
4459	tf.feature = enable;
4460	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4461	tf.protocol = ATA_PROT_NODATA;
4462	tf.nsect = feature;
4463
4464	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4465
4466	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4467	return err_mask;
4468}
 
4469
4470/**
4471 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4472 *	@dev: Device to which command will be sent
4473 *	@heads: Number of heads (taskfile parameter)
4474 *	@sectors: Number of sectors (taskfile parameter)
4475 *
4476 *	LOCKING:
4477 *	Kernel thread context (may sleep)
4478 *
4479 *	RETURNS:
4480 *	0 on success, AC_ERR_* mask otherwise.
4481 */
4482static unsigned int ata_dev_init_params(struct ata_device *dev,
4483					u16 heads, u16 sectors)
4484{
4485	struct ata_taskfile tf;
4486	unsigned int err_mask;
4487
4488	/* Number of sectors per track 1-255. Number of heads 1-16 */
4489	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4490		return AC_ERR_INVALID;
4491
4492	/* set up init dev params taskfile */
4493	DPRINTK("init dev params \n");
4494
4495	ata_tf_init(dev, &tf);
4496	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4497	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4498	tf.protocol = ATA_PROT_NODATA;
4499	tf.nsect = sectors;
4500	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4501
4502	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4503	/* A clean abort indicates an original or just out of spec drive
4504	   and we should continue as we issue the setup based on the
4505	   drive reported working geometry */
4506	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4507		err_mask = 0;
4508
4509	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4510	return err_mask;
4511}
4512
4513/**
4514 *	ata_sg_clean - Unmap DMA memory associated with command
4515 *	@qc: Command containing DMA memory to be released
4516 *
4517 *	Unmap all mapped DMA memory associated with this command.
4518 *
4519 *	LOCKING:
4520 *	spin_lock_irqsave(host lock)
4521 */
4522void ata_sg_clean(struct ata_queued_cmd *qc)
4523{
4524	struct ata_port *ap = qc->ap;
4525	struct scatterlist *sg = qc->sg;
4526	int dir = qc->dma_dir;
4527
4528	WARN_ON_ONCE(sg == NULL);
4529
4530	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4531
4532	if (qc->n_elem)
4533		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4534
4535	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4536	qc->sg = NULL;
4537}
4538
4539/**
4540 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4541 *	@qc: Metadata associated with taskfile to check
4542 *
4543 *	Allow low-level driver to filter ATA PACKET commands, returning
4544 *	a status indicating whether or not it is OK to use DMA for the
4545 *	supplied PACKET command.
4546 *
4547 *	LOCKING:
4548 *	spin_lock_irqsave(host lock)
4549 *
4550 *	RETURNS: 0 when ATAPI DMA can be used
4551 *               nonzero otherwise
4552 */
4553int atapi_check_dma(struct ata_queued_cmd *qc)
4554{
4555	struct ata_port *ap = qc->ap;
4556
4557	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4558	 * few ATAPI devices choke on such DMA requests.
4559	 */
4560	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4561	    unlikely(qc->nbytes & 15))
4562		return 1;
4563
4564	if (ap->ops->check_atapi_dma)
4565		return ap->ops->check_atapi_dma(qc);
4566
4567	return 0;
4568}
4569
4570/**
4571 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4572 *	@qc: ATA command in question
4573 *
4574 *	Non-NCQ commands cannot run with any other command, NCQ or
4575 *	not.  As upper layer only knows the queue depth, we are
4576 *	responsible for maintaining exclusion.  This function checks
4577 *	whether a new command @qc can be issued.
4578 *
4579 *	LOCKING:
4580 *	spin_lock_irqsave(host lock)
4581 *
4582 *	RETURNS:
4583 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4584 */
4585int ata_std_qc_defer(struct ata_queued_cmd *qc)
4586{
4587	struct ata_link *link = qc->dev->link;
4588
4589	if (qc->tf.protocol == ATA_PROT_NCQ) {
4590		if (!ata_tag_valid(link->active_tag))
4591			return 0;
4592	} else {
4593		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4594			return 0;
4595	}
4596
4597	return ATA_DEFER_LINK;
4598}
4599
4600void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4601
4602/**
4603 *	ata_sg_init - Associate command with scatter-gather table.
4604 *	@qc: Command to be associated
4605 *	@sg: Scatter-gather table.
4606 *	@n_elem: Number of elements in s/g table.
4607 *
4608 *	Initialize the data-related elements of queued_cmd @qc
4609 *	to point to a scatter-gather table @sg, containing @n_elem
4610 *	elements.
4611 *
4612 *	LOCKING:
4613 *	spin_lock_irqsave(host lock)
4614 */
4615void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4616		 unsigned int n_elem)
4617{
4618	qc->sg = sg;
4619	qc->n_elem = n_elem;
4620	qc->cursg = qc->sg;
4621}
4622
4623/**
4624 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4625 *	@qc: Command with scatter-gather table to be mapped.
4626 *
4627 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4628 *
4629 *	LOCKING:
4630 *	spin_lock_irqsave(host lock)
4631 *
4632 *	RETURNS:
4633 *	Zero on success, negative on error.
4634 *
4635 */
4636static int ata_sg_setup(struct ata_queued_cmd *qc)
4637{
4638	struct ata_port *ap = qc->ap;
4639	unsigned int n_elem;
4640
4641	VPRINTK("ENTER, ata%u\n", ap->print_id);
4642
4643	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4644	if (n_elem < 1)
4645		return -1;
4646
4647	DPRINTK("%d sg elements mapped\n", n_elem);
4648	qc->orig_n_elem = qc->n_elem;
4649	qc->n_elem = n_elem;
4650	qc->flags |= ATA_QCFLAG_DMAMAP;
4651
4652	return 0;
4653}
4654
4655/**
4656 *	swap_buf_le16 - swap halves of 16-bit words in place
4657 *	@buf:  Buffer to swap
4658 *	@buf_words:  Number of 16-bit words in buffer.
4659 *
4660 *	Swap halves of 16-bit words if needed to convert from
4661 *	little-endian byte order to native cpu byte order, or
4662 *	vice-versa.
4663 *
4664 *	LOCKING:
4665 *	Inherited from caller.
4666 */
4667void swap_buf_le16(u16 *buf, unsigned int buf_words)
4668{
4669#ifdef __BIG_ENDIAN
4670	unsigned int i;
4671
4672	for (i = 0; i < buf_words; i++)
4673		buf[i] = le16_to_cpu(buf[i]);
4674#endif /* __BIG_ENDIAN */
4675}
4676
4677/**
4678 *	ata_qc_new - Request an available ATA command, for queueing
4679 *	@ap: target port
4680 *
4681 *	LOCKING:
4682 *	None.
4683 */
4684
4685static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4686{
4687	struct ata_queued_cmd *qc = NULL;
4688	unsigned int i;
4689
4690	/* no command while frozen */
4691	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4692		return NULL;
4693
4694	/* the last tag is reserved for internal command. */
4695	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4696		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4697			qc = __ata_qc_from_tag(ap, i);
 
 
 
 
 
 
 
4698			break;
4699		}
4700
4701	if (qc)
4702		qc->tag = i;
4703
4704	return qc;
4705}
4706
4707/**
4708 *	ata_qc_new_init - Request an available ATA command, and initialize it
4709 *	@dev: Device from whom we request an available command structure
4710 *
4711 *	LOCKING:
4712 *	None.
4713 */
4714
4715struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4716{
4717	struct ata_port *ap = dev->link->ap;
4718	struct ata_queued_cmd *qc;
4719
4720	qc = ata_qc_new(ap);
4721	if (qc) {
4722		qc->scsicmd = NULL;
4723		qc->ap = ap;
4724		qc->dev = dev;
4725
4726		ata_qc_reinit(qc);
4727	}
4728
4729	return qc;
4730}
4731
4732/**
4733 *	ata_qc_free - free unused ata_queued_cmd
4734 *	@qc: Command to complete
4735 *
4736 *	Designed to free unused ata_queued_cmd object
4737 *	in case something prevents using it.
4738 *
4739 *	LOCKING:
4740 *	spin_lock_irqsave(host lock)
4741 */
4742void ata_qc_free(struct ata_queued_cmd *qc)
4743{
4744	struct ata_port *ap;
4745	unsigned int tag;
4746
4747	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4748	ap = qc->ap;
4749
4750	qc->flags = 0;
4751	tag = qc->tag;
4752	if (likely(ata_tag_valid(tag))) {
4753		qc->tag = ATA_TAG_POISON;
4754		clear_bit(tag, &ap->qc_allocated);
4755	}
4756}
4757
4758void __ata_qc_complete(struct ata_queued_cmd *qc)
4759{
4760	struct ata_port *ap;
4761	struct ata_link *link;
4762
4763	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4764	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4765	ap = qc->ap;
4766	link = qc->dev->link;
4767
4768	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4769		ata_sg_clean(qc);
4770
4771	/* command should be marked inactive atomically with qc completion */
4772	if (qc->tf.protocol == ATA_PROT_NCQ) {
4773		link->sactive &= ~(1 << qc->tag);
4774		if (!link->sactive)
4775			ap->nr_active_links--;
4776	} else {
4777		link->active_tag = ATA_TAG_POISON;
4778		ap->nr_active_links--;
4779	}
4780
4781	/* clear exclusive status */
4782	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4783		     ap->excl_link == link))
4784		ap->excl_link = NULL;
4785
4786	/* atapi: mark qc as inactive to prevent the interrupt handler
4787	 * from completing the command twice later, before the error handler
4788	 * is called. (when rc != 0 and atapi request sense is needed)
4789	 */
4790	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4791	ap->qc_active &= ~(1 << qc->tag);
4792
4793	/* call completion callback */
4794	qc->complete_fn(qc);
4795}
4796
4797static void fill_result_tf(struct ata_queued_cmd *qc)
4798{
4799	struct ata_port *ap = qc->ap;
4800
4801	qc->result_tf.flags = qc->tf.flags;
4802	ap->ops->qc_fill_rtf(qc);
4803}
4804
4805static void ata_verify_xfer(struct ata_queued_cmd *qc)
4806{
4807	struct ata_device *dev = qc->dev;
4808
4809	if (ata_is_nodata(qc->tf.protocol))
4810		return;
4811
4812	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4813		return;
4814
4815	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4816}
4817
4818/**
4819 *	ata_qc_complete - Complete an active ATA command
4820 *	@qc: Command to complete
4821 *
4822 *	Indicate to the mid and upper layers that an ATA command has
4823 *	completed, with either an ok or not-ok status.
4824 *
4825 *	Refrain from calling this function multiple times when
4826 *	successfully completing multiple NCQ commands.
4827 *	ata_qc_complete_multiple() should be used instead, which will
4828 *	properly update IRQ expect state.
4829 *
4830 *	LOCKING:
4831 *	spin_lock_irqsave(host lock)
4832 */
4833void ata_qc_complete(struct ata_queued_cmd *qc)
4834{
4835	struct ata_port *ap = qc->ap;
4836
4837	/* XXX: New EH and old EH use different mechanisms to
4838	 * synchronize EH with regular execution path.
4839	 *
4840	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4841	 * Normal execution path is responsible for not accessing a
4842	 * failed qc.  libata core enforces the rule by returning NULL
4843	 * from ata_qc_from_tag() for failed qcs.
4844	 *
4845	 * Old EH depends on ata_qc_complete() nullifying completion
4846	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4847	 * not synchronize with interrupt handler.  Only PIO task is
4848	 * taken care of.
4849	 */
4850	if (ap->ops->error_handler) {
4851		struct ata_device *dev = qc->dev;
4852		struct ata_eh_info *ehi = &dev->link->eh_info;
4853
4854		if (unlikely(qc->err_mask))
4855			qc->flags |= ATA_QCFLAG_FAILED;
4856
4857		/*
4858		 * Finish internal commands without any further processing
4859		 * and always with the result TF filled.
4860		 */
4861		if (unlikely(ata_tag_internal(qc->tag))) {
4862			fill_result_tf(qc);
4863			__ata_qc_complete(qc);
4864			return;
4865		}
4866
4867		/*
4868		 * Non-internal qc has failed.  Fill the result TF and
4869		 * summon EH.
4870		 */
4871		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4872			fill_result_tf(qc);
4873			ata_qc_schedule_eh(qc);
4874			return;
4875		}
4876
4877		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4878
4879		/* read result TF if requested */
4880		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4881			fill_result_tf(qc);
4882
4883		/* Some commands need post-processing after successful
4884		 * completion.
4885		 */
4886		switch (qc->tf.command) {
4887		case ATA_CMD_SET_FEATURES:
4888			if (qc->tf.feature != SETFEATURES_WC_ON &&
4889			    qc->tf.feature != SETFEATURES_WC_OFF)
4890				break;
4891			/* fall through */
4892		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4893		case ATA_CMD_SET_MULTI: /* multi_count changed */
4894			/* revalidate device */
4895			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4896			ata_port_schedule_eh(ap);
4897			break;
4898
4899		case ATA_CMD_SLEEP:
4900			dev->flags |= ATA_DFLAG_SLEEPING;
4901			break;
4902		}
4903
4904		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4905			ata_verify_xfer(qc);
4906
4907		__ata_qc_complete(qc);
4908	} else {
4909		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4910			return;
4911
4912		/* read result TF if failed or requested */
4913		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4914			fill_result_tf(qc);
4915
4916		__ata_qc_complete(qc);
4917	}
4918}
4919
4920/**
4921 *	ata_qc_complete_multiple - Complete multiple qcs successfully
4922 *	@ap: port in question
4923 *	@qc_active: new qc_active mask
4924 *
4925 *	Complete in-flight commands.  This functions is meant to be
4926 *	called from low-level driver's interrupt routine to complete
4927 *	requests normally.  ap->qc_active and @qc_active is compared
4928 *	and commands are completed accordingly.
4929 *
4930 *	Always use this function when completing multiple NCQ commands
4931 *	from IRQ handlers instead of calling ata_qc_complete()
4932 *	multiple times to keep IRQ expect status properly in sync.
4933 *
4934 *	LOCKING:
4935 *	spin_lock_irqsave(host lock)
4936 *
4937 *	RETURNS:
4938 *	Number of completed commands on success, -errno otherwise.
4939 */
4940int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4941{
4942	int nr_done = 0;
4943	u32 done_mask;
4944
4945	done_mask = ap->qc_active ^ qc_active;
4946
4947	if (unlikely(done_mask & qc_active)) {
4948		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4949			     ap->qc_active, qc_active);
4950		return -EINVAL;
4951	}
4952
4953	while (done_mask) {
4954		struct ata_queued_cmd *qc;
4955		unsigned int tag = __ffs(done_mask);
4956
4957		qc = ata_qc_from_tag(ap, tag);
4958		if (qc) {
4959			ata_qc_complete(qc);
4960			nr_done++;
4961		}
4962		done_mask &= ~(1 << tag);
4963	}
4964
4965	return nr_done;
4966}
4967
4968/**
4969 *	ata_qc_issue - issue taskfile to device
4970 *	@qc: command to issue to device
4971 *
4972 *	Prepare an ATA command to submission to device.
4973 *	This includes mapping the data into a DMA-able
4974 *	area, filling in the S/G table, and finally
4975 *	writing the taskfile to hardware, starting the command.
4976 *
4977 *	LOCKING:
4978 *	spin_lock_irqsave(host lock)
4979 */
4980void ata_qc_issue(struct ata_queued_cmd *qc)
4981{
4982	struct ata_port *ap = qc->ap;
4983	struct ata_link *link = qc->dev->link;
4984	u8 prot = qc->tf.protocol;
4985
4986	/* Make sure only one non-NCQ command is outstanding.  The
4987	 * check is skipped for old EH because it reuses active qc to
4988	 * request ATAPI sense.
4989	 */
4990	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4991
4992	if (ata_is_ncq(prot)) {
4993		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4994
4995		if (!link->sactive)
4996			ap->nr_active_links++;
4997		link->sactive |= 1 << qc->tag;
4998	} else {
4999		WARN_ON_ONCE(link->sactive);
5000
5001		ap->nr_active_links++;
5002		link->active_tag = qc->tag;
5003	}
5004
5005	qc->flags |= ATA_QCFLAG_ACTIVE;
5006	ap->qc_active |= 1 << qc->tag;
5007
5008	/*
5009	 * We guarantee to LLDs that they will have at least one
5010	 * non-zero sg if the command is a data command.
5011	 */
5012	if (WARN_ON_ONCE(ata_is_data(prot) &&
5013			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5014		goto sys_err;
5015
5016	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5017				 (ap->flags & ATA_FLAG_PIO_DMA)))
5018		if (ata_sg_setup(qc))
5019			goto sys_err;
5020
5021	/* if device is sleeping, schedule reset and abort the link */
5022	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5023		link->eh_info.action |= ATA_EH_RESET;
5024		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5025		ata_link_abort(link);
5026		return;
5027	}
5028
5029	ap->ops->qc_prep(qc);
5030
5031	qc->err_mask |= ap->ops->qc_issue(qc);
5032	if (unlikely(qc->err_mask))
5033		goto err;
5034	return;
5035
5036sys_err:
5037	qc->err_mask |= AC_ERR_SYSTEM;
5038err:
5039	ata_qc_complete(qc);
5040}
5041
5042/**
5043 *	sata_scr_valid - test whether SCRs are accessible
5044 *	@link: ATA link to test SCR accessibility for
5045 *
5046 *	Test whether SCRs are accessible for @link.
5047 *
5048 *	LOCKING:
5049 *	None.
5050 *
5051 *	RETURNS:
5052 *	1 if SCRs are accessible, 0 otherwise.
5053 */
5054int sata_scr_valid(struct ata_link *link)
5055{
5056	struct ata_port *ap = link->ap;
5057
5058	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5059}
5060
5061/**
5062 *	sata_scr_read - read SCR register of the specified port
5063 *	@link: ATA link to read SCR for
5064 *	@reg: SCR to read
5065 *	@val: Place to store read value
5066 *
5067 *	Read SCR register @reg of @link into *@val.  This function is
5068 *	guaranteed to succeed if @link is ap->link, the cable type of
5069 *	the port is SATA and the port implements ->scr_read.
5070 *
5071 *	LOCKING:
5072 *	None if @link is ap->link.  Kernel thread context otherwise.
5073 *
5074 *	RETURNS:
5075 *	0 on success, negative errno on failure.
5076 */
5077int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5078{
5079	if (ata_is_host_link(link)) {
5080		if (sata_scr_valid(link))
5081			return link->ap->ops->scr_read(link, reg, val);
5082		return -EOPNOTSUPP;
5083	}
5084
5085	return sata_pmp_scr_read(link, reg, val);
5086}
5087
5088/**
5089 *	sata_scr_write - write SCR register of the specified port
5090 *	@link: ATA link to write SCR for
5091 *	@reg: SCR to write
5092 *	@val: value to write
5093 *
5094 *	Write @val to SCR register @reg of @link.  This function is
5095 *	guaranteed to succeed if @link is ap->link, the cable type of
5096 *	the port is SATA and the port implements ->scr_read.
5097 *
5098 *	LOCKING:
5099 *	None if @link is ap->link.  Kernel thread context otherwise.
5100 *
5101 *	RETURNS:
5102 *	0 on success, negative errno on failure.
5103 */
5104int sata_scr_write(struct ata_link *link, int reg, u32 val)
5105{
5106	if (ata_is_host_link(link)) {
5107		if (sata_scr_valid(link))
5108			return link->ap->ops->scr_write(link, reg, val);
5109		return -EOPNOTSUPP;
5110	}
5111
5112	return sata_pmp_scr_write(link, reg, val);
5113}
5114
5115/**
5116 *	sata_scr_write_flush - write SCR register of the specified port and flush
5117 *	@link: ATA link to write SCR for
5118 *	@reg: SCR to write
5119 *	@val: value to write
5120 *
5121 *	This function is identical to sata_scr_write() except that this
5122 *	function performs flush after writing to the register.
5123 *
5124 *	LOCKING:
5125 *	None if @link is ap->link.  Kernel thread context otherwise.
5126 *
5127 *	RETURNS:
5128 *	0 on success, negative errno on failure.
5129 */
5130int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5131{
5132	if (ata_is_host_link(link)) {
5133		int rc;
5134
5135		if (sata_scr_valid(link)) {
5136			rc = link->ap->ops->scr_write(link, reg, val);
5137			if (rc == 0)
5138				rc = link->ap->ops->scr_read(link, reg, &val);
5139			return rc;
5140		}
5141		return -EOPNOTSUPP;
5142	}
5143
5144	return sata_pmp_scr_write(link, reg, val);
5145}
5146
5147/**
5148 *	ata_phys_link_online - test whether the given link is online
5149 *	@link: ATA link to test
5150 *
5151 *	Test whether @link is online.  Note that this function returns
5152 *	0 if online status of @link cannot be obtained, so
5153 *	ata_link_online(link) != !ata_link_offline(link).
5154 *
5155 *	LOCKING:
5156 *	None.
5157 *
5158 *	RETURNS:
5159 *	True if the port online status is available and online.
5160 */
5161bool ata_phys_link_online(struct ata_link *link)
5162{
5163	u32 sstatus;
5164
5165	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5166	    ata_sstatus_online(sstatus))
5167		return true;
5168	return false;
5169}
5170
5171/**
5172 *	ata_phys_link_offline - test whether the given link is offline
5173 *	@link: ATA link to test
5174 *
5175 *	Test whether @link is offline.  Note that this function
5176 *	returns 0 if offline status of @link cannot be obtained, so
5177 *	ata_link_online(link) != !ata_link_offline(link).
5178 *
5179 *	LOCKING:
5180 *	None.
5181 *
5182 *	RETURNS:
5183 *	True if the port offline status is available and offline.
5184 */
5185bool ata_phys_link_offline(struct ata_link *link)
5186{
5187	u32 sstatus;
5188
5189	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5190	    !ata_sstatus_online(sstatus))
5191		return true;
5192	return false;
5193}
5194
5195/**
5196 *	ata_link_online - test whether the given link is online
5197 *	@link: ATA link to test
5198 *
5199 *	Test whether @link is online.  This is identical to
5200 *	ata_phys_link_online() when there's no slave link.  When
5201 *	there's a slave link, this function should only be called on
5202 *	the master link and will return true if any of M/S links is
5203 *	online.
5204 *
5205 *	LOCKING:
5206 *	None.
5207 *
5208 *	RETURNS:
5209 *	True if the port online status is available and online.
5210 */
5211bool ata_link_online(struct ata_link *link)
5212{
5213	struct ata_link *slave = link->ap->slave_link;
5214
5215	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5216
5217	return ata_phys_link_online(link) ||
5218		(slave && ata_phys_link_online(slave));
5219}
5220
5221/**
5222 *	ata_link_offline - test whether the given link is offline
5223 *	@link: ATA link to test
5224 *
5225 *	Test whether @link is offline.  This is identical to
5226 *	ata_phys_link_offline() when there's no slave link.  When
5227 *	there's a slave link, this function should only be called on
5228 *	the master link and will return true if both M/S links are
5229 *	offline.
5230 *
5231 *	LOCKING:
5232 *	None.
5233 *
5234 *	RETURNS:
5235 *	True if the port offline status is available and offline.
5236 */
5237bool ata_link_offline(struct ata_link *link)
5238{
5239	struct ata_link *slave = link->ap->slave_link;
5240
5241	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5242
5243	return ata_phys_link_offline(link) &&
5244		(!slave || ata_phys_link_offline(slave));
5245}
5246
5247#ifdef CONFIG_PM
5248static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5249			       unsigned int action, unsigned int ehi_flags,
5250			       int wait)
5251{
5252	struct ata_link *link;
5253	unsigned long flags;
5254	int rc;
5255
5256	/* Previous resume operation might still be in
5257	 * progress.  Wait for PM_PENDING to clear.
5258	 */
5259	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5260		ata_port_wait_eh(ap);
5261		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5262	}
5263
5264	/* request PM ops to EH */
5265	spin_lock_irqsave(ap->lock, flags);
5266
5267	ap->pm_mesg = mesg;
5268	if (wait) {
5269		rc = 0;
5270		ap->pm_result = &rc;
5271	}
5272
5273	ap->pflags |= ATA_PFLAG_PM_PENDING;
5274	ata_for_each_link(link, ap, HOST_FIRST) {
5275		link->eh_info.action |= action;
5276		link->eh_info.flags |= ehi_flags;
5277	}
5278
5279	ata_port_schedule_eh(ap);
5280
5281	spin_unlock_irqrestore(ap->lock, flags);
5282
5283	/* wait and check result */
5284	if (wait) {
5285		ata_port_wait_eh(ap);
5286		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5287	}
5288
5289	return rc;
5290}
5291
5292#define to_ata_port(d) container_of(d, struct ata_port, tdev)
 
 
 
 
 
 
 
 
 
5293
5294static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5295{
5296	struct ata_port *ap = to_ata_port(dev);
5297	unsigned int ehi_flags = ATA_EHI_QUIET;
5298	int rc;
5299
5300	/*
5301	 * On some hardware, device fails to respond after spun down
5302	 * for suspend.  As the device won't be used before being
5303	 * resumed, we don't need to touch the device.  Ask EH to skip
5304	 * the usual stuff and proceed directly to suspend.
5305	 *
5306	 * http://thread.gmane.org/gmane.linux.ide/46764
5307	 */
5308	if (mesg.event == PM_EVENT_SUSPEND)
5309		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5310
5311	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5312	return rc;
 
5313}
5314
5315static int ata_port_suspend(struct device *dev)
5316{
 
 
5317	if (pm_runtime_suspended(dev))
5318		return 0;
5319
5320	return ata_port_suspend_common(dev, PMSG_SUSPEND);
 
5321}
5322
5323static int ata_port_do_freeze(struct device *dev)
5324{
 
 
5325	if (pm_runtime_suspended(dev))
5326		pm_runtime_resume(dev);
5327
5328	return ata_port_suspend_common(dev, PMSG_FREEZE);
 
5329}
5330
5331static int ata_port_poweroff(struct device *dev)
5332{
5333	if (pm_runtime_suspended(dev))
5334		return 0;
 
5335
5336	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
 
 
 
 
 
5337}
5338
5339static int ata_port_resume_common(struct device *dev)
5340{
5341	struct ata_port *ap = to_ata_port(dev);
5342	int rc;
5343
5344	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5345		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5346	return rc;
 
 
 
 
5347}
5348
5349static int ata_port_resume(struct device *dev)
 
 
 
 
 
 
 
 
5350{
5351	int rc;
 
 
5352
5353	rc = ata_port_resume_common(dev);
5354	if (!rc) {
5355		pm_runtime_disable(dev);
5356		pm_runtime_set_active(dev);
5357		pm_runtime_enable(dev);
5358	}
5359
5360	return rc;
5361}
5362
5363static int ata_port_runtime_idle(struct device *dev)
 
 
 
 
 
 
5364{
5365	return pm_runtime_suspend(dev);
 
5366}
5367
5368static const struct dev_pm_ops ata_port_pm_ops = {
5369	.suspend = ata_port_suspend,
5370	.resume = ata_port_resume,
5371	.freeze = ata_port_do_freeze,
5372	.thaw = ata_port_resume,
5373	.poweroff = ata_port_poweroff,
5374	.restore = ata_port_resume,
5375
5376	.runtime_suspend = ata_port_suspend,
5377	.runtime_resume = ata_port_resume_common,
5378	.runtime_idle = ata_port_runtime_idle,
5379};
5380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5381/**
5382 *	ata_host_suspend - suspend host
5383 *	@host: host to suspend
5384 *	@mesg: PM message
5385 *
5386 *	Suspend @host.  Actual operation is performed by port suspend.
5387 */
5388int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5389{
5390	host->dev->power.power_state = mesg;
5391	return 0;
5392}
5393
5394/**
5395 *	ata_host_resume - resume host
5396 *	@host: host to resume
5397 *
5398 *	Resume @host.  Actual operation is performed by port resume.
5399 */
5400void ata_host_resume(struct ata_host *host)
5401{
5402	host->dev->power.power_state = PMSG_ON;
5403}
5404#endif
5405
5406struct device_type ata_port_type = {
5407	.name = "ata_port",
5408#ifdef CONFIG_PM
5409	.pm = &ata_port_pm_ops,
5410#endif
5411};
5412
5413/**
5414 *	ata_dev_init - Initialize an ata_device structure
5415 *	@dev: Device structure to initialize
5416 *
5417 *	Initialize @dev in preparation for probing.
5418 *
5419 *	LOCKING:
5420 *	Inherited from caller.
5421 */
5422void ata_dev_init(struct ata_device *dev)
5423{
5424	struct ata_link *link = ata_dev_phys_link(dev);
5425	struct ata_port *ap = link->ap;
5426	unsigned long flags;
5427
5428	/* SATA spd limit is bound to the attached device, reset together */
5429	link->sata_spd_limit = link->hw_sata_spd_limit;
5430	link->sata_spd = 0;
5431
5432	/* High bits of dev->flags are used to record warm plug
5433	 * requests which occur asynchronously.  Synchronize using
5434	 * host lock.
5435	 */
5436	spin_lock_irqsave(ap->lock, flags);
5437	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5438	dev->horkage = 0;
5439	spin_unlock_irqrestore(ap->lock, flags);
5440
5441	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5442	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5443	dev->pio_mask = UINT_MAX;
5444	dev->mwdma_mask = UINT_MAX;
5445	dev->udma_mask = UINT_MAX;
5446}
5447
5448/**
5449 *	ata_link_init - Initialize an ata_link structure
5450 *	@ap: ATA port link is attached to
5451 *	@link: Link structure to initialize
5452 *	@pmp: Port multiplier port number
5453 *
5454 *	Initialize @link.
5455 *
5456 *	LOCKING:
5457 *	Kernel thread context (may sleep)
5458 */
5459void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5460{
5461	int i;
5462
5463	/* clear everything except for devices */
5464	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5465	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5466
5467	link->ap = ap;
5468	link->pmp = pmp;
5469	link->active_tag = ATA_TAG_POISON;
5470	link->hw_sata_spd_limit = UINT_MAX;
5471
5472	/* can't use iterator, ap isn't initialized yet */
5473	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5474		struct ata_device *dev = &link->device[i];
5475
5476		dev->link = link;
5477		dev->devno = dev - link->device;
5478#ifdef CONFIG_ATA_ACPI
5479		dev->gtf_filter = ata_acpi_gtf_filter;
5480#endif
5481		ata_dev_init(dev);
5482	}
5483}
5484
5485/**
5486 *	sata_link_init_spd - Initialize link->sata_spd_limit
5487 *	@link: Link to configure sata_spd_limit for
5488 *
5489 *	Initialize @link->[hw_]sata_spd_limit to the currently
5490 *	configured value.
5491 *
5492 *	LOCKING:
5493 *	Kernel thread context (may sleep).
5494 *
5495 *	RETURNS:
5496 *	0 on success, -errno on failure.
5497 */
5498int sata_link_init_spd(struct ata_link *link)
5499{
5500	u8 spd;
5501	int rc;
5502
5503	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5504	if (rc)
5505		return rc;
5506
5507	spd = (link->saved_scontrol >> 4) & 0xf;
5508	if (spd)
5509		link->hw_sata_spd_limit &= (1 << spd) - 1;
5510
5511	ata_force_link_limits(link);
5512
5513	link->sata_spd_limit = link->hw_sata_spd_limit;
5514
5515	return 0;
5516}
5517
5518/**
5519 *	ata_port_alloc - allocate and initialize basic ATA port resources
5520 *	@host: ATA host this allocated port belongs to
5521 *
5522 *	Allocate and initialize basic ATA port resources.
5523 *
5524 *	RETURNS:
5525 *	Allocate ATA port on success, NULL on failure.
5526 *
5527 *	LOCKING:
5528 *	Inherited from calling layer (may sleep).
5529 */
5530struct ata_port *ata_port_alloc(struct ata_host *host)
5531{
5532	struct ata_port *ap;
5533
5534	DPRINTK("ENTER\n");
5535
5536	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5537	if (!ap)
5538		return NULL;
5539
5540	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5541	ap->lock = &host->lock;
5542	ap->print_id = -1;
 
5543	ap->host = host;
5544	ap->dev = host->dev;
5545
5546#if defined(ATA_VERBOSE_DEBUG)
5547	/* turn on all debugging levels */
5548	ap->msg_enable = 0x00FF;
5549#elif defined(ATA_DEBUG)
5550	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5551#else
5552	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5553#endif
5554
5555	mutex_init(&ap->scsi_scan_mutex);
5556	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5557	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5558	INIT_LIST_HEAD(&ap->eh_done_q);
5559	init_waitqueue_head(&ap->eh_wait_q);
5560	init_completion(&ap->park_req_pending);
5561	init_timer_deferrable(&ap->fastdrain_timer);
5562	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5563	ap->fastdrain_timer.data = (unsigned long)ap;
5564
5565	ap->cbl = ATA_CBL_NONE;
5566
5567	ata_link_init(ap, &ap->link, 0);
5568
5569#ifdef ATA_IRQ_TRAP
5570	ap->stats.unhandled_irq = 1;
5571	ap->stats.idle_irq = 1;
5572#endif
5573	ata_sff_port_init(ap);
5574
5575	return ap;
5576}
5577
5578static void ata_host_release(struct device *gendev, void *res)
5579{
5580	struct ata_host *host = dev_get_drvdata(gendev);
5581	int i;
5582
5583	for (i = 0; i < host->n_ports; i++) {
5584		struct ata_port *ap = host->ports[i];
5585
5586		if (!ap)
5587			continue;
5588
5589		if (ap->scsi_host)
5590			scsi_host_put(ap->scsi_host);
5591
5592		kfree(ap->pmp_link);
5593		kfree(ap->slave_link);
5594		kfree(ap);
5595		host->ports[i] = NULL;
5596	}
5597
5598	dev_set_drvdata(gendev, NULL);
5599}
5600
5601/**
5602 *	ata_host_alloc - allocate and init basic ATA host resources
5603 *	@dev: generic device this host is associated with
5604 *	@max_ports: maximum number of ATA ports associated with this host
5605 *
5606 *	Allocate and initialize basic ATA host resources.  LLD calls
5607 *	this function to allocate a host, initializes it fully and
5608 *	attaches it using ata_host_register().
5609 *
5610 *	@max_ports ports are allocated and host->n_ports is
5611 *	initialized to @max_ports.  The caller is allowed to decrease
5612 *	host->n_ports before calling ata_host_register().  The unused
5613 *	ports will be automatically freed on registration.
5614 *
5615 *	RETURNS:
5616 *	Allocate ATA host on success, NULL on failure.
5617 *
5618 *	LOCKING:
5619 *	Inherited from calling layer (may sleep).
5620 */
5621struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5622{
5623	struct ata_host *host;
5624	size_t sz;
5625	int i;
5626
5627	DPRINTK("ENTER\n");
5628
5629	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5630		return NULL;
5631
5632	/* alloc a container for our list of ATA ports (buses) */
5633	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5634	/* alloc a container for our list of ATA ports (buses) */
5635	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5636	if (!host)
5637		goto err_out;
5638
5639	devres_add(dev, host);
5640	dev_set_drvdata(dev, host);
5641
5642	spin_lock_init(&host->lock);
5643	mutex_init(&host->eh_mutex);
5644	host->dev = dev;
5645	host->n_ports = max_ports;
5646
5647	/* allocate ports bound to this host */
5648	for (i = 0; i < max_ports; i++) {
5649		struct ata_port *ap;
5650
5651		ap = ata_port_alloc(host);
5652		if (!ap)
5653			goto err_out;
5654
5655		ap->port_no = i;
5656		host->ports[i] = ap;
5657	}
5658
5659	devres_remove_group(dev, NULL);
5660	return host;
5661
5662 err_out:
5663	devres_release_group(dev, NULL);
5664	return NULL;
5665}
5666
5667/**
5668 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5669 *	@dev: generic device this host is associated with
5670 *	@ppi: array of ATA port_info to initialize host with
5671 *	@n_ports: number of ATA ports attached to this host
5672 *
5673 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5674 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5675 *	last entry will be used for the remaining ports.
5676 *
5677 *	RETURNS:
5678 *	Allocate ATA host on success, NULL on failure.
5679 *
5680 *	LOCKING:
5681 *	Inherited from calling layer (may sleep).
5682 */
5683struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5684				      const struct ata_port_info * const * ppi,
5685				      int n_ports)
5686{
5687	const struct ata_port_info *pi;
5688	struct ata_host *host;
5689	int i, j;
5690
5691	host = ata_host_alloc(dev, n_ports);
5692	if (!host)
5693		return NULL;
5694
5695	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5696		struct ata_port *ap = host->ports[i];
5697
5698		if (ppi[j])
5699			pi = ppi[j++];
5700
5701		ap->pio_mask = pi->pio_mask;
5702		ap->mwdma_mask = pi->mwdma_mask;
5703		ap->udma_mask = pi->udma_mask;
5704		ap->flags |= pi->flags;
5705		ap->link.flags |= pi->link_flags;
5706		ap->ops = pi->port_ops;
5707
5708		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5709			host->ops = pi->port_ops;
5710	}
5711
5712	return host;
5713}
5714
5715/**
5716 *	ata_slave_link_init - initialize slave link
5717 *	@ap: port to initialize slave link for
5718 *
5719 *	Create and initialize slave link for @ap.  This enables slave
5720 *	link handling on the port.
5721 *
5722 *	In libata, a port contains links and a link contains devices.
5723 *	There is single host link but if a PMP is attached to it,
5724 *	there can be multiple fan-out links.  On SATA, there's usually
5725 *	a single device connected to a link but PATA and SATA
5726 *	controllers emulating TF based interface can have two - master
5727 *	and slave.
5728 *
5729 *	However, there are a few controllers which don't fit into this
5730 *	abstraction too well - SATA controllers which emulate TF
5731 *	interface with both master and slave devices but also have
5732 *	separate SCR register sets for each device.  These controllers
5733 *	need separate links for physical link handling
5734 *	(e.g. onlineness, link speed) but should be treated like a
5735 *	traditional M/S controller for everything else (e.g. command
5736 *	issue, softreset).
5737 *
5738 *	slave_link is libata's way of handling this class of
5739 *	controllers without impacting core layer too much.  For
5740 *	anything other than physical link handling, the default host
5741 *	link is used for both master and slave.  For physical link
5742 *	handling, separate @ap->slave_link is used.  All dirty details
5743 *	are implemented inside libata core layer.  From LLD's POV, the
5744 *	only difference is that prereset, hardreset and postreset are
5745 *	called once more for the slave link, so the reset sequence
5746 *	looks like the following.
5747 *
5748 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5749 *	softreset(M) -> postreset(M) -> postreset(S)
5750 *
5751 *	Note that softreset is called only for the master.  Softreset
5752 *	resets both M/S by definition, so SRST on master should handle
5753 *	both (the standard method will work just fine).
5754 *
5755 *	LOCKING:
5756 *	Should be called before host is registered.
5757 *
5758 *	RETURNS:
5759 *	0 on success, -errno on failure.
5760 */
5761int ata_slave_link_init(struct ata_port *ap)
5762{
5763	struct ata_link *link;
5764
5765	WARN_ON(ap->slave_link);
5766	WARN_ON(ap->flags & ATA_FLAG_PMP);
5767
5768	link = kzalloc(sizeof(*link), GFP_KERNEL);
5769	if (!link)
5770		return -ENOMEM;
5771
5772	ata_link_init(ap, link, 1);
5773	ap->slave_link = link;
5774	return 0;
5775}
5776
5777static void ata_host_stop(struct device *gendev, void *res)
5778{
5779	struct ata_host *host = dev_get_drvdata(gendev);
5780	int i;
5781
5782	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5783
5784	for (i = 0; i < host->n_ports; i++) {
5785		struct ata_port *ap = host->ports[i];
5786
5787		if (ap->ops->port_stop)
5788			ap->ops->port_stop(ap);
5789	}
5790
5791	if (host->ops->host_stop)
5792		host->ops->host_stop(host);
5793}
5794
5795/**
5796 *	ata_finalize_port_ops - finalize ata_port_operations
5797 *	@ops: ata_port_operations to finalize
5798 *
5799 *	An ata_port_operations can inherit from another ops and that
5800 *	ops can again inherit from another.  This can go on as many
5801 *	times as necessary as long as there is no loop in the
5802 *	inheritance chain.
5803 *
5804 *	Ops tables are finalized when the host is started.  NULL or
5805 *	unspecified entries are inherited from the closet ancestor
5806 *	which has the method and the entry is populated with it.
5807 *	After finalization, the ops table directly points to all the
5808 *	methods and ->inherits is no longer necessary and cleared.
5809 *
5810 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5811 *
5812 *	LOCKING:
5813 *	None.
5814 */
5815static void ata_finalize_port_ops(struct ata_port_operations *ops)
5816{
5817	static DEFINE_SPINLOCK(lock);
5818	const struct ata_port_operations *cur;
5819	void **begin = (void **)ops;
5820	void **end = (void **)&ops->inherits;
5821	void **pp;
5822
5823	if (!ops || !ops->inherits)
5824		return;
5825
5826	spin_lock(&lock);
5827
5828	for (cur = ops->inherits; cur; cur = cur->inherits) {
5829		void **inherit = (void **)cur;
5830
5831		for (pp = begin; pp < end; pp++, inherit++)
5832			if (!*pp)
5833				*pp = *inherit;
5834	}
5835
5836	for (pp = begin; pp < end; pp++)
5837		if (IS_ERR(*pp))
5838			*pp = NULL;
5839
5840	ops->inherits = NULL;
5841
5842	spin_unlock(&lock);
5843}
5844
5845/**
5846 *	ata_host_start - start and freeze ports of an ATA host
5847 *	@host: ATA host to start ports for
5848 *
5849 *	Start and then freeze ports of @host.  Started status is
5850 *	recorded in host->flags, so this function can be called
5851 *	multiple times.  Ports are guaranteed to get started only
5852 *	once.  If host->ops isn't initialized yet, its set to the
5853 *	first non-dummy port ops.
5854 *
5855 *	LOCKING:
5856 *	Inherited from calling layer (may sleep).
5857 *
5858 *	RETURNS:
5859 *	0 if all ports are started successfully, -errno otherwise.
5860 */
5861int ata_host_start(struct ata_host *host)
5862{
5863	int have_stop = 0;
5864	void *start_dr = NULL;
5865	int i, rc;
5866
5867	if (host->flags & ATA_HOST_STARTED)
5868		return 0;
5869
5870	ata_finalize_port_ops(host->ops);
5871
5872	for (i = 0; i < host->n_ports; i++) {
5873		struct ata_port *ap = host->ports[i];
5874
5875		ata_finalize_port_ops(ap->ops);
5876
5877		if (!host->ops && !ata_port_is_dummy(ap))
5878			host->ops = ap->ops;
5879
5880		if (ap->ops->port_stop)
5881			have_stop = 1;
5882	}
5883
5884	if (host->ops->host_stop)
5885		have_stop = 1;
5886
5887	if (have_stop) {
5888		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5889		if (!start_dr)
5890			return -ENOMEM;
5891	}
5892
5893	for (i = 0; i < host->n_ports; i++) {
5894		struct ata_port *ap = host->ports[i];
5895
5896		if (ap->ops->port_start) {
5897			rc = ap->ops->port_start(ap);
5898			if (rc) {
5899				if (rc != -ENODEV)
5900					dev_err(host->dev,
5901						"failed to start port %d (errno=%d)\n",
5902						i, rc);
5903				goto err_out;
5904			}
5905		}
5906		ata_eh_freeze_port(ap);
5907	}
5908
5909	if (start_dr)
5910		devres_add(host->dev, start_dr);
5911	host->flags |= ATA_HOST_STARTED;
5912	return 0;
5913
5914 err_out:
5915	while (--i >= 0) {
5916		struct ata_port *ap = host->ports[i];
5917
5918		if (ap->ops->port_stop)
5919			ap->ops->port_stop(ap);
5920	}
5921	devres_free(start_dr);
5922	return rc;
5923}
5924
5925/**
5926 *	ata_sas_host_init - Initialize a host struct
5927 *	@host:	host to initialize
5928 *	@dev:	device host is attached to
5929 *	@flags:	host flags
5930 *	@ops:	port_ops
5931 *
5932 *	LOCKING:
5933 *	PCI/etc. bus probe sem.
5934 *
5935 */
5936/* KILLME - the only user left is ipr */
5937void ata_host_init(struct ata_host *host, struct device *dev,
5938		   unsigned long flags, struct ata_port_operations *ops)
5939{
5940	spin_lock_init(&host->lock);
5941	mutex_init(&host->eh_mutex);
5942	host->dev = dev;
5943	host->flags = flags;
5944	host->ops = ops;
5945}
5946
5947void __ata_port_probe(struct ata_port *ap)
5948{
5949	struct ata_eh_info *ehi = &ap->link.eh_info;
5950	unsigned long flags;
5951
5952	/* kick EH for boot probing */
5953	spin_lock_irqsave(ap->lock, flags);
5954
5955	ehi->probe_mask |= ATA_ALL_DEVICES;
5956	ehi->action |= ATA_EH_RESET;
5957	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5958
5959	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5960	ap->pflags |= ATA_PFLAG_LOADING;
5961	ata_port_schedule_eh(ap);
5962
5963	spin_unlock_irqrestore(ap->lock, flags);
5964}
5965
5966int ata_port_probe(struct ata_port *ap)
5967{
5968	int rc = 0;
5969
5970	if (ap->ops->error_handler) {
5971		__ata_port_probe(ap);
5972		ata_port_wait_eh(ap);
5973	} else {
5974		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5975		rc = ata_bus_probe(ap);
5976		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5977	}
5978	return rc;
5979}
5980
5981
5982static void async_port_probe(void *data, async_cookie_t cookie)
5983{
5984	struct ata_port *ap = data;
5985
5986	/*
5987	 * If we're not allowed to scan this host in parallel,
5988	 * we need to wait until all previous scans have completed
5989	 * before going further.
5990	 * Jeff Garzik says this is only within a controller, so we
5991	 * don't need to wait for port 0, only for later ports.
5992	 */
5993	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5994		async_synchronize_cookie(cookie);
5995
5996	(void)ata_port_probe(ap);
5997
5998	/* in order to keep device order, we need to synchronize at this point */
5999	async_synchronize_cookie(cookie);
6000
6001	ata_scsi_scan_host(ap, 1);
6002}
6003
6004/**
6005 *	ata_host_register - register initialized ATA host
6006 *	@host: ATA host to register
6007 *	@sht: template for SCSI host
6008 *
6009 *	Register initialized ATA host.  @host is allocated using
6010 *	ata_host_alloc() and fully initialized by LLD.  This function
6011 *	starts ports, registers @host with ATA and SCSI layers and
6012 *	probe registered devices.
6013 *
6014 *	LOCKING:
6015 *	Inherited from calling layer (may sleep).
6016 *
6017 *	RETURNS:
6018 *	0 on success, -errno otherwise.
6019 */
6020int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6021{
6022	int i, rc;
6023
6024	/* host must have been started */
6025	if (!(host->flags & ATA_HOST_STARTED)) {
6026		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6027		WARN_ON(1);
6028		return -EINVAL;
6029	}
6030
6031	/* Blow away unused ports.  This happens when LLD can't
6032	 * determine the exact number of ports to allocate at
6033	 * allocation time.
6034	 */
6035	for (i = host->n_ports; host->ports[i]; i++)
6036		kfree(host->ports[i]);
6037
6038	/* give ports names and add SCSI hosts */
6039	for (i = 0; i < host->n_ports; i++)
6040		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6041
 
6042
6043	/* Create associated sysfs transport objects  */
6044	for (i = 0; i < host->n_ports; i++) {
6045		rc = ata_tport_add(host->dev,host->ports[i]);
6046		if (rc) {
6047			goto err_tadd;
6048		}
6049	}
6050
6051	rc = ata_scsi_add_hosts(host, sht);
6052	if (rc)
6053		goto err_tadd;
6054
6055	/* associate with ACPI nodes */
6056	ata_acpi_associate(host);
6057
6058	/* set cable, sata_spd_limit and report */
6059	for (i = 0; i < host->n_ports; i++) {
6060		struct ata_port *ap = host->ports[i];
6061		unsigned long xfer_mask;
6062
6063		/* set SATA cable type if still unset */
6064		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6065			ap->cbl = ATA_CBL_SATA;
6066
6067		/* init sata_spd_limit to the current value */
6068		sata_link_init_spd(&ap->link);
6069		if (ap->slave_link)
6070			sata_link_init_spd(ap->slave_link);
6071
6072		/* print per-port info to dmesg */
6073		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6074					      ap->udma_mask);
6075
6076		if (!ata_port_is_dummy(ap)) {
6077			ata_port_info(ap, "%cATA max %s %s\n",
6078				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6079				      ata_mode_string(xfer_mask),
6080				      ap->link.eh_info.desc);
6081			ata_ehi_clear_desc(&ap->link.eh_info);
6082		} else
6083			ata_port_info(ap, "DUMMY\n");
6084	}
6085
6086	/* perform each probe asynchronously */
6087	for (i = 0; i < host->n_ports; i++) {
6088		struct ata_port *ap = host->ports[i];
6089		async_schedule(async_port_probe, ap);
6090	}
6091
6092	return 0;
6093
6094 err_tadd:
6095	while (--i >= 0) {
6096		ata_tport_delete(host->ports[i]);
6097	}
6098	return rc;
6099
6100}
6101
6102/**
6103 *	ata_host_activate - start host, request IRQ and register it
6104 *	@host: target ATA host
6105 *	@irq: IRQ to request
6106 *	@irq_handler: irq_handler used when requesting IRQ
6107 *	@irq_flags: irq_flags used when requesting IRQ
6108 *	@sht: scsi_host_template to use when registering the host
6109 *
6110 *	After allocating an ATA host and initializing it, most libata
6111 *	LLDs perform three steps to activate the host - start host,
6112 *	request IRQ and register it.  This helper takes necessasry
6113 *	arguments and performs the three steps in one go.
6114 *
6115 *	An invalid IRQ skips the IRQ registration and expects the host to
6116 *	have set polling mode on the port. In this case, @irq_handler
6117 *	should be NULL.
6118 *
6119 *	LOCKING:
6120 *	Inherited from calling layer (may sleep).
6121 *
6122 *	RETURNS:
6123 *	0 on success, -errno otherwise.
6124 */
6125int ata_host_activate(struct ata_host *host, int irq,
6126		      irq_handler_t irq_handler, unsigned long irq_flags,
6127		      struct scsi_host_template *sht)
6128{
6129	int i, rc;
6130
6131	rc = ata_host_start(host);
6132	if (rc)
6133		return rc;
6134
6135	/* Special case for polling mode */
6136	if (!irq) {
6137		WARN_ON(irq_handler);
6138		return ata_host_register(host, sht);
6139	}
6140
6141	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6142			      dev_driver_string(host->dev), host);
6143	if (rc)
6144		return rc;
6145
6146	for (i = 0; i < host->n_ports; i++)
6147		ata_port_desc(host->ports[i], "irq %d", irq);
6148
6149	rc = ata_host_register(host, sht);
6150	/* if failed, just free the IRQ and leave ports alone */
6151	if (rc)
6152		devm_free_irq(host->dev, irq, host);
6153
6154	return rc;
6155}
6156
6157/**
6158 *	ata_port_detach - Detach ATA port in prepration of device removal
6159 *	@ap: ATA port to be detached
6160 *
6161 *	Detach all ATA devices and the associated SCSI devices of @ap;
6162 *	then, remove the associated SCSI host.  @ap is guaranteed to
6163 *	be quiescent on return from this function.
6164 *
6165 *	LOCKING:
6166 *	Kernel thread context (may sleep).
6167 */
6168static void ata_port_detach(struct ata_port *ap)
6169{
6170	unsigned long flags;
 
 
6171
6172	if (!ap->ops->error_handler)
6173		goto skip_eh;
6174
6175	/* tell EH we're leaving & flush EH */
6176	spin_lock_irqsave(ap->lock, flags);
6177	ap->pflags |= ATA_PFLAG_UNLOADING;
6178	ata_port_schedule_eh(ap);
6179	spin_unlock_irqrestore(ap->lock, flags);
6180
6181	/* wait till EH commits suicide */
6182	ata_port_wait_eh(ap);
6183
6184	/* it better be dead now */
6185	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6186
6187	cancel_delayed_work_sync(&ap->hotplug_task);
6188
6189 skip_eh:
 
 
 
 
 
 
 
6190	if (ap->pmp_link) {
6191		int i;
6192		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6193			ata_tlink_delete(&ap->pmp_link[i]);
6194	}
6195	ata_tport_delete(ap);
6196
6197	/* remove the associated SCSI host */
6198	scsi_remove_host(ap->scsi_host);
 
6199}
6200
6201/**
6202 *	ata_host_detach - Detach all ports of an ATA host
6203 *	@host: Host to detach
6204 *
6205 *	Detach all ports of @host.
6206 *
6207 *	LOCKING:
6208 *	Kernel thread context (may sleep).
6209 */
6210void ata_host_detach(struct ata_host *host)
6211{
6212	int i;
6213
6214	for (i = 0; i < host->n_ports; i++)
6215		ata_port_detach(host->ports[i]);
6216
6217	/* the host is dead now, dissociate ACPI */
6218	ata_acpi_dissociate(host);
6219}
6220
6221#ifdef CONFIG_PCI
6222
6223/**
6224 *	ata_pci_remove_one - PCI layer callback for device removal
6225 *	@pdev: PCI device that was removed
6226 *
6227 *	PCI layer indicates to libata via this hook that hot-unplug or
6228 *	module unload event has occurred.  Detach all ports.  Resource
6229 *	release is handled via devres.
6230 *
6231 *	LOCKING:
6232 *	Inherited from PCI layer (may sleep).
6233 */
6234void ata_pci_remove_one(struct pci_dev *pdev)
6235{
6236	struct device *dev = &pdev->dev;
6237	struct ata_host *host = dev_get_drvdata(dev);
6238
6239	ata_host_detach(host);
6240}
6241
6242/* move to PCI subsystem */
6243int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6244{
6245	unsigned long tmp = 0;
6246
6247	switch (bits->width) {
6248	case 1: {
6249		u8 tmp8 = 0;
6250		pci_read_config_byte(pdev, bits->reg, &tmp8);
6251		tmp = tmp8;
6252		break;
6253	}
6254	case 2: {
6255		u16 tmp16 = 0;
6256		pci_read_config_word(pdev, bits->reg, &tmp16);
6257		tmp = tmp16;
6258		break;
6259	}
6260	case 4: {
6261		u32 tmp32 = 0;
6262		pci_read_config_dword(pdev, bits->reg, &tmp32);
6263		tmp = tmp32;
6264		break;
6265	}
6266
6267	default:
6268		return -EINVAL;
6269	}
6270
6271	tmp &= bits->mask;
6272
6273	return (tmp == bits->val) ? 1 : 0;
6274}
6275
6276#ifdef CONFIG_PM
6277void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278{
6279	pci_save_state(pdev);
6280	pci_disable_device(pdev);
6281
6282	if (mesg.event & PM_EVENT_SLEEP)
6283		pci_set_power_state(pdev, PCI_D3hot);
6284}
6285
6286int ata_pci_device_do_resume(struct pci_dev *pdev)
6287{
6288	int rc;
6289
6290	pci_set_power_state(pdev, PCI_D0);
6291	pci_restore_state(pdev);
6292
6293	rc = pcim_enable_device(pdev);
6294	if (rc) {
6295		dev_err(&pdev->dev,
6296			"failed to enable device after resume (%d)\n", rc);
6297		return rc;
6298	}
6299
6300	pci_set_master(pdev);
6301	return 0;
6302}
6303
6304int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6305{
6306	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6307	int rc = 0;
6308
6309	rc = ata_host_suspend(host, mesg);
6310	if (rc)
6311		return rc;
6312
6313	ata_pci_device_do_suspend(pdev, mesg);
6314
6315	return 0;
6316}
6317
6318int ata_pci_device_resume(struct pci_dev *pdev)
6319{
6320	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6321	int rc;
6322
6323	rc = ata_pci_device_do_resume(pdev);
6324	if (rc == 0)
6325		ata_host_resume(host);
6326	return rc;
6327}
6328#endif /* CONFIG_PM */
6329
6330#endif /* CONFIG_PCI */
6331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6332static int __init ata_parse_force_one(char **cur,
6333				      struct ata_force_ent *force_ent,
6334				      const char **reason)
6335{
6336	/* FIXME: Currently, there's no way to tag init const data and
6337	 * using __initdata causes build failure on some versions of
6338	 * gcc.  Once __initdataconst is implemented, add const to the
6339	 * following structure.
6340	 */
6341	static struct ata_force_param force_tbl[] __initdata = {
6342		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6343		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6344		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6345		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6346		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6347		{ "sata",	.cbl		= ATA_CBL_SATA },
6348		{ "1.5Gbps",	.spd_limit	= 1 },
6349		{ "3.0Gbps",	.spd_limit	= 2 },
6350		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6351		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6352		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6353		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6354		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6355		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6356		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6357		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6358		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6359		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6360		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6361		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6362		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6363		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6364		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6365		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6366		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6367		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6368		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6369		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6370		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6371		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6372		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6373		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6374		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6375		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6376		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6377		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6378		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6379		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6380		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6381		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6382		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6383		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6384		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6385		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6386		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6387		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6388		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6389		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
 
 
 
6390	};
6391	char *start = *cur, *p = *cur;
6392	char *id, *val, *endp;
6393	const struct ata_force_param *match_fp = NULL;
6394	int nr_matches = 0, i;
6395
6396	/* find where this param ends and update *cur */
6397	while (*p != '\0' && *p != ',')
6398		p++;
6399
6400	if (*p == '\0')
6401		*cur = p;
6402	else
6403		*cur = p + 1;
6404
6405	*p = '\0';
6406
6407	/* parse */
6408	p = strchr(start, ':');
6409	if (!p) {
6410		val = strstrip(start);
6411		goto parse_val;
6412	}
6413	*p = '\0';
6414
6415	id = strstrip(start);
6416	val = strstrip(p + 1);
6417
6418	/* parse id */
6419	p = strchr(id, '.');
6420	if (p) {
6421		*p++ = '\0';
6422		force_ent->device = simple_strtoul(p, &endp, 10);
6423		if (p == endp || *endp != '\0') {
6424			*reason = "invalid device";
6425			return -EINVAL;
6426		}
6427	}
6428
6429	force_ent->port = simple_strtoul(id, &endp, 10);
6430	if (p == endp || *endp != '\0') {
6431		*reason = "invalid port/link";
6432		return -EINVAL;
6433	}
6434
6435 parse_val:
6436	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6437	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6438		const struct ata_force_param *fp = &force_tbl[i];
6439
6440		if (strncasecmp(val, fp->name, strlen(val)))
6441			continue;
6442
6443		nr_matches++;
6444		match_fp = fp;
6445
6446		if (strcasecmp(val, fp->name) == 0) {
6447			nr_matches = 1;
6448			break;
6449		}
6450	}
6451
6452	if (!nr_matches) {
6453		*reason = "unknown value";
6454		return -EINVAL;
6455	}
6456	if (nr_matches > 1) {
6457		*reason = "ambigious value";
6458		return -EINVAL;
6459	}
6460
6461	force_ent->param = *match_fp;
6462
6463	return 0;
6464}
6465
6466static void __init ata_parse_force_param(void)
6467{
6468	int idx = 0, size = 1;
6469	int last_port = -1, last_device = -1;
6470	char *p, *cur, *next;
6471
6472	/* calculate maximum number of params and allocate force_tbl */
6473	for (p = ata_force_param_buf; *p; p++)
6474		if (*p == ',')
6475			size++;
6476
6477	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6478	if (!ata_force_tbl) {
6479		printk(KERN_WARNING "ata: failed to extend force table, "
6480		       "libata.force ignored\n");
6481		return;
6482	}
6483
6484	/* parse and populate the table */
6485	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6486		const char *reason = "";
6487		struct ata_force_ent te = { .port = -1, .device = -1 };
6488
6489		next = cur;
6490		if (ata_parse_force_one(&next, &te, &reason)) {
6491			printk(KERN_WARNING "ata: failed to parse force "
6492			       "parameter \"%s\" (%s)\n",
6493			       cur, reason);
6494			continue;
6495		}
6496
6497		if (te.port == -1) {
6498			te.port = last_port;
6499			te.device = last_device;
6500		}
6501
6502		ata_force_tbl[idx++] = te;
6503
6504		last_port = te.port;
6505		last_device = te.device;
6506	}
6507
6508	ata_force_tbl_size = idx;
6509}
6510
6511static int __init ata_init(void)
6512{
6513	int rc;
6514
6515	ata_parse_force_param();
6516
6517	rc = ata_sff_init();
6518	if (rc) {
6519		kfree(ata_force_tbl);
6520		return rc;
6521	}
6522
6523	libata_transport_init();
6524	ata_scsi_transport_template = ata_attach_transport();
6525	if (!ata_scsi_transport_template) {
6526		ata_sff_exit();
6527		rc = -ENOMEM;
6528		goto err_out;
6529	}
6530
6531	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6532	return 0;
6533
6534err_out:
6535	return rc;
6536}
6537
6538static void __exit ata_exit(void)
6539{
6540	ata_release_transport(ata_scsi_transport_template);
6541	libata_transport_exit();
6542	ata_sff_exit();
6543	kfree(ata_force_tbl);
6544}
6545
6546subsys_initcall(ata_init);
6547module_exit(ata_exit);
6548
6549static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6550
6551int ata_ratelimit(void)
6552{
6553	return __ratelimit(&ratelimit);
6554}
6555
6556/**
6557 *	ata_msleep - ATA EH owner aware msleep
6558 *	@ap: ATA port to attribute the sleep to
6559 *	@msecs: duration to sleep in milliseconds
6560 *
6561 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6562 *	ownership is released before going to sleep and reacquired
6563 *	after the sleep is complete.  IOW, other ports sharing the
6564 *	@ap->host will be allowed to own the EH while this task is
6565 *	sleeping.
6566 *
6567 *	LOCKING:
6568 *	Might sleep.
6569 */
6570void ata_msleep(struct ata_port *ap, unsigned int msecs)
6571{
6572	bool owns_eh = ap && ap->host->eh_owner == current;
6573
6574	if (owns_eh)
6575		ata_eh_release(ap);
6576
6577	msleep(msecs);
6578
6579	if (owns_eh)
6580		ata_eh_acquire(ap);
6581}
6582
6583/**
6584 *	ata_wait_register - wait until register value changes
6585 *	@ap: ATA port to wait register for, can be NULL
6586 *	@reg: IO-mapped register
6587 *	@mask: Mask to apply to read register value
6588 *	@val: Wait condition
6589 *	@interval: polling interval in milliseconds
6590 *	@timeout: timeout in milliseconds
6591 *
6592 *	Waiting for some bits of register to change is a common
6593 *	operation for ATA controllers.  This function reads 32bit LE
6594 *	IO-mapped register @reg and tests for the following condition.
6595 *
6596 *	(*@reg & mask) != val
6597 *
6598 *	If the condition is met, it returns; otherwise, the process is
6599 *	repeated after @interval_msec until timeout.
6600 *
6601 *	LOCKING:
6602 *	Kernel thread context (may sleep)
6603 *
6604 *	RETURNS:
6605 *	The final register value.
6606 */
6607u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6608		      unsigned long interval, unsigned long timeout)
6609{
6610	unsigned long deadline;
6611	u32 tmp;
6612
6613	tmp = ioread32(reg);
6614
6615	/* Calculate timeout _after_ the first read to make sure
6616	 * preceding writes reach the controller before starting to
6617	 * eat away the timeout.
6618	 */
6619	deadline = ata_deadline(jiffies, timeout);
6620
6621	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6622		ata_msleep(ap, interval);
6623		tmp = ioread32(reg);
6624	}
6625
6626	return tmp;
6627}
6628
6629/*
6630 * Dummy port_ops
6631 */
6632static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6633{
6634	return AC_ERR_SYSTEM;
6635}
6636
6637static void ata_dummy_error_handler(struct ata_port *ap)
6638{
6639	/* truly dummy */
6640}
6641
6642struct ata_port_operations ata_dummy_port_ops = {
6643	.qc_prep		= ata_noop_qc_prep,
6644	.qc_issue		= ata_dummy_qc_issue,
6645	.error_handler		= ata_dummy_error_handler,
 
 
6646};
6647
6648const struct ata_port_info ata_dummy_port_info = {
6649	.port_ops		= &ata_dummy_port_ops,
6650};
6651
6652/*
6653 * Utility print functions
6654 */
6655int ata_port_printk(const struct ata_port *ap, const char *level,
6656		    const char *fmt, ...)
6657{
6658	struct va_format vaf;
6659	va_list args;
6660	int r;
6661
6662	va_start(args, fmt);
6663
6664	vaf.fmt = fmt;
6665	vaf.va = &args;
6666
6667	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6668
6669	va_end(args);
6670
6671	return r;
6672}
6673EXPORT_SYMBOL(ata_port_printk);
6674
6675int ata_link_printk(const struct ata_link *link, const char *level,
6676		    const char *fmt, ...)
6677{
6678	struct va_format vaf;
6679	va_list args;
6680	int r;
6681
6682	va_start(args, fmt);
6683
6684	vaf.fmt = fmt;
6685	vaf.va = &args;
6686
6687	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6688		r = printk("%sata%u.%02u: %pV",
6689			   level, link->ap->print_id, link->pmp, &vaf);
6690	else
6691		r = printk("%sata%u: %pV",
6692			   level, link->ap->print_id, &vaf);
6693
6694	va_end(args);
6695
6696	return r;
6697}
6698EXPORT_SYMBOL(ata_link_printk);
6699
6700int ata_dev_printk(const struct ata_device *dev, const char *level,
6701		    const char *fmt, ...)
6702{
6703	struct va_format vaf;
6704	va_list args;
6705	int r;
6706
6707	va_start(args, fmt);
6708
6709	vaf.fmt = fmt;
6710	vaf.va = &args;
6711
6712	r = printk("%sata%u.%02u: %pV",
6713		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6714		   &vaf);
6715
6716	va_end(args);
6717
6718	return r;
6719}
6720EXPORT_SYMBOL(ata_dev_printk);
6721
6722void ata_print_version(const struct device *dev, const char *version)
6723{
6724	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6725}
6726EXPORT_SYMBOL(ata_print_version);
6727
6728/*
6729 * libata is essentially a library of internal helper functions for
6730 * low-level ATA host controller drivers.  As such, the API/ABI is
6731 * likely to change as new drivers are added and updated.
6732 * Do not depend on ABI/API stability.
6733 */
6734EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6735EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6736EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6737EXPORT_SYMBOL_GPL(ata_base_port_ops);
6738EXPORT_SYMBOL_GPL(sata_port_ops);
6739EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6740EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6741EXPORT_SYMBOL_GPL(ata_link_next);
6742EXPORT_SYMBOL_GPL(ata_dev_next);
6743EXPORT_SYMBOL_GPL(ata_std_bios_param);
6744EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6745EXPORT_SYMBOL_GPL(ata_host_init);
6746EXPORT_SYMBOL_GPL(ata_host_alloc);
6747EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6748EXPORT_SYMBOL_GPL(ata_slave_link_init);
6749EXPORT_SYMBOL_GPL(ata_host_start);
6750EXPORT_SYMBOL_GPL(ata_host_register);
6751EXPORT_SYMBOL_GPL(ata_host_activate);
6752EXPORT_SYMBOL_GPL(ata_host_detach);
6753EXPORT_SYMBOL_GPL(ata_sg_init);
6754EXPORT_SYMBOL_GPL(ata_qc_complete);
6755EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6756EXPORT_SYMBOL_GPL(atapi_cmd_type);
6757EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6758EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6759EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6760EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6761EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6762EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6763EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6764EXPORT_SYMBOL_GPL(ata_mode_string);
6765EXPORT_SYMBOL_GPL(ata_id_xfermask);
6766EXPORT_SYMBOL_GPL(ata_do_set_mode);
6767EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6768EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6769EXPORT_SYMBOL_GPL(ata_dev_disable);
6770EXPORT_SYMBOL_GPL(sata_set_spd);
6771EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6772EXPORT_SYMBOL_GPL(sata_link_debounce);
6773EXPORT_SYMBOL_GPL(sata_link_resume);
6774EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6775EXPORT_SYMBOL_GPL(ata_std_prereset);
6776EXPORT_SYMBOL_GPL(sata_link_hardreset);
6777EXPORT_SYMBOL_GPL(sata_std_hardreset);
6778EXPORT_SYMBOL_GPL(ata_std_postreset);
6779EXPORT_SYMBOL_GPL(ata_dev_classify);
6780EXPORT_SYMBOL_GPL(ata_dev_pair);
6781EXPORT_SYMBOL_GPL(ata_ratelimit);
6782EXPORT_SYMBOL_GPL(ata_msleep);
6783EXPORT_SYMBOL_GPL(ata_wait_register);
6784EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6785EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6786EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6787EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6788EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6789EXPORT_SYMBOL_GPL(sata_scr_valid);
6790EXPORT_SYMBOL_GPL(sata_scr_read);
6791EXPORT_SYMBOL_GPL(sata_scr_write);
6792EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6793EXPORT_SYMBOL_GPL(ata_link_online);
6794EXPORT_SYMBOL_GPL(ata_link_offline);
6795#ifdef CONFIG_PM
6796EXPORT_SYMBOL_GPL(ata_host_suspend);
6797EXPORT_SYMBOL_GPL(ata_host_resume);
6798#endif /* CONFIG_PM */
6799EXPORT_SYMBOL_GPL(ata_id_string);
6800EXPORT_SYMBOL_GPL(ata_id_c_string);
6801EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6802EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6803
6804EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6805EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6806EXPORT_SYMBOL_GPL(ata_timing_compute);
6807EXPORT_SYMBOL_GPL(ata_timing_merge);
6808EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6809
6810#ifdef CONFIG_PCI
6811EXPORT_SYMBOL_GPL(pci_test_config_bits);
6812EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6813#ifdef CONFIG_PM
6814EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6815EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6816EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6817EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6818#endif /* CONFIG_PM */
6819#endif /* CONFIG_PCI */
 
 
6820
6821EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6822EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6823EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6824EXPORT_SYMBOL_GPL(ata_port_desc);
6825#ifdef CONFIG_PCI
6826EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6827#endif /* CONFIG_PCI */
6828EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6829EXPORT_SYMBOL_GPL(ata_link_abort);
6830EXPORT_SYMBOL_GPL(ata_port_abort);
6831EXPORT_SYMBOL_GPL(ata_port_freeze);
6832EXPORT_SYMBOL_GPL(sata_async_notification);
6833EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6834EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6835EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6836EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6837EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6838EXPORT_SYMBOL_GPL(ata_do_eh);
6839EXPORT_SYMBOL_GPL(ata_std_error_handler);
6840
6841EXPORT_SYMBOL_GPL(ata_cable_40wire);
6842EXPORT_SYMBOL_GPL(ata_cable_80wire);
6843EXPORT_SYMBOL_GPL(ata_cable_unknown);
6844EXPORT_SYMBOL_GPL(ata_cable_ignore);
6845EXPORT_SYMBOL_GPL(ata_cable_sata);
v3.15
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *	http://www.sata-io.org (SATA)
  37 *	http://www.compactflash.org (CF)
  38 *	http://www.qic.org (QIC157 - Tape and DSC)
  39 *	http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81	.prereset		= ata_std_prereset,
  82	.postreset		= ata_std_postreset,
  83	.error_handler		= ata_std_error_handler,
  84	.sched_eh		= ata_std_sched_eh,
  85	.end_eh			= ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89	.inherits		= &ata_base_port_ops,
  90
  91	.qc_defer		= ata_std_qc_defer,
  92	.hardreset		= sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96					u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104	const char	*name;
 105	unsigned int	cbl;
 106	int		spd_limit;
 107	unsigned long	xfer_mask;
 108	unsigned int	horkage_on;
 109	unsigned int	horkage_off;
 110	unsigned int	lflags;
 111};
 112
 113struct ata_force_ent {
 114	int			port;
 115	int			device;
 116	struct ata_force_param	param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175	return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *	ata_link_next - link iteration helper
 180 *	@link: the previous link, NULL to start
 181 *	@ap: ATA port containing links to iterate
 182 *	@mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *	LOCKING:
 185 *	Host lock or EH context.
 186 *
 187 *	RETURNS:
 188 *	Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191			       enum ata_link_iter_mode mode)
 192{
 193	BUG_ON(mode != ATA_LITER_EDGE &&
 194	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196	/* NULL link indicates start of iteration */
 197	if (!link)
 198		switch (mode) {
 199		case ATA_LITER_EDGE:
 200		case ATA_LITER_PMP_FIRST:
 201			if (sata_pmp_attached(ap))
 202				return ap->pmp_link;
 203			/* fall through */
 204		case ATA_LITER_HOST_FIRST:
 205			return &ap->link;
 206		}
 207
 208	/* we just iterated over the host link, what's next? */
 209	if (link == &ap->link)
 210		switch (mode) {
 211		case ATA_LITER_HOST_FIRST:
 212			if (sata_pmp_attached(ap))
 213				return ap->pmp_link;
 214			/* fall through */
 215		case ATA_LITER_PMP_FIRST:
 216			if (unlikely(ap->slave_link))
 217				return ap->slave_link;
 218			/* fall through */
 219		case ATA_LITER_EDGE:
 220			return NULL;
 221		}
 222
 223	/* slave_link excludes PMP */
 224	if (unlikely(link == ap->slave_link))
 225		return NULL;
 226
 227	/* we were over a PMP link */
 228	if (++link < ap->pmp_link + ap->nr_pmp_links)
 229		return link;
 230
 231	if (mode == ATA_LITER_PMP_FIRST)
 232		return &ap->link;
 233
 234	return NULL;
 235}
 236
 237/**
 238 *	ata_dev_next - device iteration helper
 239 *	@dev: the previous device, NULL to start
 240 *	@link: ATA link containing devices to iterate
 241 *	@mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *	LOCKING:
 244 *	Host lock or EH context.
 245 *
 246 *	RETURNS:
 247 *	Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250				enum ata_dev_iter_mode mode)
 251{
 252	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255	/* NULL dev indicates start of iteration */
 256	if (!dev)
 257		switch (mode) {
 258		case ATA_DITER_ENABLED:
 259		case ATA_DITER_ALL:
 260			dev = link->device;
 261			goto check;
 262		case ATA_DITER_ENABLED_REVERSE:
 263		case ATA_DITER_ALL_REVERSE:
 264			dev = link->device + ata_link_max_devices(link) - 1;
 265			goto check;
 266		}
 267
 268 next:
 269	/* move to the next one */
 270	switch (mode) {
 271	case ATA_DITER_ENABLED:
 272	case ATA_DITER_ALL:
 273		if (++dev < link->device + ata_link_max_devices(link))
 274			goto check;
 275		return NULL;
 276	case ATA_DITER_ENABLED_REVERSE:
 277	case ATA_DITER_ALL_REVERSE:
 278		if (--dev >= link->device)
 279			goto check;
 280		return NULL;
 281	}
 282
 283 check:
 284	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285	    !ata_dev_enabled(dev))
 286		goto next;
 287	return dev;
 288}
 289
 290/**
 291 *	ata_dev_phys_link - find physical link for a device
 292 *	@dev: ATA device to look up physical link for
 293 *
 294 *	Look up physical link which @dev is attached to.  Note that
 295 *	this is different from @dev->link only when @dev is on slave
 296 *	link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *	LOCKING:
 299 *	Don't care.
 300 *
 301 *	RETURNS:
 302 *	Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306	struct ata_port *ap = dev->link->ap;
 307
 308	if (!ap->slave_link)
 309		return dev->link;
 310	if (!dev->devno)
 311		return &ap->link;
 312	return ap->slave_link;
 313}
 314
 315/**
 316 *	ata_force_cbl - force cable type according to libata.force
 317 *	@ap: ATA port of interest
 318 *
 319 *	Force cable type according to libata.force and whine about it.
 320 *	The last entry which has matching port number is used, so it
 321 *	can be specified as part of device force parameters.  For
 322 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *	same effect.
 324 *
 325 *	LOCKING:
 326 *	EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330	int i;
 331
 332	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333		const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335		if (fe->port != -1 && fe->port != ap->print_id)
 336			continue;
 337
 338		if (fe->param.cbl == ATA_CBL_NONE)
 339			continue;
 340
 341		ap->cbl = fe->param.cbl;
 342		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343		return;
 344	}
 345}
 346
 347/**
 348 *	ata_force_link_limits - force link limits according to libata.force
 349 *	@link: ATA link of interest
 350 *
 351 *	Force link flags and SATA spd limit according to libata.force
 352 *	and whine about it.  When only the port part is specified
 353 *	(e.g. 1:), the limit applies to all links connected to both
 354 *	the host link and all fan-out ports connected via PMP.  If the
 355 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *	first fan-out link not the host link.  Device number 15 always
 357 *	points to the host link whether PMP is attached or not.  If the
 358 *	controller has slave link, device number 16 points to it.
 359 *
 360 *	LOCKING:
 361 *	EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365	bool did_spd = false;
 366	int linkno = link->pmp;
 367	int i;
 368
 369	if (ata_is_host_link(link))
 370		linkno += 15;
 371
 372	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373		const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375		if (fe->port != -1 && fe->port != link->ap->print_id)
 376			continue;
 377
 378		if (fe->device != -1 && fe->device != linkno)
 379			continue;
 380
 381		/* only honor the first spd limit */
 382		if (!did_spd && fe->param.spd_limit) {
 383			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385					fe->param.name);
 386			did_spd = true;
 387		}
 388
 389		/* let lflags stack */
 390		if (fe->param.lflags) {
 391			link->flags |= fe->param.lflags;
 392			ata_link_notice(link,
 393					"FORCE: link flag 0x%x forced -> 0x%x\n",
 394					fe->param.lflags, link->flags);
 395		}
 396	}
 397}
 398
 399/**
 400 *	ata_force_xfermask - force xfermask according to libata.force
 401 *	@dev: ATA device of interest
 402 *
 403 *	Force xfer_mask according to libata.force and whine about it.
 404 *	For consistency with link selection, device number 15 selects
 405 *	the first device connected to the host link.
 406 *
 407 *	LOCKING:
 408 *	EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412	int devno = dev->link->pmp + dev->devno;
 413	int alt_devno = devno;
 414	int i;
 415
 416	/* allow n.15/16 for devices attached to host port */
 417	if (ata_is_host_link(dev->link))
 418		alt_devno += 15;
 419
 420	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421		const struct ata_force_ent *fe = &ata_force_tbl[i];
 422		unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425			continue;
 426
 427		if (fe->device != -1 && fe->device != devno &&
 428		    fe->device != alt_devno)
 429			continue;
 430
 431		if (!fe->param.xfer_mask)
 432			continue;
 433
 434		ata_unpack_xfermask(fe->param.xfer_mask,
 435				    &pio_mask, &mwdma_mask, &udma_mask);
 436		if (udma_mask)
 437			dev->udma_mask = udma_mask;
 438		else if (mwdma_mask) {
 439			dev->udma_mask = 0;
 440			dev->mwdma_mask = mwdma_mask;
 441		} else {
 442			dev->udma_mask = 0;
 443			dev->mwdma_mask = 0;
 444			dev->pio_mask = pio_mask;
 445		}
 446
 447		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448			       fe->param.name);
 449		return;
 450	}
 451}
 452
 453/**
 454 *	ata_force_horkage - force horkage according to libata.force
 455 *	@dev: ATA device of interest
 456 *
 457 *	Force horkage according to libata.force and whine about it.
 458 *	For consistency with link selection, device number 15 selects
 459 *	the first device connected to the host link.
 460 *
 461 *	LOCKING:
 462 *	EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466	int devno = dev->link->pmp + dev->devno;
 467	int alt_devno = devno;
 468	int i;
 469
 470	/* allow n.15/16 for devices attached to host port */
 471	if (ata_is_host_link(dev->link))
 472		alt_devno += 15;
 473
 474	for (i = 0; i < ata_force_tbl_size; i++) {
 475		const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478			continue;
 479
 480		if (fe->device != -1 && fe->device != devno &&
 481		    fe->device != alt_devno)
 482			continue;
 483
 484		if (!(~dev->horkage & fe->param.horkage_on) &&
 485		    !(dev->horkage & fe->param.horkage_off))
 486			continue;
 487
 488		dev->horkage |= fe->param.horkage_on;
 489		dev->horkage &= ~fe->param.horkage_off;
 490
 491		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492			       fe->param.name);
 493	}
 494}
 495
 496/**
 497 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *	@opcode: SCSI opcode
 499 *
 500 *	Determine ATAPI command type from @opcode.
 501 *
 502 *	LOCKING:
 503 *	None.
 504 *
 505 *	RETURNS:
 506 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510	switch (opcode) {
 511	case GPCMD_READ_10:
 512	case GPCMD_READ_12:
 513		return ATAPI_READ;
 514
 515	case GPCMD_WRITE_10:
 516	case GPCMD_WRITE_12:
 517	case GPCMD_WRITE_AND_VERIFY_10:
 518		return ATAPI_WRITE;
 519
 520	case GPCMD_READ_CD:
 521	case GPCMD_READ_CD_MSF:
 522		return ATAPI_READ_CD;
 523
 524	case ATA_16:
 525	case ATA_12:
 526		if (atapi_passthru16)
 527			return ATAPI_PASS_THRU;
 528		/* fall thru */
 529	default:
 530		return ATAPI_MISC;
 531	}
 532}
 533
 534/**
 535 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *	@tf: Taskfile to convert
 537 *	@pmp: Port multiplier port
 538 *	@is_cmd: This FIS is for command
 539 *	@fis: Buffer into which data will output
 540 *
 541 *	Converts a standard ATA taskfile to a Serial ATA
 542 *	FIS structure (Register - Host to Device).
 543 *
 544 *	LOCKING:
 545 *	Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549	fis[0] = 0x27;			/* Register - Host to Device FIS */
 550	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 551	if (is_cmd)
 552		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 553
 554	fis[2] = tf->command;
 555	fis[3] = tf->feature;
 556
 557	fis[4] = tf->lbal;
 558	fis[5] = tf->lbam;
 559	fis[6] = tf->lbah;
 560	fis[7] = tf->device;
 561
 562	fis[8] = tf->hob_lbal;
 563	fis[9] = tf->hob_lbam;
 564	fis[10] = tf->hob_lbah;
 565	fis[11] = tf->hob_feature;
 566
 567	fis[12] = tf->nsect;
 568	fis[13] = tf->hob_nsect;
 569	fis[14] = 0;
 570	fis[15] = tf->ctl;
 571
 572	fis[16] = tf->auxiliary & 0xff;
 573	fis[17] = (tf->auxiliary >> 8) & 0xff;
 574	fis[18] = (tf->auxiliary >> 16) & 0xff;
 575	fis[19] = (tf->auxiliary >> 24) & 0xff;
 576}
 577
 578/**
 579 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *	@fis: Buffer from which data will be input
 581 *	@tf: Taskfile to output
 582 *
 583 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *	LOCKING:
 586 *	Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591	tf->command	= fis[2];	/* status */
 592	tf->feature	= fis[3];	/* error */
 593
 594	tf->lbal	= fis[4];
 595	tf->lbam	= fis[5];
 596	tf->lbah	= fis[6];
 597	tf->device	= fis[7];
 598
 599	tf->hob_lbal	= fis[8];
 600	tf->hob_lbam	= fis[9];
 601	tf->hob_lbah	= fis[10];
 602
 603	tf->nsect	= fis[12];
 604	tf->hob_nsect	= fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608	/* pio multi */
 609	ATA_CMD_READ_MULTI,
 610	ATA_CMD_WRITE_MULTI,
 611	ATA_CMD_READ_MULTI_EXT,
 612	ATA_CMD_WRITE_MULTI_EXT,
 613	0,
 614	0,
 615	0,
 616	ATA_CMD_WRITE_MULTI_FUA_EXT,
 617	/* pio */
 618	ATA_CMD_PIO_READ,
 619	ATA_CMD_PIO_WRITE,
 620	ATA_CMD_PIO_READ_EXT,
 621	ATA_CMD_PIO_WRITE_EXT,
 622	0,
 623	0,
 624	0,
 625	0,
 626	/* dma */
 627	ATA_CMD_READ,
 628	ATA_CMD_WRITE,
 629	ATA_CMD_READ_EXT,
 630	ATA_CMD_WRITE_EXT,
 631	0,
 632	0,
 633	0,
 634	ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *	@tf: command to examine and configure
 640 *	@dev: device tf belongs to
 641 *
 642 *	Examine the device configuration and tf->flags to calculate
 643 *	the proper read/write commands and protocol to use.
 644 *
 645 *	LOCKING:
 646 *	caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650	u8 cmd;
 651
 652	int index, fua, lba48, write;
 653
 654	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658	if (dev->flags & ATA_DFLAG_PIO) {
 659		tf->protocol = ATA_PROT_PIO;
 660		index = dev->multi_count ? 0 : 8;
 661	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662		/* Unable to use DMA due to host limitation */
 663		tf->protocol = ATA_PROT_PIO;
 664		index = dev->multi_count ? 0 : 8;
 665	} else {
 666		tf->protocol = ATA_PROT_DMA;
 667		index = 16;
 668	}
 669
 670	cmd = ata_rw_cmds[index + fua + lba48 + write];
 671	if (cmd) {
 672		tf->command = cmd;
 673		return 0;
 674	}
 675	return -1;
 676}
 677
 678/**
 679 *	ata_tf_read_block - Read block address from ATA taskfile
 680 *	@tf: ATA taskfile of interest
 681 *	@dev: ATA device @tf belongs to
 682 *
 683 *	LOCKING:
 684 *	None.
 685 *
 686 *	Read block address from @tf.  This function can handle all
 687 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *	flags select the address format to use.
 689 *
 690 *	RETURNS:
 691 *	Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695	u64 block = 0;
 696
 697	if (tf->flags & ATA_TFLAG_LBA) {
 698		if (tf->flags & ATA_TFLAG_LBA48) {
 699			block |= (u64)tf->hob_lbah << 40;
 700			block |= (u64)tf->hob_lbam << 32;
 701			block |= (u64)tf->hob_lbal << 24;
 702		} else
 703			block |= (tf->device & 0xf) << 24;
 704
 705		block |= tf->lbah << 16;
 706		block |= tf->lbam << 8;
 707		block |= tf->lbal;
 708	} else {
 709		u32 cyl, head, sect;
 710
 711		cyl = tf->lbam | (tf->lbah << 8);
 712		head = tf->device & 0xf;
 713		sect = tf->lbal;
 714
 715		if (!sect) {
 716			ata_dev_warn(dev,
 717				     "device reported invalid CHS sector 0\n");
 718			sect = 1; /* oh well */
 719		}
 720
 721		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722	}
 723
 724	return block;
 725}
 726
 727/**
 728 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *	@tf: Target ATA taskfile
 730 *	@dev: ATA device @tf belongs to
 731 *	@block: Block address
 732 *	@n_block: Number of blocks
 733 *	@tf_flags: RW/FUA etc...
 734 *	@tag: tag
 735 *
 736 *	LOCKING:
 737 *	None.
 738 *
 739 *	Build ATA taskfile @tf for read/write request described by
 740 *	@block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *	RETURNS:
 743 *
 744 *	0 on success, -ERANGE if the request is too large for @dev,
 745 *	-EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748		    u64 block, u32 n_block, unsigned int tf_flags,
 749		    unsigned int tag)
 750{
 751	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752	tf->flags |= tf_flags;
 753
 754	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755		/* yay, NCQ */
 756		if (!lba_48_ok(block, n_block))
 757			return -ERANGE;
 758
 759		tf->protocol = ATA_PROT_NCQ;
 760		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762		if (tf->flags & ATA_TFLAG_WRITE)
 763			tf->command = ATA_CMD_FPDMA_WRITE;
 764		else
 765			tf->command = ATA_CMD_FPDMA_READ;
 766
 767		tf->nsect = tag << 3;
 768		tf->hob_feature = (n_block >> 8) & 0xff;
 769		tf->feature = n_block & 0xff;
 770
 771		tf->hob_lbah = (block >> 40) & 0xff;
 772		tf->hob_lbam = (block >> 32) & 0xff;
 773		tf->hob_lbal = (block >> 24) & 0xff;
 774		tf->lbah = (block >> 16) & 0xff;
 775		tf->lbam = (block >> 8) & 0xff;
 776		tf->lbal = block & 0xff;
 777
 778		tf->device = ATA_LBA;
 779		if (tf->flags & ATA_TFLAG_FUA)
 780			tf->device |= 1 << 7;
 781	} else if (dev->flags & ATA_DFLAG_LBA) {
 782		tf->flags |= ATA_TFLAG_LBA;
 783
 784		if (lba_28_ok(block, n_block)) {
 785			/* use LBA28 */
 786			tf->device |= (block >> 24) & 0xf;
 787		} else if (lba_48_ok(block, n_block)) {
 788			if (!(dev->flags & ATA_DFLAG_LBA48))
 789				return -ERANGE;
 790
 791			/* use LBA48 */
 792			tf->flags |= ATA_TFLAG_LBA48;
 793
 794			tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796			tf->hob_lbah = (block >> 40) & 0xff;
 797			tf->hob_lbam = (block >> 32) & 0xff;
 798			tf->hob_lbal = (block >> 24) & 0xff;
 799		} else
 800			/* request too large even for LBA48 */
 801			return -ERANGE;
 802
 803		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804			return -EINVAL;
 805
 806		tf->nsect = n_block & 0xff;
 807
 808		tf->lbah = (block >> 16) & 0xff;
 809		tf->lbam = (block >> 8) & 0xff;
 810		tf->lbal = block & 0xff;
 811
 812		tf->device |= ATA_LBA;
 813	} else {
 814		/* CHS */
 815		u32 sect, head, cyl, track;
 816
 817		/* The request -may- be too large for CHS addressing. */
 818		if (!lba_28_ok(block, n_block))
 819			return -ERANGE;
 820
 821		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822			return -EINVAL;
 823
 824		/* Convert LBA to CHS */
 825		track = (u32)block / dev->sectors;
 826		cyl   = track / dev->heads;
 827		head  = track % dev->heads;
 828		sect  = (u32)block % dev->sectors + 1;
 829
 830		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831			(u32)block, track, cyl, head, sect);
 832
 833		/* Check whether the converted CHS can fit.
 834		   Cylinder: 0-65535
 835		   Head: 0-15
 836		   Sector: 1-255*/
 837		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838			return -ERANGE;
 839
 840		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841		tf->lbal = sect;
 842		tf->lbam = cyl;
 843		tf->lbah = cyl >> 8;
 844		tf->device |= head;
 845	}
 846
 847	return 0;
 848}
 849
 850/**
 851 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *	@pio_mask: pio_mask
 853 *	@mwdma_mask: mwdma_mask
 854 *	@udma_mask: udma_mask
 855 *
 856 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *	unsigned int xfer_mask.
 858 *
 859 *	LOCKING:
 860 *	None.
 861 *
 862 *	RETURNS:
 863 *	Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866				unsigned long mwdma_mask,
 867				unsigned long udma_mask)
 868{
 869	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *	@xfer_mask: xfer_mask to unpack
 877 *	@pio_mask: resulting pio_mask
 878 *	@mwdma_mask: resulting mwdma_mask
 879 *	@udma_mask: resulting udma_mask
 880 *
 881 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *	Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887	if (pio_mask)
 888		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889	if (mwdma_mask)
 890		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891	if (udma_mask)
 892		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896	int shift, bits;
 897	u8 base;
 898} ata_xfer_tbl[] = {
 899	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902	{ -1, },
 903};
 904
 905/**
 906 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *	@xfer_mask: xfer_mask of interest
 908 *
 909 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *	bit of @xfer_mask is considered.
 911 *
 912 *	LOCKING:
 913 *	None.
 914 *
 915 *	RETURNS:
 916 *	Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920	int highbit = fls(xfer_mask) - 1;
 921	const struct ata_xfer_ent *ent;
 922
 923	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925			return ent->base + highbit - ent->shift;
 926	return 0xff;
 927}
 928
 929/**
 930 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *	@xfer_mode: XFER_* of interest
 932 *
 933 *	Return matching xfer_mask for @xfer_mode.
 934 *
 935 *	LOCKING:
 936 *	None.
 937 *
 938 *	RETURNS:
 939 *	Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943	const struct ata_xfer_ent *ent;
 944
 945	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948				& ~((1 << ent->shift) - 1);
 949	return 0;
 950}
 951
 952/**
 953 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *	@xfer_mode: XFER_* of interest
 955 *
 956 *	Return matching xfer_shift for @xfer_mode.
 957 *
 958 *	LOCKING:
 959 *	None.
 960 *
 961 *	RETURNS:
 962 *	Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966	const struct ata_xfer_ent *ent;
 967
 968	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970			return ent->shift;
 971	return -1;
 972}
 973
 974/**
 975 *	ata_mode_string - convert xfer_mask to string
 976 *	@xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *	Determine string which represents the highest speed
 979 *	(highest bit in @modemask).
 980 *
 981 *	LOCKING:
 982 *	None.
 983 *
 984 *	RETURNS:
 985 *	Constant C string representing highest speed listed in
 986 *	@mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990	static const char * const xfer_mode_str[] = {
 991		"PIO0",
 992		"PIO1",
 993		"PIO2",
 994		"PIO3",
 995		"PIO4",
 996		"PIO5",
 997		"PIO6",
 998		"MWDMA0",
 999		"MWDMA1",
1000		"MWDMA2",
1001		"MWDMA3",
1002		"MWDMA4",
1003		"UDMA/16",
1004		"UDMA/25",
1005		"UDMA/33",
1006		"UDMA/44",
1007		"UDMA/66",
1008		"UDMA/100",
1009		"UDMA/133",
1010		"UDMA7",
1011	};
1012	int highbit;
1013
1014	highbit = fls(xfer_mask) - 1;
1015	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016		return xfer_mode_str[highbit];
1017	return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022	static const char * const spd_str[] = {
1023		"1.5 Gbps",
1024		"3.0 Gbps",
1025		"6.0 Gbps",
1026	};
1027
1028	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029		return "<unknown>";
1030	return spd_str[spd - 1];
1031}
1032
1033/**
1034 *	ata_dev_classify - determine device type based on ATA-spec signature
1035 *	@tf: ATA taskfile register set for device to be identified
1036 *
1037 *	Determine from taskfile register contents whether a device is
1038 *	ATA or ATAPI, as per "Signature and persistence" section
1039 *	of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *	LOCKING:
1042 *	None.
1043 *
1044 *	RETURNS:
1045 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *	%ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050	/* Apple's open source Darwin code hints that some devices only
1051	 * put a proper signature into the LBA mid/high registers,
1052	 * So, we only check those.  It's sufficient for uniqueness.
1053	 *
1054	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057	 * spec has never mentioned about using different signatures
1058	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059	 * Multiplier specification began to use 0x69/0x96 to identify
1060	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062	 * 0x69/0x96 shortly and described them as reserved for
1063	 * SerialATA.
1064	 *
1065	 * We follow the current spec and consider that 0x69/0x96
1066	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068	 * SEMB signature.  This is worked around in
1069	 * ata_dev_read_id().
1070	 */
1071	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072		DPRINTK("found ATA device by sig\n");
1073		return ATA_DEV_ATA;
1074	}
1075
1076	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077		DPRINTK("found ATAPI device by sig\n");
1078		return ATA_DEV_ATAPI;
1079	}
1080
1081	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082		DPRINTK("found PMP device by sig\n");
1083		return ATA_DEV_PMP;
1084	}
1085
1086	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088		return ATA_DEV_SEMB;
1089	}
1090
1091	DPRINTK("unknown device\n");
1092	return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *	@id: IDENTIFY DEVICE results we will examine
1098 *	@s: string into which data is output
1099 *	@ofs: offset into identify device page
1100 *	@len: length of string to return. must be an even number.
1101 *
1102 *	The strings in the IDENTIFY DEVICE page are broken up into
1103 *	16-bit chunks.  Run through the string, and output each
1104 *	8-bit chunk linearly, regardless of platform.
1105 *
1106 *	LOCKING:
1107 *	caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111		   unsigned int ofs, unsigned int len)
1112{
1113	unsigned int c;
1114
1115	BUG_ON(len & 1);
1116
1117	while (len > 0) {
1118		c = id[ofs] >> 8;
1119		*s = c;
1120		s++;
1121
1122		c = id[ofs] & 0xff;
1123		*s = c;
1124		s++;
1125
1126		ofs++;
1127		len -= 2;
1128	}
1129}
1130
1131/**
1132 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *	@id: IDENTIFY DEVICE results we will examine
1134 *	@s: string into which data is output
1135 *	@ofs: offset into identify device page
1136 *	@len: length of string to return. must be an odd number.
1137 *
1138 *	This function is identical to ata_id_string except that it
1139 *	trims trailing spaces and terminates the resulting string with
1140 *	null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *	LOCKING:
1143 *	caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146		     unsigned int ofs, unsigned int len)
1147{
1148	unsigned char *p;
1149
1150	ata_id_string(id, s, ofs, len - 1);
1151
1152	p = s + strnlen(s, len - 1);
1153	while (p > s && p[-1] == ' ')
1154		p--;
1155	*p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160	if (ata_id_has_lba(id)) {
1161		if (ata_id_has_lba48(id))
1162			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163		else
1164			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165	} else {
1166		if (ata_id_current_chs_valid(id))
1167			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168			       id[ATA_ID_CUR_SECTORS];
1169		else
1170			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171			       id[ATA_ID_SECTORS];
1172	}
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177	u64 sectors = 0;
1178
1179	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182	sectors |= (tf->lbah & 0xff) << 16;
1183	sectors |= (tf->lbam & 0xff) << 8;
1184	sectors |= (tf->lbal & 0xff);
1185
1186	return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191	u64 sectors = 0;
1192
1193	sectors |= (tf->device & 0x0f) << 24;
1194	sectors |= (tf->lbah & 0xff) << 16;
1195	sectors |= (tf->lbam & 0xff) << 8;
1196	sectors |= (tf->lbal & 0xff);
1197
1198	return sectors;
1199}
1200
1201/**
1202 *	ata_read_native_max_address - Read native max address
1203 *	@dev: target device
1204 *	@max_sectors: out parameter for the result native max address
1205 *
1206 *	Perform an LBA48 or LBA28 native size query upon the device in
1207 *	question.
1208 *
1209 *	RETURNS:
1210 *	0 on success, -EACCES if command is aborted by the drive.
1211 *	-EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215	unsigned int err_mask;
1216	struct ata_taskfile tf;
1217	int lba48 = ata_id_has_lba48(dev->id);
1218
1219	ata_tf_init(dev, &tf);
1220
1221	/* always clear all address registers */
1222	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224	if (lba48) {
1225		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226		tf.flags |= ATA_TFLAG_LBA48;
1227	} else
1228		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230	tf.protocol |= ATA_PROT_NODATA;
1231	tf.device |= ATA_LBA;
1232
1233	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234	if (err_mask) {
1235		ata_dev_warn(dev,
1236			     "failed to read native max address (err_mask=0x%x)\n",
1237			     err_mask);
1238		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239			return -EACCES;
1240		return -EIO;
1241	}
1242
1243	if (lba48)
1244		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245	else
1246		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248		(*max_sectors)--;
1249	return 0;
1250}
1251
1252/**
1253 *	ata_set_max_sectors - Set max sectors
1254 *	@dev: target device
1255 *	@new_sectors: new max sectors value to set for the device
1256 *
1257 *	Set max sectors of @dev to @new_sectors.
1258 *
1259 *	RETURNS:
1260 *	0 on success, -EACCES if command is aborted or denied (due to
1261 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *	errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266	unsigned int err_mask;
1267	struct ata_taskfile tf;
1268	int lba48 = ata_id_has_lba48(dev->id);
1269
1270	new_sectors--;
1271
1272	ata_tf_init(dev, &tf);
1273
1274	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276	if (lba48) {
1277		tf.command = ATA_CMD_SET_MAX_EXT;
1278		tf.flags |= ATA_TFLAG_LBA48;
1279
1280		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283	} else {
1284		tf.command = ATA_CMD_SET_MAX;
1285
1286		tf.device |= (new_sectors >> 24) & 0xf;
1287	}
1288
1289	tf.protocol |= ATA_PROT_NODATA;
1290	tf.device |= ATA_LBA;
1291
1292	tf.lbal = (new_sectors >> 0) & 0xff;
1293	tf.lbam = (new_sectors >> 8) & 0xff;
1294	tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297	if (err_mask) {
1298		ata_dev_warn(dev,
1299			     "failed to set max address (err_mask=0x%x)\n",
1300			     err_mask);
1301		if (err_mask == AC_ERR_DEV &&
1302		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303			return -EACCES;
1304		return -EIO;
1305	}
1306
1307	return 0;
1308}
1309
1310/**
1311 *	ata_hpa_resize		-	Resize a device with an HPA set
1312 *	@dev: Device to resize
1313 *
1314 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *	it if required to the full size of the media. The caller must check
1316 *	the drive has the HPA feature set enabled.
1317 *
1318 *	RETURNS:
1319 *	0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323	struct ata_eh_context *ehc = &dev->link->eh_context;
1324	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326	u64 sectors = ata_id_n_sectors(dev->id);
1327	u64 native_sectors;
1328	int rc;
1329
1330	/* do we need to do it? */
1331	if (dev->class != ATA_DEV_ATA ||
1332	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334		return 0;
1335
1336	/* read native max address */
1337	rc = ata_read_native_max_address(dev, &native_sectors);
1338	if (rc) {
1339		/* If device aborted the command or HPA isn't going to
1340		 * be unlocked, skip HPA resizing.
1341		 */
1342		if (rc == -EACCES || !unlock_hpa) {
1343			ata_dev_warn(dev,
1344				     "HPA support seems broken, skipping HPA handling\n");
1345			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347			/* we can continue if device aborted the command */
1348			if (rc == -EACCES)
1349				rc = 0;
1350		}
1351
1352		return rc;
1353	}
1354	dev->n_native_sectors = native_sectors;
1355
1356	/* nothing to do? */
1357	if (native_sectors <= sectors || !unlock_hpa) {
1358		if (!print_info || native_sectors == sectors)
1359			return 0;
1360
1361		if (native_sectors > sectors)
1362			ata_dev_info(dev,
1363				"HPA detected: current %llu, native %llu\n",
1364				(unsigned long long)sectors,
1365				(unsigned long long)native_sectors);
1366		else if (native_sectors < sectors)
1367			ata_dev_warn(dev,
1368				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369				(unsigned long long)native_sectors,
1370				(unsigned long long)sectors);
1371		return 0;
1372	}
1373
1374	/* let's unlock HPA */
1375	rc = ata_set_max_sectors(dev, native_sectors);
1376	if (rc == -EACCES) {
1377		/* if device aborted the command, skip HPA resizing */
1378		ata_dev_warn(dev,
1379			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380			     (unsigned long long)sectors,
1381			     (unsigned long long)native_sectors);
1382		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383		return 0;
1384	} else if (rc)
1385		return rc;
1386
1387	/* re-read IDENTIFY data */
1388	rc = ata_dev_reread_id(dev, 0);
1389	if (rc) {
1390		ata_dev_err(dev,
1391			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392		return rc;
1393	}
1394
1395	if (print_info) {
1396		u64 new_sectors = ata_id_n_sectors(dev->id);
1397		ata_dev_info(dev,
1398			"HPA unlocked: %llu -> %llu, native %llu\n",
1399			(unsigned long long)sectors,
1400			(unsigned long long)new_sectors,
1401			(unsigned long long)native_sectors);
1402	}
1403
1404	return 0;
1405}
1406
1407/**
1408 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *	@id: IDENTIFY DEVICE page to dump
1410 *
1411 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *	page.
1413 *
1414 *	LOCKING:
1415 *	caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420	DPRINTK("49==0x%04x  "
1421		"53==0x%04x  "
1422		"63==0x%04x  "
1423		"64==0x%04x  "
1424		"75==0x%04x  \n",
1425		id[49],
1426		id[53],
1427		id[63],
1428		id[64],
1429		id[75]);
1430	DPRINTK("80==0x%04x  "
1431		"81==0x%04x  "
1432		"82==0x%04x  "
1433		"83==0x%04x  "
1434		"84==0x%04x  \n",
1435		id[80],
1436		id[81],
1437		id[82],
1438		id[83],
1439		id[84]);
1440	DPRINTK("88==0x%04x  "
1441		"93==0x%04x\n",
1442		id[88],
1443		id[93]);
1444}
1445
1446/**
1447 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *	@id: IDENTIFY data to compute xfer mask from
1449 *
1450 *	Compute the xfermask for this device. This is not as trivial
1451 *	as it seems if we must consider early devices correctly.
1452 *
1453 *	FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *	LOCKING:
1456 *	None.
1457 *
1458 *	RETURNS:
1459 *	Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463	unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465	/* Usual case. Word 53 indicates word 64 is valid */
1466	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468		pio_mask <<= 3;
1469		pio_mask |= 0x7;
1470	} else {
1471		/* If word 64 isn't valid then Word 51 high byte holds
1472		 * the PIO timing number for the maximum. Turn it into
1473		 * a mask.
1474		 */
1475		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476		if (mode < 5)	/* Valid PIO range */
1477			pio_mask = (2 << mode) - 1;
1478		else
1479			pio_mask = 1;
1480
1481		/* But wait.. there's more. Design your standards by
1482		 * committee and you too can get a free iordy field to
1483		 * process. However its the speeds not the modes that
1484		 * are supported... Note drivers using the timing API
1485		 * will get this right anyway
1486		 */
1487	}
1488
1489	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491	if (ata_id_is_cfa(id)) {
1492		/*
1493		 *	Process compact flash extended modes
1494		 */
1495		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498		if (pio)
1499			pio_mask |= (1 << 5);
1500		if (pio > 1)
1501			pio_mask |= (1 << 6);
1502		if (dma)
1503			mwdma_mask |= (1 << 3);
1504		if (dma > 1)
1505			mwdma_mask |= (1 << 4);
1506	}
1507
1508	udma_mask = 0;
1509	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517	struct completion *waiting = qc->private_data;
1518
1519	complete(waiting);
1520}
1521
1522/**
1523 *	ata_exec_internal_sg - execute libata internal command
1524 *	@dev: Device to which the command is sent
1525 *	@tf: Taskfile registers for the command and the result
1526 *	@cdb: CDB for packet command
1527 *	@dma_dir: Data transfer direction of the command
1528 *	@sgl: sg list for the data buffer of the command
1529 *	@n_elem: Number of sg entries
1530 *	@timeout: Timeout in msecs (0 for default)
1531 *
1532 *	Executes libata internal command with timeout.  @tf contains
1533 *	command on entry and result on return.  Timeout and error
1534 *	conditions are reported via return value.  No recovery action
1535 *	is taken after a command times out.  It's caller's duty to
1536 *	clean up after timeout.
1537 *
1538 *	LOCKING:
1539 *	None.  Should be called with kernel context, might sleep.
1540 *
1541 *	RETURNS:
1542 *	Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545			      struct ata_taskfile *tf, const u8 *cdb,
1546			      int dma_dir, struct scatterlist *sgl,
1547			      unsigned int n_elem, unsigned long timeout)
1548{
1549	struct ata_link *link = dev->link;
1550	struct ata_port *ap = link->ap;
1551	u8 command = tf->command;
1552	int auto_timeout = 0;
1553	struct ata_queued_cmd *qc;
1554	unsigned int tag, preempted_tag;
1555	u32 preempted_sactive, preempted_qc_active;
1556	int preempted_nr_active_links;
1557	DECLARE_COMPLETION_ONSTACK(wait);
1558	unsigned long flags;
1559	unsigned int err_mask;
1560	int rc;
1561
1562	spin_lock_irqsave(ap->lock, flags);
1563
1564	/* no internal command while frozen */
1565	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566		spin_unlock_irqrestore(ap->lock, flags);
1567		return AC_ERR_SYSTEM;
1568	}
1569
1570	/* initialize internal qc */
1571
1572	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573	 * drivers choke if any other tag is given.  This breaks
1574	 * ata_tag_internal() test for those drivers.  Don't use new
1575	 * EH stuff without converting to it.
1576	 */
1577	if (ap->ops->error_handler)
1578		tag = ATA_TAG_INTERNAL;
1579	else
1580		tag = 0;
1581
1582	if (test_and_set_bit(tag, &ap->qc_allocated))
1583		BUG();
1584	qc = __ata_qc_from_tag(ap, tag);
1585
1586	qc->tag = tag;
1587	qc->scsicmd = NULL;
1588	qc->ap = ap;
1589	qc->dev = dev;
1590	ata_qc_reinit(qc);
1591
1592	preempted_tag = link->active_tag;
1593	preempted_sactive = link->sactive;
1594	preempted_qc_active = ap->qc_active;
1595	preempted_nr_active_links = ap->nr_active_links;
1596	link->active_tag = ATA_TAG_POISON;
1597	link->sactive = 0;
1598	ap->qc_active = 0;
1599	ap->nr_active_links = 0;
1600
1601	/* prepare & issue qc */
1602	qc->tf = *tf;
1603	if (cdb)
1604		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606	/* some SATA bridges need us to indicate data xfer direction */
1607	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608	    dma_dir == DMA_FROM_DEVICE)
1609		qc->tf.feature |= ATAPI_DMADIR;
1610
1611	qc->flags |= ATA_QCFLAG_RESULT_TF;
1612	qc->dma_dir = dma_dir;
1613	if (dma_dir != DMA_NONE) {
1614		unsigned int i, buflen = 0;
1615		struct scatterlist *sg;
1616
1617		for_each_sg(sgl, sg, n_elem, i)
1618			buflen += sg->length;
1619
1620		ata_sg_init(qc, sgl, n_elem);
1621		qc->nbytes = buflen;
1622	}
1623
1624	qc->private_data = &wait;
1625	qc->complete_fn = ata_qc_complete_internal;
1626
1627	ata_qc_issue(qc);
1628
1629	spin_unlock_irqrestore(ap->lock, flags);
1630
1631	if (!timeout) {
1632		if (ata_probe_timeout)
1633			timeout = ata_probe_timeout * 1000;
1634		else {
1635			timeout = ata_internal_cmd_timeout(dev, command);
1636			auto_timeout = 1;
1637		}
1638	}
1639
1640	if (ap->ops->error_handler)
1641		ata_eh_release(ap);
1642
1643	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645	if (ap->ops->error_handler)
1646		ata_eh_acquire(ap);
1647
1648	ata_sff_flush_pio_task(ap);
1649
1650	if (!rc) {
1651		spin_lock_irqsave(ap->lock, flags);
1652
1653		/* We're racing with irq here.  If we lose, the
1654		 * following test prevents us from completing the qc
1655		 * twice.  If we win, the port is frozen and will be
1656		 * cleaned up by ->post_internal_cmd().
1657		 */
1658		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659			qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661			if (ap->ops->error_handler)
1662				ata_port_freeze(ap);
1663			else
1664				ata_qc_complete(qc);
1665
1666			if (ata_msg_warn(ap))
1667				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668					     command);
1669		}
1670
1671		spin_unlock_irqrestore(ap->lock, flags);
1672	}
1673
1674	/* do post_internal_cmd */
1675	if (ap->ops->post_internal_cmd)
1676		ap->ops->post_internal_cmd(qc);
1677
1678	/* perform minimal error analysis */
1679	if (qc->flags & ATA_QCFLAG_FAILED) {
1680		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681			qc->err_mask |= AC_ERR_DEV;
1682
1683		if (!qc->err_mask)
1684			qc->err_mask |= AC_ERR_OTHER;
1685
1686		if (qc->err_mask & ~AC_ERR_OTHER)
1687			qc->err_mask &= ~AC_ERR_OTHER;
1688	}
1689
1690	/* finish up */
1691	spin_lock_irqsave(ap->lock, flags);
1692
1693	*tf = qc->result_tf;
1694	err_mask = qc->err_mask;
1695
1696	ata_qc_free(qc);
1697	link->active_tag = preempted_tag;
1698	link->sactive = preempted_sactive;
1699	ap->qc_active = preempted_qc_active;
1700	ap->nr_active_links = preempted_nr_active_links;
1701
1702	spin_unlock_irqrestore(ap->lock, flags);
1703
1704	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705		ata_internal_cmd_timed_out(dev, command);
1706
1707	return err_mask;
1708}
1709
1710/**
1711 *	ata_exec_internal - execute libata internal command
1712 *	@dev: Device to which the command is sent
1713 *	@tf: Taskfile registers for the command and the result
1714 *	@cdb: CDB for packet command
1715 *	@dma_dir: Data transfer direction of the command
1716 *	@buf: Data buffer of the command
1717 *	@buflen: Length of data buffer
1718 *	@timeout: Timeout in msecs (0 for default)
1719 *
1720 *	Wrapper around ata_exec_internal_sg() which takes simple
1721 *	buffer instead of sg list.
1722 *
1723 *	LOCKING:
1724 *	None.  Should be called with kernel context, might sleep.
1725 *
1726 *	RETURNS:
1727 *	Zero on success, AC_ERR_* mask on failure
1728 */
1729unsigned ata_exec_internal(struct ata_device *dev,
1730			   struct ata_taskfile *tf, const u8 *cdb,
1731			   int dma_dir, void *buf, unsigned int buflen,
1732			   unsigned long timeout)
1733{
1734	struct scatterlist *psg = NULL, sg;
1735	unsigned int n_elem = 0;
1736
1737	if (dma_dir != DMA_NONE) {
1738		WARN_ON(!buf);
1739		sg_init_one(&sg, buf, buflen);
1740		psg = &sg;
1741		n_elem++;
1742	}
1743
1744	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745				    timeout);
1746}
1747
1748/**
1749 *	ata_do_simple_cmd - execute simple internal command
1750 *	@dev: Device to which the command is sent
1751 *	@cmd: Opcode to execute
1752 *
1753 *	Execute a 'simple' command, that only consists of the opcode
1754 *	'cmd' itself, without filling any other registers
1755 *
1756 *	LOCKING:
1757 *	Kernel thread context (may sleep).
1758 *
1759 *	RETURNS:
1760 *	Zero on success, AC_ERR_* mask on failure
1761 */
1762unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763{
1764	struct ata_taskfile tf;
1765
1766	ata_tf_init(dev, &tf);
1767
1768	tf.command = cmd;
1769	tf.flags |= ATA_TFLAG_DEVICE;
1770	tf.protocol = ATA_PROT_NODATA;
1771
1772	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773}
1774
1775/**
1776 *	ata_pio_need_iordy	-	check if iordy needed
1777 *	@adev: ATA device
1778 *
1779 *	Check if the current speed of the device requires IORDY. Used
1780 *	by various controllers for chip configuration.
1781 */
1782unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783{
1784	/* Don't set IORDY if we're preparing for reset.  IORDY may
1785	 * lead to controller lock up on certain controllers if the
1786	 * port is not occupied.  See bko#11703 for details.
1787	 */
1788	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789		return 0;
1790	/* Controller doesn't support IORDY.  Probably a pointless
1791	 * check as the caller should know this.
1792	 */
1793	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794		return 0;
1795	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796	if (ata_id_is_cfa(adev->id)
1797	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798		return 0;
1799	/* PIO3 and higher it is mandatory */
1800	if (adev->pio_mode > XFER_PIO_2)
1801		return 1;
1802	/* We turn it on when possible */
1803	if (ata_id_has_iordy(adev->id))
1804		return 1;
1805	return 0;
1806}
1807
1808/**
1809 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1810 *	@adev: ATA device
1811 *
1812 *	Compute the highest mode possible if we are not using iordy. Return
1813 *	-1 if no iordy mode is available.
1814 */
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1817	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1818	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1819		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820		/* Is the speed faster than the drive allows non IORDY ? */
1821		if (pio) {
1822			/* This is cycle times not frequency - watch the logic! */
1823			if (pio > 240)	/* PIO2 is 240nS per cycle */
1824				return 3 << ATA_SHIFT_PIO;
1825			return 7 << ATA_SHIFT_PIO;
1826		}
1827	}
1828	return 3 << ATA_SHIFT_PIO;
1829}
1830
1831/**
1832 *	ata_do_dev_read_id		-	default ID read method
1833 *	@dev: device
1834 *	@tf: proposed taskfile
1835 *	@id: data buffer
1836 *
1837 *	Issue the identify taskfile and hand back the buffer containing
1838 *	identify data. For some RAID controllers and for pre ATA devices
1839 *	this function is wrapped or replaced by the driver
1840 */
1841unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842					struct ata_taskfile *tf, u16 *id)
1843{
1844	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846}
1847
1848/**
1849 *	ata_dev_read_id - Read ID data from the specified device
1850 *	@dev: target device
1851 *	@p_class: pointer to class of the target device (may be changed)
1852 *	@flags: ATA_READID_* flags
1853 *	@id: buffer to read IDENTIFY data into
1854 *
1855 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 *	for pre-ATA4 drives.
1859 *
1860 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 *	now we abort if we hit that case.
1862 *
1863 *	LOCKING:
1864 *	Kernel thread context (may sleep)
1865 *
1866 *	RETURNS:
1867 *	0 on success, -errno otherwise.
1868 */
1869int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870		    unsigned int flags, u16 *id)
1871{
1872	struct ata_port *ap = dev->link->ap;
1873	unsigned int class = *p_class;
1874	struct ata_taskfile tf;
1875	unsigned int err_mask = 0;
1876	const char *reason;
1877	bool is_semb = class == ATA_DEV_SEMB;
1878	int may_fallback = 1, tried_spinup = 0;
1879	int rc;
1880
1881	if (ata_msg_ctl(ap))
1882		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884retry:
1885	ata_tf_init(dev, &tf);
1886
1887	switch (class) {
1888	case ATA_DEV_SEMB:
1889		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1890	case ATA_DEV_ATA:
1891		tf.command = ATA_CMD_ID_ATA;
1892		break;
1893	case ATA_DEV_ATAPI:
1894		tf.command = ATA_CMD_ID_ATAPI;
1895		break;
1896	default:
1897		rc = -ENODEV;
1898		reason = "unsupported class";
1899		goto err_out;
1900	}
1901
1902	tf.protocol = ATA_PROT_PIO;
1903
1904	/* Some devices choke if TF registers contain garbage.  Make
1905	 * sure those are properly initialized.
1906	 */
1907	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909	/* Device presence detection is unreliable on some
1910	 * controllers.  Always poll IDENTIFY if available.
1911	 */
1912	tf.flags |= ATA_TFLAG_POLLING;
1913
1914	if (ap->ops->read_id)
1915		err_mask = ap->ops->read_id(dev, &tf, id);
1916	else
1917		err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919	if (err_mask) {
1920		if (err_mask & AC_ERR_NODEV_HINT) {
1921			ata_dev_dbg(dev, "NODEV after polling detection\n");
1922			return -ENOENT;
1923		}
1924
1925		if (is_semb) {
1926			ata_dev_info(dev,
1927		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928			/* SEMB is not supported yet */
1929			*p_class = ATA_DEV_SEMB_UNSUP;
1930			return 0;
1931		}
1932
1933		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934			/* Device or controller might have reported
1935			 * the wrong device class.  Give a shot at the
1936			 * other IDENTIFY if the current one is
1937			 * aborted by the device.
1938			 */
1939			if (may_fallback) {
1940				may_fallback = 0;
1941
1942				if (class == ATA_DEV_ATA)
1943					class = ATA_DEV_ATAPI;
1944				else
1945					class = ATA_DEV_ATA;
1946				goto retry;
1947			}
1948
1949			/* Control reaches here iff the device aborted
1950			 * both flavors of IDENTIFYs which happens
1951			 * sometimes with phantom devices.
1952			 */
1953			ata_dev_dbg(dev,
1954				    "both IDENTIFYs aborted, assuming NODEV\n");
1955			return -ENOENT;
1956		}
1957
1958		rc = -EIO;
1959		reason = "I/O error";
1960		goto err_out;
1961	}
1962
1963	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965			    "class=%d may_fallback=%d tried_spinup=%d\n",
1966			    class, may_fallback, tried_spinup);
1967		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969	}
1970
1971	/* Falling back doesn't make sense if ID data was read
1972	 * successfully at least once.
1973	 */
1974	may_fallback = 0;
1975
1976	swap_buf_le16(id, ATA_ID_WORDS);
1977
1978	/* sanity check */
1979	rc = -EINVAL;
1980	reason = "device reports invalid type";
1981
1982	if (class == ATA_DEV_ATA) {
1983		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984			goto err_out;
1985		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986							ata_id_is_ata(id)) {
1987			ata_dev_dbg(dev,
1988				"host indicates ignore ATA devices, ignored\n");
1989			return -ENOENT;
1990		}
1991	} else {
1992		if (ata_id_is_ata(id))
1993			goto err_out;
1994	}
1995
1996	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997		tried_spinup = 1;
1998		/*
1999		 * Drive powered-up in standby mode, and requires a specific
2000		 * SET_FEATURES spin-up subcommand before it will accept
2001		 * anything other than the original IDENTIFY command.
2002		 */
2003		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004		if (err_mask && id[2] != 0x738c) {
2005			rc = -EIO;
2006			reason = "SPINUP failed";
2007			goto err_out;
2008		}
2009		/*
2010		 * If the drive initially returned incomplete IDENTIFY info,
2011		 * we now must reissue the IDENTIFY command.
2012		 */
2013		if (id[2] == 0x37c8)
2014			goto retry;
2015	}
2016
2017	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018		/*
2019		 * The exact sequence expected by certain pre-ATA4 drives is:
2020		 * SRST RESET
2021		 * IDENTIFY (optional in early ATA)
2022		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023		 * anything else..
2024		 * Some drives were very specific about that exact sequence.
2025		 *
2026		 * Note that ATA4 says lba is mandatory so the second check
2027		 * should never trigger.
2028		 */
2029		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031			if (err_mask) {
2032				rc = -EIO;
2033				reason = "INIT_DEV_PARAMS failed";
2034				goto err_out;
2035			}
2036
2037			/* current CHS translation info (id[53-58]) might be
2038			 * changed. reread the identify device info.
2039			 */
2040			flags &= ~ATA_READID_POSTRESET;
2041			goto retry;
2042		}
2043	}
2044
2045	*p_class = class;
2046
2047	return 0;
2048
2049 err_out:
2050	if (ata_msg_warn(ap))
2051		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052			     reason, err_mask);
2053	return rc;
2054}
2055
2056static int ata_do_link_spd_horkage(struct ata_device *dev)
2057{
2058	struct ata_link *plink = ata_dev_phys_link(dev);
2059	u32 target, target_limit;
2060
2061	if (!sata_scr_valid(plink))
2062		return 0;
2063
2064	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065		target = 1;
2066	else
2067		return 0;
2068
2069	target_limit = (1 << target) - 1;
2070
2071	/* if already on stricter limit, no need to push further */
2072	if (plink->sata_spd_limit <= target_limit)
2073		return 0;
2074
2075	plink->sata_spd_limit = target_limit;
2076
2077	/* Request another EH round by returning -EAGAIN if link is
2078	 * going faster than the target speed.  Forward progress is
2079	 * guaranteed by setting sata_spd_limit to target_limit above.
2080	 */
2081	if (plink->sata_spd > target) {
2082		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083			     sata_spd_string(target));
2084		return -EAGAIN;
2085	}
2086	return 0;
2087}
2088
2089static inline u8 ata_dev_knobble(struct ata_device *dev)
2090{
2091	struct ata_port *ap = dev->link->ap;
2092
2093	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094		return 0;
2095
2096	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097}
2098
2099static int ata_dev_config_ncq(struct ata_device *dev,
2100			       char *desc, size_t desc_sz)
2101{
2102	struct ata_port *ap = dev->link->ap;
2103	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104	unsigned int err_mask;
2105	char *aa_desc = "";
2106
2107	if (!ata_id_has_ncq(dev->id)) {
2108		desc[0] = '\0';
2109		return 0;
2110	}
2111	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112		snprintf(desc, desc_sz, "NCQ (not used)");
2113		return 0;
2114	}
2115	if (ap->flags & ATA_FLAG_NCQ) {
2116		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117		dev->flags |= ATA_DFLAG_NCQ;
2118	}
2119
2120	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2122		ata_id_has_fpdma_aa(dev->id)) {
2123		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124			SATA_FPDMA_AA);
2125		if (err_mask) {
2126			ata_dev_err(dev,
2127				    "failed to enable AA (error_mask=0x%x)\n",
2128				    err_mask);
2129			if (err_mask != AC_ERR_DEV) {
2130				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131				return -EIO;
2132			}
2133		} else
2134			aa_desc = ", AA";
2135	}
2136
2137	if (hdepth >= ddepth)
2138		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139	else
2140		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141			ddepth, aa_desc);
2142
2143	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144	    ata_id_has_ncq_send_and_recv(dev->id)) {
2145		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146					     0, ap->sector_buf, 1);
2147		if (err_mask) {
2148			ata_dev_dbg(dev,
2149				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150				    err_mask);
2151		} else {
2152			u8 *cmds = dev->ncq_send_recv_cmds;
2153
2154			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2156
2157			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2161			}
2162		}
2163	}
2164
2165	return 0;
2166}
2167
2168/**
2169 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2170 *	@dev: Target device to configure
2171 *
2172 *	Configure @dev according to @dev->id.  Generic and low-level
2173 *	driver specific fixups are also applied.
2174 *
2175 *	LOCKING:
2176 *	Kernel thread context (may sleep)
2177 *
2178 *	RETURNS:
2179 *	0 on success, -errno otherwise
2180 */
2181int ata_dev_configure(struct ata_device *dev)
2182{
2183	struct ata_port *ap = dev->link->ap;
2184	struct ata_eh_context *ehc = &dev->link->eh_context;
2185	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186	const u16 *id = dev->id;
2187	unsigned long xfer_mask;
2188	unsigned int err_mask;
2189	char revbuf[7];		/* XYZ-99\0 */
2190	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191	char modelbuf[ATA_ID_PROD_LEN+1];
2192	int rc;
2193
2194	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196		return 0;
2197	}
2198
2199	if (ata_msg_probe(ap))
2200		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2201
2202	/* set horkage */
2203	dev->horkage |= ata_dev_blacklisted(dev);
2204	ata_force_horkage(dev);
2205
2206	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207		ata_dev_info(dev, "unsupported device, disabling\n");
2208		ata_dev_disable(dev);
2209		return 0;
2210	}
2211
2212	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213	    dev->class == ATA_DEV_ATAPI) {
2214		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215			     atapi_enabled ? "not supported with this driver"
2216			     : "disabled");
2217		ata_dev_disable(dev);
2218		return 0;
2219	}
2220
2221	rc = ata_do_link_spd_horkage(dev);
2222	if (rc)
2223		return rc;
2224
2225	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228		dev->horkage |= ATA_HORKAGE_NOLPM;
2229
2230	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2233	}
2234
2235	/* let ACPI work its magic */
2236	rc = ata_acpi_on_devcfg(dev);
2237	if (rc)
2238		return rc;
2239
2240	/* massage HPA, do it early as it might change IDENTIFY data */
2241	rc = ata_hpa_resize(dev);
2242	if (rc)
2243		return rc;
2244
2245	/* print device capabilities */
2246	if (ata_msg_probe(ap))
2247		ata_dev_dbg(dev,
2248			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250			    __func__,
2251			    id[49], id[82], id[83], id[84],
2252			    id[85], id[86], id[87], id[88]);
2253
2254	/* initialize to-be-configured parameters */
2255	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2256	dev->max_sectors = 0;
2257	dev->cdb_len = 0;
2258	dev->n_sectors = 0;
2259	dev->cylinders = 0;
2260	dev->heads = 0;
2261	dev->sectors = 0;
2262	dev->multi_count = 0;
2263
2264	/*
2265	 * common ATA, ATAPI feature tests
2266	 */
2267
2268	/* find max transfer mode; for printk only */
2269	xfer_mask = ata_id_xfermask(id);
2270
2271	if (ata_msg_probe(ap))
2272		ata_dump_id(id);
2273
2274	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276			sizeof(fwrevbuf));
2277
2278	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279			sizeof(modelbuf));
2280
2281	/* ATA-specific feature tests */
2282	if (dev->class == ATA_DEV_ATA) {
2283		if (ata_id_is_cfa(id)) {
2284			/* CPRM may make this media unusable */
2285			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2286				ata_dev_warn(dev,
2287	"supports DRM functions and may not be fully accessible\n");
2288			snprintf(revbuf, 7, "CFA");
2289		} else {
2290			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2291			/* Warn the user if the device has TPM extensions */
2292			if (ata_id_has_tpm(id))
2293				ata_dev_warn(dev,
2294	"supports DRM functions and may not be fully accessible\n");
2295		}
2296
2297		dev->n_sectors = ata_id_n_sectors(id);
2298
2299		/* get current R/W Multiple count setting */
2300		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301			unsigned int max = dev->id[47] & 0xff;
2302			unsigned int cnt = dev->id[59] & 0xff;
2303			/* only recognize/allow powers of two here */
2304			if (is_power_of_2(max) && is_power_of_2(cnt))
2305				if (cnt <= max)
2306					dev->multi_count = cnt;
2307		}
2308
2309		if (ata_id_has_lba(id)) {
2310			const char *lba_desc;
2311			char ncq_desc[24];
2312
2313			lba_desc = "LBA";
2314			dev->flags |= ATA_DFLAG_LBA;
2315			if (ata_id_has_lba48(id)) {
2316				dev->flags |= ATA_DFLAG_LBA48;
2317				lba_desc = "LBA48";
2318
2319				if (dev->n_sectors >= (1UL << 28) &&
2320				    ata_id_has_flush_ext(id))
2321					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2322			}
2323
2324			/* config NCQ */
2325			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326			if (rc)
2327				return rc;
2328
2329			/* print device info to dmesg */
2330			if (ata_msg_drv(ap) && print_info) {
2331				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332					     revbuf, modelbuf, fwrevbuf,
2333					     ata_mode_string(xfer_mask));
2334				ata_dev_info(dev,
2335					     "%llu sectors, multi %u: %s %s\n",
2336					(unsigned long long)dev->n_sectors,
2337					dev->multi_count, lba_desc, ncq_desc);
2338			}
2339		} else {
2340			/* CHS */
2341
2342			/* Default translation */
2343			dev->cylinders	= id[1];
2344			dev->heads	= id[3];
2345			dev->sectors	= id[6];
2346
2347			if (ata_id_current_chs_valid(id)) {
2348				/* Current CHS translation is valid. */
2349				dev->cylinders = id[54];
2350				dev->heads     = id[55];
2351				dev->sectors   = id[56];
2352			}
2353
2354			/* print device info to dmesg */
2355			if (ata_msg_drv(ap) && print_info) {
2356				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357					     revbuf,	modelbuf, fwrevbuf,
2358					     ata_mode_string(xfer_mask));
2359				ata_dev_info(dev,
2360					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361					     (unsigned long long)dev->n_sectors,
2362					     dev->multi_count, dev->cylinders,
2363					     dev->heads, dev->sectors);
2364			}
2365		}
2366
2367		/* Check and mark DevSlp capability. Get DevSlp timing variables
2368		 * from SATA Settings page of Identify Device Data Log.
2369		 */
2370		if (ata_id_has_devslp(dev->id)) {
2371			u8 *sata_setting = ap->sector_buf;
2372			int i, j;
2373
2374			dev->flags |= ATA_DFLAG_DEVSLP;
2375			err_mask = ata_read_log_page(dev,
2376						     ATA_LOG_SATA_ID_DEV_DATA,
2377						     ATA_LOG_SATA_SETTINGS,
2378						     sata_setting,
2379						     1);
2380			if (err_mask)
2381				ata_dev_dbg(dev,
2382					    "failed to get Identify Device Data, Emask 0x%x\n",
2383					    err_mask);
2384			else
2385				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386					j = ATA_LOG_DEVSLP_OFFSET + i;
2387					dev->devslp_timing[i] = sata_setting[j];
2388				}
2389		}
2390
2391		dev->cdb_len = 16;
2392	}
2393
2394	/* ATAPI-specific feature tests */
2395	else if (dev->class == ATA_DEV_ATAPI) {
2396		const char *cdb_intr_string = "";
2397		const char *atapi_an_string = "";
2398		const char *dma_dir_string = "";
2399		u32 sntf;
2400
2401		rc = atapi_cdb_len(id);
2402		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403			if (ata_msg_warn(ap))
2404				ata_dev_warn(dev, "unsupported CDB len\n");
2405			rc = -EINVAL;
2406			goto err_out_nosup;
2407		}
2408		dev->cdb_len = (unsigned int) rc;
2409
2410		/* Enable ATAPI AN if both the host and device have
2411		 * the support.  If PMP is attached, SNTF is required
2412		 * to enable ATAPI AN to discern between PHY status
2413		 * changed notifications and ATAPI ANs.
2414		 */
2415		if (atapi_an &&
2416		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417		    (!sata_pmp_attached(ap) ||
2418		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
 
 
2419			/* issue SET feature command to turn this on */
2420			err_mask = ata_dev_set_feature(dev,
2421					SETFEATURES_SATA_ENABLE, SATA_AN);
2422			if (err_mask)
2423				ata_dev_err(dev,
2424					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425					    err_mask);
2426			else {
2427				dev->flags |= ATA_DFLAG_AN;
2428				atapi_an_string = ", ATAPI AN";
2429			}
2430		}
2431
2432		if (ata_id_cdb_intr(dev->id)) {
2433			dev->flags |= ATA_DFLAG_CDB_INTR;
2434			cdb_intr_string = ", CDB intr";
2435		}
2436
2437		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2438			dev->flags |= ATA_DFLAG_DMADIR;
2439			dma_dir_string = ", DMADIR";
2440		}
2441
2442		if (ata_id_has_da(dev->id)) {
2443			dev->flags |= ATA_DFLAG_DA;
2444			zpodd_init(dev);
2445		}
2446
2447		/* print device info to dmesg */
2448		if (ata_msg_drv(ap) && print_info)
2449			ata_dev_info(dev,
2450				     "ATAPI: %s, %s, max %s%s%s%s\n",
2451				     modelbuf, fwrevbuf,
2452				     ata_mode_string(xfer_mask),
2453				     cdb_intr_string, atapi_an_string,
2454				     dma_dir_string);
2455	}
2456
2457	/* determine max_sectors */
2458	dev->max_sectors = ATA_MAX_SECTORS;
2459	if (dev->flags & ATA_DFLAG_LBA48)
2460		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2461
2462	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2463	   200 sectors */
2464	if (ata_dev_knobble(dev)) {
2465		if (ata_msg_drv(ap) && print_info)
2466			ata_dev_info(dev, "applying bridge limits\n");
2467		dev->udma_mask &= ATA_UDMA5;
2468		dev->max_sectors = ATA_MAX_SECTORS;
2469	}
2470
2471	if ((dev->class == ATA_DEV_ATAPI) &&
2472	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2473		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2474		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2475	}
2476
2477	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2478		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479					 dev->max_sectors);
2480
2481	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2483
2484	if (ap->ops->dev_config)
2485		ap->ops->dev_config(dev);
2486
2487	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488		/* Let the user know. We don't want to disallow opens for
2489		   rescue purposes, or in case the vendor is just a blithering
2490		   idiot. Do this after the dev_config call as some controllers
2491		   with buggy firmware may want to avoid reporting false device
2492		   bugs */
2493
2494		if (print_info) {
2495			ata_dev_warn(dev,
2496"Drive reports diagnostics failure. This may indicate a drive\n");
2497			ata_dev_warn(dev,
2498"fault or invalid emulation. Contact drive vendor for information.\n");
2499		}
2500	}
2501
2502	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2503		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2505	}
2506
2507	return 0;
2508
2509err_out_nosup:
2510	if (ata_msg_probe(ap))
2511		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2512	return rc;
2513}
2514
2515/**
2516 *	ata_cable_40wire	-	return 40 wire cable type
2517 *	@ap: port
2518 *
2519 *	Helper method for drivers which want to hardwire 40 wire cable
2520 *	detection.
2521 */
2522
2523int ata_cable_40wire(struct ata_port *ap)
2524{
2525	return ATA_CBL_PATA40;
2526}
2527
2528/**
2529 *	ata_cable_80wire	-	return 80 wire cable type
2530 *	@ap: port
2531 *
2532 *	Helper method for drivers which want to hardwire 80 wire cable
2533 *	detection.
2534 */
2535
2536int ata_cable_80wire(struct ata_port *ap)
2537{
2538	return ATA_CBL_PATA80;
2539}
2540
2541/**
2542 *	ata_cable_unknown	-	return unknown PATA cable.
2543 *	@ap: port
2544 *
2545 *	Helper method for drivers which have no PATA cable detection.
2546 */
2547
2548int ata_cable_unknown(struct ata_port *ap)
2549{
2550	return ATA_CBL_PATA_UNK;
2551}
2552
2553/**
2554 *	ata_cable_ignore	-	return ignored PATA cable.
2555 *	@ap: port
2556 *
2557 *	Helper method for drivers which don't use cable type to limit
2558 *	transfer mode.
2559 */
2560int ata_cable_ignore(struct ata_port *ap)
2561{
2562	return ATA_CBL_PATA_IGN;
2563}
2564
2565/**
2566 *	ata_cable_sata	-	return SATA cable type
2567 *	@ap: port
2568 *
2569 *	Helper method for drivers which have SATA cables
2570 */
2571
2572int ata_cable_sata(struct ata_port *ap)
2573{
2574	return ATA_CBL_SATA;
2575}
2576
2577/**
2578 *	ata_bus_probe - Reset and probe ATA bus
2579 *	@ap: Bus to probe
2580 *
2581 *	Master ATA bus probing function.  Initiates a hardware-dependent
2582 *	bus reset, then attempts to identify any devices found on
2583 *	the bus.
2584 *
2585 *	LOCKING:
2586 *	PCI/etc. bus probe sem.
2587 *
2588 *	RETURNS:
2589 *	Zero on success, negative errno otherwise.
2590 */
2591
2592int ata_bus_probe(struct ata_port *ap)
2593{
2594	unsigned int classes[ATA_MAX_DEVICES];
2595	int tries[ATA_MAX_DEVICES];
2596	int rc;
2597	struct ata_device *dev;
2598
2599	ata_for_each_dev(dev, &ap->link, ALL)
2600		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2601
2602 retry:
2603	ata_for_each_dev(dev, &ap->link, ALL) {
2604		/* If we issue an SRST then an ATA drive (not ATAPI)
2605		 * may change configuration and be in PIO0 timing. If
2606		 * we do a hard reset (or are coming from power on)
2607		 * this is true for ATA or ATAPI. Until we've set a
2608		 * suitable controller mode we should not touch the
2609		 * bus as we may be talking too fast.
2610		 */
2611		dev->pio_mode = XFER_PIO_0;
2612		dev->dma_mode = 0xff;
2613
2614		/* If the controller has a pio mode setup function
2615		 * then use it to set the chipset to rights. Don't
2616		 * touch the DMA setup as that will be dealt with when
2617		 * configuring devices.
2618		 */
2619		if (ap->ops->set_piomode)
2620			ap->ops->set_piomode(ap, dev);
2621	}
2622
2623	/* reset and determine device classes */
2624	ap->ops->phy_reset(ap);
2625
2626	ata_for_each_dev(dev, &ap->link, ALL) {
2627		if (dev->class != ATA_DEV_UNKNOWN)
2628			classes[dev->devno] = dev->class;
2629		else
2630			classes[dev->devno] = ATA_DEV_NONE;
2631
2632		dev->class = ATA_DEV_UNKNOWN;
2633	}
2634
2635	/* read IDENTIFY page and configure devices. We have to do the identify
2636	   specific sequence bass-ackwards so that PDIAG- is released by
2637	   the slave device */
2638
2639	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2640		if (tries[dev->devno])
2641			dev->class = classes[dev->devno];
2642
2643		if (!ata_dev_enabled(dev))
2644			continue;
2645
2646		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647				     dev->id);
2648		if (rc)
2649			goto fail;
2650	}
2651
2652	/* Now ask for the cable type as PDIAG- should have been released */
2653	if (ap->ops->cable_detect)
2654		ap->cbl = ap->ops->cable_detect(ap);
2655
2656	/* We may have SATA bridge glue hiding here irrespective of
2657	 * the reported cable types and sensed types.  When SATA
2658	 * drives indicate we have a bridge, we don't know which end
2659	 * of the link the bridge is which is a problem.
2660	 */
2661	ata_for_each_dev(dev, &ap->link, ENABLED)
2662		if (ata_id_is_sata(dev->id))
2663			ap->cbl = ATA_CBL_SATA;
2664
2665	/* After the identify sequence we can now set up the devices. We do
2666	   this in the normal order so that the user doesn't get confused */
2667
2668	ata_for_each_dev(dev, &ap->link, ENABLED) {
2669		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2670		rc = ata_dev_configure(dev);
2671		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2672		if (rc)
2673			goto fail;
2674	}
2675
2676	/* configure transfer mode */
2677	rc = ata_set_mode(&ap->link, &dev);
2678	if (rc)
2679		goto fail;
2680
2681	ata_for_each_dev(dev, &ap->link, ENABLED)
2682		return 0;
2683
2684	return -ENODEV;
2685
2686 fail:
2687	tries[dev->devno]--;
2688
2689	switch (rc) {
2690	case -EINVAL:
2691		/* eeek, something went very wrong, give up */
2692		tries[dev->devno] = 0;
2693		break;
2694
2695	case -ENODEV:
2696		/* give it just one more chance */
2697		tries[dev->devno] = min(tries[dev->devno], 1);
2698	case -EIO:
2699		if (tries[dev->devno] == 1) {
2700			/* This is the last chance, better to slow
2701			 * down than lose it.
2702			 */
2703			sata_down_spd_limit(&ap->link, 0);
2704			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2705		}
2706	}
2707
2708	if (!tries[dev->devno])
2709		ata_dev_disable(dev);
2710
2711	goto retry;
2712}
2713
2714/**
2715 *	sata_print_link_status - Print SATA link status
2716 *	@link: SATA link to printk link status about
2717 *
2718 *	This function prints link speed and status of a SATA link.
2719 *
2720 *	LOCKING:
2721 *	None.
2722 */
2723static void sata_print_link_status(struct ata_link *link)
2724{
2725	u32 sstatus, scontrol, tmp;
2726
2727	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2728		return;
2729	sata_scr_read(link, SCR_CONTROL, &scontrol);
2730
2731	if (ata_phys_link_online(link)) {
2732		tmp = (sstatus >> 4) & 0xf;
2733		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734			      sata_spd_string(tmp), sstatus, scontrol);
2735	} else {
2736		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737			      sstatus, scontrol);
2738	}
2739}
2740
2741/**
2742 *	ata_dev_pair		-	return other device on cable
2743 *	@adev: device
2744 *
2745 *	Obtain the other device on the same cable, or if none is
2746 *	present NULL is returned
2747 */
2748
2749struct ata_device *ata_dev_pair(struct ata_device *adev)
2750{
2751	struct ata_link *link = adev->link;
2752	struct ata_device *pair = &link->device[1 - adev->devno];
2753	if (!ata_dev_enabled(pair))
2754		return NULL;
2755	return pair;
2756}
2757
2758/**
2759 *	sata_down_spd_limit - adjust SATA spd limit downward
2760 *	@link: Link to adjust SATA spd limit for
2761 *	@spd_limit: Additional limit
2762 *
2763 *	Adjust SATA spd limit of @link downward.  Note that this
2764 *	function only adjusts the limit.  The change must be applied
2765 *	using sata_set_spd().
2766 *
2767 *	If @spd_limit is non-zero, the speed is limited to equal to or
2768 *	lower than @spd_limit if such speed is supported.  If
2769 *	@spd_limit is slower than any supported speed, only the lowest
2770 *	supported speed is allowed.
2771 *
2772 *	LOCKING:
2773 *	Inherited from caller.
2774 *
2775 *	RETURNS:
2776 *	0 on success, negative errno on failure
2777 */
2778int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2779{
2780	u32 sstatus, spd, mask;
2781	int rc, bit;
2782
2783	if (!sata_scr_valid(link))
2784		return -EOPNOTSUPP;
2785
2786	/* If SCR can be read, use it to determine the current SPD.
2787	 * If not, use cached value in link->sata_spd.
2788	 */
2789	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2790	if (rc == 0 && ata_sstatus_online(sstatus))
2791		spd = (sstatus >> 4) & 0xf;
2792	else
2793		spd = link->sata_spd;
2794
2795	mask = link->sata_spd_limit;
2796	if (mask <= 1)
2797		return -EINVAL;
2798
2799	/* unconditionally mask off the highest bit */
2800	bit = fls(mask) - 1;
2801	mask &= ~(1 << bit);
2802
2803	/* Mask off all speeds higher than or equal to the current
2804	 * one.  Force 1.5Gbps if current SPD is not available.
2805	 */
2806	if (spd > 1)
2807		mask &= (1 << (spd - 1)) - 1;
2808	else
2809		mask &= 1;
2810
2811	/* were we already at the bottom? */
2812	if (!mask)
2813		return -EINVAL;
2814
2815	if (spd_limit) {
2816		if (mask & ((1 << spd_limit) - 1))
2817			mask &= (1 << spd_limit) - 1;
2818		else {
2819			bit = ffs(mask) - 1;
2820			mask = 1 << bit;
2821		}
2822	}
2823
2824	link->sata_spd_limit = mask;
2825
2826	ata_link_warn(link, "limiting SATA link speed to %s\n",
2827		      sata_spd_string(fls(mask)));
2828
2829	return 0;
2830}
2831
2832static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2833{
2834	struct ata_link *host_link = &link->ap->link;
2835	u32 limit, target, spd;
2836
2837	limit = link->sata_spd_limit;
2838
2839	/* Don't configure downstream link faster than upstream link.
2840	 * It doesn't speed up anything and some PMPs choke on such
2841	 * configuration.
2842	 */
2843	if (!ata_is_host_link(link) && host_link->sata_spd)
2844		limit &= (1 << host_link->sata_spd) - 1;
2845
2846	if (limit == UINT_MAX)
2847		target = 0;
2848	else
2849		target = fls(limit);
2850
2851	spd = (*scontrol >> 4) & 0xf;
2852	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2853
2854	return spd != target;
2855}
2856
2857/**
2858 *	sata_set_spd_needed - is SATA spd configuration needed
2859 *	@link: Link in question
2860 *
2861 *	Test whether the spd limit in SControl matches
2862 *	@link->sata_spd_limit.  This function is used to determine
2863 *	whether hardreset is necessary to apply SATA spd
2864 *	configuration.
2865 *
2866 *	LOCKING:
2867 *	Inherited from caller.
2868 *
2869 *	RETURNS:
2870 *	1 if SATA spd configuration is needed, 0 otherwise.
2871 */
2872static int sata_set_spd_needed(struct ata_link *link)
2873{
2874	u32 scontrol;
2875
2876	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2877		return 1;
2878
2879	return __sata_set_spd_needed(link, &scontrol);
2880}
2881
2882/**
2883 *	sata_set_spd - set SATA spd according to spd limit
2884 *	@link: Link to set SATA spd for
2885 *
2886 *	Set SATA spd of @link according to sata_spd_limit.
2887 *
2888 *	LOCKING:
2889 *	Inherited from caller.
2890 *
2891 *	RETURNS:
2892 *	0 if spd doesn't need to be changed, 1 if spd has been
2893 *	changed.  Negative errno if SCR registers are inaccessible.
2894 */
2895int sata_set_spd(struct ata_link *link)
2896{
2897	u32 scontrol;
2898	int rc;
2899
2900	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2901		return rc;
2902
2903	if (!__sata_set_spd_needed(link, &scontrol))
2904		return 0;
2905
2906	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2907		return rc;
2908
2909	return 1;
2910}
2911
2912/*
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2915 */
2916/*
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2920 *
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2922 */
2923
2924static const struct ata_timing ata_timing[] = {
2925/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2926	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2927	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2928	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2929	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2930	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2931	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2932	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2933
2934	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2935	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2936	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2937
2938	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2939	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2940	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2941	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2942	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2943
2944/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2945	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2946	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2947	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2948	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2949	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2950	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2951	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2952
2953	{ 0xFF }
2954};
2955
2956#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2957#define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2958
2959static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2960{
2961	q->setup	= EZ(t->setup      * 1000,  T);
2962	q->act8b	= EZ(t->act8b      * 1000,  T);
2963	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2964	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2965	q->active	= EZ(t->active     * 1000,  T);
2966	q->recover	= EZ(t->recover    * 1000,  T);
2967	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2968	q->cycle	= EZ(t->cycle      * 1000,  T);
2969	q->udma		= EZ(t->udma       * 1000, UT);
2970}
2971
2972void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973		      struct ata_timing *m, unsigned int what)
2974{
2975	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2976	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2977	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2978	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2979	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2980	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2981	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2982	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2983	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2984}
2985
2986const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2987{
2988	const struct ata_timing *t = ata_timing;
2989
2990	while (xfer_mode > t->mode)
2991		t++;
2992
2993	if (xfer_mode == t->mode)
2994		return t;
2995
2996	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997			__func__, xfer_mode);
2998
2999	return NULL;
3000}
3001
3002int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003		       struct ata_timing *t, int T, int UT)
3004{
3005	const u16 *id = adev->id;
3006	const struct ata_timing *s;
3007	struct ata_timing p;
3008
3009	/*
3010	 * Find the mode.
3011	 */
3012
3013	if (!(s = ata_timing_find_mode(speed)))
3014		return -EINVAL;
3015
3016	memcpy(t, s, sizeof(*s));
3017
3018	/*
3019	 * If the drive is an EIDE drive, it can tell us it needs extended
3020	 * PIO/MW_DMA cycle timing.
3021	 */
3022
3023	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3024		memset(&p, 0, sizeof(p));
3025
3026		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3027			if (speed <= XFER_PIO_2)
3028				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029			else if ((speed <= XFER_PIO_4) ||
3030				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3034
3035		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3036	}
3037
3038	/*
3039	 * Convert the timing to bus clock counts.
3040	 */
3041
3042	ata_timing_quantize(t, t, T, UT);
3043
3044	/*
3045	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046	 * S.M.A.R.T * and some other commands. We have to ensure that the
3047	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3048	 */
3049
3050	if (speed > XFER_PIO_6) {
3051		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3053	}
3054
3055	/*
3056	 * Lengthen active & recovery time so that cycle time is correct.
3057	 */
3058
3059	if (t->act8b + t->rec8b < t->cyc8b) {
3060		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061		t->rec8b = t->cyc8b - t->act8b;
3062	}
3063
3064	if (t->active + t->recover < t->cycle) {
3065		t->active += (t->cycle - (t->active + t->recover)) / 2;
3066		t->recover = t->cycle - t->active;
3067	}
3068
3069	/* In a few cases quantisation may produce enough errors to
3070	   leave t->cycle too low for the sum of active and recovery
3071	   if so we must correct this */
3072	if (t->active + t->recover > t->cycle)
3073		t->cycle = t->active + t->recover;
3074
3075	return 0;
3076}
3077
3078/**
3079 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 *	@cycle: cycle duration in ns
3082 *
3083 *	Return matching xfer mode for @cycle.  The returned mode is of
3084 *	the transfer type specified by @xfer_shift.  If @cycle is too
3085 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3086 *	than the fastest known mode, the fasted mode is returned.
3087 *
3088 *	LOCKING:
3089 *	None.
3090 *
3091 *	RETURNS:
3092 *	Matching xfer_mode, 0xff if no match found.
3093 */
3094u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3095{
3096	u8 base_mode = 0xff, last_mode = 0xff;
3097	const struct ata_xfer_ent *ent;
3098	const struct ata_timing *t;
3099
3100	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101		if (ent->shift == xfer_shift)
3102			base_mode = ent->base;
3103
3104	for (t = ata_timing_find_mode(base_mode);
3105	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106		unsigned short this_cycle;
3107
3108		switch (xfer_shift) {
3109		case ATA_SHIFT_PIO:
3110		case ATA_SHIFT_MWDMA:
3111			this_cycle = t->cycle;
3112			break;
3113		case ATA_SHIFT_UDMA:
3114			this_cycle = t->udma;
3115			break;
3116		default:
3117			return 0xff;
3118		}
3119
3120		if (cycle > this_cycle)
3121			break;
3122
3123		last_mode = t->mode;
3124	}
3125
3126	return last_mode;
3127}
3128
3129/**
3130 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3131 *	@dev: Device to adjust xfer masks
3132 *	@sel: ATA_DNXFER_* selector
3133 *
3134 *	Adjust xfer masks of @dev downward.  Note that this function
3135 *	does not apply the change.  Invoking ata_set_mode() afterwards
3136 *	will apply the limit.
3137 *
3138 *	LOCKING:
3139 *	Inherited from caller.
3140 *
3141 *	RETURNS:
3142 *	0 on success, negative errno on failure
3143 */
3144int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3145{
3146	char buf[32];
3147	unsigned long orig_mask, xfer_mask;
3148	unsigned long pio_mask, mwdma_mask, udma_mask;
3149	int quiet, highbit;
3150
3151	quiet = !!(sel & ATA_DNXFER_QUIET);
3152	sel &= ~ATA_DNXFER_QUIET;
3153
3154	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155						  dev->mwdma_mask,
3156						  dev->udma_mask);
3157	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3158
3159	switch (sel) {
3160	case ATA_DNXFER_PIO:
3161		highbit = fls(pio_mask) - 1;
3162		pio_mask &= ~(1 << highbit);
3163		break;
3164
3165	case ATA_DNXFER_DMA:
3166		if (udma_mask) {
3167			highbit = fls(udma_mask) - 1;
3168			udma_mask &= ~(1 << highbit);
3169			if (!udma_mask)
3170				return -ENOENT;
3171		} else if (mwdma_mask) {
3172			highbit = fls(mwdma_mask) - 1;
3173			mwdma_mask &= ~(1 << highbit);
3174			if (!mwdma_mask)
3175				return -ENOENT;
3176		}
3177		break;
3178
3179	case ATA_DNXFER_40C:
3180		udma_mask &= ATA_UDMA_MASK_40C;
3181		break;
3182
3183	case ATA_DNXFER_FORCE_PIO0:
3184		pio_mask &= 1;
3185	case ATA_DNXFER_FORCE_PIO:
3186		mwdma_mask = 0;
3187		udma_mask = 0;
3188		break;
3189
3190	default:
3191		BUG();
3192	}
3193
3194	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3195
3196	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197		return -ENOENT;
3198
3199	if (!quiet) {
3200		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201			snprintf(buf, sizeof(buf), "%s:%s",
3202				 ata_mode_string(xfer_mask),
3203				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204		else
3205			snprintf(buf, sizeof(buf), "%s",
3206				 ata_mode_string(xfer_mask));
3207
3208		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3209	}
3210
3211	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212			    &dev->udma_mask);
3213
3214	return 0;
3215}
3216
3217static int ata_dev_set_mode(struct ata_device *dev)
3218{
3219	struct ata_port *ap = dev->link->ap;
3220	struct ata_eh_context *ehc = &dev->link->eh_context;
3221	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3222	const char *dev_err_whine = "";
3223	int ign_dev_err = 0;
3224	unsigned int err_mask = 0;
3225	int rc;
3226
3227	dev->flags &= ~ATA_DFLAG_PIO;
3228	if (dev->xfer_shift == ATA_SHIFT_PIO)
3229		dev->flags |= ATA_DFLAG_PIO;
3230
3231	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232		dev_err_whine = " (SET_XFERMODE skipped)";
3233	else {
3234		if (nosetxfer)
3235			ata_dev_warn(dev,
3236				     "NOSETXFER but PATA detected - can't "
3237				     "skip SETXFER, might malfunction\n");
3238		err_mask = ata_dev_set_xfermode(dev);
3239	}
3240
3241	if (err_mask & ~AC_ERR_DEV)
3242		goto fail;
3243
3244	/* revalidate */
3245	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248	if (rc)
3249		return rc;
3250
3251	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252		/* Old CFA may refuse this command, which is just fine */
3253		if (ata_id_is_cfa(dev->id))
3254			ign_dev_err = 1;
3255		/* Catch several broken garbage emulations plus some pre
3256		   ATA devices */
3257		if (ata_id_major_version(dev->id) == 0 &&
3258					dev->pio_mode <= XFER_PIO_2)
3259			ign_dev_err = 1;
3260		/* Some very old devices and some bad newer ones fail
3261		   any kind of SET_XFERMODE request but support PIO0-2
3262		   timings and no IORDY */
3263		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264			ign_dev_err = 1;
3265	}
3266	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3269	    dev->dma_mode == XFER_MW_DMA_0 &&
3270	    (dev->id[63] >> 8) & 1)
3271		ign_dev_err = 1;
3272
3273	/* if the device is actually configured correctly, ignore dev err */
3274	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275		ign_dev_err = 1;
3276
3277	if (err_mask & AC_ERR_DEV) {
3278		if (!ign_dev_err)
3279			goto fail;
3280		else
3281			dev_err_whine = " (device error ignored)";
3282	}
3283
3284	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285		dev->xfer_shift, (int)dev->xfer_mode);
3286
3287	ata_dev_info(dev, "configured for %s%s\n",
3288		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289		     dev_err_whine);
3290
3291	return 0;
3292
3293 fail:
3294	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3295	return -EIO;
3296}
3297
3298/**
3299 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 *	@link: link on which timings will be programmed
3301 *	@r_failed_dev: out parameter for failed device
3302 *
3303 *	Standard implementation of the function used to tune and set
3304 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3305 *	ata_dev_set_mode() fails, pointer to the failing device is
3306 *	returned in @r_failed_dev.
3307 *
3308 *	LOCKING:
3309 *	PCI/etc. bus probe sem.
3310 *
3311 *	RETURNS:
3312 *	0 on success, negative errno otherwise
3313 */
3314
3315int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3316{
3317	struct ata_port *ap = link->ap;
3318	struct ata_device *dev;
3319	int rc = 0, used_dma = 0, found = 0;
3320
3321	/* step 1: calculate xfer_mask */
3322	ata_for_each_dev(dev, link, ENABLED) {
3323		unsigned long pio_mask, dma_mask;
3324		unsigned int mode_mask;
3325
3326		mode_mask = ATA_DMA_MASK_ATA;
3327		if (dev->class == ATA_DEV_ATAPI)
3328			mode_mask = ATA_DMA_MASK_ATAPI;
3329		else if (ata_id_is_cfa(dev->id))
3330			mode_mask = ATA_DMA_MASK_CFA;
3331
3332		ata_dev_xfermask(dev);
3333		ata_force_xfermask(dev);
3334
3335		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3336
3337		if (libata_dma_mask & mode_mask)
3338			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339						     dev->udma_mask);
3340		else
3341			dma_mask = 0;
3342
3343		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3345
3346		found = 1;
3347		if (ata_dma_enabled(dev))
3348			used_dma = 1;
3349	}
3350	if (!found)
3351		goto out;
3352
3353	/* step 2: always set host PIO timings */
3354	ata_for_each_dev(dev, link, ENABLED) {
3355		if (dev->pio_mode == 0xff) {
3356			ata_dev_warn(dev, "no PIO support\n");
3357			rc = -EINVAL;
3358			goto out;
3359		}
3360
3361		dev->xfer_mode = dev->pio_mode;
3362		dev->xfer_shift = ATA_SHIFT_PIO;
3363		if (ap->ops->set_piomode)
3364			ap->ops->set_piomode(ap, dev);
3365	}
3366
3367	/* step 3: set host DMA timings */
3368	ata_for_each_dev(dev, link, ENABLED) {
3369		if (!ata_dma_enabled(dev))
3370			continue;
3371
3372		dev->xfer_mode = dev->dma_mode;
3373		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374		if (ap->ops->set_dmamode)
3375			ap->ops->set_dmamode(ap, dev);
3376	}
3377
3378	/* step 4: update devices' xfer mode */
3379	ata_for_each_dev(dev, link, ENABLED) {
3380		rc = ata_dev_set_mode(dev);
3381		if (rc)
3382			goto out;
3383	}
3384
3385	/* Record simplex status. If we selected DMA then the other
3386	 * host channels are not permitted to do so.
3387	 */
3388	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3389		ap->host->simplex_claimed = ap;
3390
3391 out:
3392	if (rc)
3393		*r_failed_dev = dev;
3394	return rc;
3395}
3396
3397/**
3398 *	ata_wait_ready - wait for link to become ready
3399 *	@link: link to be waited on
3400 *	@deadline: deadline jiffies for the operation
3401 *	@check_ready: callback to check link readiness
3402 *
3403 *	Wait for @link to become ready.  @check_ready should return
3404 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 *	link doesn't seem to be occupied, other errno for other error
3406 *	conditions.
3407 *
3408 *	Transient -ENODEV conditions are allowed for
3409 *	ATA_TMOUT_FF_WAIT.
3410 *
3411 *	LOCKING:
3412 *	EH context.
3413 *
3414 *	RETURNS:
3415 *	0 if @linke is ready before @deadline; otherwise, -errno.
3416 */
3417int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418		   int (*check_ready)(struct ata_link *link))
3419{
3420	unsigned long start = jiffies;
3421	unsigned long nodev_deadline;
3422	int warned = 0;
3423
3424	/* choose which 0xff timeout to use, read comment in libata.h */
3425	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427	else
3428		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429
3430	/* Slave readiness can't be tested separately from master.  On
3431	 * M/S emulation configuration, this function should be called
3432	 * only on the master and it will handle both master and slave.
3433	 */
3434	WARN_ON(link == link->ap->slave_link);
3435
3436	if (time_after(nodev_deadline, deadline))
3437		nodev_deadline = deadline;
3438
3439	while (1) {
3440		unsigned long now = jiffies;
3441		int ready, tmp;
3442
3443		ready = tmp = check_ready(link);
3444		if (ready > 0)
3445			return 0;
3446
3447		/*
3448		 * -ENODEV could be transient.  Ignore -ENODEV if link
3449		 * is online.  Also, some SATA devices take a long
3450		 * time to clear 0xff after reset.  Wait for
3451		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452		 * offline.
3453		 *
3454		 * Note that some PATA controllers (pata_ali) explode
3455		 * if status register is read more than once when
3456		 * there's no device attached.
3457		 */
3458		if (ready == -ENODEV) {
3459			if (ata_link_online(link))
3460				ready = 0;
3461			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462				 !ata_link_offline(link) &&
3463				 time_before(now, nodev_deadline))
3464				ready = 0;
3465		}
3466
3467		if (ready)
3468			return ready;
3469		if (time_after(now, deadline))
3470			return -EBUSY;
3471
3472		if (!warned && time_after(now, start + 5 * HZ) &&
3473		    (deadline - now > 3 * HZ)) {
3474			ata_link_warn(link,
3475				"link is slow to respond, please be patient "
3476				"(ready=%d)\n", tmp);
3477			warned = 1;
3478		}
3479
3480		ata_msleep(link->ap, 50);
3481	}
3482}
3483
3484/**
3485 *	ata_wait_after_reset - wait for link to become ready after reset
3486 *	@link: link to be waited on
3487 *	@deadline: deadline jiffies for the operation
3488 *	@check_ready: callback to check link readiness
3489 *
3490 *	Wait for @link to become ready after reset.
3491 *
3492 *	LOCKING:
3493 *	EH context.
3494 *
3495 *	RETURNS:
3496 *	0 if @linke is ready before @deadline; otherwise, -errno.
3497 */
3498int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499				int (*check_ready)(struct ata_link *link))
3500{
3501	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3502
3503	return ata_wait_ready(link, deadline, check_ready);
3504}
3505
3506/**
3507 *	sata_link_debounce - debounce SATA phy status
3508 *	@link: ATA link to debounce SATA phy status for
3509 *	@params: timing parameters { interval, duratinon, timeout } in msec
3510 *	@deadline: deadline jiffies for the operation
3511 *
3512 *	Make sure SStatus of @link reaches stable state, determined by
3513 *	holding the same value where DET is not 1 for @duration polled
3514 *	every @interval, before @timeout.  Timeout constraints the
3515 *	beginning of the stable state.  Because DET gets stuck at 1 on
3516 *	some controllers after hot unplugging, this functions waits
3517 *	until timeout then returns 0 if DET is stable at 1.
3518 *
3519 *	@timeout is further limited by @deadline.  The sooner of the
3520 *	two is used.
3521 *
3522 *	LOCKING:
3523 *	Kernel thread context (may sleep)
3524 *
3525 *	RETURNS:
3526 *	0 on success, -errno on failure.
3527 */
3528int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529		       unsigned long deadline)
3530{
3531	unsigned long interval = params[0];
3532	unsigned long duration = params[1];
3533	unsigned long last_jiffies, t;
3534	u32 last, cur;
3535	int rc;
3536
3537	t = ata_deadline(jiffies, params[2]);
3538	if (time_before(t, deadline))
3539		deadline = t;
3540
3541	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3542		return rc;
3543	cur &= 0xf;
3544
3545	last = cur;
3546	last_jiffies = jiffies;
3547
3548	while (1) {
3549		ata_msleep(link->ap, interval);
3550		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551			return rc;
3552		cur &= 0xf;
3553
3554		/* DET stable? */
3555		if (cur == last) {
3556			if (cur == 1 && time_before(jiffies, deadline))
3557				continue;
3558			if (time_after(jiffies,
3559				       ata_deadline(last_jiffies, duration)))
3560				return 0;
3561			continue;
3562		}
3563
3564		/* unstable, start over */
3565		last = cur;
3566		last_jiffies = jiffies;
3567
3568		/* Check deadline.  If debouncing failed, return
3569		 * -EPIPE to tell upper layer to lower link speed.
3570		 */
3571		if (time_after(jiffies, deadline))
3572			return -EPIPE;
3573	}
3574}
3575
3576/**
3577 *	sata_link_resume - resume SATA link
3578 *	@link: ATA link to resume SATA
3579 *	@params: timing parameters { interval, duratinon, timeout } in msec
3580 *	@deadline: deadline jiffies for the operation
3581 *
3582 *	Resume SATA phy @link and debounce it.
3583 *
3584 *	LOCKING:
3585 *	Kernel thread context (may sleep)
3586 *
3587 *	RETURNS:
3588 *	0 on success, -errno on failure.
3589 */
3590int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591		     unsigned long deadline)
3592{
3593	int tries = ATA_LINK_RESUME_TRIES;
3594	u32 scontrol, serror;
3595	int rc;
3596
3597	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598		return rc;
3599
3600	/*
3601	 * Writes to SControl sometimes get ignored under certain
3602	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3603	 * cleared.
3604	 */
3605	do {
3606		scontrol = (scontrol & 0x0f0) | 0x300;
3607		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608			return rc;
3609		/*
3610		 * Some PHYs react badly if SStatus is pounded
3611		 * immediately after resuming.  Delay 200ms before
3612		 * debouncing.
3613		 */
3614		ata_msleep(link->ap, 200);
3615
3616		/* is SControl restored correctly? */
3617		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618			return rc;
3619	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3620
3621	if ((scontrol & 0xf0f) != 0x300) {
3622		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3623			     scontrol);
3624		return 0;
3625	}
3626
3627	if (tries < ATA_LINK_RESUME_TRIES)
3628		ata_link_warn(link, "link resume succeeded after %d retries\n",
3629			      ATA_LINK_RESUME_TRIES - tries);
3630
3631	if ((rc = sata_link_debounce(link, params, deadline)))
3632		return rc;
3633
3634	/* clear SError, some PHYs require this even for SRST to work */
3635	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636		rc = sata_scr_write(link, SCR_ERROR, serror);
3637
3638	return rc != -EINVAL ? rc : 0;
3639}
3640
3641/**
3642 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 *	@link: ATA link to manipulate SControl for
3644 *	@policy: LPM policy to configure
3645 *	@spm_wakeup: initiate LPM transition to active state
3646 *
3647 *	Manipulate the IPM field of the SControl register of @link
3648 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3649 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3650 *	the link.  This function also clears PHYRDY_CHG before
3651 *	returning.
3652 *
3653 *	LOCKING:
3654 *	EH context.
3655 *
3656 *	RETURNS:
3657 *	0 on succes, -errno otherwise.
3658 */
3659int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660		      bool spm_wakeup)
3661{
3662	struct ata_eh_context *ehc = &link->eh_context;
3663	bool woken_up = false;
3664	u32 scontrol;
3665	int rc;
3666
3667	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668	if (rc)
3669		return rc;
3670
3671	switch (policy) {
3672	case ATA_LPM_MAX_POWER:
3673		/* disable all LPM transitions */
3674		scontrol |= (0x7 << 8);
3675		/* initiate transition to active state */
3676		if (spm_wakeup) {
3677			scontrol |= (0x4 << 12);
3678			woken_up = true;
3679		}
3680		break;
3681	case ATA_LPM_MED_POWER:
3682		/* allow LPM to PARTIAL */
3683		scontrol &= ~(0x1 << 8);
3684		scontrol |= (0x6 << 8);
3685		break;
3686	case ATA_LPM_MIN_POWER:
3687		if (ata_link_nr_enabled(link) > 0)
3688			/* no restrictions on LPM transitions */
3689			scontrol &= ~(0x7 << 8);
3690		else {
3691			/* empty port, power off */
3692			scontrol &= ~0xf;
3693			scontrol |= (0x1 << 2);
3694		}
3695		break;
3696	default:
3697		WARN_ON(1);
3698	}
3699
3700	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701	if (rc)
3702		return rc;
3703
3704	/* give the link time to transit out of LPM state */
3705	if (woken_up)
3706		msleep(10);
3707
3708	/* clear PHYRDY_CHG from SError */
3709	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3711}
3712
3713/**
3714 *	ata_std_prereset - prepare for reset
3715 *	@link: ATA link to be reset
3716 *	@deadline: deadline jiffies for the operation
3717 *
3718 *	@link is about to be reset.  Initialize it.  Failure from
3719 *	prereset makes libata abort whole reset sequence and give up
3720 *	that port, so prereset should be best-effort.  It does its
3721 *	best to prepare for reset sequence but if things go wrong, it
3722 *	should just whine, not fail.
3723 *
3724 *	LOCKING:
3725 *	Kernel thread context (may sleep)
3726 *
3727 *	RETURNS:
3728 *	0 on success, -errno otherwise.
3729 */
3730int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3731{
3732	struct ata_port *ap = link->ap;
3733	struct ata_eh_context *ehc = &link->eh_context;
3734	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3735	int rc;
3736
3737	/* if we're about to do hardreset, nothing more to do */
3738	if (ehc->i.action & ATA_EH_HARDRESET)
3739		return 0;
3740
3741	/* if SATA, resume link */
3742	if (ap->flags & ATA_FLAG_SATA) {
3743		rc = sata_link_resume(link, timing, deadline);
3744		/* whine about phy resume failure but proceed */
3745		if (rc && rc != -EOPNOTSUPP)
3746			ata_link_warn(link,
3747				      "failed to resume link for reset (errno=%d)\n",
3748				      rc);
3749	}
3750
3751	/* no point in trying softreset on offline link */
3752	if (ata_phys_link_offline(link))
3753		ehc->i.action &= ~ATA_EH_SOFTRESET;
3754
3755	return 0;
3756}
3757
3758/**
3759 *	sata_link_hardreset - reset link via SATA phy reset
3760 *	@link: link to reset
3761 *	@timing: timing parameters { interval, duratinon, timeout } in msec
3762 *	@deadline: deadline jiffies for the operation
3763 *	@online: optional out parameter indicating link onlineness
3764 *	@check_ready: optional callback to check link readiness
3765 *
3766 *	SATA phy-reset @link using DET bits of SControl register.
3767 *	After hardreset, link readiness is waited upon using
3768 *	ata_wait_ready() if @check_ready is specified.  LLDs are
3769 *	allowed to not specify @check_ready and wait itself after this
3770 *	function returns.  Device classification is LLD's
3771 *	responsibility.
3772 *
3773 *	*@online is set to one iff reset succeeded and @link is online
3774 *	after reset.
3775 *
3776 *	LOCKING:
3777 *	Kernel thread context (may sleep)
3778 *
3779 *	RETURNS:
3780 *	0 on success, -errno otherwise.
3781 */
3782int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3783			unsigned long deadline,
3784			bool *online, int (*check_ready)(struct ata_link *))
3785{
3786	u32 scontrol;
3787	int rc;
3788
3789	DPRINTK("ENTER\n");
3790
3791	if (online)
3792		*online = false;
3793
3794	if (sata_set_spd_needed(link)) {
3795		/* SATA spec says nothing about how to reconfigure
3796		 * spd.  To be on the safe side, turn off phy during
3797		 * reconfiguration.  This works for at least ICH7 AHCI
3798		 * and Sil3124.
3799		 */
3800		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801			goto out;
3802
3803		scontrol = (scontrol & 0x0f0) | 0x304;
3804
3805		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3806			goto out;
3807
3808		sata_set_spd(link);
3809	}
3810
3811	/* issue phy wake/reset */
3812	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3813		goto out;
3814
3815	scontrol = (scontrol & 0x0f0) | 0x301;
3816
3817	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3818		goto out;
3819
3820	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821	 * 10.4.2 says at least 1 ms.
3822	 */
3823	ata_msleep(link->ap, 1);
3824
3825	/* bring link back */
3826	rc = sata_link_resume(link, timing, deadline);
3827	if (rc)
3828		goto out;
3829	/* if link is offline nothing more to do */
3830	if (ata_phys_link_offline(link))
3831		goto out;
3832
3833	/* Link is online.  From this point, -ENODEV too is an error. */
3834	if (online)
3835		*online = true;
3836
3837	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3838		/* If PMP is supported, we have to do follow-up SRST.
3839		 * Some PMPs don't send D2H Reg FIS after hardreset if
3840		 * the first port is empty.  Wait only for
3841		 * ATA_TMOUT_PMP_SRST_WAIT.
3842		 */
3843		if (check_ready) {
3844			unsigned long pmp_deadline;
3845
3846			pmp_deadline = ata_deadline(jiffies,
3847						    ATA_TMOUT_PMP_SRST_WAIT);
3848			if (time_after(pmp_deadline, deadline))
3849				pmp_deadline = deadline;
3850			ata_wait_ready(link, pmp_deadline, check_ready);
3851		}
3852		rc = -EAGAIN;
3853		goto out;
3854	}
3855
3856	rc = 0;
3857	if (check_ready)
3858		rc = ata_wait_ready(link, deadline, check_ready);
3859 out:
3860	if (rc && rc != -EAGAIN) {
3861		/* online is set iff link is online && reset succeeded */
3862		if (online)
3863			*online = false;
3864		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3865	}
3866	DPRINTK("EXIT, rc=%d\n", rc);
3867	return rc;
3868}
3869
3870/**
3871 *	sata_std_hardreset - COMRESET w/o waiting or classification
3872 *	@link: link to reset
3873 *	@class: resulting class of attached device
3874 *	@deadline: deadline jiffies for the operation
3875 *
3876 *	Standard SATA COMRESET w/o waiting or classification.
3877 *
3878 *	LOCKING:
3879 *	Kernel thread context (may sleep)
3880 *
3881 *	RETURNS:
3882 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3883 */
3884int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885		       unsigned long deadline)
3886{
3887	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888	bool online;
3889	int rc;
3890
3891	/* do hardreset */
3892	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3893	return online ? -EAGAIN : rc;
3894}
3895
3896/**
3897 *	ata_std_postreset - standard postreset callback
3898 *	@link: the target ata_link
3899 *	@classes: classes of attached devices
3900 *
3901 *	This function is invoked after a successful reset.  Note that
3902 *	the device might have been reset more than once using
3903 *	different reset methods before postreset is invoked.
3904 *
3905 *	LOCKING:
3906 *	Kernel thread context (may sleep)
3907 */
3908void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3909{
3910	u32 serror;
3911
3912	DPRINTK("ENTER\n");
3913
3914	/* reset complete, clear SError */
3915	if (!sata_scr_read(link, SCR_ERROR, &serror))
3916		sata_scr_write(link, SCR_ERROR, serror);
3917
3918	/* print link status */
3919	sata_print_link_status(link);
3920
3921	DPRINTK("EXIT\n");
3922}
3923
3924/**
3925 *	ata_dev_same_device - Determine whether new ID matches configured device
3926 *	@dev: device to compare against
3927 *	@new_class: class of the new device
3928 *	@new_id: IDENTIFY page of the new device
3929 *
3930 *	Compare @new_class and @new_id against @dev and determine
3931 *	whether @dev is the device indicated by @new_class and
3932 *	@new_id.
3933 *
3934 *	LOCKING:
3935 *	None.
3936 *
3937 *	RETURNS:
3938 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3939 */
3940static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941			       const u16 *new_id)
3942{
3943	const u16 *old_id = dev->id;
3944	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3946
3947	if (dev->class != new_class) {
3948		ata_dev_info(dev, "class mismatch %d != %d\n",
3949			     dev->class, new_class);
3950		return 0;
3951	}
3952
3953	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3957
3958	if (strcmp(model[0], model[1])) {
3959		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960			     model[0], model[1]);
3961		return 0;
3962	}
3963
3964	if (strcmp(serial[0], serial[1])) {
3965		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966			     serial[0], serial[1]);
3967		return 0;
3968	}
3969
3970	return 1;
3971}
3972
3973/**
3974 *	ata_dev_reread_id - Re-read IDENTIFY data
3975 *	@dev: target ATA device
3976 *	@readid_flags: read ID flags
3977 *
3978 *	Re-read IDENTIFY page and make sure @dev is still attached to
3979 *	the port.
3980 *
3981 *	LOCKING:
3982 *	Kernel thread context (may sleep)
3983 *
3984 *	RETURNS:
3985 *	0 on success, negative errno otherwise
3986 */
3987int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3988{
3989	unsigned int class = dev->class;
3990	u16 *id = (void *)dev->link->ap->sector_buf;
3991	int rc;
3992
3993	/* read ID data */
3994	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3995	if (rc)
3996		return rc;
3997
3998	/* is the device still there? */
3999	if (!ata_dev_same_device(dev, class, id))
4000		return -ENODEV;
4001
4002	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4003	return 0;
4004}
4005
4006/**
4007 *	ata_dev_revalidate - Revalidate ATA device
4008 *	@dev: device to revalidate
4009 *	@new_class: new class code
4010 *	@readid_flags: read ID flags
4011 *
4012 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4013 *	port and reconfigure it according to the new IDENTIFY page.
4014 *
4015 *	LOCKING:
4016 *	Kernel thread context (may sleep)
4017 *
4018 *	RETURNS:
4019 *	0 on success, negative errno otherwise
4020 */
4021int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022		       unsigned int readid_flags)
4023{
4024	u64 n_sectors = dev->n_sectors;
4025	u64 n_native_sectors = dev->n_native_sectors;
4026	int rc;
4027
4028	if (!ata_dev_enabled(dev))
4029		return -ENODEV;
4030
4031	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032	if (ata_class_enabled(new_class) &&
4033	    new_class != ATA_DEV_ATA &&
4034	    new_class != ATA_DEV_ATAPI &&
4035	    new_class != ATA_DEV_SEMB) {
4036		ata_dev_info(dev, "class mismatch %u != %u\n",
4037			     dev->class, new_class);
4038		rc = -ENODEV;
4039		goto fail;
4040	}
4041
4042	/* re-read ID */
4043	rc = ata_dev_reread_id(dev, readid_flags);
4044	if (rc)
4045		goto fail;
4046
4047	/* configure device according to the new ID */
4048	rc = ata_dev_configure(dev);
4049	if (rc)
4050		goto fail;
4051
4052	/* verify n_sectors hasn't changed */
4053	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4054	    dev->n_sectors == n_sectors)
4055		return 0;
4056
4057	/* n_sectors has changed */
4058	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4059		     (unsigned long long)n_sectors,
4060		     (unsigned long long)dev->n_sectors);
4061
4062	/*
4063	 * Something could have caused HPA to be unlocked
4064	 * involuntarily.  If n_native_sectors hasn't changed and the
4065	 * new size matches it, keep the device.
4066	 */
4067	if (dev->n_native_sectors == n_native_sectors &&
4068	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4069		ata_dev_warn(dev,
4070			     "new n_sectors matches native, probably "
4071			     "late HPA unlock, n_sectors updated\n");
4072		/* use the larger n_sectors */
4073		return 0;
4074	}
4075
4076	/*
4077	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4078	 * unlocking HPA in those cases.
4079	 *
4080	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4081	 */
4082	if (dev->n_native_sectors == n_native_sectors &&
4083	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4084	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4085		ata_dev_warn(dev,
4086			     "old n_sectors matches native, probably "
4087			     "late HPA lock, will try to unlock HPA\n");
4088		/* try unlocking HPA */
4089		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4090		rc = -EIO;
4091	} else
4092		rc = -ENODEV;
4093
4094	/* restore original n_[native_]sectors and fail */
4095	dev->n_native_sectors = n_native_sectors;
4096	dev->n_sectors = n_sectors;
4097 fail:
4098	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4099	return rc;
4100}
4101
4102struct ata_blacklist_entry {
4103	const char *model_num;
4104	const char *model_rev;
4105	unsigned long horkage;
4106};
4107
4108static const struct ata_blacklist_entry ata_device_blacklist [] = {
4109	/* Devices with DMA related problems under Linux */
4110	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4111	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4112	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4113	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4114	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4115	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4116	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4117	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4118	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4119	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4120	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4121	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4122	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4123	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4124	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4125	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4126	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4127	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4128	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4129	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4130	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4131	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4132	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4133	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4134	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4135	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4136	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4137	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4138	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4139	/* Odd clown on sil3726/4726 PMPs */
4140	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4141
4142	/* Weird ATAPI devices */
4143	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4144	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4145	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4146	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4147
4148	/* Devices we expect to fail diagnostics */
4149
4150	/* Devices where NCQ should be avoided */
4151	/* NCQ is slow */
4152	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4153	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4154	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4155	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4156	/* NCQ is broken */
4157	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4158	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4159	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4160	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4161	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4162
4163	/* Seagate NCQ + FLUSH CACHE firmware bug */
4164	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4165						ATA_HORKAGE_FIRMWARE_WARN },
4166
4167	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4168						ATA_HORKAGE_FIRMWARE_WARN },
4169
4170	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4171						ATA_HORKAGE_FIRMWARE_WARN },
4172
4173	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4174						ATA_HORKAGE_FIRMWARE_WARN },
4175
4176	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4178	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4179
4180	/* Blacklist entries taken from Silicon Image 3124/3132
4181	   Windows driver .inf file - also several Linux problem reports */
4182	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4183	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4184	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4185
4186	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4188
4189	/* devices which puke on READ_NATIVE_MAX */
4190	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4191	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4192	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4193	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4194
4195	/* this one allows HPA unlocking but fails IOs on the area */
4196	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4197
4198	/* Devices which report 1 sector over size HPA */
4199	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4200	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4201	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4202
4203	/* Devices which get the IVB wrong */
4204	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4205	/* Maybe we should just blacklist TSSTcorp... */
4206	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4207
4208	/* Devices that do not need bridging limits applied */
4209	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4210	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4211
4212	/* Devices which aren't very happy with higher link speeds */
4213	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4214	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4215
4216	/*
4217	 * Devices which choke on SETXFER.  Applies only if both the
4218	 * device and controller are SATA.
4219	 */
4220	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4221	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4222	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4223	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4224	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4225
4226	/* devices that don't properly handle queued TRIM commands */
4227	{ "Micron_M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4228	{ "Crucial_CT???M500SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4229	{ "Micron_M550*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4230	{ "Crucial_CT???M550SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4231
4232	/*
4233	 * Some WD SATA-I drives spin up and down erratically when the link
4234	 * is put into the slumber mode.  We don't have full list of the
4235	 * affected devices.  Disable LPM if the device matches one of the
4236	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4237	 * lost too.
4238	 *
4239	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4240	 */
4241	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4242	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4243	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4244	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4245	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4246	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4247	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4248
4249	/* End Marker */
4250	{ }
4251};
4252
4253/**
4254 *	glob_match - match a text string against a glob-style pattern
4255 *	@text: the string to be examined
4256 *	@pattern: the glob-style pattern to be matched against
4257 *
4258 *	Either/both of text and pattern can be empty strings.
4259 *
4260 *	Match text against a glob-style pattern, with wildcards and simple sets:
4261 *
4262 *		?	matches any single character.
4263 *		*	matches any run of characters.
4264 *		[xyz]	matches a single character from the set: x, y, or z.
4265 *		[a-d]	matches a single character from the range: a, b, c, or d.
4266 *		[a-d0-9] matches a single character from either range.
4267 *
4268 *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4269 *	Behaviour with malformed patterns is undefined, though generally reasonable.
4270 *
4271 *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4272 *
4273 *	This function uses one level of recursion per '*' in pattern.
4274 *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4275 *	this will not cause stack problems for any reasonable use here.
4276 *
4277 *	RETURNS:
4278 *	0 on match, 1 otherwise.
4279 */
4280static int glob_match (const char *text, const char *pattern)
4281{
4282	do {
4283		/* Match single character or a '?' wildcard */
4284		if (*text == *pattern || *pattern == '?') {
4285			if (!*pattern++)
4286				return 0;  /* End of both strings: match */
4287		} else {
4288			/* Match single char against a '[' bracketed ']' pattern set */
4289			if (!*text || *pattern != '[')
4290				break;  /* Not a pattern set */
4291			while (*++pattern && *pattern != ']' && *text != *pattern) {
4292				if (*pattern == '-' && *(pattern - 1) != '[')
4293					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4294						++pattern;
4295						break;
4296					}
4297			}
4298			if (!*pattern || *pattern == ']')
4299				return 1;  /* No match */
4300			while (*pattern && *pattern++ != ']');
4301		}
4302	} while (*++text && *pattern);
4303
4304	/* Match any run of chars against a '*' wildcard */
4305	if (*pattern == '*') {
4306		if (!*++pattern)
4307			return 0;  /* Match: avoid recursion at end of pattern */
4308		/* Loop to handle additional pattern chars after the wildcard */
4309		while (*text) {
4310			if (glob_match(text, pattern) == 0)
4311				return 0;  /* Remainder matched */
4312			++text;  /* Absorb (match) this char and try again */
4313		}
4314	}
4315	if (!*text && !*pattern)
4316		return 0;  /* End of both strings: match */
4317	return 1;  /* No match */
4318}
4319
4320static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4321{
4322	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4325
4326	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4327	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4328
4329	while (ad->model_num) {
4330		if (!glob_match(model_num, ad->model_num)) {
4331			if (ad->model_rev == NULL)
4332				return ad->horkage;
4333			if (!glob_match(model_rev, ad->model_rev))
4334				return ad->horkage;
4335		}
4336		ad++;
4337	}
4338	return 0;
4339}
4340
4341static int ata_dma_blacklisted(const struct ata_device *dev)
4342{
4343	/* We don't support polling DMA.
4344	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4345	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4346	 */
4347	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4348	    (dev->flags & ATA_DFLAG_CDB_INTR))
4349		return 1;
4350	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4351}
4352
4353/**
4354 *	ata_is_40wire		-	check drive side detection
4355 *	@dev: device
4356 *
4357 *	Perform drive side detection decoding, allowing for device vendors
4358 *	who can't follow the documentation.
4359 */
4360
4361static int ata_is_40wire(struct ata_device *dev)
4362{
4363	if (dev->horkage & ATA_HORKAGE_IVB)
4364		return ata_drive_40wire_relaxed(dev->id);
4365	return ata_drive_40wire(dev->id);
4366}
4367
4368/**
4369 *	cable_is_40wire		-	40/80/SATA decider
4370 *	@ap: port to consider
4371 *
4372 *	This function encapsulates the policy for speed management
4373 *	in one place. At the moment we don't cache the result but
4374 *	there is a good case for setting ap->cbl to the result when
4375 *	we are called with unknown cables (and figuring out if it
4376 *	impacts hotplug at all).
4377 *
4378 *	Return 1 if the cable appears to be 40 wire.
4379 */
4380
4381static int cable_is_40wire(struct ata_port *ap)
4382{
4383	struct ata_link *link;
4384	struct ata_device *dev;
4385
4386	/* If the controller thinks we are 40 wire, we are. */
4387	if (ap->cbl == ATA_CBL_PATA40)
4388		return 1;
4389
4390	/* If the controller thinks we are 80 wire, we are. */
4391	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4392		return 0;
4393
4394	/* If the system is known to be 40 wire short cable (eg
4395	 * laptop), then we allow 80 wire modes even if the drive
4396	 * isn't sure.
4397	 */
4398	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4399		return 0;
4400
4401	/* If the controller doesn't know, we scan.
4402	 *
4403	 * Note: We look for all 40 wire detects at this point.  Any
4404	 *       80 wire detect is taken to be 80 wire cable because
4405	 * - in many setups only the one drive (slave if present) will
4406	 *   give a valid detect
4407	 * - if you have a non detect capable drive you don't want it
4408	 *   to colour the choice
4409	 */
4410	ata_for_each_link(link, ap, EDGE) {
4411		ata_for_each_dev(dev, link, ENABLED) {
4412			if (!ata_is_40wire(dev))
4413				return 0;
4414		}
4415	}
4416	return 1;
4417}
4418
4419/**
4420 *	ata_dev_xfermask - Compute supported xfermask of the given device
4421 *	@dev: Device to compute xfermask for
4422 *
4423 *	Compute supported xfermask of @dev and store it in
4424 *	dev->*_mask.  This function is responsible for applying all
4425 *	known limits including host controller limits, device
4426 *	blacklist, etc...
4427 *
4428 *	LOCKING:
4429 *	None.
4430 */
4431static void ata_dev_xfermask(struct ata_device *dev)
4432{
4433	struct ata_link *link = dev->link;
4434	struct ata_port *ap = link->ap;
4435	struct ata_host *host = ap->host;
4436	unsigned long xfer_mask;
4437
4438	/* controller modes available */
4439	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4440				      ap->mwdma_mask, ap->udma_mask);
4441
4442	/* drive modes available */
4443	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4444				       dev->mwdma_mask, dev->udma_mask);
4445	xfer_mask &= ata_id_xfermask(dev->id);
4446
4447	/*
4448	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4449	 *	cable
4450	 */
4451	if (ata_dev_pair(dev)) {
4452		/* No PIO5 or PIO6 */
4453		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4454		/* No MWDMA3 or MWDMA 4 */
4455		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456	}
4457
4458	if (ata_dma_blacklisted(dev)) {
4459		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4460		ata_dev_warn(dev,
4461			     "device is on DMA blacklist, disabling DMA\n");
4462	}
4463
4464	if ((host->flags & ATA_HOST_SIMPLEX) &&
4465	    host->simplex_claimed && host->simplex_claimed != ap) {
4466		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4467		ata_dev_warn(dev,
4468			     "simplex DMA is claimed by other device, disabling DMA\n");
4469	}
4470
4471	if (ap->flags & ATA_FLAG_NO_IORDY)
4472		xfer_mask &= ata_pio_mask_no_iordy(dev);
4473
4474	if (ap->ops->mode_filter)
4475		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4476
4477	/* Apply cable rule here.  Don't apply it early because when
4478	 * we handle hot plug the cable type can itself change.
4479	 * Check this last so that we know if the transfer rate was
4480	 * solely limited by the cable.
4481	 * Unknown or 80 wire cables reported host side are checked
4482	 * drive side as well. Cases where we know a 40wire cable
4483	 * is used safely for 80 are not checked here.
4484	 */
4485	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4486		/* UDMA/44 or higher would be available */
4487		if (cable_is_40wire(ap)) {
4488			ata_dev_warn(dev,
4489				     "limited to UDMA/33 due to 40-wire cable\n");
4490			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491		}
4492
4493	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4494			    &dev->mwdma_mask, &dev->udma_mask);
4495}
4496
4497/**
4498 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 *	@dev: Device to which command will be sent
4500 *
4501 *	Issue SET FEATURES - XFER MODE command to device @dev
4502 *	on port @ap.
4503 *
4504 *	LOCKING:
4505 *	PCI/etc. bus probe sem.
4506 *
4507 *	RETURNS:
4508 *	0 on success, AC_ERR_* mask otherwise.
4509 */
4510
4511static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4512{
4513	struct ata_taskfile tf;
4514	unsigned int err_mask;
4515
4516	/* set up set-features taskfile */
4517	DPRINTK("set features - xfer mode\n");
4518
4519	/* Some controllers and ATAPI devices show flaky interrupt
4520	 * behavior after setting xfer mode.  Use polling instead.
4521	 */
4522	ata_tf_init(dev, &tf);
4523	tf.command = ATA_CMD_SET_FEATURES;
4524	tf.feature = SETFEATURES_XFER;
4525	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4526	tf.protocol = ATA_PROT_NODATA;
4527	/* If we are using IORDY we must send the mode setting command */
4528	if (ata_pio_need_iordy(dev))
4529		tf.nsect = dev->xfer_mode;
4530	/* If the device has IORDY and the controller does not - turn it off */
4531 	else if (ata_id_has_iordy(dev->id))
4532		tf.nsect = 0x01;
4533	else /* In the ancient relic department - skip all of this */
4534		return 0;
4535
4536	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4537
4538	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4539	return err_mask;
4540}
4541
4542/**
4543 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4544 *	@dev: Device to which command will be sent
4545 *	@enable: Whether to enable or disable the feature
4546 *	@feature: The sector count represents the feature to set
4547 *
4548 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4549 *	on port @ap with sector count
4550 *
4551 *	LOCKING:
4552 *	PCI/etc. bus probe sem.
4553 *
4554 *	RETURNS:
4555 *	0 on success, AC_ERR_* mask otherwise.
4556 */
4557unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4558{
4559	struct ata_taskfile tf;
4560	unsigned int err_mask;
4561
4562	/* set up set-features taskfile */
4563	DPRINTK("set features - SATA features\n");
4564
4565	ata_tf_init(dev, &tf);
4566	tf.command = ATA_CMD_SET_FEATURES;
4567	tf.feature = enable;
4568	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4569	tf.protocol = ATA_PROT_NODATA;
4570	tf.nsect = feature;
4571
4572	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4573
4574	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4575	return err_mask;
4576}
4577EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578
4579/**
4580 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4581 *	@dev: Device to which command will be sent
4582 *	@heads: Number of heads (taskfile parameter)
4583 *	@sectors: Number of sectors (taskfile parameter)
4584 *
4585 *	LOCKING:
4586 *	Kernel thread context (may sleep)
4587 *
4588 *	RETURNS:
4589 *	0 on success, AC_ERR_* mask otherwise.
4590 */
4591static unsigned int ata_dev_init_params(struct ata_device *dev,
4592					u16 heads, u16 sectors)
4593{
4594	struct ata_taskfile tf;
4595	unsigned int err_mask;
4596
4597	/* Number of sectors per track 1-255. Number of heads 1-16 */
4598	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4599		return AC_ERR_INVALID;
4600
4601	/* set up init dev params taskfile */
4602	DPRINTK("init dev params \n");
4603
4604	ata_tf_init(dev, &tf);
4605	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4606	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4607	tf.protocol = ATA_PROT_NODATA;
4608	tf.nsect = sectors;
4609	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4610
4611	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4612	/* A clean abort indicates an original or just out of spec drive
4613	   and we should continue as we issue the setup based on the
4614	   drive reported working geometry */
4615	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4616		err_mask = 0;
4617
4618	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4619	return err_mask;
4620}
4621
4622/**
4623 *	ata_sg_clean - Unmap DMA memory associated with command
4624 *	@qc: Command containing DMA memory to be released
4625 *
4626 *	Unmap all mapped DMA memory associated with this command.
4627 *
4628 *	LOCKING:
4629 *	spin_lock_irqsave(host lock)
4630 */
4631void ata_sg_clean(struct ata_queued_cmd *qc)
4632{
4633	struct ata_port *ap = qc->ap;
4634	struct scatterlist *sg = qc->sg;
4635	int dir = qc->dma_dir;
4636
4637	WARN_ON_ONCE(sg == NULL);
4638
4639	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4640
4641	if (qc->n_elem)
4642		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4643
4644	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4645	qc->sg = NULL;
4646}
4647
4648/**
4649 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4650 *	@qc: Metadata associated with taskfile to check
4651 *
4652 *	Allow low-level driver to filter ATA PACKET commands, returning
4653 *	a status indicating whether or not it is OK to use DMA for the
4654 *	supplied PACKET command.
4655 *
4656 *	LOCKING:
4657 *	spin_lock_irqsave(host lock)
4658 *
4659 *	RETURNS: 0 when ATAPI DMA can be used
4660 *               nonzero otherwise
4661 */
4662int atapi_check_dma(struct ata_queued_cmd *qc)
4663{
4664	struct ata_port *ap = qc->ap;
4665
4666	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4667	 * few ATAPI devices choke on such DMA requests.
4668	 */
4669	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4670	    unlikely(qc->nbytes & 15))
4671		return 1;
4672
4673	if (ap->ops->check_atapi_dma)
4674		return ap->ops->check_atapi_dma(qc);
4675
4676	return 0;
4677}
4678
4679/**
4680 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4681 *	@qc: ATA command in question
4682 *
4683 *	Non-NCQ commands cannot run with any other command, NCQ or
4684 *	not.  As upper layer only knows the queue depth, we are
4685 *	responsible for maintaining exclusion.  This function checks
4686 *	whether a new command @qc can be issued.
4687 *
4688 *	LOCKING:
4689 *	spin_lock_irqsave(host lock)
4690 *
4691 *	RETURNS:
4692 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4693 */
4694int ata_std_qc_defer(struct ata_queued_cmd *qc)
4695{
4696	struct ata_link *link = qc->dev->link;
4697
4698	if (qc->tf.protocol == ATA_PROT_NCQ) {
4699		if (!ata_tag_valid(link->active_tag))
4700			return 0;
4701	} else {
4702		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4703			return 0;
4704	}
4705
4706	return ATA_DEFER_LINK;
4707}
4708
4709void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4710
4711/**
4712 *	ata_sg_init - Associate command with scatter-gather table.
4713 *	@qc: Command to be associated
4714 *	@sg: Scatter-gather table.
4715 *	@n_elem: Number of elements in s/g table.
4716 *
4717 *	Initialize the data-related elements of queued_cmd @qc
4718 *	to point to a scatter-gather table @sg, containing @n_elem
4719 *	elements.
4720 *
4721 *	LOCKING:
4722 *	spin_lock_irqsave(host lock)
4723 */
4724void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4725		 unsigned int n_elem)
4726{
4727	qc->sg = sg;
4728	qc->n_elem = n_elem;
4729	qc->cursg = qc->sg;
4730}
4731
4732/**
4733 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4734 *	@qc: Command with scatter-gather table to be mapped.
4735 *
4736 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4737 *
4738 *	LOCKING:
4739 *	spin_lock_irqsave(host lock)
4740 *
4741 *	RETURNS:
4742 *	Zero on success, negative on error.
4743 *
4744 */
4745static int ata_sg_setup(struct ata_queued_cmd *qc)
4746{
4747	struct ata_port *ap = qc->ap;
4748	unsigned int n_elem;
4749
4750	VPRINTK("ENTER, ata%u\n", ap->print_id);
4751
4752	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4753	if (n_elem < 1)
4754		return -1;
4755
4756	DPRINTK("%d sg elements mapped\n", n_elem);
4757	qc->orig_n_elem = qc->n_elem;
4758	qc->n_elem = n_elem;
4759	qc->flags |= ATA_QCFLAG_DMAMAP;
4760
4761	return 0;
4762}
4763
4764/**
4765 *	swap_buf_le16 - swap halves of 16-bit words in place
4766 *	@buf:  Buffer to swap
4767 *	@buf_words:  Number of 16-bit words in buffer.
4768 *
4769 *	Swap halves of 16-bit words if needed to convert from
4770 *	little-endian byte order to native cpu byte order, or
4771 *	vice-versa.
4772 *
4773 *	LOCKING:
4774 *	Inherited from caller.
4775 */
4776void swap_buf_le16(u16 *buf, unsigned int buf_words)
4777{
4778#ifdef __BIG_ENDIAN
4779	unsigned int i;
4780
4781	for (i = 0; i < buf_words; i++)
4782		buf[i] = le16_to_cpu(buf[i]);
4783#endif /* __BIG_ENDIAN */
4784}
4785
4786/**
4787 *	ata_qc_new - Request an available ATA command, for queueing
4788 *	@ap: target port
4789 *
4790 *	LOCKING:
4791 *	None.
4792 */
4793
4794static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4795{
4796	struct ata_queued_cmd *qc = NULL;
4797	unsigned int i, tag;
4798
4799	/* no command while frozen */
4800	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4801		return NULL;
4802
4803	for (i = 0; i < ATA_MAX_QUEUE; i++) {
4804		tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE;
4805
4806		/* the last tag is reserved for internal command. */
4807		if (tag == ATA_TAG_INTERNAL)
4808			continue;
4809
4810		if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4811			qc = __ata_qc_from_tag(ap, tag);
4812			qc->tag = tag;
4813			ap->last_tag = tag;
4814			break;
4815		}
4816	}
 
 
4817
4818	return qc;
4819}
4820
4821/**
4822 *	ata_qc_new_init - Request an available ATA command, and initialize it
4823 *	@dev: Device from whom we request an available command structure
4824 *
4825 *	LOCKING:
4826 *	None.
4827 */
4828
4829struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4830{
4831	struct ata_port *ap = dev->link->ap;
4832	struct ata_queued_cmd *qc;
4833
4834	qc = ata_qc_new(ap);
4835	if (qc) {
4836		qc->scsicmd = NULL;
4837		qc->ap = ap;
4838		qc->dev = dev;
4839
4840		ata_qc_reinit(qc);
4841	}
4842
4843	return qc;
4844}
4845
4846/**
4847 *	ata_qc_free - free unused ata_queued_cmd
4848 *	@qc: Command to complete
4849 *
4850 *	Designed to free unused ata_queued_cmd object
4851 *	in case something prevents using it.
4852 *
4853 *	LOCKING:
4854 *	spin_lock_irqsave(host lock)
4855 */
4856void ata_qc_free(struct ata_queued_cmd *qc)
4857{
4858	struct ata_port *ap;
4859	unsigned int tag;
4860
4861	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4862	ap = qc->ap;
4863
4864	qc->flags = 0;
4865	tag = qc->tag;
4866	if (likely(ata_tag_valid(tag))) {
4867		qc->tag = ATA_TAG_POISON;
4868		clear_bit(tag, &ap->qc_allocated);
4869	}
4870}
4871
4872void __ata_qc_complete(struct ata_queued_cmd *qc)
4873{
4874	struct ata_port *ap;
4875	struct ata_link *link;
4876
4877	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4878	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4879	ap = qc->ap;
4880	link = qc->dev->link;
4881
4882	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4883		ata_sg_clean(qc);
4884
4885	/* command should be marked inactive atomically with qc completion */
4886	if (qc->tf.protocol == ATA_PROT_NCQ) {
4887		link->sactive &= ~(1 << qc->tag);
4888		if (!link->sactive)
4889			ap->nr_active_links--;
4890	} else {
4891		link->active_tag = ATA_TAG_POISON;
4892		ap->nr_active_links--;
4893	}
4894
4895	/* clear exclusive status */
4896	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4897		     ap->excl_link == link))
4898		ap->excl_link = NULL;
4899
4900	/* atapi: mark qc as inactive to prevent the interrupt handler
4901	 * from completing the command twice later, before the error handler
4902	 * is called. (when rc != 0 and atapi request sense is needed)
4903	 */
4904	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4905	ap->qc_active &= ~(1 << qc->tag);
4906
4907	/* call completion callback */
4908	qc->complete_fn(qc);
4909}
4910
4911static void fill_result_tf(struct ata_queued_cmd *qc)
4912{
4913	struct ata_port *ap = qc->ap;
4914
4915	qc->result_tf.flags = qc->tf.flags;
4916	ap->ops->qc_fill_rtf(qc);
4917}
4918
4919static void ata_verify_xfer(struct ata_queued_cmd *qc)
4920{
4921	struct ata_device *dev = qc->dev;
4922
4923	if (ata_is_nodata(qc->tf.protocol))
4924		return;
4925
4926	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4927		return;
4928
4929	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4930}
4931
4932/**
4933 *	ata_qc_complete - Complete an active ATA command
4934 *	@qc: Command to complete
4935 *
4936 *	Indicate to the mid and upper layers that an ATA command has
4937 *	completed, with either an ok or not-ok status.
4938 *
4939 *	Refrain from calling this function multiple times when
4940 *	successfully completing multiple NCQ commands.
4941 *	ata_qc_complete_multiple() should be used instead, which will
4942 *	properly update IRQ expect state.
4943 *
4944 *	LOCKING:
4945 *	spin_lock_irqsave(host lock)
4946 */
4947void ata_qc_complete(struct ata_queued_cmd *qc)
4948{
4949	struct ata_port *ap = qc->ap;
4950
4951	/* XXX: New EH and old EH use different mechanisms to
4952	 * synchronize EH with regular execution path.
4953	 *
4954	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4955	 * Normal execution path is responsible for not accessing a
4956	 * failed qc.  libata core enforces the rule by returning NULL
4957	 * from ata_qc_from_tag() for failed qcs.
4958	 *
4959	 * Old EH depends on ata_qc_complete() nullifying completion
4960	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4961	 * not synchronize with interrupt handler.  Only PIO task is
4962	 * taken care of.
4963	 */
4964	if (ap->ops->error_handler) {
4965		struct ata_device *dev = qc->dev;
4966		struct ata_eh_info *ehi = &dev->link->eh_info;
4967
4968		if (unlikely(qc->err_mask))
4969			qc->flags |= ATA_QCFLAG_FAILED;
4970
4971		/*
4972		 * Finish internal commands without any further processing
4973		 * and always with the result TF filled.
4974		 */
4975		if (unlikely(ata_tag_internal(qc->tag))) {
4976			fill_result_tf(qc);
4977			__ata_qc_complete(qc);
4978			return;
4979		}
4980
4981		/*
4982		 * Non-internal qc has failed.  Fill the result TF and
4983		 * summon EH.
4984		 */
4985		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986			fill_result_tf(qc);
4987			ata_qc_schedule_eh(qc);
4988			return;
4989		}
4990
4991		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4992
4993		/* read result TF if requested */
4994		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4995			fill_result_tf(qc);
4996
4997		/* Some commands need post-processing after successful
4998		 * completion.
4999		 */
5000		switch (qc->tf.command) {
5001		case ATA_CMD_SET_FEATURES:
5002			if (qc->tf.feature != SETFEATURES_WC_ON &&
5003			    qc->tf.feature != SETFEATURES_WC_OFF)
5004				break;
5005			/* fall through */
5006		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5007		case ATA_CMD_SET_MULTI: /* multi_count changed */
5008			/* revalidate device */
5009			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5010			ata_port_schedule_eh(ap);
5011			break;
5012
5013		case ATA_CMD_SLEEP:
5014			dev->flags |= ATA_DFLAG_SLEEPING;
5015			break;
5016		}
5017
5018		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5019			ata_verify_xfer(qc);
5020
5021		__ata_qc_complete(qc);
5022	} else {
5023		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5024			return;
5025
5026		/* read result TF if failed or requested */
5027		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5028			fill_result_tf(qc);
5029
5030		__ata_qc_complete(qc);
5031	}
5032}
5033
5034/**
5035 *	ata_qc_complete_multiple - Complete multiple qcs successfully
5036 *	@ap: port in question
5037 *	@qc_active: new qc_active mask
5038 *
5039 *	Complete in-flight commands.  This functions is meant to be
5040 *	called from low-level driver's interrupt routine to complete
5041 *	requests normally.  ap->qc_active and @qc_active is compared
5042 *	and commands are completed accordingly.
5043 *
5044 *	Always use this function when completing multiple NCQ commands
5045 *	from IRQ handlers instead of calling ata_qc_complete()
5046 *	multiple times to keep IRQ expect status properly in sync.
5047 *
5048 *	LOCKING:
5049 *	spin_lock_irqsave(host lock)
5050 *
5051 *	RETURNS:
5052 *	Number of completed commands on success, -errno otherwise.
5053 */
5054int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5055{
5056	int nr_done = 0;
5057	u32 done_mask;
5058
5059	done_mask = ap->qc_active ^ qc_active;
5060
5061	if (unlikely(done_mask & qc_active)) {
5062		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5063			     ap->qc_active, qc_active);
5064		return -EINVAL;
5065	}
5066
5067	while (done_mask) {
5068		struct ata_queued_cmd *qc;
5069		unsigned int tag = __ffs(done_mask);
5070
5071		qc = ata_qc_from_tag(ap, tag);
5072		if (qc) {
5073			ata_qc_complete(qc);
5074			nr_done++;
5075		}
5076		done_mask &= ~(1 << tag);
5077	}
5078
5079	return nr_done;
5080}
5081
5082/**
5083 *	ata_qc_issue - issue taskfile to device
5084 *	@qc: command to issue to device
5085 *
5086 *	Prepare an ATA command to submission to device.
5087 *	This includes mapping the data into a DMA-able
5088 *	area, filling in the S/G table, and finally
5089 *	writing the taskfile to hardware, starting the command.
5090 *
5091 *	LOCKING:
5092 *	spin_lock_irqsave(host lock)
5093 */
5094void ata_qc_issue(struct ata_queued_cmd *qc)
5095{
5096	struct ata_port *ap = qc->ap;
5097	struct ata_link *link = qc->dev->link;
5098	u8 prot = qc->tf.protocol;
5099
5100	/* Make sure only one non-NCQ command is outstanding.  The
5101	 * check is skipped for old EH because it reuses active qc to
5102	 * request ATAPI sense.
5103	 */
5104	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5105
5106	if (ata_is_ncq(prot)) {
5107		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5108
5109		if (!link->sactive)
5110			ap->nr_active_links++;
5111		link->sactive |= 1 << qc->tag;
5112	} else {
5113		WARN_ON_ONCE(link->sactive);
5114
5115		ap->nr_active_links++;
5116		link->active_tag = qc->tag;
5117	}
5118
5119	qc->flags |= ATA_QCFLAG_ACTIVE;
5120	ap->qc_active |= 1 << qc->tag;
5121
5122	/*
5123	 * We guarantee to LLDs that they will have at least one
5124	 * non-zero sg if the command is a data command.
5125	 */
5126	if (WARN_ON_ONCE(ata_is_data(prot) &&
5127			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5128		goto sys_err;
5129
5130	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5131				 (ap->flags & ATA_FLAG_PIO_DMA)))
5132		if (ata_sg_setup(qc))
5133			goto sys_err;
5134
5135	/* if device is sleeping, schedule reset and abort the link */
5136	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5137		link->eh_info.action |= ATA_EH_RESET;
5138		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5139		ata_link_abort(link);
5140		return;
5141	}
5142
5143	ap->ops->qc_prep(qc);
5144
5145	qc->err_mask |= ap->ops->qc_issue(qc);
5146	if (unlikely(qc->err_mask))
5147		goto err;
5148	return;
5149
5150sys_err:
5151	qc->err_mask |= AC_ERR_SYSTEM;
5152err:
5153	ata_qc_complete(qc);
5154}
5155
5156/**
5157 *	sata_scr_valid - test whether SCRs are accessible
5158 *	@link: ATA link to test SCR accessibility for
5159 *
5160 *	Test whether SCRs are accessible for @link.
5161 *
5162 *	LOCKING:
5163 *	None.
5164 *
5165 *	RETURNS:
5166 *	1 if SCRs are accessible, 0 otherwise.
5167 */
5168int sata_scr_valid(struct ata_link *link)
5169{
5170	struct ata_port *ap = link->ap;
5171
5172	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5173}
5174
5175/**
5176 *	sata_scr_read - read SCR register of the specified port
5177 *	@link: ATA link to read SCR for
5178 *	@reg: SCR to read
5179 *	@val: Place to store read value
5180 *
5181 *	Read SCR register @reg of @link into *@val.  This function is
5182 *	guaranteed to succeed if @link is ap->link, the cable type of
5183 *	the port is SATA and the port implements ->scr_read.
5184 *
5185 *	LOCKING:
5186 *	None if @link is ap->link.  Kernel thread context otherwise.
5187 *
5188 *	RETURNS:
5189 *	0 on success, negative errno on failure.
5190 */
5191int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5192{
5193	if (ata_is_host_link(link)) {
5194		if (sata_scr_valid(link))
5195			return link->ap->ops->scr_read(link, reg, val);
5196		return -EOPNOTSUPP;
5197	}
5198
5199	return sata_pmp_scr_read(link, reg, val);
5200}
5201
5202/**
5203 *	sata_scr_write - write SCR register of the specified port
5204 *	@link: ATA link to write SCR for
5205 *	@reg: SCR to write
5206 *	@val: value to write
5207 *
5208 *	Write @val to SCR register @reg of @link.  This function is
5209 *	guaranteed to succeed if @link is ap->link, the cable type of
5210 *	the port is SATA and the port implements ->scr_read.
5211 *
5212 *	LOCKING:
5213 *	None if @link is ap->link.  Kernel thread context otherwise.
5214 *
5215 *	RETURNS:
5216 *	0 on success, negative errno on failure.
5217 */
5218int sata_scr_write(struct ata_link *link, int reg, u32 val)
5219{
5220	if (ata_is_host_link(link)) {
5221		if (sata_scr_valid(link))
5222			return link->ap->ops->scr_write(link, reg, val);
5223		return -EOPNOTSUPP;
5224	}
5225
5226	return sata_pmp_scr_write(link, reg, val);
5227}
5228
5229/**
5230 *	sata_scr_write_flush - write SCR register of the specified port and flush
5231 *	@link: ATA link to write SCR for
5232 *	@reg: SCR to write
5233 *	@val: value to write
5234 *
5235 *	This function is identical to sata_scr_write() except that this
5236 *	function performs flush after writing to the register.
5237 *
5238 *	LOCKING:
5239 *	None if @link is ap->link.  Kernel thread context otherwise.
5240 *
5241 *	RETURNS:
5242 *	0 on success, negative errno on failure.
5243 */
5244int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5245{
5246	if (ata_is_host_link(link)) {
5247		int rc;
5248
5249		if (sata_scr_valid(link)) {
5250			rc = link->ap->ops->scr_write(link, reg, val);
5251			if (rc == 0)
5252				rc = link->ap->ops->scr_read(link, reg, &val);
5253			return rc;
5254		}
5255		return -EOPNOTSUPP;
5256	}
5257
5258	return sata_pmp_scr_write(link, reg, val);
5259}
5260
5261/**
5262 *	ata_phys_link_online - test whether the given link is online
5263 *	@link: ATA link to test
5264 *
5265 *	Test whether @link is online.  Note that this function returns
5266 *	0 if online status of @link cannot be obtained, so
5267 *	ata_link_online(link) != !ata_link_offline(link).
5268 *
5269 *	LOCKING:
5270 *	None.
5271 *
5272 *	RETURNS:
5273 *	True if the port online status is available and online.
5274 */
5275bool ata_phys_link_online(struct ata_link *link)
5276{
5277	u32 sstatus;
5278
5279	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5280	    ata_sstatus_online(sstatus))
5281		return true;
5282	return false;
5283}
5284
5285/**
5286 *	ata_phys_link_offline - test whether the given link is offline
5287 *	@link: ATA link to test
5288 *
5289 *	Test whether @link is offline.  Note that this function
5290 *	returns 0 if offline status of @link cannot be obtained, so
5291 *	ata_link_online(link) != !ata_link_offline(link).
5292 *
5293 *	LOCKING:
5294 *	None.
5295 *
5296 *	RETURNS:
5297 *	True if the port offline status is available and offline.
5298 */
5299bool ata_phys_link_offline(struct ata_link *link)
5300{
5301	u32 sstatus;
5302
5303	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5304	    !ata_sstatus_online(sstatus))
5305		return true;
5306	return false;
5307}
5308
5309/**
5310 *	ata_link_online - test whether the given link is online
5311 *	@link: ATA link to test
5312 *
5313 *	Test whether @link is online.  This is identical to
5314 *	ata_phys_link_online() when there's no slave link.  When
5315 *	there's a slave link, this function should only be called on
5316 *	the master link and will return true if any of M/S links is
5317 *	online.
5318 *
5319 *	LOCKING:
5320 *	None.
5321 *
5322 *	RETURNS:
5323 *	True if the port online status is available and online.
5324 */
5325bool ata_link_online(struct ata_link *link)
5326{
5327	struct ata_link *slave = link->ap->slave_link;
5328
5329	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5330
5331	return ata_phys_link_online(link) ||
5332		(slave && ata_phys_link_online(slave));
5333}
5334
5335/**
5336 *	ata_link_offline - test whether the given link is offline
5337 *	@link: ATA link to test
5338 *
5339 *	Test whether @link is offline.  This is identical to
5340 *	ata_phys_link_offline() when there's no slave link.  When
5341 *	there's a slave link, this function should only be called on
5342 *	the master link and will return true if both M/S links are
5343 *	offline.
5344 *
5345 *	LOCKING:
5346 *	None.
5347 *
5348 *	RETURNS:
5349 *	True if the port offline status is available and offline.
5350 */
5351bool ata_link_offline(struct ata_link *link)
5352{
5353	struct ata_link *slave = link->ap->slave_link;
5354
5355	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5356
5357	return ata_phys_link_offline(link) &&
5358		(!slave || ata_phys_link_offline(slave));
5359}
5360
5361#ifdef CONFIG_PM
5362static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5363				unsigned int action, unsigned int ehi_flags,
5364				bool async)
5365{
5366	struct ata_link *link;
5367	unsigned long flags;
 
5368
5369	/* Previous resume operation might still be in
5370	 * progress.  Wait for PM_PENDING to clear.
5371	 */
5372	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373		ata_port_wait_eh(ap);
5374		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375	}
5376
5377	/* request PM ops to EH */
5378	spin_lock_irqsave(ap->lock, flags);
5379
5380	ap->pm_mesg = mesg;
 
 
 
 
 
5381	ap->pflags |= ATA_PFLAG_PM_PENDING;
5382	ata_for_each_link(link, ap, HOST_FIRST) {
5383		link->eh_info.action |= action;
5384		link->eh_info.flags |= ehi_flags;
5385	}
5386
5387	ata_port_schedule_eh(ap);
5388
5389	spin_unlock_irqrestore(ap->lock, flags);
5390
5391	if (!async) {
 
5392		ata_port_wait_eh(ap);
5393		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394	}
 
 
5395}
5396
5397/*
5398 * On some hardware, device fails to respond after spun down for suspend.  As
5399 * the device won't be used before being resumed, we don't need to touch the
5400 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5401 *
5402 * http://thread.gmane.org/gmane.linux.ide/46764
5403 */
5404static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5405						 | ATA_EHI_NO_AUTOPSY
5406						 | ATA_EHI_NO_RECOVERY;
5407
5408static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5409{
5410	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5411}
 
 
 
 
 
 
 
 
 
 
 
 
5412
5413static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5414{
5415	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5416}
5417
5418static int ata_port_pm_suspend(struct device *dev)
5419{
5420	struct ata_port *ap = to_ata_port(dev);
5421
5422	if (pm_runtime_suspended(dev))
5423		return 0;
5424
5425	ata_port_suspend(ap, PMSG_SUSPEND);
5426	return 0;
5427}
5428
5429static int ata_port_pm_freeze(struct device *dev)
5430{
5431	struct ata_port *ap = to_ata_port(dev);
5432
5433	if (pm_runtime_suspended(dev))
5434		return 0;
5435
5436	ata_port_suspend(ap, PMSG_FREEZE);
5437	return 0;
5438}
5439
5440static int ata_port_pm_poweroff(struct device *dev)
5441{
5442	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5443	return 0;
5444}
5445
5446static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5447						| ATA_EHI_QUIET;
5448
5449static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5450{
5451	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5452}
5453
5454static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5455{
5456	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5457}
5458
5459static int ata_port_pm_resume(struct device *dev)
5460{
5461	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5462	pm_runtime_disable(dev);
5463	pm_runtime_set_active(dev);
5464	pm_runtime_enable(dev);
5465	return 0;
5466}
5467
5468/*
5469 * For ODDs, the upper layer will poll for media change every few seconds,
5470 * which will make it enter and leave suspend state every few seconds. And
5471 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5472 * is very little and the ODD may malfunction after constantly being reset.
5473 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5474 * ODD is attached to the port.
5475 */
5476static int ata_port_runtime_idle(struct device *dev)
5477{
5478	struct ata_port *ap = to_ata_port(dev);
5479	struct ata_link *link;
5480	struct ata_device *adev;
5481
5482	ata_for_each_link(link, ap, HOST_FIRST) {
5483		ata_for_each_dev(adev, link, ENABLED)
5484			if (adev->class == ATA_DEV_ATAPI &&
5485			    !zpodd_dev_enabled(adev))
5486				return -EBUSY;
5487	}
5488
5489	return 0;
5490}
5491
5492static int ata_port_runtime_suspend(struct device *dev)
5493{
5494	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5495	return 0;
5496}
5497
5498static int ata_port_runtime_resume(struct device *dev)
5499{
5500	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5501	return 0;
5502}
5503
5504static const struct dev_pm_ops ata_port_pm_ops = {
5505	.suspend = ata_port_pm_suspend,
5506	.resume = ata_port_pm_resume,
5507	.freeze = ata_port_pm_freeze,
5508	.thaw = ata_port_pm_resume,
5509	.poweroff = ata_port_pm_poweroff,
5510	.restore = ata_port_pm_resume,
5511
5512	.runtime_suspend = ata_port_runtime_suspend,
5513	.runtime_resume = ata_port_runtime_resume,
5514	.runtime_idle = ata_port_runtime_idle,
5515};
5516
5517/* sas ports don't participate in pm runtime management of ata_ports,
5518 * and need to resume ata devices at the domain level, not the per-port
5519 * level. sas suspend/resume is async to allow parallel port recovery
5520 * since sas has multiple ata_port instances per Scsi_Host.
5521 */
5522void ata_sas_port_suspend(struct ata_port *ap)
5523{
5524	ata_port_suspend_async(ap, PMSG_SUSPEND);
5525}
5526EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5527
5528void ata_sas_port_resume(struct ata_port *ap)
5529{
5530	ata_port_resume_async(ap, PMSG_RESUME);
5531}
5532EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5533
5534/**
5535 *	ata_host_suspend - suspend host
5536 *	@host: host to suspend
5537 *	@mesg: PM message
5538 *
5539 *	Suspend @host.  Actual operation is performed by port suspend.
5540 */
5541int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5542{
5543	host->dev->power.power_state = mesg;
5544	return 0;
5545}
5546
5547/**
5548 *	ata_host_resume - resume host
5549 *	@host: host to resume
5550 *
5551 *	Resume @host.  Actual operation is performed by port resume.
5552 */
5553void ata_host_resume(struct ata_host *host)
5554{
5555	host->dev->power.power_state = PMSG_ON;
5556}
5557#endif
5558
5559struct device_type ata_port_type = {
5560	.name = "ata_port",
5561#ifdef CONFIG_PM
5562	.pm = &ata_port_pm_ops,
5563#endif
5564};
5565
5566/**
5567 *	ata_dev_init - Initialize an ata_device structure
5568 *	@dev: Device structure to initialize
5569 *
5570 *	Initialize @dev in preparation for probing.
5571 *
5572 *	LOCKING:
5573 *	Inherited from caller.
5574 */
5575void ata_dev_init(struct ata_device *dev)
5576{
5577	struct ata_link *link = ata_dev_phys_link(dev);
5578	struct ata_port *ap = link->ap;
5579	unsigned long flags;
5580
5581	/* SATA spd limit is bound to the attached device, reset together */
5582	link->sata_spd_limit = link->hw_sata_spd_limit;
5583	link->sata_spd = 0;
5584
5585	/* High bits of dev->flags are used to record warm plug
5586	 * requests which occur asynchronously.  Synchronize using
5587	 * host lock.
5588	 */
5589	spin_lock_irqsave(ap->lock, flags);
5590	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5591	dev->horkage = 0;
5592	spin_unlock_irqrestore(ap->lock, flags);
5593
5594	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5595	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5596	dev->pio_mask = UINT_MAX;
5597	dev->mwdma_mask = UINT_MAX;
5598	dev->udma_mask = UINT_MAX;
5599}
5600
5601/**
5602 *	ata_link_init - Initialize an ata_link structure
5603 *	@ap: ATA port link is attached to
5604 *	@link: Link structure to initialize
5605 *	@pmp: Port multiplier port number
5606 *
5607 *	Initialize @link.
5608 *
5609 *	LOCKING:
5610 *	Kernel thread context (may sleep)
5611 */
5612void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5613{
5614	int i;
5615
5616	/* clear everything except for devices */
5617	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5618	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5619
5620	link->ap = ap;
5621	link->pmp = pmp;
5622	link->active_tag = ATA_TAG_POISON;
5623	link->hw_sata_spd_limit = UINT_MAX;
5624
5625	/* can't use iterator, ap isn't initialized yet */
5626	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5627		struct ata_device *dev = &link->device[i];
5628
5629		dev->link = link;
5630		dev->devno = dev - link->device;
5631#ifdef CONFIG_ATA_ACPI
5632		dev->gtf_filter = ata_acpi_gtf_filter;
5633#endif
5634		ata_dev_init(dev);
5635	}
5636}
5637
5638/**
5639 *	sata_link_init_spd - Initialize link->sata_spd_limit
5640 *	@link: Link to configure sata_spd_limit for
5641 *
5642 *	Initialize @link->[hw_]sata_spd_limit to the currently
5643 *	configured value.
5644 *
5645 *	LOCKING:
5646 *	Kernel thread context (may sleep).
5647 *
5648 *	RETURNS:
5649 *	0 on success, -errno on failure.
5650 */
5651int sata_link_init_spd(struct ata_link *link)
5652{
5653	u8 spd;
5654	int rc;
5655
5656	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5657	if (rc)
5658		return rc;
5659
5660	spd = (link->saved_scontrol >> 4) & 0xf;
5661	if (spd)
5662		link->hw_sata_spd_limit &= (1 << spd) - 1;
5663
5664	ata_force_link_limits(link);
5665
5666	link->sata_spd_limit = link->hw_sata_spd_limit;
5667
5668	return 0;
5669}
5670
5671/**
5672 *	ata_port_alloc - allocate and initialize basic ATA port resources
5673 *	@host: ATA host this allocated port belongs to
5674 *
5675 *	Allocate and initialize basic ATA port resources.
5676 *
5677 *	RETURNS:
5678 *	Allocate ATA port on success, NULL on failure.
5679 *
5680 *	LOCKING:
5681 *	Inherited from calling layer (may sleep).
5682 */
5683struct ata_port *ata_port_alloc(struct ata_host *host)
5684{
5685	struct ata_port *ap;
5686
5687	DPRINTK("ENTER\n");
5688
5689	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5690	if (!ap)
5691		return NULL;
5692
5693	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5694	ap->lock = &host->lock;
5695	ap->print_id = -1;
5696	ap->local_port_no = -1;
5697	ap->host = host;
5698	ap->dev = host->dev;
5699
5700#if defined(ATA_VERBOSE_DEBUG)
5701	/* turn on all debugging levels */
5702	ap->msg_enable = 0x00FF;
5703#elif defined(ATA_DEBUG)
5704	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5705#else
5706	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5707#endif
5708
5709	mutex_init(&ap->scsi_scan_mutex);
5710	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5711	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5712	INIT_LIST_HEAD(&ap->eh_done_q);
5713	init_waitqueue_head(&ap->eh_wait_q);
5714	init_completion(&ap->park_req_pending);
5715	init_timer_deferrable(&ap->fastdrain_timer);
5716	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5717	ap->fastdrain_timer.data = (unsigned long)ap;
5718
5719	ap->cbl = ATA_CBL_NONE;
5720
5721	ata_link_init(ap, &ap->link, 0);
5722
5723#ifdef ATA_IRQ_TRAP
5724	ap->stats.unhandled_irq = 1;
5725	ap->stats.idle_irq = 1;
5726#endif
5727	ata_sff_port_init(ap);
5728
5729	return ap;
5730}
5731
5732static void ata_host_release(struct device *gendev, void *res)
5733{
5734	struct ata_host *host = dev_get_drvdata(gendev);
5735	int i;
5736
5737	for (i = 0; i < host->n_ports; i++) {
5738		struct ata_port *ap = host->ports[i];
5739
5740		if (!ap)
5741			continue;
5742
5743		if (ap->scsi_host)
5744			scsi_host_put(ap->scsi_host);
5745
5746		kfree(ap->pmp_link);
5747		kfree(ap->slave_link);
5748		kfree(ap);
5749		host->ports[i] = NULL;
5750	}
5751
5752	dev_set_drvdata(gendev, NULL);
5753}
5754
5755/**
5756 *	ata_host_alloc - allocate and init basic ATA host resources
5757 *	@dev: generic device this host is associated with
5758 *	@max_ports: maximum number of ATA ports associated with this host
5759 *
5760 *	Allocate and initialize basic ATA host resources.  LLD calls
5761 *	this function to allocate a host, initializes it fully and
5762 *	attaches it using ata_host_register().
5763 *
5764 *	@max_ports ports are allocated and host->n_ports is
5765 *	initialized to @max_ports.  The caller is allowed to decrease
5766 *	host->n_ports before calling ata_host_register().  The unused
5767 *	ports will be automatically freed on registration.
5768 *
5769 *	RETURNS:
5770 *	Allocate ATA host on success, NULL on failure.
5771 *
5772 *	LOCKING:
5773 *	Inherited from calling layer (may sleep).
5774 */
5775struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5776{
5777	struct ata_host *host;
5778	size_t sz;
5779	int i;
5780
5781	DPRINTK("ENTER\n");
5782
5783	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5784		return NULL;
5785
5786	/* alloc a container for our list of ATA ports (buses) */
5787	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5788	/* alloc a container for our list of ATA ports (buses) */
5789	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5790	if (!host)
5791		goto err_out;
5792
5793	devres_add(dev, host);
5794	dev_set_drvdata(dev, host);
5795
5796	spin_lock_init(&host->lock);
5797	mutex_init(&host->eh_mutex);
5798	host->dev = dev;
5799	host->n_ports = max_ports;
5800
5801	/* allocate ports bound to this host */
5802	for (i = 0; i < max_ports; i++) {
5803		struct ata_port *ap;
5804
5805		ap = ata_port_alloc(host);
5806		if (!ap)
5807			goto err_out;
5808
5809		ap->port_no = i;
5810		host->ports[i] = ap;
5811	}
5812
5813	devres_remove_group(dev, NULL);
5814	return host;
5815
5816 err_out:
5817	devres_release_group(dev, NULL);
5818	return NULL;
5819}
5820
5821/**
5822 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5823 *	@dev: generic device this host is associated with
5824 *	@ppi: array of ATA port_info to initialize host with
5825 *	@n_ports: number of ATA ports attached to this host
5826 *
5827 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5828 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5829 *	last entry will be used for the remaining ports.
5830 *
5831 *	RETURNS:
5832 *	Allocate ATA host on success, NULL on failure.
5833 *
5834 *	LOCKING:
5835 *	Inherited from calling layer (may sleep).
5836 */
5837struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5838				      const struct ata_port_info * const * ppi,
5839				      int n_ports)
5840{
5841	const struct ata_port_info *pi;
5842	struct ata_host *host;
5843	int i, j;
5844
5845	host = ata_host_alloc(dev, n_ports);
5846	if (!host)
5847		return NULL;
5848
5849	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5850		struct ata_port *ap = host->ports[i];
5851
5852		if (ppi[j])
5853			pi = ppi[j++];
5854
5855		ap->pio_mask = pi->pio_mask;
5856		ap->mwdma_mask = pi->mwdma_mask;
5857		ap->udma_mask = pi->udma_mask;
5858		ap->flags |= pi->flags;
5859		ap->link.flags |= pi->link_flags;
5860		ap->ops = pi->port_ops;
5861
5862		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5863			host->ops = pi->port_ops;
5864	}
5865
5866	return host;
5867}
5868
5869/**
5870 *	ata_slave_link_init - initialize slave link
5871 *	@ap: port to initialize slave link for
5872 *
5873 *	Create and initialize slave link for @ap.  This enables slave
5874 *	link handling on the port.
5875 *
5876 *	In libata, a port contains links and a link contains devices.
5877 *	There is single host link but if a PMP is attached to it,
5878 *	there can be multiple fan-out links.  On SATA, there's usually
5879 *	a single device connected to a link but PATA and SATA
5880 *	controllers emulating TF based interface can have two - master
5881 *	and slave.
5882 *
5883 *	However, there are a few controllers which don't fit into this
5884 *	abstraction too well - SATA controllers which emulate TF
5885 *	interface with both master and slave devices but also have
5886 *	separate SCR register sets for each device.  These controllers
5887 *	need separate links for physical link handling
5888 *	(e.g. onlineness, link speed) but should be treated like a
5889 *	traditional M/S controller for everything else (e.g. command
5890 *	issue, softreset).
5891 *
5892 *	slave_link is libata's way of handling this class of
5893 *	controllers without impacting core layer too much.  For
5894 *	anything other than physical link handling, the default host
5895 *	link is used for both master and slave.  For physical link
5896 *	handling, separate @ap->slave_link is used.  All dirty details
5897 *	are implemented inside libata core layer.  From LLD's POV, the
5898 *	only difference is that prereset, hardreset and postreset are
5899 *	called once more for the slave link, so the reset sequence
5900 *	looks like the following.
5901 *
5902 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5903 *	softreset(M) -> postreset(M) -> postreset(S)
5904 *
5905 *	Note that softreset is called only for the master.  Softreset
5906 *	resets both M/S by definition, so SRST on master should handle
5907 *	both (the standard method will work just fine).
5908 *
5909 *	LOCKING:
5910 *	Should be called before host is registered.
5911 *
5912 *	RETURNS:
5913 *	0 on success, -errno on failure.
5914 */
5915int ata_slave_link_init(struct ata_port *ap)
5916{
5917	struct ata_link *link;
5918
5919	WARN_ON(ap->slave_link);
5920	WARN_ON(ap->flags & ATA_FLAG_PMP);
5921
5922	link = kzalloc(sizeof(*link), GFP_KERNEL);
5923	if (!link)
5924		return -ENOMEM;
5925
5926	ata_link_init(ap, link, 1);
5927	ap->slave_link = link;
5928	return 0;
5929}
5930
5931static void ata_host_stop(struct device *gendev, void *res)
5932{
5933	struct ata_host *host = dev_get_drvdata(gendev);
5934	int i;
5935
5936	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5937
5938	for (i = 0; i < host->n_ports; i++) {
5939		struct ata_port *ap = host->ports[i];
5940
5941		if (ap->ops->port_stop)
5942			ap->ops->port_stop(ap);
5943	}
5944
5945	if (host->ops->host_stop)
5946		host->ops->host_stop(host);
5947}
5948
5949/**
5950 *	ata_finalize_port_ops - finalize ata_port_operations
5951 *	@ops: ata_port_operations to finalize
5952 *
5953 *	An ata_port_operations can inherit from another ops and that
5954 *	ops can again inherit from another.  This can go on as many
5955 *	times as necessary as long as there is no loop in the
5956 *	inheritance chain.
5957 *
5958 *	Ops tables are finalized when the host is started.  NULL or
5959 *	unspecified entries are inherited from the closet ancestor
5960 *	which has the method and the entry is populated with it.
5961 *	After finalization, the ops table directly points to all the
5962 *	methods and ->inherits is no longer necessary and cleared.
5963 *
5964 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5965 *
5966 *	LOCKING:
5967 *	None.
5968 */
5969static void ata_finalize_port_ops(struct ata_port_operations *ops)
5970{
5971	static DEFINE_SPINLOCK(lock);
5972	const struct ata_port_operations *cur;
5973	void **begin = (void **)ops;
5974	void **end = (void **)&ops->inherits;
5975	void **pp;
5976
5977	if (!ops || !ops->inherits)
5978		return;
5979
5980	spin_lock(&lock);
5981
5982	for (cur = ops->inherits; cur; cur = cur->inherits) {
5983		void **inherit = (void **)cur;
5984
5985		for (pp = begin; pp < end; pp++, inherit++)
5986			if (!*pp)
5987				*pp = *inherit;
5988	}
5989
5990	for (pp = begin; pp < end; pp++)
5991		if (IS_ERR(*pp))
5992			*pp = NULL;
5993
5994	ops->inherits = NULL;
5995
5996	spin_unlock(&lock);
5997}
5998
5999/**
6000 *	ata_host_start - start and freeze ports of an ATA host
6001 *	@host: ATA host to start ports for
6002 *
6003 *	Start and then freeze ports of @host.  Started status is
6004 *	recorded in host->flags, so this function can be called
6005 *	multiple times.  Ports are guaranteed to get started only
6006 *	once.  If host->ops isn't initialized yet, its set to the
6007 *	first non-dummy port ops.
6008 *
6009 *	LOCKING:
6010 *	Inherited from calling layer (may sleep).
6011 *
6012 *	RETURNS:
6013 *	0 if all ports are started successfully, -errno otherwise.
6014 */
6015int ata_host_start(struct ata_host *host)
6016{
6017	int have_stop = 0;
6018	void *start_dr = NULL;
6019	int i, rc;
6020
6021	if (host->flags & ATA_HOST_STARTED)
6022		return 0;
6023
6024	ata_finalize_port_ops(host->ops);
6025
6026	for (i = 0; i < host->n_ports; i++) {
6027		struct ata_port *ap = host->ports[i];
6028
6029		ata_finalize_port_ops(ap->ops);
6030
6031		if (!host->ops && !ata_port_is_dummy(ap))
6032			host->ops = ap->ops;
6033
6034		if (ap->ops->port_stop)
6035			have_stop = 1;
6036	}
6037
6038	if (host->ops->host_stop)
6039		have_stop = 1;
6040
6041	if (have_stop) {
6042		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6043		if (!start_dr)
6044			return -ENOMEM;
6045	}
6046
6047	for (i = 0; i < host->n_ports; i++) {
6048		struct ata_port *ap = host->ports[i];
6049
6050		if (ap->ops->port_start) {
6051			rc = ap->ops->port_start(ap);
6052			if (rc) {
6053				if (rc != -ENODEV)
6054					dev_err(host->dev,
6055						"failed to start port %d (errno=%d)\n",
6056						i, rc);
6057				goto err_out;
6058			}
6059		}
6060		ata_eh_freeze_port(ap);
6061	}
6062
6063	if (start_dr)
6064		devres_add(host->dev, start_dr);
6065	host->flags |= ATA_HOST_STARTED;
6066	return 0;
6067
6068 err_out:
6069	while (--i >= 0) {
6070		struct ata_port *ap = host->ports[i];
6071
6072		if (ap->ops->port_stop)
6073			ap->ops->port_stop(ap);
6074	}
6075	devres_free(start_dr);
6076	return rc;
6077}
6078
6079/**
6080 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6081 *	@host:	host to initialize
6082 *	@dev:	device host is attached to
 
6083 *	@ops:	port_ops
6084 *
 
 
 
6085 */
 
6086void ata_host_init(struct ata_host *host, struct device *dev,
6087		   struct ata_port_operations *ops)
6088{
6089	spin_lock_init(&host->lock);
6090	mutex_init(&host->eh_mutex);
6091	host->dev = dev;
 
6092	host->ops = ops;
6093}
6094
6095void __ata_port_probe(struct ata_port *ap)
6096{
6097	struct ata_eh_info *ehi = &ap->link.eh_info;
6098	unsigned long flags;
6099
6100	/* kick EH for boot probing */
6101	spin_lock_irqsave(ap->lock, flags);
6102
6103	ehi->probe_mask |= ATA_ALL_DEVICES;
6104	ehi->action |= ATA_EH_RESET;
6105	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6106
6107	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6108	ap->pflags |= ATA_PFLAG_LOADING;
6109	ata_port_schedule_eh(ap);
6110
6111	spin_unlock_irqrestore(ap->lock, flags);
6112}
6113
6114int ata_port_probe(struct ata_port *ap)
6115{
6116	int rc = 0;
6117
6118	if (ap->ops->error_handler) {
6119		__ata_port_probe(ap);
6120		ata_port_wait_eh(ap);
6121	} else {
6122		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6123		rc = ata_bus_probe(ap);
6124		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6125	}
6126	return rc;
6127}
6128
6129
6130static void async_port_probe(void *data, async_cookie_t cookie)
6131{
6132	struct ata_port *ap = data;
6133
6134	/*
6135	 * If we're not allowed to scan this host in parallel,
6136	 * we need to wait until all previous scans have completed
6137	 * before going further.
6138	 * Jeff Garzik says this is only within a controller, so we
6139	 * don't need to wait for port 0, only for later ports.
6140	 */
6141	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6142		async_synchronize_cookie(cookie);
6143
6144	(void)ata_port_probe(ap);
6145
6146	/* in order to keep device order, we need to synchronize at this point */
6147	async_synchronize_cookie(cookie);
6148
6149	ata_scsi_scan_host(ap, 1);
6150}
6151
6152/**
6153 *	ata_host_register - register initialized ATA host
6154 *	@host: ATA host to register
6155 *	@sht: template for SCSI host
6156 *
6157 *	Register initialized ATA host.  @host is allocated using
6158 *	ata_host_alloc() and fully initialized by LLD.  This function
6159 *	starts ports, registers @host with ATA and SCSI layers and
6160 *	probe registered devices.
6161 *
6162 *	LOCKING:
6163 *	Inherited from calling layer (may sleep).
6164 *
6165 *	RETURNS:
6166 *	0 on success, -errno otherwise.
6167 */
6168int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6169{
6170	int i, rc;
6171
6172	/* host must have been started */
6173	if (!(host->flags & ATA_HOST_STARTED)) {
6174		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6175		WARN_ON(1);
6176		return -EINVAL;
6177	}
6178
6179	/* Blow away unused ports.  This happens when LLD can't
6180	 * determine the exact number of ports to allocate at
6181	 * allocation time.
6182	 */
6183	for (i = host->n_ports; host->ports[i]; i++)
6184		kfree(host->ports[i]);
6185
6186	/* give ports names and add SCSI hosts */
6187	for (i = 0; i < host->n_ports; i++) {
6188		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6189		host->ports[i]->local_port_no = i + 1;
6190	}
6191
6192	/* Create associated sysfs transport objects  */
6193	for (i = 0; i < host->n_ports; i++) {
6194		rc = ata_tport_add(host->dev,host->ports[i]);
6195		if (rc) {
6196			goto err_tadd;
6197		}
6198	}
6199
6200	rc = ata_scsi_add_hosts(host, sht);
6201	if (rc)
6202		goto err_tadd;
6203
 
 
 
6204	/* set cable, sata_spd_limit and report */
6205	for (i = 0; i < host->n_ports; i++) {
6206		struct ata_port *ap = host->ports[i];
6207		unsigned long xfer_mask;
6208
6209		/* set SATA cable type if still unset */
6210		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6211			ap->cbl = ATA_CBL_SATA;
6212
6213		/* init sata_spd_limit to the current value */
6214		sata_link_init_spd(&ap->link);
6215		if (ap->slave_link)
6216			sata_link_init_spd(ap->slave_link);
6217
6218		/* print per-port info to dmesg */
6219		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6220					      ap->udma_mask);
6221
6222		if (!ata_port_is_dummy(ap)) {
6223			ata_port_info(ap, "%cATA max %s %s\n",
6224				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6225				      ata_mode_string(xfer_mask),
6226				      ap->link.eh_info.desc);
6227			ata_ehi_clear_desc(&ap->link.eh_info);
6228		} else
6229			ata_port_info(ap, "DUMMY\n");
6230	}
6231
6232	/* perform each probe asynchronously */
6233	for (i = 0; i < host->n_ports; i++) {
6234		struct ata_port *ap = host->ports[i];
6235		async_schedule(async_port_probe, ap);
6236	}
6237
6238	return 0;
6239
6240 err_tadd:
6241	while (--i >= 0) {
6242		ata_tport_delete(host->ports[i]);
6243	}
6244	return rc;
6245
6246}
6247
6248/**
6249 *	ata_host_activate - start host, request IRQ and register it
6250 *	@host: target ATA host
6251 *	@irq: IRQ to request
6252 *	@irq_handler: irq_handler used when requesting IRQ
6253 *	@irq_flags: irq_flags used when requesting IRQ
6254 *	@sht: scsi_host_template to use when registering the host
6255 *
6256 *	After allocating an ATA host and initializing it, most libata
6257 *	LLDs perform three steps to activate the host - start host,
6258 *	request IRQ and register it.  This helper takes necessasry
6259 *	arguments and performs the three steps in one go.
6260 *
6261 *	An invalid IRQ skips the IRQ registration and expects the host to
6262 *	have set polling mode on the port. In this case, @irq_handler
6263 *	should be NULL.
6264 *
6265 *	LOCKING:
6266 *	Inherited from calling layer (may sleep).
6267 *
6268 *	RETURNS:
6269 *	0 on success, -errno otherwise.
6270 */
6271int ata_host_activate(struct ata_host *host, int irq,
6272		      irq_handler_t irq_handler, unsigned long irq_flags,
6273		      struct scsi_host_template *sht)
6274{
6275	int i, rc;
6276
6277	rc = ata_host_start(host);
6278	if (rc)
6279		return rc;
6280
6281	/* Special case for polling mode */
6282	if (!irq) {
6283		WARN_ON(irq_handler);
6284		return ata_host_register(host, sht);
6285	}
6286
6287	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6288			      dev_driver_string(host->dev), host);
6289	if (rc)
6290		return rc;
6291
6292	for (i = 0; i < host->n_ports; i++)
6293		ata_port_desc(host->ports[i], "irq %d", irq);
6294
6295	rc = ata_host_register(host, sht);
6296	/* if failed, just free the IRQ and leave ports alone */
6297	if (rc)
6298		devm_free_irq(host->dev, irq, host);
6299
6300	return rc;
6301}
6302
6303/**
6304 *	ata_port_detach - Detach ATA port in prepration of device removal
6305 *	@ap: ATA port to be detached
6306 *
6307 *	Detach all ATA devices and the associated SCSI devices of @ap;
6308 *	then, remove the associated SCSI host.  @ap is guaranteed to
6309 *	be quiescent on return from this function.
6310 *
6311 *	LOCKING:
6312 *	Kernel thread context (may sleep).
6313 */
6314static void ata_port_detach(struct ata_port *ap)
6315{
6316	unsigned long flags;
6317	struct ata_link *link;
6318	struct ata_device *dev;
6319
6320	if (!ap->ops->error_handler)
6321		goto skip_eh;
6322
6323	/* tell EH we're leaving & flush EH */
6324	spin_lock_irqsave(ap->lock, flags);
6325	ap->pflags |= ATA_PFLAG_UNLOADING;
6326	ata_port_schedule_eh(ap);
6327	spin_unlock_irqrestore(ap->lock, flags);
6328
6329	/* wait till EH commits suicide */
6330	ata_port_wait_eh(ap);
6331
6332	/* it better be dead now */
6333	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6334
6335	cancel_delayed_work_sync(&ap->hotplug_task);
6336
6337 skip_eh:
6338	/* clean up zpodd on port removal */
6339	ata_for_each_link(link, ap, HOST_FIRST) {
6340		ata_for_each_dev(dev, link, ALL) {
6341			if (zpodd_dev_enabled(dev))
6342				zpodd_exit(dev);
6343		}
6344	}
6345	if (ap->pmp_link) {
6346		int i;
6347		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6348			ata_tlink_delete(&ap->pmp_link[i]);
6349	}
 
 
6350	/* remove the associated SCSI host */
6351	scsi_remove_host(ap->scsi_host);
6352	ata_tport_delete(ap);
6353}
6354
6355/**
6356 *	ata_host_detach - Detach all ports of an ATA host
6357 *	@host: Host to detach
6358 *
6359 *	Detach all ports of @host.
6360 *
6361 *	LOCKING:
6362 *	Kernel thread context (may sleep).
6363 */
6364void ata_host_detach(struct ata_host *host)
6365{
6366	int i;
6367
6368	for (i = 0; i < host->n_ports; i++)
6369		ata_port_detach(host->ports[i]);
6370
6371	/* the host is dead now, dissociate ACPI */
6372	ata_acpi_dissociate(host);
6373}
6374
6375#ifdef CONFIG_PCI
6376
6377/**
6378 *	ata_pci_remove_one - PCI layer callback for device removal
6379 *	@pdev: PCI device that was removed
6380 *
6381 *	PCI layer indicates to libata via this hook that hot-unplug or
6382 *	module unload event has occurred.  Detach all ports.  Resource
6383 *	release is handled via devres.
6384 *
6385 *	LOCKING:
6386 *	Inherited from PCI layer (may sleep).
6387 */
6388void ata_pci_remove_one(struct pci_dev *pdev)
6389{
6390	struct ata_host *host = pci_get_drvdata(pdev);
 
6391
6392	ata_host_detach(host);
6393}
6394
6395/* move to PCI subsystem */
6396int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6397{
6398	unsigned long tmp = 0;
6399
6400	switch (bits->width) {
6401	case 1: {
6402		u8 tmp8 = 0;
6403		pci_read_config_byte(pdev, bits->reg, &tmp8);
6404		tmp = tmp8;
6405		break;
6406	}
6407	case 2: {
6408		u16 tmp16 = 0;
6409		pci_read_config_word(pdev, bits->reg, &tmp16);
6410		tmp = tmp16;
6411		break;
6412	}
6413	case 4: {
6414		u32 tmp32 = 0;
6415		pci_read_config_dword(pdev, bits->reg, &tmp32);
6416		tmp = tmp32;
6417		break;
6418	}
6419
6420	default:
6421		return -EINVAL;
6422	}
6423
6424	tmp &= bits->mask;
6425
6426	return (tmp == bits->val) ? 1 : 0;
6427}
6428
6429#ifdef CONFIG_PM
6430void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6431{
6432	pci_save_state(pdev);
6433	pci_disable_device(pdev);
6434
6435	if (mesg.event & PM_EVENT_SLEEP)
6436		pci_set_power_state(pdev, PCI_D3hot);
6437}
6438
6439int ata_pci_device_do_resume(struct pci_dev *pdev)
6440{
6441	int rc;
6442
6443	pci_set_power_state(pdev, PCI_D0);
6444	pci_restore_state(pdev);
6445
6446	rc = pcim_enable_device(pdev);
6447	if (rc) {
6448		dev_err(&pdev->dev,
6449			"failed to enable device after resume (%d)\n", rc);
6450		return rc;
6451	}
6452
6453	pci_set_master(pdev);
6454	return 0;
6455}
6456
6457int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6458{
6459	struct ata_host *host = pci_get_drvdata(pdev);
6460	int rc = 0;
6461
6462	rc = ata_host_suspend(host, mesg);
6463	if (rc)
6464		return rc;
6465
6466	ata_pci_device_do_suspend(pdev, mesg);
6467
6468	return 0;
6469}
6470
6471int ata_pci_device_resume(struct pci_dev *pdev)
6472{
6473	struct ata_host *host = pci_get_drvdata(pdev);
6474	int rc;
6475
6476	rc = ata_pci_device_do_resume(pdev);
6477	if (rc == 0)
6478		ata_host_resume(host);
6479	return rc;
6480}
6481#endif /* CONFIG_PM */
6482
6483#endif /* CONFIG_PCI */
6484
6485/**
6486 *	ata_platform_remove_one - Platform layer callback for device removal
6487 *	@pdev: Platform device that was removed
6488 *
6489 *	Platform layer indicates to libata via this hook that hot-unplug or
6490 *	module unload event has occurred.  Detach all ports.  Resource
6491 *	release is handled via devres.
6492 *
6493 *	LOCKING:
6494 *	Inherited from platform layer (may sleep).
6495 */
6496int ata_platform_remove_one(struct platform_device *pdev)
6497{
6498	struct ata_host *host = platform_get_drvdata(pdev);
6499
6500	ata_host_detach(host);
6501
6502	return 0;
6503}
6504
6505static int __init ata_parse_force_one(char **cur,
6506				      struct ata_force_ent *force_ent,
6507				      const char **reason)
6508{
6509	/* FIXME: Currently, there's no way to tag init const data and
6510	 * using __initdata causes build failure on some versions of
6511	 * gcc.  Once __initdataconst is implemented, add const to the
6512	 * following structure.
6513	 */
6514	static struct ata_force_param force_tbl[] __initdata = {
6515		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6516		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6517		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6518		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6519		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6520		{ "sata",	.cbl		= ATA_CBL_SATA },
6521		{ "1.5Gbps",	.spd_limit	= 1 },
6522		{ "3.0Gbps",	.spd_limit	= 2 },
6523		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6524		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6525		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6526		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6527		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6528		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6529		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6530		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6531		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6532		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6533		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6534		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6535		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6536		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6537		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6538		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6539		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6540		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6541		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6542		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6543		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6544		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6545		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6546		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6547		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6548		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6549		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6550		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6551		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6552		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6553		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6554		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6555		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6556		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6557		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6558		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6559		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6560		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6561		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6562		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6563		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6564		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6565		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6566	};
6567	char *start = *cur, *p = *cur;
6568	char *id, *val, *endp;
6569	const struct ata_force_param *match_fp = NULL;
6570	int nr_matches = 0, i;
6571
6572	/* find where this param ends and update *cur */
6573	while (*p != '\0' && *p != ',')
6574		p++;
6575
6576	if (*p == '\0')
6577		*cur = p;
6578	else
6579		*cur = p + 1;
6580
6581	*p = '\0';
6582
6583	/* parse */
6584	p = strchr(start, ':');
6585	if (!p) {
6586		val = strstrip(start);
6587		goto parse_val;
6588	}
6589	*p = '\0';
6590
6591	id = strstrip(start);
6592	val = strstrip(p + 1);
6593
6594	/* parse id */
6595	p = strchr(id, '.');
6596	if (p) {
6597		*p++ = '\0';
6598		force_ent->device = simple_strtoul(p, &endp, 10);
6599		if (p == endp || *endp != '\0') {
6600			*reason = "invalid device";
6601			return -EINVAL;
6602		}
6603	}
6604
6605	force_ent->port = simple_strtoul(id, &endp, 10);
6606	if (p == endp || *endp != '\0') {
6607		*reason = "invalid port/link";
6608		return -EINVAL;
6609	}
6610
6611 parse_val:
6612	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6613	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6614		const struct ata_force_param *fp = &force_tbl[i];
6615
6616		if (strncasecmp(val, fp->name, strlen(val)))
6617			continue;
6618
6619		nr_matches++;
6620		match_fp = fp;
6621
6622		if (strcasecmp(val, fp->name) == 0) {
6623			nr_matches = 1;
6624			break;
6625		}
6626	}
6627
6628	if (!nr_matches) {
6629		*reason = "unknown value";
6630		return -EINVAL;
6631	}
6632	if (nr_matches > 1) {
6633		*reason = "ambigious value";
6634		return -EINVAL;
6635	}
6636
6637	force_ent->param = *match_fp;
6638
6639	return 0;
6640}
6641
6642static void __init ata_parse_force_param(void)
6643{
6644	int idx = 0, size = 1;
6645	int last_port = -1, last_device = -1;
6646	char *p, *cur, *next;
6647
6648	/* calculate maximum number of params and allocate force_tbl */
6649	for (p = ata_force_param_buf; *p; p++)
6650		if (*p == ',')
6651			size++;
6652
6653	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6654	if (!ata_force_tbl) {
6655		printk(KERN_WARNING "ata: failed to extend force table, "
6656		       "libata.force ignored\n");
6657		return;
6658	}
6659
6660	/* parse and populate the table */
6661	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6662		const char *reason = "";
6663		struct ata_force_ent te = { .port = -1, .device = -1 };
6664
6665		next = cur;
6666		if (ata_parse_force_one(&next, &te, &reason)) {
6667			printk(KERN_WARNING "ata: failed to parse force "
6668			       "parameter \"%s\" (%s)\n",
6669			       cur, reason);
6670			continue;
6671		}
6672
6673		if (te.port == -1) {
6674			te.port = last_port;
6675			te.device = last_device;
6676		}
6677
6678		ata_force_tbl[idx++] = te;
6679
6680		last_port = te.port;
6681		last_device = te.device;
6682	}
6683
6684	ata_force_tbl_size = idx;
6685}
6686
6687static int __init ata_init(void)
6688{
6689	int rc;
6690
6691	ata_parse_force_param();
6692
6693	rc = ata_sff_init();
6694	if (rc) {
6695		kfree(ata_force_tbl);
6696		return rc;
6697	}
6698
6699	libata_transport_init();
6700	ata_scsi_transport_template = ata_attach_transport();
6701	if (!ata_scsi_transport_template) {
6702		ata_sff_exit();
6703		rc = -ENOMEM;
6704		goto err_out;
6705	}
6706
6707	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6708	return 0;
6709
6710err_out:
6711	return rc;
6712}
6713
6714static void __exit ata_exit(void)
6715{
6716	ata_release_transport(ata_scsi_transport_template);
6717	libata_transport_exit();
6718	ata_sff_exit();
6719	kfree(ata_force_tbl);
6720}
6721
6722subsys_initcall(ata_init);
6723module_exit(ata_exit);
6724
6725static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6726
6727int ata_ratelimit(void)
6728{
6729	return __ratelimit(&ratelimit);
6730}
6731
6732/**
6733 *	ata_msleep - ATA EH owner aware msleep
6734 *	@ap: ATA port to attribute the sleep to
6735 *	@msecs: duration to sleep in milliseconds
6736 *
6737 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6738 *	ownership is released before going to sleep and reacquired
6739 *	after the sleep is complete.  IOW, other ports sharing the
6740 *	@ap->host will be allowed to own the EH while this task is
6741 *	sleeping.
6742 *
6743 *	LOCKING:
6744 *	Might sleep.
6745 */
6746void ata_msleep(struct ata_port *ap, unsigned int msecs)
6747{
6748	bool owns_eh = ap && ap->host->eh_owner == current;
6749
6750	if (owns_eh)
6751		ata_eh_release(ap);
6752
6753	msleep(msecs);
6754
6755	if (owns_eh)
6756		ata_eh_acquire(ap);
6757}
6758
6759/**
6760 *	ata_wait_register - wait until register value changes
6761 *	@ap: ATA port to wait register for, can be NULL
6762 *	@reg: IO-mapped register
6763 *	@mask: Mask to apply to read register value
6764 *	@val: Wait condition
6765 *	@interval: polling interval in milliseconds
6766 *	@timeout: timeout in milliseconds
6767 *
6768 *	Waiting for some bits of register to change is a common
6769 *	operation for ATA controllers.  This function reads 32bit LE
6770 *	IO-mapped register @reg and tests for the following condition.
6771 *
6772 *	(*@reg & mask) != val
6773 *
6774 *	If the condition is met, it returns; otherwise, the process is
6775 *	repeated after @interval_msec until timeout.
6776 *
6777 *	LOCKING:
6778 *	Kernel thread context (may sleep)
6779 *
6780 *	RETURNS:
6781 *	The final register value.
6782 */
6783u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6784		      unsigned long interval, unsigned long timeout)
6785{
6786	unsigned long deadline;
6787	u32 tmp;
6788
6789	tmp = ioread32(reg);
6790
6791	/* Calculate timeout _after_ the first read to make sure
6792	 * preceding writes reach the controller before starting to
6793	 * eat away the timeout.
6794	 */
6795	deadline = ata_deadline(jiffies, timeout);
6796
6797	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6798		ata_msleep(ap, interval);
6799		tmp = ioread32(reg);
6800	}
6801
6802	return tmp;
6803}
6804
6805/*
6806 * Dummy port_ops
6807 */
6808static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6809{
6810	return AC_ERR_SYSTEM;
6811}
6812
6813static void ata_dummy_error_handler(struct ata_port *ap)
6814{
6815	/* truly dummy */
6816}
6817
6818struct ata_port_operations ata_dummy_port_ops = {
6819	.qc_prep		= ata_noop_qc_prep,
6820	.qc_issue		= ata_dummy_qc_issue,
6821	.error_handler		= ata_dummy_error_handler,
6822	.sched_eh		= ata_std_sched_eh,
6823	.end_eh			= ata_std_end_eh,
6824};
6825
6826const struct ata_port_info ata_dummy_port_info = {
6827	.port_ops		= &ata_dummy_port_ops,
6828};
6829
6830/*
6831 * Utility print functions
6832 */
6833int ata_port_printk(const struct ata_port *ap, const char *level,
6834		    const char *fmt, ...)
6835{
6836	struct va_format vaf;
6837	va_list args;
6838	int r;
6839
6840	va_start(args, fmt);
6841
6842	vaf.fmt = fmt;
6843	vaf.va = &args;
6844
6845	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6846
6847	va_end(args);
6848
6849	return r;
6850}
6851EXPORT_SYMBOL(ata_port_printk);
6852
6853int ata_link_printk(const struct ata_link *link, const char *level,
6854		    const char *fmt, ...)
6855{
6856	struct va_format vaf;
6857	va_list args;
6858	int r;
6859
6860	va_start(args, fmt);
6861
6862	vaf.fmt = fmt;
6863	vaf.va = &args;
6864
6865	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6866		r = printk("%sata%u.%02u: %pV",
6867			   level, link->ap->print_id, link->pmp, &vaf);
6868	else
6869		r = printk("%sata%u: %pV",
6870			   level, link->ap->print_id, &vaf);
6871
6872	va_end(args);
6873
6874	return r;
6875}
6876EXPORT_SYMBOL(ata_link_printk);
6877
6878int ata_dev_printk(const struct ata_device *dev, const char *level,
6879		    const char *fmt, ...)
6880{
6881	struct va_format vaf;
6882	va_list args;
6883	int r;
6884
6885	va_start(args, fmt);
6886
6887	vaf.fmt = fmt;
6888	vaf.va = &args;
6889
6890	r = printk("%sata%u.%02u: %pV",
6891		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6892		   &vaf);
6893
6894	va_end(args);
6895
6896	return r;
6897}
6898EXPORT_SYMBOL(ata_dev_printk);
6899
6900void ata_print_version(const struct device *dev, const char *version)
6901{
6902	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6903}
6904EXPORT_SYMBOL(ata_print_version);
6905
6906/*
6907 * libata is essentially a library of internal helper functions for
6908 * low-level ATA host controller drivers.  As such, the API/ABI is
6909 * likely to change as new drivers are added and updated.
6910 * Do not depend on ABI/API stability.
6911 */
6912EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6913EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6914EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6915EXPORT_SYMBOL_GPL(ata_base_port_ops);
6916EXPORT_SYMBOL_GPL(sata_port_ops);
6917EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6918EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6919EXPORT_SYMBOL_GPL(ata_link_next);
6920EXPORT_SYMBOL_GPL(ata_dev_next);
6921EXPORT_SYMBOL_GPL(ata_std_bios_param);
6922EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6923EXPORT_SYMBOL_GPL(ata_host_init);
6924EXPORT_SYMBOL_GPL(ata_host_alloc);
6925EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6926EXPORT_SYMBOL_GPL(ata_slave_link_init);
6927EXPORT_SYMBOL_GPL(ata_host_start);
6928EXPORT_SYMBOL_GPL(ata_host_register);
6929EXPORT_SYMBOL_GPL(ata_host_activate);
6930EXPORT_SYMBOL_GPL(ata_host_detach);
6931EXPORT_SYMBOL_GPL(ata_sg_init);
6932EXPORT_SYMBOL_GPL(ata_qc_complete);
6933EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6934EXPORT_SYMBOL_GPL(atapi_cmd_type);
6935EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6936EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6937EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6938EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6939EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6940EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6941EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6942EXPORT_SYMBOL_GPL(ata_mode_string);
6943EXPORT_SYMBOL_GPL(ata_id_xfermask);
6944EXPORT_SYMBOL_GPL(ata_do_set_mode);
6945EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6946EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6947EXPORT_SYMBOL_GPL(ata_dev_disable);
6948EXPORT_SYMBOL_GPL(sata_set_spd);
6949EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6950EXPORT_SYMBOL_GPL(sata_link_debounce);
6951EXPORT_SYMBOL_GPL(sata_link_resume);
6952EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6953EXPORT_SYMBOL_GPL(ata_std_prereset);
6954EXPORT_SYMBOL_GPL(sata_link_hardreset);
6955EXPORT_SYMBOL_GPL(sata_std_hardreset);
6956EXPORT_SYMBOL_GPL(ata_std_postreset);
6957EXPORT_SYMBOL_GPL(ata_dev_classify);
6958EXPORT_SYMBOL_GPL(ata_dev_pair);
6959EXPORT_SYMBOL_GPL(ata_ratelimit);
6960EXPORT_SYMBOL_GPL(ata_msleep);
6961EXPORT_SYMBOL_GPL(ata_wait_register);
6962EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6963EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6964EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6965EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6966EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6967EXPORT_SYMBOL_GPL(sata_scr_valid);
6968EXPORT_SYMBOL_GPL(sata_scr_read);
6969EXPORT_SYMBOL_GPL(sata_scr_write);
6970EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6971EXPORT_SYMBOL_GPL(ata_link_online);
6972EXPORT_SYMBOL_GPL(ata_link_offline);
6973#ifdef CONFIG_PM
6974EXPORT_SYMBOL_GPL(ata_host_suspend);
6975EXPORT_SYMBOL_GPL(ata_host_resume);
6976#endif /* CONFIG_PM */
6977EXPORT_SYMBOL_GPL(ata_id_string);
6978EXPORT_SYMBOL_GPL(ata_id_c_string);
6979EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6980EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6981
6982EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6983EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6984EXPORT_SYMBOL_GPL(ata_timing_compute);
6985EXPORT_SYMBOL_GPL(ata_timing_merge);
6986EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6987
6988#ifdef CONFIG_PCI
6989EXPORT_SYMBOL_GPL(pci_test_config_bits);
6990EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6991#ifdef CONFIG_PM
6992EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6993EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6994EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6995EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6996#endif /* CONFIG_PM */
6997#endif /* CONFIG_PCI */
6998
6999EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7000
7001EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7002EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7003EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7004EXPORT_SYMBOL_GPL(ata_port_desc);
7005#ifdef CONFIG_PCI
7006EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7007#endif /* CONFIG_PCI */
7008EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7009EXPORT_SYMBOL_GPL(ata_link_abort);
7010EXPORT_SYMBOL_GPL(ata_port_abort);
7011EXPORT_SYMBOL_GPL(ata_port_freeze);
7012EXPORT_SYMBOL_GPL(sata_async_notification);
7013EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7014EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7015EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7016EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7017EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7018EXPORT_SYMBOL_GPL(ata_do_eh);
7019EXPORT_SYMBOL_GPL(ata_std_error_handler);
7020
7021EXPORT_SYMBOL_GPL(ata_cable_40wire);
7022EXPORT_SYMBOL_GPL(ata_cable_80wire);
7023EXPORT_SYMBOL_GPL(ata_cable_unknown);
7024EXPORT_SYMBOL_GPL(ata_cable_ignore);
7025EXPORT_SYMBOL_GPL(ata_cable_sata);