Linux Audio

Check our new training course

Loading...
v3.5.6
   1#include <linux/bootmem.h>
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
   8#include <linux/delay.h>
   9#include <linux/sched.h>
  10#include <linux/init.h>
  11#include <linux/kgdb.h>
  12#include <linux/smp.h>
  13#include <linux/io.h>
  14
  15#include <asm/stackprotector.h>
  16#include <asm/perf_event.h>
  17#include <asm/mmu_context.h>
  18#include <asm/archrandom.h>
  19#include <asm/hypervisor.h>
  20#include <asm/processor.h>
  21#include <asm/debugreg.h>
  22#include <asm/sections.h>
  23#include <linux/topology.h>
  24#include <linux/cpumask.h>
  25#include <asm/pgtable.h>
  26#include <linux/atomic.h>
  27#include <asm/proto.h>
  28#include <asm/setup.h>
  29#include <asm/apic.h>
  30#include <asm/desc.h>
  31#include <asm/i387.h>
  32#include <asm/fpu-internal.h>
  33#include <asm/mtrr.h>
  34#include <linux/numa.h>
  35#include <asm/asm.h>
  36#include <asm/cpu.h>
  37#include <asm/mce.h>
  38#include <asm/msr.h>
  39#include <asm/pat.h>
 
 
  40
  41#ifdef CONFIG_X86_LOCAL_APIC
  42#include <asm/uv/uv.h>
  43#endif
  44
  45#include "cpu.h"
  46
  47/* all of these masks are initialized in setup_cpu_local_masks() */
  48cpumask_var_t cpu_initialized_mask;
  49cpumask_var_t cpu_callout_mask;
  50cpumask_var_t cpu_callin_mask;
  51
  52/* representing cpus for which sibling maps can be computed */
  53cpumask_var_t cpu_sibling_setup_mask;
  54
  55/* correctly size the local cpu masks */
  56void __init setup_cpu_local_masks(void)
  57{
  58	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  59	alloc_bootmem_cpumask_var(&cpu_callin_mask);
  60	alloc_bootmem_cpumask_var(&cpu_callout_mask);
  61	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  62}
  63
  64static void __cpuinit default_init(struct cpuinfo_x86 *c)
  65{
  66#ifdef CONFIG_X86_64
  67	cpu_detect_cache_sizes(c);
  68#else
  69	/* Not much we can do here... */
  70	/* Check if at least it has cpuid */
  71	if (c->cpuid_level == -1) {
  72		/* No cpuid. It must be an ancient CPU */
  73		if (c->x86 == 4)
  74			strcpy(c->x86_model_id, "486");
  75		else if (c->x86 == 3)
  76			strcpy(c->x86_model_id, "386");
  77	}
  78#endif
  79}
  80
  81static const struct cpu_dev __cpuinitconst default_cpu = {
  82	.c_init		= default_init,
  83	.c_vendor	= "Unknown",
  84	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
  85};
  86
  87static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  88
  89DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  90#ifdef CONFIG_X86_64
  91	/*
  92	 * We need valid kernel segments for data and code in long mode too
  93	 * IRET will check the segment types  kkeil 2000/10/28
  94	 * Also sysret mandates a special GDT layout
  95	 *
  96	 * TLS descriptors are currently at a different place compared to i386.
  97	 * Hopefully nobody expects them at a fixed place (Wine?)
  98	 */
  99	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 100	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 101	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 102	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 103	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 104	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 105#else
 106	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 107	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 108	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 109	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 110	/*
 111	 * Segments used for calling PnP BIOS have byte granularity.
 112	 * They code segments and data segments have fixed 64k limits,
 113	 * the transfer segment sizes are set at run time.
 114	 */
 115	/* 32-bit code */
 116	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 117	/* 16-bit code */
 118	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 119	/* 16-bit data */
 120	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 121	/* 16-bit data */
 122	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 123	/* 16-bit data */
 124	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 125	/*
 126	 * The APM segments have byte granularity and their bases
 127	 * are set at run time.  All have 64k limits.
 128	 */
 129	/* 32-bit code */
 130	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 131	/* 16-bit code */
 132	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 133	/* data */
 134	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 135
 136	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 137	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 138	GDT_STACK_CANARY_INIT
 139#endif
 140} };
 141EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 142
 143static int __init x86_xsave_setup(char *s)
 144{
 145	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 146	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 147	setup_clear_cpu_cap(X86_FEATURE_AVX);
 148	setup_clear_cpu_cap(X86_FEATURE_AVX2);
 149	return 1;
 150}
 151__setup("noxsave", x86_xsave_setup);
 152
 153static int __init x86_xsaveopt_setup(char *s)
 154{
 155	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 156	return 1;
 157}
 158__setup("noxsaveopt", x86_xsaveopt_setup);
 159
 160#ifdef CONFIG_X86_32
 161static int cachesize_override __cpuinitdata = -1;
 162static int disable_x86_serial_nr __cpuinitdata = 1;
 163
 164static int __init cachesize_setup(char *str)
 165{
 166	get_option(&str, &cachesize_override);
 167	return 1;
 168}
 169__setup("cachesize=", cachesize_setup);
 170
 171static int __init x86_fxsr_setup(char *s)
 172{
 173	setup_clear_cpu_cap(X86_FEATURE_FXSR);
 174	setup_clear_cpu_cap(X86_FEATURE_XMM);
 175	return 1;
 176}
 177__setup("nofxsr", x86_fxsr_setup);
 178
 179static int __init x86_sep_setup(char *s)
 180{
 181	setup_clear_cpu_cap(X86_FEATURE_SEP);
 182	return 1;
 183}
 184__setup("nosep", x86_sep_setup);
 185
 186/* Standard macro to see if a specific flag is changeable */
 187static inline int flag_is_changeable_p(u32 flag)
 188{
 189	u32 f1, f2;
 190
 191	/*
 192	 * Cyrix and IDT cpus allow disabling of CPUID
 193	 * so the code below may return different results
 194	 * when it is executed before and after enabling
 195	 * the CPUID. Add "volatile" to not allow gcc to
 196	 * optimize the subsequent calls to this function.
 197	 */
 198	asm volatile ("pushfl		\n\t"
 199		      "pushfl		\n\t"
 200		      "popl %0		\n\t"
 201		      "movl %0, %1	\n\t"
 202		      "xorl %2, %0	\n\t"
 203		      "pushl %0		\n\t"
 204		      "popfl		\n\t"
 205		      "pushfl		\n\t"
 206		      "popl %0		\n\t"
 207		      "popfl		\n\t"
 208
 209		      : "=&r" (f1), "=&r" (f2)
 210		      : "ir" (flag));
 211
 212	return ((f1^f2) & flag) != 0;
 213}
 214
 215/* Probe for the CPUID instruction */
 216static int __cpuinit have_cpuid_p(void)
 217{
 218	return flag_is_changeable_p(X86_EFLAGS_ID);
 219}
 220
 221static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 222{
 223	unsigned long lo, hi;
 224
 225	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 226		return;
 227
 228	/* Disable processor serial number: */
 229
 230	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 231	lo |= 0x200000;
 232	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 233
 234	printk(KERN_NOTICE "CPU serial number disabled.\n");
 235	clear_cpu_cap(c, X86_FEATURE_PN);
 236
 237	/* Disabling the serial number may affect the cpuid level */
 238	c->cpuid_level = cpuid_eax(0);
 239}
 240
 241static int __init x86_serial_nr_setup(char *s)
 242{
 243	disable_x86_serial_nr = 0;
 244	return 1;
 245}
 246__setup("serialnumber", x86_serial_nr_setup);
 247#else
 248static inline int flag_is_changeable_p(u32 flag)
 249{
 250	return 1;
 251}
 252/* Probe for the CPUID instruction */
 253static inline int have_cpuid_p(void)
 254{
 255	return 1;
 256}
 257static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 258{
 259}
 260#endif
 261
 262static int disable_smep __cpuinitdata;
 263static __init int setup_disable_smep(char *arg)
 264{
 265	disable_smep = 1;
 266	return 1;
 267}
 268__setup("nosmep", setup_disable_smep);
 269
 270static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 271{
 272	if (cpu_has(c, X86_FEATURE_SMEP)) {
 273		if (unlikely(disable_smep)) {
 274			setup_clear_cpu_cap(X86_FEATURE_SMEP);
 275			clear_in_cr4(X86_CR4_SMEP);
 276		} else
 277			set_in_cr4(X86_CR4_SMEP);
 
 
 
 
 
 
 278	}
 279}
 280
 281/*
 282 * Some CPU features depend on higher CPUID levels, which may not always
 283 * be available due to CPUID level capping or broken virtualization
 284 * software.  Add those features to this table to auto-disable them.
 285 */
 286struct cpuid_dependent_feature {
 287	u32 feature;
 288	u32 level;
 289};
 290
 291static const struct cpuid_dependent_feature __cpuinitconst
 292cpuid_dependent_features[] = {
 293	{ X86_FEATURE_MWAIT,		0x00000005 },
 294	{ X86_FEATURE_DCA,		0x00000009 },
 295	{ X86_FEATURE_XSAVE,		0x0000000d },
 296	{ 0, 0 }
 297};
 298
 299static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 300{
 301	const struct cpuid_dependent_feature *df;
 302
 303	for (df = cpuid_dependent_features; df->feature; df++) {
 304
 305		if (!cpu_has(c, df->feature))
 306			continue;
 307		/*
 308		 * Note: cpuid_level is set to -1 if unavailable, but
 309		 * extended_extended_level is set to 0 if unavailable
 310		 * and the legitimate extended levels are all negative
 311		 * when signed; hence the weird messing around with
 312		 * signs here...
 313		 */
 314		if (!((s32)df->level < 0 ?
 315		     (u32)df->level > (u32)c->extended_cpuid_level :
 316		     (s32)df->level > (s32)c->cpuid_level))
 317			continue;
 318
 319		clear_cpu_cap(c, df->feature);
 320		if (!warn)
 321			continue;
 322
 323		printk(KERN_WARNING
 324		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
 325				x86_cap_flags[df->feature], df->level);
 326	}
 327}
 328
 329/*
 330 * Naming convention should be: <Name> [(<Codename>)]
 331 * This table only is used unless init_<vendor>() below doesn't set it;
 332 * in particular, if CPUID levels 0x80000002..4 are supported, this
 333 * isn't used
 334 */
 335
 336/* Look up CPU names by table lookup. */
 337static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
 338{
 339	const struct cpu_model_info *info;
 
 340
 341	if (c->x86_model >= 16)
 342		return NULL;	/* Range check */
 343
 344	if (!this_cpu)
 345		return NULL;
 346
 347	info = this_cpu->c_models;
 348
 349	while (info && info->family) {
 350		if (info->family == c->x86)
 351			return info->model_names[c->x86_model];
 352		info++;
 353	}
 
 354	return NULL;		/* Not found */
 355}
 356
 357__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
 358__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
 359
 360void load_percpu_segment(int cpu)
 361{
 362#ifdef CONFIG_X86_32
 363	loadsegment(fs, __KERNEL_PERCPU);
 364#else
 365	loadsegment(gs, 0);
 366	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 367#endif
 368	load_stack_canary_segment();
 369}
 370
 371/*
 372 * Current gdt points %fs at the "master" per-cpu area: after this,
 373 * it's on the real one.
 374 */
 375void switch_to_new_gdt(int cpu)
 376{
 377	struct desc_ptr gdt_descr;
 378
 379	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
 380	gdt_descr.size = GDT_SIZE - 1;
 381	load_gdt(&gdt_descr);
 382	/* Reload the per-cpu base */
 383
 384	load_percpu_segment(cpu);
 385}
 386
 387static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
 388
 389static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
 390{
 391	unsigned int *v;
 392	char *p, *q;
 393
 394	if (c->extended_cpuid_level < 0x80000004)
 395		return;
 396
 397	v = (unsigned int *)c->x86_model_id;
 398	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 399	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 400	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 401	c->x86_model_id[48] = 0;
 402
 403	/*
 404	 * Intel chips right-justify this string for some dumb reason;
 405	 * undo that brain damage:
 406	 */
 407	p = q = &c->x86_model_id[0];
 408	while (*p == ' ')
 409		p++;
 410	if (p != q) {
 411		while (*p)
 412			*q++ = *p++;
 413		while (q <= &c->x86_model_id[48])
 414			*q++ = '\0';	/* Zero-pad the rest */
 415	}
 416}
 417
 418void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 419{
 420	unsigned int n, dummy, ebx, ecx, edx, l2size;
 421
 422	n = c->extended_cpuid_level;
 423
 424	if (n >= 0x80000005) {
 425		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 426		c->x86_cache_size = (ecx>>24) + (edx>>24);
 427#ifdef CONFIG_X86_64
 428		/* On K8 L1 TLB is inclusive, so don't count it */
 429		c->x86_tlbsize = 0;
 430#endif
 431	}
 432
 433	if (n < 0x80000006)	/* Some chips just has a large L1. */
 434		return;
 435
 436	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 437	l2size = ecx >> 16;
 438
 439#ifdef CONFIG_X86_64
 440	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 441#else
 442	/* do processor-specific cache resizing */
 443	if (this_cpu->c_size_cache)
 444		l2size = this_cpu->c_size_cache(c, l2size);
 445
 446	/* Allow user to override all this if necessary. */
 447	if (cachesize_override != -1)
 448		l2size = cachesize_override;
 449
 450	if (l2size == 0)
 451		return;		/* Again, no L2 cache is possible */
 452#endif
 453
 454	c->x86_cache_size = l2size;
 455}
 456
 457void __cpuinit detect_ht(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458{
 459#ifdef CONFIG_X86_HT
 460	u32 eax, ebx, ecx, edx;
 461	int index_msb, core_bits;
 462	static bool printed;
 463
 464	if (!cpu_has(c, X86_FEATURE_HT))
 465		return;
 466
 467	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 468		goto out;
 469
 470	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 471		return;
 472
 473	cpuid(1, &eax, &ebx, &ecx, &edx);
 474
 475	smp_num_siblings = (ebx & 0xff0000) >> 16;
 476
 477	if (smp_num_siblings == 1) {
 478		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
 479		goto out;
 480	}
 481
 482	if (smp_num_siblings <= 1)
 483		goto out;
 484
 485	index_msb = get_count_order(smp_num_siblings);
 486	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 487
 488	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 489
 490	index_msb = get_count_order(smp_num_siblings);
 491
 492	core_bits = get_count_order(c->x86_max_cores);
 493
 494	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 495				       ((1 << core_bits) - 1);
 496
 497out:
 498	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 499		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 500		       c->phys_proc_id);
 501		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 502		       c->cpu_core_id);
 503		printed = 1;
 504	}
 505#endif
 506}
 507
 508static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
 509{
 510	char *v = c->x86_vendor_id;
 511	int i;
 512
 513	for (i = 0; i < X86_VENDOR_NUM; i++) {
 514		if (!cpu_devs[i])
 515			break;
 516
 517		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 518		    (cpu_devs[i]->c_ident[1] &&
 519		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 520
 521			this_cpu = cpu_devs[i];
 522			c->x86_vendor = this_cpu->c_x86_vendor;
 523			return;
 524		}
 525	}
 526
 527	printk_once(KERN_ERR
 528			"CPU: vendor_id '%s' unknown, using generic init.\n" \
 529			"CPU: Your system may be unstable.\n", v);
 530
 531	c->x86_vendor = X86_VENDOR_UNKNOWN;
 532	this_cpu = &default_cpu;
 533}
 534
 535void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
 536{
 537	/* Get vendor name */
 538	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 539	      (unsigned int *)&c->x86_vendor_id[0],
 540	      (unsigned int *)&c->x86_vendor_id[8],
 541	      (unsigned int *)&c->x86_vendor_id[4]);
 542
 543	c->x86 = 4;
 544	/* Intel-defined flags: level 0x00000001 */
 545	if (c->cpuid_level >= 0x00000001) {
 546		u32 junk, tfms, cap0, misc;
 547
 548		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 549		c->x86 = (tfms >> 8) & 0xf;
 550		c->x86_model = (tfms >> 4) & 0xf;
 551		c->x86_mask = tfms & 0xf;
 552
 553		if (c->x86 == 0xf)
 554			c->x86 += (tfms >> 20) & 0xff;
 555		if (c->x86 >= 0x6)
 556			c->x86_model += ((tfms >> 16) & 0xf) << 4;
 557
 558		if (cap0 & (1<<19)) {
 559			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 560			c->x86_cache_alignment = c->x86_clflush_size;
 561		}
 562	}
 563}
 564
 565void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
 566{
 567	u32 tfms, xlvl;
 568	u32 ebx;
 569
 570	/* Intel-defined flags: level 0x00000001 */
 571	if (c->cpuid_level >= 0x00000001) {
 572		u32 capability, excap;
 573
 574		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
 575		c->x86_capability[0] = capability;
 576		c->x86_capability[4] = excap;
 577	}
 578
 579	/* Additional Intel-defined flags: level 0x00000007 */
 580	if (c->cpuid_level >= 0x00000007) {
 581		u32 eax, ebx, ecx, edx;
 582
 583		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 584
 585		c->x86_capability[9] = ebx;
 586	}
 587
 588	/* AMD-defined flags: level 0x80000001 */
 589	xlvl = cpuid_eax(0x80000000);
 590	c->extended_cpuid_level = xlvl;
 591
 592	if ((xlvl & 0xffff0000) == 0x80000000) {
 593		if (xlvl >= 0x80000001) {
 594			c->x86_capability[1] = cpuid_edx(0x80000001);
 595			c->x86_capability[6] = cpuid_ecx(0x80000001);
 596		}
 597	}
 598
 599	if (c->extended_cpuid_level >= 0x80000008) {
 600		u32 eax = cpuid_eax(0x80000008);
 601
 602		c->x86_virt_bits = (eax >> 8) & 0xff;
 603		c->x86_phys_bits = eax & 0xff;
 604	}
 605#ifdef CONFIG_X86_32
 606	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 607		c->x86_phys_bits = 36;
 608#endif
 609
 610	if (c->extended_cpuid_level >= 0x80000007)
 611		c->x86_power = cpuid_edx(0x80000007);
 612
 613	init_scattered_cpuid_features(c);
 614}
 615
 616static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 617{
 618#ifdef CONFIG_X86_32
 619	int i;
 620
 621	/*
 622	 * First of all, decide if this is a 486 or higher
 623	 * It's a 486 if we can modify the AC flag
 624	 */
 625	if (flag_is_changeable_p(X86_EFLAGS_AC))
 626		c->x86 = 4;
 627	else
 628		c->x86 = 3;
 629
 630	for (i = 0; i < X86_VENDOR_NUM; i++)
 631		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 632			c->x86_vendor_id[0] = 0;
 633			cpu_devs[i]->c_identify(c);
 634			if (c->x86_vendor_id[0]) {
 635				get_cpu_vendor(c);
 636				break;
 637			}
 638		}
 639#endif
 640}
 641
 642/*
 643 * Do minimum CPU detection early.
 644 * Fields really needed: vendor, cpuid_level, family, model, mask,
 645 * cache alignment.
 646 * The others are not touched to avoid unwanted side effects.
 647 *
 648 * WARNING: this function is only called on the BP.  Don't add code here
 649 * that is supposed to run on all CPUs.
 650 */
 651static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 652{
 653#ifdef CONFIG_X86_64
 654	c->x86_clflush_size = 64;
 655	c->x86_phys_bits = 36;
 656	c->x86_virt_bits = 48;
 657#else
 658	c->x86_clflush_size = 32;
 659	c->x86_phys_bits = 32;
 660	c->x86_virt_bits = 32;
 661#endif
 662	c->x86_cache_alignment = c->x86_clflush_size;
 663
 664	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 665	c->extended_cpuid_level = 0;
 666
 667	if (!have_cpuid_p())
 668		identify_cpu_without_cpuid(c);
 669
 670	/* cyrix could have cpuid enabled via c_identify()*/
 671	if (!have_cpuid_p())
 672		return;
 673
 674	cpu_detect(c);
 675
 676	get_cpu_vendor(c);
 677
 678	get_cpu_cap(c);
 
 679
 680	if (this_cpu->c_early_init)
 681		this_cpu->c_early_init(c);
 682
 683	c->cpu_index = 0;
 684	filter_cpuid_features(c, false);
 685
 686	setup_smep(c);
 687
 688	if (this_cpu->c_bsp_init)
 689		this_cpu->c_bsp_init(c);
 
 
 690}
 691
 692void __init early_cpu_init(void)
 693{
 694	const struct cpu_dev *const *cdev;
 695	int count = 0;
 696
 697#ifdef CONFIG_PROCESSOR_SELECT
 698	printk(KERN_INFO "KERNEL supported cpus:\n");
 699#endif
 700
 701	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 702		const struct cpu_dev *cpudev = *cdev;
 703
 704		if (count >= X86_VENDOR_NUM)
 705			break;
 706		cpu_devs[count] = cpudev;
 707		count++;
 708
 709#ifdef CONFIG_PROCESSOR_SELECT
 710		{
 711			unsigned int j;
 712
 713			for (j = 0; j < 2; j++) {
 714				if (!cpudev->c_ident[j])
 715					continue;
 716				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
 717					cpudev->c_ident[j]);
 718			}
 719		}
 720#endif
 721	}
 722	early_identify_cpu(&boot_cpu_data);
 723}
 724
 725/*
 726 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 727 * unfortunately, that's not true in practice because of early VIA
 728 * chips and (more importantly) broken virtualizers that are not easy
 729 * to detect. In the latter case it doesn't even *fail* reliably, so
 730 * probing for it doesn't even work. Disable it completely on 32-bit
 731 * unless we can find a reliable way to detect all the broken cases.
 732 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 733 */
 734static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
 735{
 736#ifdef CONFIG_X86_32
 737	clear_cpu_cap(c, X86_FEATURE_NOPL);
 738#else
 739	set_cpu_cap(c, X86_FEATURE_NOPL);
 740#endif
 741}
 742
 743static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
 744{
 745	c->extended_cpuid_level = 0;
 746
 747	if (!have_cpuid_p())
 748		identify_cpu_without_cpuid(c);
 749
 750	/* cyrix could have cpuid enabled via c_identify()*/
 751	if (!have_cpuid_p())
 752		return;
 753
 754	cpu_detect(c);
 755
 756	get_cpu_vendor(c);
 757
 758	get_cpu_cap(c);
 759
 760	if (c->cpuid_level >= 0x00000001) {
 761		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
 762#ifdef CONFIG_X86_32
 763# ifdef CONFIG_X86_HT
 764		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 765# else
 766		c->apicid = c->initial_apicid;
 767# endif
 768#endif
 769		c->phys_proc_id = c->initial_apicid;
 770	}
 771
 772	setup_smep(c);
 773
 774	get_model_name(c); /* Default name */
 775
 776	detect_nopl(c);
 777}
 778
 779/*
 780 * This does the hard work of actually picking apart the CPU stuff...
 781 */
 782static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
 783{
 784	int i;
 785
 786	c->loops_per_jiffy = loops_per_jiffy;
 787	c->x86_cache_size = -1;
 788	c->x86_vendor = X86_VENDOR_UNKNOWN;
 789	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
 790	c->x86_vendor_id[0] = '\0'; /* Unset */
 791	c->x86_model_id[0] = '\0';  /* Unset */
 792	c->x86_max_cores = 1;
 793	c->x86_coreid_bits = 0;
 794#ifdef CONFIG_X86_64
 795	c->x86_clflush_size = 64;
 796	c->x86_phys_bits = 36;
 797	c->x86_virt_bits = 48;
 798#else
 799	c->cpuid_level = -1;	/* CPUID not detected */
 800	c->x86_clflush_size = 32;
 801	c->x86_phys_bits = 32;
 802	c->x86_virt_bits = 32;
 803#endif
 804	c->x86_cache_alignment = c->x86_clflush_size;
 805	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 806
 807	generic_identify(c);
 808
 809	if (this_cpu->c_identify)
 810		this_cpu->c_identify(c);
 811
 812	/* Clear/Set all flags overriden by options, after probe */
 813	for (i = 0; i < NCAPINTS; i++) {
 814		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 815		c->x86_capability[i] |= cpu_caps_set[i];
 816	}
 817
 818#ifdef CONFIG_X86_64
 819	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 820#endif
 821
 822	/*
 823	 * Vendor-specific initialization.  In this section we
 824	 * canonicalize the feature flags, meaning if there are
 825	 * features a certain CPU supports which CPUID doesn't
 826	 * tell us, CPUID claiming incorrect flags, or other bugs,
 827	 * we handle them here.
 828	 *
 829	 * At the end of this section, c->x86_capability better
 830	 * indicate the features this CPU genuinely supports!
 831	 */
 832	if (this_cpu->c_init)
 833		this_cpu->c_init(c);
 834
 835	/* Disable the PN if appropriate */
 836	squash_the_stupid_serial_number(c);
 837
 
 
 
 
 838	/*
 839	 * The vendor-specific functions might have changed features.
 840	 * Now we do "generic changes."
 841	 */
 842
 843	/* Filter out anything that depends on CPUID levels we don't have */
 844	filter_cpuid_features(c, true);
 845
 846	/* If the model name is still unset, do table lookup. */
 847	if (!c->x86_model_id[0]) {
 848		const char *p;
 849		p = table_lookup_model(c);
 850		if (p)
 851			strcpy(c->x86_model_id, p);
 852		else
 853			/* Last resort... */
 854			sprintf(c->x86_model_id, "%02x/%02x",
 855				c->x86, c->x86_model);
 856	}
 857
 858#ifdef CONFIG_X86_64
 859	detect_ht(c);
 860#endif
 861
 862	init_hypervisor(c);
 863	x86_init_rdrand(c);
 864
 865	/*
 866	 * Clear/Set all flags overriden by options, need do it
 867	 * before following smp all cpus cap AND.
 868	 */
 869	for (i = 0; i < NCAPINTS; i++) {
 870		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 871		c->x86_capability[i] |= cpu_caps_set[i];
 872	}
 873
 874	/*
 875	 * On SMP, boot_cpu_data holds the common feature set between
 876	 * all CPUs; so make sure that we indicate which features are
 877	 * common between the CPUs.  The first time this routine gets
 878	 * executed, c == &boot_cpu_data.
 879	 */
 880	if (c != &boot_cpu_data) {
 881		/* AND the already accumulated flags with these */
 882		for (i = 0; i < NCAPINTS; i++)
 883			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 
 
 
 
 884	}
 885
 886	/* Init Machine Check Exception if available. */
 887	mcheck_cpu_init(c);
 888
 889	select_idle_routine(c);
 890
 891#ifdef CONFIG_NUMA
 892	numa_add_cpu(smp_processor_id());
 893#endif
 894}
 895
 896#ifdef CONFIG_X86_64
 897static void vgetcpu_set_mode(void)
 898{
 899	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
 900		vgetcpu_mode = VGETCPU_RDTSCP;
 901	else
 902		vgetcpu_mode = VGETCPU_LSL;
 903}
 904#endif
 905
 906void __init identify_boot_cpu(void)
 907{
 908	identify_cpu(&boot_cpu_data);
 909	init_amd_e400_c1e_mask();
 910#ifdef CONFIG_X86_32
 911	sysenter_setup();
 912	enable_sep_cpu();
 913#else
 914	vgetcpu_set_mode();
 915#endif
 
 916}
 917
 918void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
 919{
 920	BUG_ON(c == &boot_cpu_data);
 921	identify_cpu(c);
 922#ifdef CONFIG_X86_32
 923	enable_sep_cpu();
 924#endif
 925	mtrr_ap_init();
 926}
 927
 928struct msr_range {
 929	unsigned	min;
 930	unsigned	max;
 931};
 932
 933static const struct msr_range msr_range_array[] __cpuinitconst = {
 934	{ 0x00000000, 0x00000418},
 935	{ 0xc0000000, 0xc000040b},
 936	{ 0xc0010000, 0xc0010142},
 937	{ 0xc0011000, 0xc001103b},
 938};
 939
 940static void __cpuinit __print_cpu_msr(void)
 941{
 942	unsigned index_min, index_max;
 943	unsigned index;
 944	u64 val;
 945	int i;
 946
 947	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
 948		index_min = msr_range_array[i].min;
 949		index_max = msr_range_array[i].max;
 950
 951		for (index = index_min; index < index_max; index++) {
 952			if (rdmsrl_amd_safe(index, &val))
 953				continue;
 954			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
 955		}
 956	}
 957}
 958
 959static int show_msr __cpuinitdata;
 960
 961static __init int setup_show_msr(char *arg)
 962{
 963	int num;
 964
 965	get_option(&arg, &num);
 966
 967	if (num > 0)
 968		show_msr = num;
 969	return 1;
 970}
 971__setup("show_msr=", setup_show_msr);
 972
 973static __init int setup_noclflush(char *arg)
 974{
 975	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
 
 976	return 1;
 977}
 978__setup("noclflush", setup_noclflush);
 979
 980void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
 981{
 982	const char *vendor = NULL;
 983
 984	if (c->x86_vendor < X86_VENDOR_NUM) {
 985		vendor = this_cpu->c_vendor;
 986	} else {
 987		if (c->cpuid_level >= 0)
 988			vendor = c->x86_vendor_id;
 989	}
 990
 991	if (vendor && !strstr(c->x86_model_id, vendor))
 992		printk(KERN_CONT "%s ", vendor);
 993
 994	if (c->x86_model_id[0])
 995		printk(KERN_CONT "%s", c->x86_model_id);
 996	else
 997		printk(KERN_CONT "%d86", c->x86);
 998
 
 
 999	if (c->x86_mask || c->cpuid_level >= 0)
1000		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1001	else
1002		printk(KERN_CONT "\n");
1003
1004	print_cpu_msr(c);
1005}
1006
1007void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1008{
1009	if (c->cpu_index < show_msr)
1010		__print_cpu_msr();
1011}
1012
1013static __init int setup_disablecpuid(char *arg)
1014{
1015	int bit;
1016
1017	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1018		setup_clear_cpu_cap(bit);
1019	else
1020		return 0;
1021
1022	return 1;
1023}
1024__setup("clearcpuid=", setup_disablecpuid);
1025
 
 
 
 
1026#ifdef CONFIG_X86_64
1027struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1028struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1029				    (unsigned long) nmi_idt_table };
1030
1031DEFINE_PER_CPU_FIRST(union irq_stack_union,
1032		     irq_stack_union) __aligned(PAGE_SIZE);
1033
1034/*
1035 * The following four percpu variables are hot.  Align current_task to
1036 * cacheline size such that all four fall in the same cacheline.
1037 */
1038DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1039	&init_task;
1040EXPORT_PER_CPU_SYMBOL(current_task);
1041
1042DEFINE_PER_CPU(unsigned long, kernel_stack) =
1043	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1044EXPORT_PER_CPU_SYMBOL(kernel_stack);
1045
1046DEFINE_PER_CPU(char *, irq_stack_ptr) =
1047	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1048
1049DEFINE_PER_CPU(unsigned int, irq_count) = -1;
 
 
 
1050
1051DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1052
1053/*
1054 * Special IST stacks which the CPU switches to when it calls
1055 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1056 * limit), all of them are 4K, except the debug stack which
1057 * is 8K.
1058 */
1059static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1060	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1061	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1062};
1063
1064static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1065	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1066
1067/* May not be marked __init: used by software suspend */
1068void syscall_init(void)
1069{
1070	/*
1071	 * LSTAR and STAR live in a bit strange symbiosis.
1072	 * They both write to the same internal register. STAR allows to
1073	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1074	 */
1075	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1076	wrmsrl(MSR_LSTAR, system_call);
1077	wrmsrl(MSR_CSTAR, ignore_sysret);
1078
1079#ifdef CONFIG_IA32_EMULATION
1080	syscall32_cpu_init();
1081#endif
1082
1083	/* Flags to clear on syscall */
1084	wrmsrl(MSR_SYSCALL_MASK,
1085	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
 
1086}
1087
1088unsigned long kernel_eflags;
1089
1090/*
1091 * Copies of the original ist values from the tss are only accessed during
1092 * debugging, no special alignment required.
1093 */
1094DEFINE_PER_CPU(struct orig_ist, orig_ist);
1095
1096static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1097DEFINE_PER_CPU(int, debug_stack_usage);
1098
1099int is_debug_stack(unsigned long addr)
1100{
1101	return __get_cpu_var(debug_stack_usage) ||
1102		(addr <= __get_cpu_var(debug_stack_addr) &&
1103		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1104}
1105
1106static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1107
1108void debug_stack_set_zero(void)
1109{
1110	this_cpu_inc(debug_stack_use_ctr);
1111	load_idt((const struct desc_ptr *)&nmi_idt_descr);
1112}
1113
1114void debug_stack_reset(void)
1115{
1116	if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1117		return;
1118	if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1119		load_idt((const struct desc_ptr *)&idt_descr);
1120}
1121
1122#else	/* CONFIG_X86_64 */
1123
1124DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1125EXPORT_PER_CPU_SYMBOL(current_task);
 
 
1126DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1127
1128#ifdef CONFIG_CC_STACKPROTECTOR
1129DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1130#endif
1131
1132/* Make sure %fs and %gs are initialized properly in idle threads */
1133struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1134{
1135	memset(regs, 0, sizeof(struct pt_regs));
1136	regs->fs = __KERNEL_PERCPU;
1137	regs->gs = __KERNEL_STACK_CANARY;
1138
1139	return regs;
1140}
1141#endif	/* CONFIG_X86_64 */
1142
1143/*
1144 * Clear all 6 debug registers:
1145 */
1146static void clear_all_debug_regs(void)
1147{
1148	int i;
1149
1150	for (i = 0; i < 8; i++) {
1151		/* Ignore db4, db5 */
1152		if ((i == 4) || (i == 5))
1153			continue;
1154
1155		set_debugreg(0, i);
1156	}
1157}
1158
1159#ifdef CONFIG_KGDB
1160/*
1161 * Restore debug regs if using kgdbwait and you have a kernel debugger
1162 * connection established.
1163 */
1164static void dbg_restore_debug_regs(void)
1165{
1166	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1167		arch_kgdb_ops.correct_hw_break();
1168}
1169#else /* ! CONFIG_KGDB */
1170#define dbg_restore_debug_regs()
1171#endif /* ! CONFIG_KGDB */
1172
1173/*
1174 * cpu_init() initializes state that is per-CPU. Some data is already
1175 * initialized (naturally) in the bootstrap process, such as the GDT
1176 * and IDT. We reload them nevertheless, this function acts as a
1177 * 'CPU state barrier', nothing should get across.
1178 * A lot of state is already set up in PDA init for 64 bit
1179 */
1180#ifdef CONFIG_X86_64
1181
1182void __cpuinit cpu_init(void)
1183{
1184	struct orig_ist *oist;
1185	struct task_struct *me;
1186	struct tss_struct *t;
1187	unsigned long v;
1188	int cpu;
1189	int i;
1190
 
 
 
 
 
 
1191	cpu = stack_smp_processor_id();
1192	t = &per_cpu(init_tss, cpu);
1193	oist = &per_cpu(orig_ist, cpu);
1194
1195#ifdef CONFIG_NUMA
1196	if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
1197	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1198		set_numa_node(early_cpu_to_node(cpu));
1199#endif
1200
1201	me = current;
1202
1203	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1204		panic("CPU#%d already initialized!\n", cpu);
1205
1206	pr_debug("Initializing CPU#%d\n", cpu);
1207
1208	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1209
1210	/*
1211	 * Initialize the per-CPU GDT with the boot GDT,
1212	 * and set up the GDT descriptor:
1213	 */
1214
1215	switch_to_new_gdt(cpu);
1216	loadsegment(fs, 0);
1217
1218	load_idt((const struct desc_ptr *)&idt_descr);
1219
1220	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1221	syscall_init();
1222
1223	wrmsrl(MSR_FS_BASE, 0);
1224	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1225	barrier();
1226
1227	x86_configure_nx();
1228	if (cpu != 0)
1229		enable_x2apic();
1230
1231	/*
1232	 * set up and load the per-CPU TSS
1233	 */
1234	if (!oist->ist[0]) {
1235		char *estacks = per_cpu(exception_stacks, cpu);
1236
1237		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1238			estacks += exception_stack_sizes[v];
1239			oist->ist[v] = t->x86_tss.ist[v] =
1240					(unsigned long)estacks;
1241			if (v == DEBUG_STACK-1)
1242				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1243		}
1244	}
1245
1246	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1247
1248	/*
1249	 * <= is required because the CPU will access up to
1250	 * 8 bits beyond the end of the IO permission bitmap.
1251	 */
1252	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1253		t->io_bitmap[i] = ~0UL;
1254
1255	atomic_inc(&init_mm.mm_count);
1256	me->active_mm = &init_mm;
1257	BUG_ON(me->mm);
1258	enter_lazy_tlb(&init_mm, me);
1259
1260	load_sp0(t, &current->thread);
1261	set_tss_desc(cpu, t);
1262	load_TR_desc();
1263	load_LDT(&init_mm.context);
1264
1265	clear_all_debug_regs();
1266	dbg_restore_debug_regs();
1267
1268	fpu_init();
1269	xsave_init();
1270
1271	raw_local_save_flags(kernel_eflags);
1272
1273	if (is_uv_system())
1274		uv_cpu_init();
1275}
1276
1277#else
1278
1279void __cpuinit cpu_init(void)
1280{
1281	int cpu = smp_processor_id();
1282	struct task_struct *curr = current;
1283	struct tss_struct *t = &per_cpu(init_tss, cpu);
1284	struct thread_struct *thread = &curr->thread;
1285
 
 
1286	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1287		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1288		for (;;)
1289			local_irq_enable();
1290	}
1291
1292	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1293
1294	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1295		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1296
1297	load_idt(&idt_descr);
1298	switch_to_new_gdt(cpu);
1299
1300	/*
1301	 * Set up and load the per-CPU TSS and LDT
1302	 */
1303	atomic_inc(&init_mm.mm_count);
1304	curr->active_mm = &init_mm;
1305	BUG_ON(curr->mm);
1306	enter_lazy_tlb(&init_mm, curr);
1307
1308	load_sp0(t, thread);
1309	set_tss_desc(cpu, t);
1310	load_TR_desc();
1311	load_LDT(&init_mm.context);
1312
1313	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1314
1315#ifdef CONFIG_DOUBLEFAULT
1316	/* Set up doublefault TSS pointer in the GDT */
1317	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1318#endif
1319
1320	clear_all_debug_regs();
1321	dbg_restore_debug_regs();
1322
1323	fpu_init();
1324	xsave_init();
1325}
1326#endif
v3.15
   1#include <linux/bootmem.h>
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
   8#include <linux/delay.h>
   9#include <linux/sched.h>
  10#include <linux/init.h>
  11#include <linux/kgdb.h>
  12#include <linux/smp.h>
  13#include <linux/io.h>
  14
  15#include <asm/stackprotector.h>
  16#include <asm/perf_event.h>
  17#include <asm/mmu_context.h>
  18#include <asm/archrandom.h>
  19#include <asm/hypervisor.h>
  20#include <asm/processor.h>
  21#include <asm/debugreg.h>
  22#include <asm/sections.h>
  23#include <linux/topology.h>
  24#include <linux/cpumask.h>
  25#include <asm/pgtable.h>
  26#include <linux/atomic.h>
  27#include <asm/proto.h>
  28#include <asm/setup.h>
  29#include <asm/apic.h>
  30#include <asm/desc.h>
  31#include <asm/i387.h>
  32#include <asm/fpu-internal.h>
  33#include <asm/mtrr.h>
  34#include <linux/numa.h>
  35#include <asm/asm.h>
  36#include <asm/cpu.h>
  37#include <asm/mce.h>
  38#include <asm/msr.h>
  39#include <asm/pat.h>
  40#include <asm/microcode.h>
  41#include <asm/microcode_intel.h>
  42
  43#ifdef CONFIG_X86_LOCAL_APIC
  44#include <asm/uv/uv.h>
  45#endif
  46
  47#include "cpu.h"
  48
  49/* all of these masks are initialized in setup_cpu_local_masks() */
  50cpumask_var_t cpu_initialized_mask;
  51cpumask_var_t cpu_callout_mask;
  52cpumask_var_t cpu_callin_mask;
  53
  54/* representing cpus for which sibling maps can be computed */
  55cpumask_var_t cpu_sibling_setup_mask;
  56
  57/* correctly size the local cpu masks */
  58void __init setup_cpu_local_masks(void)
  59{
  60	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  61	alloc_bootmem_cpumask_var(&cpu_callin_mask);
  62	alloc_bootmem_cpumask_var(&cpu_callout_mask);
  63	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  64}
  65
  66static void default_init(struct cpuinfo_x86 *c)
  67{
  68#ifdef CONFIG_X86_64
  69	cpu_detect_cache_sizes(c);
  70#else
  71	/* Not much we can do here... */
  72	/* Check if at least it has cpuid */
  73	if (c->cpuid_level == -1) {
  74		/* No cpuid. It must be an ancient CPU */
  75		if (c->x86 == 4)
  76			strcpy(c->x86_model_id, "486");
  77		else if (c->x86 == 3)
  78			strcpy(c->x86_model_id, "386");
  79	}
  80#endif
  81}
  82
  83static const struct cpu_dev default_cpu = {
  84	.c_init		= default_init,
  85	.c_vendor	= "Unknown",
  86	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
  87};
  88
  89static const struct cpu_dev *this_cpu = &default_cpu;
  90
  91DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  92#ifdef CONFIG_X86_64
  93	/*
  94	 * We need valid kernel segments for data and code in long mode too
  95	 * IRET will check the segment types  kkeil 2000/10/28
  96	 * Also sysret mandates a special GDT layout
  97	 *
  98	 * TLS descriptors are currently at a different place compared to i386.
  99	 * Hopefully nobody expects them at a fixed place (Wine?)
 100	 */
 101	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 102	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 103	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 104	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 105	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 106	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 107#else
 108	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 109	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 110	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 111	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 112	/*
 113	 * Segments used for calling PnP BIOS have byte granularity.
 114	 * They code segments and data segments have fixed 64k limits,
 115	 * the transfer segment sizes are set at run time.
 116	 */
 117	/* 32-bit code */
 118	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 119	/* 16-bit code */
 120	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 121	/* 16-bit data */
 122	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 123	/* 16-bit data */
 124	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 125	/* 16-bit data */
 126	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 127	/*
 128	 * The APM segments have byte granularity and their bases
 129	 * are set at run time.  All have 64k limits.
 130	 */
 131	/* 32-bit code */
 132	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 133	/* 16-bit code */
 134	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 135	/* data */
 136	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 137
 138	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 139	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 140	GDT_STACK_CANARY_INIT
 141#endif
 142} };
 143EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 144
 145static int __init x86_xsave_setup(char *s)
 146{
 147	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 148	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 149	setup_clear_cpu_cap(X86_FEATURE_AVX);
 150	setup_clear_cpu_cap(X86_FEATURE_AVX2);
 151	return 1;
 152}
 153__setup("noxsave", x86_xsave_setup);
 154
 155static int __init x86_xsaveopt_setup(char *s)
 156{
 157	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 158	return 1;
 159}
 160__setup("noxsaveopt", x86_xsaveopt_setup);
 161
 162#ifdef CONFIG_X86_32
 163static int cachesize_override = -1;
 164static int disable_x86_serial_nr = 1;
 165
 166static int __init cachesize_setup(char *str)
 167{
 168	get_option(&str, &cachesize_override);
 169	return 1;
 170}
 171__setup("cachesize=", cachesize_setup);
 172
 173static int __init x86_fxsr_setup(char *s)
 174{
 175	setup_clear_cpu_cap(X86_FEATURE_FXSR);
 176	setup_clear_cpu_cap(X86_FEATURE_XMM);
 177	return 1;
 178}
 179__setup("nofxsr", x86_fxsr_setup);
 180
 181static int __init x86_sep_setup(char *s)
 182{
 183	setup_clear_cpu_cap(X86_FEATURE_SEP);
 184	return 1;
 185}
 186__setup("nosep", x86_sep_setup);
 187
 188/* Standard macro to see if a specific flag is changeable */
 189static inline int flag_is_changeable_p(u32 flag)
 190{
 191	u32 f1, f2;
 192
 193	/*
 194	 * Cyrix and IDT cpus allow disabling of CPUID
 195	 * so the code below may return different results
 196	 * when it is executed before and after enabling
 197	 * the CPUID. Add "volatile" to not allow gcc to
 198	 * optimize the subsequent calls to this function.
 199	 */
 200	asm volatile ("pushfl		\n\t"
 201		      "pushfl		\n\t"
 202		      "popl %0		\n\t"
 203		      "movl %0, %1	\n\t"
 204		      "xorl %2, %0	\n\t"
 205		      "pushl %0		\n\t"
 206		      "popfl		\n\t"
 207		      "pushfl		\n\t"
 208		      "popl %0		\n\t"
 209		      "popfl		\n\t"
 210
 211		      : "=&r" (f1), "=&r" (f2)
 212		      : "ir" (flag));
 213
 214	return ((f1^f2) & flag) != 0;
 215}
 216
 217/* Probe for the CPUID instruction */
 218int have_cpuid_p(void)
 219{
 220	return flag_is_changeable_p(X86_EFLAGS_ID);
 221}
 222
 223static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 224{
 225	unsigned long lo, hi;
 226
 227	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 228		return;
 229
 230	/* Disable processor serial number: */
 231
 232	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 233	lo |= 0x200000;
 234	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 235
 236	printk(KERN_NOTICE "CPU serial number disabled.\n");
 237	clear_cpu_cap(c, X86_FEATURE_PN);
 238
 239	/* Disabling the serial number may affect the cpuid level */
 240	c->cpuid_level = cpuid_eax(0);
 241}
 242
 243static int __init x86_serial_nr_setup(char *s)
 244{
 245	disable_x86_serial_nr = 0;
 246	return 1;
 247}
 248__setup("serialnumber", x86_serial_nr_setup);
 249#else
 250static inline int flag_is_changeable_p(u32 flag)
 251{
 252	return 1;
 253}
 
 
 
 
 
 254static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 255{
 256}
 257#endif
 258
 
 259static __init int setup_disable_smep(char *arg)
 260{
 261	setup_clear_cpu_cap(X86_FEATURE_SMEP);
 262	return 1;
 263}
 264__setup("nosmep", setup_disable_smep);
 265
 266static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 267{
 268	if (cpu_has(c, X86_FEATURE_SMEP))
 269		set_in_cr4(X86_CR4_SMEP);
 270}
 271
 272static __init int setup_disable_smap(char *arg)
 273{
 274	setup_clear_cpu_cap(X86_FEATURE_SMAP);
 275	return 1;
 276}
 277__setup("nosmap", setup_disable_smap);
 278
 279static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 280{
 281	unsigned long eflags;
 282
 283	/* This should have been cleared long ago */
 284	raw_local_save_flags(eflags);
 285	BUG_ON(eflags & X86_EFLAGS_AC);
 286
 287	if (cpu_has(c, X86_FEATURE_SMAP)) {
 288#ifdef CONFIG_X86_SMAP
 289		set_in_cr4(X86_CR4_SMAP);
 290#else
 291		clear_in_cr4(X86_CR4_SMAP);
 292#endif
 293	}
 294}
 295
 296/*
 297 * Some CPU features depend on higher CPUID levels, which may not always
 298 * be available due to CPUID level capping or broken virtualization
 299 * software.  Add those features to this table to auto-disable them.
 300 */
 301struct cpuid_dependent_feature {
 302	u32 feature;
 303	u32 level;
 304};
 305
 306static const struct cpuid_dependent_feature
 307cpuid_dependent_features[] = {
 308	{ X86_FEATURE_MWAIT,		0x00000005 },
 309	{ X86_FEATURE_DCA,		0x00000009 },
 310	{ X86_FEATURE_XSAVE,		0x0000000d },
 311	{ 0, 0 }
 312};
 313
 314static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 315{
 316	const struct cpuid_dependent_feature *df;
 317
 318	for (df = cpuid_dependent_features; df->feature; df++) {
 319
 320		if (!cpu_has(c, df->feature))
 321			continue;
 322		/*
 323		 * Note: cpuid_level is set to -1 if unavailable, but
 324		 * extended_extended_level is set to 0 if unavailable
 325		 * and the legitimate extended levels are all negative
 326		 * when signed; hence the weird messing around with
 327		 * signs here...
 328		 */
 329		if (!((s32)df->level < 0 ?
 330		     (u32)df->level > (u32)c->extended_cpuid_level :
 331		     (s32)df->level > (s32)c->cpuid_level))
 332			continue;
 333
 334		clear_cpu_cap(c, df->feature);
 335		if (!warn)
 336			continue;
 337
 338		printk(KERN_WARNING
 339		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
 340				x86_cap_flags[df->feature], df->level);
 341	}
 342}
 343
 344/*
 345 * Naming convention should be: <Name> [(<Codename>)]
 346 * This table only is used unless init_<vendor>() below doesn't set it;
 347 * in particular, if CPUID levels 0x80000002..4 are supported, this
 348 * isn't used
 349 */
 350
 351/* Look up CPU names by table lookup. */
 352static const char *table_lookup_model(struct cpuinfo_x86 *c)
 353{
 354#ifdef CONFIG_X86_32
 355	const struct legacy_cpu_model_info *info;
 356
 357	if (c->x86_model >= 16)
 358		return NULL;	/* Range check */
 359
 360	if (!this_cpu)
 361		return NULL;
 362
 363	info = this_cpu->legacy_models;
 364
 365	while (info->family) {
 366		if (info->family == c->x86)
 367			return info->model_names[c->x86_model];
 368		info++;
 369	}
 370#endif
 371	return NULL;		/* Not found */
 372}
 373
 374__u32 cpu_caps_cleared[NCAPINTS];
 375__u32 cpu_caps_set[NCAPINTS];
 376
 377void load_percpu_segment(int cpu)
 378{
 379#ifdef CONFIG_X86_32
 380	loadsegment(fs, __KERNEL_PERCPU);
 381#else
 382	loadsegment(gs, 0);
 383	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 384#endif
 385	load_stack_canary_segment();
 386}
 387
 388/*
 389 * Current gdt points %fs at the "master" per-cpu area: after this,
 390 * it's on the real one.
 391 */
 392void switch_to_new_gdt(int cpu)
 393{
 394	struct desc_ptr gdt_descr;
 395
 396	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
 397	gdt_descr.size = GDT_SIZE - 1;
 398	load_gdt(&gdt_descr);
 399	/* Reload the per-cpu base */
 400
 401	load_percpu_segment(cpu);
 402}
 403
 404static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 405
 406static void get_model_name(struct cpuinfo_x86 *c)
 407{
 408	unsigned int *v;
 409	char *p, *q;
 410
 411	if (c->extended_cpuid_level < 0x80000004)
 412		return;
 413
 414	v = (unsigned int *)c->x86_model_id;
 415	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 416	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 417	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 418	c->x86_model_id[48] = 0;
 419
 420	/*
 421	 * Intel chips right-justify this string for some dumb reason;
 422	 * undo that brain damage:
 423	 */
 424	p = q = &c->x86_model_id[0];
 425	while (*p == ' ')
 426		p++;
 427	if (p != q) {
 428		while (*p)
 429			*q++ = *p++;
 430		while (q <= &c->x86_model_id[48])
 431			*q++ = '\0';	/* Zero-pad the rest */
 432	}
 433}
 434
 435void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 436{
 437	unsigned int n, dummy, ebx, ecx, edx, l2size;
 438
 439	n = c->extended_cpuid_level;
 440
 441	if (n >= 0x80000005) {
 442		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 443		c->x86_cache_size = (ecx>>24) + (edx>>24);
 444#ifdef CONFIG_X86_64
 445		/* On K8 L1 TLB is inclusive, so don't count it */
 446		c->x86_tlbsize = 0;
 447#endif
 448	}
 449
 450	if (n < 0x80000006)	/* Some chips just has a large L1. */
 451		return;
 452
 453	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 454	l2size = ecx >> 16;
 455
 456#ifdef CONFIG_X86_64
 457	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 458#else
 459	/* do processor-specific cache resizing */
 460	if (this_cpu->legacy_cache_size)
 461		l2size = this_cpu->legacy_cache_size(c, l2size);
 462
 463	/* Allow user to override all this if necessary. */
 464	if (cachesize_override != -1)
 465		l2size = cachesize_override;
 466
 467	if (l2size == 0)
 468		return;		/* Again, no L2 cache is possible */
 469#endif
 470
 471	c->x86_cache_size = l2size;
 472}
 473
 474u16 __read_mostly tlb_lli_4k[NR_INFO];
 475u16 __read_mostly tlb_lli_2m[NR_INFO];
 476u16 __read_mostly tlb_lli_4m[NR_INFO];
 477u16 __read_mostly tlb_lld_4k[NR_INFO];
 478u16 __read_mostly tlb_lld_2m[NR_INFO];
 479u16 __read_mostly tlb_lld_4m[NR_INFO];
 480u16 __read_mostly tlb_lld_1g[NR_INFO];
 481
 482/*
 483 * tlb_flushall_shift shows the balance point in replacing cr3 write
 484 * with multiple 'invlpg'. It will do this replacement when
 485 *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
 486 * If tlb_flushall_shift is -1, means the replacement will be disabled.
 487 */
 488s8  __read_mostly tlb_flushall_shift = -1;
 489
 490void cpu_detect_tlb(struct cpuinfo_x86 *c)
 491{
 492	if (this_cpu->c_detect_tlb)
 493		this_cpu->c_detect_tlb(c);
 494
 495	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
 496		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
 497		"tlb_flushall_shift: %d\n",
 498		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 499		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
 500		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
 501		tlb_lld_1g[ENTRIES], tlb_flushall_shift);
 502}
 503
 504void detect_ht(struct cpuinfo_x86 *c)
 505{
 506#ifdef CONFIG_X86_HT
 507	u32 eax, ebx, ecx, edx;
 508	int index_msb, core_bits;
 509	static bool printed;
 510
 511	if (!cpu_has(c, X86_FEATURE_HT))
 512		return;
 513
 514	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 515		goto out;
 516
 517	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 518		return;
 519
 520	cpuid(1, &eax, &ebx, &ecx, &edx);
 521
 522	smp_num_siblings = (ebx & 0xff0000) >> 16;
 523
 524	if (smp_num_siblings == 1) {
 525		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
 526		goto out;
 527	}
 528
 529	if (smp_num_siblings <= 1)
 530		goto out;
 531
 532	index_msb = get_count_order(smp_num_siblings);
 533	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 534
 535	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 536
 537	index_msb = get_count_order(smp_num_siblings);
 538
 539	core_bits = get_count_order(c->x86_max_cores);
 540
 541	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 542				       ((1 << core_bits) - 1);
 543
 544out:
 545	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 546		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 547		       c->phys_proc_id);
 548		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 549		       c->cpu_core_id);
 550		printed = 1;
 551	}
 552#endif
 553}
 554
 555static void get_cpu_vendor(struct cpuinfo_x86 *c)
 556{
 557	char *v = c->x86_vendor_id;
 558	int i;
 559
 560	for (i = 0; i < X86_VENDOR_NUM; i++) {
 561		if (!cpu_devs[i])
 562			break;
 563
 564		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 565		    (cpu_devs[i]->c_ident[1] &&
 566		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 567
 568			this_cpu = cpu_devs[i];
 569			c->x86_vendor = this_cpu->c_x86_vendor;
 570			return;
 571		}
 572	}
 573
 574	printk_once(KERN_ERR
 575			"CPU: vendor_id '%s' unknown, using generic init.\n" \
 576			"CPU: Your system may be unstable.\n", v);
 577
 578	c->x86_vendor = X86_VENDOR_UNKNOWN;
 579	this_cpu = &default_cpu;
 580}
 581
 582void cpu_detect(struct cpuinfo_x86 *c)
 583{
 584	/* Get vendor name */
 585	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 586	      (unsigned int *)&c->x86_vendor_id[0],
 587	      (unsigned int *)&c->x86_vendor_id[8],
 588	      (unsigned int *)&c->x86_vendor_id[4]);
 589
 590	c->x86 = 4;
 591	/* Intel-defined flags: level 0x00000001 */
 592	if (c->cpuid_level >= 0x00000001) {
 593		u32 junk, tfms, cap0, misc;
 594
 595		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 596		c->x86 = (tfms >> 8) & 0xf;
 597		c->x86_model = (tfms >> 4) & 0xf;
 598		c->x86_mask = tfms & 0xf;
 599
 600		if (c->x86 == 0xf)
 601			c->x86 += (tfms >> 20) & 0xff;
 602		if (c->x86 >= 0x6)
 603			c->x86_model += ((tfms >> 16) & 0xf) << 4;
 604
 605		if (cap0 & (1<<19)) {
 606			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 607			c->x86_cache_alignment = c->x86_clflush_size;
 608		}
 609	}
 610}
 611
 612void get_cpu_cap(struct cpuinfo_x86 *c)
 613{
 614	u32 tfms, xlvl;
 615	u32 ebx;
 616
 617	/* Intel-defined flags: level 0x00000001 */
 618	if (c->cpuid_level >= 0x00000001) {
 619		u32 capability, excap;
 620
 621		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
 622		c->x86_capability[0] = capability;
 623		c->x86_capability[4] = excap;
 624	}
 625
 626	/* Additional Intel-defined flags: level 0x00000007 */
 627	if (c->cpuid_level >= 0x00000007) {
 628		u32 eax, ebx, ecx, edx;
 629
 630		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 631
 632		c->x86_capability[9] = ebx;
 633	}
 634
 635	/* AMD-defined flags: level 0x80000001 */
 636	xlvl = cpuid_eax(0x80000000);
 637	c->extended_cpuid_level = xlvl;
 638
 639	if ((xlvl & 0xffff0000) == 0x80000000) {
 640		if (xlvl >= 0x80000001) {
 641			c->x86_capability[1] = cpuid_edx(0x80000001);
 642			c->x86_capability[6] = cpuid_ecx(0x80000001);
 643		}
 644	}
 645
 646	if (c->extended_cpuid_level >= 0x80000008) {
 647		u32 eax = cpuid_eax(0x80000008);
 648
 649		c->x86_virt_bits = (eax >> 8) & 0xff;
 650		c->x86_phys_bits = eax & 0xff;
 651	}
 652#ifdef CONFIG_X86_32
 653	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 654		c->x86_phys_bits = 36;
 655#endif
 656
 657	if (c->extended_cpuid_level >= 0x80000007)
 658		c->x86_power = cpuid_edx(0x80000007);
 659
 660	init_scattered_cpuid_features(c);
 661}
 662
 663static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 664{
 665#ifdef CONFIG_X86_32
 666	int i;
 667
 668	/*
 669	 * First of all, decide if this is a 486 or higher
 670	 * It's a 486 if we can modify the AC flag
 671	 */
 672	if (flag_is_changeable_p(X86_EFLAGS_AC))
 673		c->x86 = 4;
 674	else
 675		c->x86 = 3;
 676
 677	for (i = 0; i < X86_VENDOR_NUM; i++)
 678		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 679			c->x86_vendor_id[0] = 0;
 680			cpu_devs[i]->c_identify(c);
 681			if (c->x86_vendor_id[0]) {
 682				get_cpu_vendor(c);
 683				break;
 684			}
 685		}
 686#endif
 687}
 688
 689/*
 690 * Do minimum CPU detection early.
 691 * Fields really needed: vendor, cpuid_level, family, model, mask,
 692 * cache alignment.
 693 * The others are not touched to avoid unwanted side effects.
 694 *
 695 * WARNING: this function is only called on the BP.  Don't add code here
 696 * that is supposed to run on all CPUs.
 697 */
 698static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 699{
 700#ifdef CONFIG_X86_64
 701	c->x86_clflush_size = 64;
 702	c->x86_phys_bits = 36;
 703	c->x86_virt_bits = 48;
 704#else
 705	c->x86_clflush_size = 32;
 706	c->x86_phys_bits = 32;
 707	c->x86_virt_bits = 32;
 708#endif
 709	c->x86_cache_alignment = c->x86_clflush_size;
 710
 711	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 712	c->extended_cpuid_level = 0;
 713
 714	if (!have_cpuid_p())
 715		identify_cpu_without_cpuid(c);
 716
 717	/* cyrix could have cpuid enabled via c_identify()*/
 718	if (!have_cpuid_p())
 719		return;
 720
 721	cpu_detect(c);
 
 722	get_cpu_vendor(c);
 
 723	get_cpu_cap(c);
 724	fpu_detect(c);
 725
 726	if (this_cpu->c_early_init)
 727		this_cpu->c_early_init(c);
 728
 729	c->cpu_index = 0;
 730	filter_cpuid_features(c, false);
 731
 
 
 732	if (this_cpu->c_bsp_init)
 733		this_cpu->c_bsp_init(c);
 734
 735	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
 736}
 737
 738void __init early_cpu_init(void)
 739{
 740	const struct cpu_dev *const *cdev;
 741	int count = 0;
 742
 743#ifdef CONFIG_PROCESSOR_SELECT
 744	printk(KERN_INFO "KERNEL supported cpus:\n");
 745#endif
 746
 747	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 748		const struct cpu_dev *cpudev = *cdev;
 749
 750		if (count >= X86_VENDOR_NUM)
 751			break;
 752		cpu_devs[count] = cpudev;
 753		count++;
 754
 755#ifdef CONFIG_PROCESSOR_SELECT
 756		{
 757			unsigned int j;
 758
 759			for (j = 0; j < 2; j++) {
 760				if (!cpudev->c_ident[j])
 761					continue;
 762				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
 763					cpudev->c_ident[j]);
 764			}
 765		}
 766#endif
 767	}
 768	early_identify_cpu(&boot_cpu_data);
 769}
 770
 771/*
 772 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 773 * unfortunately, that's not true in practice because of early VIA
 774 * chips and (more importantly) broken virtualizers that are not easy
 775 * to detect. In the latter case it doesn't even *fail* reliably, so
 776 * probing for it doesn't even work. Disable it completely on 32-bit
 777 * unless we can find a reliable way to detect all the broken cases.
 778 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 779 */
 780static void detect_nopl(struct cpuinfo_x86 *c)
 781{
 782#ifdef CONFIG_X86_32
 783	clear_cpu_cap(c, X86_FEATURE_NOPL);
 784#else
 785	set_cpu_cap(c, X86_FEATURE_NOPL);
 786#endif
 787}
 788
 789static void generic_identify(struct cpuinfo_x86 *c)
 790{
 791	c->extended_cpuid_level = 0;
 792
 793	if (!have_cpuid_p())
 794		identify_cpu_without_cpuid(c);
 795
 796	/* cyrix could have cpuid enabled via c_identify()*/
 797	if (!have_cpuid_p())
 798		return;
 799
 800	cpu_detect(c);
 801
 802	get_cpu_vendor(c);
 803
 804	get_cpu_cap(c);
 805
 806	if (c->cpuid_level >= 0x00000001) {
 807		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
 808#ifdef CONFIG_X86_32
 809# ifdef CONFIG_X86_HT
 810		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 811# else
 812		c->apicid = c->initial_apicid;
 813# endif
 814#endif
 815		c->phys_proc_id = c->initial_apicid;
 816	}
 817
 
 
 818	get_model_name(c); /* Default name */
 819
 820	detect_nopl(c);
 821}
 822
 823/*
 824 * This does the hard work of actually picking apart the CPU stuff...
 825 */
 826static void identify_cpu(struct cpuinfo_x86 *c)
 827{
 828	int i;
 829
 830	c->loops_per_jiffy = loops_per_jiffy;
 831	c->x86_cache_size = -1;
 832	c->x86_vendor = X86_VENDOR_UNKNOWN;
 833	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
 834	c->x86_vendor_id[0] = '\0'; /* Unset */
 835	c->x86_model_id[0] = '\0';  /* Unset */
 836	c->x86_max_cores = 1;
 837	c->x86_coreid_bits = 0;
 838#ifdef CONFIG_X86_64
 839	c->x86_clflush_size = 64;
 840	c->x86_phys_bits = 36;
 841	c->x86_virt_bits = 48;
 842#else
 843	c->cpuid_level = -1;	/* CPUID not detected */
 844	c->x86_clflush_size = 32;
 845	c->x86_phys_bits = 32;
 846	c->x86_virt_bits = 32;
 847#endif
 848	c->x86_cache_alignment = c->x86_clflush_size;
 849	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 850
 851	generic_identify(c);
 852
 853	if (this_cpu->c_identify)
 854		this_cpu->c_identify(c);
 855
 856	/* Clear/Set all flags overriden by options, after probe */
 857	for (i = 0; i < NCAPINTS; i++) {
 858		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 859		c->x86_capability[i] |= cpu_caps_set[i];
 860	}
 861
 862#ifdef CONFIG_X86_64
 863	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 864#endif
 865
 866	/*
 867	 * Vendor-specific initialization.  In this section we
 868	 * canonicalize the feature flags, meaning if there are
 869	 * features a certain CPU supports which CPUID doesn't
 870	 * tell us, CPUID claiming incorrect flags, or other bugs,
 871	 * we handle them here.
 872	 *
 873	 * At the end of this section, c->x86_capability better
 874	 * indicate the features this CPU genuinely supports!
 875	 */
 876	if (this_cpu->c_init)
 877		this_cpu->c_init(c);
 878
 879	/* Disable the PN if appropriate */
 880	squash_the_stupid_serial_number(c);
 881
 882	/* Set up SMEP/SMAP */
 883	setup_smep(c);
 884	setup_smap(c);
 885
 886	/*
 887	 * The vendor-specific functions might have changed features.
 888	 * Now we do "generic changes."
 889	 */
 890
 891	/* Filter out anything that depends on CPUID levels we don't have */
 892	filter_cpuid_features(c, true);
 893
 894	/* If the model name is still unset, do table lookup. */
 895	if (!c->x86_model_id[0]) {
 896		const char *p;
 897		p = table_lookup_model(c);
 898		if (p)
 899			strcpy(c->x86_model_id, p);
 900		else
 901			/* Last resort... */
 902			sprintf(c->x86_model_id, "%02x/%02x",
 903				c->x86, c->x86_model);
 904	}
 905
 906#ifdef CONFIG_X86_64
 907	detect_ht(c);
 908#endif
 909
 910	init_hypervisor(c);
 911	x86_init_rdrand(c);
 912
 913	/*
 914	 * Clear/Set all flags overriden by options, need do it
 915	 * before following smp all cpus cap AND.
 916	 */
 917	for (i = 0; i < NCAPINTS; i++) {
 918		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 919		c->x86_capability[i] |= cpu_caps_set[i];
 920	}
 921
 922	/*
 923	 * On SMP, boot_cpu_data holds the common feature set between
 924	 * all CPUs; so make sure that we indicate which features are
 925	 * common between the CPUs.  The first time this routine gets
 926	 * executed, c == &boot_cpu_data.
 927	 */
 928	if (c != &boot_cpu_data) {
 929		/* AND the already accumulated flags with these */
 930		for (i = 0; i < NCAPINTS; i++)
 931			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 932
 933		/* OR, i.e. replicate the bug flags */
 934		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
 935			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
 936	}
 937
 938	/* Init Machine Check Exception if available. */
 939	mcheck_cpu_init(c);
 940
 941	select_idle_routine(c);
 942
 943#ifdef CONFIG_NUMA
 944	numa_add_cpu(smp_processor_id());
 945#endif
 946}
 947
 948#ifdef CONFIG_X86_64
 949static void vgetcpu_set_mode(void)
 950{
 951	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
 952		vgetcpu_mode = VGETCPU_RDTSCP;
 953	else
 954		vgetcpu_mode = VGETCPU_LSL;
 955}
 956#endif
 957
 958void __init identify_boot_cpu(void)
 959{
 960	identify_cpu(&boot_cpu_data);
 961	init_amd_e400_c1e_mask();
 962#ifdef CONFIG_X86_32
 963	sysenter_setup();
 964	enable_sep_cpu();
 965#else
 966	vgetcpu_set_mode();
 967#endif
 968	cpu_detect_tlb(&boot_cpu_data);
 969}
 970
 971void identify_secondary_cpu(struct cpuinfo_x86 *c)
 972{
 973	BUG_ON(c == &boot_cpu_data);
 974	identify_cpu(c);
 975#ifdef CONFIG_X86_32
 976	enable_sep_cpu();
 977#endif
 978	mtrr_ap_init();
 979}
 980
 981struct msr_range {
 982	unsigned	min;
 983	unsigned	max;
 984};
 985
 986static const struct msr_range msr_range_array[] = {
 987	{ 0x00000000, 0x00000418},
 988	{ 0xc0000000, 0xc000040b},
 989	{ 0xc0010000, 0xc0010142},
 990	{ 0xc0011000, 0xc001103b},
 991};
 992
 993static void __print_cpu_msr(void)
 994{
 995	unsigned index_min, index_max;
 996	unsigned index;
 997	u64 val;
 998	int i;
 999
1000	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1001		index_min = msr_range_array[i].min;
1002		index_max = msr_range_array[i].max;
1003
1004		for (index = index_min; index < index_max; index++) {
1005			if (rdmsrl_safe(index, &val))
1006				continue;
1007			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1008		}
1009	}
1010}
1011
1012static int show_msr;
1013
1014static __init int setup_show_msr(char *arg)
1015{
1016	int num;
1017
1018	get_option(&arg, &num);
1019
1020	if (num > 0)
1021		show_msr = num;
1022	return 1;
1023}
1024__setup("show_msr=", setup_show_msr);
1025
1026static __init int setup_noclflush(char *arg)
1027{
1028	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1029	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1030	return 1;
1031}
1032__setup("noclflush", setup_noclflush);
1033
1034void print_cpu_info(struct cpuinfo_x86 *c)
1035{
1036	const char *vendor = NULL;
1037
1038	if (c->x86_vendor < X86_VENDOR_NUM) {
1039		vendor = this_cpu->c_vendor;
1040	} else {
1041		if (c->cpuid_level >= 0)
1042			vendor = c->x86_vendor_id;
1043	}
1044
1045	if (vendor && !strstr(c->x86_model_id, vendor))
1046		printk(KERN_CONT "%s ", vendor);
1047
1048	if (c->x86_model_id[0])
1049		printk(KERN_CONT "%s", strim(c->x86_model_id));
1050	else
1051		printk(KERN_CONT "%d86", c->x86);
1052
1053	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1054
1055	if (c->x86_mask || c->cpuid_level >= 0)
1056		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1057	else
1058		printk(KERN_CONT ")\n");
1059
1060	print_cpu_msr(c);
1061}
1062
1063void print_cpu_msr(struct cpuinfo_x86 *c)
1064{
1065	if (c->cpu_index < show_msr)
1066		__print_cpu_msr();
1067}
1068
1069static __init int setup_disablecpuid(char *arg)
1070{
1071	int bit;
1072
1073	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1074		setup_clear_cpu_cap(bit);
1075	else
1076		return 0;
1077
1078	return 1;
1079}
1080__setup("clearcpuid=", setup_disablecpuid);
1081
1082DEFINE_PER_CPU(unsigned long, kernel_stack) =
1083	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1084EXPORT_PER_CPU_SYMBOL(kernel_stack);
1085
1086#ifdef CONFIG_X86_64
1087struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1088struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1089				    (unsigned long) debug_idt_table };
1090
1091DEFINE_PER_CPU_FIRST(union irq_stack_union,
1092		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1093
1094/*
1095 * The following four percpu variables are hot.  Align current_task to
1096 * cacheline size such that all four fall in the same cacheline.
1097 */
1098DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1099	&init_task;
1100EXPORT_PER_CPU_SYMBOL(current_task);
1101
 
 
 
 
1102DEFINE_PER_CPU(char *, irq_stack_ptr) =
1103	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1104
1105DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1106
1107DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1108EXPORT_PER_CPU_SYMBOL(__preempt_count);
1109
1110DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1111
1112/*
1113 * Special IST stacks which the CPU switches to when it calls
1114 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115 * limit), all of them are 4K, except the debug stack which
1116 * is 8K.
1117 */
1118static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1119	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1120	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1121};
1122
1123static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1125
1126/* May not be marked __init: used by software suspend */
1127void syscall_init(void)
1128{
1129	/*
1130	 * LSTAR and STAR live in a bit strange symbiosis.
1131	 * They both write to the same internal register. STAR allows to
1132	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1133	 */
1134	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1135	wrmsrl(MSR_LSTAR, system_call);
1136	wrmsrl(MSR_CSTAR, ignore_sysret);
1137
1138#ifdef CONFIG_IA32_EMULATION
1139	syscall32_cpu_init();
1140#endif
1141
1142	/* Flags to clear on syscall */
1143	wrmsrl(MSR_SYSCALL_MASK,
1144	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1145	       X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1146}
1147
 
 
1148/*
1149 * Copies of the original ist values from the tss are only accessed during
1150 * debugging, no special alignment required.
1151 */
1152DEFINE_PER_CPU(struct orig_ist, orig_ist);
1153
1154static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1155DEFINE_PER_CPU(int, debug_stack_usage);
1156
1157int is_debug_stack(unsigned long addr)
1158{
1159	return __get_cpu_var(debug_stack_usage) ||
1160		(addr <= __get_cpu_var(debug_stack_addr) &&
1161		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1162}
1163
1164DEFINE_PER_CPU(u32, debug_idt_ctr);
1165
1166void debug_stack_set_zero(void)
1167{
1168	this_cpu_inc(debug_idt_ctr);
1169	load_current_idt();
1170}
1171
1172void debug_stack_reset(void)
1173{
1174	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1175		return;
1176	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1177		load_current_idt();
1178}
1179
1180#else	/* CONFIG_X86_64 */
1181
1182DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1183EXPORT_PER_CPU_SYMBOL(current_task);
1184DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1185EXPORT_PER_CPU_SYMBOL(__preempt_count);
1186DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187
1188#ifdef CONFIG_CC_STACKPROTECTOR
1189DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1190#endif
1191
 
 
 
 
 
 
 
 
 
1192#endif	/* CONFIG_X86_64 */
1193
1194/*
1195 * Clear all 6 debug registers:
1196 */
1197static void clear_all_debug_regs(void)
1198{
1199	int i;
1200
1201	for (i = 0; i < 8; i++) {
1202		/* Ignore db4, db5 */
1203		if ((i == 4) || (i == 5))
1204			continue;
1205
1206		set_debugreg(0, i);
1207	}
1208}
1209
1210#ifdef CONFIG_KGDB
1211/*
1212 * Restore debug regs if using kgdbwait and you have a kernel debugger
1213 * connection established.
1214 */
1215static void dbg_restore_debug_regs(void)
1216{
1217	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1218		arch_kgdb_ops.correct_hw_break();
1219}
1220#else /* ! CONFIG_KGDB */
1221#define dbg_restore_debug_regs()
1222#endif /* ! CONFIG_KGDB */
1223
1224/*
1225 * cpu_init() initializes state that is per-CPU. Some data is already
1226 * initialized (naturally) in the bootstrap process, such as the GDT
1227 * and IDT. We reload them nevertheless, this function acts as a
1228 * 'CPU state barrier', nothing should get across.
1229 * A lot of state is already set up in PDA init for 64 bit
1230 */
1231#ifdef CONFIG_X86_64
1232
1233void cpu_init(void)
1234{
1235	struct orig_ist *oist;
1236	struct task_struct *me;
1237	struct tss_struct *t;
1238	unsigned long v;
1239	int cpu;
1240	int i;
1241
1242	/*
1243	 * Load microcode on this cpu if a valid microcode is available.
1244	 * This is early microcode loading procedure.
1245	 */
1246	load_ucode_ap();
1247
1248	cpu = stack_smp_processor_id();
1249	t = &per_cpu(init_tss, cpu);
1250	oist = &per_cpu(orig_ist, cpu);
1251
1252#ifdef CONFIG_NUMA
1253	if (this_cpu_read(numa_node) == 0 &&
1254	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1255		set_numa_node(early_cpu_to_node(cpu));
1256#endif
1257
1258	me = current;
1259
1260	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1261		panic("CPU#%d already initialized!\n", cpu);
1262
1263	pr_debug("Initializing CPU#%d\n", cpu);
1264
1265	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1266
1267	/*
1268	 * Initialize the per-CPU GDT with the boot GDT,
1269	 * and set up the GDT descriptor:
1270	 */
1271
1272	switch_to_new_gdt(cpu);
1273	loadsegment(fs, 0);
1274
1275	load_current_idt();
1276
1277	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1278	syscall_init();
1279
1280	wrmsrl(MSR_FS_BASE, 0);
1281	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1282	barrier();
1283
1284	x86_configure_nx();
1285	enable_x2apic();
 
1286
1287	/*
1288	 * set up and load the per-CPU TSS
1289	 */
1290	if (!oist->ist[0]) {
1291		char *estacks = per_cpu(exception_stacks, cpu);
1292
1293		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1294			estacks += exception_stack_sizes[v];
1295			oist->ist[v] = t->x86_tss.ist[v] =
1296					(unsigned long)estacks;
1297			if (v == DEBUG_STACK-1)
1298				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1299		}
1300	}
1301
1302	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1303
1304	/*
1305	 * <= is required because the CPU will access up to
1306	 * 8 bits beyond the end of the IO permission bitmap.
1307	 */
1308	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1309		t->io_bitmap[i] = ~0UL;
1310
1311	atomic_inc(&init_mm.mm_count);
1312	me->active_mm = &init_mm;
1313	BUG_ON(me->mm);
1314	enter_lazy_tlb(&init_mm, me);
1315
1316	load_sp0(t, &current->thread);
1317	set_tss_desc(cpu, t);
1318	load_TR_desc();
1319	load_LDT(&init_mm.context);
1320
1321	clear_all_debug_regs();
1322	dbg_restore_debug_regs();
1323
1324	fpu_init();
 
 
 
1325
1326	if (is_uv_system())
1327		uv_cpu_init();
1328}
1329
1330#else
1331
1332void cpu_init(void)
1333{
1334	int cpu = smp_processor_id();
1335	struct task_struct *curr = current;
1336	struct tss_struct *t = &per_cpu(init_tss, cpu);
1337	struct thread_struct *thread = &curr->thread;
1338
1339	show_ucode_info_early();
1340
1341	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1342		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1343		for (;;)
1344			local_irq_enable();
1345	}
1346
1347	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1348
1349	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1350		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1351
1352	load_current_idt();
1353	switch_to_new_gdt(cpu);
1354
1355	/*
1356	 * Set up and load the per-CPU TSS and LDT
1357	 */
1358	atomic_inc(&init_mm.mm_count);
1359	curr->active_mm = &init_mm;
1360	BUG_ON(curr->mm);
1361	enter_lazy_tlb(&init_mm, curr);
1362
1363	load_sp0(t, thread);
1364	set_tss_desc(cpu, t);
1365	load_TR_desc();
1366	load_LDT(&init_mm.context);
1367
1368	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1369
1370#ifdef CONFIG_DOUBLEFAULT
1371	/* Set up doublefault TSS pointer in the GDT */
1372	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1373#endif
1374
1375	clear_all_debug_regs();
1376	dbg_restore_debug_regs();
1377
1378	fpu_init();
 
1379}
1380#endif
1381
1382#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383void warn_pre_alternatives(void)
1384{
1385	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1386}
1387EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1388#endif
1389
1390inline bool __static_cpu_has_safe(u16 bit)
1391{
1392	return boot_cpu_has(bit);
1393}
1394EXPORT_SYMBOL_GPL(__static_cpu_has_safe);