Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Functions to sequence FLUSH and FUA writes.
  3 *
  4 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  5 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 11 * properties and hardware capability.
 12 *
 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
 14 * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
 15 * that the device cache should be flushed before the data is executed, and
 16 * REQ_FUA means that the data must be on non-volatile media on request
 17 * completion.
 18 *
 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
 20 * difference.  The requests are either completed immediately if there's no
 21 * data or executed as normal requests otherwise.
 22 *
 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 25 *
 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 28 *
 29 * The actual execution of flush is double buffered.  Whenever a request
 30 * needs to execute PRE or POSTFLUSH, it queues at
 31 * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
 32 * flush is issued and the pending_idx is toggled.  When the flush
 33 * completes, all the requests which were pending are proceeded to the next
 34 * step.  This allows arbitrary merging of different types of FLUSH/FUA
 35 * requests.
 36 *
 37 * Currently, the following conditions are used to determine when to issue
 38 * flush.
 39 *
 40 * C1. At any given time, only one flush shall be in progress.  This makes
 41 *     double buffering sufficient.
 42 *
 43 * C2. Flush is deferred if any request is executing DATA of its sequence.
 44 *     This avoids issuing separate POSTFLUSHes for requests which shared
 45 *     PREFLUSH.
 46 *
 47 * C3. The second condition is ignored if there is a request which has
 48 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 49 *     starvation in the unlikely case where there are continuous stream of
 50 *     FUA (without FLUSH) requests.
 51 *
 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 53 * is beneficial.
 54 *
 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
 56 * Once while executing DATA and again after the whole sequence is
 57 * complete.  The first completion updates the contained bio but doesn't
 58 * finish it so that the bio submitter is notified only after the whole
 59 * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
 60 * req_bio_endio().
 61 *
 62 * The above peculiarity requires that each FLUSH/FUA request has only one
 63 * bio attached to it, which is guaranteed as they aren't allowed to be
 64 * merged in the usual way.
 65 */
 66
 67#include <linux/kernel.h>
 68#include <linux/module.h>
 69#include <linux/bio.h>
 70#include <linux/blkdev.h>
 71#include <linux/gfp.h>
 
 72
 73#include "blk.h"
 
 74
 75/* FLUSH/FUA sequences */
 76enum {
 77	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 78	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 79	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 80	REQ_FSEQ_DONE		= (1 << 3),
 81
 82	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 83				  REQ_FSEQ_POSTFLUSH,
 84
 85	/*
 86	 * If flush has been pending longer than the following timeout,
 87	 * it's issued even if flush_data requests are still in flight.
 88	 */
 89	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 90};
 91
 92static bool blk_kick_flush(struct request_queue *q);
 93
 94static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
 95{
 96	unsigned int policy = 0;
 97
 98	if (blk_rq_sectors(rq))
 99		policy |= REQ_FSEQ_DATA;
100
101	if (fflags & REQ_FLUSH) {
102		if (rq->cmd_flags & REQ_FLUSH)
103			policy |= REQ_FSEQ_PREFLUSH;
104		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
105			policy |= REQ_FSEQ_POSTFLUSH;
106	}
107	return policy;
108}
109
110static unsigned int blk_flush_cur_seq(struct request *rq)
111{
112	return 1 << ffz(rq->flush.seq);
113}
114
115static void blk_flush_restore_request(struct request *rq)
116{
117	/*
118	 * After flush data completion, @rq->bio is %NULL but we need to
119	 * complete the bio again.  @rq->biotail is guaranteed to equal the
120	 * original @rq->bio.  Restore it.
121	 */
122	rq->bio = rq->biotail;
123
124	/* make @rq a normal request */
125	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
126	rq->end_io = rq->flush.saved_end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128
129/**
130 * blk_flush_complete_seq - complete flush sequence
131 * @rq: FLUSH/FUA request being sequenced
132 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
133 * @error: whether an error occurred
134 *
135 * @rq just completed @seq part of its flush sequence, record the
136 * completion and trigger the next step.
137 *
138 * CONTEXT:
139 * spin_lock_irq(q->queue_lock)
140 *
141 * RETURNS:
142 * %true if requests were added to the dispatch queue, %false otherwise.
143 */
144static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
145				   int error)
146{
147	struct request_queue *q = rq->q;
148	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
149	bool queued = false;
150
151	BUG_ON(rq->flush.seq & seq);
152	rq->flush.seq |= seq;
153
154	if (likely(!error))
155		seq = blk_flush_cur_seq(rq);
156	else
157		seq = REQ_FSEQ_DONE;
158
159	switch (seq) {
160	case REQ_FSEQ_PREFLUSH:
161	case REQ_FSEQ_POSTFLUSH:
162		/* queue for flush */
163		if (list_empty(pending))
164			q->flush_pending_since = jiffies;
165		list_move_tail(&rq->flush.list, pending);
166		break;
167
168	case REQ_FSEQ_DATA:
169		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
170		list_add(&rq->queuelist, &q->queue_head);
171		queued = true;
172		break;
173
174	case REQ_FSEQ_DONE:
175		/*
176		 * @rq was previously adjusted by blk_flush_issue() for
177		 * flush sequencing and may already have gone through the
178		 * flush data request completion path.  Restore @rq for
179		 * normal completion and end it.
180		 */
181		BUG_ON(!list_empty(&rq->queuelist));
182		list_del_init(&rq->flush.list);
183		blk_flush_restore_request(rq);
184		__blk_end_request_all(rq, error);
 
 
 
185		break;
186
187	default:
188		BUG();
189	}
190
191	return blk_kick_flush(q) | queued;
 
192}
193
194static void flush_end_io(struct request *flush_rq, int error)
195{
196	struct request_queue *q = flush_rq->q;
197	struct list_head *running = &q->flush_queue[q->flush_running_idx];
198	bool queued = false;
199	struct request *rq, *n;
 
200
 
 
 
 
201	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
202
203	/* account completion of the flush request */
204	q->flush_running_idx ^= 1;
205	elv_completed_request(q, flush_rq);
 
 
206
207	/* and push the waiting requests to the next stage */
208	list_for_each_entry_safe(rq, n, running, flush.list) {
209		unsigned int seq = blk_flush_cur_seq(rq);
210
211		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
212		queued |= blk_flush_complete_seq(rq, seq, error);
213	}
214
215	/*
216	 * Kick the queue to avoid stall for two cases:
217	 * 1. Moving a request silently to empty queue_head may stall the
218	 * queue.
219	 * 2. When flush request is running in non-queueable queue, the
220	 * queue is hold. Restart the queue after flush request is finished
221	 * to avoid stall.
222	 * This function is called from request completion path and calling
223	 * directly into request_fn may confuse the driver.  Always use
224	 * kblockd.
225	 */
226	if (queued || q->flush_queue_delayed)
 
227		blk_run_queue_async(q);
 
228	q->flush_queue_delayed = 0;
 
 
229}
230
231/**
232 * blk_kick_flush - consider issuing flush request
233 * @q: request_queue being kicked
234 *
235 * Flush related states of @q have changed, consider issuing flush request.
236 * Please read the comment at the top of this file for more info.
237 *
238 * CONTEXT:
239 * spin_lock_irq(q->queue_lock)
240 *
241 * RETURNS:
242 * %true if flush was issued, %false otherwise.
243 */
244static bool blk_kick_flush(struct request_queue *q)
245{
246	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
247	struct request *first_rq =
248		list_first_entry(pending, struct request, flush.list);
249
250	/* C1 described at the top of this file */
251	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
252		return false;
253
254	/* C2 and C3 */
255	if (!list_empty(&q->flush_data_in_flight) &&
256	    time_before(jiffies,
257			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
258		return false;
259
260	/*
261	 * Issue flush and toggle pending_idx.  This makes pending_idx
262	 * different from running_idx, which means flush is in flight.
263	 */
264	blk_rq_init(q, &q->flush_rq);
265	q->flush_rq.cmd_type = REQ_TYPE_FS;
266	q->flush_rq.cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
267	q->flush_rq.rq_disk = first_rq->rq_disk;
268	q->flush_rq.end_io = flush_end_io;
269
270	q->flush_pending_idx ^= 1;
271	list_add_tail(&q->flush_rq.queuelist, &q->queue_head);
272	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273}
274
275static void flush_data_end_io(struct request *rq, int error)
276{
277	struct request_queue *q = rq->q;
278
279	/*
280	 * After populating an empty queue, kick it to avoid stall.  Read
281	 * the comment in flush_end_io().
282	 */
283	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
284		blk_run_queue_async(q);
285}
286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287/**
288 * blk_insert_flush - insert a new FLUSH/FUA request
289 * @rq: request to insert
290 *
291 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
 
292 * @rq is being submitted.  Analyze what needs to be done and put it on the
293 * right queue.
294 *
295 * CONTEXT:
296 * spin_lock_irq(q->queue_lock)
297 */
298void blk_insert_flush(struct request *rq)
299{
300	struct request_queue *q = rq->q;
301	unsigned int fflags = q->flush_flags;	/* may change, cache */
302	unsigned int policy = blk_flush_policy(fflags, rq);
303
304	/*
305	 * @policy now records what operations need to be done.  Adjust
306	 * REQ_FLUSH and FUA for the driver.
307	 */
308	rq->cmd_flags &= ~REQ_FLUSH;
309	if (!(fflags & REQ_FUA))
310		rq->cmd_flags &= ~REQ_FUA;
311
312	/*
313	 * An empty flush handed down from a stacking driver may
314	 * translate into nothing if the underlying device does not
315	 * advertise a write-back cache.  In this case, simply
316	 * complete the request.
317	 */
318	if (!policy) {
319		__blk_end_bidi_request(rq, 0, 0, 0);
 
 
 
320		return;
321	}
322
323	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
324
325	/*
326	 * If there's data but flush is not necessary, the request can be
327	 * processed directly without going through flush machinery.  Queue
328	 * for normal execution.
329	 */
330	if ((policy & REQ_FSEQ_DATA) &&
331	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
332		list_add_tail(&rq->queuelist, &q->queue_head);
 
 
 
333		return;
334	}
335
336	/*
337	 * @rq should go through flush machinery.  Mark it part of flush
338	 * sequence and submit for further processing.
339	 */
340	memset(&rq->flush, 0, sizeof(rq->flush));
341	INIT_LIST_HEAD(&rq->flush.list);
342	rq->cmd_flags |= REQ_FLUSH_SEQ;
343	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
 
 
 
 
 
 
 
 
344	rq->end_io = flush_data_end_io;
345
346	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
347}
348
349/**
350 * blk_abort_flushes - @q is being aborted, abort flush requests
351 * @q: request_queue being aborted
352 *
353 * To be called from elv_abort_queue().  @q is being aborted.  Prepare all
354 * FLUSH/FUA requests for abortion.
355 *
356 * CONTEXT:
357 * spin_lock_irq(q->queue_lock)
358 */
359void blk_abort_flushes(struct request_queue *q)
360{
361	struct request *rq, *n;
362	int i;
363
364	/*
365	 * Requests in flight for data are already owned by the dispatch
366	 * queue or the device driver.  Just restore for normal completion.
367	 */
368	list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
369		list_del_init(&rq->flush.list);
370		blk_flush_restore_request(rq);
371	}
372
373	/*
374	 * We need to give away requests on flush queues.  Restore for
375	 * normal completion and put them on the dispatch queue.
376	 */
377	for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
378		list_for_each_entry_safe(rq, n, &q->flush_queue[i],
379					 flush.list) {
380			list_del_init(&rq->flush.list);
381			blk_flush_restore_request(rq);
382			list_add_tail(&rq->queuelist, &q->queue_head);
383		}
384	}
385}
386
387static void bio_end_flush(struct bio *bio, int err)
388{
389	if (err)
390		clear_bit(BIO_UPTODATE, &bio->bi_flags);
391	if (bio->bi_private)
392		complete(bio->bi_private);
393	bio_put(bio);
394}
395
396/**
397 * blkdev_issue_flush - queue a flush
398 * @bdev:	blockdev to issue flush for
399 * @gfp_mask:	memory allocation flags (for bio_alloc)
400 * @error_sector:	error sector
401 *
402 * Description:
403 *    Issue a flush for the block device in question. Caller can supply
404 *    room for storing the error offset in case of a flush error, if they
405 *    wish to. If WAIT flag is not passed then caller may check only what
406 *    request was pushed in some internal queue for later handling.
407 */
408int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
409		sector_t *error_sector)
410{
411	DECLARE_COMPLETION_ONSTACK(wait);
412	struct request_queue *q;
413	struct bio *bio;
414	int ret = 0;
415
416	if (bdev->bd_disk == NULL)
417		return -ENXIO;
418
419	q = bdev_get_queue(bdev);
420	if (!q)
421		return -ENXIO;
422
423	/*
424	 * some block devices may not have their queue correctly set up here
425	 * (e.g. loop device without a backing file) and so issuing a flush
426	 * here will panic. Ensure there is a request function before issuing
427	 * the flush.
428	 */
429	if (!q->make_request_fn)
430		return -ENXIO;
431
432	bio = bio_alloc(gfp_mask, 0);
433	bio->bi_end_io = bio_end_flush;
434	bio->bi_bdev = bdev;
435	bio->bi_private = &wait;
436
437	bio_get(bio);
438	submit_bio(WRITE_FLUSH, bio);
439	wait_for_completion(&wait);
440
441	/*
442	 * The driver must store the error location in ->bi_sector, if
443	 * it supports it. For non-stacked drivers, this should be
444	 * copied from blk_rq_pos(rq).
445	 */
446	if (error_sector)
447               *error_sector = bio->bi_sector;
448
449	if (!bio_flagged(bio, BIO_UPTODATE))
450		ret = -EIO;
451
452	bio_put(bio);
453	return ret;
454}
455EXPORT_SYMBOL(blkdev_issue_flush);
v3.15
  1/*
  2 * Functions to sequence FLUSH and FUA writes.
  3 *
  4 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
  5 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
  6 *
  7 * This file is released under the GPLv2.
  8 *
  9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 11 * properties and hardware capability.
 12 *
 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
 14 * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
 15 * that the device cache should be flushed before the data is executed, and
 16 * REQ_FUA means that the data must be on non-volatile media on request
 17 * completion.
 18 *
 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
 20 * difference.  The requests are either completed immediately if there's no
 21 * data or executed as normal requests otherwise.
 22 *
 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 25 *
 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 28 *
 29 * The actual execution of flush is double buffered.  Whenever a request
 30 * needs to execute PRE or POSTFLUSH, it queues at
 31 * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
 32 * flush is issued and the pending_idx is toggled.  When the flush
 33 * completes, all the requests which were pending are proceeded to the next
 34 * step.  This allows arbitrary merging of different types of FLUSH/FUA
 35 * requests.
 36 *
 37 * Currently, the following conditions are used to determine when to issue
 38 * flush.
 39 *
 40 * C1. At any given time, only one flush shall be in progress.  This makes
 41 *     double buffering sufficient.
 42 *
 43 * C2. Flush is deferred if any request is executing DATA of its sequence.
 44 *     This avoids issuing separate POSTFLUSHes for requests which shared
 45 *     PREFLUSH.
 46 *
 47 * C3. The second condition is ignored if there is a request which has
 48 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 49 *     starvation in the unlikely case where there are continuous stream of
 50 *     FUA (without FLUSH) requests.
 51 *
 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 53 * is beneficial.
 54 *
 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
 56 * Once while executing DATA and again after the whole sequence is
 57 * complete.  The first completion updates the contained bio but doesn't
 58 * finish it so that the bio submitter is notified only after the whole
 59 * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
 60 * req_bio_endio().
 61 *
 62 * The above peculiarity requires that each FLUSH/FUA request has only one
 63 * bio attached to it, which is guaranteed as they aren't allowed to be
 64 * merged in the usual way.
 65 */
 66
 67#include <linux/kernel.h>
 68#include <linux/module.h>
 69#include <linux/bio.h>
 70#include <linux/blkdev.h>
 71#include <linux/gfp.h>
 72#include <linux/blk-mq.h>
 73
 74#include "blk.h"
 75#include "blk-mq.h"
 76
 77/* FLUSH/FUA sequences */
 78enum {
 79	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
 80	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
 81	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
 82	REQ_FSEQ_DONE		= (1 << 3),
 83
 84	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
 85				  REQ_FSEQ_POSTFLUSH,
 86
 87	/*
 88	 * If flush has been pending longer than the following timeout,
 89	 * it's issued even if flush_data requests are still in flight.
 90	 */
 91	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
 92};
 93
 94static bool blk_kick_flush(struct request_queue *q);
 95
 96static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
 97{
 98	unsigned int policy = 0;
 99
100	if (blk_rq_sectors(rq))
101		policy |= REQ_FSEQ_DATA;
102
103	if (fflags & REQ_FLUSH) {
104		if (rq->cmd_flags & REQ_FLUSH)
105			policy |= REQ_FSEQ_PREFLUSH;
106		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107			policy |= REQ_FSEQ_POSTFLUSH;
108	}
109	return policy;
110}
111
112static unsigned int blk_flush_cur_seq(struct request *rq)
113{
114	return 1 << ffz(rq->flush.seq);
115}
116
117static void blk_flush_restore_request(struct request *rq)
118{
119	/*
120	 * After flush data completion, @rq->bio is %NULL but we need to
121	 * complete the bio again.  @rq->biotail is guaranteed to equal the
122	 * original @rq->bio.  Restore it.
123	 */
124	rq->bio = rq->biotail;
125
126	/* make @rq a normal request */
127	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128	rq->end_io = rq->flush.saved_end_io;
129
130	blk_clear_rq_complete(rq);
131}
132
133static void mq_flush_run(struct work_struct *work)
134{
135	struct request *rq;
136
137	rq = container_of(work, struct request, mq_flush_work);
138
139	memset(&rq->csd, 0, sizeof(rq->csd));
140	blk_mq_insert_request(rq, false, true, false);
141}
142
143static bool blk_flush_queue_rq(struct request *rq, bool add_front)
144{
145	if (rq->q->mq_ops) {
146		INIT_WORK(&rq->mq_flush_work, mq_flush_run);
147		kblockd_schedule_work(rq->q, &rq->mq_flush_work);
148		return false;
149	} else {
150		if (add_front)
151			list_add(&rq->queuelist, &rq->q->queue_head);
152		else
153			list_add_tail(&rq->queuelist, &rq->q->queue_head);
154		return true;
155	}
156}
157
158/**
159 * blk_flush_complete_seq - complete flush sequence
160 * @rq: FLUSH/FUA request being sequenced
161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162 * @error: whether an error occurred
163 *
164 * @rq just completed @seq part of its flush sequence, record the
165 * completion and trigger the next step.
166 *
167 * CONTEXT:
168 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
169 *
170 * RETURNS:
171 * %true if requests were added to the dispatch queue, %false otherwise.
172 */
173static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
174				   int error)
175{
176	struct request_queue *q = rq->q;
177	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
178	bool queued = false, kicked;
179
180	BUG_ON(rq->flush.seq & seq);
181	rq->flush.seq |= seq;
182
183	if (likely(!error))
184		seq = blk_flush_cur_seq(rq);
185	else
186		seq = REQ_FSEQ_DONE;
187
188	switch (seq) {
189	case REQ_FSEQ_PREFLUSH:
190	case REQ_FSEQ_POSTFLUSH:
191		/* queue for flush */
192		if (list_empty(pending))
193			q->flush_pending_since = jiffies;
194		list_move_tail(&rq->flush.list, pending);
195		break;
196
197	case REQ_FSEQ_DATA:
198		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
199		queued = blk_flush_queue_rq(rq, true);
 
200		break;
201
202	case REQ_FSEQ_DONE:
203		/*
204		 * @rq was previously adjusted by blk_flush_issue() for
205		 * flush sequencing and may already have gone through the
206		 * flush data request completion path.  Restore @rq for
207		 * normal completion and end it.
208		 */
209		BUG_ON(!list_empty(&rq->queuelist));
210		list_del_init(&rq->flush.list);
211		blk_flush_restore_request(rq);
212		if (q->mq_ops)
213			blk_mq_end_io(rq, error);
214		else
215			__blk_end_request_all(rq, error);
216		break;
217
218	default:
219		BUG();
220	}
221
222	kicked = blk_kick_flush(q);
223	return kicked | queued;
224}
225
226static void flush_end_io(struct request *flush_rq, int error)
227{
228	struct request_queue *q = flush_rq->q;
229	struct list_head *running;
230	bool queued = false;
231	struct request *rq, *n;
232	unsigned long flags = 0;
233
234	if (q->mq_ops)
235		spin_lock_irqsave(&q->mq_flush_lock, flags);
236
237	running = &q->flush_queue[q->flush_running_idx];
238	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
239
240	/* account completion of the flush request */
241	q->flush_running_idx ^= 1;
242
243	if (!q->mq_ops)
244		elv_completed_request(q, flush_rq);
245
246	/* and push the waiting requests to the next stage */
247	list_for_each_entry_safe(rq, n, running, flush.list) {
248		unsigned int seq = blk_flush_cur_seq(rq);
249
250		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
251		queued |= blk_flush_complete_seq(rq, seq, error);
252	}
253
254	/*
255	 * Kick the queue to avoid stall for two cases:
256	 * 1. Moving a request silently to empty queue_head may stall the
257	 * queue.
258	 * 2. When flush request is running in non-queueable queue, the
259	 * queue is hold. Restart the queue after flush request is finished
260	 * to avoid stall.
261	 * This function is called from request completion path and calling
262	 * directly into request_fn may confuse the driver.  Always use
263	 * kblockd.
264	 */
265	if (queued || q->flush_queue_delayed) {
266		WARN_ON(q->mq_ops);
267		blk_run_queue_async(q);
268	}
269	q->flush_queue_delayed = 0;
270	if (q->mq_ops)
271		spin_unlock_irqrestore(&q->mq_flush_lock, flags);
272}
273
274/**
275 * blk_kick_flush - consider issuing flush request
276 * @q: request_queue being kicked
277 *
278 * Flush related states of @q have changed, consider issuing flush request.
279 * Please read the comment at the top of this file for more info.
280 *
281 * CONTEXT:
282 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
283 *
284 * RETURNS:
285 * %true if flush was issued, %false otherwise.
286 */
287static bool blk_kick_flush(struct request_queue *q)
288{
289	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
290	struct request *first_rq =
291		list_first_entry(pending, struct request, flush.list);
292
293	/* C1 described at the top of this file */
294	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
295		return false;
296
297	/* C2 and C3 */
298	if (!list_empty(&q->flush_data_in_flight) &&
299	    time_before(jiffies,
300			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
301		return false;
302
303	/*
304	 * Issue flush and toggle pending_idx.  This makes pending_idx
305	 * different from running_idx, which means flush is in flight.
306	 */
 
 
 
 
 
 
307	q->flush_pending_idx ^= 1;
308
309	if (q->mq_ops) {
310		struct blk_mq_ctx *ctx = first_rq->mq_ctx;
311		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
312
313		blk_mq_rq_init(hctx, q->flush_rq);
314		q->flush_rq->mq_ctx = ctx;
315
316		/*
317		 * Reuse the tag value from the fist waiting request,
318		 * with blk-mq the tag is generated during request
319		 * allocation and drivers can rely on it being inside
320		 * the range they asked for.
321		 */
322		q->flush_rq->tag = first_rq->tag;
323	} else {
324		blk_rq_init(q, q->flush_rq);
325	}
326
327	q->flush_rq->cmd_type = REQ_TYPE_FS;
328	q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
329	q->flush_rq->rq_disk = first_rq->rq_disk;
330	q->flush_rq->end_io = flush_end_io;
331
332	return blk_flush_queue_rq(q->flush_rq, false);
333}
334
335static void flush_data_end_io(struct request *rq, int error)
336{
337	struct request_queue *q = rq->q;
338
339	/*
340	 * After populating an empty queue, kick it to avoid stall.  Read
341	 * the comment in flush_end_io().
342	 */
343	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
344		blk_run_queue_async(q);
345}
346
347static void mq_flush_data_end_io(struct request *rq, int error)
348{
349	struct request_queue *q = rq->q;
350	struct blk_mq_hw_ctx *hctx;
351	struct blk_mq_ctx *ctx;
352	unsigned long flags;
353
354	ctx = rq->mq_ctx;
355	hctx = q->mq_ops->map_queue(q, ctx->cpu);
356
357	/*
358	 * After populating an empty queue, kick it to avoid stall.  Read
359	 * the comment in flush_end_io().
360	 */
361	spin_lock_irqsave(&q->mq_flush_lock, flags);
362	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
363		blk_mq_run_hw_queue(hctx, true);
364	spin_unlock_irqrestore(&q->mq_flush_lock, flags);
365}
366
367/**
368 * blk_insert_flush - insert a new FLUSH/FUA request
369 * @rq: request to insert
370 *
371 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
372 * or __blk_mq_run_hw_queue() to dispatch request.
373 * @rq is being submitted.  Analyze what needs to be done and put it on the
374 * right queue.
375 *
376 * CONTEXT:
377 * spin_lock_irq(q->queue_lock) in !mq case
378 */
379void blk_insert_flush(struct request *rq)
380{
381	struct request_queue *q = rq->q;
382	unsigned int fflags = q->flush_flags;	/* may change, cache */
383	unsigned int policy = blk_flush_policy(fflags, rq);
384
385	/*
386	 * @policy now records what operations need to be done.  Adjust
387	 * REQ_FLUSH and FUA for the driver.
388	 */
389	rq->cmd_flags &= ~REQ_FLUSH;
390	if (!(fflags & REQ_FUA))
391		rq->cmd_flags &= ~REQ_FUA;
392
393	/*
394	 * An empty flush handed down from a stacking driver may
395	 * translate into nothing if the underlying device does not
396	 * advertise a write-back cache.  In this case, simply
397	 * complete the request.
398	 */
399	if (!policy) {
400		if (q->mq_ops)
401			blk_mq_end_io(rq, 0);
402		else
403			__blk_end_bidi_request(rq, 0, 0, 0);
404		return;
405	}
406
407	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
408
409	/*
410	 * If there's data but flush is not necessary, the request can be
411	 * processed directly without going through flush machinery.  Queue
412	 * for normal execution.
413	 */
414	if ((policy & REQ_FSEQ_DATA) &&
415	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
416		if (q->mq_ops) {
417			blk_mq_insert_request(rq, false, false, true);
418		} else
419			list_add_tail(&rq->queuelist, &q->queue_head);
420		return;
421	}
422
423	/*
424	 * @rq should go through flush machinery.  Mark it part of flush
425	 * sequence and submit for further processing.
426	 */
427	memset(&rq->flush, 0, sizeof(rq->flush));
428	INIT_LIST_HEAD(&rq->flush.list);
429	rq->cmd_flags |= REQ_FLUSH_SEQ;
430	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
431	if (q->mq_ops) {
432		rq->end_io = mq_flush_data_end_io;
433
434		spin_lock_irq(&q->mq_flush_lock);
435		blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
436		spin_unlock_irq(&q->mq_flush_lock);
437		return;
438	}
439	rq->end_io = flush_data_end_io;
440
441	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
442}
443
444/**
445 * blk_abort_flushes - @q is being aborted, abort flush requests
446 * @q: request_queue being aborted
447 *
448 * To be called from elv_abort_queue().  @q is being aborted.  Prepare all
449 * FLUSH/FUA requests for abortion.
450 *
451 * CONTEXT:
452 * spin_lock_irq(q->queue_lock)
453 */
454void blk_abort_flushes(struct request_queue *q)
455{
456	struct request *rq, *n;
457	int i;
458
459	/*
460	 * Requests in flight for data are already owned by the dispatch
461	 * queue or the device driver.  Just restore for normal completion.
462	 */
463	list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
464		list_del_init(&rq->flush.list);
465		blk_flush_restore_request(rq);
466	}
467
468	/*
469	 * We need to give away requests on flush queues.  Restore for
470	 * normal completion and put them on the dispatch queue.
471	 */
472	for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
473		list_for_each_entry_safe(rq, n, &q->flush_queue[i],
474					 flush.list) {
475			list_del_init(&rq->flush.list);
476			blk_flush_restore_request(rq);
477			list_add_tail(&rq->queuelist, &q->queue_head);
478		}
479	}
480}
481
 
 
 
 
 
 
 
 
 
482/**
483 * blkdev_issue_flush - queue a flush
484 * @bdev:	blockdev to issue flush for
485 * @gfp_mask:	memory allocation flags (for bio_alloc)
486 * @error_sector:	error sector
487 *
488 * Description:
489 *    Issue a flush for the block device in question. Caller can supply
490 *    room for storing the error offset in case of a flush error, if they
491 *    wish to. If WAIT flag is not passed then caller may check only what
492 *    request was pushed in some internal queue for later handling.
493 */
494int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
495		sector_t *error_sector)
496{
 
497	struct request_queue *q;
498	struct bio *bio;
499	int ret = 0;
500
501	if (bdev->bd_disk == NULL)
502		return -ENXIO;
503
504	q = bdev_get_queue(bdev);
505	if (!q)
506		return -ENXIO;
507
508	/*
509	 * some block devices may not have their queue correctly set up here
510	 * (e.g. loop device without a backing file) and so issuing a flush
511	 * here will panic. Ensure there is a request function before issuing
512	 * the flush.
513	 */
514	if (!q->make_request_fn)
515		return -ENXIO;
516
517	bio = bio_alloc(gfp_mask, 0);
 
518	bio->bi_bdev = bdev;
 
519
520	ret = submit_bio_wait(WRITE_FLUSH, bio);
 
 
521
522	/*
523	 * The driver must store the error location in ->bi_sector, if
524	 * it supports it. For non-stacked drivers, this should be
525	 * copied from blk_rq_pos(rq).
526	 */
527	if (error_sector)
528		*error_sector = bio->bi_iter.bi_sector;
 
 
 
529
530	bio_put(bio);
531	return ret;
532}
533EXPORT_SYMBOL(blkdev_issue_flush);
534
535void blk_mq_init_flush(struct request_queue *q)
536{
537	spin_lock_init(&q->mq_flush_lock);
538}