Loading...
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
66#include <asm/byteorder.h>
67#include <linux/cdrom.h>
68#include <linux/ratelimit.h>
69#include <linux/pm_runtime.h>
70
71#include "libata.h"
72#include "libata-transport.h"
73
74/* debounce timing parameters in msecs { interval, duration, timeout } */
75const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78
79const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
83};
84
85const struct ata_port_operations sata_port_ops = {
86 .inherits = &ata_base_port_ops,
87
88 .qc_defer = ata_std_qc_defer,
89 .hardreset = sata_std_hardreset,
90};
91
92static unsigned int ata_dev_init_params(struct ata_device *dev,
93 u16 heads, u16 sectors);
94static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
95static void ata_dev_xfermask(struct ata_device *dev);
96static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97
98atomic_t ata_print_id = ATOMIC_INIT(0);
99
100struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108};
109
110struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114};
115
116static struct ata_force_ent *ata_force_tbl;
117static int ata_force_tbl_size;
118
119static char ata_force_param_buf[PAGE_SIZE] __initdata;
120/* param_buf is thrown away after initialization, disallow read */
121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124static int atapi_enabled = 1;
125module_param(atapi_enabled, int, 0444);
126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127
128static int atapi_dmadir = 0;
129module_param(atapi_dmadir, int, 0444);
130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131
132int atapi_passthru16 = 1;
133module_param(atapi_passthru16, int, 0444);
134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135
136int libata_fua = 0;
137module_param_named(fua, libata_fua, int, 0444);
138MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139
140static int ata_ignore_hpa;
141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145module_param_named(dma, libata_dma_mask, int, 0444);
146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148static int ata_probe_timeout;
149module_param(ata_probe_timeout, int, 0444);
150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152int libata_noacpi = 0;
153module_param_named(noacpi, libata_noacpi, int, 0444);
154MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155
156int libata_allow_tpm = 0;
157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159
160static int atapi_an;
161module_param(atapi_an, int, 0444);
162MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163
164MODULE_AUTHOR("Jeff Garzik");
165MODULE_DESCRIPTION("Library module for ATA devices");
166MODULE_LICENSE("GPL");
167MODULE_VERSION(DRV_VERSION);
168
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172 return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189{
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 /* fall through */
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 /* fall through */
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 /* fall through */
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232}
233
234/**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248{
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285}
286
287/**
288 * ata_dev_phys_link - find physical link for a device
289 * @dev: ATA device to look up physical link for
290 *
291 * Look up physical link which @dev is attached to. Note that
292 * this is different from @dev->link only when @dev is on slave
293 * link. For all other cases, it's the same as @dev->link.
294 *
295 * LOCKING:
296 * Don't care.
297 *
298 * RETURNS:
299 * Pointer to the found physical link.
300 */
301struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302{
303 struct ata_port *ap = dev->link->ap;
304
305 if (!ap->slave_link)
306 return dev->link;
307 if (!dev->devno)
308 return &ap->link;
309 return ap->slave_link;
310}
311
312/**
313 * ata_force_cbl - force cable type according to libata.force
314 * @ap: ATA port of interest
315 *
316 * Force cable type according to libata.force and whine about it.
317 * The last entry which has matching port number is used, so it
318 * can be specified as part of device force parameters. For
319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320 * same effect.
321 *
322 * LOCKING:
323 * EH context.
324 */
325void ata_force_cbl(struct ata_port *ap)
326{
327 int i;
328
329 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 const struct ata_force_ent *fe = &ata_force_tbl[i];
331
332 if (fe->port != -1 && fe->port != ap->print_id)
333 continue;
334
335 if (fe->param.cbl == ATA_CBL_NONE)
336 continue;
337
338 ap->cbl = fe->param.cbl;
339 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342}
343
344/**
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
347 *
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
356 *
357 * LOCKING:
358 * EH context.
359 */
360static void ata_force_link_limits(struct ata_link *link)
361{
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
365
366 if (ata_is_host_link(link))
367 linkno += 15;
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
385
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_notice(link,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
393 }
394}
395
396/**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
407static void ata_force_xfermask(struct ata_device *dev)
408{
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
445 fe->param.name);
446 return;
447 }
448}
449
450/**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
461static void ata_force_horkage(struct ata_device *dev)
462{
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
489 fe->param.name);
490 }
491}
492
493/**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
505int atapi_cmd_type(u8 opcode)
506{
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
528 }
529}
530
531/**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545{
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573}
574
575/**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587{
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602}
603
604static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
619 0,
620 0,
621 0,
622 0,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
632};
633
634/**
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
638 *
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
641 *
642 * LOCKING:
643 * caller.
644 */
645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646{
647 u8 cmd;
648
649 int index, fua, lba48, write;
650
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
665 }
666
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
673}
674
675/**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691{
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 if (!sect) {
713 ata_dev_warn(dev,
714 "device reported invalid CHS sector 0\n");
715 sect = 1; /* oh well */
716 }
717
718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
719 }
720
721 return block;
722}
723
724/**
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
731 * @tag: tag
732 *
733 * LOCKING:
734 * None.
735 *
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
738 *
739 * RETURNS:
740 *
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
743 */
744int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 u64 block, u32 n_block, unsigned int tf_flags,
746 unsigned int tag)
747{
748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 tf->flags |= tf_flags;
750
751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 /* yay, NCQ */
753 if (!lba_48_ok(block, n_block))
754 return -ERANGE;
755
756 tf->protocol = ATA_PROT_NCQ;
757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758
759 if (tf->flags & ATA_TFLAG_WRITE)
760 tf->command = ATA_CMD_FPDMA_WRITE;
761 else
762 tf->command = ATA_CMD_FPDMA_READ;
763
764 tf->nsect = tag << 3;
765 tf->hob_feature = (n_block >> 8) & 0xff;
766 tf->feature = n_block & 0xff;
767
768 tf->hob_lbah = (block >> 40) & 0xff;
769 tf->hob_lbam = (block >> 32) & 0xff;
770 tf->hob_lbal = (block >> 24) & 0xff;
771 tf->lbah = (block >> 16) & 0xff;
772 tf->lbam = (block >> 8) & 0xff;
773 tf->lbal = block & 0xff;
774
775 tf->device = 1 << 6;
776 if (tf->flags & ATA_TFLAG_FUA)
777 tf->device |= 1 << 7;
778 } else if (dev->flags & ATA_DFLAG_LBA) {
779 tf->flags |= ATA_TFLAG_LBA;
780
781 if (lba_28_ok(block, n_block)) {
782 /* use LBA28 */
783 tf->device |= (block >> 24) & 0xf;
784 } else if (lba_48_ok(block, n_block)) {
785 if (!(dev->flags & ATA_DFLAG_LBA48))
786 return -ERANGE;
787
788 /* use LBA48 */
789 tf->flags |= ATA_TFLAG_LBA48;
790
791 tf->hob_nsect = (n_block >> 8) & 0xff;
792
793 tf->hob_lbah = (block >> 40) & 0xff;
794 tf->hob_lbam = (block >> 32) & 0xff;
795 tf->hob_lbal = (block >> 24) & 0xff;
796 } else
797 /* request too large even for LBA48 */
798 return -ERANGE;
799
800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 return -EINVAL;
802
803 tf->nsect = n_block & 0xff;
804
805 tf->lbah = (block >> 16) & 0xff;
806 tf->lbam = (block >> 8) & 0xff;
807 tf->lbal = block & 0xff;
808
809 tf->device |= ATA_LBA;
810 } else {
811 /* CHS */
812 u32 sect, head, cyl, track;
813
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block, n_block))
816 return -ERANGE;
817
818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 return -EINVAL;
820
821 /* Convert LBA to CHS */
822 track = (u32)block / dev->sectors;
823 cyl = track / dev->heads;
824 head = track % dev->heads;
825 sect = (u32)block % dev->sectors + 1;
826
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32)block, track, cyl, head, sect);
829
830 /* Check whether the converted CHS can fit.
831 Cylinder: 0-65535
832 Head: 0-15
833 Sector: 1-255*/
834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 return -ERANGE;
836
837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 tf->lbal = sect;
839 tf->lbam = cyl;
840 tf->lbah = cyl >> 8;
841 tf->device |= head;
842 }
843
844 return 0;
845}
846
847/**
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
852 *
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
855 *
856 * LOCKING:
857 * None.
858 *
859 * RETURNS:
860 * Packed xfer_mask.
861 */
862unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 unsigned long mwdma_mask,
864 unsigned long udma_mask)
865{
866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
869}
870
871/**
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
877 *
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
880 */
881void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 unsigned long *mwdma_mask, unsigned long *udma_mask)
883{
884 if (pio_mask)
885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 if (mwdma_mask)
887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 if (udma_mask)
889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
890}
891
892static const struct ata_xfer_ent {
893 int shift, bits;
894 u8 base;
895} ata_xfer_tbl[] = {
896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 { -1, },
900};
901
902/**
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
905 *
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
908 *
909 * LOCKING:
910 * None.
911 *
912 * RETURNS:
913 * Matching XFER_* value, 0xff if no match found.
914 */
915u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916{
917 int highbit = fls(xfer_mask) - 1;
918 const struct ata_xfer_ent *ent;
919
920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 return ent->base + highbit - ent->shift;
923 return 0xff;
924}
925
926/**
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
929 *
930 * Return matching xfer_mask for @xfer_mode.
931 *
932 * LOCKING:
933 * None.
934 *
935 * RETURNS:
936 * Matching xfer_mask, 0 if no match found.
937 */
938unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939{
940 const struct ata_xfer_ent *ent;
941
942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 & ~((1 << ent->shift) - 1);
946 return 0;
947}
948
949/**
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
952 *
953 * Return matching xfer_shift for @xfer_mode.
954 *
955 * LOCKING:
956 * None.
957 *
958 * RETURNS:
959 * Matching xfer_shift, -1 if no match found.
960 */
961int ata_xfer_mode2shift(unsigned long xfer_mode)
962{
963 const struct ata_xfer_ent *ent;
964
965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 return ent->shift;
968 return -1;
969}
970
971/**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
985const char *ata_mode_string(unsigned long xfer_mask)
986{
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015}
1016
1017const char *sata_spd_string(unsigned int spd)
1018{
1019 static const char * const spd_str[] = {
1020 "1.5 Gbps",
1021 "3.0 Gbps",
1022 "6.0 Gbps",
1023 };
1024
1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 return "<unknown>";
1027 return spd_str[spd - 1];
1028}
1029
1030/**
1031 * ata_dev_classify - determine device type based on ATA-spec signature
1032 * @tf: ATA taskfile register set for device to be identified
1033 *
1034 * Determine from taskfile register contents whether a device is
1035 * ATA or ATAPI, as per "Signature and persistence" section
1036 * of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 * LOCKING:
1039 * None.
1040 *
1041 * RETURNS:
1042 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 * %ATA_DEV_UNKNOWN the event of failure.
1044 */
1045unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046{
1047 /* Apple's open source Darwin code hints that some devices only
1048 * put a proper signature into the LBA mid/high registers,
1049 * So, we only check those. It's sufficient for uniqueness.
1050 *
1051 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052 * signatures for ATA and ATAPI devices attached on SerialATA,
1053 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1054 * spec has never mentioned about using different signatures
1055 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1056 * Multiplier specification began to use 0x69/0x96 to identify
1057 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059 * 0x69/0x96 shortly and described them as reserved for
1060 * SerialATA.
1061 *
1062 * We follow the current spec and consider that 0x69/0x96
1063 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065 * SEMB signature. This is worked around in
1066 * ata_dev_read_id().
1067 */
1068 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069 DPRINTK("found ATA device by sig\n");
1070 return ATA_DEV_ATA;
1071 }
1072
1073 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074 DPRINTK("found ATAPI device by sig\n");
1075 return ATA_DEV_ATAPI;
1076 }
1077
1078 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079 DPRINTK("found PMP device by sig\n");
1080 return ATA_DEV_PMP;
1081 }
1082
1083 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085 return ATA_DEV_SEMB;
1086 }
1087
1088 DPRINTK("unknown device\n");
1089 return ATA_DEV_UNKNOWN;
1090}
1091
1092/**
1093 * ata_id_string - Convert IDENTIFY DEVICE page into string
1094 * @id: IDENTIFY DEVICE results we will examine
1095 * @s: string into which data is output
1096 * @ofs: offset into identify device page
1097 * @len: length of string to return. must be an even number.
1098 *
1099 * The strings in the IDENTIFY DEVICE page are broken up into
1100 * 16-bit chunks. Run through the string, and output each
1101 * 8-bit chunk linearly, regardless of platform.
1102 *
1103 * LOCKING:
1104 * caller.
1105 */
1106
1107void ata_id_string(const u16 *id, unsigned char *s,
1108 unsigned int ofs, unsigned int len)
1109{
1110 unsigned int c;
1111
1112 BUG_ON(len & 1);
1113
1114 while (len > 0) {
1115 c = id[ofs] >> 8;
1116 *s = c;
1117 s++;
1118
1119 c = id[ofs] & 0xff;
1120 *s = c;
1121 s++;
1122
1123 ofs++;
1124 len -= 2;
1125 }
1126}
1127
1128/**
1129 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 * @id: IDENTIFY DEVICE results we will examine
1131 * @s: string into which data is output
1132 * @ofs: offset into identify device page
1133 * @len: length of string to return. must be an odd number.
1134 *
1135 * This function is identical to ata_id_string except that it
1136 * trims trailing spaces and terminates the resulting string with
1137 * null. @len must be actual maximum length (even number) + 1.
1138 *
1139 * LOCKING:
1140 * caller.
1141 */
1142void ata_id_c_string(const u16 *id, unsigned char *s,
1143 unsigned int ofs, unsigned int len)
1144{
1145 unsigned char *p;
1146
1147 ata_id_string(id, s, ofs, len - 1);
1148
1149 p = s + strnlen(s, len - 1);
1150 while (p > s && p[-1] == ' ')
1151 p--;
1152 *p = '\0';
1153}
1154
1155static u64 ata_id_n_sectors(const u16 *id)
1156{
1157 if (ata_id_has_lba(id)) {
1158 if (ata_id_has_lba48(id))
1159 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160 else
1161 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162 } else {
1163 if (ata_id_current_chs_valid(id))
1164 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165 id[ATA_ID_CUR_SECTORS];
1166 else
1167 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168 id[ATA_ID_SECTORS];
1169 }
1170}
1171
1172u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173{
1174 u64 sectors = 0;
1175
1176 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179 sectors |= (tf->lbah & 0xff) << 16;
1180 sectors |= (tf->lbam & 0xff) << 8;
1181 sectors |= (tf->lbal & 0xff);
1182
1183 return sectors;
1184}
1185
1186u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187{
1188 u64 sectors = 0;
1189
1190 sectors |= (tf->device & 0x0f) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
1195 return sectors;
1196}
1197
1198/**
1199 * ata_read_native_max_address - Read native max address
1200 * @dev: target device
1201 * @max_sectors: out parameter for the result native max address
1202 *
1203 * Perform an LBA48 or LBA28 native size query upon the device in
1204 * question.
1205 *
1206 * RETURNS:
1207 * 0 on success, -EACCES if command is aborted by the drive.
1208 * -EIO on other errors.
1209 */
1210static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211{
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 ata_tf_init(dev, &tf);
1217
1218 /* always clear all address registers */
1219 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221 if (lba48) {
1222 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223 tf.flags |= ATA_TFLAG_LBA48;
1224 } else
1225 tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227 tf.protocol |= ATA_PROT_NODATA;
1228 tf.device |= ATA_LBA;
1229
1230 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231 if (err_mask) {
1232 ata_dev_warn(dev,
1233 "failed to read native max address (err_mask=0x%x)\n",
1234 err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1238 }
1239
1240 if (lba48)
1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 else
1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 (*max_sectors)--;
1246 return 0;
1247}
1248
1249/**
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1253 *
1254 * Set max sectors of @dev to @new_sectors.
1255 *
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1260 */
1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262{
1263 unsigned int err_mask;
1264 struct ata_taskfile tf;
1265 int lba48 = ata_id_has_lba48(dev->id);
1266
1267 new_sectors--;
1268
1269 ata_tf_init(dev, &tf);
1270
1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1276
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 } else {
1281 tf.command = ATA_CMD_SET_MAX;
1282
1283 tf.device |= (new_sectors >> 24) & 0xf;
1284 }
1285
1286 tf.protocol |= ATA_PROT_NODATA;
1287 tf.device |= ATA_LBA;
1288
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 if (err_mask) {
1295 ata_dev_warn(dev,
1296 "failed to set max address (err_mask=0x%x)\n",
1297 err_mask);
1298 if (err_mask == AC_ERR_DEV &&
1299 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300 return -EACCES;
1301 return -EIO;
1302 }
1303
1304 return 0;
1305}
1306
1307/**
1308 * ata_hpa_resize - Resize a device with an HPA set
1309 * @dev: Device to resize
1310 *
1311 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 * it if required to the full size of the media. The caller must check
1313 * the drive has the HPA feature set enabled.
1314 *
1315 * RETURNS:
1316 * 0 on success, -errno on failure.
1317 */
1318static int ata_hpa_resize(struct ata_device *dev)
1319{
1320 struct ata_eh_context *ehc = &dev->link->eh_context;
1321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323 u64 sectors = ata_id_n_sectors(dev->id);
1324 u64 native_sectors;
1325 int rc;
1326
1327 /* do we need to do it? */
1328 if (dev->class != ATA_DEV_ATA ||
1329 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331 return 0;
1332
1333 /* read native max address */
1334 rc = ata_read_native_max_address(dev, &native_sectors);
1335 if (rc) {
1336 /* If device aborted the command or HPA isn't going to
1337 * be unlocked, skip HPA resizing.
1338 */
1339 if (rc == -EACCES || !unlock_hpa) {
1340 ata_dev_warn(dev,
1341 "HPA support seems broken, skipping HPA handling\n");
1342 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344 /* we can continue if device aborted the command */
1345 if (rc == -EACCES)
1346 rc = 0;
1347 }
1348
1349 return rc;
1350 }
1351 dev->n_native_sectors = native_sectors;
1352
1353 /* nothing to do? */
1354 if (native_sectors <= sectors || !unlock_hpa) {
1355 if (!print_info || native_sectors == sectors)
1356 return 0;
1357
1358 if (native_sectors > sectors)
1359 ata_dev_info(dev,
1360 "HPA detected: current %llu, native %llu\n",
1361 (unsigned long long)sectors,
1362 (unsigned long long)native_sectors);
1363 else if (native_sectors < sectors)
1364 ata_dev_warn(dev,
1365 "native sectors (%llu) is smaller than sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1369 }
1370
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_warn(dev,
1376 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1383
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_err(dev,
1388 "failed to re-read IDENTIFY data after HPA resizing\n");
1389 return rc;
1390 }
1391
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_info(dev,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1399 }
1400
1401 return 0;
1402}
1403
1404/**
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1407 *
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1410 *
1411 * LOCKING:
1412 * caller.
1413 */
1414
1415static inline void ata_dump_id(const u16 *id)
1416{
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
1439 id[88],
1440 id[93]);
1441}
1442
1443/**
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1446 *
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1449 *
1450 * FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 * LOCKING:
1453 * None.
1454 *
1455 * RETURNS:
1456 * Computed xfermask
1457 */
1458unsigned long ata_id_xfermask(const u16 *id)
1459{
1460 unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1471 */
1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 if (mode < 5) /* Valid PIO range */
1474 pio_mask = (2 << mode) - 1;
1475 else
1476 pio_mask = 1;
1477
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1483 */
1484 }
1485
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488 if (ata_id_is_cfa(id)) {
1489 /*
1490 * Process compact flash extended modes
1491 */
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1503 }
1504
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513{
1514 struct completion *waiting = qc->private_data;
1515
1516 complete(waiting);
1517}
1518
1519/**
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1528 *
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1534 *
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1540 */
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
1543 int dma_dir, struct scatterlist *sgl,
1544 unsigned int n_elem, unsigned long timeout)
1545{
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
1548 u8 command = tf->command;
1549 int auto_timeout = 0;
1550 struct ata_queued_cmd *qc;
1551 unsigned int tag, preempted_tag;
1552 u32 preempted_sactive, preempted_qc_active;
1553 int preempted_nr_active_links;
1554 DECLARE_COMPLETION_ONSTACK(wait);
1555 unsigned long flags;
1556 unsigned int err_mask;
1557 int rc;
1558
1559 spin_lock_irqsave(ap->lock, flags);
1560
1561 /* no internal command while frozen */
1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1565 }
1566
1567 /* initialize internal qc */
1568
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1573 */
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1578
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
1581 qc = __ata_qc_from_tag(ap, tag);
1582
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1588
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
1591 preempted_qc_active = ap->qc_active;
1592 preempted_nr_active_links = ap->nr_active_links;
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
1595 ap->qc_active = 0;
1596 ap->nr_active_links = 0;
1597
1598 /* prepare & issue qc */
1599 qc->tf = *tf;
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
1605 unsigned int i, buflen = 0;
1606 struct scatterlist *sg;
1607
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
1610
1611 ata_sg_init(qc, sgl, n_elem);
1612 qc->nbytes = buflen;
1613 }
1614
1615 qc->private_data = &wait;
1616 qc->complete_fn = ata_qc_complete_internal;
1617
1618 ata_qc_issue(qc);
1619
1620 spin_unlock_irqrestore(ap->lock, flags);
1621
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1628 }
1629 }
1630
1631 if (ap->ops->error_handler)
1632 ata_eh_release(ap);
1633
1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636 if (ap->ops->error_handler)
1637 ata_eh_acquire(ap);
1638
1639 ata_sff_flush_pio_task(ap);
1640
1641 if (!rc) {
1642 spin_lock_irqsave(ap->lock, flags);
1643
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
1648 */
1649 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650 qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652 if (ap->ops->error_handler)
1653 ata_port_freeze(ap);
1654 else
1655 ata_qc_complete(qc);
1656
1657 if (ata_msg_warn(ap))
1658 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659 command);
1660 }
1661
1662 spin_unlock_irqrestore(ap->lock, flags);
1663 }
1664
1665 /* do post_internal_cmd */
1666 if (ap->ops->post_internal_cmd)
1667 ap->ops->post_internal_cmd(qc);
1668
1669 /* perform minimal error analysis */
1670 if (qc->flags & ATA_QCFLAG_FAILED) {
1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 qc->err_mask |= AC_ERR_DEV;
1673
1674 if (!qc->err_mask)
1675 qc->err_mask |= AC_ERR_OTHER;
1676
1677 if (qc->err_mask & ~AC_ERR_OTHER)
1678 qc->err_mask &= ~AC_ERR_OTHER;
1679 }
1680
1681 /* finish up */
1682 spin_lock_irqsave(ap->lock, flags);
1683
1684 *tf = qc->result_tf;
1685 err_mask = qc->err_mask;
1686
1687 ata_qc_free(qc);
1688 link->active_tag = preempted_tag;
1689 link->sactive = preempted_sactive;
1690 ap->qc_active = preempted_qc_active;
1691 ap->nr_active_links = preempted_nr_active_links;
1692
1693 spin_unlock_irqrestore(ap->lock, flags);
1694
1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 ata_internal_cmd_timed_out(dev, command);
1697
1698 return err_mask;
1699}
1700
1701/**
1702 * ata_exec_internal - execute libata internal command
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
1709 * @timeout: Timeout in msecs (0 for default)
1710 *
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1713 *
1714 * LOCKING:
1715 * None. Should be called with kernel context, might sleep.
1716 *
1717 * RETURNS:
1718 * Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721 struct ata_taskfile *tf, const u8 *cdb,
1722 int dma_dir, void *buf, unsigned int buflen,
1723 unsigned long timeout)
1724{
1725 struct scatterlist *psg = NULL, sg;
1726 unsigned int n_elem = 0;
1727
1728 if (dma_dir != DMA_NONE) {
1729 WARN_ON(!buf);
1730 sg_init_one(&sg, buf, buflen);
1731 psg = &sg;
1732 n_elem++;
1733 }
1734
1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 timeout);
1737}
1738
1739/**
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1743 *
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1746 *
1747 * LOCKING:
1748 * Kernel thread context (may sleep).
1749 *
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
1752 */
1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754{
1755 struct ata_taskfile tf;
1756
1757 ata_tf_init(dev, &tf);
1758
1759 tf.command = cmd;
1760 tf.flags |= ATA_TFLAG_DEVICE;
1761 tf.protocol = ATA_PROT_NODATA;
1762
1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764}
1765
1766/**
1767 * ata_pio_need_iordy - check if iordy needed
1768 * @adev: ATA device
1769 *
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1772 */
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1778 */
1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 return 0;
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1783 */
1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785 return 0;
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev->id)
1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 return 0;
1790 /* PIO3 and higher it is mandatory */
1791 if (adev->pio_mode > XFER_PIO_2)
1792 return 1;
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev->id))
1795 return 1;
1796 return 0;
1797}
1798
1799/**
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1801 * @adev: ATA device
1802 *
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1805 */
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811 /* Is the speed faster than the drive allows non IORDY ? */
1812 if (pio) {
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio > 240) /* PIO2 is 240nS per cycle */
1815 return 3 << ATA_SHIFT_PIO;
1816 return 7 << ATA_SHIFT_PIO;
1817 }
1818 }
1819 return 3 << ATA_SHIFT_PIO;
1820}
1821
1822/**
1823 * ata_do_dev_read_id - default ID read method
1824 * @dev: device
1825 * @tf: proposed taskfile
1826 * @id: data buffer
1827 *
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 struct ata_taskfile *tf, u16 *id)
1834{
1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1839/**
1840 * ata_dev_read_id - Read ID data from the specified device
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
1843 * @flags: ATA_READID_* flags
1844 * @id: buffer to read IDENTIFY data into
1845 *
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1850 *
1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 * now we abort if we hit that case.
1853 *
1854 * LOCKING:
1855 * Kernel thread context (may sleep)
1856 *
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1859 */
1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861 unsigned int flags, u16 *id)
1862{
1863 struct ata_port *ap = dev->link->ap;
1864 unsigned int class = *p_class;
1865 struct ata_taskfile tf;
1866 unsigned int err_mask = 0;
1867 const char *reason;
1868 bool is_semb = class == ATA_DEV_SEMB;
1869 int may_fallback = 1, tried_spinup = 0;
1870 int rc;
1871
1872 if (ata_msg_ctl(ap))
1873 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874
1875retry:
1876 ata_tf_init(dev, &tf);
1877
1878 switch (class) {
1879 case ATA_DEV_SEMB:
1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1881 case ATA_DEV_ATA:
1882 tf.command = ATA_CMD_ID_ATA;
1883 break;
1884 case ATA_DEV_ATAPI:
1885 tf.command = ATA_CMD_ID_ATAPI;
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1891 }
1892
1893 tf.protocol = ATA_PROT_PIO;
1894
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1897 */
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1902 */
1903 tf.flags |= ATA_TFLAG_POLLING;
1904
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910 if (err_mask) {
1911 if (err_mask & AC_ERR_NODEV_HINT) {
1912 ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 return -ENOENT;
1914 }
1915
1916 if (is_semb) {
1917 ata_dev_info(dev,
1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 /* SEMB is not supported yet */
1920 *p_class = ATA_DEV_SEMB_UNSUP;
1921 return 0;
1922 }
1923
1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 /* Device or controller might have reported
1926 * the wrong device class. Give a shot at the
1927 * other IDENTIFY if the current one is
1928 * aborted by the device.
1929 */
1930 if (may_fallback) {
1931 may_fallback = 0;
1932
1933 if (class == ATA_DEV_ATA)
1934 class = ATA_DEV_ATAPI;
1935 else
1936 class = ATA_DEV_ATA;
1937 goto retry;
1938 }
1939
1940 /* Control reaches here iff the device aborted
1941 * both flavors of IDENTIFYs which happens
1942 * sometimes with phantom devices.
1943 */
1944 ata_dev_dbg(dev,
1945 "both IDENTIFYs aborted, assuming NODEV\n");
1946 return -ENOENT;
1947 }
1948
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1952 }
1953
1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 "class=%d may_fallback=%d tried_spinup=%d\n",
1957 class, may_fallback, tried_spinup);
1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960 }
1961
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
1967 swap_buf_le16(id, ATA_ID_WORDS);
1968
1969 /* sanity check */
1970 rc = -EINVAL;
1971 reason = "device reports invalid type";
1972
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977 ata_id_is_ata(id)) {
1978 ata_dev_dbg(dev,
1979 "host indicates ignore ATA devices, ignored\n");
1980 return -ENOENT;
1981 }
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
1985 }
1986
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 if (err_mask && id[2] != 0x738c) {
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
2008 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009 /*
2010 * The exact sequence expected by certain pre-ATA4 drives is:
2011 * SRST RESET
2012 * IDENTIFY (optional in early ATA)
2013 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014 * anything else..
2015 * Some drives were very specific about that exact sequence.
2016 *
2017 * Note that ATA4 says lba is mandatory so the second check
2018 * should never trigger.
2019 */
2020 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022 if (err_mask) {
2023 rc = -EIO;
2024 reason = "INIT_DEV_PARAMS failed";
2025 goto err_out;
2026 }
2027
2028 /* current CHS translation info (id[53-58]) might be
2029 * changed. reread the identify device info.
2030 */
2031 flags &= ~ATA_READID_POSTRESET;
2032 goto retry;
2033 }
2034 }
2035
2036 *p_class = class;
2037
2038 return 0;
2039
2040 err_out:
2041 if (ata_msg_warn(ap))
2042 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043 reason, err_mask);
2044 return rc;
2045}
2046
2047static int ata_do_link_spd_horkage(struct ata_device *dev)
2048{
2049 struct ata_link *plink = ata_dev_phys_link(dev);
2050 u32 target, target_limit;
2051
2052 if (!sata_scr_valid(plink))
2053 return 0;
2054
2055 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2056 target = 1;
2057 else
2058 return 0;
2059
2060 target_limit = (1 << target) - 1;
2061
2062 /* if already on stricter limit, no need to push further */
2063 if (plink->sata_spd_limit <= target_limit)
2064 return 0;
2065
2066 plink->sata_spd_limit = target_limit;
2067
2068 /* Request another EH round by returning -EAGAIN if link is
2069 * going faster than the target speed. Forward progress is
2070 * guaranteed by setting sata_spd_limit to target_limit above.
2071 */
2072 if (plink->sata_spd > target) {
2073 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2074 sata_spd_string(target));
2075 return -EAGAIN;
2076 }
2077 return 0;
2078}
2079
2080static inline u8 ata_dev_knobble(struct ata_device *dev)
2081{
2082 struct ata_port *ap = dev->link->ap;
2083
2084 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2085 return 0;
2086
2087 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2088}
2089
2090static int ata_dev_config_ncq(struct ata_device *dev,
2091 char *desc, size_t desc_sz)
2092{
2093 struct ata_port *ap = dev->link->ap;
2094 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2095 unsigned int err_mask;
2096 char *aa_desc = "";
2097
2098 if (!ata_id_has_ncq(dev->id)) {
2099 desc[0] = '\0';
2100 return 0;
2101 }
2102 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2103 snprintf(desc, desc_sz, "NCQ (not used)");
2104 return 0;
2105 }
2106 if (ap->flags & ATA_FLAG_NCQ) {
2107 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2108 dev->flags |= ATA_DFLAG_NCQ;
2109 }
2110
2111 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2112 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2113 ata_id_has_fpdma_aa(dev->id)) {
2114 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2115 SATA_FPDMA_AA);
2116 if (err_mask) {
2117 ata_dev_err(dev,
2118 "failed to enable AA (error_mask=0x%x)\n",
2119 err_mask);
2120 if (err_mask != AC_ERR_DEV) {
2121 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2122 return -EIO;
2123 }
2124 } else
2125 aa_desc = ", AA";
2126 }
2127
2128 if (hdepth >= ddepth)
2129 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2130 else
2131 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2132 ddepth, aa_desc);
2133 return 0;
2134}
2135
2136/**
2137 * ata_dev_configure - Configure the specified ATA/ATAPI device
2138 * @dev: Target device to configure
2139 *
2140 * Configure @dev according to @dev->id. Generic and low-level
2141 * driver specific fixups are also applied.
2142 *
2143 * LOCKING:
2144 * Kernel thread context (may sleep)
2145 *
2146 * RETURNS:
2147 * 0 on success, -errno otherwise
2148 */
2149int ata_dev_configure(struct ata_device *dev)
2150{
2151 struct ata_port *ap = dev->link->ap;
2152 struct ata_eh_context *ehc = &dev->link->eh_context;
2153 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2154 const u16 *id = dev->id;
2155 unsigned long xfer_mask;
2156 char revbuf[7]; /* XYZ-99\0 */
2157 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2158 char modelbuf[ATA_ID_PROD_LEN+1];
2159 int rc;
2160
2161 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2162 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2163 return 0;
2164 }
2165
2166 if (ata_msg_probe(ap))
2167 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2168
2169 /* set horkage */
2170 dev->horkage |= ata_dev_blacklisted(dev);
2171 ata_force_horkage(dev);
2172
2173 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2174 ata_dev_info(dev, "unsupported device, disabling\n");
2175 ata_dev_disable(dev);
2176 return 0;
2177 }
2178
2179 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2180 dev->class == ATA_DEV_ATAPI) {
2181 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2182 atapi_enabled ? "not supported with this driver"
2183 : "disabled");
2184 ata_dev_disable(dev);
2185 return 0;
2186 }
2187
2188 rc = ata_do_link_spd_horkage(dev);
2189 if (rc)
2190 return rc;
2191
2192 /* let ACPI work its magic */
2193 rc = ata_acpi_on_devcfg(dev);
2194 if (rc)
2195 return rc;
2196
2197 /* massage HPA, do it early as it might change IDENTIFY data */
2198 rc = ata_hpa_resize(dev);
2199 if (rc)
2200 return rc;
2201
2202 /* print device capabilities */
2203 if (ata_msg_probe(ap))
2204 ata_dev_dbg(dev,
2205 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2206 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2207 __func__,
2208 id[49], id[82], id[83], id[84],
2209 id[85], id[86], id[87], id[88]);
2210
2211 /* initialize to-be-configured parameters */
2212 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2213 dev->max_sectors = 0;
2214 dev->cdb_len = 0;
2215 dev->n_sectors = 0;
2216 dev->cylinders = 0;
2217 dev->heads = 0;
2218 dev->sectors = 0;
2219 dev->multi_count = 0;
2220
2221 /*
2222 * common ATA, ATAPI feature tests
2223 */
2224
2225 /* find max transfer mode; for printk only */
2226 xfer_mask = ata_id_xfermask(id);
2227
2228 if (ata_msg_probe(ap))
2229 ata_dump_id(id);
2230
2231 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2232 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2233 sizeof(fwrevbuf));
2234
2235 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2236 sizeof(modelbuf));
2237
2238 /* ATA-specific feature tests */
2239 if (dev->class == ATA_DEV_ATA) {
2240 if (ata_id_is_cfa(id)) {
2241 /* CPRM may make this media unusable */
2242 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2243 ata_dev_warn(dev,
2244 "supports DRM functions and may not be fully accessible\n");
2245 snprintf(revbuf, 7, "CFA");
2246 } else {
2247 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2248 /* Warn the user if the device has TPM extensions */
2249 if (ata_id_has_tpm(id))
2250 ata_dev_warn(dev,
2251 "supports DRM functions and may not be fully accessible\n");
2252 }
2253
2254 dev->n_sectors = ata_id_n_sectors(id);
2255
2256 /* get current R/W Multiple count setting */
2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258 unsigned int max = dev->id[47] & 0xff;
2259 unsigned int cnt = dev->id[59] & 0xff;
2260 /* only recognize/allow powers of two here */
2261 if (is_power_of_2(max) && is_power_of_2(cnt))
2262 if (cnt <= max)
2263 dev->multi_count = cnt;
2264 }
2265
2266 if (ata_id_has_lba(id)) {
2267 const char *lba_desc;
2268 char ncq_desc[24];
2269
2270 lba_desc = "LBA";
2271 dev->flags |= ATA_DFLAG_LBA;
2272 if (ata_id_has_lba48(id)) {
2273 dev->flags |= ATA_DFLAG_LBA48;
2274 lba_desc = "LBA48";
2275
2276 if (dev->n_sectors >= (1UL << 28) &&
2277 ata_id_has_flush_ext(id))
2278 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279 }
2280
2281 /* config NCQ */
2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 if (rc)
2284 return rc;
2285
2286 /* print device info to dmesg */
2287 if (ata_msg_drv(ap) && print_info) {
2288 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2289 revbuf, modelbuf, fwrevbuf,
2290 ata_mode_string(xfer_mask));
2291 ata_dev_info(dev,
2292 "%llu sectors, multi %u: %s %s\n",
2293 (unsigned long long)dev->n_sectors,
2294 dev->multi_count, lba_desc, ncq_desc);
2295 }
2296 } else {
2297 /* CHS */
2298
2299 /* Default translation */
2300 dev->cylinders = id[1];
2301 dev->heads = id[3];
2302 dev->sectors = id[6];
2303
2304 if (ata_id_current_chs_valid(id)) {
2305 /* Current CHS translation is valid. */
2306 dev->cylinders = id[54];
2307 dev->heads = id[55];
2308 dev->sectors = id[56];
2309 }
2310
2311 /* print device info to dmesg */
2312 if (ata_msg_drv(ap) && print_info) {
2313 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314 revbuf, modelbuf, fwrevbuf,
2315 ata_mode_string(xfer_mask));
2316 ata_dev_info(dev,
2317 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2318 (unsigned long long)dev->n_sectors,
2319 dev->multi_count, dev->cylinders,
2320 dev->heads, dev->sectors);
2321 }
2322 }
2323
2324 dev->cdb_len = 16;
2325 }
2326
2327 /* ATAPI-specific feature tests */
2328 else if (dev->class == ATA_DEV_ATAPI) {
2329 const char *cdb_intr_string = "";
2330 const char *atapi_an_string = "";
2331 const char *dma_dir_string = "";
2332 u32 sntf;
2333
2334 rc = atapi_cdb_len(id);
2335 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2336 if (ata_msg_warn(ap))
2337 ata_dev_warn(dev, "unsupported CDB len\n");
2338 rc = -EINVAL;
2339 goto err_out_nosup;
2340 }
2341 dev->cdb_len = (unsigned int) rc;
2342
2343 /* Enable ATAPI AN if both the host and device have
2344 * the support. If PMP is attached, SNTF is required
2345 * to enable ATAPI AN to discern between PHY status
2346 * changed notifications and ATAPI ANs.
2347 */
2348 if (atapi_an &&
2349 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350 (!sata_pmp_attached(ap) ||
2351 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352 unsigned int err_mask;
2353
2354 /* issue SET feature command to turn this on */
2355 err_mask = ata_dev_set_feature(dev,
2356 SETFEATURES_SATA_ENABLE, SATA_AN);
2357 if (err_mask)
2358 ata_dev_err(dev,
2359 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2360 err_mask);
2361 else {
2362 dev->flags |= ATA_DFLAG_AN;
2363 atapi_an_string = ", ATAPI AN";
2364 }
2365 }
2366
2367 if (ata_id_cdb_intr(dev->id)) {
2368 dev->flags |= ATA_DFLAG_CDB_INTR;
2369 cdb_intr_string = ", CDB intr";
2370 }
2371
2372 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373 dev->flags |= ATA_DFLAG_DMADIR;
2374 dma_dir_string = ", DMADIR";
2375 }
2376
2377 /* print device info to dmesg */
2378 if (ata_msg_drv(ap) && print_info)
2379 ata_dev_info(dev,
2380 "ATAPI: %s, %s, max %s%s%s%s\n",
2381 modelbuf, fwrevbuf,
2382 ata_mode_string(xfer_mask),
2383 cdb_intr_string, atapi_an_string,
2384 dma_dir_string);
2385 }
2386
2387 /* determine max_sectors */
2388 dev->max_sectors = ATA_MAX_SECTORS;
2389 if (dev->flags & ATA_DFLAG_LBA48)
2390 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2391
2392 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2393 200 sectors */
2394 if (ata_dev_knobble(dev)) {
2395 if (ata_msg_drv(ap) && print_info)
2396 ata_dev_info(dev, "applying bridge limits\n");
2397 dev->udma_mask &= ATA_UDMA5;
2398 dev->max_sectors = ATA_MAX_SECTORS;
2399 }
2400
2401 if ((dev->class == ATA_DEV_ATAPI) &&
2402 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2403 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2404 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405 }
2406
2407 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2408 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2409 dev->max_sectors);
2410
2411 if (ap->ops->dev_config)
2412 ap->ops->dev_config(dev);
2413
2414 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2415 /* Let the user know. We don't want to disallow opens for
2416 rescue purposes, or in case the vendor is just a blithering
2417 idiot. Do this after the dev_config call as some controllers
2418 with buggy firmware may want to avoid reporting false device
2419 bugs */
2420
2421 if (print_info) {
2422 ata_dev_warn(dev,
2423"Drive reports diagnostics failure. This may indicate a drive\n");
2424 ata_dev_warn(dev,
2425"fault or invalid emulation. Contact drive vendor for information.\n");
2426 }
2427 }
2428
2429 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2430 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2431 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2432 }
2433
2434 return 0;
2435
2436err_out_nosup:
2437 if (ata_msg_probe(ap))
2438 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2439 return rc;
2440}
2441
2442/**
2443 * ata_cable_40wire - return 40 wire cable type
2444 * @ap: port
2445 *
2446 * Helper method for drivers which want to hardwire 40 wire cable
2447 * detection.
2448 */
2449
2450int ata_cable_40wire(struct ata_port *ap)
2451{
2452 return ATA_CBL_PATA40;
2453}
2454
2455/**
2456 * ata_cable_80wire - return 80 wire cable type
2457 * @ap: port
2458 *
2459 * Helper method for drivers which want to hardwire 80 wire cable
2460 * detection.
2461 */
2462
2463int ata_cable_80wire(struct ata_port *ap)
2464{
2465 return ATA_CBL_PATA80;
2466}
2467
2468/**
2469 * ata_cable_unknown - return unknown PATA cable.
2470 * @ap: port
2471 *
2472 * Helper method for drivers which have no PATA cable detection.
2473 */
2474
2475int ata_cable_unknown(struct ata_port *ap)
2476{
2477 return ATA_CBL_PATA_UNK;
2478}
2479
2480/**
2481 * ata_cable_ignore - return ignored PATA cable.
2482 * @ap: port
2483 *
2484 * Helper method for drivers which don't use cable type to limit
2485 * transfer mode.
2486 */
2487int ata_cable_ignore(struct ata_port *ap)
2488{
2489 return ATA_CBL_PATA_IGN;
2490}
2491
2492/**
2493 * ata_cable_sata - return SATA cable type
2494 * @ap: port
2495 *
2496 * Helper method for drivers which have SATA cables
2497 */
2498
2499int ata_cable_sata(struct ata_port *ap)
2500{
2501 return ATA_CBL_SATA;
2502}
2503
2504/**
2505 * ata_bus_probe - Reset and probe ATA bus
2506 * @ap: Bus to probe
2507 *
2508 * Master ATA bus probing function. Initiates a hardware-dependent
2509 * bus reset, then attempts to identify any devices found on
2510 * the bus.
2511 *
2512 * LOCKING:
2513 * PCI/etc. bus probe sem.
2514 *
2515 * RETURNS:
2516 * Zero on success, negative errno otherwise.
2517 */
2518
2519int ata_bus_probe(struct ata_port *ap)
2520{
2521 unsigned int classes[ATA_MAX_DEVICES];
2522 int tries[ATA_MAX_DEVICES];
2523 int rc;
2524 struct ata_device *dev;
2525
2526 ata_for_each_dev(dev, &ap->link, ALL)
2527 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2528
2529 retry:
2530 ata_for_each_dev(dev, &ap->link, ALL) {
2531 /* If we issue an SRST then an ATA drive (not ATAPI)
2532 * may change configuration and be in PIO0 timing. If
2533 * we do a hard reset (or are coming from power on)
2534 * this is true for ATA or ATAPI. Until we've set a
2535 * suitable controller mode we should not touch the
2536 * bus as we may be talking too fast.
2537 */
2538 dev->pio_mode = XFER_PIO_0;
2539
2540 /* If the controller has a pio mode setup function
2541 * then use it to set the chipset to rights. Don't
2542 * touch the DMA setup as that will be dealt with when
2543 * configuring devices.
2544 */
2545 if (ap->ops->set_piomode)
2546 ap->ops->set_piomode(ap, dev);
2547 }
2548
2549 /* reset and determine device classes */
2550 ap->ops->phy_reset(ap);
2551
2552 ata_for_each_dev(dev, &ap->link, ALL) {
2553 if (dev->class != ATA_DEV_UNKNOWN)
2554 classes[dev->devno] = dev->class;
2555 else
2556 classes[dev->devno] = ATA_DEV_NONE;
2557
2558 dev->class = ATA_DEV_UNKNOWN;
2559 }
2560
2561 /* read IDENTIFY page and configure devices. We have to do the identify
2562 specific sequence bass-ackwards so that PDIAG- is released by
2563 the slave device */
2564
2565 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2566 if (tries[dev->devno])
2567 dev->class = classes[dev->devno];
2568
2569 if (!ata_dev_enabled(dev))
2570 continue;
2571
2572 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2573 dev->id);
2574 if (rc)
2575 goto fail;
2576 }
2577
2578 /* Now ask for the cable type as PDIAG- should have been released */
2579 if (ap->ops->cable_detect)
2580 ap->cbl = ap->ops->cable_detect(ap);
2581
2582 /* We may have SATA bridge glue hiding here irrespective of
2583 * the reported cable types and sensed types. When SATA
2584 * drives indicate we have a bridge, we don't know which end
2585 * of the link the bridge is which is a problem.
2586 */
2587 ata_for_each_dev(dev, &ap->link, ENABLED)
2588 if (ata_id_is_sata(dev->id))
2589 ap->cbl = ATA_CBL_SATA;
2590
2591 /* After the identify sequence we can now set up the devices. We do
2592 this in the normal order so that the user doesn't get confused */
2593
2594 ata_for_each_dev(dev, &ap->link, ENABLED) {
2595 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2596 rc = ata_dev_configure(dev);
2597 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2598 if (rc)
2599 goto fail;
2600 }
2601
2602 /* configure transfer mode */
2603 rc = ata_set_mode(&ap->link, &dev);
2604 if (rc)
2605 goto fail;
2606
2607 ata_for_each_dev(dev, &ap->link, ENABLED)
2608 return 0;
2609
2610 return -ENODEV;
2611
2612 fail:
2613 tries[dev->devno]--;
2614
2615 switch (rc) {
2616 case -EINVAL:
2617 /* eeek, something went very wrong, give up */
2618 tries[dev->devno] = 0;
2619 break;
2620
2621 case -ENODEV:
2622 /* give it just one more chance */
2623 tries[dev->devno] = min(tries[dev->devno], 1);
2624 case -EIO:
2625 if (tries[dev->devno] == 1) {
2626 /* This is the last chance, better to slow
2627 * down than lose it.
2628 */
2629 sata_down_spd_limit(&ap->link, 0);
2630 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2631 }
2632 }
2633
2634 if (!tries[dev->devno])
2635 ata_dev_disable(dev);
2636
2637 goto retry;
2638}
2639
2640/**
2641 * sata_print_link_status - Print SATA link status
2642 * @link: SATA link to printk link status about
2643 *
2644 * This function prints link speed and status of a SATA link.
2645 *
2646 * LOCKING:
2647 * None.
2648 */
2649static void sata_print_link_status(struct ata_link *link)
2650{
2651 u32 sstatus, scontrol, tmp;
2652
2653 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2654 return;
2655 sata_scr_read(link, SCR_CONTROL, &scontrol);
2656
2657 if (ata_phys_link_online(link)) {
2658 tmp = (sstatus >> 4) & 0xf;
2659 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2660 sata_spd_string(tmp), sstatus, scontrol);
2661 } else {
2662 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2663 sstatus, scontrol);
2664 }
2665}
2666
2667/**
2668 * ata_dev_pair - return other device on cable
2669 * @adev: device
2670 *
2671 * Obtain the other device on the same cable, or if none is
2672 * present NULL is returned
2673 */
2674
2675struct ata_device *ata_dev_pair(struct ata_device *adev)
2676{
2677 struct ata_link *link = adev->link;
2678 struct ata_device *pair = &link->device[1 - adev->devno];
2679 if (!ata_dev_enabled(pair))
2680 return NULL;
2681 return pair;
2682}
2683
2684/**
2685 * sata_down_spd_limit - adjust SATA spd limit downward
2686 * @link: Link to adjust SATA spd limit for
2687 * @spd_limit: Additional limit
2688 *
2689 * Adjust SATA spd limit of @link downward. Note that this
2690 * function only adjusts the limit. The change must be applied
2691 * using sata_set_spd().
2692 *
2693 * If @spd_limit is non-zero, the speed is limited to equal to or
2694 * lower than @spd_limit if such speed is supported. If
2695 * @spd_limit is slower than any supported speed, only the lowest
2696 * supported speed is allowed.
2697 *
2698 * LOCKING:
2699 * Inherited from caller.
2700 *
2701 * RETURNS:
2702 * 0 on success, negative errno on failure
2703 */
2704int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2705{
2706 u32 sstatus, spd, mask;
2707 int rc, bit;
2708
2709 if (!sata_scr_valid(link))
2710 return -EOPNOTSUPP;
2711
2712 /* If SCR can be read, use it to determine the current SPD.
2713 * If not, use cached value in link->sata_spd.
2714 */
2715 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716 if (rc == 0 && ata_sstatus_online(sstatus))
2717 spd = (sstatus >> 4) & 0xf;
2718 else
2719 spd = link->sata_spd;
2720
2721 mask = link->sata_spd_limit;
2722 if (mask <= 1)
2723 return -EINVAL;
2724
2725 /* unconditionally mask off the highest bit */
2726 bit = fls(mask) - 1;
2727 mask &= ~(1 << bit);
2728
2729 /* Mask off all speeds higher than or equal to the current
2730 * one. Force 1.5Gbps if current SPD is not available.
2731 */
2732 if (spd > 1)
2733 mask &= (1 << (spd - 1)) - 1;
2734 else
2735 mask &= 1;
2736
2737 /* were we already at the bottom? */
2738 if (!mask)
2739 return -EINVAL;
2740
2741 if (spd_limit) {
2742 if (mask & ((1 << spd_limit) - 1))
2743 mask &= (1 << spd_limit) - 1;
2744 else {
2745 bit = ffs(mask) - 1;
2746 mask = 1 << bit;
2747 }
2748 }
2749
2750 link->sata_spd_limit = mask;
2751
2752 ata_link_warn(link, "limiting SATA link speed to %s\n",
2753 sata_spd_string(fls(mask)));
2754
2755 return 0;
2756}
2757
2758static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2759{
2760 struct ata_link *host_link = &link->ap->link;
2761 u32 limit, target, spd;
2762
2763 limit = link->sata_spd_limit;
2764
2765 /* Don't configure downstream link faster than upstream link.
2766 * It doesn't speed up anything and some PMPs choke on such
2767 * configuration.
2768 */
2769 if (!ata_is_host_link(link) && host_link->sata_spd)
2770 limit &= (1 << host_link->sata_spd) - 1;
2771
2772 if (limit == UINT_MAX)
2773 target = 0;
2774 else
2775 target = fls(limit);
2776
2777 spd = (*scontrol >> 4) & 0xf;
2778 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2779
2780 return spd != target;
2781}
2782
2783/**
2784 * sata_set_spd_needed - is SATA spd configuration needed
2785 * @link: Link in question
2786 *
2787 * Test whether the spd limit in SControl matches
2788 * @link->sata_spd_limit. This function is used to determine
2789 * whether hardreset is necessary to apply SATA spd
2790 * configuration.
2791 *
2792 * LOCKING:
2793 * Inherited from caller.
2794 *
2795 * RETURNS:
2796 * 1 if SATA spd configuration is needed, 0 otherwise.
2797 */
2798static int sata_set_spd_needed(struct ata_link *link)
2799{
2800 u32 scontrol;
2801
2802 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2803 return 1;
2804
2805 return __sata_set_spd_needed(link, &scontrol);
2806}
2807
2808/**
2809 * sata_set_spd - set SATA spd according to spd limit
2810 * @link: Link to set SATA spd for
2811 *
2812 * Set SATA spd of @link according to sata_spd_limit.
2813 *
2814 * LOCKING:
2815 * Inherited from caller.
2816 *
2817 * RETURNS:
2818 * 0 if spd doesn't need to be changed, 1 if spd has been
2819 * changed. Negative errno if SCR registers are inaccessible.
2820 */
2821int sata_set_spd(struct ata_link *link)
2822{
2823 u32 scontrol;
2824 int rc;
2825
2826 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2827 return rc;
2828
2829 if (!__sata_set_spd_needed(link, &scontrol))
2830 return 0;
2831
2832 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2833 return rc;
2834
2835 return 1;
2836}
2837
2838/*
2839 * This mode timing computation functionality is ported over from
2840 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2841 */
2842/*
2843 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2844 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2845 * for UDMA6, which is currently supported only by Maxtor drives.
2846 *
2847 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2848 */
2849
2850static const struct ata_timing ata_timing[] = {
2851/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2852 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2853 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2854 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2855 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2856 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2857 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2858 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2859
2860 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2861 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2862 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2863
2864 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2865 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2866 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2867 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2868 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2869
2870/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2871 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2872 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2873 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2874 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2875 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2876 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2877 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2878
2879 { 0xFF }
2880};
2881
2882#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2883#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2884
2885static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2886{
2887 q->setup = EZ(t->setup * 1000, T);
2888 q->act8b = EZ(t->act8b * 1000, T);
2889 q->rec8b = EZ(t->rec8b * 1000, T);
2890 q->cyc8b = EZ(t->cyc8b * 1000, T);
2891 q->active = EZ(t->active * 1000, T);
2892 q->recover = EZ(t->recover * 1000, T);
2893 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2894 q->cycle = EZ(t->cycle * 1000, T);
2895 q->udma = EZ(t->udma * 1000, UT);
2896}
2897
2898void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 struct ata_timing *m, unsigned int what)
2900{
2901 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2902 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2903 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2904 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2905 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2906 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2908 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2909 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2910}
2911
2912const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2913{
2914 const struct ata_timing *t = ata_timing;
2915
2916 while (xfer_mode > t->mode)
2917 t++;
2918
2919 if (xfer_mode == t->mode)
2920 return t;
2921 return NULL;
2922}
2923
2924int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2925 struct ata_timing *t, int T, int UT)
2926{
2927 const u16 *id = adev->id;
2928 const struct ata_timing *s;
2929 struct ata_timing p;
2930
2931 /*
2932 * Find the mode.
2933 */
2934
2935 if (!(s = ata_timing_find_mode(speed)))
2936 return -EINVAL;
2937
2938 memcpy(t, s, sizeof(*s));
2939
2940 /*
2941 * If the drive is an EIDE drive, it can tell us it needs extended
2942 * PIO/MW_DMA cycle timing.
2943 */
2944
2945 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2946 memset(&p, 0, sizeof(p));
2947
2948 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2949 if (speed <= XFER_PIO_2)
2950 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2951 else if ((speed <= XFER_PIO_4) ||
2952 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2953 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2954 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2955 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2956
2957 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2958 }
2959
2960 /*
2961 * Convert the timing to bus clock counts.
2962 */
2963
2964 ata_timing_quantize(t, t, T, UT);
2965
2966 /*
2967 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2968 * S.M.A.R.T * and some other commands. We have to ensure that the
2969 * DMA cycle timing is slower/equal than the fastest PIO timing.
2970 */
2971
2972 if (speed > XFER_PIO_6) {
2973 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2974 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2975 }
2976
2977 /*
2978 * Lengthen active & recovery time so that cycle time is correct.
2979 */
2980
2981 if (t->act8b + t->rec8b < t->cyc8b) {
2982 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2983 t->rec8b = t->cyc8b - t->act8b;
2984 }
2985
2986 if (t->active + t->recover < t->cycle) {
2987 t->active += (t->cycle - (t->active + t->recover)) / 2;
2988 t->recover = t->cycle - t->active;
2989 }
2990
2991 /* In a few cases quantisation may produce enough errors to
2992 leave t->cycle too low for the sum of active and recovery
2993 if so we must correct this */
2994 if (t->active + t->recover > t->cycle)
2995 t->cycle = t->active + t->recover;
2996
2997 return 0;
2998}
2999
3000/**
3001 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3002 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3003 * @cycle: cycle duration in ns
3004 *
3005 * Return matching xfer mode for @cycle. The returned mode is of
3006 * the transfer type specified by @xfer_shift. If @cycle is too
3007 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3008 * than the fastest known mode, the fasted mode is returned.
3009 *
3010 * LOCKING:
3011 * None.
3012 *
3013 * RETURNS:
3014 * Matching xfer_mode, 0xff if no match found.
3015 */
3016u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3017{
3018 u8 base_mode = 0xff, last_mode = 0xff;
3019 const struct ata_xfer_ent *ent;
3020 const struct ata_timing *t;
3021
3022 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3023 if (ent->shift == xfer_shift)
3024 base_mode = ent->base;
3025
3026 for (t = ata_timing_find_mode(base_mode);
3027 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3028 unsigned short this_cycle;
3029
3030 switch (xfer_shift) {
3031 case ATA_SHIFT_PIO:
3032 case ATA_SHIFT_MWDMA:
3033 this_cycle = t->cycle;
3034 break;
3035 case ATA_SHIFT_UDMA:
3036 this_cycle = t->udma;
3037 break;
3038 default:
3039 return 0xff;
3040 }
3041
3042 if (cycle > this_cycle)
3043 break;
3044
3045 last_mode = t->mode;
3046 }
3047
3048 return last_mode;
3049}
3050
3051/**
3052 * ata_down_xfermask_limit - adjust dev xfer masks downward
3053 * @dev: Device to adjust xfer masks
3054 * @sel: ATA_DNXFER_* selector
3055 *
3056 * Adjust xfer masks of @dev downward. Note that this function
3057 * does not apply the change. Invoking ata_set_mode() afterwards
3058 * will apply the limit.
3059 *
3060 * LOCKING:
3061 * Inherited from caller.
3062 *
3063 * RETURNS:
3064 * 0 on success, negative errno on failure
3065 */
3066int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3067{
3068 char buf[32];
3069 unsigned long orig_mask, xfer_mask;
3070 unsigned long pio_mask, mwdma_mask, udma_mask;
3071 int quiet, highbit;
3072
3073 quiet = !!(sel & ATA_DNXFER_QUIET);
3074 sel &= ~ATA_DNXFER_QUIET;
3075
3076 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3077 dev->mwdma_mask,
3078 dev->udma_mask);
3079 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3080
3081 switch (sel) {
3082 case ATA_DNXFER_PIO:
3083 highbit = fls(pio_mask) - 1;
3084 pio_mask &= ~(1 << highbit);
3085 break;
3086
3087 case ATA_DNXFER_DMA:
3088 if (udma_mask) {
3089 highbit = fls(udma_mask) - 1;
3090 udma_mask &= ~(1 << highbit);
3091 if (!udma_mask)
3092 return -ENOENT;
3093 } else if (mwdma_mask) {
3094 highbit = fls(mwdma_mask) - 1;
3095 mwdma_mask &= ~(1 << highbit);
3096 if (!mwdma_mask)
3097 return -ENOENT;
3098 }
3099 break;
3100
3101 case ATA_DNXFER_40C:
3102 udma_mask &= ATA_UDMA_MASK_40C;
3103 break;
3104
3105 case ATA_DNXFER_FORCE_PIO0:
3106 pio_mask &= 1;
3107 case ATA_DNXFER_FORCE_PIO:
3108 mwdma_mask = 0;
3109 udma_mask = 0;
3110 break;
3111
3112 default:
3113 BUG();
3114 }
3115
3116 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3117
3118 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3119 return -ENOENT;
3120
3121 if (!quiet) {
3122 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3123 snprintf(buf, sizeof(buf), "%s:%s",
3124 ata_mode_string(xfer_mask),
3125 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3126 else
3127 snprintf(buf, sizeof(buf), "%s",
3128 ata_mode_string(xfer_mask));
3129
3130 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3131 }
3132
3133 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3134 &dev->udma_mask);
3135
3136 return 0;
3137}
3138
3139static int ata_dev_set_mode(struct ata_device *dev)
3140{
3141 struct ata_port *ap = dev->link->ap;
3142 struct ata_eh_context *ehc = &dev->link->eh_context;
3143 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3144 const char *dev_err_whine = "";
3145 int ign_dev_err = 0;
3146 unsigned int err_mask = 0;
3147 int rc;
3148
3149 dev->flags &= ~ATA_DFLAG_PIO;
3150 if (dev->xfer_shift == ATA_SHIFT_PIO)
3151 dev->flags |= ATA_DFLAG_PIO;
3152
3153 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3154 dev_err_whine = " (SET_XFERMODE skipped)";
3155 else {
3156 if (nosetxfer)
3157 ata_dev_warn(dev,
3158 "NOSETXFER but PATA detected - can't "
3159 "skip SETXFER, might malfunction\n");
3160 err_mask = ata_dev_set_xfermode(dev);
3161 }
3162
3163 if (err_mask & ~AC_ERR_DEV)
3164 goto fail;
3165
3166 /* revalidate */
3167 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3168 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3169 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3170 if (rc)
3171 return rc;
3172
3173 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3174 /* Old CFA may refuse this command, which is just fine */
3175 if (ata_id_is_cfa(dev->id))
3176 ign_dev_err = 1;
3177 /* Catch several broken garbage emulations plus some pre
3178 ATA devices */
3179 if (ata_id_major_version(dev->id) == 0 &&
3180 dev->pio_mode <= XFER_PIO_2)
3181 ign_dev_err = 1;
3182 /* Some very old devices and some bad newer ones fail
3183 any kind of SET_XFERMODE request but support PIO0-2
3184 timings and no IORDY */
3185 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3186 ign_dev_err = 1;
3187 }
3188 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3189 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3190 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3191 dev->dma_mode == XFER_MW_DMA_0 &&
3192 (dev->id[63] >> 8) & 1)
3193 ign_dev_err = 1;
3194
3195 /* if the device is actually configured correctly, ignore dev err */
3196 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3197 ign_dev_err = 1;
3198
3199 if (err_mask & AC_ERR_DEV) {
3200 if (!ign_dev_err)
3201 goto fail;
3202 else
3203 dev_err_whine = " (device error ignored)";
3204 }
3205
3206 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3207 dev->xfer_shift, (int)dev->xfer_mode);
3208
3209 ata_dev_info(dev, "configured for %s%s\n",
3210 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3211 dev_err_whine);
3212
3213 return 0;
3214
3215 fail:
3216 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3217 return -EIO;
3218}
3219
3220/**
3221 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3222 * @link: link on which timings will be programmed
3223 * @r_failed_dev: out parameter for failed device
3224 *
3225 * Standard implementation of the function used to tune and set
3226 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3227 * ata_dev_set_mode() fails, pointer to the failing device is
3228 * returned in @r_failed_dev.
3229 *
3230 * LOCKING:
3231 * PCI/etc. bus probe sem.
3232 *
3233 * RETURNS:
3234 * 0 on success, negative errno otherwise
3235 */
3236
3237int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238{
3239 struct ata_port *ap = link->ap;
3240 struct ata_device *dev;
3241 int rc = 0, used_dma = 0, found = 0;
3242
3243 /* step 1: calculate xfer_mask */
3244 ata_for_each_dev(dev, link, ENABLED) {
3245 unsigned long pio_mask, dma_mask;
3246 unsigned int mode_mask;
3247
3248 mode_mask = ATA_DMA_MASK_ATA;
3249 if (dev->class == ATA_DEV_ATAPI)
3250 mode_mask = ATA_DMA_MASK_ATAPI;
3251 else if (ata_id_is_cfa(dev->id))
3252 mode_mask = ATA_DMA_MASK_CFA;
3253
3254 ata_dev_xfermask(dev);
3255 ata_force_xfermask(dev);
3256
3257 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3258
3259 if (libata_dma_mask & mode_mask)
3260 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3261 dev->udma_mask);
3262 else
3263 dma_mask = 0;
3264
3265 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3266 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3267
3268 found = 1;
3269 if (ata_dma_enabled(dev))
3270 used_dma = 1;
3271 }
3272 if (!found)
3273 goto out;
3274
3275 /* step 2: always set host PIO timings */
3276 ata_for_each_dev(dev, link, ENABLED) {
3277 if (dev->pio_mode == 0xff) {
3278 ata_dev_warn(dev, "no PIO support\n");
3279 rc = -EINVAL;
3280 goto out;
3281 }
3282
3283 dev->xfer_mode = dev->pio_mode;
3284 dev->xfer_shift = ATA_SHIFT_PIO;
3285 if (ap->ops->set_piomode)
3286 ap->ops->set_piomode(ap, dev);
3287 }
3288
3289 /* step 3: set host DMA timings */
3290 ata_for_each_dev(dev, link, ENABLED) {
3291 if (!ata_dma_enabled(dev))
3292 continue;
3293
3294 dev->xfer_mode = dev->dma_mode;
3295 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3296 if (ap->ops->set_dmamode)
3297 ap->ops->set_dmamode(ap, dev);
3298 }
3299
3300 /* step 4: update devices' xfer mode */
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 rc = ata_dev_set_mode(dev);
3303 if (rc)
3304 goto out;
3305 }
3306
3307 /* Record simplex status. If we selected DMA then the other
3308 * host channels are not permitted to do so.
3309 */
3310 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3311 ap->host->simplex_claimed = ap;
3312
3313 out:
3314 if (rc)
3315 *r_failed_dev = dev;
3316 return rc;
3317}
3318
3319/**
3320 * ata_wait_ready - wait for link to become ready
3321 * @link: link to be waited on
3322 * @deadline: deadline jiffies for the operation
3323 * @check_ready: callback to check link readiness
3324 *
3325 * Wait for @link to become ready. @check_ready should return
3326 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3327 * link doesn't seem to be occupied, other errno for other error
3328 * conditions.
3329 *
3330 * Transient -ENODEV conditions are allowed for
3331 * ATA_TMOUT_FF_WAIT.
3332 *
3333 * LOCKING:
3334 * EH context.
3335 *
3336 * RETURNS:
3337 * 0 if @linke is ready before @deadline; otherwise, -errno.
3338 */
3339int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3340 int (*check_ready)(struct ata_link *link))
3341{
3342 unsigned long start = jiffies;
3343 unsigned long nodev_deadline;
3344 int warned = 0;
3345
3346 /* choose which 0xff timeout to use, read comment in libata.h */
3347 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3348 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3349 else
3350 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3351
3352 /* Slave readiness can't be tested separately from master. On
3353 * M/S emulation configuration, this function should be called
3354 * only on the master and it will handle both master and slave.
3355 */
3356 WARN_ON(link == link->ap->slave_link);
3357
3358 if (time_after(nodev_deadline, deadline))
3359 nodev_deadline = deadline;
3360
3361 while (1) {
3362 unsigned long now = jiffies;
3363 int ready, tmp;
3364
3365 ready = tmp = check_ready(link);
3366 if (ready > 0)
3367 return 0;
3368
3369 /*
3370 * -ENODEV could be transient. Ignore -ENODEV if link
3371 * is online. Also, some SATA devices take a long
3372 * time to clear 0xff after reset. Wait for
3373 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3374 * offline.
3375 *
3376 * Note that some PATA controllers (pata_ali) explode
3377 * if status register is read more than once when
3378 * there's no device attached.
3379 */
3380 if (ready == -ENODEV) {
3381 if (ata_link_online(link))
3382 ready = 0;
3383 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3384 !ata_link_offline(link) &&
3385 time_before(now, nodev_deadline))
3386 ready = 0;
3387 }
3388
3389 if (ready)
3390 return ready;
3391 if (time_after(now, deadline))
3392 return -EBUSY;
3393
3394 if (!warned && time_after(now, start + 5 * HZ) &&
3395 (deadline - now > 3 * HZ)) {
3396 ata_link_warn(link,
3397 "link is slow to respond, please be patient "
3398 "(ready=%d)\n", tmp);
3399 warned = 1;
3400 }
3401
3402 ata_msleep(link->ap, 50);
3403 }
3404}
3405
3406/**
3407 * ata_wait_after_reset - wait for link to become ready after reset
3408 * @link: link to be waited on
3409 * @deadline: deadline jiffies for the operation
3410 * @check_ready: callback to check link readiness
3411 *
3412 * Wait for @link to become ready after reset.
3413 *
3414 * LOCKING:
3415 * EH context.
3416 *
3417 * RETURNS:
3418 * 0 if @linke is ready before @deadline; otherwise, -errno.
3419 */
3420int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3421 int (*check_ready)(struct ata_link *link))
3422{
3423 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3424
3425 return ata_wait_ready(link, deadline, check_ready);
3426}
3427
3428/**
3429 * sata_link_debounce - debounce SATA phy status
3430 * @link: ATA link to debounce SATA phy status for
3431 * @params: timing parameters { interval, duratinon, timeout } in msec
3432 * @deadline: deadline jiffies for the operation
3433 *
3434 * Make sure SStatus of @link reaches stable state, determined by
3435 * holding the same value where DET is not 1 for @duration polled
3436 * every @interval, before @timeout. Timeout constraints the
3437 * beginning of the stable state. Because DET gets stuck at 1 on
3438 * some controllers after hot unplugging, this functions waits
3439 * until timeout then returns 0 if DET is stable at 1.
3440 *
3441 * @timeout is further limited by @deadline. The sooner of the
3442 * two is used.
3443 *
3444 * LOCKING:
3445 * Kernel thread context (may sleep)
3446 *
3447 * RETURNS:
3448 * 0 on success, -errno on failure.
3449 */
3450int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3451 unsigned long deadline)
3452{
3453 unsigned long interval = params[0];
3454 unsigned long duration = params[1];
3455 unsigned long last_jiffies, t;
3456 u32 last, cur;
3457 int rc;
3458
3459 t = ata_deadline(jiffies, params[2]);
3460 if (time_before(t, deadline))
3461 deadline = t;
3462
3463 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3464 return rc;
3465 cur &= 0xf;
3466
3467 last = cur;
3468 last_jiffies = jiffies;
3469
3470 while (1) {
3471 ata_msleep(link->ap, interval);
3472 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3473 return rc;
3474 cur &= 0xf;
3475
3476 /* DET stable? */
3477 if (cur == last) {
3478 if (cur == 1 && time_before(jiffies, deadline))
3479 continue;
3480 if (time_after(jiffies,
3481 ata_deadline(last_jiffies, duration)))
3482 return 0;
3483 continue;
3484 }
3485
3486 /* unstable, start over */
3487 last = cur;
3488 last_jiffies = jiffies;
3489
3490 /* Check deadline. If debouncing failed, return
3491 * -EPIPE to tell upper layer to lower link speed.
3492 */
3493 if (time_after(jiffies, deadline))
3494 return -EPIPE;
3495 }
3496}
3497
3498/**
3499 * sata_link_resume - resume SATA link
3500 * @link: ATA link to resume SATA
3501 * @params: timing parameters { interval, duratinon, timeout } in msec
3502 * @deadline: deadline jiffies for the operation
3503 *
3504 * Resume SATA phy @link and debounce it.
3505 *
3506 * LOCKING:
3507 * Kernel thread context (may sleep)
3508 *
3509 * RETURNS:
3510 * 0 on success, -errno on failure.
3511 */
3512int sata_link_resume(struct ata_link *link, const unsigned long *params,
3513 unsigned long deadline)
3514{
3515 int tries = ATA_LINK_RESUME_TRIES;
3516 u32 scontrol, serror;
3517 int rc;
3518
3519 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3520 return rc;
3521
3522 /*
3523 * Writes to SControl sometimes get ignored under certain
3524 * controllers (ata_piix SIDPR). Make sure DET actually is
3525 * cleared.
3526 */
3527 do {
3528 scontrol = (scontrol & 0x0f0) | 0x300;
3529 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530 return rc;
3531 /*
3532 * Some PHYs react badly if SStatus is pounded
3533 * immediately after resuming. Delay 200ms before
3534 * debouncing.
3535 */
3536 ata_msleep(link->ap, 200);
3537
3538 /* is SControl restored correctly? */
3539 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3540 return rc;
3541 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3542
3543 if ((scontrol & 0xf0f) != 0x300) {
3544 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3545 scontrol);
3546 return 0;
3547 }
3548
3549 if (tries < ATA_LINK_RESUME_TRIES)
3550 ata_link_warn(link, "link resume succeeded after %d retries\n",
3551 ATA_LINK_RESUME_TRIES - tries);
3552
3553 if ((rc = sata_link_debounce(link, params, deadline)))
3554 return rc;
3555
3556 /* clear SError, some PHYs require this even for SRST to work */
3557 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3558 rc = sata_scr_write(link, SCR_ERROR, serror);
3559
3560 return rc != -EINVAL ? rc : 0;
3561}
3562
3563/**
3564 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3565 * @link: ATA link to manipulate SControl for
3566 * @policy: LPM policy to configure
3567 * @spm_wakeup: initiate LPM transition to active state
3568 *
3569 * Manipulate the IPM field of the SControl register of @link
3570 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3571 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3572 * the link. This function also clears PHYRDY_CHG before
3573 * returning.
3574 *
3575 * LOCKING:
3576 * EH context.
3577 *
3578 * RETURNS:
3579 * 0 on succes, -errno otherwise.
3580 */
3581int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3582 bool spm_wakeup)
3583{
3584 struct ata_eh_context *ehc = &link->eh_context;
3585 bool woken_up = false;
3586 u32 scontrol;
3587 int rc;
3588
3589 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3590 if (rc)
3591 return rc;
3592
3593 switch (policy) {
3594 case ATA_LPM_MAX_POWER:
3595 /* disable all LPM transitions */
3596 scontrol |= (0x3 << 8);
3597 /* initiate transition to active state */
3598 if (spm_wakeup) {
3599 scontrol |= (0x4 << 12);
3600 woken_up = true;
3601 }
3602 break;
3603 case ATA_LPM_MED_POWER:
3604 /* allow LPM to PARTIAL */
3605 scontrol &= ~(0x1 << 8);
3606 scontrol |= (0x2 << 8);
3607 break;
3608 case ATA_LPM_MIN_POWER:
3609 if (ata_link_nr_enabled(link) > 0)
3610 /* no restrictions on LPM transitions */
3611 scontrol &= ~(0x3 << 8);
3612 else {
3613 /* empty port, power off */
3614 scontrol &= ~0xf;
3615 scontrol |= (0x1 << 2);
3616 }
3617 break;
3618 default:
3619 WARN_ON(1);
3620 }
3621
3622 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3623 if (rc)
3624 return rc;
3625
3626 /* give the link time to transit out of LPM state */
3627 if (woken_up)
3628 msleep(10);
3629
3630 /* clear PHYRDY_CHG from SError */
3631 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3632 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3633}
3634
3635/**
3636 * ata_std_prereset - prepare for reset
3637 * @link: ATA link to be reset
3638 * @deadline: deadline jiffies for the operation
3639 *
3640 * @link is about to be reset. Initialize it. Failure from
3641 * prereset makes libata abort whole reset sequence and give up
3642 * that port, so prereset should be best-effort. It does its
3643 * best to prepare for reset sequence but if things go wrong, it
3644 * should just whine, not fail.
3645 *
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3648 *
3649 * RETURNS:
3650 * 0 on success, -errno otherwise.
3651 */
3652int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653{
3654 struct ata_port *ap = link->ap;
3655 struct ata_eh_context *ehc = &link->eh_context;
3656 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657 int rc;
3658
3659 /* if we're about to do hardreset, nothing more to do */
3660 if (ehc->i.action & ATA_EH_HARDRESET)
3661 return 0;
3662
3663 /* if SATA, resume link */
3664 if (ap->flags & ATA_FLAG_SATA) {
3665 rc = sata_link_resume(link, timing, deadline);
3666 /* whine about phy resume failure but proceed */
3667 if (rc && rc != -EOPNOTSUPP)
3668 ata_link_warn(link,
3669 "failed to resume link for reset (errno=%d)\n",
3670 rc);
3671 }
3672
3673 /* no point in trying softreset on offline link */
3674 if (ata_phys_link_offline(link))
3675 ehc->i.action &= ~ATA_EH_SOFTRESET;
3676
3677 return 0;
3678}
3679
3680/**
3681 * sata_link_hardreset - reset link via SATA phy reset
3682 * @link: link to reset
3683 * @timing: timing parameters { interval, duratinon, timeout } in msec
3684 * @deadline: deadline jiffies for the operation
3685 * @online: optional out parameter indicating link onlineness
3686 * @check_ready: optional callback to check link readiness
3687 *
3688 * SATA phy-reset @link using DET bits of SControl register.
3689 * After hardreset, link readiness is waited upon using
3690 * ata_wait_ready() if @check_ready is specified. LLDs are
3691 * allowed to not specify @check_ready and wait itself after this
3692 * function returns. Device classification is LLD's
3693 * responsibility.
3694 *
3695 * *@online is set to one iff reset succeeded and @link is online
3696 * after reset.
3697 *
3698 * LOCKING:
3699 * Kernel thread context (may sleep)
3700 *
3701 * RETURNS:
3702 * 0 on success, -errno otherwise.
3703 */
3704int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705 unsigned long deadline,
3706 bool *online, int (*check_ready)(struct ata_link *))
3707{
3708 u32 scontrol;
3709 int rc;
3710
3711 DPRINTK("ENTER\n");
3712
3713 if (online)
3714 *online = false;
3715
3716 if (sata_set_spd_needed(link)) {
3717 /* SATA spec says nothing about how to reconfigure
3718 * spd. To be on the safe side, turn off phy during
3719 * reconfiguration. This works for at least ICH7 AHCI
3720 * and Sil3124.
3721 */
3722 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723 goto out;
3724
3725 scontrol = (scontrol & 0x0f0) | 0x304;
3726
3727 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728 goto out;
3729
3730 sata_set_spd(link);
3731 }
3732
3733 /* issue phy wake/reset */
3734 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735 goto out;
3736
3737 scontrol = (scontrol & 0x0f0) | 0x301;
3738
3739 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740 goto out;
3741
3742 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743 * 10.4.2 says at least 1 ms.
3744 */
3745 ata_msleep(link->ap, 1);
3746
3747 /* bring link back */
3748 rc = sata_link_resume(link, timing, deadline);
3749 if (rc)
3750 goto out;
3751 /* if link is offline nothing more to do */
3752 if (ata_phys_link_offline(link))
3753 goto out;
3754
3755 /* Link is online. From this point, -ENODEV too is an error. */
3756 if (online)
3757 *online = true;
3758
3759 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760 /* If PMP is supported, we have to do follow-up SRST.
3761 * Some PMPs don't send D2H Reg FIS after hardreset if
3762 * the first port is empty. Wait only for
3763 * ATA_TMOUT_PMP_SRST_WAIT.
3764 */
3765 if (check_ready) {
3766 unsigned long pmp_deadline;
3767
3768 pmp_deadline = ata_deadline(jiffies,
3769 ATA_TMOUT_PMP_SRST_WAIT);
3770 if (time_after(pmp_deadline, deadline))
3771 pmp_deadline = deadline;
3772 ata_wait_ready(link, pmp_deadline, check_ready);
3773 }
3774 rc = -EAGAIN;
3775 goto out;
3776 }
3777
3778 rc = 0;
3779 if (check_ready)
3780 rc = ata_wait_ready(link, deadline, check_ready);
3781 out:
3782 if (rc && rc != -EAGAIN) {
3783 /* online is set iff link is online && reset succeeded */
3784 if (online)
3785 *online = false;
3786 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3787 }
3788 DPRINTK("EXIT, rc=%d\n", rc);
3789 return rc;
3790}
3791
3792/**
3793 * sata_std_hardreset - COMRESET w/o waiting or classification
3794 * @link: link to reset
3795 * @class: resulting class of attached device
3796 * @deadline: deadline jiffies for the operation
3797 *
3798 * Standard SATA COMRESET w/o waiting or classification.
3799 *
3800 * LOCKING:
3801 * Kernel thread context (may sleep)
3802 *
3803 * RETURNS:
3804 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3805 */
3806int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807 unsigned long deadline)
3808{
3809 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810 bool online;
3811 int rc;
3812
3813 /* do hardreset */
3814 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815 return online ? -EAGAIN : rc;
3816}
3817
3818/**
3819 * ata_std_postreset - standard postreset callback
3820 * @link: the target ata_link
3821 * @classes: classes of attached devices
3822 *
3823 * This function is invoked after a successful reset. Note that
3824 * the device might have been reset more than once using
3825 * different reset methods before postreset is invoked.
3826 *
3827 * LOCKING:
3828 * Kernel thread context (may sleep)
3829 */
3830void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831{
3832 u32 serror;
3833
3834 DPRINTK("ENTER\n");
3835
3836 /* reset complete, clear SError */
3837 if (!sata_scr_read(link, SCR_ERROR, &serror))
3838 sata_scr_write(link, SCR_ERROR, serror);
3839
3840 /* print link status */
3841 sata_print_link_status(link);
3842
3843 DPRINTK("EXIT\n");
3844}
3845
3846/**
3847 * ata_dev_same_device - Determine whether new ID matches configured device
3848 * @dev: device to compare against
3849 * @new_class: class of the new device
3850 * @new_id: IDENTIFY page of the new device
3851 *
3852 * Compare @new_class and @new_id against @dev and determine
3853 * whether @dev is the device indicated by @new_class and
3854 * @new_id.
3855 *
3856 * LOCKING:
3857 * None.
3858 *
3859 * RETURNS:
3860 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3861 */
3862static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863 const u16 *new_id)
3864{
3865 const u16 *old_id = dev->id;
3866 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868
3869 if (dev->class != new_class) {
3870 ata_dev_info(dev, "class mismatch %d != %d\n",
3871 dev->class, new_class);
3872 return 0;
3873 }
3874
3875 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879
3880 if (strcmp(model[0], model[1])) {
3881 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3882 model[0], model[1]);
3883 return 0;
3884 }
3885
3886 if (strcmp(serial[0], serial[1])) {
3887 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3888 serial[0], serial[1]);
3889 return 0;
3890 }
3891
3892 return 1;
3893}
3894
3895/**
3896 * ata_dev_reread_id - Re-read IDENTIFY data
3897 * @dev: target ATA device
3898 * @readid_flags: read ID flags
3899 *
3900 * Re-read IDENTIFY page and make sure @dev is still attached to
3901 * the port.
3902 *
3903 * LOCKING:
3904 * Kernel thread context (may sleep)
3905 *
3906 * RETURNS:
3907 * 0 on success, negative errno otherwise
3908 */
3909int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910{
3911 unsigned int class = dev->class;
3912 u16 *id = (void *)dev->link->ap->sector_buf;
3913 int rc;
3914
3915 /* read ID data */
3916 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917 if (rc)
3918 return rc;
3919
3920 /* is the device still there? */
3921 if (!ata_dev_same_device(dev, class, id))
3922 return -ENODEV;
3923
3924 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925 return 0;
3926}
3927
3928/**
3929 * ata_dev_revalidate - Revalidate ATA device
3930 * @dev: device to revalidate
3931 * @new_class: new class code
3932 * @readid_flags: read ID flags
3933 *
3934 * Re-read IDENTIFY page, make sure @dev is still attached to the
3935 * port and reconfigure it according to the new IDENTIFY page.
3936 *
3937 * LOCKING:
3938 * Kernel thread context (may sleep)
3939 *
3940 * RETURNS:
3941 * 0 on success, negative errno otherwise
3942 */
3943int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944 unsigned int readid_flags)
3945{
3946 u64 n_sectors = dev->n_sectors;
3947 u64 n_native_sectors = dev->n_native_sectors;
3948 int rc;
3949
3950 if (!ata_dev_enabled(dev))
3951 return -ENODEV;
3952
3953 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3954 if (ata_class_enabled(new_class) &&
3955 new_class != ATA_DEV_ATA &&
3956 new_class != ATA_DEV_ATAPI &&
3957 new_class != ATA_DEV_SEMB) {
3958 ata_dev_info(dev, "class mismatch %u != %u\n",
3959 dev->class, new_class);
3960 rc = -ENODEV;
3961 goto fail;
3962 }
3963
3964 /* re-read ID */
3965 rc = ata_dev_reread_id(dev, readid_flags);
3966 if (rc)
3967 goto fail;
3968
3969 /* configure device according to the new ID */
3970 rc = ata_dev_configure(dev);
3971 if (rc)
3972 goto fail;
3973
3974 /* verify n_sectors hasn't changed */
3975 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3976 dev->n_sectors == n_sectors)
3977 return 0;
3978
3979 /* n_sectors has changed */
3980 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3981 (unsigned long long)n_sectors,
3982 (unsigned long long)dev->n_sectors);
3983
3984 /*
3985 * Something could have caused HPA to be unlocked
3986 * involuntarily. If n_native_sectors hasn't changed and the
3987 * new size matches it, keep the device.
3988 */
3989 if (dev->n_native_sectors == n_native_sectors &&
3990 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3991 ata_dev_warn(dev,
3992 "new n_sectors matches native, probably "
3993 "late HPA unlock, n_sectors updated\n");
3994 /* use the larger n_sectors */
3995 return 0;
3996 }
3997
3998 /*
3999 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4000 * unlocking HPA in those cases.
4001 *
4002 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4003 */
4004 if (dev->n_native_sectors == n_native_sectors &&
4005 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4006 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4007 ata_dev_warn(dev,
4008 "old n_sectors matches native, probably "
4009 "late HPA lock, will try to unlock HPA\n");
4010 /* try unlocking HPA */
4011 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4012 rc = -EIO;
4013 } else
4014 rc = -ENODEV;
4015
4016 /* restore original n_[native_]sectors and fail */
4017 dev->n_native_sectors = n_native_sectors;
4018 dev->n_sectors = n_sectors;
4019 fail:
4020 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4021 return rc;
4022}
4023
4024struct ata_blacklist_entry {
4025 const char *model_num;
4026 const char *model_rev;
4027 unsigned long horkage;
4028};
4029
4030static const struct ata_blacklist_entry ata_device_blacklist [] = {
4031 /* Devices with DMA related problems under Linux */
4032 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4033 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4034 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4035 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4036 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4037 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4038 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4039 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4040 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4041 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4042 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4043 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4044 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4045 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4046 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4047 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4048 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4049 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4050 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4051 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4052 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4053 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4054 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4055 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4056 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4057 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4058 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4059 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4060 { "2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4061 /* Odd clown on sil3726/4726 PMPs */
4062 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4063
4064 /* Weird ATAPI devices */
4065 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4066 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4067
4068 /* Devices we expect to fail diagnostics */
4069
4070 /* Devices where NCQ should be avoided */
4071 /* NCQ is slow */
4072 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4073 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4074 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4075 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4076 /* NCQ is broken */
4077 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4078 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4079 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4080 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4081 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4082
4083 /* Seagate NCQ + FLUSH CACHE firmware bug */
4084 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4085 ATA_HORKAGE_FIRMWARE_WARN },
4086
4087 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4088 ATA_HORKAGE_FIRMWARE_WARN },
4089
4090 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4091 ATA_HORKAGE_FIRMWARE_WARN },
4092
4093 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4094 ATA_HORKAGE_FIRMWARE_WARN },
4095
4096 /* Blacklist entries taken from Silicon Image 3124/3132
4097 Windows driver .inf file - also several Linux problem reports */
4098 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4099 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4100 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4101
4102 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4104
4105 /* devices which puke on READ_NATIVE_MAX */
4106 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4107 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4110
4111 /* this one allows HPA unlocking but fails IOs on the area */
4112 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4113
4114 /* Devices which report 1 sector over size HPA */
4115 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4116 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4117 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4118
4119 /* Devices which get the IVB wrong */
4120 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121 /* Maybe we should just blacklist TSSTcorp... */
4122 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4123
4124 /* Devices that do not need bridging limits applied */
4125 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4126
4127 /* Devices which aren't very happy with higher link speeds */
4128 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4129 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4130
4131 /*
4132 * Devices which choke on SETXFER. Applies only if both the
4133 * device and controller are SATA.
4134 */
4135 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4136 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4137 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4138 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4139 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4140
4141 /* End Marker */
4142 { }
4143};
4144
4145/**
4146 * glob_match - match a text string against a glob-style pattern
4147 * @text: the string to be examined
4148 * @pattern: the glob-style pattern to be matched against
4149 *
4150 * Either/both of text and pattern can be empty strings.
4151 *
4152 * Match text against a glob-style pattern, with wildcards and simple sets:
4153 *
4154 * ? matches any single character.
4155 * * matches any run of characters.
4156 * [xyz] matches a single character from the set: x, y, or z.
4157 * [a-d] matches a single character from the range: a, b, c, or d.
4158 * [a-d0-9] matches a single character from either range.
4159 *
4160 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4161 * Behaviour with malformed patterns is undefined, though generally reasonable.
4162 *
4163 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4164 *
4165 * This function uses one level of recursion per '*' in pattern.
4166 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4167 * this will not cause stack problems for any reasonable use here.
4168 *
4169 * RETURNS:
4170 * 0 on match, 1 otherwise.
4171 */
4172static int glob_match (const char *text, const char *pattern)
4173{
4174 do {
4175 /* Match single character or a '?' wildcard */
4176 if (*text == *pattern || *pattern == '?') {
4177 if (!*pattern++)
4178 return 0; /* End of both strings: match */
4179 } else {
4180 /* Match single char against a '[' bracketed ']' pattern set */
4181 if (!*text || *pattern != '[')
4182 break; /* Not a pattern set */
4183 while (*++pattern && *pattern != ']' && *text != *pattern) {
4184 if (*pattern == '-' && *(pattern - 1) != '[')
4185 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4186 ++pattern;
4187 break;
4188 }
4189 }
4190 if (!*pattern || *pattern == ']')
4191 return 1; /* No match */
4192 while (*pattern && *pattern++ != ']');
4193 }
4194 } while (*++text && *pattern);
4195
4196 /* Match any run of chars against a '*' wildcard */
4197 if (*pattern == '*') {
4198 if (!*++pattern)
4199 return 0; /* Match: avoid recursion at end of pattern */
4200 /* Loop to handle additional pattern chars after the wildcard */
4201 while (*text) {
4202 if (glob_match(text, pattern) == 0)
4203 return 0; /* Remainder matched */
4204 ++text; /* Absorb (match) this char and try again */
4205 }
4206 }
4207 if (!*text && !*pattern)
4208 return 0; /* End of both strings: match */
4209 return 1; /* No match */
4210}
4211
4212static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4213{
4214 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4215 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4216 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4217
4218 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4219 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4220
4221 while (ad->model_num) {
4222 if (!glob_match(model_num, ad->model_num)) {
4223 if (ad->model_rev == NULL)
4224 return ad->horkage;
4225 if (!glob_match(model_rev, ad->model_rev))
4226 return ad->horkage;
4227 }
4228 ad++;
4229 }
4230 return 0;
4231}
4232
4233static int ata_dma_blacklisted(const struct ata_device *dev)
4234{
4235 /* We don't support polling DMA.
4236 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4237 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4238 */
4239 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4240 (dev->flags & ATA_DFLAG_CDB_INTR))
4241 return 1;
4242 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4243}
4244
4245/**
4246 * ata_is_40wire - check drive side detection
4247 * @dev: device
4248 *
4249 * Perform drive side detection decoding, allowing for device vendors
4250 * who can't follow the documentation.
4251 */
4252
4253static int ata_is_40wire(struct ata_device *dev)
4254{
4255 if (dev->horkage & ATA_HORKAGE_IVB)
4256 return ata_drive_40wire_relaxed(dev->id);
4257 return ata_drive_40wire(dev->id);
4258}
4259
4260/**
4261 * cable_is_40wire - 40/80/SATA decider
4262 * @ap: port to consider
4263 *
4264 * This function encapsulates the policy for speed management
4265 * in one place. At the moment we don't cache the result but
4266 * there is a good case for setting ap->cbl to the result when
4267 * we are called with unknown cables (and figuring out if it
4268 * impacts hotplug at all).
4269 *
4270 * Return 1 if the cable appears to be 40 wire.
4271 */
4272
4273static int cable_is_40wire(struct ata_port *ap)
4274{
4275 struct ata_link *link;
4276 struct ata_device *dev;
4277
4278 /* If the controller thinks we are 40 wire, we are. */
4279 if (ap->cbl == ATA_CBL_PATA40)
4280 return 1;
4281
4282 /* If the controller thinks we are 80 wire, we are. */
4283 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4284 return 0;
4285
4286 /* If the system is known to be 40 wire short cable (eg
4287 * laptop), then we allow 80 wire modes even if the drive
4288 * isn't sure.
4289 */
4290 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4291 return 0;
4292
4293 /* If the controller doesn't know, we scan.
4294 *
4295 * Note: We look for all 40 wire detects at this point. Any
4296 * 80 wire detect is taken to be 80 wire cable because
4297 * - in many setups only the one drive (slave if present) will
4298 * give a valid detect
4299 * - if you have a non detect capable drive you don't want it
4300 * to colour the choice
4301 */
4302 ata_for_each_link(link, ap, EDGE) {
4303 ata_for_each_dev(dev, link, ENABLED) {
4304 if (!ata_is_40wire(dev))
4305 return 0;
4306 }
4307 }
4308 return 1;
4309}
4310
4311/**
4312 * ata_dev_xfermask - Compute supported xfermask of the given device
4313 * @dev: Device to compute xfermask for
4314 *
4315 * Compute supported xfermask of @dev and store it in
4316 * dev->*_mask. This function is responsible for applying all
4317 * known limits including host controller limits, device
4318 * blacklist, etc...
4319 *
4320 * LOCKING:
4321 * None.
4322 */
4323static void ata_dev_xfermask(struct ata_device *dev)
4324{
4325 struct ata_link *link = dev->link;
4326 struct ata_port *ap = link->ap;
4327 struct ata_host *host = ap->host;
4328 unsigned long xfer_mask;
4329
4330 /* controller modes available */
4331 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4332 ap->mwdma_mask, ap->udma_mask);
4333
4334 /* drive modes available */
4335 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4336 dev->mwdma_mask, dev->udma_mask);
4337 xfer_mask &= ata_id_xfermask(dev->id);
4338
4339 /*
4340 * CFA Advanced TrueIDE timings are not allowed on a shared
4341 * cable
4342 */
4343 if (ata_dev_pair(dev)) {
4344 /* No PIO5 or PIO6 */
4345 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4346 /* No MWDMA3 or MWDMA 4 */
4347 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4348 }
4349
4350 if (ata_dma_blacklisted(dev)) {
4351 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4352 ata_dev_warn(dev,
4353 "device is on DMA blacklist, disabling DMA\n");
4354 }
4355
4356 if ((host->flags & ATA_HOST_SIMPLEX) &&
4357 host->simplex_claimed && host->simplex_claimed != ap) {
4358 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4359 ata_dev_warn(dev,
4360 "simplex DMA is claimed by other device, disabling DMA\n");
4361 }
4362
4363 if (ap->flags & ATA_FLAG_NO_IORDY)
4364 xfer_mask &= ata_pio_mask_no_iordy(dev);
4365
4366 if (ap->ops->mode_filter)
4367 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4368
4369 /* Apply cable rule here. Don't apply it early because when
4370 * we handle hot plug the cable type can itself change.
4371 * Check this last so that we know if the transfer rate was
4372 * solely limited by the cable.
4373 * Unknown or 80 wire cables reported host side are checked
4374 * drive side as well. Cases where we know a 40wire cable
4375 * is used safely for 80 are not checked here.
4376 */
4377 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4378 /* UDMA/44 or higher would be available */
4379 if (cable_is_40wire(ap)) {
4380 ata_dev_warn(dev,
4381 "limited to UDMA/33 due to 40-wire cable\n");
4382 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4383 }
4384
4385 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4386 &dev->mwdma_mask, &dev->udma_mask);
4387}
4388
4389/**
4390 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4391 * @dev: Device to which command will be sent
4392 *
4393 * Issue SET FEATURES - XFER MODE command to device @dev
4394 * on port @ap.
4395 *
4396 * LOCKING:
4397 * PCI/etc. bus probe sem.
4398 *
4399 * RETURNS:
4400 * 0 on success, AC_ERR_* mask otherwise.
4401 */
4402
4403static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4404{
4405 struct ata_taskfile tf;
4406 unsigned int err_mask;
4407
4408 /* set up set-features taskfile */
4409 DPRINTK("set features - xfer mode\n");
4410
4411 /* Some controllers and ATAPI devices show flaky interrupt
4412 * behavior after setting xfer mode. Use polling instead.
4413 */
4414 ata_tf_init(dev, &tf);
4415 tf.command = ATA_CMD_SET_FEATURES;
4416 tf.feature = SETFEATURES_XFER;
4417 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4418 tf.protocol = ATA_PROT_NODATA;
4419 /* If we are using IORDY we must send the mode setting command */
4420 if (ata_pio_need_iordy(dev))
4421 tf.nsect = dev->xfer_mode;
4422 /* If the device has IORDY and the controller does not - turn it off */
4423 else if (ata_id_has_iordy(dev->id))
4424 tf.nsect = 0x01;
4425 else /* In the ancient relic department - skip all of this */
4426 return 0;
4427
4428 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4429
4430 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4431 return err_mask;
4432}
4433
4434/**
4435 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4436 * @dev: Device to which command will be sent
4437 * @enable: Whether to enable or disable the feature
4438 * @feature: The sector count represents the feature to set
4439 *
4440 * Issue SET FEATURES - SATA FEATURES command to device @dev
4441 * on port @ap with sector count
4442 *
4443 * LOCKING:
4444 * PCI/etc. bus probe sem.
4445 *
4446 * RETURNS:
4447 * 0 on success, AC_ERR_* mask otherwise.
4448 */
4449unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4450{
4451 struct ata_taskfile tf;
4452 unsigned int err_mask;
4453
4454 /* set up set-features taskfile */
4455 DPRINTK("set features - SATA features\n");
4456
4457 ata_tf_init(dev, &tf);
4458 tf.command = ATA_CMD_SET_FEATURES;
4459 tf.feature = enable;
4460 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4461 tf.protocol = ATA_PROT_NODATA;
4462 tf.nsect = feature;
4463
4464 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4465
4466 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4467 return err_mask;
4468}
4469
4470/**
4471 * ata_dev_init_params - Issue INIT DEV PARAMS command
4472 * @dev: Device to which command will be sent
4473 * @heads: Number of heads (taskfile parameter)
4474 * @sectors: Number of sectors (taskfile parameter)
4475 *
4476 * LOCKING:
4477 * Kernel thread context (may sleep)
4478 *
4479 * RETURNS:
4480 * 0 on success, AC_ERR_* mask otherwise.
4481 */
4482static unsigned int ata_dev_init_params(struct ata_device *dev,
4483 u16 heads, u16 sectors)
4484{
4485 struct ata_taskfile tf;
4486 unsigned int err_mask;
4487
4488 /* Number of sectors per track 1-255. Number of heads 1-16 */
4489 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4490 return AC_ERR_INVALID;
4491
4492 /* set up init dev params taskfile */
4493 DPRINTK("init dev params \n");
4494
4495 ata_tf_init(dev, &tf);
4496 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4497 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4498 tf.protocol = ATA_PROT_NODATA;
4499 tf.nsect = sectors;
4500 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4501
4502 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4503 /* A clean abort indicates an original or just out of spec drive
4504 and we should continue as we issue the setup based on the
4505 drive reported working geometry */
4506 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4507 err_mask = 0;
4508
4509 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4510 return err_mask;
4511}
4512
4513/**
4514 * ata_sg_clean - Unmap DMA memory associated with command
4515 * @qc: Command containing DMA memory to be released
4516 *
4517 * Unmap all mapped DMA memory associated with this command.
4518 *
4519 * LOCKING:
4520 * spin_lock_irqsave(host lock)
4521 */
4522void ata_sg_clean(struct ata_queued_cmd *qc)
4523{
4524 struct ata_port *ap = qc->ap;
4525 struct scatterlist *sg = qc->sg;
4526 int dir = qc->dma_dir;
4527
4528 WARN_ON_ONCE(sg == NULL);
4529
4530 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4531
4532 if (qc->n_elem)
4533 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4534
4535 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4536 qc->sg = NULL;
4537}
4538
4539/**
4540 * atapi_check_dma - Check whether ATAPI DMA can be supported
4541 * @qc: Metadata associated with taskfile to check
4542 *
4543 * Allow low-level driver to filter ATA PACKET commands, returning
4544 * a status indicating whether or not it is OK to use DMA for the
4545 * supplied PACKET command.
4546 *
4547 * LOCKING:
4548 * spin_lock_irqsave(host lock)
4549 *
4550 * RETURNS: 0 when ATAPI DMA can be used
4551 * nonzero otherwise
4552 */
4553int atapi_check_dma(struct ata_queued_cmd *qc)
4554{
4555 struct ata_port *ap = qc->ap;
4556
4557 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4558 * few ATAPI devices choke on such DMA requests.
4559 */
4560 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4561 unlikely(qc->nbytes & 15))
4562 return 1;
4563
4564 if (ap->ops->check_atapi_dma)
4565 return ap->ops->check_atapi_dma(qc);
4566
4567 return 0;
4568}
4569
4570/**
4571 * ata_std_qc_defer - Check whether a qc needs to be deferred
4572 * @qc: ATA command in question
4573 *
4574 * Non-NCQ commands cannot run with any other command, NCQ or
4575 * not. As upper layer only knows the queue depth, we are
4576 * responsible for maintaining exclusion. This function checks
4577 * whether a new command @qc can be issued.
4578 *
4579 * LOCKING:
4580 * spin_lock_irqsave(host lock)
4581 *
4582 * RETURNS:
4583 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4584 */
4585int ata_std_qc_defer(struct ata_queued_cmd *qc)
4586{
4587 struct ata_link *link = qc->dev->link;
4588
4589 if (qc->tf.protocol == ATA_PROT_NCQ) {
4590 if (!ata_tag_valid(link->active_tag))
4591 return 0;
4592 } else {
4593 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4594 return 0;
4595 }
4596
4597 return ATA_DEFER_LINK;
4598}
4599
4600void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4601
4602/**
4603 * ata_sg_init - Associate command with scatter-gather table.
4604 * @qc: Command to be associated
4605 * @sg: Scatter-gather table.
4606 * @n_elem: Number of elements in s/g table.
4607 *
4608 * Initialize the data-related elements of queued_cmd @qc
4609 * to point to a scatter-gather table @sg, containing @n_elem
4610 * elements.
4611 *
4612 * LOCKING:
4613 * spin_lock_irqsave(host lock)
4614 */
4615void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4616 unsigned int n_elem)
4617{
4618 qc->sg = sg;
4619 qc->n_elem = n_elem;
4620 qc->cursg = qc->sg;
4621}
4622
4623/**
4624 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4625 * @qc: Command with scatter-gather table to be mapped.
4626 *
4627 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4628 *
4629 * LOCKING:
4630 * spin_lock_irqsave(host lock)
4631 *
4632 * RETURNS:
4633 * Zero on success, negative on error.
4634 *
4635 */
4636static int ata_sg_setup(struct ata_queued_cmd *qc)
4637{
4638 struct ata_port *ap = qc->ap;
4639 unsigned int n_elem;
4640
4641 VPRINTK("ENTER, ata%u\n", ap->print_id);
4642
4643 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4644 if (n_elem < 1)
4645 return -1;
4646
4647 DPRINTK("%d sg elements mapped\n", n_elem);
4648 qc->orig_n_elem = qc->n_elem;
4649 qc->n_elem = n_elem;
4650 qc->flags |= ATA_QCFLAG_DMAMAP;
4651
4652 return 0;
4653}
4654
4655/**
4656 * swap_buf_le16 - swap halves of 16-bit words in place
4657 * @buf: Buffer to swap
4658 * @buf_words: Number of 16-bit words in buffer.
4659 *
4660 * Swap halves of 16-bit words if needed to convert from
4661 * little-endian byte order to native cpu byte order, or
4662 * vice-versa.
4663 *
4664 * LOCKING:
4665 * Inherited from caller.
4666 */
4667void swap_buf_le16(u16 *buf, unsigned int buf_words)
4668{
4669#ifdef __BIG_ENDIAN
4670 unsigned int i;
4671
4672 for (i = 0; i < buf_words; i++)
4673 buf[i] = le16_to_cpu(buf[i]);
4674#endif /* __BIG_ENDIAN */
4675}
4676
4677/**
4678 * ata_qc_new - Request an available ATA command, for queueing
4679 * @ap: target port
4680 *
4681 * LOCKING:
4682 * None.
4683 */
4684
4685static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4686{
4687 struct ata_queued_cmd *qc = NULL;
4688 unsigned int i;
4689
4690 /* no command while frozen */
4691 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4692 return NULL;
4693
4694 /* the last tag is reserved for internal command. */
4695 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4696 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4697 qc = __ata_qc_from_tag(ap, i);
4698 break;
4699 }
4700
4701 if (qc)
4702 qc->tag = i;
4703
4704 return qc;
4705}
4706
4707/**
4708 * ata_qc_new_init - Request an available ATA command, and initialize it
4709 * @dev: Device from whom we request an available command structure
4710 *
4711 * LOCKING:
4712 * None.
4713 */
4714
4715struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4716{
4717 struct ata_port *ap = dev->link->ap;
4718 struct ata_queued_cmd *qc;
4719
4720 qc = ata_qc_new(ap);
4721 if (qc) {
4722 qc->scsicmd = NULL;
4723 qc->ap = ap;
4724 qc->dev = dev;
4725
4726 ata_qc_reinit(qc);
4727 }
4728
4729 return qc;
4730}
4731
4732/**
4733 * ata_qc_free - free unused ata_queued_cmd
4734 * @qc: Command to complete
4735 *
4736 * Designed to free unused ata_queued_cmd object
4737 * in case something prevents using it.
4738 *
4739 * LOCKING:
4740 * spin_lock_irqsave(host lock)
4741 */
4742void ata_qc_free(struct ata_queued_cmd *qc)
4743{
4744 struct ata_port *ap;
4745 unsigned int tag;
4746
4747 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4748 ap = qc->ap;
4749
4750 qc->flags = 0;
4751 tag = qc->tag;
4752 if (likely(ata_tag_valid(tag))) {
4753 qc->tag = ATA_TAG_POISON;
4754 clear_bit(tag, &ap->qc_allocated);
4755 }
4756}
4757
4758void __ata_qc_complete(struct ata_queued_cmd *qc)
4759{
4760 struct ata_port *ap;
4761 struct ata_link *link;
4762
4763 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4764 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4765 ap = qc->ap;
4766 link = qc->dev->link;
4767
4768 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4769 ata_sg_clean(qc);
4770
4771 /* command should be marked inactive atomically with qc completion */
4772 if (qc->tf.protocol == ATA_PROT_NCQ) {
4773 link->sactive &= ~(1 << qc->tag);
4774 if (!link->sactive)
4775 ap->nr_active_links--;
4776 } else {
4777 link->active_tag = ATA_TAG_POISON;
4778 ap->nr_active_links--;
4779 }
4780
4781 /* clear exclusive status */
4782 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4783 ap->excl_link == link))
4784 ap->excl_link = NULL;
4785
4786 /* atapi: mark qc as inactive to prevent the interrupt handler
4787 * from completing the command twice later, before the error handler
4788 * is called. (when rc != 0 and atapi request sense is needed)
4789 */
4790 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4791 ap->qc_active &= ~(1 << qc->tag);
4792
4793 /* call completion callback */
4794 qc->complete_fn(qc);
4795}
4796
4797static void fill_result_tf(struct ata_queued_cmd *qc)
4798{
4799 struct ata_port *ap = qc->ap;
4800
4801 qc->result_tf.flags = qc->tf.flags;
4802 ap->ops->qc_fill_rtf(qc);
4803}
4804
4805static void ata_verify_xfer(struct ata_queued_cmd *qc)
4806{
4807 struct ata_device *dev = qc->dev;
4808
4809 if (ata_is_nodata(qc->tf.protocol))
4810 return;
4811
4812 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4813 return;
4814
4815 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4816}
4817
4818/**
4819 * ata_qc_complete - Complete an active ATA command
4820 * @qc: Command to complete
4821 *
4822 * Indicate to the mid and upper layers that an ATA command has
4823 * completed, with either an ok or not-ok status.
4824 *
4825 * Refrain from calling this function multiple times when
4826 * successfully completing multiple NCQ commands.
4827 * ata_qc_complete_multiple() should be used instead, which will
4828 * properly update IRQ expect state.
4829 *
4830 * LOCKING:
4831 * spin_lock_irqsave(host lock)
4832 */
4833void ata_qc_complete(struct ata_queued_cmd *qc)
4834{
4835 struct ata_port *ap = qc->ap;
4836
4837 /* XXX: New EH and old EH use different mechanisms to
4838 * synchronize EH with regular execution path.
4839 *
4840 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4841 * Normal execution path is responsible for not accessing a
4842 * failed qc. libata core enforces the rule by returning NULL
4843 * from ata_qc_from_tag() for failed qcs.
4844 *
4845 * Old EH depends on ata_qc_complete() nullifying completion
4846 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4847 * not synchronize with interrupt handler. Only PIO task is
4848 * taken care of.
4849 */
4850 if (ap->ops->error_handler) {
4851 struct ata_device *dev = qc->dev;
4852 struct ata_eh_info *ehi = &dev->link->eh_info;
4853
4854 if (unlikely(qc->err_mask))
4855 qc->flags |= ATA_QCFLAG_FAILED;
4856
4857 /*
4858 * Finish internal commands without any further processing
4859 * and always with the result TF filled.
4860 */
4861 if (unlikely(ata_tag_internal(qc->tag))) {
4862 fill_result_tf(qc);
4863 __ata_qc_complete(qc);
4864 return;
4865 }
4866
4867 /*
4868 * Non-internal qc has failed. Fill the result TF and
4869 * summon EH.
4870 */
4871 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4872 fill_result_tf(qc);
4873 ata_qc_schedule_eh(qc);
4874 return;
4875 }
4876
4877 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4878
4879 /* read result TF if requested */
4880 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4881 fill_result_tf(qc);
4882
4883 /* Some commands need post-processing after successful
4884 * completion.
4885 */
4886 switch (qc->tf.command) {
4887 case ATA_CMD_SET_FEATURES:
4888 if (qc->tf.feature != SETFEATURES_WC_ON &&
4889 qc->tf.feature != SETFEATURES_WC_OFF)
4890 break;
4891 /* fall through */
4892 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4893 case ATA_CMD_SET_MULTI: /* multi_count changed */
4894 /* revalidate device */
4895 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4896 ata_port_schedule_eh(ap);
4897 break;
4898
4899 case ATA_CMD_SLEEP:
4900 dev->flags |= ATA_DFLAG_SLEEPING;
4901 break;
4902 }
4903
4904 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4905 ata_verify_xfer(qc);
4906
4907 __ata_qc_complete(qc);
4908 } else {
4909 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4910 return;
4911
4912 /* read result TF if failed or requested */
4913 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4914 fill_result_tf(qc);
4915
4916 __ata_qc_complete(qc);
4917 }
4918}
4919
4920/**
4921 * ata_qc_complete_multiple - Complete multiple qcs successfully
4922 * @ap: port in question
4923 * @qc_active: new qc_active mask
4924 *
4925 * Complete in-flight commands. This functions is meant to be
4926 * called from low-level driver's interrupt routine to complete
4927 * requests normally. ap->qc_active and @qc_active is compared
4928 * and commands are completed accordingly.
4929 *
4930 * Always use this function when completing multiple NCQ commands
4931 * from IRQ handlers instead of calling ata_qc_complete()
4932 * multiple times to keep IRQ expect status properly in sync.
4933 *
4934 * LOCKING:
4935 * spin_lock_irqsave(host lock)
4936 *
4937 * RETURNS:
4938 * Number of completed commands on success, -errno otherwise.
4939 */
4940int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4941{
4942 int nr_done = 0;
4943 u32 done_mask;
4944
4945 done_mask = ap->qc_active ^ qc_active;
4946
4947 if (unlikely(done_mask & qc_active)) {
4948 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4949 ap->qc_active, qc_active);
4950 return -EINVAL;
4951 }
4952
4953 while (done_mask) {
4954 struct ata_queued_cmd *qc;
4955 unsigned int tag = __ffs(done_mask);
4956
4957 qc = ata_qc_from_tag(ap, tag);
4958 if (qc) {
4959 ata_qc_complete(qc);
4960 nr_done++;
4961 }
4962 done_mask &= ~(1 << tag);
4963 }
4964
4965 return nr_done;
4966}
4967
4968/**
4969 * ata_qc_issue - issue taskfile to device
4970 * @qc: command to issue to device
4971 *
4972 * Prepare an ATA command to submission to device.
4973 * This includes mapping the data into a DMA-able
4974 * area, filling in the S/G table, and finally
4975 * writing the taskfile to hardware, starting the command.
4976 *
4977 * LOCKING:
4978 * spin_lock_irqsave(host lock)
4979 */
4980void ata_qc_issue(struct ata_queued_cmd *qc)
4981{
4982 struct ata_port *ap = qc->ap;
4983 struct ata_link *link = qc->dev->link;
4984 u8 prot = qc->tf.protocol;
4985
4986 /* Make sure only one non-NCQ command is outstanding. The
4987 * check is skipped for old EH because it reuses active qc to
4988 * request ATAPI sense.
4989 */
4990 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4991
4992 if (ata_is_ncq(prot)) {
4993 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4994
4995 if (!link->sactive)
4996 ap->nr_active_links++;
4997 link->sactive |= 1 << qc->tag;
4998 } else {
4999 WARN_ON_ONCE(link->sactive);
5000
5001 ap->nr_active_links++;
5002 link->active_tag = qc->tag;
5003 }
5004
5005 qc->flags |= ATA_QCFLAG_ACTIVE;
5006 ap->qc_active |= 1 << qc->tag;
5007
5008 /*
5009 * We guarantee to LLDs that they will have at least one
5010 * non-zero sg if the command is a data command.
5011 */
5012 if (WARN_ON_ONCE(ata_is_data(prot) &&
5013 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5014 goto sys_err;
5015
5016 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5017 (ap->flags & ATA_FLAG_PIO_DMA)))
5018 if (ata_sg_setup(qc))
5019 goto sys_err;
5020
5021 /* if device is sleeping, schedule reset and abort the link */
5022 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5023 link->eh_info.action |= ATA_EH_RESET;
5024 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5025 ata_link_abort(link);
5026 return;
5027 }
5028
5029 ap->ops->qc_prep(qc);
5030
5031 qc->err_mask |= ap->ops->qc_issue(qc);
5032 if (unlikely(qc->err_mask))
5033 goto err;
5034 return;
5035
5036sys_err:
5037 qc->err_mask |= AC_ERR_SYSTEM;
5038err:
5039 ata_qc_complete(qc);
5040}
5041
5042/**
5043 * sata_scr_valid - test whether SCRs are accessible
5044 * @link: ATA link to test SCR accessibility for
5045 *
5046 * Test whether SCRs are accessible for @link.
5047 *
5048 * LOCKING:
5049 * None.
5050 *
5051 * RETURNS:
5052 * 1 if SCRs are accessible, 0 otherwise.
5053 */
5054int sata_scr_valid(struct ata_link *link)
5055{
5056 struct ata_port *ap = link->ap;
5057
5058 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5059}
5060
5061/**
5062 * sata_scr_read - read SCR register of the specified port
5063 * @link: ATA link to read SCR for
5064 * @reg: SCR to read
5065 * @val: Place to store read value
5066 *
5067 * Read SCR register @reg of @link into *@val. This function is
5068 * guaranteed to succeed if @link is ap->link, the cable type of
5069 * the port is SATA and the port implements ->scr_read.
5070 *
5071 * LOCKING:
5072 * None if @link is ap->link. Kernel thread context otherwise.
5073 *
5074 * RETURNS:
5075 * 0 on success, negative errno on failure.
5076 */
5077int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5078{
5079 if (ata_is_host_link(link)) {
5080 if (sata_scr_valid(link))
5081 return link->ap->ops->scr_read(link, reg, val);
5082 return -EOPNOTSUPP;
5083 }
5084
5085 return sata_pmp_scr_read(link, reg, val);
5086}
5087
5088/**
5089 * sata_scr_write - write SCR register of the specified port
5090 * @link: ATA link to write SCR for
5091 * @reg: SCR to write
5092 * @val: value to write
5093 *
5094 * Write @val to SCR register @reg of @link. This function is
5095 * guaranteed to succeed if @link is ap->link, the cable type of
5096 * the port is SATA and the port implements ->scr_read.
5097 *
5098 * LOCKING:
5099 * None if @link is ap->link. Kernel thread context otherwise.
5100 *
5101 * RETURNS:
5102 * 0 on success, negative errno on failure.
5103 */
5104int sata_scr_write(struct ata_link *link, int reg, u32 val)
5105{
5106 if (ata_is_host_link(link)) {
5107 if (sata_scr_valid(link))
5108 return link->ap->ops->scr_write(link, reg, val);
5109 return -EOPNOTSUPP;
5110 }
5111
5112 return sata_pmp_scr_write(link, reg, val);
5113}
5114
5115/**
5116 * sata_scr_write_flush - write SCR register of the specified port and flush
5117 * @link: ATA link to write SCR for
5118 * @reg: SCR to write
5119 * @val: value to write
5120 *
5121 * This function is identical to sata_scr_write() except that this
5122 * function performs flush after writing to the register.
5123 *
5124 * LOCKING:
5125 * None if @link is ap->link. Kernel thread context otherwise.
5126 *
5127 * RETURNS:
5128 * 0 on success, negative errno on failure.
5129 */
5130int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5131{
5132 if (ata_is_host_link(link)) {
5133 int rc;
5134
5135 if (sata_scr_valid(link)) {
5136 rc = link->ap->ops->scr_write(link, reg, val);
5137 if (rc == 0)
5138 rc = link->ap->ops->scr_read(link, reg, &val);
5139 return rc;
5140 }
5141 return -EOPNOTSUPP;
5142 }
5143
5144 return sata_pmp_scr_write(link, reg, val);
5145}
5146
5147/**
5148 * ata_phys_link_online - test whether the given link is online
5149 * @link: ATA link to test
5150 *
5151 * Test whether @link is online. Note that this function returns
5152 * 0 if online status of @link cannot be obtained, so
5153 * ata_link_online(link) != !ata_link_offline(link).
5154 *
5155 * LOCKING:
5156 * None.
5157 *
5158 * RETURNS:
5159 * True if the port online status is available and online.
5160 */
5161bool ata_phys_link_online(struct ata_link *link)
5162{
5163 u32 sstatus;
5164
5165 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5166 ata_sstatus_online(sstatus))
5167 return true;
5168 return false;
5169}
5170
5171/**
5172 * ata_phys_link_offline - test whether the given link is offline
5173 * @link: ATA link to test
5174 *
5175 * Test whether @link is offline. Note that this function
5176 * returns 0 if offline status of @link cannot be obtained, so
5177 * ata_link_online(link) != !ata_link_offline(link).
5178 *
5179 * LOCKING:
5180 * None.
5181 *
5182 * RETURNS:
5183 * True if the port offline status is available and offline.
5184 */
5185bool ata_phys_link_offline(struct ata_link *link)
5186{
5187 u32 sstatus;
5188
5189 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5190 !ata_sstatus_online(sstatus))
5191 return true;
5192 return false;
5193}
5194
5195/**
5196 * ata_link_online - test whether the given link is online
5197 * @link: ATA link to test
5198 *
5199 * Test whether @link is online. This is identical to
5200 * ata_phys_link_online() when there's no slave link. When
5201 * there's a slave link, this function should only be called on
5202 * the master link and will return true if any of M/S links is
5203 * online.
5204 *
5205 * LOCKING:
5206 * None.
5207 *
5208 * RETURNS:
5209 * True if the port online status is available and online.
5210 */
5211bool ata_link_online(struct ata_link *link)
5212{
5213 struct ata_link *slave = link->ap->slave_link;
5214
5215 WARN_ON(link == slave); /* shouldn't be called on slave link */
5216
5217 return ata_phys_link_online(link) ||
5218 (slave && ata_phys_link_online(slave));
5219}
5220
5221/**
5222 * ata_link_offline - test whether the given link is offline
5223 * @link: ATA link to test
5224 *
5225 * Test whether @link is offline. This is identical to
5226 * ata_phys_link_offline() when there's no slave link. When
5227 * there's a slave link, this function should only be called on
5228 * the master link and will return true if both M/S links are
5229 * offline.
5230 *
5231 * LOCKING:
5232 * None.
5233 *
5234 * RETURNS:
5235 * True if the port offline status is available and offline.
5236 */
5237bool ata_link_offline(struct ata_link *link)
5238{
5239 struct ata_link *slave = link->ap->slave_link;
5240
5241 WARN_ON(link == slave); /* shouldn't be called on slave link */
5242
5243 return ata_phys_link_offline(link) &&
5244 (!slave || ata_phys_link_offline(slave));
5245}
5246
5247#ifdef CONFIG_PM
5248static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5249 unsigned int action, unsigned int ehi_flags,
5250 int wait)
5251{
5252 struct ata_link *link;
5253 unsigned long flags;
5254 int rc;
5255
5256 /* Previous resume operation might still be in
5257 * progress. Wait for PM_PENDING to clear.
5258 */
5259 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5260 ata_port_wait_eh(ap);
5261 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5262 }
5263
5264 /* request PM ops to EH */
5265 spin_lock_irqsave(ap->lock, flags);
5266
5267 ap->pm_mesg = mesg;
5268 if (wait) {
5269 rc = 0;
5270 ap->pm_result = &rc;
5271 }
5272
5273 ap->pflags |= ATA_PFLAG_PM_PENDING;
5274 ata_for_each_link(link, ap, HOST_FIRST) {
5275 link->eh_info.action |= action;
5276 link->eh_info.flags |= ehi_flags;
5277 }
5278
5279 ata_port_schedule_eh(ap);
5280
5281 spin_unlock_irqrestore(ap->lock, flags);
5282
5283 /* wait and check result */
5284 if (wait) {
5285 ata_port_wait_eh(ap);
5286 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5287 }
5288
5289 return rc;
5290}
5291
5292#define to_ata_port(d) container_of(d, struct ata_port, tdev)
5293
5294static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5295{
5296 struct ata_port *ap = to_ata_port(dev);
5297 unsigned int ehi_flags = ATA_EHI_QUIET;
5298 int rc;
5299
5300 /*
5301 * On some hardware, device fails to respond after spun down
5302 * for suspend. As the device won't be used before being
5303 * resumed, we don't need to touch the device. Ask EH to skip
5304 * the usual stuff and proceed directly to suspend.
5305 *
5306 * http://thread.gmane.org/gmane.linux.ide/46764
5307 */
5308 if (mesg.event == PM_EVENT_SUSPEND)
5309 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5310
5311 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5312 return rc;
5313}
5314
5315static int ata_port_suspend(struct device *dev)
5316{
5317 if (pm_runtime_suspended(dev))
5318 return 0;
5319
5320 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5321}
5322
5323static int ata_port_do_freeze(struct device *dev)
5324{
5325 if (pm_runtime_suspended(dev))
5326 pm_runtime_resume(dev);
5327
5328 return ata_port_suspend_common(dev, PMSG_FREEZE);
5329}
5330
5331static int ata_port_poweroff(struct device *dev)
5332{
5333 if (pm_runtime_suspended(dev))
5334 return 0;
5335
5336 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5337}
5338
5339static int ata_port_resume_common(struct device *dev)
5340{
5341 struct ata_port *ap = to_ata_port(dev);
5342 int rc;
5343
5344 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5345 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5346 return rc;
5347}
5348
5349static int ata_port_resume(struct device *dev)
5350{
5351 int rc;
5352
5353 rc = ata_port_resume_common(dev);
5354 if (!rc) {
5355 pm_runtime_disable(dev);
5356 pm_runtime_set_active(dev);
5357 pm_runtime_enable(dev);
5358 }
5359
5360 return rc;
5361}
5362
5363static int ata_port_runtime_idle(struct device *dev)
5364{
5365 return pm_runtime_suspend(dev);
5366}
5367
5368static const struct dev_pm_ops ata_port_pm_ops = {
5369 .suspend = ata_port_suspend,
5370 .resume = ata_port_resume,
5371 .freeze = ata_port_do_freeze,
5372 .thaw = ata_port_resume,
5373 .poweroff = ata_port_poweroff,
5374 .restore = ata_port_resume,
5375
5376 .runtime_suspend = ata_port_suspend,
5377 .runtime_resume = ata_port_resume_common,
5378 .runtime_idle = ata_port_runtime_idle,
5379};
5380
5381/**
5382 * ata_host_suspend - suspend host
5383 * @host: host to suspend
5384 * @mesg: PM message
5385 *
5386 * Suspend @host. Actual operation is performed by port suspend.
5387 */
5388int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5389{
5390 host->dev->power.power_state = mesg;
5391 return 0;
5392}
5393
5394/**
5395 * ata_host_resume - resume host
5396 * @host: host to resume
5397 *
5398 * Resume @host. Actual operation is performed by port resume.
5399 */
5400void ata_host_resume(struct ata_host *host)
5401{
5402 host->dev->power.power_state = PMSG_ON;
5403}
5404#endif
5405
5406struct device_type ata_port_type = {
5407 .name = "ata_port",
5408#ifdef CONFIG_PM
5409 .pm = &ata_port_pm_ops,
5410#endif
5411};
5412
5413/**
5414 * ata_dev_init - Initialize an ata_device structure
5415 * @dev: Device structure to initialize
5416 *
5417 * Initialize @dev in preparation for probing.
5418 *
5419 * LOCKING:
5420 * Inherited from caller.
5421 */
5422void ata_dev_init(struct ata_device *dev)
5423{
5424 struct ata_link *link = ata_dev_phys_link(dev);
5425 struct ata_port *ap = link->ap;
5426 unsigned long flags;
5427
5428 /* SATA spd limit is bound to the attached device, reset together */
5429 link->sata_spd_limit = link->hw_sata_spd_limit;
5430 link->sata_spd = 0;
5431
5432 /* High bits of dev->flags are used to record warm plug
5433 * requests which occur asynchronously. Synchronize using
5434 * host lock.
5435 */
5436 spin_lock_irqsave(ap->lock, flags);
5437 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5438 dev->horkage = 0;
5439 spin_unlock_irqrestore(ap->lock, flags);
5440
5441 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5442 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5443 dev->pio_mask = UINT_MAX;
5444 dev->mwdma_mask = UINT_MAX;
5445 dev->udma_mask = UINT_MAX;
5446}
5447
5448/**
5449 * ata_link_init - Initialize an ata_link structure
5450 * @ap: ATA port link is attached to
5451 * @link: Link structure to initialize
5452 * @pmp: Port multiplier port number
5453 *
5454 * Initialize @link.
5455 *
5456 * LOCKING:
5457 * Kernel thread context (may sleep)
5458 */
5459void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5460{
5461 int i;
5462
5463 /* clear everything except for devices */
5464 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5465 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5466
5467 link->ap = ap;
5468 link->pmp = pmp;
5469 link->active_tag = ATA_TAG_POISON;
5470 link->hw_sata_spd_limit = UINT_MAX;
5471
5472 /* can't use iterator, ap isn't initialized yet */
5473 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5474 struct ata_device *dev = &link->device[i];
5475
5476 dev->link = link;
5477 dev->devno = dev - link->device;
5478#ifdef CONFIG_ATA_ACPI
5479 dev->gtf_filter = ata_acpi_gtf_filter;
5480#endif
5481 ata_dev_init(dev);
5482 }
5483}
5484
5485/**
5486 * sata_link_init_spd - Initialize link->sata_spd_limit
5487 * @link: Link to configure sata_spd_limit for
5488 *
5489 * Initialize @link->[hw_]sata_spd_limit to the currently
5490 * configured value.
5491 *
5492 * LOCKING:
5493 * Kernel thread context (may sleep).
5494 *
5495 * RETURNS:
5496 * 0 on success, -errno on failure.
5497 */
5498int sata_link_init_spd(struct ata_link *link)
5499{
5500 u8 spd;
5501 int rc;
5502
5503 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5504 if (rc)
5505 return rc;
5506
5507 spd = (link->saved_scontrol >> 4) & 0xf;
5508 if (spd)
5509 link->hw_sata_spd_limit &= (1 << spd) - 1;
5510
5511 ata_force_link_limits(link);
5512
5513 link->sata_spd_limit = link->hw_sata_spd_limit;
5514
5515 return 0;
5516}
5517
5518/**
5519 * ata_port_alloc - allocate and initialize basic ATA port resources
5520 * @host: ATA host this allocated port belongs to
5521 *
5522 * Allocate and initialize basic ATA port resources.
5523 *
5524 * RETURNS:
5525 * Allocate ATA port on success, NULL on failure.
5526 *
5527 * LOCKING:
5528 * Inherited from calling layer (may sleep).
5529 */
5530struct ata_port *ata_port_alloc(struct ata_host *host)
5531{
5532 struct ata_port *ap;
5533
5534 DPRINTK("ENTER\n");
5535
5536 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5537 if (!ap)
5538 return NULL;
5539
5540 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5541 ap->lock = &host->lock;
5542 ap->print_id = -1;
5543 ap->host = host;
5544 ap->dev = host->dev;
5545
5546#if defined(ATA_VERBOSE_DEBUG)
5547 /* turn on all debugging levels */
5548 ap->msg_enable = 0x00FF;
5549#elif defined(ATA_DEBUG)
5550 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5551#else
5552 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5553#endif
5554
5555 mutex_init(&ap->scsi_scan_mutex);
5556 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5557 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5558 INIT_LIST_HEAD(&ap->eh_done_q);
5559 init_waitqueue_head(&ap->eh_wait_q);
5560 init_completion(&ap->park_req_pending);
5561 init_timer_deferrable(&ap->fastdrain_timer);
5562 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5563 ap->fastdrain_timer.data = (unsigned long)ap;
5564
5565 ap->cbl = ATA_CBL_NONE;
5566
5567 ata_link_init(ap, &ap->link, 0);
5568
5569#ifdef ATA_IRQ_TRAP
5570 ap->stats.unhandled_irq = 1;
5571 ap->stats.idle_irq = 1;
5572#endif
5573 ata_sff_port_init(ap);
5574
5575 return ap;
5576}
5577
5578static void ata_host_release(struct device *gendev, void *res)
5579{
5580 struct ata_host *host = dev_get_drvdata(gendev);
5581 int i;
5582
5583 for (i = 0; i < host->n_ports; i++) {
5584 struct ata_port *ap = host->ports[i];
5585
5586 if (!ap)
5587 continue;
5588
5589 if (ap->scsi_host)
5590 scsi_host_put(ap->scsi_host);
5591
5592 kfree(ap->pmp_link);
5593 kfree(ap->slave_link);
5594 kfree(ap);
5595 host->ports[i] = NULL;
5596 }
5597
5598 dev_set_drvdata(gendev, NULL);
5599}
5600
5601/**
5602 * ata_host_alloc - allocate and init basic ATA host resources
5603 * @dev: generic device this host is associated with
5604 * @max_ports: maximum number of ATA ports associated with this host
5605 *
5606 * Allocate and initialize basic ATA host resources. LLD calls
5607 * this function to allocate a host, initializes it fully and
5608 * attaches it using ata_host_register().
5609 *
5610 * @max_ports ports are allocated and host->n_ports is
5611 * initialized to @max_ports. The caller is allowed to decrease
5612 * host->n_ports before calling ata_host_register(). The unused
5613 * ports will be automatically freed on registration.
5614 *
5615 * RETURNS:
5616 * Allocate ATA host on success, NULL on failure.
5617 *
5618 * LOCKING:
5619 * Inherited from calling layer (may sleep).
5620 */
5621struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5622{
5623 struct ata_host *host;
5624 size_t sz;
5625 int i;
5626
5627 DPRINTK("ENTER\n");
5628
5629 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5630 return NULL;
5631
5632 /* alloc a container for our list of ATA ports (buses) */
5633 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5634 /* alloc a container for our list of ATA ports (buses) */
5635 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5636 if (!host)
5637 goto err_out;
5638
5639 devres_add(dev, host);
5640 dev_set_drvdata(dev, host);
5641
5642 spin_lock_init(&host->lock);
5643 mutex_init(&host->eh_mutex);
5644 host->dev = dev;
5645 host->n_ports = max_ports;
5646
5647 /* allocate ports bound to this host */
5648 for (i = 0; i < max_ports; i++) {
5649 struct ata_port *ap;
5650
5651 ap = ata_port_alloc(host);
5652 if (!ap)
5653 goto err_out;
5654
5655 ap->port_no = i;
5656 host->ports[i] = ap;
5657 }
5658
5659 devres_remove_group(dev, NULL);
5660 return host;
5661
5662 err_out:
5663 devres_release_group(dev, NULL);
5664 return NULL;
5665}
5666
5667/**
5668 * ata_host_alloc_pinfo - alloc host and init with port_info array
5669 * @dev: generic device this host is associated with
5670 * @ppi: array of ATA port_info to initialize host with
5671 * @n_ports: number of ATA ports attached to this host
5672 *
5673 * Allocate ATA host and initialize with info from @ppi. If NULL
5674 * terminated, @ppi may contain fewer entries than @n_ports. The
5675 * last entry will be used for the remaining ports.
5676 *
5677 * RETURNS:
5678 * Allocate ATA host on success, NULL on failure.
5679 *
5680 * LOCKING:
5681 * Inherited from calling layer (may sleep).
5682 */
5683struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5684 const struct ata_port_info * const * ppi,
5685 int n_ports)
5686{
5687 const struct ata_port_info *pi;
5688 struct ata_host *host;
5689 int i, j;
5690
5691 host = ata_host_alloc(dev, n_ports);
5692 if (!host)
5693 return NULL;
5694
5695 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5696 struct ata_port *ap = host->ports[i];
5697
5698 if (ppi[j])
5699 pi = ppi[j++];
5700
5701 ap->pio_mask = pi->pio_mask;
5702 ap->mwdma_mask = pi->mwdma_mask;
5703 ap->udma_mask = pi->udma_mask;
5704 ap->flags |= pi->flags;
5705 ap->link.flags |= pi->link_flags;
5706 ap->ops = pi->port_ops;
5707
5708 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5709 host->ops = pi->port_ops;
5710 }
5711
5712 return host;
5713}
5714
5715/**
5716 * ata_slave_link_init - initialize slave link
5717 * @ap: port to initialize slave link for
5718 *
5719 * Create and initialize slave link for @ap. This enables slave
5720 * link handling on the port.
5721 *
5722 * In libata, a port contains links and a link contains devices.
5723 * There is single host link but if a PMP is attached to it,
5724 * there can be multiple fan-out links. On SATA, there's usually
5725 * a single device connected to a link but PATA and SATA
5726 * controllers emulating TF based interface can have two - master
5727 * and slave.
5728 *
5729 * However, there are a few controllers which don't fit into this
5730 * abstraction too well - SATA controllers which emulate TF
5731 * interface with both master and slave devices but also have
5732 * separate SCR register sets for each device. These controllers
5733 * need separate links for physical link handling
5734 * (e.g. onlineness, link speed) but should be treated like a
5735 * traditional M/S controller for everything else (e.g. command
5736 * issue, softreset).
5737 *
5738 * slave_link is libata's way of handling this class of
5739 * controllers without impacting core layer too much. For
5740 * anything other than physical link handling, the default host
5741 * link is used for both master and slave. For physical link
5742 * handling, separate @ap->slave_link is used. All dirty details
5743 * are implemented inside libata core layer. From LLD's POV, the
5744 * only difference is that prereset, hardreset and postreset are
5745 * called once more for the slave link, so the reset sequence
5746 * looks like the following.
5747 *
5748 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5749 * softreset(M) -> postreset(M) -> postreset(S)
5750 *
5751 * Note that softreset is called only for the master. Softreset
5752 * resets both M/S by definition, so SRST on master should handle
5753 * both (the standard method will work just fine).
5754 *
5755 * LOCKING:
5756 * Should be called before host is registered.
5757 *
5758 * RETURNS:
5759 * 0 on success, -errno on failure.
5760 */
5761int ata_slave_link_init(struct ata_port *ap)
5762{
5763 struct ata_link *link;
5764
5765 WARN_ON(ap->slave_link);
5766 WARN_ON(ap->flags & ATA_FLAG_PMP);
5767
5768 link = kzalloc(sizeof(*link), GFP_KERNEL);
5769 if (!link)
5770 return -ENOMEM;
5771
5772 ata_link_init(ap, link, 1);
5773 ap->slave_link = link;
5774 return 0;
5775}
5776
5777static void ata_host_stop(struct device *gendev, void *res)
5778{
5779 struct ata_host *host = dev_get_drvdata(gendev);
5780 int i;
5781
5782 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5783
5784 for (i = 0; i < host->n_ports; i++) {
5785 struct ata_port *ap = host->ports[i];
5786
5787 if (ap->ops->port_stop)
5788 ap->ops->port_stop(ap);
5789 }
5790
5791 if (host->ops->host_stop)
5792 host->ops->host_stop(host);
5793}
5794
5795/**
5796 * ata_finalize_port_ops - finalize ata_port_operations
5797 * @ops: ata_port_operations to finalize
5798 *
5799 * An ata_port_operations can inherit from another ops and that
5800 * ops can again inherit from another. This can go on as many
5801 * times as necessary as long as there is no loop in the
5802 * inheritance chain.
5803 *
5804 * Ops tables are finalized when the host is started. NULL or
5805 * unspecified entries are inherited from the closet ancestor
5806 * which has the method and the entry is populated with it.
5807 * After finalization, the ops table directly points to all the
5808 * methods and ->inherits is no longer necessary and cleared.
5809 *
5810 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5811 *
5812 * LOCKING:
5813 * None.
5814 */
5815static void ata_finalize_port_ops(struct ata_port_operations *ops)
5816{
5817 static DEFINE_SPINLOCK(lock);
5818 const struct ata_port_operations *cur;
5819 void **begin = (void **)ops;
5820 void **end = (void **)&ops->inherits;
5821 void **pp;
5822
5823 if (!ops || !ops->inherits)
5824 return;
5825
5826 spin_lock(&lock);
5827
5828 for (cur = ops->inherits; cur; cur = cur->inherits) {
5829 void **inherit = (void **)cur;
5830
5831 for (pp = begin; pp < end; pp++, inherit++)
5832 if (!*pp)
5833 *pp = *inherit;
5834 }
5835
5836 for (pp = begin; pp < end; pp++)
5837 if (IS_ERR(*pp))
5838 *pp = NULL;
5839
5840 ops->inherits = NULL;
5841
5842 spin_unlock(&lock);
5843}
5844
5845/**
5846 * ata_host_start - start and freeze ports of an ATA host
5847 * @host: ATA host to start ports for
5848 *
5849 * Start and then freeze ports of @host. Started status is
5850 * recorded in host->flags, so this function can be called
5851 * multiple times. Ports are guaranteed to get started only
5852 * once. If host->ops isn't initialized yet, its set to the
5853 * first non-dummy port ops.
5854 *
5855 * LOCKING:
5856 * Inherited from calling layer (may sleep).
5857 *
5858 * RETURNS:
5859 * 0 if all ports are started successfully, -errno otherwise.
5860 */
5861int ata_host_start(struct ata_host *host)
5862{
5863 int have_stop = 0;
5864 void *start_dr = NULL;
5865 int i, rc;
5866
5867 if (host->flags & ATA_HOST_STARTED)
5868 return 0;
5869
5870 ata_finalize_port_ops(host->ops);
5871
5872 for (i = 0; i < host->n_ports; i++) {
5873 struct ata_port *ap = host->ports[i];
5874
5875 ata_finalize_port_ops(ap->ops);
5876
5877 if (!host->ops && !ata_port_is_dummy(ap))
5878 host->ops = ap->ops;
5879
5880 if (ap->ops->port_stop)
5881 have_stop = 1;
5882 }
5883
5884 if (host->ops->host_stop)
5885 have_stop = 1;
5886
5887 if (have_stop) {
5888 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5889 if (!start_dr)
5890 return -ENOMEM;
5891 }
5892
5893 for (i = 0; i < host->n_ports; i++) {
5894 struct ata_port *ap = host->ports[i];
5895
5896 if (ap->ops->port_start) {
5897 rc = ap->ops->port_start(ap);
5898 if (rc) {
5899 if (rc != -ENODEV)
5900 dev_err(host->dev,
5901 "failed to start port %d (errno=%d)\n",
5902 i, rc);
5903 goto err_out;
5904 }
5905 }
5906 ata_eh_freeze_port(ap);
5907 }
5908
5909 if (start_dr)
5910 devres_add(host->dev, start_dr);
5911 host->flags |= ATA_HOST_STARTED;
5912 return 0;
5913
5914 err_out:
5915 while (--i >= 0) {
5916 struct ata_port *ap = host->ports[i];
5917
5918 if (ap->ops->port_stop)
5919 ap->ops->port_stop(ap);
5920 }
5921 devres_free(start_dr);
5922 return rc;
5923}
5924
5925/**
5926 * ata_sas_host_init - Initialize a host struct
5927 * @host: host to initialize
5928 * @dev: device host is attached to
5929 * @flags: host flags
5930 * @ops: port_ops
5931 *
5932 * LOCKING:
5933 * PCI/etc. bus probe sem.
5934 *
5935 */
5936/* KILLME - the only user left is ipr */
5937void ata_host_init(struct ata_host *host, struct device *dev,
5938 unsigned long flags, struct ata_port_operations *ops)
5939{
5940 spin_lock_init(&host->lock);
5941 mutex_init(&host->eh_mutex);
5942 host->dev = dev;
5943 host->flags = flags;
5944 host->ops = ops;
5945}
5946
5947void __ata_port_probe(struct ata_port *ap)
5948{
5949 struct ata_eh_info *ehi = &ap->link.eh_info;
5950 unsigned long flags;
5951
5952 /* kick EH for boot probing */
5953 spin_lock_irqsave(ap->lock, flags);
5954
5955 ehi->probe_mask |= ATA_ALL_DEVICES;
5956 ehi->action |= ATA_EH_RESET;
5957 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5958
5959 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5960 ap->pflags |= ATA_PFLAG_LOADING;
5961 ata_port_schedule_eh(ap);
5962
5963 spin_unlock_irqrestore(ap->lock, flags);
5964}
5965
5966int ata_port_probe(struct ata_port *ap)
5967{
5968 int rc = 0;
5969
5970 if (ap->ops->error_handler) {
5971 __ata_port_probe(ap);
5972 ata_port_wait_eh(ap);
5973 } else {
5974 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5975 rc = ata_bus_probe(ap);
5976 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5977 }
5978 return rc;
5979}
5980
5981
5982static void async_port_probe(void *data, async_cookie_t cookie)
5983{
5984 struct ata_port *ap = data;
5985
5986 /*
5987 * If we're not allowed to scan this host in parallel,
5988 * we need to wait until all previous scans have completed
5989 * before going further.
5990 * Jeff Garzik says this is only within a controller, so we
5991 * don't need to wait for port 0, only for later ports.
5992 */
5993 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5994 async_synchronize_cookie(cookie);
5995
5996 (void)ata_port_probe(ap);
5997
5998 /* in order to keep device order, we need to synchronize at this point */
5999 async_synchronize_cookie(cookie);
6000
6001 ata_scsi_scan_host(ap, 1);
6002}
6003
6004/**
6005 * ata_host_register - register initialized ATA host
6006 * @host: ATA host to register
6007 * @sht: template for SCSI host
6008 *
6009 * Register initialized ATA host. @host is allocated using
6010 * ata_host_alloc() and fully initialized by LLD. This function
6011 * starts ports, registers @host with ATA and SCSI layers and
6012 * probe registered devices.
6013 *
6014 * LOCKING:
6015 * Inherited from calling layer (may sleep).
6016 *
6017 * RETURNS:
6018 * 0 on success, -errno otherwise.
6019 */
6020int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6021{
6022 int i, rc;
6023
6024 /* host must have been started */
6025 if (!(host->flags & ATA_HOST_STARTED)) {
6026 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6027 WARN_ON(1);
6028 return -EINVAL;
6029 }
6030
6031 /* Blow away unused ports. This happens when LLD can't
6032 * determine the exact number of ports to allocate at
6033 * allocation time.
6034 */
6035 for (i = host->n_ports; host->ports[i]; i++)
6036 kfree(host->ports[i]);
6037
6038 /* give ports names and add SCSI hosts */
6039 for (i = 0; i < host->n_ports; i++)
6040 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6041
6042
6043 /* Create associated sysfs transport objects */
6044 for (i = 0; i < host->n_ports; i++) {
6045 rc = ata_tport_add(host->dev,host->ports[i]);
6046 if (rc) {
6047 goto err_tadd;
6048 }
6049 }
6050
6051 rc = ata_scsi_add_hosts(host, sht);
6052 if (rc)
6053 goto err_tadd;
6054
6055 /* associate with ACPI nodes */
6056 ata_acpi_associate(host);
6057
6058 /* set cable, sata_spd_limit and report */
6059 for (i = 0; i < host->n_ports; i++) {
6060 struct ata_port *ap = host->ports[i];
6061 unsigned long xfer_mask;
6062
6063 /* set SATA cable type if still unset */
6064 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6065 ap->cbl = ATA_CBL_SATA;
6066
6067 /* init sata_spd_limit to the current value */
6068 sata_link_init_spd(&ap->link);
6069 if (ap->slave_link)
6070 sata_link_init_spd(ap->slave_link);
6071
6072 /* print per-port info to dmesg */
6073 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6074 ap->udma_mask);
6075
6076 if (!ata_port_is_dummy(ap)) {
6077 ata_port_info(ap, "%cATA max %s %s\n",
6078 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6079 ata_mode_string(xfer_mask),
6080 ap->link.eh_info.desc);
6081 ata_ehi_clear_desc(&ap->link.eh_info);
6082 } else
6083 ata_port_info(ap, "DUMMY\n");
6084 }
6085
6086 /* perform each probe asynchronously */
6087 for (i = 0; i < host->n_ports; i++) {
6088 struct ata_port *ap = host->ports[i];
6089 async_schedule(async_port_probe, ap);
6090 }
6091
6092 return 0;
6093
6094 err_tadd:
6095 while (--i >= 0) {
6096 ata_tport_delete(host->ports[i]);
6097 }
6098 return rc;
6099
6100}
6101
6102/**
6103 * ata_host_activate - start host, request IRQ and register it
6104 * @host: target ATA host
6105 * @irq: IRQ to request
6106 * @irq_handler: irq_handler used when requesting IRQ
6107 * @irq_flags: irq_flags used when requesting IRQ
6108 * @sht: scsi_host_template to use when registering the host
6109 *
6110 * After allocating an ATA host and initializing it, most libata
6111 * LLDs perform three steps to activate the host - start host,
6112 * request IRQ and register it. This helper takes necessasry
6113 * arguments and performs the three steps in one go.
6114 *
6115 * An invalid IRQ skips the IRQ registration and expects the host to
6116 * have set polling mode on the port. In this case, @irq_handler
6117 * should be NULL.
6118 *
6119 * LOCKING:
6120 * Inherited from calling layer (may sleep).
6121 *
6122 * RETURNS:
6123 * 0 on success, -errno otherwise.
6124 */
6125int ata_host_activate(struct ata_host *host, int irq,
6126 irq_handler_t irq_handler, unsigned long irq_flags,
6127 struct scsi_host_template *sht)
6128{
6129 int i, rc;
6130
6131 rc = ata_host_start(host);
6132 if (rc)
6133 return rc;
6134
6135 /* Special case for polling mode */
6136 if (!irq) {
6137 WARN_ON(irq_handler);
6138 return ata_host_register(host, sht);
6139 }
6140
6141 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6142 dev_driver_string(host->dev), host);
6143 if (rc)
6144 return rc;
6145
6146 for (i = 0; i < host->n_ports; i++)
6147 ata_port_desc(host->ports[i], "irq %d", irq);
6148
6149 rc = ata_host_register(host, sht);
6150 /* if failed, just free the IRQ and leave ports alone */
6151 if (rc)
6152 devm_free_irq(host->dev, irq, host);
6153
6154 return rc;
6155}
6156
6157/**
6158 * ata_port_detach - Detach ATA port in prepration of device removal
6159 * @ap: ATA port to be detached
6160 *
6161 * Detach all ATA devices and the associated SCSI devices of @ap;
6162 * then, remove the associated SCSI host. @ap is guaranteed to
6163 * be quiescent on return from this function.
6164 *
6165 * LOCKING:
6166 * Kernel thread context (may sleep).
6167 */
6168static void ata_port_detach(struct ata_port *ap)
6169{
6170 unsigned long flags;
6171
6172 if (!ap->ops->error_handler)
6173 goto skip_eh;
6174
6175 /* tell EH we're leaving & flush EH */
6176 spin_lock_irqsave(ap->lock, flags);
6177 ap->pflags |= ATA_PFLAG_UNLOADING;
6178 ata_port_schedule_eh(ap);
6179 spin_unlock_irqrestore(ap->lock, flags);
6180
6181 /* wait till EH commits suicide */
6182 ata_port_wait_eh(ap);
6183
6184 /* it better be dead now */
6185 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6186
6187 cancel_delayed_work_sync(&ap->hotplug_task);
6188
6189 skip_eh:
6190 if (ap->pmp_link) {
6191 int i;
6192 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6193 ata_tlink_delete(&ap->pmp_link[i]);
6194 }
6195 ata_tport_delete(ap);
6196
6197 /* remove the associated SCSI host */
6198 scsi_remove_host(ap->scsi_host);
6199}
6200
6201/**
6202 * ata_host_detach - Detach all ports of an ATA host
6203 * @host: Host to detach
6204 *
6205 * Detach all ports of @host.
6206 *
6207 * LOCKING:
6208 * Kernel thread context (may sleep).
6209 */
6210void ata_host_detach(struct ata_host *host)
6211{
6212 int i;
6213
6214 for (i = 0; i < host->n_ports; i++)
6215 ata_port_detach(host->ports[i]);
6216
6217 /* the host is dead now, dissociate ACPI */
6218 ata_acpi_dissociate(host);
6219}
6220
6221#ifdef CONFIG_PCI
6222
6223/**
6224 * ata_pci_remove_one - PCI layer callback for device removal
6225 * @pdev: PCI device that was removed
6226 *
6227 * PCI layer indicates to libata via this hook that hot-unplug or
6228 * module unload event has occurred. Detach all ports. Resource
6229 * release is handled via devres.
6230 *
6231 * LOCKING:
6232 * Inherited from PCI layer (may sleep).
6233 */
6234void ata_pci_remove_one(struct pci_dev *pdev)
6235{
6236 struct device *dev = &pdev->dev;
6237 struct ata_host *host = dev_get_drvdata(dev);
6238
6239 ata_host_detach(host);
6240}
6241
6242/* move to PCI subsystem */
6243int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6244{
6245 unsigned long tmp = 0;
6246
6247 switch (bits->width) {
6248 case 1: {
6249 u8 tmp8 = 0;
6250 pci_read_config_byte(pdev, bits->reg, &tmp8);
6251 tmp = tmp8;
6252 break;
6253 }
6254 case 2: {
6255 u16 tmp16 = 0;
6256 pci_read_config_word(pdev, bits->reg, &tmp16);
6257 tmp = tmp16;
6258 break;
6259 }
6260 case 4: {
6261 u32 tmp32 = 0;
6262 pci_read_config_dword(pdev, bits->reg, &tmp32);
6263 tmp = tmp32;
6264 break;
6265 }
6266
6267 default:
6268 return -EINVAL;
6269 }
6270
6271 tmp &= bits->mask;
6272
6273 return (tmp == bits->val) ? 1 : 0;
6274}
6275
6276#ifdef CONFIG_PM
6277void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278{
6279 pci_save_state(pdev);
6280 pci_disable_device(pdev);
6281
6282 if (mesg.event & PM_EVENT_SLEEP)
6283 pci_set_power_state(pdev, PCI_D3hot);
6284}
6285
6286int ata_pci_device_do_resume(struct pci_dev *pdev)
6287{
6288 int rc;
6289
6290 pci_set_power_state(pdev, PCI_D0);
6291 pci_restore_state(pdev);
6292
6293 rc = pcim_enable_device(pdev);
6294 if (rc) {
6295 dev_err(&pdev->dev,
6296 "failed to enable device after resume (%d)\n", rc);
6297 return rc;
6298 }
6299
6300 pci_set_master(pdev);
6301 return 0;
6302}
6303
6304int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6305{
6306 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6307 int rc = 0;
6308
6309 rc = ata_host_suspend(host, mesg);
6310 if (rc)
6311 return rc;
6312
6313 ata_pci_device_do_suspend(pdev, mesg);
6314
6315 return 0;
6316}
6317
6318int ata_pci_device_resume(struct pci_dev *pdev)
6319{
6320 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6321 int rc;
6322
6323 rc = ata_pci_device_do_resume(pdev);
6324 if (rc == 0)
6325 ata_host_resume(host);
6326 return rc;
6327}
6328#endif /* CONFIG_PM */
6329
6330#endif /* CONFIG_PCI */
6331
6332static int __init ata_parse_force_one(char **cur,
6333 struct ata_force_ent *force_ent,
6334 const char **reason)
6335{
6336 /* FIXME: Currently, there's no way to tag init const data and
6337 * using __initdata causes build failure on some versions of
6338 * gcc. Once __initdataconst is implemented, add const to the
6339 * following structure.
6340 */
6341 static struct ata_force_param force_tbl[] __initdata = {
6342 { "40c", .cbl = ATA_CBL_PATA40 },
6343 { "80c", .cbl = ATA_CBL_PATA80 },
6344 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6345 { "unk", .cbl = ATA_CBL_PATA_UNK },
6346 { "ign", .cbl = ATA_CBL_PATA_IGN },
6347 { "sata", .cbl = ATA_CBL_SATA },
6348 { "1.5Gbps", .spd_limit = 1 },
6349 { "3.0Gbps", .spd_limit = 2 },
6350 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6351 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6352 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6353 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6354 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6355 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6356 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6357 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6358 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6359 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6360 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6361 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6362 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6363 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6364 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6365 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6366 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6367 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6368 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6369 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6370 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6371 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6372 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6373 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6374 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6375 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6376 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6377 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6378 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6379 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6380 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6381 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6382 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6383 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6384 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6385 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6386 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6387 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6388 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6389 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6390 };
6391 char *start = *cur, *p = *cur;
6392 char *id, *val, *endp;
6393 const struct ata_force_param *match_fp = NULL;
6394 int nr_matches = 0, i;
6395
6396 /* find where this param ends and update *cur */
6397 while (*p != '\0' && *p != ',')
6398 p++;
6399
6400 if (*p == '\0')
6401 *cur = p;
6402 else
6403 *cur = p + 1;
6404
6405 *p = '\0';
6406
6407 /* parse */
6408 p = strchr(start, ':');
6409 if (!p) {
6410 val = strstrip(start);
6411 goto parse_val;
6412 }
6413 *p = '\0';
6414
6415 id = strstrip(start);
6416 val = strstrip(p + 1);
6417
6418 /* parse id */
6419 p = strchr(id, '.');
6420 if (p) {
6421 *p++ = '\0';
6422 force_ent->device = simple_strtoul(p, &endp, 10);
6423 if (p == endp || *endp != '\0') {
6424 *reason = "invalid device";
6425 return -EINVAL;
6426 }
6427 }
6428
6429 force_ent->port = simple_strtoul(id, &endp, 10);
6430 if (p == endp || *endp != '\0') {
6431 *reason = "invalid port/link";
6432 return -EINVAL;
6433 }
6434
6435 parse_val:
6436 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6437 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6438 const struct ata_force_param *fp = &force_tbl[i];
6439
6440 if (strncasecmp(val, fp->name, strlen(val)))
6441 continue;
6442
6443 nr_matches++;
6444 match_fp = fp;
6445
6446 if (strcasecmp(val, fp->name) == 0) {
6447 nr_matches = 1;
6448 break;
6449 }
6450 }
6451
6452 if (!nr_matches) {
6453 *reason = "unknown value";
6454 return -EINVAL;
6455 }
6456 if (nr_matches > 1) {
6457 *reason = "ambigious value";
6458 return -EINVAL;
6459 }
6460
6461 force_ent->param = *match_fp;
6462
6463 return 0;
6464}
6465
6466static void __init ata_parse_force_param(void)
6467{
6468 int idx = 0, size = 1;
6469 int last_port = -1, last_device = -1;
6470 char *p, *cur, *next;
6471
6472 /* calculate maximum number of params and allocate force_tbl */
6473 for (p = ata_force_param_buf; *p; p++)
6474 if (*p == ',')
6475 size++;
6476
6477 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6478 if (!ata_force_tbl) {
6479 printk(KERN_WARNING "ata: failed to extend force table, "
6480 "libata.force ignored\n");
6481 return;
6482 }
6483
6484 /* parse and populate the table */
6485 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6486 const char *reason = "";
6487 struct ata_force_ent te = { .port = -1, .device = -1 };
6488
6489 next = cur;
6490 if (ata_parse_force_one(&next, &te, &reason)) {
6491 printk(KERN_WARNING "ata: failed to parse force "
6492 "parameter \"%s\" (%s)\n",
6493 cur, reason);
6494 continue;
6495 }
6496
6497 if (te.port == -1) {
6498 te.port = last_port;
6499 te.device = last_device;
6500 }
6501
6502 ata_force_tbl[idx++] = te;
6503
6504 last_port = te.port;
6505 last_device = te.device;
6506 }
6507
6508 ata_force_tbl_size = idx;
6509}
6510
6511static int __init ata_init(void)
6512{
6513 int rc;
6514
6515 ata_parse_force_param();
6516
6517 rc = ata_sff_init();
6518 if (rc) {
6519 kfree(ata_force_tbl);
6520 return rc;
6521 }
6522
6523 libata_transport_init();
6524 ata_scsi_transport_template = ata_attach_transport();
6525 if (!ata_scsi_transport_template) {
6526 ata_sff_exit();
6527 rc = -ENOMEM;
6528 goto err_out;
6529 }
6530
6531 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6532 return 0;
6533
6534err_out:
6535 return rc;
6536}
6537
6538static void __exit ata_exit(void)
6539{
6540 ata_release_transport(ata_scsi_transport_template);
6541 libata_transport_exit();
6542 ata_sff_exit();
6543 kfree(ata_force_tbl);
6544}
6545
6546subsys_initcall(ata_init);
6547module_exit(ata_exit);
6548
6549static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6550
6551int ata_ratelimit(void)
6552{
6553 return __ratelimit(&ratelimit);
6554}
6555
6556/**
6557 * ata_msleep - ATA EH owner aware msleep
6558 * @ap: ATA port to attribute the sleep to
6559 * @msecs: duration to sleep in milliseconds
6560 *
6561 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6562 * ownership is released before going to sleep and reacquired
6563 * after the sleep is complete. IOW, other ports sharing the
6564 * @ap->host will be allowed to own the EH while this task is
6565 * sleeping.
6566 *
6567 * LOCKING:
6568 * Might sleep.
6569 */
6570void ata_msleep(struct ata_port *ap, unsigned int msecs)
6571{
6572 bool owns_eh = ap && ap->host->eh_owner == current;
6573
6574 if (owns_eh)
6575 ata_eh_release(ap);
6576
6577 msleep(msecs);
6578
6579 if (owns_eh)
6580 ata_eh_acquire(ap);
6581}
6582
6583/**
6584 * ata_wait_register - wait until register value changes
6585 * @ap: ATA port to wait register for, can be NULL
6586 * @reg: IO-mapped register
6587 * @mask: Mask to apply to read register value
6588 * @val: Wait condition
6589 * @interval: polling interval in milliseconds
6590 * @timeout: timeout in milliseconds
6591 *
6592 * Waiting for some bits of register to change is a common
6593 * operation for ATA controllers. This function reads 32bit LE
6594 * IO-mapped register @reg and tests for the following condition.
6595 *
6596 * (*@reg & mask) != val
6597 *
6598 * If the condition is met, it returns; otherwise, the process is
6599 * repeated after @interval_msec until timeout.
6600 *
6601 * LOCKING:
6602 * Kernel thread context (may sleep)
6603 *
6604 * RETURNS:
6605 * The final register value.
6606 */
6607u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6608 unsigned long interval, unsigned long timeout)
6609{
6610 unsigned long deadline;
6611 u32 tmp;
6612
6613 tmp = ioread32(reg);
6614
6615 /* Calculate timeout _after_ the first read to make sure
6616 * preceding writes reach the controller before starting to
6617 * eat away the timeout.
6618 */
6619 deadline = ata_deadline(jiffies, timeout);
6620
6621 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6622 ata_msleep(ap, interval);
6623 tmp = ioread32(reg);
6624 }
6625
6626 return tmp;
6627}
6628
6629/*
6630 * Dummy port_ops
6631 */
6632static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6633{
6634 return AC_ERR_SYSTEM;
6635}
6636
6637static void ata_dummy_error_handler(struct ata_port *ap)
6638{
6639 /* truly dummy */
6640}
6641
6642struct ata_port_operations ata_dummy_port_ops = {
6643 .qc_prep = ata_noop_qc_prep,
6644 .qc_issue = ata_dummy_qc_issue,
6645 .error_handler = ata_dummy_error_handler,
6646};
6647
6648const struct ata_port_info ata_dummy_port_info = {
6649 .port_ops = &ata_dummy_port_ops,
6650};
6651
6652/*
6653 * Utility print functions
6654 */
6655int ata_port_printk(const struct ata_port *ap, const char *level,
6656 const char *fmt, ...)
6657{
6658 struct va_format vaf;
6659 va_list args;
6660 int r;
6661
6662 va_start(args, fmt);
6663
6664 vaf.fmt = fmt;
6665 vaf.va = &args;
6666
6667 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6668
6669 va_end(args);
6670
6671 return r;
6672}
6673EXPORT_SYMBOL(ata_port_printk);
6674
6675int ata_link_printk(const struct ata_link *link, const char *level,
6676 const char *fmt, ...)
6677{
6678 struct va_format vaf;
6679 va_list args;
6680 int r;
6681
6682 va_start(args, fmt);
6683
6684 vaf.fmt = fmt;
6685 vaf.va = &args;
6686
6687 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6688 r = printk("%sata%u.%02u: %pV",
6689 level, link->ap->print_id, link->pmp, &vaf);
6690 else
6691 r = printk("%sata%u: %pV",
6692 level, link->ap->print_id, &vaf);
6693
6694 va_end(args);
6695
6696 return r;
6697}
6698EXPORT_SYMBOL(ata_link_printk);
6699
6700int ata_dev_printk(const struct ata_device *dev, const char *level,
6701 const char *fmt, ...)
6702{
6703 struct va_format vaf;
6704 va_list args;
6705 int r;
6706
6707 va_start(args, fmt);
6708
6709 vaf.fmt = fmt;
6710 vaf.va = &args;
6711
6712 r = printk("%sata%u.%02u: %pV",
6713 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6714 &vaf);
6715
6716 va_end(args);
6717
6718 return r;
6719}
6720EXPORT_SYMBOL(ata_dev_printk);
6721
6722void ata_print_version(const struct device *dev, const char *version)
6723{
6724 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6725}
6726EXPORT_SYMBOL(ata_print_version);
6727
6728/*
6729 * libata is essentially a library of internal helper functions for
6730 * low-level ATA host controller drivers. As such, the API/ABI is
6731 * likely to change as new drivers are added and updated.
6732 * Do not depend on ABI/API stability.
6733 */
6734EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6735EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6736EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6737EXPORT_SYMBOL_GPL(ata_base_port_ops);
6738EXPORT_SYMBOL_GPL(sata_port_ops);
6739EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6740EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6741EXPORT_SYMBOL_GPL(ata_link_next);
6742EXPORT_SYMBOL_GPL(ata_dev_next);
6743EXPORT_SYMBOL_GPL(ata_std_bios_param);
6744EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6745EXPORT_SYMBOL_GPL(ata_host_init);
6746EXPORT_SYMBOL_GPL(ata_host_alloc);
6747EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6748EXPORT_SYMBOL_GPL(ata_slave_link_init);
6749EXPORT_SYMBOL_GPL(ata_host_start);
6750EXPORT_SYMBOL_GPL(ata_host_register);
6751EXPORT_SYMBOL_GPL(ata_host_activate);
6752EXPORT_SYMBOL_GPL(ata_host_detach);
6753EXPORT_SYMBOL_GPL(ata_sg_init);
6754EXPORT_SYMBOL_GPL(ata_qc_complete);
6755EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6756EXPORT_SYMBOL_GPL(atapi_cmd_type);
6757EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6758EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6759EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6760EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6761EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6762EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6763EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6764EXPORT_SYMBOL_GPL(ata_mode_string);
6765EXPORT_SYMBOL_GPL(ata_id_xfermask);
6766EXPORT_SYMBOL_GPL(ata_do_set_mode);
6767EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6768EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6769EXPORT_SYMBOL_GPL(ata_dev_disable);
6770EXPORT_SYMBOL_GPL(sata_set_spd);
6771EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6772EXPORT_SYMBOL_GPL(sata_link_debounce);
6773EXPORT_SYMBOL_GPL(sata_link_resume);
6774EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6775EXPORT_SYMBOL_GPL(ata_std_prereset);
6776EXPORT_SYMBOL_GPL(sata_link_hardreset);
6777EXPORT_SYMBOL_GPL(sata_std_hardreset);
6778EXPORT_SYMBOL_GPL(ata_std_postreset);
6779EXPORT_SYMBOL_GPL(ata_dev_classify);
6780EXPORT_SYMBOL_GPL(ata_dev_pair);
6781EXPORT_SYMBOL_GPL(ata_ratelimit);
6782EXPORT_SYMBOL_GPL(ata_msleep);
6783EXPORT_SYMBOL_GPL(ata_wait_register);
6784EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6785EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6786EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6787EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6788EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6789EXPORT_SYMBOL_GPL(sata_scr_valid);
6790EXPORT_SYMBOL_GPL(sata_scr_read);
6791EXPORT_SYMBOL_GPL(sata_scr_write);
6792EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6793EXPORT_SYMBOL_GPL(ata_link_online);
6794EXPORT_SYMBOL_GPL(ata_link_offline);
6795#ifdef CONFIG_PM
6796EXPORT_SYMBOL_GPL(ata_host_suspend);
6797EXPORT_SYMBOL_GPL(ata_host_resume);
6798#endif /* CONFIG_PM */
6799EXPORT_SYMBOL_GPL(ata_id_string);
6800EXPORT_SYMBOL_GPL(ata_id_c_string);
6801EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6802EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6803
6804EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6805EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6806EXPORT_SYMBOL_GPL(ata_timing_compute);
6807EXPORT_SYMBOL_GPL(ata_timing_merge);
6808EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6809
6810#ifdef CONFIG_PCI
6811EXPORT_SYMBOL_GPL(pci_test_config_bits);
6812EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6813#ifdef CONFIG_PM
6814EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6815EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6816EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6817EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6818#endif /* CONFIG_PM */
6819#endif /* CONFIG_PCI */
6820
6821EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6822EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6823EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6824EXPORT_SYMBOL_GPL(ata_port_desc);
6825#ifdef CONFIG_PCI
6826EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6827#endif /* CONFIG_PCI */
6828EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6829EXPORT_SYMBOL_GPL(ata_link_abort);
6830EXPORT_SYMBOL_GPL(ata_port_abort);
6831EXPORT_SYMBOL_GPL(ata_port_freeze);
6832EXPORT_SYMBOL_GPL(sata_async_notification);
6833EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6834EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6835EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6836EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6837EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6838EXPORT_SYMBOL_GPL(ata_do_eh);
6839EXPORT_SYMBOL_GPL(ata_std_error_handler);
6840
6841EXPORT_SYMBOL_GPL(ata_cable_40wire);
6842EXPORT_SYMBOL_GPL(ata_cable_80wire);
6843EXPORT_SYMBOL_GPL(ata_cable_unknown);
6844EXPORT_SYMBOL_GPL(ata_cable_ignore);
6845EXPORT_SYMBOL_GPL(ata_cable_sata);
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
66#include <asm/byteorder.h>
67#include <linux/cdrom.h>
68#include <linux/ratelimit.h>
69#include <linux/pm_runtime.h>
70#include <linux/platform_device.h>
71
72#include "libata.h"
73#include "libata-transport.h"
74
75/* debounce timing parameters in msecs { interval, duration, timeout } */
76const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86};
87
88const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93};
94
95static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98static void ata_dev_xfermask(struct ata_device *dev);
99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101atomic_t ata_print_id = ATOMIC_INIT(0);
102
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127static int atapi_enabled = 1;
128module_param(atapi_enabled, int, 0444);
129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131static int atapi_dmadir = 0;
132module_param(atapi_dmadir, int, 0444);
133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143static int ata_ignore_hpa;
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151static int ata_probe_timeout;
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155int libata_noacpi = 0;
156module_param_named(noacpi, libata_noacpi, int, 0444);
157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163static int atapi_an;
164module_param(atapi_an, int, 0444);
165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167MODULE_AUTHOR("Jeff Garzik");
168MODULE_DESCRIPTION("Library module for ATA devices");
169MODULE_LICENSE("GPL");
170MODULE_VERSION(DRV_VERSION);
171
172
173static bool ata_sstatus_online(u32 sstatus)
174{
175 return (sstatus & 0xf) == 0x3;
176}
177
178/**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192{
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235}
236
237/**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251{
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288}
289
290/**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305{
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313}
314
315/**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345}
346
347/**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
396 }
397}
398
399/**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410static void ata_force_xfermask(struct ata_device *dev)
411{
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
450 }
451}
452
453/**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464static void ata_force_horkage(struct ata_device *dev)
465{
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
493 }
494}
495
496/**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508int atapi_cmd_type(u8 opcode)
509{
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
531 }
532}
533
534/**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548{
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = tf->auxiliary & 0xff;
573 fis[17] = (tf->auxiliary >> 8) & 0xff;
574 fis[18] = (tf->auxiliary >> 16) & 0xff;
575 fis[19] = (tf->auxiliary >> 24) & 0xff;
576}
577
578/**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590{
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605}
606
607static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
622 0,
623 0,
624 0,
625 0,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
635};
636
637/**
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
641 *
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
644 *
645 * LOCKING:
646 * caller.
647 */
648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649{
650 u8 cmd;
651
652 int index, fua, lba48, write;
653
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
668 }
669
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
676}
677
678/**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694{
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 }
723
724 return block;
725}
726
727/**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750{
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848}
849
850/**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
865unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
868{
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872}
873
874/**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
886{
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893}
894
895static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898} ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
903};
904
905/**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
917 */
918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919{
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
927}
928
929/**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942{
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
950}
951
952/**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
964int ata_xfer_mode2shift(unsigned long xfer_mode)
965{
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972}
973
974/**
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
977 *
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
987 */
988const char *ata_mode_string(unsigned long xfer_mask)
989{
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1012 int highbit;
1013
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031}
1032
1033/**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1070 */
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1089 }
1090
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1112{
1113 unsigned int c;
1114
1115 BUG_ON(len & 1);
1116
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129}
1130
1131/**
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1147{
1148 unsigned char *p;
1149
1150 ata_id_string(id, s, ofs, len - 1);
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1172 }
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
1186 return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199}
1200
1201/**
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1205 *
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1218
1219 ata_tf_init(dev, &tf);
1220
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1232
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1242
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1250}
1251
1252/**
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1256 *
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1285
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
1307 return 0;
1308}
1309
1310/**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1329
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1335
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1341 */
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1350 }
1351
1352 return rc;
1353 }
1354 dev->n_native_sectors = native_sectors;
1355
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1405}
1406
1407/**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1410 *
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1444}
1445
1446/**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517 struct completion *waiting = qc->private_data;
1518
1519 complete(waiting);
1520}
1521
1522/**
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data transfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1548{
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1561
1562 spin_lock_irqsave(ap->lock, flags);
1563
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1568 }
1569
1570 /* initialize internal qc */
1571
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1600
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 dma_dir == DMA_FROM_DEVICE)
1609 qc->tf.feature |= ATAPI_DMADIR;
1610
1611 qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 qc->dma_dir = dma_dir;
1613 if (dma_dir != DMA_NONE) {
1614 unsigned int i, buflen = 0;
1615 struct scatterlist *sg;
1616
1617 for_each_sg(sgl, sg, n_elem, i)
1618 buflen += sg->length;
1619
1620 ata_sg_init(qc, sgl, n_elem);
1621 qc->nbytes = buflen;
1622 }
1623
1624 qc->private_data = &wait;
1625 qc->complete_fn = ata_qc_complete_internal;
1626
1627 ata_qc_issue(qc);
1628
1629 spin_unlock_irqrestore(ap->lock, flags);
1630
1631 if (!timeout) {
1632 if (ata_probe_timeout)
1633 timeout = ata_probe_timeout * 1000;
1634 else {
1635 timeout = ata_internal_cmd_timeout(dev, command);
1636 auto_timeout = 1;
1637 }
1638 }
1639
1640 if (ap->ops->error_handler)
1641 ata_eh_release(ap);
1642
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645 if (ap->ops->error_handler)
1646 ata_eh_acquire(ap);
1647
1648 ata_sff_flush_pio_task(ap);
1649
1650 if (!rc) {
1651 spin_lock_irqsave(ap->lock, flags);
1652
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1657 */
1658 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661 if (ap->ops->error_handler)
1662 ata_port_freeze(ap);
1663 else
1664 ata_qc_complete(qc);
1665
1666 if (ata_msg_warn(ap))
1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 command);
1669 }
1670
1671 spin_unlock_irqrestore(ap->lock, flags);
1672 }
1673
1674 /* do post_internal_cmd */
1675 if (ap->ops->post_internal_cmd)
1676 ap->ops->post_internal_cmd(qc);
1677
1678 /* perform minimal error analysis */
1679 if (qc->flags & ATA_QCFLAG_FAILED) {
1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 qc->err_mask |= AC_ERR_DEV;
1682
1683 if (!qc->err_mask)
1684 qc->err_mask |= AC_ERR_OTHER;
1685
1686 if (qc->err_mask & ~AC_ERR_OTHER)
1687 qc->err_mask &= ~AC_ERR_OTHER;
1688 }
1689
1690 /* finish up */
1691 spin_lock_irqsave(ap->lock, flags);
1692
1693 *tf = qc->result_tf;
1694 err_mask = qc->err_mask;
1695
1696 ata_qc_free(qc);
1697 link->active_tag = preempted_tag;
1698 link->sactive = preempted_sactive;
1699 ap->qc_active = preempted_qc_active;
1700 ap->nr_active_links = preempted_nr_active_links;
1701
1702 spin_unlock_irqrestore(ap->lock, flags);
1703
1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 ata_internal_cmd_timed_out(dev, command);
1706
1707 return err_mask;
1708}
1709
1710/**
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data transfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1719 *
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1722 *
1723 * LOCKING:
1724 * None. Should be called with kernel context, might sleep.
1725 *
1726 * RETURNS:
1727 * Zero on success, AC_ERR_* mask on failure
1728 */
1729unsigned ata_exec_internal(struct ata_device *dev,
1730 struct ata_taskfile *tf, const u8 *cdb,
1731 int dma_dir, void *buf, unsigned int buflen,
1732 unsigned long timeout)
1733{
1734 struct scatterlist *psg = NULL, sg;
1735 unsigned int n_elem = 0;
1736
1737 if (dma_dir != DMA_NONE) {
1738 WARN_ON(!buf);
1739 sg_init_one(&sg, buf, buflen);
1740 psg = &sg;
1741 n_elem++;
1742 }
1743
1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 timeout);
1746}
1747
1748/**
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1752 *
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1755 *
1756 * LOCKING:
1757 * Kernel thread context (may sleep).
1758 *
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1761 */
1762unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763{
1764 struct ata_taskfile tf;
1765
1766 ata_tf_init(dev, &tf);
1767
1768 tf.command = cmd;
1769 tf.flags |= ATA_TFLAG_DEVICE;
1770 tf.protocol = ATA_PROT_NODATA;
1771
1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773}
1774
1775/**
1776 * ata_pio_need_iordy - check if iordy needed
1777 * @adev: ATA device
1778 *
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1781 */
1782unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783{
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1787 */
1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 return 0;
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1792 */
1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 return 0;
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev->id)
1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1806}
1807
1808/**
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1811 *
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1814 */
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1826 }
1827 }
1828 return 3 << ATA_SHIFT_PIO;
1829}
1830
1831/**
1832 * ata_do_dev_read_id - default ID read method
1833 * @dev: device
1834 * @tf: proposed taskfile
1835 * @id: data buffer
1836 *
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1840 */
1841unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 struct ata_taskfile *tf, u16 *id)
1843{
1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846}
1847
1848/**
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1854 *
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1859 *
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1862 *
1863 * LOCKING:
1864 * Kernel thread context (may sleep)
1865 *
1866 * RETURNS:
1867 * 0 on success, -errno otherwise.
1868 */
1869int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 unsigned int flags, u16 *id)
1871{
1872 struct ata_port *ap = dev->link->ap;
1873 unsigned int class = *p_class;
1874 struct ata_taskfile tf;
1875 unsigned int err_mask = 0;
1876 const char *reason;
1877 bool is_semb = class == ATA_DEV_SEMB;
1878 int may_fallback = 1, tried_spinup = 0;
1879 int rc;
1880
1881 if (ata_msg_ctl(ap))
1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884retry:
1885 ata_tf_init(dev, &tf);
1886
1887 switch (class) {
1888 case ATA_DEV_SEMB:
1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1890 case ATA_DEV_ATA:
1891 tf.command = ATA_CMD_ID_ATA;
1892 break;
1893 case ATA_DEV_ATAPI:
1894 tf.command = ATA_CMD_ID_ATAPI;
1895 break;
1896 default:
1897 rc = -ENODEV;
1898 reason = "unsupported class";
1899 goto err_out;
1900 }
1901
1902 tf.protocol = ATA_PROT_PIO;
1903
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1906 */
1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1911 */
1912 tf.flags |= ATA_TFLAG_POLLING;
1913
1914 if (ap->ops->read_id)
1915 err_mask = ap->ops->read_id(dev, &tf, id);
1916 else
1917 err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919 if (err_mask) {
1920 if (err_mask & AC_ERR_NODEV_HINT) {
1921 ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 return -ENOENT;
1923 }
1924
1925 if (is_semb) {
1926 ata_dev_info(dev,
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class = ATA_DEV_SEMB_UNSUP;
1930 return 0;
1931 }
1932
1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1938 */
1939 if (may_fallback) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1952 */
1953 ata_dev_dbg(dev,
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1955 return -ENOENT;
1956 }
1957
1958 rc = -EIO;
1959 reason = "I/O error";
1960 goto err_out;
1961 }
1962
1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback, tried_spinup);
1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 }
1970
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1973 */
1974 may_fallback = 0;
1975
1976 swap_buf_le16(id, ATA_ID_WORDS);
1977
1978 /* sanity check */
1979 rc = -EINVAL;
1980 reason = "device reports invalid type";
1981
1982 if (class == ATA_DEV_ATA) {
1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 goto err_out;
1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 ata_id_is_ata(id)) {
1987 ata_dev_dbg(dev,
1988 "host indicates ignore ATA devices, ignored\n");
1989 return -ENOENT;
1990 }
1991 } else {
1992 if (ata_id_is_ata(id))
1993 goto err_out;
1994 }
1995
1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 tried_spinup = 1;
1998 /*
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2002 */
2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 if (err_mask && id[2] != 0x738c) {
2005 rc = -EIO;
2006 reason = "SPINUP failed";
2007 goto err_out;
2008 }
2009 /*
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2012 */
2013 if (id[2] == 0x37c8)
2014 goto retry;
2015 }
2016
2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 /*
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2020 * SRST RESET
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 * anything else..
2024 * Some drives were very specific about that exact sequence.
2025 *
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2028 */
2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 if (err_mask) {
2032 rc = -EIO;
2033 reason = "INIT_DEV_PARAMS failed";
2034 goto err_out;
2035 }
2036
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2039 */
2040 flags &= ~ATA_READID_POSTRESET;
2041 goto retry;
2042 }
2043 }
2044
2045 *p_class = class;
2046
2047 return 0;
2048
2049 err_out:
2050 if (ata_msg_warn(ap))
2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 reason, err_mask);
2053 return rc;
2054}
2055
2056static int ata_do_link_spd_horkage(struct ata_device *dev)
2057{
2058 struct ata_link *plink = ata_dev_phys_link(dev);
2059 u32 target, target_limit;
2060
2061 if (!sata_scr_valid(plink))
2062 return 0;
2063
2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 target = 1;
2066 else
2067 return 0;
2068
2069 target_limit = (1 << target) - 1;
2070
2071 /* if already on stricter limit, no need to push further */
2072 if (plink->sata_spd_limit <= target_limit)
2073 return 0;
2074
2075 plink->sata_spd_limit = target_limit;
2076
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2080 */
2081 if (plink->sata_spd > target) {
2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target));
2084 return -EAGAIN;
2085 }
2086 return 0;
2087}
2088
2089static inline u8 ata_dev_knobble(struct ata_device *dev)
2090{
2091 struct ata_port *ap = dev->link->ap;
2092
2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 return 0;
2095
2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097}
2098
2099static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2101{
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2106
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2110 }
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2114 }
2115 if (ap->flags & ATA_FLAG_NCQ) {
2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 dev->flags |= ATA_DFLAG_NCQ;
2118 }
2119
2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 ata_id_has_fpdma_aa(dev->id)) {
2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 SATA_FPDMA_AA);
2125 if (err_mask) {
2126 ata_dev_err(dev,
2127 "failed to enable AA (error_mask=0x%x)\n",
2128 err_mask);
2129 if (err_mask != AC_ERR_DEV) {
2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 return -EIO;
2132 }
2133 } else
2134 aa_desc = ", AA";
2135 }
2136
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 ddepth, aa_desc);
2142
2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144 ata_id_has_ncq_send_and_recv(dev->id)) {
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 u8 *cmds = dev->ncq_send_recv_cmds;
2153
2154 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2156
2157 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2161 }
2162 }
2163 }
2164
2165 return 0;
2166}
2167
2168/**
2169 * ata_dev_configure - Configure the specified ATA/ATAPI device
2170 * @dev: Target device to configure
2171 *
2172 * Configure @dev according to @dev->id. Generic and low-level
2173 * driver specific fixups are also applied.
2174 *
2175 * LOCKING:
2176 * Kernel thread context (may sleep)
2177 *
2178 * RETURNS:
2179 * 0 on success, -errno otherwise
2180 */
2181int ata_dev_configure(struct ata_device *dev)
2182{
2183 struct ata_port *ap = dev->link->ap;
2184 struct ata_eh_context *ehc = &dev->link->eh_context;
2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186 const u16 *id = dev->id;
2187 unsigned long xfer_mask;
2188 unsigned int err_mask;
2189 char revbuf[7]; /* XYZ-99\0 */
2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191 char modelbuf[ATA_ID_PROD_LEN+1];
2192 int rc;
2193
2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196 return 0;
2197 }
2198
2199 if (ata_msg_probe(ap))
2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2201
2202 /* set horkage */
2203 dev->horkage |= ata_dev_blacklisted(dev);
2204 ata_force_horkage(dev);
2205
2206 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207 ata_dev_info(dev, "unsupported device, disabling\n");
2208 ata_dev_disable(dev);
2209 return 0;
2210 }
2211
2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213 dev->class == ATA_DEV_ATAPI) {
2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215 atapi_enabled ? "not supported with this driver"
2216 : "disabled");
2217 ata_dev_disable(dev);
2218 return 0;
2219 }
2220
2221 rc = ata_do_link_spd_horkage(dev);
2222 if (rc)
2223 return rc;
2224
2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228 dev->horkage |= ATA_HORKAGE_NOLPM;
2229
2230 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2233 }
2234
2235 /* let ACPI work its magic */
2236 rc = ata_acpi_on_devcfg(dev);
2237 if (rc)
2238 return rc;
2239
2240 /* massage HPA, do it early as it might change IDENTIFY data */
2241 rc = ata_hpa_resize(dev);
2242 if (rc)
2243 return rc;
2244
2245 /* print device capabilities */
2246 if (ata_msg_probe(ap))
2247 ata_dev_dbg(dev,
2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250 __func__,
2251 id[49], id[82], id[83], id[84],
2252 id[85], id[86], id[87], id[88]);
2253
2254 /* initialize to-be-configured parameters */
2255 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2256 dev->max_sectors = 0;
2257 dev->cdb_len = 0;
2258 dev->n_sectors = 0;
2259 dev->cylinders = 0;
2260 dev->heads = 0;
2261 dev->sectors = 0;
2262 dev->multi_count = 0;
2263
2264 /*
2265 * common ATA, ATAPI feature tests
2266 */
2267
2268 /* find max transfer mode; for printk only */
2269 xfer_mask = ata_id_xfermask(id);
2270
2271 if (ata_msg_probe(ap))
2272 ata_dump_id(id);
2273
2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276 sizeof(fwrevbuf));
2277
2278 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279 sizeof(modelbuf));
2280
2281 /* ATA-specific feature tests */
2282 if (dev->class == ATA_DEV_ATA) {
2283 if (ata_id_is_cfa(id)) {
2284 /* CPRM may make this media unusable */
2285 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2286 ata_dev_warn(dev,
2287 "supports DRM functions and may not be fully accessible\n");
2288 snprintf(revbuf, 7, "CFA");
2289 } else {
2290 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2291 /* Warn the user if the device has TPM extensions */
2292 if (ata_id_has_tpm(id))
2293 ata_dev_warn(dev,
2294 "supports DRM functions and may not be fully accessible\n");
2295 }
2296
2297 dev->n_sectors = ata_id_n_sectors(id);
2298
2299 /* get current R/W Multiple count setting */
2300 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301 unsigned int max = dev->id[47] & 0xff;
2302 unsigned int cnt = dev->id[59] & 0xff;
2303 /* only recognize/allow powers of two here */
2304 if (is_power_of_2(max) && is_power_of_2(cnt))
2305 if (cnt <= max)
2306 dev->multi_count = cnt;
2307 }
2308
2309 if (ata_id_has_lba(id)) {
2310 const char *lba_desc;
2311 char ncq_desc[24];
2312
2313 lba_desc = "LBA";
2314 dev->flags |= ATA_DFLAG_LBA;
2315 if (ata_id_has_lba48(id)) {
2316 dev->flags |= ATA_DFLAG_LBA48;
2317 lba_desc = "LBA48";
2318
2319 if (dev->n_sectors >= (1UL << 28) &&
2320 ata_id_has_flush_ext(id))
2321 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2322 }
2323
2324 /* config NCQ */
2325 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326 if (rc)
2327 return rc;
2328
2329 /* print device info to dmesg */
2330 if (ata_msg_drv(ap) && print_info) {
2331 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332 revbuf, modelbuf, fwrevbuf,
2333 ata_mode_string(xfer_mask));
2334 ata_dev_info(dev,
2335 "%llu sectors, multi %u: %s %s\n",
2336 (unsigned long long)dev->n_sectors,
2337 dev->multi_count, lba_desc, ncq_desc);
2338 }
2339 } else {
2340 /* CHS */
2341
2342 /* Default translation */
2343 dev->cylinders = id[1];
2344 dev->heads = id[3];
2345 dev->sectors = id[6];
2346
2347 if (ata_id_current_chs_valid(id)) {
2348 /* Current CHS translation is valid. */
2349 dev->cylinders = id[54];
2350 dev->heads = id[55];
2351 dev->sectors = id[56];
2352 }
2353
2354 /* print device info to dmesg */
2355 if (ata_msg_drv(ap) && print_info) {
2356 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357 revbuf, modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask));
2359 ata_dev_info(dev,
2360 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361 (unsigned long long)dev->n_sectors,
2362 dev->multi_count, dev->cylinders,
2363 dev->heads, dev->sectors);
2364 }
2365 }
2366
2367 /* Check and mark DevSlp capability. Get DevSlp timing variables
2368 * from SATA Settings page of Identify Device Data Log.
2369 */
2370 if (ata_id_has_devslp(dev->id)) {
2371 u8 *sata_setting = ap->sector_buf;
2372 int i, j;
2373
2374 dev->flags |= ATA_DFLAG_DEVSLP;
2375 err_mask = ata_read_log_page(dev,
2376 ATA_LOG_SATA_ID_DEV_DATA,
2377 ATA_LOG_SATA_SETTINGS,
2378 sata_setting,
2379 1);
2380 if (err_mask)
2381 ata_dev_dbg(dev,
2382 "failed to get Identify Device Data, Emask 0x%x\n",
2383 err_mask);
2384 else
2385 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386 j = ATA_LOG_DEVSLP_OFFSET + i;
2387 dev->devslp_timing[i] = sata_setting[j];
2388 }
2389 }
2390
2391 dev->cdb_len = 16;
2392 }
2393
2394 /* ATAPI-specific feature tests */
2395 else if (dev->class == ATA_DEV_ATAPI) {
2396 const char *cdb_intr_string = "";
2397 const char *atapi_an_string = "";
2398 const char *dma_dir_string = "";
2399 u32 sntf;
2400
2401 rc = atapi_cdb_len(id);
2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403 if (ata_msg_warn(ap))
2404 ata_dev_warn(dev, "unsupported CDB len\n");
2405 rc = -EINVAL;
2406 goto err_out_nosup;
2407 }
2408 dev->cdb_len = (unsigned int) rc;
2409
2410 /* Enable ATAPI AN if both the host and device have
2411 * the support. If PMP is attached, SNTF is required
2412 * to enable ATAPI AN to discern between PHY status
2413 * changed notifications and ATAPI ANs.
2414 */
2415 if (atapi_an &&
2416 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417 (!sata_pmp_attached(ap) ||
2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2419 /* issue SET feature command to turn this on */
2420 err_mask = ata_dev_set_feature(dev,
2421 SETFEATURES_SATA_ENABLE, SATA_AN);
2422 if (err_mask)
2423 ata_dev_err(dev,
2424 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425 err_mask);
2426 else {
2427 dev->flags |= ATA_DFLAG_AN;
2428 atapi_an_string = ", ATAPI AN";
2429 }
2430 }
2431
2432 if (ata_id_cdb_intr(dev->id)) {
2433 dev->flags |= ATA_DFLAG_CDB_INTR;
2434 cdb_intr_string = ", CDB intr";
2435 }
2436
2437 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2438 dev->flags |= ATA_DFLAG_DMADIR;
2439 dma_dir_string = ", DMADIR";
2440 }
2441
2442 if (ata_id_has_da(dev->id)) {
2443 dev->flags |= ATA_DFLAG_DA;
2444 zpodd_init(dev);
2445 }
2446
2447 /* print device info to dmesg */
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev,
2450 "ATAPI: %s, %s, max %s%s%s%s\n",
2451 modelbuf, fwrevbuf,
2452 ata_mode_string(xfer_mask),
2453 cdb_intr_string, atapi_an_string,
2454 dma_dir_string);
2455 }
2456
2457 /* determine max_sectors */
2458 dev->max_sectors = ATA_MAX_SECTORS;
2459 if (dev->flags & ATA_DFLAG_LBA48)
2460 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2461
2462 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2463 200 sectors */
2464 if (ata_dev_knobble(dev)) {
2465 if (ata_msg_drv(ap) && print_info)
2466 ata_dev_info(dev, "applying bridge limits\n");
2467 dev->udma_mask &= ATA_UDMA5;
2468 dev->max_sectors = ATA_MAX_SECTORS;
2469 }
2470
2471 if ((dev->class == ATA_DEV_ATAPI) &&
2472 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2473 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2474 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2475 }
2476
2477 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2478 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479 dev->max_sectors);
2480
2481 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2483
2484 if (ap->ops->dev_config)
2485 ap->ops->dev_config(dev);
2486
2487 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488 /* Let the user know. We don't want to disallow opens for
2489 rescue purposes, or in case the vendor is just a blithering
2490 idiot. Do this after the dev_config call as some controllers
2491 with buggy firmware may want to avoid reporting false device
2492 bugs */
2493
2494 if (print_info) {
2495 ata_dev_warn(dev,
2496"Drive reports diagnostics failure. This may indicate a drive\n");
2497 ata_dev_warn(dev,
2498"fault or invalid emulation. Contact drive vendor for information.\n");
2499 }
2500 }
2501
2502 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2503 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2505 }
2506
2507 return 0;
2508
2509err_out_nosup:
2510 if (ata_msg_probe(ap))
2511 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2512 return rc;
2513}
2514
2515/**
2516 * ata_cable_40wire - return 40 wire cable type
2517 * @ap: port
2518 *
2519 * Helper method for drivers which want to hardwire 40 wire cable
2520 * detection.
2521 */
2522
2523int ata_cable_40wire(struct ata_port *ap)
2524{
2525 return ATA_CBL_PATA40;
2526}
2527
2528/**
2529 * ata_cable_80wire - return 80 wire cable type
2530 * @ap: port
2531 *
2532 * Helper method for drivers which want to hardwire 80 wire cable
2533 * detection.
2534 */
2535
2536int ata_cable_80wire(struct ata_port *ap)
2537{
2538 return ATA_CBL_PATA80;
2539}
2540
2541/**
2542 * ata_cable_unknown - return unknown PATA cable.
2543 * @ap: port
2544 *
2545 * Helper method for drivers which have no PATA cable detection.
2546 */
2547
2548int ata_cable_unknown(struct ata_port *ap)
2549{
2550 return ATA_CBL_PATA_UNK;
2551}
2552
2553/**
2554 * ata_cable_ignore - return ignored PATA cable.
2555 * @ap: port
2556 *
2557 * Helper method for drivers which don't use cable type to limit
2558 * transfer mode.
2559 */
2560int ata_cable_ignore(struct ata_port *ap)
2561{
2562 return ATA_CBL_PATA_IGN;
2563}
2564
2565/**
2566 * ata_cable_sata - return SATA cable type
2567 * @ap: port
2568 *
2569 * Helper method for drivers which have SATA cables
2570 */
2571
2572int ata_cable_sata(struct ata_port *ap)
2573{
2574 return ATA_CBL_SATA;
2575}
2576
2577/**
2578 * ata_bus_probe - Reset and probe ATA bus
2579 * @ap: Bus to probe
2580 *
2581 * Master ATA bus probing function. Initiates a hardware-dependent
2582 * bus reset, then attempts to identify any devices found on
2583 * the bus.
2584 *
2585 * LOCKING:
2586 * PCI/etc. bus probe sem.
2587 *
2588 * RETURNS:
2589 * Zero on success, negative errno otherwise.
2590 */
2591
2592int ata_bus_probe(struct ata_port *ap)
2593{
2594 unsigned int classes[ATA_MAX_DEVICES];
2595 int tries[ATA_MAX_DEVICES];
2596 int rc;
2597 struct ata_device *dev;
2598
2599 ata_for_each_dev(dev, &ap->link, ALL)
2600 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2601
2602 retry:
2603 ata_for_each_dev(dev, &ap->link, ALL) {
2604 /* If we issue an SRST then an ATA drive (not ATAPI)
2605 * may change configuration and be in PIO0 timing. If
2606 * we do a hard reset (or are coming from power on)
2607 * this is true for ATA or ATAPI. Until we've set a
2608 * suitable controller mode we should not touch the
2609 * bus as we may be talking too fast.
2610 */
2611 dev->pio_mode = XFER_PIO_0;
2612 dev->dma_mode = 0xff;
2613
2614 /* If the controller has a pio mode setup function
2615 * then use it to set the chipset to rights. Don't
2616 * touch the DMA setup as that will be dealt with when
2617 * configuring devices.
2618 */
2619 if (ap->ops->set_piomode)
2620 ap->ops->set_piomode(ap, dev);
2621 }
2622
2623 /* reset and determine device classes */
2624 ap->ops->phy_reset(ap);
2625
2626 ata_for_each_dev(dev, &ap->link, ALL) {
2627 if (dev->class != ATA_DEV_UNKNOWN)
2628 classes[dev->devno] = dev->class;
2629 else
2630 classes[dev->devno] = ATA_DEV_NONE;
2631
2632 dev->class = ATA_DEV_UNKNOWN;
2633 }
2634
2635 /* read IDENTIFY page and configure devices. We have to do the identify
2636 specific sequence bass-ackwards so that PDIAG- is released by
2637 the slave device */
2638
2639 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2640 if (tries[dev->devno])
2641 dev->class = classes[dev->devno];
2642
2643 if (!ata_dev_enabled(dev))
2644 continue;
2645
2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647 dev->id);
2648 if (rc)
2649 goto fail;
2650 }
2651
2652 /* Now ask for the cable type as PDIAG- should have been released */
2653 if (ap->ops->cable_detect)
2654 ap->cbl = ap->ops->cable_detect(ap);
2655
2656 /* We may have SATA bridge glue hiding here irrespective of
2657 * the reported cable types and sensed types. When SATA
2658 * drives indicate we have a bridge, we don't know which end
2659 * of the link the bridge is which is a problem.
2660 */
2661 ata_for_each_dev(dev, &ap->link, ENABLED)
2662 if (ata_id_is_sata(dev->id))
2663 ap->cbl = ATA_CBL_SATA;
2664
2665 /* After the identify sequence we can now set up the devices. We do
2666 this in the normal order so that the user doesn't get confused */
2667
2668 ata_for_each_dev(dev, &ap->link, ENABLED) {
2669 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2670 rc = ata_dev_configure(dev);
2671 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2672 if (rc)
2673 goto fail;
2674 }
2675
2676 /* configure transfer mode */
2677 rc = ata_set_mode(&ap->link, &dev);
2678 if (rc)
2679 goto fail;
2680
2681 ata_for_each_dev(dev, &ap->link, ENABLED)
2682 return 0;
2683
2684 return -ENODEV;
2685
2686 fail:
2687 tries[dev->devno]--;
2688
2689 switch (rc) {
2690 case -EINVAL:
2691 /* eeek, something went very wrong, give up */
2692 tries[dev->devno] = 0;
2693 break;
2694
2695 case -ENODEV:
2696 /* give it just one more chance */
2697 tries[dev->devno] = min(tries[dev->devno], 1);
2698 case -EIO:
2699 if (tries[dev->devno] == 1) {
2700 /* This is the last chance, better to slow
2701 * down than lose it.
2702 */
2703 sata_down_spd_limit(&ap->link, 0);
2704 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2705 }
2706 }
2707
2708 if (!tries[dev->devno])
2709 ata_dev_disable(dev);
2710
2711 goto retry;
2712}
2713
2714/**
2715 * sata_print_link_status - Print SATA link status
2716 * @link: SATA link to printk link status about
2717 *
2718 * This function prints link speed and status of a SATA link.
2719 *
2720 * LOCKING:
2721 * None.
2722 */
2723static void sata_print_link_status(struct ata_link *link)
2724{
2725 u32 sstatus, scontrol, tmp;
2726
2727 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2728 return;
2729 sata_scr_read(link, SCR_CONTROL, &scontrol);
2730
2731 if (ata_phys_link_online(link)) {
2732 tmp = (sstatus >> 4) & 0xf;
2733 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734 sata_spd_string(tmp), sstatus, scontrol);
2735 } else {
2736 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737 sstatus, scontrol);
2738 }
2739}
2740
2741/**
2742 * ata_dev_pair - return other device on cable
2743 * @adev: device
2744 *
2745 * Obtain the other device on the same cable, or if none is
2746 * present NULL is returned
2747 */
2748
2749struct ata_device *ata_dev_pair(struct ata_device *adev)
2750{
2751 struct ata_link *link = adev->link;
2752 struct ata_device *pair = &link->device[1 - adev->devno];
2753 if (!ata_dev_enabled(pair))
2754 return NULL;
2755 return pair;
2756}
2757
2758/**
2759 * sata_down_spd_limit - adjust SATA spd limit downward
2760 * @link: Link to adjust SATA spd limit for
2761 * @spd_limit: Additional limit
2762 *
2763 * Adjust SATA spd limit of @link downward. Note that this
2764 * function only adjusts the limit. The change must be applied
2765 * using sata_set_spd().
2766 *
2767 * If @spd_limit is non-zero, the speed is limited to equal to or
2768 * lower than @spd_limit if such speed is supported. If
2769 * @spd_limit is slower than any supported speed, only the lowest
2770 * supported speed is allowed.
2771 *
2772 * LOCKING:
2773 * Inherited from caller.
2774 *
2775 * RETURNS:
2776 * 0 on success, negative errno on failure
2777 */
2778int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2779{
2780 u32 sstatus, spd, mask;
2781 int rc, bit;
2782
2783 if (!sata_scr_valid(link))
2784 return -EOPNOTSUPP;
2785
2786 /* If SCR can be read, use it to determine the current SPD.
2787 * If not, use cached value in link->sata_spd.
2788 */
2789 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2790 if (rc == 0 && ata_sstatus_online(sstatus))
2791 spd = (sstatus >> 4) & 0xf;
2792 else
2793 spd = link->sata_spd;
2794
2795 mask = link->sata_spd_limit;
2796 if (mask <= 1)
2797 return -EINVAL;
2798
2799 /* unconditionally mask off the highest bit */
2800 bit = fls(mask) - 1;
2801 mask &= ~(1 << bit);
2802
2803 /* Mask off all speeds higher than or equal to the current
2804 * one. Force 1.5Gbps if current SPD is not available.
2805 */
2806 if (spd > 1)
2807 mask &= (1 << (spd - 1)) - 1;
2808 else
2809 mask &= 1;
2810
2811 /* were we already at the bottom? */
2812 if (!mask)
2813 return -EINVAL;
2814
2815 if (spd_limit) {
2816 if (mask & ((1 << spd_limit) - 1))
2817 mask &= (1 << spd_limit) - 1;
2818 else {
2819 bit = ffs(mask) - 1;
2820 mask = 1 << bit;
2821 }
2822 }
2823
2824 link->sata_spd_limit = mask;
2825
2826 ata_link_warn(link, "limiting SATA link speed to %s\n",
2827 sata_spd_string(fls(mask)));
2828
2829 return 0;
2830}
2831
2832static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2833{
2834 struct ata_link *host_link = &link->ap->link;
2835 u32 limit, target, spd;
2836
2837 limit = link->sata_spd_limit;
2838
2839 /* Don't configure downstream link faster than upstream link.
2840 * It doesn't speed up anything and some PMPs choke on such
2841 * configuration.
2842 */
2843 if (!ata_is_host_link(link) && host_link->sata_spd)
2844 limit &= (1 << host_link->sata_spd) - 1;
2845
2846 if (limit == UINT_MAX)
2847 target = 0;
2848 else
2849 target = fls(limit);
2850
2851 spd = (*scontrol >> 4) & 0xf;
2852 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2853
2854 return spd != target;
2855}
2856
2857/**
2858 * sata_set_spd_needed - is SATA spd configuration needed
2859 * @link: Link in question
2860 *
2861 * Test whether the spd limit in SControl matches
2862 * @link->sata_spd_limit. This function is used to determine
2863 * whether hardreset is necessary to apply SATA spd
2864 * configuration.
2865 *
2866 * LOCKING:
2867 * Inherited from caller.
2868 *
2869 * RETURNS:
2870 * 1 if SATA spd configuration is needed, 0 otherwise.
2871 */
2872static int sata_set_spd_needed(struct ata_link *link)
2873{
2874 u32 scontrol;
2875
2876 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2877 return 1;
2878
2879 return __sata_set_spd_needed(link, &scontrol);
2880}
2881
2882/**
2883 * sata_set_spd - set SATA spd according to spd limit
2884 * @link: Link to set SATA spd for
2885 *
2886 * Set SATA spd of @link according to sata_spd_limit.
2887 *
2888 * LOCKING:
2889 * Inherited from caller.
2890 *
2891 * RETURNS:
2892 * 0 if spd doesn't need to be changed, 1 if spd has been
2893 * changed. Negative errno if SCR registers are inaccessible.
2894 */
2895int sata_set_spd(struct ata_link *link)
2896{
2897 u32 scontrol;
2898 int rc;
2899
2900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2901 return rc;
2902
2903 if (!__sata_set_spd_needed(link, &scontrol))
2904 return 0;
2905
2906 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2907 return rc;
2908
2909 return 1;
2910}
2911
2912/*
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2915 */
2916/*
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2920 *
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2922 */
2923
2924static const struct ata_timing ata_timing[] = {
2925/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2928 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2929 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2930 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2931 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2932 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2933
2934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2935 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2936 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2937
2938 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2939 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2940 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2941 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2942 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2943
2944/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2945 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2946 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2947 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2948 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2949 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2950 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2951 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2952
2953 { 0xFF }
2954};
2955
2956#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2957#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2958
2959static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2960{
2961 q->setup = EZ(t->setup * 1000, T);
2962 q->act8b = EZ(t->act8b * 1000, T);
2963 q->rec8b = EZ(t->rec8b * 1000, T);
2964 q->cyc8b = EZ(t->cyc8b * 1000, T);
2965 q->active = EZ(t->active * 1000, T);
2966 q->recover = EZ(t->recover * 1000, T);
2967 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2968 q->cycle = EZ(t->cycle * 1000, T);
2969 q->udma = EZ(t->udma * 1000, UT);
2970}
2971
2972void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973 struct ata_timing *m, unsigned int what)
2974{
2975 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2976 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2977 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2978 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2979 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2980 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2981 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2982 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2983 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2984}
2985
2986const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2987{
2988 const struct ata_timing *t = ata_timing;
2989
2990 while (xfer_mode > t->mode)
2991 t++;
2992
2993 if (xfer_mode == t->mode)
2994 return t;
2995
2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997 __func__, xfer_mode);
2998
2999 return NULL;
3000}
3001
3002int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003 struct ata_timing *t, int T, int UT)
3004{
3005 const u16 *id = adev->id;
3006 const struct ata_timing *s;
3007 struct ata_timing p;
3008
3009 /*
3010 * Find the mode.
3011 */
3012
3013 if (!(s = ata_timing_find_mode(speed)))
3014 return -EINVAL;
3015
3016 memcpy(t, s, sizeof(*s));
3017
3018 /*
3019 * If the drive is an EIDE drive, it can tell us it needs extended
3020 * PIO/MW_DMA cycle timing.
3021 */
3022
3023 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3024 memset(&p, 0, sizeof(p));
3025
3026 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3027 if (speed <= XFER_PIO_2)
3028 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029 else if ((speed <= XFER_PIO_4) ||
3030 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3034
3035 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3036 }
3037
3038 /*
3039 * Convert the timing to bus clock counts.
3040 */
3041
3042 ata_timing_quantize(t, t, T, UT);
3043
3044 /*
3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046 * S.M.A.R.T * and some other commands. We have to ensure that the
3047 * DMA cycle timing is slower/equal than the fastest PIO timing.
3048 */
3049
3050 if (speed > XFER_PIO_6) {
3051 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3053 }
3054
3055 /*
3056 * Lengthen active & recovery time so that cycle time is correct.
3057 */
3058
3059 if (t->act8b + t->rec8b < t->cyc8b) {
3060 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061 t->rec8b = t->cyc8b - t->act8b;
3062 }
3063
3064 if (t->active + t->recover < t->cycle) {
3065 t->active += (t->cycle - (t->active + t->recover)) / 2;
3066 t->recover = t->cycle - t->active;
3067 }
3068
3069 /* In a few cases quantisation may produce enough errors to
3070 leave t->cycle too low for the sum of active and recovery
3071 if so we must correct this */
3072 if (t->active + t->recover > t->cycle)
3073 t->cycle = t->active + t->recover;
3074
3075 return 0;
3076}
3077
3078/**
3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 * @cycle: cycle duration in ns
3082 *
3083 * Return matching xfer mode for @cycle. The returned mode is of
3084 * the transfer type specified by @xfer_shift. If @cycle is too
3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3086 * than the fastest known mode, the fasted mode is returned.
3087 *
3088 * LOCKING:
3089 * None.
3090 *
3091 * RETURNS:
3092 * Matching xfer_mode, 0xff if no match found.
3093 */
3094u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3095{
3096 u8 base_mode = 0xff, last_mode = 0xff;
3097 const struct ata_xfer_ent *ent;
3098 const struct ata_timing *t;
3099
3100 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101 if (ent->shift == xfer_shift)
3102 base_mode = ent->base;
3103
3104 for (t = ata_timing_find_mode(base_mode);
3105 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106 unsigned short this_cycle;
3107
3108 switch (xfer_shift) {
3109 case ATA_SHIFT_PIO:
3110 case ATA_SHIFT_MWDMA:
3111 this_cycle = t->cycle;
3112 break;
3113 case ATA_SHIFT_UDMA:
3114 this_cycle = t->udma;
3115 break;
3116 default:
3117 return 0xff;
3118 }
3119
3120 if (cycle > this_cycle)
3121 break;
3122
3123 last_mode = t->mode;
3124 }
3125
3126 return last_mode;
3127}
3128
3129/**
3130 * ata_down_xfermask_limit - adjust dev xfer masks downward
3131 * @dev: Device to adjust xfer masks
3132 * @sel: ATA_DNXFER_* selector
3133 *
3134 * Adjust xfer masks of @dev downward. Note that this function
3135 * does not apply the change. Invoking ata_set_mode() afterwards
3136 * will apply the limit.
3137 *
3138 * LOCKING:
3139 * Inherited from caller.
3140 *
3141 * RETURNS:
3142 * 0 on success, negative errno on failure
3143 */
3144int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3145{
3146 char buf[32];
3147 unsigned long orig_mask, xfer_mask;
3148 unsigned long pio_mask, mwdma_mask, udma_mask;
3149 int quiet, highbit;
3150
3151 quiet = !!(sel & ATA_DNXFER_QUIET);
3152 sel &= ~ATA_DNXFER_QUIET;
3153
3154 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155 dev->mwdma_mask,
3156 dev->udma_mask);
3157 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3158
3159 switch (sel) {
3160 case ATA_DNXFER_PIO:
3161 highbit = fls(pio_mask) - 1;
3162 pio_mask &= ~(1 << highbit);
3163 break;
3164
3165 case ATA_DNXFER_DMA:
3166 if (udma_mask) {
3167 highbit = fls(udma_mask) - 1;
3168 udma_mask &= ~(1 << highbit);
3169 if (!udma_mask)
3170 return -ENOENT;
3171 } else if (mwdma_mask) {
3172 highbit = fls(mwdma_mask) - 1;
3173 mwdma_mask &= ~(1 << highbit);
3174 if (!mwdma_mask)
3175 return -ENOENT;
3176 }
3177 break;
3178
3179 case ATA_DNXFER_40C:
3180 udma_mask &= ATA_UDMA_MASK_40C;
3181 break;
3182
3183 case ATA_DNXFER_FORCE_PIO0:
3184 pio_mask &= 1;
3185 case ATA_DNXFER_FORCE_PIO:
3186 mwdma_mask = 0;
3187 udma_mask = 0;
3188 break;
3189
3190 default:
3191 BUG();
3192 }
3193
3194 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3195
3196 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197 return -ENOENT;
3198
3199 if (!quiet) {
3200 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201 snprintf(buf, sizeof(buf), "%s:%s",
3202 ata_mode_string(xfer_mask),
3203 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204 else
3205 snprintf(buf, sizeof(buf), "%s",
3206 ata_mode_string(xfer_mask));
3207
3208 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3209 }
3210
3211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212 &dev->udma_mask);
3213
3214 return 0;
3215}
3216
3217static int ata_dev_set_mode(struct ata_device *dev)
3218{
3219 struct ata_port *ap = dev->link->ap;
3220 struct ata_eh_context *ehc = &dev->link->eh_context;
3221 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3222 const char *dev_err_whine = "";
3223 int ign_dev_err = 0;
3224 unsigned int err_mask = 0;
3225 int rc;
3226
3227 dev->flags &= ~ATA_DFLAG_PIO;
3228 if (dev->xfer_shift == ATA_SHIFT_PIO)
3229 dev->flags |= ATA_DFLAG_PIO;
3230
3231 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232 dev_err_whine = " (SET_XFERMODE skipped)";
3233 else {
3234 if (nosetxfer)
3235 ata_dev_warn(dev,
3236 "NOSETXFER but PATA detected - can't "
3237 "skip SETXFER, might malfunction\n");
3238 err_mask = ata_dev_set_xfermode(dev);
3239 }
3240
3241 if (err_mask & ~AC_ERR_DEV)
3242 goto fail;
3243
3244 /* revalidate */
3245 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248 if (rc)
3249 return rc;
3250
3251 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252 /* Old CFA may refuse this command, which is just fine */
3253 if (ata_id_is_cfa(dev->id))
3254 ign_dev_err = 1;
3255 /* Catch several broken garbage emulations plus some pre
3256 ATA devices */
3257 if (ata_id_major_version(dev->id) == 0 &&
3258 dev->pio_mode <= XFER_PIO_2)
3259 ign_dev_err = 1;
3260 /* Some very old devices and some bad newer ones fail
3261 any kind of SET_XFERMODE request but support PIO0-2
3262 timings and no IORDY */
3263 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264 ign_dev_err = 1;
3265 }
3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3269 dev->dma_mode == XFER_MW_DMA_0 &&
3270 (dev->id[63] >> 8) & 1)
3271 ign_dev_err = 1;
3272
3273 /* if the device is actually configured correctly, ignore dev err */
3274 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275 ign_dev_err = 1;
3276
3277 if (err_mask & AC_ERR_DEV) {
3278 if (!ign_dev_err)
3279 goto fail;
3280 else
3281 dev_err_whine = " (device error ignored)";
3282 }
3283
3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285 dev->xfer_shift, (int)dev->xfer_mode);
3286
3287 ata_dev_info(dev, "configured for %s%s\n",
3288 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289 dev_err_whine);
3290
3291 return 0;
3292
3293 fail:
3294 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3295 return -EIO;
3296}
3297
3298/**
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3302 *
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3307 *
3308 * LOCKING:
3309 * PCI/etc. bus probe sem.
3310 *
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
3313 */
3314
3315int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3316{
3317 struct ata_port *ap = link->ap;
3318 struct ata_device *dev;
3319 int rc = 0, used_dma = 0, found = 0;
3320
3321 /* step 1: calculate xfer_mask */
3322 ata_for_each_dev(dev, link, ENABLED) {
3323 unsigned long pio_mask, dma_mask;
3324 unsigned int mode_mask;
3325
3326 mode_mask = ATA_DMA_MASK_ATA;
3327 if (dev->class == ATA_DEV_ATAPI)
3328 mode_mask = ATA_DMA_MASK_ATAPI;
3329 else if (ata_id_is_cfa(dev->id))
3330 mode_mask = ATA_DMA_MASK_CFA;
3331
3332 ata_dev_xfermask(dev);
3333 ata_force_xfermask(dev);
3334
3335 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3336
3337 if (libata_dma_mask & mode_mask)
3338 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339 dev->udma_mask);
3340 else
3341 dma_mask = 0;
3342
3343 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3345
3346 found = 1;
3347 if (ata_dma_enabled(dev))
3348 used_dma = 1;
3349 }
3350 if (!found)
3351 goto out;
3352
3353 /* step 2: always set host PIO timings */
3354 ata_for_each_dev(dev, link, ENABLED) {
3355 if (dev->pio_mode == 0xff) {
3356 ata_dev_warn(dev, "no PIO support\n");
3357 rc = -EINVAL;
3358 goto out;
3359 }
3360
3361 dev->xfer_mode = dev->pio_mode;
3362 dev->xfer_shift = ATA_SHIFT_PIO;
3363 if (ap->ops->set_piomode)
3364 ap->ops->set_piomode(ap, dev);
3365 }
3366
3367 /* step 3: set host DMA timings */
3368 ata_for_each_dev(dev, link, ENABLED) {
3369 if (!ata_dma_enabled(dev))
3370 continue;
3371
3372 dev->xfer_mode = dev->dma_mode;
3373 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374 if (ap->ops->set_dmamode)
3375 ap->ops->set_dmamode(ap, dev);
3376 }
3377
3378 /* step 4: update devices' xfer mode */
3379 ata_for_each_dev(dev, link, ENABLED) {
3380 rc = ata_dev_set_mode(dev);
3381 if (rc)
3382 goto out;
3383 }
3384
3385 /* Record simplex status. If we selected DMA then the other
3386 * host channels are not permitted to do so.
3387 */
3388 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3389 ap->host->simplex_claimed = ap;
3390
3391 out:
3392 if (rc)
3393 *r_failed_dev = dev;
3394 return rc;
3395}
3396
3397/**
3398 * ata_wait_ready - wait for link to become ready
3399 * @link: link to be waited on
3400 * @deadline: deadline jiffies for the operation
3401 * @check_ready: callback to check link readiness
3402 *
3403 * Wait for @link to become ready. @check_ready should return
3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 * link doesn't seem to be occupied, other errno for other error
3406 * conditions.
3407 *
3408 * Transient -ENODEV conditions are allowed for
3409 * ATA_TMOUT_FF_WAIT.
3410 *
3411 * LOCKING:
3412 * EH context.
3413 *
3414 * RETURNS:
3415 * 0 if @linke is ready before @deadline; otherwise, -errno.
3416 */
3417int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418 int (*check_ready)(struct ata_link *link))
3419{
3420 unsigned long start = jiffies;
3421 unsigned long nodev_deadline;
3422 int warned = 0;
3423
3424 /* choose which 0xff timeout to use, read comment in libata.h */
3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427 else
3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429
3430 /* Slave readiness can't be tested separately from master. On
3431 * M/S emulation configuration, this function should be called
3432 * only on the master and it will handle both master and slave.
3433 */
3434 WARN_ON(link == link->ap->slave_link);
3435
3436 if (time_after(nodev_deadline, deadline))
3437 nodev_deadline = deadline;
3438
3439 while (1) {
3440 unsigned long now = jiffies;
3441 int ready, tmp;
3442
3443 ready = tmp = check_ready(link);
3444 if (ready > 0)
3445 return 0;
3446
3447 /*
3448 * -ENODEV could be transient. Ignore -ENODEV if link
3449 * is online. Also, some SATA devices take a long
3450 * time to clear 0xff after reset. Wait for
3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452 * offline.
3453 *
3454 * Note that some PATA controllers (pata_ali) explode
3455 * if status register is read more than once when
3456 * there's no device attached.
3457 */
3458 if (ready == -ENODEV) {
3459 if (ata_link_online(link))
3460 ready = 0;
3461 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462 !ata_link_offline(link) &&
3463 time_before(now, nodev_deadline))
3464 ready = 0;
3465 }
3466
3467 if (ready)
3468 return ready;
3469 if (time_after(now, deadline))
3470 return -EBUSY;
3471
3472 if (!warned && time_after(now, start + 5 * HZ) &&
3473 (deadline - now > 3 * HZ)) {
3474 ata_link_warn(link,
3475 "link is slow to respond, please be patient "
3476 "(ready=%d)\n", tmp);
3477 warned = 1;
3478 }
3479
3480 ata_msleep(link->ap, 50);
3481 }
3482}
3483
3484/**
3485 * ata_wait_after_reset - wait for link to become ready after reset
3486 * @link: link to be waited on
3487 * @deadline: deadline jiffies for the operation
3488 * @check_ready: callback to check link readiness
3489 *
3490 * Wait for @link to become ready after reset.
3491 *
3492 * LOCKING:
3493 * EH context.
3494 *
3495 * RETURNS:
3496 * 0 if @linke is ready before @deadline; otherwise, -errno.
3497 */
3498int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499 int (*check_ready)(struct ata_link *link))
3500{
3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3502
3503 return ata_wait_ready(link, deadline, check_ready);
3504}
3505
3506/**
3507 * sata_link_debounce - debounce SATA phy status
3508 * @link: ATA link to debounce SATA phy status for
3509 * @params: timing parameters { interval, duratinon, timeout } in msec
3510 * @deadline: deadline jiffies for the operation
3511 *
3512 * Make sure SStatus of @link reaches stable state, determined by
3513 * holding the same value where DET is not 1 for @duration polled
3514 * every @interval, before @timeout. Timeout constraints the
3515 * beginning of the stable state. Because DET gets stuck at 1 on
3516 * some controllers after hot unplugging, this functions waits
3517 * until timeout then returns 0 if DET is stable at 1.
3518 *
3519 * @timeout is further limited by @deadline. The sooner of the
3520 * two is used.
3521 *
3522 * LOCKING:
3523 * Kernel thread context (may sleep)
3524 *
3525 * RETURNS:
3526 * 0 on success, -errno on failure.
3527 */
3528int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529 unsigned long deadline)
3530{
3531 unsigned long interval = params[0];
3532 unsigned long duration = params[1];
3533 unsigned long last_jiffies, t;
3534 u32 last, cur;
3535 int rc;
3536
3537 t = ata_deadline(jiffies, params[2]);
3538 if (time_before(t, deadline))
3539 deadline = t;
3540
3541 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3542 return rc;
3543 cur &= 0xf;
3544
3545 last = cur;
3546 last_jiffies = jiffies;
3547
3548 while (1) {
3549 ata_msleep(link->ap, interval);
3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551 return rc;
3552 cur &= 0xf;
3553
3554 /* DET stable? */
3555 if (cur == last) {
3556 if (cur == 1 && time_before(jiffies, deadline))
3557 continue;
3558 if (time_after(jiffies,
3559 ata_deadline(last_jiffies, duration)))
3560 return 0;
3561 continue;
3562 }
3563
3564 /* unstable, start over */
3565 last = cur;
3566 last_jiffies = jiffies;
3567
3568 /* Check deadline. If debouncing failed, return
3569 * -EPIPE to tell upper layer to lower link speed.
3570 */
3571 if (time_after(jiffies, deadline))
3572 return -EPIPE;
3573 }
3574}
3575
3576/**
3577 * sata_link_resume - resume SATA link
3578 * @link: ATA link to resume SATA
3579 * @params: timing parameters { interval, duratinon, timeout } in msec
3580 * @deadline: deadline jiffies for the operation
3581 *
3582 * Resume SATA phy @link and debounce it.
3583 *
3584 * LOCKING:
3585 * Kernel thread context (may sleep)
3586 *
3587 * RETURNS:
3588 * 0 on success, -errno on failure.
3589 */
3590int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591 unsigned long deadline)
3592{
3593 int tries = ATA_LINK_RESUME_TRIES;
3594 u32 scontrol, serror;
3595 int rc;
3596
3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598 return rc;
3599
3600 /*
3601 * Writes to SControl sometimes get ignored under certain
3602 * controllers (ata_piix SIDPR). Make sure DET actually is
3603 * cleared.
3604 */
3605 do {
3606 scontrol = (scontrol & 0x0f0) | 0x300;
3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608 return rc;
3609 /*
3610 * Some PHYs react badly if SStatus is pounded
3611 * immediately after resuming. Delay 200ms before
3612 * debouncing.
3613 */
3614 ata_msleep(link->ap, 200);
3615
3616 /* is SControl restored correctly? */
3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618 return rc;
3619 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3620
3621 if ((scontrol & 0xf0f) != 0x300) {
3622 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3623 scontrol);
3624 return 0;
3625 }
3626
3627 if (tries < ATA_LINK_RESUME_TRIES)
3628 ata_link_warn(link, "link resume succeeded after %d retries\n",
3629 ATA_LINK_RESUME_TRIES - tries);
3630
3631 if ((rc = sata_link_debounce(link, params, deadline)))
3632 return rc;
3633
3634 /* clear SError, some PHYs require this even for SRST to work */
3635 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636 rc = sata_scr_write(link, SCR_ERROR, serror);
3637
3638 return rc != -EINVAL ? rc : 0;
3639}
3640
3641/**
3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 * @link: ATA link to manipulate SControl for
3644 * @policy: LPM policy to configure
3645 * @spm_wakeup: initiate LPM transition to active state
3646 *
3647 * Manipulate the IPM field of the SControl register of @link
3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3650 * the link. This function also clears PHYRDY_CHG before
3651 * returning.
3652 *
3653 * LOCKING:
3654 * EH context.
3655 *
3656 * RETURNS:
3657 * 0 on succes, -errno otherwise.
3658 */
3659int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660 bool spm_wakeup)
3661{
3662 struct ata_eh_context *ehc = &link->eh_context;
3663 bool woken_up = false;
3664 u32 scontrol;
3665 int rc;
3666
3667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668 if (rc)
3669 return rc;
3670
3671 switch (policy) {
3672 case ATA_LPM_MAX_POWER:
3673 /* disable all LPM transitions */
3674 scontrol |= (0x7 << 8);
3675 /* initiate transition to active state */
3676 if (spm_wakeup) {
3677 scontrol |= (0x4 << 12);
3678 woken_up = true;
3679 }
3680 break;
3681 case ATA_LPM_MED_POWER:
3682 /* allow LPM to PARTIAL */
3683 scontrol &= ~(0x1 << 8);
3684 scontrol |= (0x6 << 8);
3685 break;
3686 case ATA_LPM_MIN_POWER:
3687 if (ata_link_nr_enabled(link) > 0)
3688 /* no restrictions on LPM transitions */
3689 scontrol &= ~(0x7 << 8);
3690 else {
3691 /* empty port, power off */
3692 scontrol &= ~0xf;
3693 scontrol |= (0x1 << 2);
3694 }
3695 break;
3696 default:
3697 WARN_ON(1);
3698 }
3699
3700 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701 if (rc)
3702 return rc;
3703
3704 /* give the link time to transit out of LPM state */
3705 if (woken_up)
3706 msleep(10);
3707
3708 /* clear PHYRDY_CHG from SError */
3709 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3711}
3712
3713/**
3714 * ata_std_prereset - prepare for reset
3715 * @link: ATA link to be reset
3716 * @deadline: deadline jiffies for the operation
3717 *
3718 * @link is about to be reset. Initialize it. Failure from
3719 * prereset makes libata abort whole reset sequence and give up
3720 * that port, so prereset should be best-effort. It does its
3721 * best to prepare for reset sequence but if things go wrong, it
3722 * should just whine, not fail.
3723 *
3724 * LOCKING:
3725 * Kernel thread context (may sleep)
3726 *
3727 * RETURNS:
3728 * 0 on success, -errno otherwise.
3729 */
3730int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3731{
3732 struct ata_port *ap = link->ap;
3733 struct ata_eh_context *ehc = &link->eh_context;
3734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3735 int rc;
3736
3737 /* if we're about to do hardreset, nothing more to do */
3738 if (ehc->i.action & ATA_EH_HARDRESET)
3739 return 0;
3740
3741 /* if SATA, resume link */
3742 if (ap->flags & ATA_FLAG_SATA) {
3743 rc = sata_link_resume(link, timing, deadline);
3744 /* whine about phy resume failure but proceed */
3745 if (rc && rc != -EOPNOTSUPP)
3746 ata_link_warn(link,
3747 "failed to resume link for reset (errno=%d)\n",
3748 rc);
3749 }
3750
3751 /* no point in trying softreset on offline link */
3752 if (ata_phys_link_offline(link))
3753 ehc->i.action &= ~ATA_EH_SOFTRESET;
3754
3755 return 0;
3756}
3757
3758/**
3759 * sata_link_hardreset - reset link via SATA phy reset
3760 * @link: link to reset
3761 * @timing: timing parameters { interval, duratinon, timeout } in msec
3762 * @deadline: deadline jiffies for the operation
3763 * @online: optional out parameter indicating link onlineness
3764 * @check_ready: optional callback to check link readiness
3765 *
3766 * SATA phy-reset @link using DET bits of SControl register.
3767 * After hardreset, link readiness is waited upon using
3768 * ata_wait_ready() if @check_ready is specified. LLDs are
3769 * allowed to not specify @check_ready and wait itself after this
3770 * function returns. Device classification is LLD's
3771 * responsibility.
3772 *
3773 * *@online is set to one iff reset succeeded and @link is online
3774 * after reset.
3775 *
3776 * LOCKING:
3777 * Kernel thread context (may sleep)
3778 *
3779 * RETURNS:
3780 * 0 on success, -errno otherwise.
3781 */
3782int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3783 unsigned long deadline,
3784 bool *online, int (*check_ready)(struct ata_link *))
3785{
3786 u32 scontrol;
3787 int rc;
3788
3789 DPRINTK("ENTER\n");
3790
3791 if (online)
3792 *online = false;
3793
3794 if (sata_set_spd_needed(link)) {
3795 /* SATA spec says nothing about how to reconfigure
3796 * spd. To be on the safe side, turn off phy during
3797 * reconfiguration. This works for at least ICH7 AHCI
3798 * and Sil3124.
3799 */
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3802
3803 scontrol = (scontrol & 0x0f0) | 0x304;
3804
3805 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3806 goto out;
3807
3808 sata_set_spd(link);
3809 }
3810
3811 /* issue phy wake/reset */
3812 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3813 goto out;
3814
3815 scontrol = (scontrol & 0x0f0) | 0x301;
3816
3817 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3818 goto out;
3819
3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821 * 10.4.2 says at least 1 ms.
3822 */
3823 ata_msleep(link->ap, 1);
3824
3825 /* bring link back */
3826 rc = sata_link_resume(link, timing, deadline);
3827 if (rc)
3828 goto out;
3829 /* if link is offline nothing more to do */
3830 if (ata_phys_link_offline(link))
3831 goto out;
3832
3833 /* Link is online. From this point, -ENODEV too is an error. */
3834 if (online)
3835 *online = true;
3836
3837 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3838 /* If PMP is supported, we have to do follow-up SRST.
3839 * Some PMPs don't send D2H Reg FIS after hardreset if
3840 * the first port is empty. Wait only for
3841 * ATA_TMOUT_PMP_SRST_WAIT.
3842 */
3843 if (check_ready) {
3844 unsigned long pmp_deadline;
3845
3846 pmp_deadline = ata_deadline(jiffies,
3847 ATA_TMOUT_PMP_SRST_WAIT);
3848 if (time_after(pmp_deadline, deadline))
3849 pmp_deadline = deadline;
3850 ata_wait_ready(link, pmp_deadline, check_ready);
3851 }
3852 rc = -EAGAIN;
3853 goto out;
3854 }
3855
3856 rc = 0;
3857 if (check_ready)
3858 rc = ata_wait_ready(link, deadline, check_ready);
3859 out:
3860 if (rc && rc != -EAGAIN) {
3861 /* online is set iff link is online && reset succeeded */
3862 if (online)
3863 *online = false;
3864 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3865 }
3866 DPRINTK("EXIT, rc=%d\n", rc);
3867 return rc;
3868}
3869
3870/**
3871 * sata_std_hardreset - COMRESET w/o waiting or classification
3872 * @link: link to reset
3873 * @class: resulting class of attached device
3874 * @deadline: deadline jiffies for the operation
3875 *
3876 * Standard SATA COMRESET w/o waiting or classification.
3877 *
3878 * LOCKING:
3879 * Kernel thread context (may sleep)
3880 *
3881 * RETURNS:
3882 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3883 */
3884int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885 unsigned long deadline)
3886{
3887 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888 bool online;
3889 int rc;
3890
3891 /* do hardreset */
3892 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3893 return online ? -EAGAIN : rc;
3894}
3895
3896/**
3897 * ata_std_postreset - standard postreset callback
3898 * @link: the target ata_link
3899 * @classes: classes of attached devices
3900 *
3901 * This function is invoked after a successful reset. Note that
3902 * the device might have been reset more than once using
3903 * different reset methods before postreset is invoked.
3904 *
3905 * LOCKING:
3906 * Kernel thread context (may sleep)
3907 */
3908void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3909{
3910 u32 serror;
3911
3912 DPRINTK("ENTER\n");
3913
3914 /* reset complete, clear SError */
3915 if (!sata_scr_read(link, SCR_ERROR, &serror))
3916 sata_scr_write(link, SCR_ERROR, serror);
3917
3918 /* print link status */
3919 sata_print_link_status(link);
3920
3921 DPRINTK("EXIT\n");
3922}
3923
3924/**
3925 * ata_dev_same_device - Determine whether new ID matches configured device
3926 * @dev: device to compare against
3927 * @new_class: class of the new device
3928 * @new_id: IDENTIFY page of the new device
3929 *
3930 * Compare @new_class and @new_id against @dev and determine
3931 * whether @dev is the device indicated by @new_class and
3932 * @new_id.
3933 *
3934 * LOCKING:
3935 * None.
3936 *
3937 * RETURNS:
3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3939 */
3940static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941 const u16 *new_id)
3942{
3943 const u16 *old_id = dev->id;
3944 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3946
3947 if (dev->class != new_class) {
3948 ata_dev_info(dev, "class mismatch %d != %d\n",
3949 dev->class, new_class);
3950 return 0;
3951 }
3952
3953 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3957
3958 if (strcmp(model[0], model[1])) {
3959 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960 model[0], model[1]);
3961 return 0;
3962 }
3963
3964 if (strcmp(serial[0], serial[1])) {
3965 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966 serial[0], serial[1]);
3967 return 0;
3968 }
3969
3970 return 1;
3971}
3972
3973/**
3974 * ata_dev_reread_id - Re-read IDENTIFY data
3975 * @dev: target ATA device
3976 * @readid_flags: read ID flags
3977 *
3978 * Re-read IDENTIFY page and make sure @dev is still attached to
3979 * the port.
3980 *
3981 * LOCKING:
3982 * Kernel thread context (may sleep)
3983 *
3984 * RETURNS:
3985 * 0 on success, negative errno otherwise
3986 */
3987int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3988{
3989 unsigned int class = dev->class;
3990 u16 *id = (void *)dev->link->ap->sector_buf;
3991 int rc;
3992
3993 /* read ID data */
3994 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3995 if (rc)
3996 return rc;
3997
3998 /* is the device still there? */
3999 if (!ata_dev_same_device(dev, class, id))
4000 return -ENODEV;
4001
4002 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4003 return 0;
4004}
4005
4006/**
4007 * ata_dev_revalidate - Revalidate ATA device
4008 * @dev: device to revalidate
4009 * @new_class: new class code
4010 * @readid_flags: read ID flags
4011 *
4012 * Re-read IDENTIFY page, make sure @dev is still attached to the
4013 * port and reconfigure it according to the new IDENTIFY page.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, negative errno otherwise
4020 */
4021int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022 unsigned int readid_flags)
4023{
4024 u64 n_sectors = dev->n_sectors;
4025 u64 n_native_sectors = dev->n_native_sectors;
4026 int rc;
4027
4028 if (!ata_dev_enabled(dev))
4029 return -ENODEV;
4030
4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032 if (ata_class_enabled(new_class) &&
4033 new_class != ATA_DEV_ATA &&
4034 new_class != ATA_DEV_ATAPI &&
4035 new_class != ATA_DEV_SEMB) {
4036 ata_dev_info(dev, "class mismatch %u != %u\n",
4037 dev->class, new_class);
4038 rc = -ENODEV;
4039 goto fail;
4040 }
4041
4042 /* re-read ID */
4043 rc = ata_dev_reread_id(dev, readid_flags);
4044 if (rc)
4045 goto fail;
4046
4047 /* configure device according to the new ID */
4048 rc = ata_dev_configure(dev);
4049 if (rc)
4050 goto fail;
4051
4052 /* verify n_sectors hasn't changed */
4053 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4054 dev->n_sectors == n_sectors)
4055 return 0;
4056
4057 /* n_sectors has changed */
4058 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4059 (unsigned long long)n_sectors,
4060 (unsigned long long)dev->n_sectors);
4061
4062 /*
4063 * Something could have caused HPA to be unlocked
4064 * involuntarily. If n_native_sectors hasn't changed and the
4065 * new size matches it, keep the device.
4066 */
4067 if (dev->n_native_sectors == n_native_sectors &&
4068 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4069 ata_dev_warn(dev,
4070 "new n_sectors matches native, probably "
4071 "late HPA unlock, n_sectors updated\n");
4072 /* use the larger n_sectors */
4073 return 0;
4074 }
4075
4076 /*
4077 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4078 * unlocking HPA in those cases.
4079 *
4080 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4081 */
4082 if (dev->n_native_sectors == n_native_sectors &&
4083 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4084 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4085 ata_dev_warn(dev,
4086 "old n_sectors matches native, probably "
4087 "late HPA lock, will try to unlock HPA\n");
4088 /* try unlocking HPA */
4089 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4090 rc = -EIO;
4091 } else
4092 rc = -ENODEV;
4093
4094 /* restore original n_[native_]sectors and fail */
4095 dev->n_native_sectors = n_native_sectors;
4096 dev->n_sectors = n_sectors;
4097 fail:
4098 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4099 return rc;
4100}
4101
4102struct ata_blacklist_entry {
4103 const char *model_num;
4104 const char *model_rev;
4105 unsigned long horkage;
4106};
4107
4108static const struct ata_blacklist_entry ata_device_blacklist [] = {
4109 /* Devices with DMA related problems under Linux */
4110 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4116 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4117 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4118 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4126 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4127 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4128 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4129 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4130 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4131 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4132 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4134 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4135 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4136 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4137 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4138 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4141
4142 /* Weird ATAPI devices */
4143 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4144 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4145 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4146 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4147
4148 /* Devices we expect to fail diagnostics */
4149
4150 /* Devices where NCQ should be avoided */
4151 /* NCQ is slow */
4152 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4154 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4155 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4156 /* NCQ is broken */
4157 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4158 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4161 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4162
4163 /* Seagate NCQ + FLUSH CACHE firmware bug */
4164 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4165 ATA_HORKAGE_FIRMWARE_WARN },
4166
4167 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4168 ATA_HORKAGE_FIRMWARE_WARN },
4169
4170 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172
4173 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4175
4176 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4178 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4179
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4185
4186 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4188
4189 /* devices which puke on READ_NATIVE_MAX */
4190 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4191 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4192 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4193 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4194
4195 /* this one allows HPA unlocking but fails IOs on the area */
4196 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4197
4198 /* Devices which report 1 sector over size HPA */
4199 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4200 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4201 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4202
4203 /* Devices which get the IVB wrong */
4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4205 /* Maybe we should just blacklist TSSTcorp... */
4206 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4207
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4210 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4211
4212 /* Devices which aren't very happy with higher link speeds */
4213 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4214 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4215
4216 /*
4217 * Devices which choke on SETXFER. Applies only if both the
4218 * device and controller are SATA.
4219 */
4220 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4221 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4222 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4223 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4224 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4225
4226 /* devices that don't properly handle queued TRIM commands */
4227 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4228 { "Crucial_CT???M500SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4229 { "Micron_M550*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4230 { "Crucial_CT???M550SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4231
4232 /*
4233 * Some WD SATA-I drives spin up and down erratically when the link
4234 * is put into the slumber mode. We don't have full list of the
4235 * affected devices. Disable LPM if the device matches one of the
4236 * known prefixes and is SATA-1. As a side effect LPM partial is
4237 * lost too.
4238 *
4239 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4240 */
4241 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4242 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4243 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4244 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4245 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4246 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4247 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4248
4249 /* End Marker */
4250 { }
4251};
4252
4253/**
4254 * glob_match - match a text string against a glob-style pattern
4255 * @text: the string to be examined
4256 * @pattern: the glob-style pattern to be matched against
4257 *
4258 * Either/both of text and pattern can be empty strings.
4259 *
4260 * Match text against a glob-style pattern, with wildcards and simple sets:
4261 *
4262 * ? matches any single character.
4263 * * matches any run of characters.
4264 * [xyz] matches a single character from the set: x, y, or z.
4265 * [a-d] matches a single character from the range: a, b, c, or d.
4266 * [a-d0-9] matches a single character from either range.
4267 *
4268 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4269 * Behaviour with malformed patterns is undefined, though generally reasonable.
4270 *
4271 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4272 *
4273 * This function uses one level of recursion per '*' in pattern.
4274 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4275 * this will not cause stack problems for any reasonable use here.
4276 *
4277 * RETURNS:
4278 * 0 on match, 1 otherwise.
4279 */
4280static int glob_match (const char *text, const char *pattern)
4281{
4282 do {
4283 /* Match single character or a '?' wildcard */
4284 if (*text == *pattern || *pattern == '?') {
4285 if (!*pattern++)
4286 return 0; /* End of both strings: match */
4287 } else {
4288 /* Match single char against a '[' bracketed ']' pattern set */
4289 if (!*text || *pattern != '[')
4290 break; /* Not a pattern set */
4291 while (*++pattern && *pattern != ']' && *text != *pattern) {
4292 if (*pattern == '-' && *(pattern - 1) != '[')
4293 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4294 ++pattern;
4295 break;
4296 }
4297 }
4298 if (!*pattern || *pattern == ']')
4299 return 1; /* No match */
4300 while (*pattern && *pattern++ != ']');
4301 }
4302 } while (*++text && *pattern);
4303
4304 /* Match any run of chars against a '*' wildcard */
4305 if (*pattern == '*') {
4306 if (!*++pattern)
4307 return 0; /* Match: avoid recursion at end of pattern */
4308 /* Loop to handle additional pattern chars after the wildcard */
4309 while (*text) {
4310 if (glob_match(text, pattern) == 0)
4311 return 0; /* Remainder matched */
4312 ++text; /* Absorb (match) this char and try again */
4313 }
4314 }
4315 if (!*text && !*pattern)
4316 return 0; /* End of both strings: match */
4317 return 1; /* No match */
4318}
4319
4320static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4321{
4322 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4325
4326 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4327 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4328
4329 while (ad->model_num) {
4330 if (!glob_match(model_num, ad->model_num)) {
4331 if (ad->model_rev == NULL)
4332 return ad->horkage;
4333 if (!glob_match(model_rev, ad->model_rev))
4334 return ad->horkage;
4335 }
4336 ad++;
4337 }
4338 return 0;
4339}
4340
4341static int ata_dma_blacklisted(const struct ata_device *dev)
4342{
4343 /* We don't support polling DMA.
4344 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4345 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4346 */
4347 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4348 (dev->flags & ATA_DFLAG_CDB_INTR))
4349 return 1;
4350 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4351}
4352
4353/**
4354 * ata_is_40wire - check drive side detection
4355 * @dev: device
4356 *
4357 * Perform drive side detection decoding, allowing for device vendors
4358 * who can't follow the documentation.
4359 */
4360
4361static int ata_is_40wire(struct ata_device *dev)
4362{
4363 if (dev->horkage & ATA_HORKAGE_IVB)
4364 return ata_drive_40wire_relaxed(dev->id);
4365 return ata_drive_40wire(dev->id);
4366}
4367
4368/**
4369 * cable_is_40wire - 40/80/SATA decider
4370 * @ap: port to consider
4371 *
4372 * This function encapsulates the policy for speed management
4373 * in one place. At the moment we don't cache the result but
4374 * there is a good case for setting ap->cbl to the result when
4375 * we are called with unknown cables (and figuring out if it
4376 * impacts hotplug at all).
4377 *
4378 * Return 1 if the cable appears to be 40 wire.
4379 */
4380
4381static int cable_is_40wire(struct ata_port *ap)
4382{
4383 struct ata_link *link;
4384 struct ata_device *dev;
4385
4386 /* If the controller thinks we are 40 wire, we are. */
4387 if (ap->cbl == ATA_CBL_PATA40)
4388 return 1;
4389
4390 /* If the controller thinks we are 80 wire, we are. */
4391 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4392 return 0;
4393
4394 /* If the system is known to be 40 wire short cable (eg
4395 * laptop), then we allow 80 wire modes even if the drive
4396 * isn't sure.
4397 */
4398 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4399 return 0;
4400
4401 /* If the controller doesn't know, we scan.
4402 *
4403 * Note: We look for all 40 wire detects at this point. Any
4404 * 80 wire detect is taken to be 80 wire cable because
4405 * - in many setups only the one drive (slave if present) will
4406 * give a valid detect
4407 * - if you have a non detect capable drive you don't want it
4408 * to colour the choice
4409 */
4410 ata_for_each_link(link, ap, EDGE) {
4411 ata_for_each_dev(dev, link, ENABLED) {
4412 if (!ata_is_40wire(dev))
4413 return 0;
4414 }
4415 }
4416 return 1;
4417}
4418
4419/**
4420 * ata_dev_xfermask - Compute supported xfermask of the given device
4421 * @dev: Device to compute xfermask for
4422 *
4423 * Compute supported xfermask of @dev and store it in
4424 * dev->*_mask. This function is responsible for applying all
4425 * known limits including host controller limits, device
4426 * blacklist, etc...
4427 *
4428 * LOCKING:
4429 * None.
4430 */
4431static void ata_dev_xfermask(struct ata_device *dev)
4432{
4433 struct ata_link *link = dev->link;
4434 struct ata_port *ap = link->ap;
4435 struct ata_host *host = ap->host;
4436 unsigned long xfer_mask;
4437
4438 /* controller modes available */
4439 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4440 ap->mwdma_mask, ap->udma_mask);
4441
4442 /* drive modes available */
4443 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4444 dev->mwdma_mask, dev->udma_mask);
4445 xfer_mask &= ata_id_xfermask(dev->id);
4446
4447 /*
4448 * CFA Advanced TrueIDE timings are not allowed on a shared
4449 * cable
4450 */
4451 if (ata_dev_pair(dev)) {
4452 /* No PIO5 or PIO6 */
4453 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4454 /* No MWDMA3 or MWDMA 4 */
4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456 }
4457
4458 if (ata_dma_blacklisted(dev)) {
4459 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4460 ata_dev_warn(dev,
4461 "device is on DMA blacklist, disabling DMA\n");
4462 }
4463
4464 if ((host->flags & ATA_HOST_SIMPLEX) &&
4465 host->simplex_claimed && host->simplex_claimed != ap) {
4466 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4467 ata_dev_warn(dev,
4468 "simplex DMA is claimed by other device, disabling DMA\n");
4469 }
4470
4471 if (ap->flags & ATA_FLAG_NO_IORDY)
4472 xfer_mask &= ata_pio_mask_no_iordy(dev);
4473
4474 if (ap->ops->mode_filter)
4475 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4476
4477 /* Apply cable rule here. Don't apply it early because when
4478 * we handle hot plug the cable type can itself change.
4479 * Check this last so that we know if the transfer rate was
4480 * solely limited by the cable.
4481 * Unknown or 80 wire cables reported host side are checked
4482 * drive side as well. Cases where we know a 40wire cable
4483 * is used safely for 80 are not checked here.
4484 */
4485 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4486 /* UDMA/44 or higher would be available */
4487 if (cable_is_40wire(ap)) {
4488 ata_dev_warn(dev,
4489 "limited to UDMA/33 due to 40-wire cable\n");
4490 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491 }
4492
4493 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4494 &dev->mwdma_mask, &dev->udma_mask);
4495}
4496
4497/**
4498 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 * @dev: Device to which command will be sent
4500 *
4501 * Issue SET FEATURES - XFER MODE command to device @dev
4502 * on port @ap.
4503 *
4504 * LOCKING:
4505 * PCI/etc. bus probe sem.
4506 *
4507 * RETURNS:
4508 * 0 on success, AC_ERR_* mask otherwise.
4509 */
4510
4511static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4512{
4513 struct ata_taskfile tf;
4514 unsigned int err_mask;
4515
4516 /* set up set-features taskfile */
4517 DPRINTK("set features - xfer mode\n");
4518
4519 /* Some controllers and ATAPI devices show flaky interrupt
4520 * behavior after setting xfer mode. Use polling instead.
4521 */
4522 ata_tf_init(dev, &tf);
4523 tf.command = ATA_CMD_SET_FEATURES;
4524 tf.feature = SETFEATURES_XFER;
4525 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4526 tf.protocol = ATA_PROT_NODATA;
4527 /* If we are using IORDY we must send the mode setting command */
4528 if (ata_pio_need_iordy(dev))
4529 tf.nsect = dev->xfer_mode;
4530 /* If the device has IORDY and the controller does not - turn it off */
4531 else if (ata_id_has_iordy(dev->id))
4532 tf.nsect = 0x01;
4533 else /* In the ancient relic department - skip all of this */
4534 return 0;
4535
4536 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4537
4538 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4539 return err_mask;
4540}
4541
4542/**
4543 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4544 * @dev: Device to which command will be sent
4545 * @enable: Whether to enable or disable the feature
4546 * @feature: The sector count represents the feature to set
4547 *
4548 * Issue SET FEATURES - SATA FEATURES command to device @dev
4549 * on port @ap with sector count
4550 *
4551 * LOCKING:
4552 * PCI/etc. bus probe sem.
4553 *
4554 * RETURNS:
4555 * 0 on success, AC_ERR_* mask otherwise.
4556 */
4557unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4558{
4559 struct ata_taskfile tf;
4560 unsigned int err_mask;
4561
4562 /* set up set-features taskfile */
4563 DPRINTK("set features - SATA features\n");
4564
4565 ata_tf_init(dev, &tf);
4566 tf.command = ATA_CMD_SET_FEATURES;
4567 tf.feature = enable;
4568 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4569 tf.protocol = ATA_PROT_NODATA;
4570 tf.nsect = feature;
4571
4572 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4573
4574 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4575 return err_mask;
4576}
4577EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578
4579/**
4580 * ata_dev_init_params - Issue INIT DEV PARAMS command
4581 * @dev: Device to which command will be sent
4582 * @heads: Number of heads (taskfile parameter)
4583 * @sectors: Number of sectors (taskfile parameter)
4584 *
4585 * LOCKING:
4586 * Kernel thread context (may sleep)
4587 *
4588 * RETURNS:
4589 * 0 on success, AC_ERR_* mask otherwise.
4590 */
4591static unsigned int ata_dev_init_params(struct ata_device *dev,
4592 u16 heads, u16 sectors)
4593{
4594 struct ata_taskfile tf;
4595 unsigned int err_mask;
4596
4597 /* Number of sectors per track 1-255. Number of heads 1-16 */
4598 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4599 return AC_ERR_INVALID;
4600
4601 /* set up init dev params taskfile */
4602 DPRINTK("init dev params \n");
4603
4604 ata_tf_init(dev, &tf);
4605 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4606 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4607 tf.protocol = ATA_PROT_NODATA;
4608 tf.nsect = sectors;
4609 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4610
4611 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4612 /* A clean abort indicates an original or just out of spec drive
4613 and we should continue as we issue the setup based on the
4614 drive reported working geometry */
4615 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4616 err_mask = 0;
4617
4618 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4619 return err_mask;
4620}
4621
4622/**
4623 * ata_sg_clean - Unmap DMA memory associated with command
4624 * @qc: Command containing DMA memory to be released
4625 *
4626 * Unmap all mapped DMA memory associated with this command.
4627 *
4628 * LOCKING:
4629 * spin_lock_irqsave(host lock)
4630 */
4631void ata_sg_clean(struct ata_queued_cmd *qc)
4632{
4633 struct ata_port *ap = qc->ap;
4634 struct scatterlist *sg = qc->sg;
4635 int dir = qc->dma_dir;
4636
4637 WARN_ON_ONCE(sg == NULL);
4638
4639 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4640
4641 if (qc->n_elem)
4642 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4643
4644 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4645 qc->sg = NULL;
4646}
4647
4648/**
4649 * atapi_check_dma - Check whether ATAPI DMA can be supported
4650 * @qc: Metadata associated with taskfile to check
4651 *
4652 * Allow low-level driver to filter ATA PACKET commands, returning
4653 * a status indicating whether or not it is OK to use DMA for the
4654 * supplied PACKET command.
4655 *
4656 * LOCKING:
4657 * spin_lock_irqsave(host lock)
4658 *
4659 * RETURNS: 0 when ATAPI DMA can be used
4660 * nonzero otherwise
4661 */
4662int atapi_check_dma(struct ata_queued_cmd *qc)
4663{
4664 struct ata_port *ap = qc->ap;
4665
4666 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4667 * few ATAPI devices choke on such DMA requests.
4668 */
4669 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4670 unlikely(qc->nbytes & 15))
4671 return 1;
4672
4673 if (ap->ops->check_atapi_dma)
4674 return ap->ops->check_atapi_dma(qc);
4675
4676 return 0;
4677}
4678
4679/**
4680 * ata_std_qc_defer - Check whether a qc needs to be deferred
4681 * @qc: ATA command in question
4682 *
4683 * Non-NCQ commands cannot run with any other command, NCQ or
4684 * not. As upper layer only knows the queue depth, we are
4685 * responsible for maintaining exclusion. This function checks
4686 * whether a new command @qc can be issued.
4687 *
4688 * LOCKING:
4689 * spin_lock_irqsave(host lock)
4690 *
4691 * RETURNS:
4692 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4693 */
4694int ata_std_qc_defer(struct ata_queued_cmd *qc)
4695{
4696 struct ata_link *link = qc->dev->link;
4697
4698 if (qc->tf.protocol == ATA_PROT_NCQ) {
4699 if (!ata_tag_valid(link->active_tag))
4700 return 0;
4701 } else {
4702 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4703 return 0;
4704 }
4705
4706 return ATA_DEFER_LINK;
4707}
4708
4709void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4710
4711/**
4712 * ata_sg_init - Associate command with scatter-gather table.
4713 * @qc: Command to be associated
4714 * @sg: Scatter-gather table.
4715 * @n_elem: Number of elements in s/g table.
4716 *
4717 * Initialize the data-related elements of queued_cmd @qc
4718 * to point to a scatter-gather table @sg, containing @n_elem
4719 * elements.
4720 *
4721 * LOCKING:
4722 * spin_lock_irqsave(host lock)
4723 */
4724void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4725 unsigned int n_elem)
4726{
4727 qc->sg = sg;
4728 qc->n_elem = n_elem;
4729 qc->cursg = qc->sg;
4730}
4731
4732/**
4733 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4734 * @qc: Command with scatter-gather table to be mapped.
4735 *
4736 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4737 *
4738 * LOCKING:
4739 * spin_lock_irqsave(host lock)
4740 *
4741 * RETURNS:
4742 * Zero on success, negative on error.
4743 *
4744 */
4745static int ata_sg_setup(struct ata_queued_cmd *qc)
4746{
4747 struct ata_port *ap = qc->ap;
4748 unsigned int n_elem;
4749
4750 VPRINTK("ENTER, ata%u\n", ap->print_id);
4751
4752 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4753 if (n_elem < 1)
4754 return -1;
4755
4756 DPRINTK("%d sg elements mapped\n", n_elem);
4757 qc->orig_n_elem = qc->n_elem;
4758 qc->n_elem = n_elem;
4759 qc->flags |= ATA_QCFLAG_DMAMAP;
4760
4761 return 0;
4762}
4763
4764/**
4765 * swap_buf_le16 - swap halves of 16-bit words in place
4766 * @buf: Buffer to swap
4767 * @buf_words: Number of 16-bit words in buffer.
4768 *
4769 * Swap halves of 16-bit words if needed to convert from
4770 * little-endian byte order to native cpu byte order, or
4771 * vice-versa.
4772 *
4773 * LOCKING:
4774 * Inherited from caller.
4775 */
4776void swap_buf_le16(u16 *buf, unsigned int buf_words)
4777{
4778#ifdef __BIG_ENDIAN
4779 unsigned int i;
4780
4781 for (i = 0; i < buf_words; i++)
4782 buf[i] = le16_to_cpu(buf[i]);
4783#endif /* __BIG_ENDIAN */
4784}
4785
4786/**
4787 * ata_qc_new - Request an available ATA command, for queueing
4788 * @ap: target port
4789 *
4790 * LOCKING:
4791 * None.
4792 */
4793
4794static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4795{
4796 struct ata_queued_cmd *qc = NULL;
4797 unsigned int i, tag;
4798
4799 /* no command while frozen */
4800 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4801 return NULL;
4802
4803 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4804 tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE;
4805
4806 /* the last tag is reserved for internal command. */
4807 if (tag == ATA_TAG_INTERNAL)
4808 continue;
4809
4810 if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4811 qc = __ata_qc_from_tag(ap, tag);
4812 qc->tag = tag;
4813 ap->last_tag = tag;
4814 break;
4815 }
4816 }
4817
4818 return qc;
4819}
4820
4821/**
4822 * ata_qc_new_init - Request an available ATA command, and initialize it
4823 * @dev: Device from whom we request an available command structure
4824 *
4825 * LOCKING:
4826 * None.
4827 */
4828
4829struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4830{
4831 struct ata_port *ap = dev->link->ap;
4832 struct ata_queued_cmd *qc;
4833
4834 qc = ata_qc_new(ap);
4835 if (qc) {
4836 qc->scsicmd = NULL;
4837 qc->ap = ap;
4838 qc->dev = dev;
4839
4840 ata_qc_reinit(qc);
4841 }
4842
4843 return qc;
4844}
4845
4846/**
4847 * ata_qc_free - free unused ata_queued_cmd
4848 * @qc: Command to complete
4849 *
4850 * Designed to free unused ata_queued_cmd object
4851 * in case something prevents using it.
4852 *
4853 * LOCKING:
4854 * spin_lock_irqsave(host lock)
4855 */
4856void ata_qc_free(struct ata_queued_cmd *qc)
4857{
4858 struct ata_port *ap;
4859 unsigned int tag;
4860
4861 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4862 ap = qc->ap;
4863
4864 qc->flags = 0;
4865 tag = qc->tag;
4866 if (likely(ata_tag_valid(tag))) {
4867 qc->tag = ATA_TAG_POISON;
4868 clear_bit(tag, &ap->qc_allocated);
4869 }
4870}
4871
4872void __ata_qc_complete(struct ata_queued_cmd *qc)
4873{
4874 struct ata_port *ap;
4875 struct ata_link *link;
4876
4877 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4878 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4879 ap = qc->ap;
4880 link = qc->dev->link;
4881
4882 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4883 ata_sg_clean(qc);
4884
4885 /* command should be marked inactive atomically with qc completion */
4886 if (qc->tf.protocol == ATA_PROT_NCQ) {
4887 link->sactive &= ~(1 << qc->tag);
4888 if (!link->sactive)
4889 ap->nr_active_links--;
4890 } else {
4891 link->active_tag = ATA_TAG_POISON;
4892 ap->nr_active_links--;
4893 }
4894
4895 /* clear exclusive status */
4896 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4897 ap->excl_link == link))
4898 ap->excl_link = NULL;
4899
4900 /* atapi: mark qc as inactive to prevent the interrupt handler
4901 * from completing the command twice later, before the error handler
4902 * is called. (when rc != 0 and atapi request sense is needed)
4903 */
4904 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4905 ap->qc_active &= ~(1 << qc->tag);
4906
4907 /* call completion callback */
4908 qc->complete_fn(qc);
4909}
4910
4911static void fill_result_tf(struct ata_queued_cmd *qc)
4912{
4913 struct ata_port *ap = qc->ap;
4914
4915 qc->result_tf.flags = qc->tf.flags;
4916 ap->ops->qc_fill_rtf(qc);
4917}
4918
4919static void ata_verify_xfer(struct ata_queued_cmd *qc)
4920{
4921 struct ata_device *dev = qc->dev;
4922
4923 if (ata_is_nodata(qc->tf.protocol))
4924 return;
4925
4926 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4927 return;
4928
4929 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4930}
4931
4932/**
4933 * ata_qc_complete - Complete an active ATA command
4934 * @qc: Command to complete
4935 *
4936 * Indicate to the mid and upper layers that an ATA command has
4937 * completed, with either an ok or not-ok status.
4938 *
4939 * Refrain from calling this function multiple times when
4940 * successfully completing multiple NCQ commands.
4941 * ata_qc_complete_multiple() should be used instead, which will
4942 * properly update IRQ expect state.
4943 *
4944 * LOCKING:
4945 * spin_lock_irqsave(host lock)
4946 */
4947void ata_qc_complete(struct ata_queued_cmd *qc)
4948{
4949 struct ata_port *ap = qc->ap;
4950
4951 /* XXX: New EH and old EH use different mechanisms to
4952 * synchronize EH with regular execution path.
4953 *
4954 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4955 * Normal execution path is responsible for not accessing a
4956 * failed qc. libata core enforces the rule by returning NULL
4957 * from ata_qc_from_tag() for failed qcs.
4958 *
4959 * Old EH depends on ata_qc_complete() nullifying completion
4960 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4961 * not synchronize with interrupt handler. Only PIO task is
4962 * taken care of.
4963 */
4964 if (ap->ops->error_handler) {
4965 struct ata_device *dev = qc->dev;
4966 struct ata_eh_info *ehi = &dev->link->eh_info;
4967
4968 if (unlikely(qc->err_mask))
4969 qc->flags |= ATA_QCFLAG_FAILED;
4970
4971 /*
4972 * Finish internal commands without any further processing
4973 * and always with the result TF filled.
4974 */
4975 if (unlikely(ata_tag_internal(qc->tag))) {
4976 fill_result_tf(qc);
4977 __ata_qc_complete(qc);
4978 return;
4979 }
4980
4981 /*
4982 * Non-internal qc has failed. Fill the result TF and
4983 * summon EH.
4984 */
4985 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986 fill_result_tf(qc);
4987 ata_qc_schedule_eh(qc);
4988 return;
4989 }
4990
4991 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4992
4993 /* read result TF if requested */
4994 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4995 fill_result_tf(qc);
4996
4997 /* Some commands need post-processing after successful
4998 * completion.
4999 */
5000 switch (qc->tf.command) {
5001 case ATA_CMD_SET_FEATURES:
5002 if (qc->tf.feature != SETFEATURES_WC_ON &&
5003 qc->tf.feature != SETFEATURES_WC_OFF)
5004 break;
5005 /* fall through */
5006 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5007 case ATA_CMD_SET_MULTI: /* multi_count changed */
5008 /* revalidate device */
5009 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5010 ata_port_schedule_eh(ap);
5011 break;
5012
5013 case ATA_CMD_SLEEP:
5014 dev->flags |= ATA_DFLAG_SLEEPING;
5015 break;
5016 }
5017
5018 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5019 ata_verify_xfer(qc);
5020
5021 __ata_qc_complete(qc);
5022 } else {
5023 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5024 return;
5025
5026 /* read result TF if failed or requested */
5027 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5028 fill_result_tf(qc);
5029
5030 __ata_qc_complete(qc);
5031 }
5032}
5033
5034/**
5035 * ata_qc_complete_multiple - Complete multiple qcs successfully
5036 * @ap: port in question
5037 * @qc_active: new qc_active mask
5038 *
5039 * Complete in-flight commands. This functions is meant to be
5040 * called from low-level driver's interrupt routine to complete
5041 * requests normally. ap->qc_active and @qc_active is compared
5042 * and commands are completed accordingly.
5043 *
5044 * Always use this function when completing multiple NCQ commands
5045 * from IRQ handlers instead of calling ata_qc_complete()
5046 * multiple times to keep IRQ expect status properly in sync.
5047 *
5048 * LOCKING:
5049 * spin_lock_irqsave(host lock)
5050 *
5051 * RETURNS:
5052 * Number of completed commands on success, -errno otherwise.
5053 */
5054int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5055{
5056 int nr_done = 0;
5057 u32 done_mask;
5058
5059 done_mask = ap->qc_active ^ qc_active;
5060
5061 if (unlikely(done_mask & qc_active)) {
5062 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5063 ap->qc_active, qc_active);
5064 return -EINVAL;
5065 }
5066
5067 while (done_mask) {
5068 struct ata_queued_cmd *qc;
5069 unsigned int tag = __ffs(done_mask);
5070
5071 qc = ata_qc_from_tag(ap, tag);
5072 if (qc) {
5073 ata_qc_complete(qc);
5074 nr_done++;
5075 }
5076 done_mask &= ~(1 << tag);
5077 }
5078
5079 return nr_done;
5080}
5081
5082/**
5083 * ata_qc_issue - issue taskfile to device
5084 * @qc: command to issue to device
5085 *
5086 * Prepare an ATA command to submission to device.
5087 * This includes mapping the data into a DMA-able
5088 * area, filling in the S/G table, and finally
5089 * writing the taskfile to hardware, starting the command.
5090 *
5091 * LOCKING:
5092 * spin_lock_irqsave(host lock)
5093 */
5094void ata_qc_issue(struct ata_queued_cmd *qc)
5095{
5096 struct ata_port *ap = qc->ap;
5097 struct ata_link *link = qc->dev->link;
5098 u8 prot = qc->tf.protocol;
5099
5100 /* Make sure only one non-NCQ command is outstanding. The
5101 * check is skipped for old EH because it reuses active qc to
5102 * request ATAPI sense.
5103 */
5104 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5105
5106 if (ata_is_ncq(prot)) {
5107 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5108
5109 if (!link->sactive)
5110 ap->nr_active_links++;
5111 link->sactive |= 1 << qc->tag;
5112 } else {
5113 WARN_ON_ONCE(link->sactive);
5114
5115 ap->nr_active_links++;
5116 link->active_tag = qc->tag;
5117 }
5118
5119 qc->flags |= ATA_QCFLAG_ACTIVE;
5120 ap->qc_active |= 1 << qc->tag;
5121
5122 /*
5123 * We guarantee to LLDs that they will have at least one
5124 * non-zero sg if the command is a data command.
5125 */
5126 if (WARN_ON_ONCE(ata_is_data(prot) &&
5127 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5128 goto sys_err;
5129
5130 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5131 (ap->flags & ATA_FLAG_PIO_DMA)))
5132 if (ata_sg_setup(qc))
5133 goto sys_err;
5134
5135 /* if device is sleeping, schedule reset and abort the link */
5136 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5137 link->eh_info.action |= ATA_EH_RESET;
5138 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5139 ata_link_abort(link);
5140 return;
5141 }
5142
5143 ap->ops->qc_prep(qc);
5144
5145 qc->err_mask |= ap->ops->qc_issue(qc);
5146 if (unlikely(qc->err_mask))
5147 goto err;
5148 return;
5149
5150sys_err:
5151 qc->err_mask |= AC_ERR_SYSTEM;
5152err:
5153 ata_qc_complete(qc);
5154}
5155
5156/**
5157 * sata_scr_valid - test whether SCRs are accessible
5158 * @link: ATA link to test SCR accessibility for
5159 *
5160 * Test whether SCRs are accessible for @link.
5161 *
5162 * LOCKING:
5163 * None.
5164 *
5165 * RETURNS:
5166 * 1 if SCRs are accessible, 0 otherwise.
5167 */
5168int sata_scr_valid(struct ata_link *link)
5169{
5170 struct ata_port *ap = link->ap;
5171
5172 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5173}
5174
5175/**
5176 * sata_scr_read - read SCR register of the specified port
5177 * @link: ATA link to read SCR for
5178 * @reg: SCR to read
5179 * @val: Place to store read value
5180 *
5181 * Read SCR register @reg of @link into *@val. This function is
5182 * guaranteed to succeed if @link is ap->link, the cable type of
5183 * the port is SATA and the port implements ->scr_read.
5184 *
5185 * LOCKING:
5186 * None if @link is ap->link. Kernel thread context otherwise.
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
5191int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5192{
5193 if (ata_is_host_link(link)) {
5194 if (sata_scr_valid(link))
5195 return link->ap->ops->scr_read(link, reg, val);
5196 return -EOPNOTSUPP;
5197 }
5198
5199 return sata_pmp_scr_read(link, reg, val);
5200}
5201
5202/**
5203 * sata_scr_write - write SCR register of the specified port
5204 * @link: ATA link to write SCR for
5205 * @reg: SCR to write
5206 * @val: value to write
5207 *
5208 * Write @val to SCR register @reg of @link. This function is
5209 * guaranteed to succeed if @link is ap->link, the cable type of
5210 * the port is SATA and the port implements ->scr_read.
5211 *
5212 * LOCKING:
5213 * None if @link is ap->link. Kernel thread context otherwise.
5214 *
5215 * RETURNS:
5216 * 0 on success, negative errno on failure.
5217 */
5218int sata_scr_write(struct ata_link *link, int reg, u32 val)
5219{
5220 if (ata_is_host_link(link)) {
5221 if (sata_scr_valid(link))
5222 return link->ap->ops->scr_write(link, reg, val);
5223 return -EOPNOTSUPP;
5224 }
5225
5226 return sata_pmp_scr_write(link, reg, val);
5227}
5228
5229/**
5230 * sata_scr_write_flush - write SCR register of the specified port and flush
5231 * @link: ATA link to write SCR for
5232 * @reg: SCR to write
5233 * @val: value to write
5234 *
5235 * This function is identical to sata_scr_write() except that this
5236 * function performs flush after writing to the register.
5237 *
5238 * LOCKING:
5239 * None if @link is ap->link. Kernel thread context otherwise.
5240 *
5241 * RETURNS:
5242 * 0 on success, negative errno on failure.
5243 */
5244int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5245{
5246 if (ata_is_host_link(link)) {
5247 int rc;
5248
5249 if (sata_scr_valid(link)) {
5250 rc = link->ap->ops->scr_write(link, reg, val);
5251 if (rc == 0)
5252 rc = link->ap->ops->scr_read(link, reg, &val);
5253 return rc;
5254 }
5255 return -EOPNOTSUPP;
5256 }
5257
5258 return sata_pmp_scr_write(link, reg, val);
5259}
5260
5261/**
5262 * ata_phys_link_online - test whether the given link is online
5263 * @link: ATA link to test
5264 *
5265 * Test whether @link is online. Note that this function returns
5266 * 0 if online status of @link cannot be obtained, so
5267 * ata_link_online(link) != !ata_link_offline(link).
5268 *
5269 * LOCKING:
5270 * None.
5271 *
5272 * RETURNS:
5273 * True if the port online status is available and online.
5274 */
5275bool ata_phys_link_online(struct ata_link *link)
5276{
5277 u32 sstatus;
5278
5279 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5280 ata_sstatus_online(sstatus))
5281 return true;
5282 return false;
5283}
5284
5285/**
5286 * ata_phys_link_offline - test whether the given link is offline
5287 * @link: ATA link to test
5288 *
5289 * Test whether @link is offline. Note that this function
5290 * returns 0 if offline status of @link cannot be obtained, so
5291 * ata_link_online(link) != !ata_link_offline(link).
5292 *
5293 * LOCKING:
5294 * None.
5295 *
5296 * RETURNS:
5297 * True if the port offline status is available and offline.
5298 */
5299bool ata_phys_link_offline(struct ata_link *link)
5300{
5301 u32 sstatus;
5302
5303 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5304 !ata_sstatus_online(sstatus))
5305 return true;
5306 return false;
5307}
5308
5309/**
5310 * ata_link_online - test whether the given link is online
5311 * @link: ATA link to test
5312 *
5313 * Test whether @link is online. This is identical to
5314 * ata_phys_link_online() when there's no slave link. When
5315 * there's a slave link, this function should only be called on
5316 * the master link and will return true if any of M/S links is
5317 * online.
5318 *
5319 * LOCKING:
5320 * None.
5321 *
5322 * RETURNS:
5323 * True if the port online status is available and online.
5324 */
5325bool ata_link_online(struct ata_link *link)
5326{
5327 struct ata_link *slave = link->ap->slave_link;
5328
5329 WARN_ON(link == slave); /* shouldn't be called on slave link */
5330
5331 return ata_phys_link_online(link) ||
5332 (slave && ata_phys_link_online(slave));
5333}
5334
5335/**
5336 * ata_link_offline - test whether the given link is offline
5337 * @link: ATA link to test
5338 *
5339 * Test whether @link is offline. This is identical to
5340 * ata_phys_link_offline() when there's no slave link. When
5341 * there's a slave link, this function should only be called on
5342 * the master link and will return true if both M/S links are
5343 * offline.
5344 *
5345 * LOCKING:
5346 * None.
5347 *
5348 * RETURNS:
5349 * True if the port offline status is available and offline.
5350 */
5351bool ata_link_offline(struct ata_link *link)
5352{
5353 struct ata_link *slave = link->ap->slave_link;
5354
5355 WARN_ON(link == slave); /* shouldn't be called on slave link */
5356
5357 return ata_phys_link_offline(link) &&
5358 (!slave || ata_phys_link_offline(slave));
5359}
5360
5361#ifdef CONFIG_PM
5362static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5363 unsigned int action, unsigned int ehi_flags,
5364 bool async)
5365{
5366 struct ata_link *link;
5367 unsigned long flags;
5368
5369 /* Previous resume operation might still be in
5370 * progress. Wait for PM_PENDING to clear.
5371 */
5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 ata_port_wait_eh(ap);
5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 }
5376
5377 /* request PM ops to EH */
5378 spin_lock_irqsave(ap->lock, flags);
5379
5380 ap->pm_mesg = mesg;
5381 ap->pflags |= ATA_PFLAG_PM_PENDING;
5382 ata_for_each_link(link, ap, HOST_FIRST) {
5383 link->eh_info.action |= action;
5384 link->eh_info.flags |= ehi_flags;
5385 }
5386
5387 ata_port_schedule_eh(ap);
5388
5389 spin_unlock_irqrestore(ap->lock, flags);
5390
5391 if (!async) {
5392 ata_port_wait_eh(ap);
5393 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394 }
5395}
5396
5397/*
5398 * On some hardware, device fails to respond after spun down for suspend. As
5399 * the device won't be used before being resumed, we don't need to touch the
5400 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5401 *
5402 * http://thread.gmane.org/gmane.linux.ide/46764
5403 */
5404static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5405 | ATA_EHI_NO_AUTOPSY
5406 | ATA_EHI_NO_RECOVERY;
5407
5408static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5409{
5410 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5411}
5412
5413static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5414{
5415 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5416}
5417
5418static int ata_port_pm_suspend(struct device *dev)
5419{
5420 struct ata_port *ap = to_ata_port(dev);
5421
5422 if (pm_runtime_suspended(dev))
5423 return 0;
5424
5425 ata_port_suspend(ap, PMSG_SUSPEND);
5426 return 0;
5427}
5428
5429static int ata_port_pm_freeze(struct device *dev)
5430{
5431 struct ata_port *ap = to_ata_port(dev);
5432
5433 if (pm_runtime_suspended(dev))
5434 return 0;
5435
5436 ata_port_suspend(ap, PMSG_FREEZE);
5437 return 0;
5438}
5439
5440static int ata_port_pm_poweroff(struct device *dev)
5441{
5442 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5443 return 0;
5444}
5445
5446static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5447 | ATA_EHI_QUIET;
5448
5449static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5450{
5451 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5452}
5453
5454static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5455{
5456 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5457}
5458
5459static int ata_port_pm_resume(struct device *dev)
5460{
5461 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5462 pm_runtime_disable(dev);
5463 pm_runtime_set_active(dev);
5464 pm_runtime_enable(dev);
5465 return 0;
5466}
5467
5468/*
5469 * For ODDs, the upper layer will poll for media change every few seconds,
5470 * which will make it enter and leave suspend state every few seconds. And
5471 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5472 * is very little and the ODD may malfunction after constantly being reset.
5473 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5474 * ODD is attached to the port.
5475 */
5476static int ata_port_runtime_idle(struct device *dev)
5477{
5478 struct ata_port *ap = to_ata_port(dev);
5479 struct ata_link *link;
5480 struct ata_device *adev;
5481
5482 ata_for_each_link(link, ap, HOST_FIRST) {
5483 ata_for_each_dev(adev, link, ENABLED)
5484 if (adev->class == ATA_DEV_ATAPI &&
5485 !zpodd_dev_enabled(adev))
5486 return -EBUSY;
5487 }
5488
5489 return 0;
5490}
5491
5492static int ata_port_runtime_suspend(struct device *dev)
5493{
5494 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5495 return 0;
5496}
5497
5498static int ata_port_runtime_resume(struct device *dev)
5499{
5500 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5501 return 0;
5502}
5503
5504static const struct dev_pm_ops ata_port_pm_ops = {
5505 .suspend = ata_port_pm_suspend,
5506 .resume = ata_port_pm_resume,
5507 .freeze = ata_port_pm_freeze,
5508 .thaw = ata_port_pm_resume,
5509 .poweroff = ata_port_pm_poweroff,
5510 .restore = ata_port_pm_resume,
5511
5512 .runtime_suspend = ata_port_runtime_suspend,
5513 .runtime_resume = ata_port_runtime_resume,
5514 .runtime_idle = ata_port_runtime_idle,
5515};
5516
5517/* sas ports don't participate in pm runtime management of ata_ports,
5518 * and need to resume ata devices at the domain level, not the per-port
5519 * level. sas suspend/resume is async to allow parallel port recovery
5520 * since sas has multiple ata_port instances per Scsi_Host.
5521 */
5522void ata_sas_port_suspend(struct ata_port *ap)
5523{
5524 ata_port_suspend_async(ap, PMSG_SUSPEND);
5525}
5526EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5527
5528void ata_sas_port_resume(struct ata_port *ap)
5529{
5530 ata_port_resume_async(ap, PMSG_RESUME);
5531}
5532EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5533
5534/**
5535 * ata_host_suspend - suspend host
5536 * @host: host to suspend
5537 * @mesg: PM message
5538 *
5539 * Suspend @host. Actual operation is performed by port suspend.
5540 */
5541int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5542{
5543 host->dev->power.power_state = mesg;
5544 return 0;
5545}
5546
5547/**
5548 * ata_host_resume - resume host
5549 * @host: host to resume
5550 *
5551 * Resume @host. Actual operation is performed by port resume.
5552 */
5553void ata_host_resume(struct ata_host *host)
5554{
5555 host->dev->power.power_state = PMSG_ON;
5556}
5557#endif
5558
5559struct device_type ata_port_type = {
5560 .name = "ata_port",
5561#ifdef CONFIG_PM
5562 .pm = &ata_port_pm_ops,
5563#endif
5564};
5565
5566/**
5567 * ata_dev_init - Initialize an ata_device structure
5568 * @dev: Device structure to initialize
5569 *
5570 * Initialize @dev in preparation for probing.
5571 *
5572 * LOCKING:
5573 * Inherited from caller.
5574 */
5575void ata_dev_init(struct ata_device *dev)
5576{
5577 struct ata_link *link = ata_dev_phys_link(dev);
5578 struct ata_port *ap = link->ap;
5579 unsigned long flags;
5580
5581 /* SATA spd limit is bound to the attached device, reset together */
5582 link->sata_spd_limit = link->hw_sata_spd_limit;
5583 link->sata_spd = 0;
5584
5585 /* High bits of dev->flags are used to record warm plug
5586 * requests which occur asynchronously. Synchronize using
5587 * host lock.
5588 */
5589 spin_lock_irqsave(ap->lock, flags);
5590 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5591 dev->horkage = 0;
5592 spin_unlock_irqrestore(ap->lock, flags);
5593
5594 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5595 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5596 dev->pio_mask = UINT_MAX;
5597 dev->mwdma_mask = UINT_MAX;
5598 dev->udma_mask = UINT_MAX;
5599}
5600
5601/**
5602 * ata_link_init - Initialize an ata_link structure
5603 * @ap: ATA port link is attached to
5604 * @link: Link structure to initialize
5605 * @pmp: Port multiplier port number
5606 *
5607 * Initialize @link.
5608 *
5609 * LOCKING:
5610 * Kernel thread context (may sleep)
5611 */
5612void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5613{
5614 int i;
5615
5616 /* clear everything except for devices */
5617 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5618 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5619
5620 link->ap = ap;
5621 link->pmp = pmp;
5622 link->active_tag = ATA_TAG_POISON;
5623 link->hw_sata_spd_limit = UINT_MAX;
5624
5625 /* can't use iterator, ap isn't initialized yet */
5626 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5627 struct ata_device *dev = &link->device[i];
5628
5629 dev->link = link;
5630 dev->devno = dev - link->device;
5631#ifdef CONFIG_ATA_ACPI
5632 dev->gtf_filter = ata_acpi_gtf_filter;
5633#endif
5634 ata_dev_init(dev);
5635 }
5636}
5637
5638/**
5639 * sata_link_init_spd - Initialize link->sata_spd_limit
5640 * @link: Link to configure sata_spd_limit for
5641 *
5642 * Initialize @link->[hw_]sata_spd_limit to the currently
5643 * configured value.
5644 *
5645 * LOCKING:
5646 * Kernel thread context (may sleep).
5647 *
5648 * RETURNS:
5649 * 0 on success, -errno on failure.
5650 */
5651int sata_link_init_spd(struct ata_link *link)
5652{
5653 u8 spd;
5654 int rc;
5655
5656 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5657 if (rc)
5658 return rc;
5659
5660 spd = (link->saved_scontrol >> 4) & 0xf;
5661 if (spd)
5662 link->hw_sata_spd_limit &= (1 << spd) - 1;
5663
5664 ata_force_link_limits(link);
5665
5666 link->sata_spd_limit = link->hw_sata_spd_limit;
5667
5668 return 0;
5669}
5670
5671/**
5672 * ata_port_alloc - allocate and initialize basic ATA port resources
5673 * @host: ATA host this allocated port belongs to
5674 *
5675 * Allocate and initialize basic ATA port resources.
5676 *
5677 * RETURNS:
5678 * Allocate ATA port on success, NULL on failure.
5679 *
5680 * LOCKING:
5681 * Inherited from calling layer (may sleep).
5682 */
5683struct ata_port *ata_port_alloc(struct ata_host *host)
5684{
5685 struct ata_port *ap;
5686
5687 DPRINTK("ENTER\n");
5688
5689 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5690 if (!ap)
5691 return NULL;
5692
5693 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5694 ap->lock = &host->lock;
5695 ap->print_id = -1;
5696 ap->local_port_no = -1;
5697 ap->host = host;
5698 ap->dev = host->dev;
5699
5700#if defined(ATA_VERBOSE_DEBUG)
5701 /* turn on all debugging levels */
5702 ap->msg_enable = 0x00FF;
5703#elif defined(ATA_DEBUG)
5704 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5705#else
5706 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5707#endif
5708
5709 mutex_init(&ap->scsi_scan_mutex);
5710 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5711 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5712 INIT_LIST_HEAD(&ap->eh_done_q);
5713 init_waitqueue_head(&ap->eh_wait_q);
5714 init_completion(&ap->park_req_pending);
5715 init_timer_deferrable(&ap->fastdrain_timer);
5716 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5717 ap->fastdrain_timer.data = (unsigned long)ap;
5718
5719 ap->cbl = ATA_CBL_NONE;
5720
5721 ata_link_init(ap, &ap->link, 0);
5722
5723#ifdef ATA_IRQ_TRAP
5724 ap->stats.unhandled_irq = 1;
5725 ap->stats.idle_irq = 1;
5726#endif
5727 ata_sff_port_init(ap);
5728
5729 return ap;
5730}
5731
5732static void ata_host_release(struct device *gendev, void *res)
5733{
5734 struct ata_host *host = dev_get_drvdata(gendev);
5735 int i;
5736
5737 for (i = 0; i < host->n_ports; i++) {
5738 struct ata_port *ap = host->ports[i];
5739
5740 if (!ap)
5741 continue;
5742
5743 if (ap->scsi_host)
5744 scsi_host_put(ap->scsi_host);
5745
5746 kfree(ap->pmp_link);
5747 kfree(ap->slave_link);
5748 kfree(ap);
5749 host->ports[i] = NULL;
5750 }
5751
5752 dev_set_drvdata(gendev, NULL);
5753}
5754
5755/**
5756 * ata_host_alloc - allocate and init basic ATA host resources
5757 * @dev: generic device this host is associated with
5758 * @max_ports: maximum number of ATA ports associated with this host
5759 *
5760 * Allocate and initialize basic ATA host resources. LLD calls
5761 * this function to allocate a host, initializes it fully and
5762 * attaches it using ata_host_register().
5763 *
5764 * @max_ports ports are allocated and host->n_ports is
5765 * initialized to @max_ports. The caller is allowed to decrease
5766 * host->n_ports before calling ata_host_register(). The unused
5767 * ports will be automatically freed on registration.
5768 *
5769 * RETURNS:
5770 * Allocate ATA host on success, NULL on failure.
5771 *
5772 * LOCKING:
5773 * Inherited from calling layer (may sleep).
5774 */
5775struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5776{
5777 struct ata_host *host;
5778 size_t sz;
5779 int i;
5780
5781 DPRINTK("ENTER\n");
5782
5783 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5784 return NULL;
5785
5786 /* alloc a container for our list of ATA ports (buses) */
5787 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5788 /* alloc a container for our list of ATA ports (buses) */
5789 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5790 if (!host)
5791 goto err_out;
5792
5793 devres_add(dev, host);
5794 dev_set_drvdata(dev, host);
5795
5796 spin_lock_init(&host->lock);
5797 mutex_init(&host->eh_mutex);
5798 host->dev = dev;
5799 host->n_ports = max_ports;
5800
5801 /* allocate ports bound to this host */
5802 for (i = 0; i < max_ports; i++) {
5803 struct ata_port *ap;
5804
5805 ap = ata_port_alloc(host);
5806 if (!ap)
5807 goto err_out;
5808
5809 ap->port_no = i;
5810 host->ports[i] = ap;
5811 }
5812
5813 devres_remove_group(dev, NULL);
5814 return host;
5815
5816 err_out:
5817 devres_release_group(dev, NULL);
5818 return NULL;
5819}
5820
5821/**
5822 * ata_host_alloc_pinfo - alloc host and init with port_info array
5823 * @dev: generic device this host is associated with
5824 * @ppi: array of ATA port_info to initialize host with
5825 * @n_ports: number of ATA ports attached to this host
5826 *
5827 * Allocate ATA host and initialize with info from @ppi. If NULL
5828 * terminated, @ppi may contain fewer entries than @n_ports. The
5829 * last entry will be used for the remaining ports.
5830 *
5831 * RETURNS:
5832 * Allocate ATA host on success, NULL on failure.
5833 *
5834 * LOCKING:
5835 * Inherited from calling layer (may sleep).
5836 */
5837struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5838 const struct ata_port_info * const * ppi,
5839 int n_ports)
5840{
5841 const struct ata_port_info *pi;
5842 struct ata_host *host;
5843 int i, j;
5844
5845 host = ata_host_alloc(dev, n_ports);
5846 if (!host)
5847 return NULL;
5848
5849 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5850 struct ata_port *ap = host->ports[i];
5851
5852 if (ppi[j])
5853 pi = ppi[j++];
5854
5855 ap->pio_mask = pi->pio_mask;
5856 ap->mwdma_mask = pi->mwdma_mask;
5857 ap->udma_mask = pi->udma_mask;
5858 ap->flags |= pi->flags;
5859 ap->link.flags |= pi->link_flags;
5860 ap->ops = pi->port_ops;
5861
5862 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5863 host->ops = pi->port_ops;
5864 }
5865
5866 return host;
5867}
5868
5869/**
5870 * ata_slave_link_init - initialize slave link
5871 * @ap: port to initialize slave link for
5872 *
5873 * Create and initialize slave link for @ap. This enables slave
5874 * link handling on the port.
5875 *
5876 * In libata, a port contains links and a link contains devices.
5877 * There is single host link but if a PMP is attached to it,
5878 * there can be multiple fan-out links. On SATA, there's usually
5879 * a single device connected to a link but PATA and SATA
5880 * controllers emulating TF based interface can have two - master
5881 * and slave.
5882 *
5883 * However, there are a few controllers which don't fit into this
5884 * abstraction too well - SATA controllers which emulate TF
5885 * interface with both master and slave devices but also have
5886 * separate SCR register sets for each device. These controllers
5887 * need separate links for physical link handling
5888 * (e.g. onlineness, link speed) but should be treated like a
5889 * traditional M/S controller for everything else (e.g. command
5890 * issue, softreset).
5891 *
5892 * slave_link is libata's way of handling this class of
5893 * controllers without impacting core layer too much. For
5894 * anything other than physical link handling, the default host
5895 * link is used for both master and slave. For physical link
5896 * handling, separate @ap->slave_link is used. All dirty details
5897 * are implemented inside libata core layer. From LLD's POV, the
5898 * only difference is that prereset, hardreset and postreset are
5899 * called once more for the slave link, so the reset sequence
5900 * looks like the following.
5901 *
5902 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5903 * softreset(M) -> postreset(M) -> postreset(S)
5904 *
5905 * Note that softreset is called only for the master. Softreset
5906 * resets both M/S by definition, so SRST on master should handle
5907 * both (the standard method will work just fine).
5908 *
5909 * LOCKING:
5910 * Should be called before host is registered.
5911 *
5912 * RETURNS:
5913 * 0 on success, -errno on failure.
5914 */
5915int ata_slave_link_init(struct ata_port *ap)
5916{
5917 struct ata_link *link;
5918
5919 WARN_ON(ap->slave_link);
5920 WARN_ON(ap->flags & ATA_FLAG_PMP);
5921
5922 link = kzalloc(sizeof(*link), GFP_KERNEL);
5923 if (!link)
5924 return -ENOMEM;
5925
5926 ata_link_init(ap, link, 1);
5927 ap->slave_link = link;
5928 return 0;
5929}
5930
5931static void ata_host_stop(struct device *gendev, void *res)
5932{
5933 struct ata_host *host = dev_get_drvdata(gendev);
5934 int i;
5935
5936 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5937
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940
5941 if (ap->ops->port_stop)
5942 ap->ops->port_stop(ap);
5943 }
5944
5945 if (host->ops->host_stop)
5946 host->ops->host_stop(host);
5947}
5948
5949/**
5950 * ata_finalize_port_ops - finalize ata_port_operations
5951 * @ops: ata_port_operations to finalize
5952 *
5953 * An ata_port_operations can inherit from another ops and that
5954 * ops can again inherit from another. This can go on as many
5955 * times as necessary as long as there is no loop in the
5956 * inheritance chain.
5957 *
5958 * Ops tables are finalized when the host is started. NULL or
5959 * unspecified entries are inherited from the closet ancestor
5960 * which has the method and the entry is populated with it.
5961 * After finalization, the ops table directly points to all the
5962 * methods and ->inherits is no longer necessary and cleared.
5963 *
5964 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5965 *
5966 * LOCKING:
5967 * None.
5968 */
5969static void ata_finalize_port_ops(struct ata_port_operations *ops)
5970{
5971 static DEFINE_SPINLOCK(lock);
5972 const struct ata_port_operations *cur;
5973 void **begin = (void **)ops;
5974 void **end = (void **)&ops->inherits;
5975 void **pp;
5976
5977 if (!ops || !ops->inherits)
5978 return;
5979
5980 spin_lock(&lock);
5981
5982 for (cur = ops->inherits; cur; cur = cur->inherits) {
5983 void **inherit = (void **)cur;
5984
5985 for (pp = begin; pp < end; pp++, inherit++)
5986 if (!*pp)
5987 *pp = *inherit;
5988 }
5989
5990 for (pp = begin; pp < end; pp++)
5991 if (IS_ERR(*pp))
5992 *pp = NULL;
5993
5994 ops->inherits = NULL;
5995
5996 spin_unlock(&lock);
5997}
5998
5999/**
6000 * ata_host_start - start and freeze ports of an ATA host
6001 * @host: ATA host to start ports for
6002 *
6003 * Start and then freeze ports of @host. Started status is
6004 * recorded in host->flags, so this function can be called
6005 * multiple times. Ports are guaranteed to get started only
6006 * once. If host->ops isn't initialized yet, its set to the
6007 * first non-dummy port ops.
6008 *
6009 * LOCKING:
6010 * Inherited from calling layer (may sleep).
6011 *
6012 * RETURNS:
6013 * 0 if all ports are started successfully, -errno otherwise.
6014 */
6015int ata_host_start(struct ata_host *host)
6016{
6017 int have_stop = 0;
6018 void *start_dr = NULL;
6019 int i, rc;
6020
6021 if (host->flags & ATA_HOST_STARTED)
6022 return 0;
6023
6024 ata_finalize_port_ops(host->ops);
6025
6026 for (i = 0; i < host->n_ports; i++) {
6027 struct ata_port *ap = host->ports[i];
6028
6029 ata_finalize_port_ops(ap->ops);
6030
6031 if (!host->ops && !ata_port_is_dummy(ap))
6032 host->ops = ap->ops;
6033
6034 if (ap->ops->port_stop)
6035 have_stop = 1;
6036 }
6037
6038 if (host->ops->host_stop)
6039 have_stop = 1;
6040
6041 if (have_stop) {
6042 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6043 if (!start_dr)
6044 return -ENOMEM;
6045 }
6046
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
6050 if (ap->ops->port_start) {
6051 rc = ap->ops->port_start(ap);
6052 if (rc) {
6053 if (rc != -ENODEV)
6054 dev_err(host->dev,
6055 "failed to start port %d (errno=%d)\n",
6056 i, rc);
6057 goto err_out;
6058 }
6059 }
6060 ata_eh_freeze_port(ap);
6061 }
6062
6063 if (start_dr)
6064 devres_add(host->dev, start_dr);
6065 host->flags |= ATA_HOST_STARTED;
6066 return 0;
6067
6068 err_out:
6069 while (--i >= 0) {
6070 struct ata_port *ap = host->ports[i];
6071
6072 if (ap->ops->port_stop)
6073 ap->ops->port_stop(ap);
6074 }
6075 devres_free(start_dr);
6076 return rc;
6077}
6078
6079/**
6080 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6081 * @host: host to initialize
6082 * @dev: device host is attached to
6083 * @ops: port_ops
6084 *
6085 */
6086void ata_host_init(struct ata_host *host, struct device *dev,
6087 struct ata_port_operations *ops)
6088{
6089 spin_lock_init(&host->lock);
6090 mutex_init(&host->eh_mutex);
6091 host->dev = dev;
6092 host->ops = ops;
6093}
6094
6095void __ata_port_probe(struct ata_port *ap)
6096{
6097 struct ata_eh_info *ehi = &ap->link.eh_info;
6098 unsigned long flags;
6099
6100 /* kick EH for boot probing */
6101 spin_lock_irqsave(ap->lock, flags);
6102
6103 ehi->probe_mask |= ATA_ALL_DEVICES;
6104 ehi->action |= ATA_EH_RESET;
6105 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6106
6107 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6108 ap->pflags |= ATA_PFLAG_LOADING;
6109 ata_port_schedule_eh(ap);
6110
6111 spin_unlock_irqrestore(ap->lock, flags);
6112}
6113
6114int ata_port_probe(struct ata_port *ap)
6115{
6116 int rc = 0;
6117
6118 if (ap->ops->error_handler) {
6119 __ata_port_probe(ap);
6120 ata_port_wait_eh(ap);
6121 } else {
6122 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6123 rc = ata_bus_probe(ap);
6124 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6125 }
6126 return rc;
6127}
6128
6129
6130static void async_port_probe(void *data, async_cookie_t cookie)
6131{
6132 struct ata_port *ap = data;
6133
6134 /*
6135 * If we're not allowed to scan this host in parallel,
6136 * we need to wait until all previous scans have completed
6137 * before going further.
6138 * Jeff Garzik says this is only within a controller, so we
6139 * don't need to wait for port 0, only for later ports.
6140 */
6141 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6142 async_synchronize_cookie(cookie);
6143
6144 (void)ata_port_probe(ap);
6145
6146 /* in order to keep device order, we need to synchronize at this point */
6147 async_synchronize_cookie(cookie);
6148
6149 ata_scsi_scan_host(ap, 1);
6150}
6151
6152/**
6153 * ata_host_register - register initialized ATA host
6154 * @host: ATA host to register
6155 * @sht: template for SCSI host
6156 *
6157 * Register initialized ATA host. @host is allocated using
6158 * ata_host_alloc() and fully initialized by LLD. This function
6159 * starts ports, registers @host with ATA and SCSI layers and
6160 * probe registered devices.
6161 *
6162 * LOCKING:
6163 * Inherited from calling layer (may sleep).
6164 *
6165 * RETURNS:
6166 * 0 on success, -errno otherwise.
6167 */
6168int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6169{
6170 int i, rc;
6171
6172 /* host must have been started */
6173 if (!(host->flags & ATA_HOST_STARTED)) {
6174 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6175 WARN_ON(1);
6176 return -EINVAL;
6177 }
6178
6179 /* Blow away unused ports. This happens when LLD can't
6180 * determine the exact number of ports to allocate at
6181 * allocation time.
6182 */
6183 for (i = host->n_ports; host->ports[i]; i++)
6184 kfree(host->ports[i]);
6185
6186 /* give ports names and add SCSI hosts */
6187 for (i = 0; i < host->n_ports; i++) {
6188 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6189 host->ports[i]->local_port_no = i + 1;
6190 }
6191
6192 /* Create associated sysfs transport objects */
6193 for (i = 0; i < host->n_ports; i++) {
6194 rc = ata_tport_add(host->dev,host->ports[i]);
6195 if (rc) {
6196 goto err_tadd;
6197 }
6198 }
6199
6200 rc = ata_scsi_add_hosts(host, sht);
6201 if (rc)
6202 goto err_tadd;
6203
6204 /* set cable, sata_spd_limit and report */
6205 for (i = 0; i < host->n_ports; i++) {
6206 struct ata_port *ap = host->ports[i];
6207 unsigned long xfer_mask;
6208
6209 /* set SATA cable type if still unset */
6210 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6211 ap->cbl = ATA_CBL_SATA;
6212
6213 /* init sata_spd_limit to the current value */
6214 sata_link_init_spd(&ap->link);
6215 if (ap->slave_link)
6216 sata_link_init_spd(ap->slave_link);
6217
6218 /* print per-port info to dmesg */
6219 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6220 ap->udma_mask);
6221
6222 if (!ata_port_is_dummy(ap)) {
6223 ata_port_info(ap, "%cATA max %s %s\n",
6224 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6225 ata_mode_string(xfer_mask),
6226 ap->link.eh_info.desc);
6227 ata_ehi_clear_desc(&ap->link.eh_info);
6228 } else
6229 ata_port_info(ap, "DUMMY\n");
6230 }
6231
6232 /* perform each probe asynchronously */
6233 for (i = 0; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235 async_schedule(async_port_probe, ap);
6236 }
6237
6238 return 0;
6239
6240 err_tadd:
6241 while (--i >= 0) {
6242 ata_tport_delete(host->ports[i]);
6243 }
6244 return rc;
6245
6246}
6247
6248/**
6249 * ata_host_activate - start host, request IRQ and register it
6250 * @host: target ATA host
6251 * @irq: IRQ to request
6252 * @irq_handler: irq_handler used when requesting IRQ
6253 * @irq_flags: irq_flags used when requesting IRQ
6254 * @sht: scsi_host_template to use when registering the host
6255 *
6256 * After allocating an ATA host and initializing it, most libata
6257 * LLDs perform three steps to activate the host - start host,
6258 * request IRQ and register it. This helper takes necessasry
6259 * arguments and performs the three steps in one go.
6260 *
6261 * An invalid IRQ skips the IRQ registration and expects the host to
6262 * have set polling mode on the port. In this case, @irq_handler
6263 * should be NULL.
6264 *
6265 * LOCKING:
6266 * Inherited from calling layer (may sleep).
6267 *
6268 * RETURNS:
6269 * 0 on success, -errno otherwise.
6270 */
6271int ata_host_activate(struct ata_host *host, int irq,
6272 irq_handler_t irq_handler, unsigned long irq_flags,
6273 struct scsi_host_template *sht)
6274{
6275 int i, rc;
6276
6277 rc = ata_host_start(host);
6278 if (rc)
6279 return rc;
6280
6281 /* Special case for polling mode */
6282 if (!irq) {
6283 WARN_ON(irq_handler);
6284 return ata_host_register(host, sht);
6285 }
6286
6287 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6288 dev_driver_string(host->dev), host);
6289 if (rc)
6290 return rc;
6291
6292 for (i = 0; i < host->n_ports; i++)
6293 ata_port_desc(host->ports[i], "irq %d", irq);
6294
6295 rc = ata_host_register(host, sht);
6296 /* if failed, just free the IRQ and leave ports alone */
6297 if (rc)
6298 devm_free_irq(host->dev, irq, host);
6299
6300 return rc;
6301}
6302
6303/**
6304 * ata_port_detach - Detach ATA port in prepration of device removal
6305 * @ap: ATA port to be detached
6306 *
6307 * Detach all ATA devices and the associated SCSI devices of @ap;
6308 * then, remove the associated SCSI host. @ap is guaranteed to
6309 * be quiescent on return from this function.
6310 *
6311 * LOCKING:
6312 * Kernel thread context (may sleep).
6313 */
6314static void ata_port_detach(struct ata_port *ap)
6315{
6316 unsigned long flags;
6317 struct ata_link *link;
6318 struct ata_device *dev;
6319
6320 if (!ap->ops->error_handler)
6321 goto skip_eh;
6322
6323 /* tell EH we're leaving & flush EH */
6324 spin_lock_irqsave(ap->lock, flags);
6325 ap->pflags |= ATA_PFLAG_UNLOADING;
6326 ata_port_schedule_eh(ap);
6327 spin_unlock_irqrestore(ap->lock, flags);
6328
6329 /* wait till EH commits suicide */
6330 ata_port_wait_eh(ap);
6331
6332 /* it better be dead now */
6333 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6334
6335 cancel_delayed_work_sync(&ap->hotplug_task);
6336
6337 skip_eh:
6338 /* clean up zpodd on port removal */
6339 ata_for_each_link(link, ap, HOST_FIRST) {
6340 ata_for_each_dev(dev, link, ALL) {
6341 if (zpodd_dev_enabled(dev))
6342 zpodd_exit(dev);
6343 }
6344 }
6345 if (ap->pmp_link) {
6346 int i;
6347 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6348 ata_tlink_delete(&ap->pmp_link[i]);
6349 }
6350 /* remove the associated SCSI host */
6351 scsi_remove_host(ap->scsi_host);
6352 ata_tport_delete(ap);
6353}
6354
6355/**
6356 * ata_host_detach - Detach all ports of an ATA host
6357 * @host: Host to detach
6358 *
6359 * Detach all ports of @host.
6360 *
6361 * LOCKING:
6362 * Kernel thread context (may sleep).
6363 */
6364void ata_host_detach(struct ata_host *host)
6365{
6366 int i;
6367
6368 for (i = 0; i < host->n_ports; i++)
6369 ata_port_detach(host->ports[i]);
6370
6371 /* the host is dead now, dissociate ACPI */
6372 ata_acpi_dissociate(host);
6373}
6374
6375#ifdef CONFIG_PCI
6376
6377/**
6378 * ata_pci_remove_one - PCI layer callback for device removal
6379 * @pdev: PCI device that was removed
6380 *
6381 * PCI layer indicates to libata via this hook that hot-unplug or
6382 * module unload event has occurred. Detach all ports. Resource
6383 * release is handled via devres.
6384 *
6385 * LOCKING:
6386 * Inherited from PCI layer (may sleep).
6387 */
6388void ata_pci_remove_one(struct pci_dev *pdev)
6389{
6390 struct ata_host *host = pci_get_drvdata(pdev);
6391
6392 ata_host_detach(host);
6393}
6394
6395/* move to PCI subsystem */
6396int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6397{
6398 unsigned long tmp = 0;
6399
6400 switch (bits->width) {
6401 case 1: {
6402 u8 tmp8 = 0;
6403 pci_read_config_byte(pdev, bits->reg, &tmp8);
6404 tmp = tmp8;
6405 break;
6406 }
6407 case 2: {
6408 u16 tmp16 = 0;
6409 pci_read_config_word(pdev, bits->reg, &tmp16);
6410 tmp = tmp16;
6411 break;
6412 }
6413 case 4: {
6414 u32 tmp32 = 0;
6415 pci_read_config_dword(pdev, bits->reg, &tmp32);
6416 tmp = tmp32;
6417 break;
6418 }
6419
6420 default:
6421 return -EINVAL;
6422 }
6423
6424 tmp &= bits->mask;
6425
6426 return (tmp == bits->val) ? 1 : 0;
6427}
6428
6429#ifdef CONFIG_PM
6430void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6431{
6432 pci_save_state(pdev);
6433 pci_disable_device(pdev);
6434
6435 if (mesg.event & PM_EVENT_SLEEP)
6436 pci_set_power_state(pdev, PCI_D3hot);
6437}
6438
6439int ata_pci_device_do_resume(struct pci_dev *pdev)
6440{
6441 int rc;
6442
6443 pci_set_power_state(pdev, PCI_D0);
6444 pci_restore_state(pdev);
6445
6446 rc = pcim_enable_device(pdev);
6447 if (rc) {
6448 dev_err(&pdev->dev,
6449 "failed to enable device after resume (%d)\n", rc);
6450 return rc;
6451 }
6452
6453 pci_set_master(pdev);
6454 return 0;
6455}
6456
6457int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6458{
6459 struct ata_host *host = pci_get_drvdata(pdev);
6460 int rc = 0;
6461
6462 rc = ata_host_suspend(host, mesg);
6463 if (rc)
6464 return rc;
6465
6466 ata_pci_device_do_suspend(pdev, mesg);
6467
6468 return 0;
6469}
6470
6471int ata_pci_device_resume(struct pci_dev *pdev)
6472{
6473 struct ata_host *host = pci_get_drvdata(pdev);
6474 int rc;
6475
6476 rc = ata_pci_device_do_resume(pdev);
6477 if (rc == 0)
6478 ata_host_resume(host);
6479 return rc;
6480}
6481#endif /* CONFIG_PM */
6482
6483#endif /* CONFIG_PCI */
6484
6485/**
6486 * ata_platform_remove_one - Platform layer callback for device removal
6487 * @pdev: Platform device that was removed
6488 *
6489 * Platform layer indicates to libata via this hook that hot-unplug or
6490 * module unload event has occurred. Detach all ports. Resource
6491 * release is handled via devres.
6492 *
6493 * LOCKING:
6494 * Inherited from platform layer (may sleep).
6495 */
6496int ata_platform_remove_one(struct platform_device *pdev)
6497{
6498 struct ata_host *host = platform_get_drvdata(pdev);
6499
6500 ata_host_detach(host);
6501
6502 return 0;
6503}
6504
6505static int __init ata_parse_force_one(char **cur,
6506 struct ata_force_ent *force_ent,
6507 const char **reason)
6508{
6509 /* FIXME: Currently, there's no way to tag init const data and
6510 * using __initdata causes build failure on some versions of
6511 * gcc. Once __initdataconst is implemented, add const to the
6512 * following structure.
6513 */
6514 static struct ata_force_param force_tbl[] __initdata = {
6515 { "40c", .cbl = ATA_CBL_PATA40 },
6516 { "80c", .cbl = ATA_CBL_PATA80 },
6517 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6518 { "unk", .cbl = ATA_CBL_PATA_UNK },
6519 { "ign", .cbl = ATA_CBL_PATA_IGN },
6520 { "sata", .cbl = ATA_CBL_SATA },
6521 { "1.5Gbps", .spd_limit = 1 },
6522 { "3.0Gbps", .spd_limit = 2 },
6523 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6524 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6525 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6526 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6527 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6528 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6529 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6530 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6531 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6532 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6533 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6534 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6535 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6536 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6537 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6538 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6539 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6540 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6541 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6542 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6543 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6544 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6545 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6546 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6547 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6548 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6549 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6550 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6551 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6552 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6553 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6554 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6555 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6556 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6557 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6558 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6559 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6560 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6561 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6562 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6563 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6564 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6565 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6566 };
6567 char *start = *cur, *p = *cur;
6568 char *id, *val, *endp;
6569 const struct ata_force_param *match_fp = NULL;
6570 int nr_matches = 0, i;
6571
6572 /* find where this param ends and update *cur */
6573 while (*p != '\0' && *p != ',')
6574 p++;
6575
6576 if (*p == '\0')
6577 *cur = p;
6578 else
6579 *cur = p + 1;
6580
6581 *p = '\0';
6582
6583 /* parse */
6584 p = strchr(start, ':');
6585 if (!p) {
6586 val = strstrip(start);
6587 goto parse_val;
6588 }
6589 *p = '\0';
6590
6591 id = strstrip(start);
6592 val = strstrip(p + 1);
6593
6594 /* parse id */
6595 p = strchr(id, '.');
6596 if (p) {
6597 *p++ = '\0';
6598 force_ent->device = simple_strtoul(p, &endp, 10);
6599 if (p == endp || *endp != '\0') {
6600 *reason = "invalid device";
6601 return -EINVAL;
6602 }
6603 }
6604
6605 force_ent->port = simple_strtoul(id, &endp, 10);
6606 if (p == endp || *endp != '\0') {
6607 *reason = "invalid port/link";
6608 return -EINVAL;
6609 }
6610
6611 parse_val:
6612 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6613 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6614 const struct ata_force_param *fp = &force_tbl[i];
6615
6616 if (strncasecmp(val, fp->name, strlen(val)))
6617 continue;
6618
6619 nr_matches++;
6620 match_fp = fp;
6621
6622 if (strcasecmp(val, fp->name) == 0) {
6623 nr_matches = 1;
6624 break;
6625 }
6626 }
6627
6628 if (!nr_matches) {
6629 *reason = "unknown value";
6630 return -EINVAL;
6631 }
6632 if (nr_matches > 1) {
6633 *reason = "ambigious value";
6634 return -EINVAL;
6635 }
6636
6637 force_ent->param = *match_fp;
6638
6639 return 0;
6640}
6641
6642static void __init ata_parse_force_param(void)
6643{
6644 int idx = 0, size = 1;
6645 int last_port = -1, last_device = -1;
6646 char *p, *cur, *next;
6647
6648 /* calculate maximum number of params and allocate force_tbl */
6649 for (p = ata_force_param_buf; *p; p++)
6650 if (*p == ',')
6651 size++;
6652
6653 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6654 if (!ata_force_tbl) {
6655 printk(KERN_WARNING "ata: failed to extend force table, "
6656 "libata.force ignored\n");
6657 return;
6658 }
6659
6660 /* parse and populate the table */
6661 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6662 const char *reason = "";
6663 struct ata_force_ent te = { .port = -1, .device = -1 };
6664
6665 next = cur;
6666 if (ata_parse_force_one(&next, &te, &reason)) {
6667 printk(KERN_WARNING "ata: failed to parse force "
6668 "parameter \"%s\" (%s)\n",
6669 cur, reason);
6670 continue;
6671 }
6672
6673 if (te.port == -1) {
6674 te.port = last_port;
6675 te.device = last_device;
6676 }
6677
6678 ata_force_tbl[idx++] = te;
6679
6680 last_port = te.port;
6681 last_device = te.device;
6682 }
6683
6684 ata_force_tbl_size = idx;
6685}
6686
6687static int __init ata_init(void)
6688{
6689 int rc;
6690
6691 ata_parse_force_param();
6692
6693 rc = ata_sff_init();
6694 if (rc) {
6695 kfree(ata_force_tbl);
6696 return rc;
6697 }
6698
6699 libata_transport_init();
6700 ata_scsi_transport_template = ata_attach_transport();
6701 if (!ata_scsi_transport_template) {
6702 ata_sff_exit();
6703 rc = -ENOMEM;
6704 goto err_out;
6705 }
6706
6707 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6708 return 0;
6709
6710err_out:
6711 return rc;
6712}
6713
6714static void __exit ata_exit(void)
6715{
6716 ata_release_transport(ata_scsi_transport_template);
6717 libata_transport_exit();
6718 ata_sff_exit();
6719 kfree(ata_force_tbl);
6720}
6721
6722subsys_initcall(ata_init);
6723module_exit(ata_exit);
6724
6725static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6726
6727int ata_ratelimit(void)
6728{
6729 return __ratelimit(&ratelimit);
6730}
6731
6732/**
6733 * ata_msleep - ATA EH owner aware msleep
6734 * @ap: ATA port to attribute the sleep to
6735 * @msecs: duration to sleep in milliseconds
6736 *
6737 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6738 * ownership is released before going to sleep and reacquired
6739 * after the sleep is complete. IOW, other ports sharing the
6740 * @ap->host will be allowed to own the EH while this task is
6741 * sleeping.
6742 *
6743 * LOCKING:
6744 * Might sleep.
6745 */
6746void ata_msleep(struct ata_port *ap, unsigned int msecs)
6747{
6748 bool owns_eh = ap && ap->host->eh_owner == current;
6749
6750 if (owns_eh)
6751 ata_eh_release(ap);
6752
6753 msleep(msecs);
6754
6755 if (owns_eh)
6756 ata_eh_acquire(ap);
6757}
6758
6759/**
6760 * ata_wait_register - wait until register value changes
6761 * @ap: ATA port to wait register for, can be NULL
6762 * @reg: IO-mapped register
6763 * @mask: Mask to apply to read register value
6764 * @val: Wait condition
6765 * @interval: polling interval in milliseconds
6766 * @timeout: timeout in milliseconds
6767 *
6768 * Waiting for some bits of register to change is a common
6769 * operation for ATA controllers. This function reads 32bit LE
6770 * IO-mapped register @reg and tests for the following condition.
6771 *
6772 * (*@reg & mask) != val
6773 *
6774 * If the condition is met, it returns; otherwise, the process is
6775 * repeated after @interval_msec until timeout.
6776 *
6777 * LOCKING:
6778 * Kernel thread context (may sleep)
6779 *
6780 * RETURNS:
6781 * The final register value.
6782 */
6783u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6784 unsigned long interval, unsigned long timeout)
6785{
6786 unsigned long deadline;
6787 u32 tmp;
6788
6789 tmp = ioread32(reg);
6790
6791 /* Calculate timeout _after_ the first read to make sure
6792 * preceding writes reach the controller before starting to
6793 * eat away the timeout.
6794 */
6795 deadline = ata_deadline(jiffies, timeout);
6796
6797 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6798 ata_msleep(ap, interval);
6799 tmp = ioread32(reg);
6800 }
6801
6802 return tmp;
6803}
6804
6805/*
6806 * Dummy port_ops
6807 */
6808static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6809{
6810 return AC_ERR_SYSTEM;
6811}
6812
6813static void ata_dummy_error_handler(struct ata_port *ap)
6814{
6815 /* truly dummy */
6816}
6817
6818struct ata_port_operations ata_dummy_port_ops = {
6819 .qc_prep = ata_noop_qc_prep,
6820 .qc_issue = ata_dummy_qc_issue,
6821 .error_handler = ata_dummy_error_handler,
6822 .sched_eh = ata_std_sched_eh,
6823 .end_eh = ata_std_end_eh,
6824};
6825
6826const struct ata_port_info ata_dummy_port_info = {
6827 .port_ops = &ata_dummy_port_ops,
6828};
6829
6830/*
6831 * Utility print functions
6832 */
6833int ata_port_printk(const struct ata_port *ap, const char *level,
6834 const char *fmt, ...)
6835{
6836 struct va_format vaf;
6837 va_list args;
6838 int r;
6839
6840 va_start(args, fmt);
6841
6842 vaf.fmt = fmt;
6843 vaf.va = &args;
6844
6845 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6846
6847 va_end(args);
6848
6849 return r;
6850}
6851EXPORT_SYMBOL(ata_port_printk);
6852
6853int ata_link_printk(const struct ata_link *link, const char *level,
6854 const char *fmt, ...)
6855{
6856 struct va_format vaf;
6857 va_list args;
6858 int r;
6859
6860 va_start(args, fmt);
6861
6862 vaf.fmt = fmt;
6863 vaf.va = &args;
6864
6865 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6866 r = printk("%sata%u.%02u: %pV",
6867 level, link->ap->print_id, link->pmp, &vaf);
6868 else
6869 r = printk("%sata%u: %pV",
6870 level, link->ap->print_id, &vaf);
6871
6872 va_end(args);
6873
6874 return r;
6875}
6876EXPORT_SYMBOL(ata_link_printk);
6877
6878int ata_dev_printk(const struct ata_device *dev, const char *level,
6879 const char *fmt, ...)
6880{
6881 struct va_format vaf;
6882 va_list args;
6883 int r;
6884
6885 va_start(args, fmt);
6886
6887 vaf.fmt = fmt;
6888 vaf.va = &args;
6889
6890 r = printk("%sata%u.%02u: %pV",
6891 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6892 &vaf);
6893
6894 va_end(args);
6895
6896 return r;
6897}
6898EXPORT_SYMBOL(ata_dev_printk);
6899
6900void ata_print_version(const struct device *dev, const char *version)
6901{
6902 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6903}
6904EXPORT_SYMBOL(ata_print_version);
6905
6906/*
6907 * libata is essentially a library of internal helper functions for
6908 * low-level ATA host controller drivers. As such, the API/ABI is
6909 * likely to change as new drivers are added and updated.
6910 * Do not depend on ABI/API stability.
6911 */
6912EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6913EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6914EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6915EXPORT_SYMBOL_GPL(ata_base_port_ops);
6916EXPORT_SYMBOL_GPL(sata_port_ops);
6917EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6918EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6919EXPORT_SYMBOL_GPL(ata_link_next);
6920EXPORT_SYMBOL_GPL(ata_dev_next);
6921EXPORT_SYMBOL_GPL(ata_std_bios_param);
6922EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6923EXPORT_SYMBOL_GPL(ata_host_init);
6924EXPORT_SYMBOL_GPL(ata_host_alloc);
6925EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6926EXPORT_SYMBOL_GPL(ata_slave_link_init);
6927EXPORT_SYMBOL_GPL(ata_host_start);
6928EXPORT_SYMBOL_GPL(ata_host_register);
6929EXPORT_SYMBOL_GPL(ata_host_activate);
6930EXPORT_SYMBOL_GPL(ata_host_detach);
6931EXPORT_SYMBOL_GPL(ata_sg_init);
6932EXPORT_SYMBOL_GPL(ata_qc_complete);
6933EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6934EXPORT_SYMBOL_GPL(atapi_cmd_type);
6935EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6936EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6937EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6938EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6939EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6940EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6941EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6942EXPORT_SYMBOL_GPL(ata_mode_string);
6943EXPORT_SYMBOL_GPL(ata_id_xfermask);
6944EXPORT_SYMBOL_GPL(ata_do_set_mode);
6945EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6946EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6947EXPORT_SYMBOL_GPL(ata_dev_disable);
6948EXPORT_SYMBOL_GPL(sata_set_spd);
6949EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6950EXPORT_SYMBOL_GPL(sata_link_debounce);
6951EXPORT_SYMBOL_GPL(sata_link_resume);
6952EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6953EXPORT_SYMBOL_GPL(ata_std_prereset);
6954EXPORT_SYMBOL_GPL(sata_link_hardreset);
6955EXPORT_SYMBOL_GPL(sata_std_hardreset);
6956EXPORT_SYMBOL_GPL(ata_std_postreset);
6957EXPORT_SYMBOL_GPL(ata_dev_classify);
6958EXPORT_SYMBOL_GPL(ata_dev_pair);
6959EXPORT_SYMBOL_GPL(ata_ratelimit);
6960EXPORT_SYMBOL_GPL(ata_msleep);
6961EXPORT_SYMBOL_GPL(ata_wait_register);
6962EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6963EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6964EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6965EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6966EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6967EXPORT_SYMBOL_GPL(sata_scr_valid);
6968EXPORT_SYMBOL_GPL(sata_scr_read);
6969EXPORT_SYMBOL_GPL(sata_scr_write);
6970EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6971EXPORT_SYMBOL_GPL(ata_link_online);
6972EXPORT_SYMBOL_GPL(ata_link_offline);
6973#ifdef CONFIG_PM
6974EXPORT_SYMBOL_GPL(ata_host_suspend);
6975EXPORT_SYMBOL_GPL(ata_host_resume);
6976#endif /* CONFIG_PM */
6977EXPORT_SYMBOL_GPL(ata_id_string);
6978EXPORT_SYMBOL_GPL(ata_id_c_string);
6979EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6980EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6981
6982EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6983EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6984EXPORT_SYMBOL_GPL(ata_timing_compute);
6985EXPORT_SYMBOL_GPL(ata_timing_merge);
6986EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6987
6988#ifdef CONFIG_PCI
6989EXPORT_SYMBOL_GPL(pci_test_config_bits);
6990EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6991#ifdef CONFIG_PM
6992EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6993EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6994EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6995EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6996#endif /* CONFIG_PM */
6997#endif /* CONFIG_PCI */
6998
6999EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7000
7001EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7002EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7003EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7004EXPORT_SYMBOL_GPL(ata_port_desc);
7005#ifdef CONFIG_PCI
7006EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7007#endif /* CONFIG_PCI */
7008EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7009EXPORT_SYMBOL_GPL(ata_link_abort);
7010EXPORT_SYMBOL_GPL(ata_port_abort);
7011EXPORT_SYMBOL_GPL(ata_port_freeze);
7012EXPORT_SYMBOL_GPL(sata_async_notification);
7013EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7014EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7015EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7016EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7017EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7018EXPORT_SYMBOL_GPL(ata_do_eh);
7019EXPORT_SYMBOL_GPL(ata_std_error_handler);
7020
7021EXPORT_SYMBOL_GPL(ata_cable_40wire);
7022EXPORT_SYMBOL_GPL(ata_cable_80wire);
7023EXPORT_SYMBOL_GPL(ata_cable_unknown);
7024EXPORT_SYMBOL_GPL(ata_cable_ignore);
7025EXPORT_SYMBOL_GPL(ata_cable_sata);