Linux Audio

Check our new training course

Loading...
v3.5.6
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69	int i;
  70	
  71	seq_printf(m, "State:\n");
  72	for_each_online_cpu(i)
  73		seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78	int i;
  79	
  80	for_each_online_cpu(i)
  81		seq_printf(m,
  82			   "Cpu%dClkTck\t: %016lx\n",
  83			   i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92	int cpuid = hard_smp_processor_id();
  93
  94	__local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96	if (tlb_type == hypervisor)
  97		sun4v_ktsb_register();
  98
  99	__flush_tlb_all();
 100
 101	setup_sparc64_timer();
 102
 103	if (cheetah_pcache_forced_on)
 104		cheetah_enable_pcache();
 105
 106	local_irq_enable();
 107
 108	callin_flag = 1;
 109	__asm__ __volatile__("membar #Sync\n\t"
 110			     "flush  %%g6" : : : "memory");
 111
 112	/* Clear this or we will die instantly when we
 113	 * schedule back to this idler...
 114	 */
 115	current_thread_info()->new_child = 0;
 116
 117	/* Attach to the address space of init_task. */
 118	atomic_inc(&init_mm.mm_count);
 119	current->active_mm = &init_mm;
 120
 121	/* inform the notifiers about the new cpu */
 122	notify_cpu_starting(cpuid);
 123
 124	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 125		rmb();
 126
 127	ipi_call_lock_irq();
 128	set_cpu_online(cpuid, true);
 129	ipi_call_unlock_irq();
 130
 131	/* idle thread is expected to have preempt disabled */
 132	preempt_disable();
 
 
 
 
 133}
 134
 135void cpu_panic(void)
 136{
 137	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138	panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER	0
 149#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS	64	/* magic value */
 152#define NUM_ITERS	5	/* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC	0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162	unsigned long tcenter, t0, t1, tm;
 163	unsigned long i;
 164
 165	for (i = 0; i < NUM_ITERS; i++) {
 166		t0 = tick_ops->get_tick();
 167		go[MASTER] = 1;
 168		membar_safe("#StoreLoad");
 169		while (!(tm = go[SLAVE]))
 170			rmb();
 171		go[SLAVE] = 0;
 172		wmb();
 173		t1 = tick_ops->get_tick();
 174
 175		if (t1 - t0 < best_t1 - best_t0)
 176			best_t0 = t0, best_t1 = t1, best_tm = tm;
 177	}
 178
 179	*rt = best_t1 - best_t0;
 180	*master = best_tm - best_t0;
 181
 182	/* average best_t0 and best_t1 without overflow: */
 183	tcenter = (best_t0/2 + best_t1/2);
 184	if (best_t0 % 2 + best_t1 % 2 == 2)
 185		tcenter++;
 186	return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191	long i, delta, adj, adjust_latency = 0, done = 0;
 192	unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194	struct {
 195		long rt;	/* roundtrip time */
 196		long master;	/* master's timestamp */
 197		long diff;	/* difference between midpoint and master's timestamp */
 198		long lat;	/* estimate of itc adjustment latency */
 199	} t[NUM_ROUNDS];
 200#endif
 201
 202	go[MASTER] = 1;
 203
 204	while (go[MASTER])
 205		rmb();
 206
 207	local_irq_save(flags);
 208	{
 209		for (i = 0; i < NUM_ROUNDS; i++) {
 210			delta = get_delta(&rt, &master_time_stamp);
 211			if (delta == 0)
 212				done = 1;	/* let's lock on to this... */
 213
 214			if (!done) {
 215				if (i > 0) {
 216					adjust_latency += -delta;
 217					adj = -delta + adjust_latency/4;
 218				} else
 219					adj = -delta;
 220
 221				tick_ops->add_tick(adj);
 222			}
 223#if DEBUG_TICK_SYNC
 224			t[i].rt = rt;
 225			t[i].master = master_time_stamp;
 226			t[i].diff = delta;
 227			t[i].lat = adjust_latency/4;
 228#endif
 229		}
 230	}
 231	local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234	for (i = 0; i < NUM_ROUNDS; i++)
 235		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 241	       smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248	unsigned long flags, i;
 249
 250	go[MASTER] = 0;
 251
 252	smp_start_sync_tick_client(cpu);
 253
 254	/* wait for client to be ready */
 255	while (!go[MASTER])
 256		rmb();
 257
 258	/* now let the client proceed into his loop */
 259	go[MASTER] = 0;
 260	membar_safe("#StoreLoad");
 261
 262	spin_lock_irqsave(&itc_sync_lock, flags);
 263	{
 264		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265			while (!go[MASTER])
 266				rmb();
 267			go[MASTER] = 0;
 268			wmb();
 269			go[SLAVE] = tick_ops->get_tick();
 270			membar_safe("#StoreLoad");
 271		}
 272	}
 273	spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280	unsigned long val = (unsigned long) p;
 281
 282	return kern_base + (val - KERNBASE);
 283}
 284
 285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 
 286{
 287	extern unsigned long sparc64_ttable_tl0;
 288	extern unsigned long kern_locked_tte_data;
 289	struct hvtramp_descr *hdesc;
 290	unsigned long trampoline_ra;
 291	struct trap_per_cpu *tb;
 292	u64 tte_vaddr, tte_data;
 293	unsigned long hv_err;
 294	int i;
 295
 296	hdesc = kzalloc(sizeof(*hdesc) +
 297			(sizeof(struct hvtramp_mapping) *
 298			 num_kernel_image_mappings - 1),
 299			GFP_KERNEL);
 300	if (!hdesc) {
 301		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302		       "hvtramp_descr.\n");
 303		return;
 304	}
 305	*descrp = hdesc;
 306
 307	hdesc->cpu = cpu;
 308	hdesc->num_mappings = num_kernel_image_mappings;
 309
 310	tb = &trap_block[cpu];
 311
 312	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315	hdesc->thread_reg = thread_reg;
 316
 317	tte_vaddr = (unsigned long) KERNBASE;
 318	tte_data = kern_locked_tte_data;
 319
 320	for (i = 0; i < hdesc->num_mappings; i++) {
 321		hdesc->maps[i].vaddr = tte_vaddr;
 322		hdesc->maps[i].tte   = tte_data;
 323		tte_vaddr += 0x400000;
 324		tte_data  += 0x400000;
 325	}
 326
 327	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331				 __pa(hdesc));
 332	if (hv_err)
 333		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334		       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 347{
 348	unsigned long entry =
 349		(unsigned long)(&sparc64_cpu_startup);
 350	unsigned long cookie =
 351		(unsigned long)(&cpu_new_thread);
 352	void *descr = NULL;
 353	int timeout, ret;
 354
 355	callin_flag = 0;
 356	cpu_new_thread = task_thread_info(idle);
 357
 358	if (tlb_type == hypervisor) {
 359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 360		if (ldom_domaining_enabled)
 361			ldom_startcpu_cpuid(cpu,
 362					    (unsigned long) cpu_new_thread,
 363					    &descr);
 364		else
 365#endif
 366			prom_startcpu_cpuid(cpu, entry, cookie);
 367	} else {
 368		struct device_node *dp = of_find_node_by_cpuid(cpu);
 369
 370		prom_startcpu(dp->phandle, entry, cookie);
 371	}
 372
 373	for (timeout = 0; timeout < 50000; timeout++) {
 374		if (callin_flag)
 375			break;
 376		udelay(100);
 377	}
 378
 379	if (callin_flag) {
 380		ret = 0;
 381	} else {
 382		printk("Processor %d is stuck.\n", cpu);
 383		ret = -ENODEV;
 384	}
 385	cpu_new_thread = NULL;
 386
 387	kfree(descr);
 388
 389	return ret;
 390}
 391
 392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 393{
 394	u64 result, target;
 395	int stuck, tmp;
 396
 397	if (this_is_starfire) {
 398		/* map to real upaid */
 399		cpu = (((cpu & 0x3c) << 1) |
 400			((cpu & 0x40) >> 4) |
 401			(cpu & 0x3));
 402	}
 403
 404	target = (cpu << 14) | 0x70;
 405again:
 406	/* Ok, this is the real Spitfire Errata #54.
 407	 * One must read back from a UDB internal register
 408	 * after writes to the UDB interrupt dispatch, but
 409	 * before the membar Sync for that write.
 410	 * So we use the high UDB control register (ASI 0x7f,
 411	 * ADDR 0x20) for the dummy read. -DaveM
 412	 */
 413	tmp = 0x40;
 414	__asm__ __volatile__(
 415	"wrpr	%1, %2, %%pstate\n\t"
 416	"stxa	%4, [%0] %3\n\t"
 417	"stxa	%5, [%0+%8] %3\n\t"
 418	"add	%0, %8, %0\n\t"
 419	"stxa	%6, [%0+%8] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"stxa	%%g0, [%7] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"mov	0x20, %%g1\n\t"
 424	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 425	"membar	#Sync"
 426	: "=r" (tmp)
 427	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 428	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 429	  "r" (0x10), "0" (tmp)
 430        : "g1");
 431
 432	/* NOTE: PSTATE_IE is still clear. */
 433	stuck = 100000;
 434	do {
 435		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 436			: "=r" (result)
 437			: "i" (ASI_INTR_DISPATCH_STAT));
 438		if (result == 0) {
 439			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 440					     : : "r" (pstate));
 441			return;
 442		}
 443		stuck -= 1;
 444		if (stuck == 0)
 445			break;
 446	} while (result & 0x1);
 447	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 448			     : : "r" (pstate));
 449	if (stuck == 0) {
 450		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 451		       smp_processor_id(), result);
 452	} else {
 453		udelay(2);
 454		goto again;
 455	}
 456}
 457
 458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 459{
 460	u64 *mondo, data0, data1, data2;
 461	u16 *cpu_list;
 462	u64 pstate;
 463	int i;
 464
 465	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 466	cpu_list = __va(tb->cpu_list_pa);
 467	mondo = __va(tb->cpu_mondo_block_pa);
 468	data0 = mondo[0];
 469	data1 = mondo[1];
 470	data2 = mondo[2];
 471	for (i = 0; i < cnt; i++)
 472		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 473}
 474
 475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 476 * packet, but we have no use for that.  However we do take advantage of
 477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 478 */
 479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 480{
 481	int nack_busy_id, is_jbus, need_more;
 482	u64 *mondo, pstate, ver, busy_mask;
 483	u16 *cpu_list;
 484
 485	cpu_list = __va(tb->cpu_list_pa);
 486	mondo = __va(tb->cpu_mondo_block_pa);
 487
 488	/* Unfortunately, someone at Sun had the brilliant idea to make the
 489	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 490	 * derivative processor.
 491	 */
 492	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 493	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 494		   (ver >> 32) == __SERRANO_ID);
 495
 496	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 497
 498retry:
 499	need_more = 0;
 500	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 501			     : : "r" (pstate), "i" (PSTATE_IE));
 502
 503	/* Setup the dispatch data registers. */
 504	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 505			     "stxa	%1, [%4] %6\n\t"
 506			     "stxa	%2, [%5] %6\n\t"
 507			     "membar	#Sync\n\t"
 508			     : /* no outputs */
 509			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 510			       "r" (0x40), "r" (0x50), "r" (0x60),
 511			       "i" (ASI_INTR_W));
 512
 513	nack_busy_id = 0;
 514	busy_mask = 0;
 515	{
 516		int i;
 517
 518		for (i = 0; i < cnt; i++) {
 519			u64 target, nr;
 520
 521			nr = cpu_list[i];
 522			if (nr == 0xffff)
 523				continue;
 524
 525			target = (nr << 14) | 0x70;
 526			if (is_jbus) {
 527				busy_mask |= (0x1UL << (nr * 2));
 528			} else {
 529				target |= (nack_busy_id << 24);
 530				busy_mask |= (0x1UL <<
 531					      (nack_busy_id * 2));
 532			}
 533			__asm__ __volatile__(
 534				"stxa	%%g0, [%0] %1\n\t"
 535				"membar	#Sync\n\t"
 536				: /* no outputs */
 537				: "r" (target), "i" (ASI_INTR_W));
 538			nack_busy_id++;
 539			if (nack_busy_id == 32) {
 540				need_more = 1;
 541				break;
 542			}
 543		}
 544	}
 545
 546	/* Now, poll for completion. */
 547	{
 548		u64 dispatch_stat, nack_mask;
 549		long stuck;
 550
 551		stuck = 100000 * nack_busy_id;
 552		nack_mask = busy_mask << 1;
 553		do {
 554			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 555					     : "=r" (dispatch_stat)
 556					     : "i" (ASI_INTR_DISPATCH_STAT));
 557			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 558				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 559						     : : "r" (pstate));
 560				if (unlikely(need_more)) {
 561					int i, this_cnt = 0;
 562					for (i = 0; i < cnt; i++) {
 563						if (cpu_list[i] == 0xffff)
 564							continue;
 565						cpu_list[i] = 0xffff;
 566						this_cnt++;
 567						if (this_cnt == 32)
 568							break;
 569					}
 570					goto retry;
 571				}
 572				return;
 573			}
 574			if (!--stuck)
 575				break;
 576		} while (dispatch_stat & busy_mask);
 577
 578		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 579				     : : "r" (pstate));
 580
 581		if (dispatch_stat & busy_mask) {
 582			/* Busy bits will not clear, continue instead
 583			 * of freezing up on this cpu.
 584			 */
 585			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 586			       smp_processor_id(), dispatch_stat);
 587		} else {
 588			int i, this_busy_nack = 0;
 589
 590			/* Delay some random time with interrupts enabled
 591			 * to prevent deadlock.
 592			 */
 593			udelay(2 * nack_busy_id);
 594
 595			/* Clear out the mask bits for cpus which did not
 596			 * NACK us.
 597			 */
 598			for (i = 0; i < cnt; i++) {
 599				u64 check_mask, nr;
 600
 601				nr = cpu_list[i];
 602				if (nr == 0xffff)
 603					continue;
 604
 605				if (is_jbus)
 606					check_mask = (0x2UL << (2*nr));
 607				else
 608					check_mask = (0x2UL <<
 609						      this_busy_nack);
 610				if ((dispatch_stat & check_mask) == 0)
 611					cpu_list[i] = 0xffff;
 612				this_busy_nack += 2;
 613				if (this_busy_nack == 64)
 614					break;
 615			}
 616
 617			goto retry;
 618		}
 619	}
 620}
 621
 622/* Multi-cpu list version.  */
 623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 624{
 625	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 626	unsigned long status;
 627	u16 *cpu_list;
 628
 629	this_cpu = smp_processor_id();
 630
 631	cpu_list = __va(tb->cpu_list_pa);
 632
 633	saw_cpu_error = 0;
 634	retries = 0;
 635	prev_sent = 0;
 636	do {
 637		int forward_progress, n_sent;
 638
 639		status = sun4v_cpu_mondo_send(cnt,
 640					      tb->cpu_list_pa,
 641					      tb->cpu_mondo_block_pa);
 642
 643		/* HV_EOK means all cpus received the xcall, we're done.  */
 644		if (likely(status == HV_EOK))
 645			break;
 646
 647		/* First, see if we made any forward progress.
 648		 *
 649		 * The hypervisor indicates successful sends by setting
 650		 * cpu list entries to the value 0xffff.
 651		 */
 652		n_sent = 0;
 653		for (i = 0; i < cnt; i++) {
 654			if (likely(cpu_list[i] == 0xffff))
 655				n_sent++;
 656		}
 657
 658		forward_progress = 0;
 659		if (n_sent > prev_sent)
 660			forward_progress = 1;
 661
 662		prev_sent = n_sent;
 663
 664		/* If we get a HV_ECPUERROR, then one or more of the cpus
 665		 * in the list are in error state.  Use the cpu_state()
 666		 * hypervisor call to find out which cpus are in error state.
 667		 */
 668		if (unlikely(status == HV_ECPUERROR)) {
 669			for (i = 0; i < cnt; i++) {
 670				long err;
 671				u16 cpu;
 672
 673				cpu = cpu_list[i];
 674				if (cpu == 0xffff)
 675					continue;
 676
 677				err = sun4v_cpu_state(cpu);
 678				if (err == HV_CPU_STATE_ERROR) {
 679					saw_cpu_error = (cpu + 1);
 680					cpu_list[i] = 0xffff;
 681				}
 682			}
 683		} else if (unlikely(status != HV_EWOULDBLOCK))
 684			goto fatal_mondo_error;
 685
 686		/* Don't bother rewriting the CPU list, just leave the
 687		 * 0xffff and non-0xffff entries in there and the
 688		 * hypervisor will do the right thing.
 689		 *
 690		 * Only advance timeout state if we didn't make any
 691		 * forward progress.
 692		 */
 693		if (unlikely(!forward_progress)) {
 694			if (unlikely(++retries > 10000))
 695				goto fatal_mondo_timeout;
 696
 697			/* Delay a little bit to let other cpus catch up
 698			 * on their cpu mondo queue work.
 699			 */
 700			udelay(2 * cnt);
 701		}
 702	} while (1);
 703
 704	if (unlikely(saw_cpu_error))
 705		goto fatal_mondo_cpu_error;
 706
 707	return;
 708
 709fatal_mondo_cpu_error:
 710	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 711	       "(including %d) were in error state\n",
 712	       this_cpu, saw_cpu_error - 1);
 713	return;
 714
 715fatal_mondo_timeout:
 716	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 717	       " progress after %d retries.\n",
 718	       this_cpu, retries);
 719	goto dump_cpu_list_and_out;
 720
 721fatal_mondo_error:
 722	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 723	       this_cpu, status);
 724	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 725	       "mondo_block_pa(%lx)\n",
 726	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 727
 728dump_cpu_list_and_out:
 729	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 730	for (i = 0; i < cnt; i++)
 731		printk("%u ", cpu_list[i]);
 732	printk("]\n");
 733}
 734
 735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 736
 737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 738{
 739	struct trap_per_cpu *tb;
 740	int this_cpu, i, cnt;
 741	unsigned long flags;
 742	u16 *cpu_list;
 743	u64 *mondo;
 744
 745	/* We have to do this whole thing with interrupts fully disabled.
 746	 * Otherwise if we send an xcall from interrupt context it will
 747	 * corrupt both our mondo block and cpu list state.
 748	 *
 749	 * One consequence of this is that we cannot use timeout mechanisms
 750	 * that depend upon interrupts being delivered locally.  So, for
 751	 * example, we cannot sample jiffies and expect it to advance.
 752	 *
 753	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 754	 */
 755	local_irq_save(flags);
 756
 757	this_cpu = smp_processor_id();
 758	tb = &trap_block[this_cpu];
 759
 760	mondo = __va(tb->cpu_mondo_block_pa);
 761	mondo[0] = data0;
 762	mondo[1] = data1;
 763	mondo[2] = data2;
 764	wmb();
 765
 766	cpu_list = __va(tb->cpu_list_pa);
 767
 768	/* Setup the initial cpu list.  */
 769	cnt = 0;
 770	for_each_cpu(i, mask) {
 771		if (i == this_cpu || !cpu_online(i))
 772			continue;
 773		cpu_list[cnt++] = i;
 774	}
 775
 776	if (cnt)
 777		xcall_deliver_impl(tb, cnt);
 778
 779	local_irq_restore(flags);
 780}
 781
 782/* Send cross call to all processors mentioned in MASK_P
 783 * except self.  Really, there are only two cases currently,
 784 * "cpu_online_mask" and "mm_cpumask(mm)".
 785 */
 786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 789
 790	xcall_deliver(data0, data1, data2, mask);
 791}
 792
 793/* Send cross call to all processors except self. */
 794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 795{
 796	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 797}
 798
 799extern unsigned long xcall_sync_tick;
 800
 801static void smp_start_sync_tick_client(int cpu)
 802{
 803	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 804		      cpumask_of(cpu));
 805}
 806
 807extern unsigned long xcall_call_function;
 808
 809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 810{
 811	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 812}
 813
 814extern unsigned long xcall_call_function_single;
 815
 816void arch_send_call_function_single_ipi(int cpu)
 817{
 818	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 819		      cpumask_of(cpu));
 820}
 821
 822void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 823{
 824	clear_softint(1 << irq);
 825	generic_smp_call_function_interrupt();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 831	generic_smp_call_function_single_interrupt();
 832}
 833
 834static void tsb_sync(void *info)
 835{
 836	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 837	struct mm_struct *mm = info;
 838
 839	/* It is not valid to test "current->active_mm == mm" here.
 840	 *
 841	 * The value of "current" is not changed atomically with
 842	 * switch_mm().  But that's OK, we just need to check the
 843	 * current cpu's trap block PGD physical address.
 844	 */
 845	if (tp->pgd_paddr == __pa(mm->pgd))
 846		tsb_context_switch(mm);
 847}
 848
 849void smp_tsb_sync(struct mm_struct *mm)
 850{
 851	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 852}
 853
 854extern unsigned long xcall_flush_tlb_mm;
 855extern unsigned long xcall_flush_tlb_pending;
 856extern unsigned long xcall_flush_tlb_kernel_range;
 857extern unsigned long xcall_fetch_glob_regs;
 
 
 858extern unsigned long xcall_receive_signal;
 859extern unsigned long xcall_new_mmu_context_version;
 860#ifdef CONFIG_KGDB
 861extern unsigned long xcall_kgdb_capture;
 862#endif
 863
 864#ifdef DCACHE_ALIASING_POSSIBLE
 865extern unsigned long xcall_flush_dcache_page_cheetah;
 866#endif
 867extern unsigned long xcall_flush_dcache_page_spitfire;
 868
 869#ifdef CONFIG_DEBUG_DCFLUSH
 870extern atomic_t dcpage_flushes;
 871extern atomic_t dcpage_flushes_xcall;
 872#endif
 873
 874static inline void __local_flush_dcache_page(struct page *page)
 875{
 876#ifdef DCACHE_ALIASING_POSSIBLE
 877	__flush_dcache_page(page_address(page),
 878			    ((tlb_type == spitfire) &&
 879			     page_mapping(page) != NULL));
 880#else
 881	if (page_mapping(page) != NULL &&
 882	    tlb_type == spitfire)
 883		__flush_icache_page(__pa(page_address(page)));
 884#endif
 885}
 886
 887void smp_flush_dcache_page_impl(struct page *page, int cpu)
 888{
 889	int this_cpu;
 890
 891	if (tlb_type == hypervisor)
 892		return;
 893
 894#ifdef CONFIG_DEBUG_DCFLUSH
 895	atomic_inc(&dcpage_flushes);
 896#endif
 897
 898	this_cpu = get_cpu();
 899
 900	if (cpu == this_cpu) {
 901		__local_flush_dcache_page(page);
 902	} else if (cpu_online(cpu)) {
 903		void *pg_addr = page_address(page);
 904		u64 data0 = 0;
 905
 906		if (tlb_type == spitfire) {
 907			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 908			if (page_mapping(page) != NULL)
 909				data0 |= ((u64)1 << 32);
 910		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 911#ifdef DCACHE_ALIASING_POSSIBLE
 912			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 913#endif
 914		}
 915		if (data0) {
 916			xcall_deliver(data0, __pa(pg_addr),
 917				      (u64) pg_addr, cpumask_of(cpu));
 918#ifdef CONFIG_DEBUG_DCFLUSH
 919			atomic_inc(&dcpage_flushes_xcall);
 920#endif
 921		}
 922	}
 923
 924	put_cpu();
 925}
 926
 927void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 928{
 929	void *pg_addr;
 930	u64 data0;
 931
 932	if (tlb_type == hypervisor)
 933		return;
 934
 935	preempt_disable();
 936
 937#ifdef CONFIG_DEBUG_DCFLUSH
 938	atomic_inc(&dcpage_flushes);
 939#endif
 940	data0 = 0;
 941	pg_addr = page_address(page);
 942	if (tlb_type == spitfire) {
 943		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 944		if (page_mapping(page) != NULL)
 945			data0 |= ((u64)1 << 32);
 946	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 947#ifdef DCACHE_ALIASING_POSSIBLE
 948		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 949#endif
 950	}
 951	if (data0) {
 952		xcall_deliver(data0, __pa(pg_addr),
 953			      (u64) pg_addr, cpu_online_mask);
 954#ifdef CONFIG_DEBUG_DCFLUSH
 955		atomic_inc(&dcpage_flushes_xcall);
 956#endif
 957	}
 958	__local_flush_dcache_page(page);
 959
 960	preempt_enable();
 961}
 962
 963void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 964{
 965	struct mm_struct *mm;
 966	unsigned long flags;
 967
 968	clear_softint(1 << irq);
 969
 970	/* See if we need to allocate a new TLB context because
 971	 * the version of the one we are using is now out of date.
 972	 */
 973	mm = current->active_mm;
 974	if (unlikely(!mm || (mm == &init_mm)))
 975		return;
 976
 977	spin_lock_irqsave(&mm->context.lock, flags);
 978
 979	if (unlikely(!CTX_VALID(mm->context)))
 980		get_new_mmu_context(mm);
 981
 982	spin_unlock_irqrestore(&mm->context.lock, flags);
 983
 984	load_secondary_context(mm);
 985	__flush_tlb_mm(CTX_HWBITS(mm->context),
 986		       SECONDARY_CONTEXT);
 987}
 988
 989void smp_new_mmu_context_version(void)
 990{
 991	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 992}
 993
 994#ifdef CONFIG_KGDB
 995void kgdb_roundup_cpus(unsigned long flags)
 996{
 997	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 998}
 999#endif
1000
1001void smp_fetch_global_regs(void)
1002{
1003	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1004}
1005
 
 
 
 
 
 
 
 
 
1006/* We know that the window frames of the user have been flushed
1007 * to the stack before we get here because all callers of us
1008 * are flush_tlb_*() routines, and these run after flush_cache_*()
1009 * which performs the flushw.
1010 *
1011 * The SMP TLB coherency scheme we use works as follows:
1012 *
1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014 *    space has (potentially) executed on, this is the heuristic
1015 *    we use to avoid doing cross calls.
1016 *
1017 *    Also, for flushing from kswapd and also for clones, we
1018 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1019 *
1020 * 2) TLB context numbers are shared globally across all processors
1021 *    in the system, this allows us to play several games to avoid
1022 *    cross calls.
1023 *
1024 *    One invariant is that when a cpu switches to a process, and
1025 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1026 *    current cpu's bit set, that tlb context is flushed locally.
1027 *
1028 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1029 *    cross calls when we want to flush the currently running process's
1030 *    tlb state.  This is done by clearing all cpu bits except the current
1031 *    processor's in current->mm->cpu_vm_mask and performing the
1032 *    flush locally only.  This will force any subsequent cpus which run
1033 *    this task to flush the context from the local tlb if the process
1034 *    migrates to another cpu (again).
1035 *
1036 * 3) For shared address spaces (threads) and swapping we bite the
1037 *    bullet for most cases and perform the cross call (but only to
1038 *    the cpus listed in cpu_vm_mask).
1039 *
1040 *    The performance gain from "optimizing" away the cross call for threads is
1041 *    questionable (in theory the big win for threads is the massive sharing of
1042 *    address space state across processors).
1043 */
1044
1045/* This currently is only used by the hugetlb arch pre-fault
1046 * hook on UltraSPARC-III+ and later when changing the pagesize
1047 * bits of the context register for an address space.
1048 */
1049void smp_flush_tlb_mm(struct mm_struct *mm)
1050{
1051	u32 ctx = CTX_HWBITS(mm->context);
1052	int cpu = get_cpu();
1053
1054	if (atomic_read(&mm->mm_users) == 1) {
1055		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056		goto local_flush_and_out;
1057	}
1058
1059	smp_cross_call_masked(&xcall_flush_tlb_mm,
1060			      ctx, 0, 0,
1061			      mm_cpumask(mm));
1062
1063local_flush_and_out:
1064	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065
1066	put_cpu();
1067}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
1069void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1070{
1071	u32 ctx = CTX_HWBITS(mm->context);
 
1072	int cpu = get_cpu();
1073
 
 
 
 
1074	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076	else
1077		smp_cross_call_masked(&xcall_flush_tlb_pending,
1078				      ctx, nr, (unsigned long) vaddrs,
1079				      mm_cpumask(mm));
1080
1081	__flush_tlb_pending(ctx, nr, vaddrs);
1082
1083	put_cpu();
1084}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1087{
1088	start &= PAGE_MASK;
1089	end    = PAGE_ALIGN(end);
1090	if (start != end) {
1091		smp_cross_call(&xcall_flush_tlb_kernel_range,
1092			       0, start, end);
1093
1094		__flush_tlb_kernel_range(start, end);
1095	}
1096}
1097
1098/* CPU capture. */
1099/* #define CAPTURE_DEBUG */
1100extern unsigned long xcall_capture;
1101
1102static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1103static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1104static unsigned long penguins_are_doing_time;
1105
1106void smp_capture(void)
1107{
1108	int result = atomic_add_ret(1, &smp_capture_depth);
1109
1110	if (result == 1) {
1111		int ncpus = num_online_cpus();
1112
1113#ifdef CAPTURE_DEBUG
1114		printk("CPU[%d]: Sending penguins to jail...",
1115		       smp_processor_id());
1116#endif
1117		penguins_are_doing_time = 1;
1118		atomic_inc(&smp_capture_registry);
1119		smp_cross_call(&xcall_capture, 0, 0, 0);
1120		while (atomic_read(&smp_capture_registry) != ncpus)
1121			rmb();
1122#ifdef CAPTURE_DEBUG
1123		printk("done\n");
1124#endif
1125	}
1126}
1127
1128void smp_release(void)
1129{
1130	if (atomic_dec_and_test(&smp_capture_depth)) {
1131#ifdef CAPTURE_DEBUG
1132		printk("CPU[%d]: Giving pardon to "
1133		       "imprisoned penguins\n",
1134		       smp_processor_id());
1135#endif
1136		penguins_are_doing_time = 0;
1137		membar_safe("#StoreLoad");
1138		atomic_dec(&smp_capture_registry);
1139	}
1140}
1141
1142/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1143 * set, so they can service tlb flush xcalls...
1144 */
1145extern void prom_world(int);
1146
1147void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1148{
1149	clear_softint(1 << irq);
1150
1151	preempt_disable();
1152
1153	__asm__ __volatile__("flushw");
1154	prom_world(1);
1155	atomic_inc(&smp_capture_registry);
1156	membar_safe("#StoreLoad");
1157	while (penguins_are_doing_time)
1158		rmb();
1159	atomic_dec(&smp_capture_registry);
1160	prom_world(0);
1161
1162	preempt_enable();
1163}
1164
1165/* /proc/profile writes can call this, don't __init it please. */
1166int setup_profiling_timer(unsigned int multiplier)
1167{
1168	return -EINVAL;
1169}
1170
1171void __init smp_prepare_cpus(unsigned int max_cpus)
1172{
1173}
1174
1175void __devinit smp_prepare_boot_cpu(void)
1176{
1177}
1178
1179void __init smp_setup_processor_id(void)
1180{
1181	if (tlb_type == spitfire)
1182		xcall_deliver_impl = spitfire_xcall_deliver;
1183	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1184		xcall_deliver_impl = cheetah_xcall_deliver;
1185	else
1186		xcall_deliver_impl = hypervisor_xcall_deliver;
1187}
1188
1189void __devinit smp_fill_in_sib_core_maps(void)
1190{
1191	unsigned int i;
1192
1193	for_each_present_cpu(i) {
1194		unsigned int j;
1195
1196		cpumask_clear(&cpu_core_map[i]);
1197		if (cpu_data(i).core_id == 0) {
1198			cpumask_set_cpu(i, &cpu_core_map[i]);
1199			continue;
1200		}
1201
1202		for_each_present_cpu(j) {
1203			if (cpu_data(i).core_id ==
1204			    cpu_data(j).core_id)
1205				cpumask_set_cpu(j, &cpu_core_map[i]);
1206		}
1207	}
1208
1209	for_each_present_cpu(i) {
1210		unsigned int j;
1211
1212		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1213		if (cpu_data(i).proc_id == -1) {
1214			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1215			continue;
1216		}
1217
1218		for_each_present_cpu(j) {
1219			if (cpu_data(i).proc_id ==
1220			    cpu_data(j).proc_id)
1221				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1222		}
1223	}
1224}
1225
1226int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1227{
1228	int ret = smp_boot_one_cpu(cpu, tidle);
1229
1230	if (!ret) {
1231		cpumask_set_cpu(cpu, &smp_commenced_mask);
1232		while (!cpu_online(cpu))
1233			mb();
1234		if (!cpu_online(cpu)) {
1235			ret = -ENODEV;
1236		} else {
1237			/* On SUN4V, writes to %tick and %stick are
1238			 * not allowed.
1239			 */
1240			if (tlb_type != hypervisor)
1241				smp_synchronize_one_tick(cpu);
1242		}
1243	}
1244	return ret;
1245}
1246
1247#ifdef CONFIG_HOTPLUG_CPU
1248void cpu_play_dead(void)
1249{
1250	int cpu = smp_processor_id();
1251	unsigned long pstate;
1252
1253	idle_task_exit();
1254
1255	if (tlb_type == hypervisor) {
1256		struct trap_per_cpu *tb = &trap_block[cpu];
1257
1258		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1259				tb->cpu_mondo_pa, 0);
1260		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1261				tb->dev_mondo_pa, 0);
1262		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1263				tb->resum_mondo_pa, 0);
1264		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1265				tb->nonresum_mondo_pa, 0);
1266	}
1267
1268	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1269	membar_safe("#Sync");
1270
1271	local_irq_disable();
1272
1273	__asm__ __volatile__(
1274		"rdpr	%%pstate, %0\n\t"
1275		"wrpr	%0, %1, %%pstate"
1276		: "=r" (pstate)
1277		: "i" (PSTATE_IE));
1278
1279	while (1)
1280		barrier();
1281}
1282
1283int __cpu_disable(void)
1284{
1285	int cpu = smp_processor_id();
1286	cpuinfo_sparc *c;
1287	int i;
1288
1289	for_each_cpu(i, &cpu_core_map[cpu])
1290		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1291	cpumask_clear(&cpu_core_map[cpu]);
1292
1293	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1294		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1295	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1296
1297	c = &cpu_data(cpu);
1298
1299	c->core_id = 0;
1300	c->proc_id = -1;
1301
1302	smp_wmb();
1303
1304	/* Make sure no interrupts point to this cpu.  */
1305	fixup_irqs();
1306
1307	local_irq_enable();
1308	mdelay(1);
1309	local_irq_disable();
1310
1311	ipi_call_lock();
1312	set_cpu_online(cpu, false);
1313	ipi_call_unlock();
1314
1315	cpu_map_rebuild();
1316
1317	return 0;
1318}
1319
1320void __cpu_die(unsigned int cpu)
1321{
1322	int i;
1323
1324	for (i = 0; i < 100; i++) {
1325		smp_rmb();
1326		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1327			break;
1328		msleep(100);
1329	}
1330	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1331		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1332	} else {
1333#if defined(CONFIG_SUN_LDOMS)
1334		unsigned long hv_err;
1335		int limit = 100;
1336
1337		do {
1338			hv_err = sun4v_cpu_stop(cpu);
1339			if (hv_err == HV_EOK) {
1340				set_cpu_present(cpu, false);
1341				break;
1342			}
1343		} while (--limit > 0);
1344		if (limit <= 0) {
1345			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1346			       hv_err);
1347		}
1348#endif
1349	}
1350}
1351#endif
1352
1353void __init smp_cpus_done(unsigned int max_cpus)
1354{
1355	pcr_arch_init();
1356}
1357
1358void smp_send_reschedule(int cpu)
1359{
1360	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361		      cpumask_of(cpu));
 
 
 
 
 
1362}
1363
1364void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1365{
1366	clear_softint(1 << irq);
1367	scheduler_ipi();
1368}
1369
1370/* This is a nop because we capture all other cpus
1371 * anyways when making the PROM active.
1372 */
1373void smp_send_stop(void)
1374{
1375}
1376
1377/**
1378 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1379 * @cpu: cpu to allocate for
1380 * @size: size allocation in bytes
1381 * @align: alignment
1382 *
1383 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1384 * does the right thing for NUMA regardless of the current
1385 * configuration.
1386 *
1387 * RETURNS:
1388 * Pointer to the allocated area on success, NULL on failure.
1389 */
1390static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1391					size_t align)
1392{
1393	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1394#ifdef CONFIG_NEED_MULTIPLE_NODES
1395	int node = cpu_to_node(cpu);
1396	void *ptr;
1397
1398	if (!node_online(node) || !NODE_DATA(node)) {
1399		ptr = __alloc_bootmem(size, align, goal);
1400		pr_info("cpu %d has no node %d or node-local memory\n",
1401			cpu, node);
1402		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1403			 cpu, size, __pa(ptr));
1404	} else {
1405		ptr = __alloc_bootmem_node(NODE_DATA(node),
1406					   size, align, goal);
1407		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1408			 "%016lx\n", cpu, size, node, __pa(ptr));
1409	}
1410	return ptr;
1411#else
1412	return __alloc_bootmem(size, align, goal);
1413#endif
1414}
1415
1416static void __init pcpu_free_bootmem(void *ptr, size_t size)
1417{
1418	free_bootmem(__pa(ptr), size);
1419}
1420
1421static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1422{
1423	if (cpu_to_node(from) == cpu_to_node(to))
1424		return LOCAL_DISTANCE;
1425	else
1426		return REMOTE_DISTANCE;
1427}
1428
1429static void __init pcpu_populate_pte(unsigned long addr)
1430{
1431	pgd_t *pgd = pgd_offset_k(addr);
1432	pud_t *pud;
1433	pmd_t *pmd;
1434
1435	pud = pud_offset(pgd, addr);
1436	if (pud_none(*pud)) {
1437		pmd_t *new;
1438
1439		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440		pud_populate(&init_mm, pud, new);
1441	}
1442
1443	pmd = pmd_offset(pud, addr);
1444	if (!pmd_present(*pmd)) {
1445		pte_t *new;
1446
1447		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1448		pmd_populate_kernel(&init_mm, pmd, new);
1449	}
1450}
1451
1452void __init setup_per_cpu_areas(void)
1453{
1454	unsigned long delta;
1455	unsigned int cpu;
1456	int rc = -EINVAL;
1457
1458	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1459		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1460					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1461					    pcpu_cpu_distance,
1462					    pcpu_alloc_bootmem,
1463					    pcpu_free_bootmem);
1464		if (rc)
1465			pr_warning("PERCPU: %s allocator failed (%d), "
1466				   "falling back to page size\n",
1467				   pcpu_fc_names[pcpu_chosen_fc], rc);
1468	}
1469	if (rc < 0)
1470		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1471					   pcpu_alloc_bootmem,
1472					   pcpu_free_bootmem,
1473					   pcpu_populate_pte);
1474	if (rc < 0)
1475		panic("cannot initialize percpu area (err=%d)", rc);
1476
1477	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1478	for_each_possible_cpu(cpu)
1479		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1480
1481	/* Setup %g5 for the boot cpu.  */
1482	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1483
1484	of_fill_in_cpu_data();
1485	if (tlb_type == hypervisor)
1486		mdesc_fill_in_cpu_data(cpu_all_mask);
1487}
v3.15
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
 
 
  56DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  57cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  58	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  59
  60EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  61EXPORT_SYMBOL(cpu_core_map);
  62
  63static cpumask_t smp_commenced_mask;
  64
  65void smp_info(struct seq_file *m)
  66{
  67	int i;
  68	
  69	seq_printf(m, "State:\n");
  70	for_each_online_cpu(i)
  71		seq_printf(m, "CPU%d:\t\tonline\n", i);
  72}
  73
  74void smp_bogo(struct seq_file *m)
  75{
  76	int i;
  77	
  78	for_each_online_cpu(i)
  79		seq_printf(m,
  80			   "Cpu%dClkTck\t: %016lx\n",
  81			   i, cpu_data(i).clock_tick);
  82}
  83
  84extern void setup_sparc64_timer(void);
  85
  86static volatile unsigned long callin_flag = 0;
  87
  88void smp_callin(void)
  89{
  90	int cpuid = hard_smp_processor_id();
  91
  92	__local_per_cpu_offset = __per_cpu_offset(cpuid);
  93
  94	if (tlb_type == hypervisor)
  95		sun4v_ktsb_register();
  96
  97	__flush_tlb_all();
  98
  99	setup_sparc64_timer();
 100
 101	if (cheetah_pcache_forced_on)
 102		cheetah_enable_pcache();
 103
 
 
 104	callin_flag = 1;
 105	__asm__ __volatile__("membar #Sync\n\t"
 106			     "flush  %%g6" : : : "memory");
 107
 108	/* Clear this or we will die instantly when we
 109	 * schedule back to this idler...
 110	 */
 111	current_thread_info()->new_child = 0;
 112
 113	/* Attach to the address space of init_task. */
 114	atomic_inc(&init_mm.mm_count);
 115	current->active_mm = &init_mm;
 116
 117	/* inform the notifiers about the new cpu */
 118	notify_cpu_starting(cpuid);
 119
 120	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 121		rmb();
 122
 
 123	set_cpu_online(cpuid, true);
 
 124
 125	/* idle thread is expected to have preempt disabled */
 126	preempt_disable();
 127
 128	local_irq_enable();
 129
 130	cpu_startup_entry(CPUHP_ONLINE);
 131}
 132
 133void cpu_panic(void)
 134{
 135	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 136	panic("SMP bolixed\n");
 137}
 138
 139/* This tick register synchronization scheme is taken entirely from
 140 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 141 *
 142 * The only change I've made is to rework it so that the master
 143 * initiates the synchonization instead of the slave. -DaveM
 144 */
 145
 146#define MASTER	0
 147#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 148
 149#define NUM_ROUNDS	64	/* magic value */
 150#define NUM_ITERS	5	/* likewise */
 151
 152static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 153static unsigned long go[SLAVE + 1];
 154
 155#define DEBUG_TICK_SYNC	0
 156
 157static inline long get_delta (long *rt, long *master)
 158{
 159	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 160	unsigned long tcenter, t0, t1, tm;
 161	unsigned long i;
 162
 163	for (i = 0; i < NUM_ITERS; i++) {
 164		t0 = tick_ops->get_tick();
 165		go[MASTER] = 1;
 166		membar_safe("#StoreLoad");
 167		while (!(tm = go[SLAVE]))
 168			rmb();
 169		go[SLAVE] = 0;
 170		wmb();
 171		t1 = tick_ops->get_tick();
 172
 173		if (t1 - t0 < best_t1 - best_t0)
 174			best_t0 = t0, best_t1 = t1, best_tm = tm;
 175	}
 176
 177	*rt = best_t1 - best_t0;
 178	*master = best_tm - best_t0;
 179
 180	/* average best_t0 and best_t1 without overflow: */
 181	tcenter = (best_t0/2 + best_t1/2);
 182	if (best_t0 % 2 + best_t1 % 2 == 2)
 183		tcenter++;
 184	return tcenter - best_tm;
 185}
 186
 187void smp_synchronize_tick_client(void)
 188{
 189	long i, delta, adj, adjust_latency = 0, done = 0;
 190	unsigned long flags, rt, master_time_stamp;
 191#if DEBUG_TICK_SYNC
 192	struct {
 193		long rt;	/* roundtrip time */
 194		long master;	/* master's timestamp */
 195		long diff;	/* difference between midpoint and master's timestamp */
 196		long lat;	/* estimate of itc adjustment latency */
 197	} t[NUM_ROUNDS];
 198#endif
 199
 200	go[MASTER] = 1;
 201
 202	while (go[MASTER])
 203		rmb();
 204
 205	local_irq_save(flags);
 206	{
 207		for (i = 0; i < NUM_ROUNDS; i++) {
 208			delta = get_delta(&rt, &master_time_stamp);
 209			if (delta == 0)
 210				done = 1;	/* let's lock on to this... */
 211
 212			if (!done) {
 213				if (i > 0) {
 214					adjust_latency += -delta;
 215					adj = -delta + adjust_latency/4;
 216				} else
 217					adj = -delta;
 218
 219				tick_ops->add_tick(adj);
 220			}
 221#if DEBUG_TICK_SYNC
 222			t[i].rt = rt;
 223			t[i].master = master_time_stamp;
 224			t[i].diff = delta;
 225			t[i].lat = adjust_latency/4;
 226#endif
 227		}
 228	}
 229	local_irq_restore(flags);
 230
 231#if DEBUG_TICK_SYNC
 232	for (i = 0; i < NUM_ROUNDS; i++)
 233		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 234		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 235#endif
 236
 237	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 238	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 239	       smp_processor_id(), delta, rt);
 240}
 241
 242static void smp_start_sync_tick_client(int cpu);
 243
 244static void smp_synchronize_one_tick(int cpu)
 245{
 246	unsigned long flags, i;
 247
 248	go[MASTER] = 0;
 249
 250	smp_start_sync_tick_client(cpu);
 251
 252	/* wait for client to be ready */
 253	while (!go[MASTER])
 254		rmb();
 255
 256	/* now let the client proceed into his loop */
 257	go[MASTER] = 0;
 258	membar_safe("#StoreLoad");
 259
 260	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 261	{
 262		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 263			while (!go[MASTER])
 264				rmb();
 265			go[MASTER] = 0;
 266			wmb();
 267			go[SLAVE] = tick_ops->get_tick();
 268			membar_safe("#StoreLoad");
 269		}
 270	}
 271	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 272}
 273
 274#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 275/* XXX Put this in some common place. XXX */
 276static unsigned long kimage_addr_to_ra(void *p)
 277{
 278	unsigned long val = (unsigned long) p;
 279
 280	return kern_base + (val - KERNBASE);
 281}
 282
 283static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 284				void **descrp)
 285{
 286	extern unsigned long sparc64_ttable_tl0;
 287	extern unsigned long kern_locked_tte_data;
 288	struct hvtramp_descr *hdesc;
 289	unsigned long trampoline_ra;
 290	struct trap_per_cpu *tb;
 291	u64 tte_vaddr, tte_data;
 292	unsigned long hv_err;
 293	int i;
 294
 295	hdesc = kzalloc(sizeof(*hdesc) +
 296			(sizeof(struct hvtramp_mapping) *
 297			 num_kernel_image_mappings - 1),
 298			GFP_KERNEL);
 299	if (!hdesc) {
 300		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 301		       "hvtramp_descr.\n");
 302		return;
 303	}
 304	*descrp = hdesc;
 305
 306	hdesc->cpu = cpu;
 307	hdesc->num_mappings = num_kernel_image_mappings;
 308
 309	tb = &trap_block[cpu];
 310
 311	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 312	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 313
 314	hdesc->thread_reg = thread_reg;
 315
 316	tte_vaddr = (unsigned long) KERNBASE;
 317	tte_data = kern_locked_tte_data;
 318
 319	for (i = 0; i < hdesc->num_mappings; i++) {
 320		hdesc->maps[i].vaddr = tte_vaddr;
 321		hdesc->maps[i].tte   = tte_data;
 322		tte_vaddr += 0x400000;
 323		tte_data  += 0x400000;
 324	}
 325
 326	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 327
 328	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 329				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 330				 __pa(hdesc));
 331	if (hv_err)
 332		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 333		       "gives error %lu\n", hv_err);
 334}
 335#endif
 336
 337extern unsigned long sparc64_cpu_startup;
 338
 339/* The OBP cpu startup callback truncates the 3rd arg cookie to
 340 * 32-bits (I think) so to be safe we have it read the pointer
 341 * contained here so we work on >4GB machines. -DaveM
 342 */
 343static struct thread_info *cpu_new_thread = NULL;
 344
 345static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 346{
 347	unsigned long entry =
 348		(unsigned long)(&sparc64_cpu_startup);
 349	unsigned long cookie =
 350		(unsigned long)(&cpu_new_thread);
 351	void *descr = NULL;
 352	int timeout, ret;
 353
 354	callin_flag = 0;
 355	cpu_new_thread = task_thread_info(idle);
 356
 357	if (tlb_type == hypervisor) {
 358#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 359		if (ldom_domaining_enabled)
 360			ldom_startcpu_cpuid(cpu,
 361					    (unsigned long) cpu_new_thread,
 362					    &descr);
 363		else
 364#endif
 365			prom_startcpu_cpuid(cpu, entry, cookie);
 366	} else {
 367		struct device_node *dp = of_find_node_by_cpuid(cpu);
 368
 369		prom_startcpu(dp->phandle, entry, cookie);
 370	}
 371
 372	for (timeout = 0; timeout < 50000; timeout++) {
 373		if (callin_flag)
 374			break;
 375		udelay(100);
 376	}
 377
 378	if (callin_flag) {
 379		ret = 0;
 380	} else {
 381		printk("Processor %d is stuck.\n", cpu);
 382		ret = -ENODEV;
 383	}
 384	cpu_new_thread = NULL;
 385
 386	kfree(descr);
 387
 388	return ret;
 389}
 390
 391static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 392{
 393	u64 result, target;
 394	int stuck, tmp;
 395
 396	if (this_is_starfire) {
 397		/* map to real upaid */
 398		cpu = (((cpu & 0x3c) << 1) |
 399			((cpu & 0x40) >> 4) |
 400			(cpu & 0x3));
 401	}
 402
 403	target = (cpu << 14) | 0x70;
 404again:
 405	/* Ok, this is the real Spitfire Errata #54.
 406	 * One must read back from a UDB internal register
 407	 * after writes to the UDB interrupt dispatch, but
 408	 * before the membar Sync for that write.
 409	 * So we use the high UDB control register (ASI 0x7f,
 410	 * ADDR 0x20) for the dummy read. -DaveM
 411	 */
 412	tmp = 0x40;
 413	__asm__ __volatile__(
 414	"wrpr	%1, %2, %%pstate\n\t"
 415	"stxa	%4, [%0] %3\n\t"
 416	"stxa	%5, [%0+%8] %3\n\t"
 417	"add	%0, %8, %0\n\t"
 418	"stxa	%6, [%0+%8] %3\n\t"
 419	"membar	#Sync\n\t"
 420	"stxa	%%g0, [%7] %3\n\t"
 421	"membar	#Sync\n\t"
 422	"mov	0x20, %%g1\n\t"
 423	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 424	"membar	#Sync"
 425	: "=r" (tmp)
 426	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 427	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 428	  "r" (0x10), "0" (tmp)
 429        : "g1");
 430
 431	/* NOTE: PSTATE_IE is still clear. */
 432	stuck = 100000;
 433	do {
 434		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 435			: "=r" (result)
 436			: "i" (ASI_INTR_DISPATCH_STAT));
 437		if (result == 0) {
 438			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 439					     : : "r" (pstate));
 440			return;
 441		}
 442		stuck -= 1;
 443		if (stuck == 0)
 444			break;
 445	} while (result & 0x1);
 446	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 447			     : : "r" (pstate));
 448	if (stuck == 0) {
 449		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 450		       smp_processor_id(), result);
 451	} else {
 452		udelay(2);
 453		goto again;
 454	}
 455}
 456
 457static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 458{
 459	u64 *mondo, data0, data1, data2;
 460	u16 *cpu_list;
 461	u64 pstate;
 462	int i;
 463
 464	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 465	cpu_list = __va(tb->cpu_list_pa);
 466	mondo = __va(tb->cpu_mondo_block_pa);
 467	data0 = mondo[0];
 468	data1 = mondo[1];
 469	data2 = mondo[2];
 470	for (i = 0; i < cnt; i++)
 471		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 472}
 473
 474/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 475 * packet, but we have no use for that.  However we do take advantage of
 476 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 477 */
 478static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 479{
 480	int nack_busy_id, is_jbus, need_more;
 481	u64 *mondo, pstate, ver, busy_mask;
 482	u16 *cpu_list;
 483
 484	cpu_list = __va(tb->cpu_list_pa);
 485	mondo = __va(tb->cpu_mondo_block_pa);
 486
 487	/* Unfortunately, someone at Sun had the brilliant idea to make the
 488	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 489	 * derivative processor.
 490	 */
 491	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 492	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 493		   (ver >> 32) == __SERRANO_ID);
 494
 495	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 496
 497retry:
 498	need_more = 0;
 499	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 500			     : : "r" (pstate), "i" (PSTATE_IE));
 501
 502	/* Setup the dispatch data registers. */
 503	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 504			     "stxa	%1, [%4] %6\n\t"
 505			     "stxa	%2, [%5] %6\n\t"
 506			     "membar	#Sync\n\t"
 507			     : /* no outputs */
 508			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 509			       "r" (0x40), "r" (0x50), "r" (0x60),
 510			       "i" (ASI_INTR_W));
 511
 512	nack_busy_id = 0;
 513	busy_mask = 0;
 514	{
 515		int i;
 516
 517		for (i = 0; i < cnt; i++) {
 518			u64 target, nr;
 519
 520			nr = cpu_list[i];
 521			if (nr == 0xffff)
 522				continue;
 523
 524			target = (nr << 14) | 0x70;
 525			if (is_jbus) {
 526				busy_mask |= (0x1UL << (nr * 2));
 527			} else {
 528				target |= (nack_busy_id << 24);
 529				busy_mask |= (0x1UL <<
 530					      (nack_busy_id * 2));
 531			}
 532			__asm__ __volatile__(
 533				"stxa	%%g0, [%0] %1\n\t"
 534				"membar	#Sync\n\t"
 535				: /* no outputs */
 536				: "r" (target), "i" (ASI_INTR_W));
 537			nack_busy_id++;
 538			if (nack_busy_id == 32) {
 539				need_more = 1;
 540				break;
 541			}
 542		}
 543	}
 544
 545	/* Now, poll for completion. */
 546	{
 547		u64 dispatch_stat, nack_mask;
 548		long stuck;
 549
 550		stuck = 100000 * nack_busy_id;
 551		nack_mask = busy_mask << 1;
 552		do {
 553			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 554					     : "=r" (dispatch_stat)
 555					     : "i" (ASI_INTR_DISPATCH_STAT));
 556			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 557				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 558						     : : "r" (pstate));
 559				if (unlikely(need_more)) {
 560					int i, this_cnt = 0;
 561					for (i = 0; i < cnt; i++) {
 562						if (cpu_list[i] == 0xffff)
 563							continue;
 564						cpu_list[i] = 0xffff;
 565						this_cnt++;
 566						if (this_cnt == 32)
 567							break;
 568					}
 569					goto retry;
 570				}
 571				return;
 572			}
 573			if (!--stuck)
 574				break;
 575		} while (dispatch_stat & busy_mask);
 576
 577		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 578				     : : "r" (pstate));
 579
 580		if (dispatch_stat & busy_mask) {
 581			/* Busy bits will not clear, continue instead
 582			 * of freezing up on this cpu.
 583			 */
 584			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 585			       smp_processor_id(), dispatch_stat);
 586		} else {
 587			int i, this_busy_nack = 0;
 588
 589			/* Delay some random time with interrupts enabled
 590			 * to prevent deadlock.
 591			 */
 592			udelay(2 * nack_busy_id);
 593
 594			/* Clear out the mask bits for cpus which did not
 595			 * NACK us.
 596			 */
 597			for (i = 0; i < cnt; i++) {
 598				u64 check_mask, nr;
 599
 600				nr = cpu_list[i];
 601				if (nr == 0xffff)
 602					continue;
 603
 604				if (is_jbus)
 605					check_mask = (0x2UL << (2*nr));
 606				else
 607					check_mask = (0x2UL <<
 608						      this_busy_nack);
 609				if ((dispatch_stat & check_mask) == 0)
 610					cpu_list[i] = 0xffff;
 611				this_busy_nack += 2;
 612				if (this_busy_nack == 64)
 613					break;
 614			}
 615
 616			goto retry;
 617		}
 618	}
 619}
 620
 621/* Multi-cpu list version.  */
 622static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 623{
 624	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 625	unsigned long status;
 626	u16 *cpu_list;
 627
 628	this_cpu = smp_processor_id();
 629
 630	cpu_list = __va(tb->cpu_list_pa);
 631
 632	saw_cpu_error = 0;
 633	retries = 0;
 634	prev_sent = 0;
 635	do {
 636		int forward_progress, n_sent;
 637
 638		status = sun4v_cpu_mondo_send(cnt,
 639					      tb->cpu_list_pa,
 640					      tb->cpu_mondo_block_pa);
 641
 642		/* HV_EOK means all cpus received the xcall, we're done.  */
 643		if (likely(status == HV_EOK))
 644			break;
 645
 646		/* First, see if we made any forward progress.
 647		 *
 648		 * The hypervisor indicates successful sends by setting
 649		 * cpu list entries to the value 0xffff.
 650		 */
 651		n_sent = 0;
 652		for (i = 0; i < cnt; i++) {
 653			if (likely(cpu_list[i] == 0xffff))
 654				n_sent++;
 655		}
 656
 657		forward_progress = 0;
 658		if (n_sent > prev_sent)
 659			forward_progress = 1;
 660
 661		prev_sent = n_sent;
 662
 663		/* If we get a HV_ECPUERROR, then one or more of the cpus
 664		 * in the list are in error state.  Use the cpu_state()
 665		 * hypervisor call to find out which cpus are in error state.
 666		 */
 667		if (unlikely(status == HV_ECPUERROR)) {
 668			for (i = 0; i < cnt; i++) {
 669				long err;
 670				u16 cpu;
 671
 672				cpu = cpu_list[i];
 673				if (cpu == 0xffff)
 674					continue;
 675
 676				err = sun4v_cpu_state(cpu);
 677				if (err == HV_CPU_STATE_ERROR) {
 678					saw_cpu_error = (cpu + 1);
 679					cpu_list[i] = 0xffff;
 680				}
 681			}
 682		} else if (unlikely(status != HV_EWOULDBLOCK))
 683			goto fatal_mondo_error;
 684
 685		/* Don't bother rewriting the CPU list, just leave the
 686		 * 0xffff and non-0xffff entries in there and the
 687		 * hypervisor will do the right thing.
 688		 *
 689		 * Only advance timeout state if we didn't make any
 690		 * forward progress.
 691		 */
 692		if (unlikely(!forward_progress)) {
 693			if (unlikely(++retries > 10000))
 694				goto fatal_mondo_timeout;
 695
 696			/* Delay a little bit to let other cpus catch up
 697			 * on their cpu mondo queue work.
 698			 */
 699			udelay(2 * cnt);
 700		}
 701	} while (1);
 702
 703	if (unlikely(saw_cpu_error))
 704		goto fatal_mondo_cpu_error;
 705
 706	return;
 707
 708fatal_mondo_cpu_error:
 709	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 710	       "(including %d) were in error state\n",
 711	       this_cpu, saw_cpu_error - 1);
 712	return;
 713
 714fatal_mondo_timeout:
 715	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 716	       " progress after %d retries.\n",
 717	       this_cpu, retries);
 718	goto dump_cpu_list_and_out;
 719
 720fatal_mondo_error:
 721	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 722	       this_cpu, status);
 723	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 724	       "mondo_block_pa(%lx)\n",
 725	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 726
 727dump_cpu_list_and_out:
 728	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 729	for (i = 0; i < cnt; i++)
 730		printk("%u ", cpu_list[i]);
 731	printk("]\n");
 732}
 733
 734static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 735
 736static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 737{
 738	struct trap_per_cpu *tb;
 739	int this_cpu, i, cnt;
 740	unsigned long flags;
 741	u16 *cpu_list;
 742	u64 *mondo;
 743
 744	/* We have to do this whole thing with interrupts fully disabled.
 745	 * Otherwise if we send an xcall from interrupt context it will
 746	 * corrupt both our mondo block and cpu list state.
 747	 *
 748	 * One consequence of this is that we cannot use timeout mechanisms
 749	 * that depend upon interrupts being delivered locally.  So, for
 750	 * example, we cannot sample jiffies and expect it to advance.
 751	 *
 752	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 753	 */
 754	local_irq_save(flags);
 755
 756	this_cpu = smp_processor_id();
 757	tb = &trap_block[this_cpu];
 758
 759	mondo = __va(tb->cpu_mondo_block_pa);
 760	mondo[0] = data0;
 761	mondo[1] = data1;
 762	mondo[2] = data2;
 763	wmb();
 764
 765	cpu_list = __va(tb->cpu_list_pa);
 766
 767	/* Setup the initial cpu list.  */
 768	cnt = 0;
 769	for_each_cpu(i, mask) {
 770		if (i == this_cpu || !cpu_online(i))
 771			continue;
 772		cpu_list[cnt++] = i;
 773	}
 774
 775	if (cnt)
 776		xcall_deliver_impl(tb, cnt);
 777
 778	local_irq_restore(flags);
 779}
 780
 781/* Send cross call to all processors mentioned in MASK_P
 782 * except self.  Really, there are only two cases currently,
 783 * "cpu_online_mask" and "mm_cpumask(mm)".
 784 */
 785static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 786{
 787	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 788
 789	xcall_deliver(data0, data1, data2, mask);
 790}
 791
 792/* Send cross call to all processors except self. */
 793static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 794{
 795	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 796}
 797
 798extern unsigned long xcall_sync_tick;
 799
 800static void smp_start_sync_tick_client(int cpu)
 801{
 802	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 803		      cpumask_of(cpu));
 804}
 805
 806extern unsigned long xcall_call_function;
 807
 808void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 809{
 810	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 811}
 812
 813extern unsigned long xcall_call_function_single;
 814
 815void arch_send_call_function_single_ipi(int cpu)
 816{
 817	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 818		      cpumask_of(cpu));
 819}
 820
 821void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 822{
 823	clear_softint(1 << irq);
 824	generic_smp_call_function_interrupt();
 825}
 826
 827void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 828{
 829	clear_softint(1 << irq);
 830	generic_smp_call_function_single_interrupt();
 831}
 832
 833static void tsb_sync(void *info)
 834{
 835	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 836	struct mm_struct *mm = info;
 837
 838	/* It is not valid to test "current->active_mm == mm" here.
 839	 *
 840	 * The value of "current" is not changed atomically with
 841	 * switch_mm().  But that's OK, we just need to check the
 842	 * current cpu's trap block PGD physical address.
 843	 */
 844	if (tp->pgd_paddr == __pa(mm->pgd))
 845		tsb_context_switch(mm);
 846}
 847
 848void smp_tsb_sync(struct mm_struct *mm)
 849{
 850	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 851}
 852
 853extern unsigned long xcall_flush_tlb_mm;
 854extern unsigned long xcall_flush_tlb_page;
 855extern unsigned long xcall_flush_tlb_kernel_range;
 856extern unsigned long xcall_fetch_glob_regs;
 857extern unsigned long xcall_fetch_glob_pmu;
 858extern unsigned long xcall_fetch_glob_pmu_n4;
 859extern unsigned long xcall_receive_signal;
 860extern unsigned long xcall_new_mmu_context_version;
 861#ifdef CONFIG_KGDB
 862extern unsigned long xcall_kgdb_capture;
 863#endif
 864
 865#ifdef DCACHE_ALIASING_POSSIBLE
 866extern unsigned long xcall_flush_dcache_page_cheetah;
 867#endif
 868extern unsigned long xcall_flush_dcache_page_spitfire;
 869
 870#ifdef CONFIG_DEBUG_DCFLUSH
 871extern atomic_t dcpage_flushes;
 872extern atomic_t dcpage_flushes_xcall;
 873#endif
 874
 875static inline void __local_flush_dcache_page(struct page *page)
 876{
 877#ifdef DCACHE_ALIASING_POSSIBLE
 878	__flush_dcache_page(page_address(page),
 879			    ((tlb_type == spitfire) &&
 880			     page_mapping(page) != NULL));
 881#else
 882	if (page_mapping(page) != NULL &&
 883	    tlb_type == spitfire)
 884		__flush_icache_page(__pa(page_address(page)));
 885#endif
 886}
 887
 888void smp_flush_dcache_page_impl(struct page *page, int cpu)
 889{
 890	int this_cpu;
 891
 892	if (tlb_type == hypervisor)
 893		return;
 894
 895#ifdef CONFIG_DEBUG_DCFLUSH
 896	atomic_inc(&dcpage_flushes);
 897#endif
 898
 899	this_cpu = get_cpu();
 900
 901	if (cpu == this_cpu) {
 902		__local_flush_dcache_page(page);
 903	} else if (cpu_online(cpu)) {
 904		void *pg_addr = page_address(page);
 905		u64 data0 = 0;
 906
 907		if (tlb_type == spitfire) {
 908			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 909			if (page_mapping(page) != NULL)
 910				data0 |= ((u64)1 << 32);
 911		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 912#ifdef DCACHE_ALIASING_POSSIBLE
 913			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 914#endif
 915		}
 916		if (data0) {
 917			xcall_deliver(data0, __pa(pg_addr),
 918				      (u64) pg_addr, cpumask_of(cpu));
 919#ifdef CONFIG_DEBUG_DCFLUSH
 920			atomic_inc(&dcpage_flushes_xcall);
 921#endif
 922		}
 923	}
 924
 925	put_cpu();
 926}
 927
 928void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 929{
 930	void *pg_addr;
 931	u64 data0;
 932
 933	if (tlb_type == hypervisor)
 934		return;
 935
 936	preempt_disable();
 937
 938#ifdef CONFIG_DEBUG_DCFLUSH
 939	atomic_inc(&dcpage_flushes);
 940#endif
 941	data0 = 0;
 942	pg_addr = page_address(page);
 943	if (tlb_type == spitfire) {
 944		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 945		if (page_mapping(page) != NULL)
 946			data0 |= ((u64)1 << 32);
 947	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 948#ifdef DCACHE_ALIASING_POSSIBLE
 949		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 950#endif
 951	}
 952	if (data0) {
 953		xcall_deliver(data0, __pa(pg_addr),
 954			      (u64) pg_addr, cpu_online_mask);
 955#ifdef CONFIG_DEBUG_DCFLUSH
 956		atomic_inc(&dcpage_flushes_xcall);
 957#endif
 958	}
 959	__local_flush_dcache_page(page);
 960
 961	preempt_enable();
 962}
 963
 964void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 965{
 966	struct mm_struct *mm;
 967	unsigned long flags;
 968
 969	clear_softint(1 << irq);
 970
 971	/* See if we need to allocate a new TLB context because
 972	 * the version of the one we are using is now out of date.
 973	 */
 974	mm = current->active_mm;
 975	if (unlikely(!mm || (mm == &init_mm)))
 976		return;
 977
 978	spin_lock_irqsave(&mm->context.lock, flags);
 979
 980	if (unlikely(!CTX_VALID(mm->context)))
 981		get_new_mmu_context(mm);
 982
 983	spin_unlock_irqrestore(&mm->context.lock, flags);
 984
 985	load_secondary_context(mm);
 986	__flush_tlb_mm(CTX_HWBITS(mm->context),
 987		       SECONDARY_CONTEXT);
 988}
 989
 990void smp_new_mmu_context_version(void)
 991{
 992	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 993}
 994
 995#ifdef CONFIG_KGDB
 996void kgdb_roundup_cpus(unsigned long flags)
 997{
 998	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 999}
1000#endif
1001
1002void smp_fetch_global_regs(void)
1003{
1004	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1005}
1006
1007void smp_fetch_global_pmu(void)
1008{
1009	if (tlb_type == hypervisor &&
1010	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1011		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1012	else
1013		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1014}
1015
1016/* We know that the window frames of the user have been flushed
1017 * to the stack before we get here because all callers of us
1018 * are flush_tlb_*() routines, and these run after flush_cache_*()
1019 * which performs the flushw.
1020 *
1021 * The SMP TLB coherency scheme we use works as follows:
1022 *
1023 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1024 *    space has (potentially) executed on, this is the heuristic
1025 *    we use to avoid doing cross calls.
1026 *
1027 *    Also, for flushing from kswapd and also for clones, we
1028 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1029 *
1030 * 2) TLB context numbers are shared globally across all processors
1031 *    in the system, this allows us to play several games to avoid
1032 *    cross calls.
1033 *
1034 *    One invariant is that when a cpu switches to a process, and
1035 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1036 *    current cpu's bit set, that tlb context is flushed locally.
1037 *
1038 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1039 *    cross calls when we want to flush the currently running process's
1040 *    tlb state.  This is done by clearing all cpu bits except the current
1041 *    processor's in current->mm->cpu_vm_mask and performing the
1042 *    flush locally only.  This will force any subsequent cpus which run
1043 *    this task to flush the context from the local tlb if the process
1044 *    migrates to another cpu (again).
1045 *
1046 * 3) For shared address spaces (threads) and swapping we bite the
1047 *    bullet for most cases and perform the cross call (but only to
1048 *    the cpus listed in cpu_vm_mask).
1049 *
1050 *    The performance gain from "optimizing" away the cross call for threads is
1051 *    questionable (in theory the big win for threads is the massive sharing of
1052 *    address space state across processors).
1053 */
1054
1055/* This currently is only used by the hugetlb arch pre-fault
1056 * hook on UltraSPARC-III+ and later when changing the pagesize
1057 * bits of the context register for an address space.
1058 */
1059void smp_flush_tlb_mm(struct mm_struct *mm)
1060{
1061	u32 ctx = CTX_HWBITS(mm->context);
1062	int cpu = get_cpu();
1063
1064	if (atomic_read(&mm->mm_users) == 1) {
1065		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1066		goto local_flush_and_out;
1067	}
1068
1069	smp_cross_call_masked(&xcall_flush_tlb_mm,
1070			      ctx, 0, 0,
1071			      mm_cpumask(mm));
1072
1073local_flush_and_out:
1074	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075
1076	put_cpu();
1077}
1078
1079struct tlb_pending_info {
1080	unsigned long ctx;
1081	unsigned long nr;
1082	unsigned long *vaddrs;
1083};
1084
1085static void tlb_pending_func(void *info)
1086{
1087	struct tlb_pending_info *t = info;
1088
1089	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090}
1091
1092void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093{
1094	u32 ctx = CTX_HWBITS(mm->context);
1095	struct tlb_pending_info info;
1096	int cpu = get_cpu();
1097
1098	info.ctx = ctx;
1099	info.nr = nr;
1100	info.vaddrs = vaddrs;
1101
1102	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1103		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1104	else
1105		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1106				       &info, 1);
 
1107
1108	__flush_tlb_pending(ctx, nr, vaddrs);
1109
1110	put_cpu();
1111}
1112
1113void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1114{
1115	unsigned long context = CTX_HWBITS(mm->context);
1116	int cpu = get_cpu();
1117
1118	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1119		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1120	else
1121		smp_cross_call_masked(&xcall_flush_tlb_page,
1122				      context, vaddr, 0,
1123				      mm_cpumask(mm));
1124	__flush_tlb_page(context, vaddr);
1125
1126	put_cpu();
1127}
1128
1129void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1130{
1131	start &= PAGE_MASK;
1132	end    = PAGE_ALIGN(end);
1133	if (start != end) {
1134		smp_cross_call(&xcall_flush_tlb_kernel_range,
1135			       0, start, end);
1136
1137		__flush_tlb_kernel_range(start, end);
1138	}
1139}
1140
1141/* CPU capture. */
1142/* #define CAPTURE_DEBUG */
1143extern unsigned long xcall_capture;
1144
1145static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1146static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1147static unsigned long penguins_are_doing_time;
1148
1149void smp_capture(void)
1150{
1151	int result = atomic_add_ret(1, &smp_capture_depth);
1152
1153	if (result == 1) {
1154		int ncpus = num_online_cpus();
1155
1156#ifdef CAPTURE_DEBUG
1157		printk("CPU[%d]: Sending penguins to jail...",
1158		       smp_processor_id());
1159#endif
1160		penguins_are_doing_time = 1;
1161		atomic_inc(&smp_capture_registry);
1162		smp_cross_call(&xcall_capture, 0, 0, 0);
1163		while (atomic_read(&smp_capture_registry) != ncpus)
1164			rmb();
1165#ifdef CAPTURE_DEBUG
1166		printk("done\n");
1167#endif
1168	}
1169}
1170
1171void smp_release(void)
1172{
1173	if (atomic_dec_and_test(&smp_capture_depth)) {
1174#ifdef CAPTURE_DEBUG
1175		printk("CPU[%d]: Giving pardon to "
1176		       "imprisoned penguins\n",
1177		       smp_processor_id());
1178#endif
1179		penguins_are_doing_time = 0;
1180		membar_safe("#StoreLoad");
1181		atomic_dec(&smp_capture_registry);
1182	}
1183}
1184
1185/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1186 * set, so they can service tlb flush xcalls...
1187 */
1188extern void prom_world(int);
1189
1190void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1191{
1192	clear_softint(1 << irq);
1193
1194	preempt_disable();
1195
1196	__asm__ __volatile__("flushw");
1197	prom_world(1);
1198	atomic_inc(&smp_capture_registry);
1199	membar_safe("#StoreLoad");
1200	while (penguins_are_doing_time)
1201		rmb();
1202	atomic_dec(&smp_capture_registry);
1203	prom_world(0);
1204
1205	preempt_enable();
1206}
1207
1208/* /proc/profile writes can call this, don't __init it please. */
1209int setup_profiling_timer(unsigned int multiplier)
1210{
1211	return -EINVAL;
1212}
1213
1214void __init smp_prepare_cpus(unsigned int max_cpus)
1215{
1216}
1217
1218void smp_prepare_boot_cpu(void)
1219{
1220}
1221
1222void __init smp_setup_processor_id(void)
1223{
1224	if (tlb_type == spitfire)
1225		xcall_deliver_impl = spitfire_xcall_deliver;
1226	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1227		xcall_deliver_impl = cheetah_xcall_deliver;
1228	else
1229		xcall_deliver_impl = hypervisor_xcall_deliver;
1230}
1231
1232void smp_fill_in_sib_core_maps(void)
1233{
1234	unsigned int i;
1235
1236	for_each_present_cpu(i) {
1237		unsigned int j;
1238
1239		cpumask_clear(&cpu_core_map[i]);
1240		if (cpu_data(i).core_id == 0) {
1241			cpumask_set_cpu(i, &cpu_core_map[i]);
1242			continue;
1243		}
1244
1245		for_each_present_cpu(j) {
1246			if (cpu_data(i).core_id ==
1247			    cpu_data(j).core_id)
1248				cpumask_set_cpu(j, &cpu_core_map[i]);
1249		}
1250	}
1251
1252	for_each_present_cpu(i) {
1253		unsigned int j;
1254
1255		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1256		if (cpu_data(i).proc_id == -1) {
1257			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1258			continue;
1259		}
1260
1261		for_each_present_cpu(j) {
1262			if (cpu_data(i).proc_id ==
1263			    cpu_data(j).proc_id)
1264				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1265		}
1266	}
1267}
1268
1269int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1270{
1271	int ret = smp_boot_one_cpu(cpu, tidle);
1272
1273	if (!ret) {
1274		cpumask_set_cpu(cpu, &smp_commenced_mask);
1275		while (!cpu_online(cpu))
1276			mb();
1277		if (!cpu_online(cpu)) {
1278			ret = -ENODEV;
1279		} else {
1280			/* On SUN4V, writes to %tick and %stick are
1281			 * not allowed.
1282			 */
1283			if (tlb_type != hypervisor)
1284				smp_synchronize_one_tick(cpu);
1285		}
1286	}
1287	return ret;
1288}
1289
1290#ifdef CONFIG_HOTPLUG_CPU
1291void cpu_play_dead(void)
1292{
1293	int cpu = smp_processor_id();
1294	unsigned long pstate;
1295
1296	idle_task_exit();
1297
1298	if (tlb_type == hypervisor) {
1299		struct trap_per_cpu *tb = &trap_block[cpu];
1300
1301		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1302				tb->cpu_mondo_pa, 0);
1303		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1304				tb->dev_mondo_pa, 0);
1305		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1306				tb->resum_mondo_pa, 0);
1307		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1308				tb->nonresum_mondo_pa, 0);
1309	}
1310
1311	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1312	membar_safe("#Sync");
1313
1314	local_irq_disable();
1315
1316	__asm__ __volatile__(
1317		"rdpr	%%pstate, %0\n\t"
1318		"wrpr	%0, %1, %%pstate"
1319		: "=r" (pstate)
1320		: "i" (PSTATE_IE));
1321
1322	while (1)
1323		barrier();
1324}
1325
1326int __cpu_disable(void)
1327{
1328	int cpu = smp_processor_id();
1329	cpuinfo_sparc *c;
1330	int i;
1331
1332	for_each_cpu(i, &cpu_core_map[cpu])
1333		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1334	cpumask_clear(&cpu_core_map[cpu]);
1335
1336	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1337		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1338	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1339
1340	c = &cpu_data(cpu);
1341
1342	c->core_id = 0;
1343	c->proc_id = -1;
1344
1345	smp_wmb();
1346
1347	/* Make sure no interrupts point to this cpu.  */
1348	fixup_irqs();
1349
1350	local_irq_enable();
1351	mdelay(1);
1352	local_irq_disable();
1353
 
1354	set_cpu_online(cpu, false);
 
1355
1356	cpu_map_rebuild();
1357
1358	return 0;
1359}
1360
1361void __cpu_die(unsigned int cpu)
1362{
1363	int i;
1364
1365	for (i = 0; i < 100; i++) {
1366		smp_rmb();
1367		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1368			break;
1369		msleep(100);
1370	}
1371	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1372		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1373	} else {
1374#if defined(CONFIG_SUN_LDOMS)
1375		unsigned long hv_err;
1376		int limit = 100;
1377
1378		do {
1379			hv_err = sun4v_cpu_stop(cpu);
1380			if (hv_err == HV_EOK) {
1381				set_cpu_present(cpu, false);
1382				break;
1383			}
1384		} while (--limit > 0);
1385		if (limit <= 0) {
1386			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1387			       hv_err);
1388		}
1389#endif
1390	}
1391}
1392#endif
1393
1394void __init smp_cpus_done(unsigned int max_cpus)
1395{
1396	pcr_arch_init();
1397}
1398
1399void smp_send_reschedule(int cpu)
1400{
1401	if (cpu == smp_processor_id()) {
1402		WARN_ON_ONCE(preemptible());
1403		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1404	} else {
1405		xcall_deliver((u64) &xcall_receive_signal,
1406			      0, 0, cpumask_of(cpu));
1407	}
1408}
1409
1410void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1411{
1412	clear_softint(1 << irq);
1413	scheduler_ipi();
1414}
1415
1416/* This is a nop because we capture all other cpus
1417 * anyways when making the PROM active.
1418 */
1419void smp_send_stop(void)
1420{
1421}
1422
1423/**
1424 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1425 * @cpu: cpu to allocate for
1426 * @size: size allocation in bytes
1427 * @align: alignment
1428 *
1429 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1430 * does the right thing for NUMA regardless of the current
1431 * configuration.
1432 *
1433 * RETURNS:
1434 * Pointer to the allocated area on success, NULL on failure.
1435 */
1436static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1437					size_t align)
1438{
1439	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1440#ifdef CONFIG_NEED_MULTIPLE_NODES
1441	int node = cpu_to_node(cpu);
1442	void *ptr;
1443
1444	if (!node_online(node) || !NODE_DATA(node)) {
1445		ptr = __alloc_bootmem(size, align, goal);
1446		pr_info("cpu %d has no node %d or node-local memory\n",
1447			cpu, node);
1448		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1449			 cpu, size, __pa(ptr));
1450	} else {
1451		ptr = __alloc_bootmem_node(NODE_DATA(node),
1452					   size, align, goal);
1453		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1454			 "%016lx\n", cpu, size, node, __pa(ptr));
1455	}
1456	return ptr;
1457#else
1458	return __alloc_bootmem(size, align, goal);
1459#endif
1460}
1461
1462static void __init pcpu_free_bootmem(void *ptr, size_t size)
1463{
1464	free_bootmem(__pa(ptr), size);
1465}
1466
1467static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1468{
1469	if (cpu_to_node(from) == cpu_to_node(to))
1470		return LOCAL_DISTANCE;
1471	else
1472		return REMOTE_DISTANCE;
1473}
1474
1475static void __init pcpu_populate_pte(unsigned long addr)
1476{
1477	pgd_t *pgd = pgd_offset_k(addr);
1478	pud_t *pud;
1479	pmd_t *pmd;
1480
1481	pud = pud_offset(pgd, addr);
1482	if (pud_none(*pud)) {
1483		pmd_t *new;
1484
1485		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1486		pud_populate(&init_mm, pud, new);
1487	}
1488
1489	pmd = pmd_offset(pud, addr);
1490	if (!pmd_present(*pmd)) {
1491		pte_t *new;
1492
1493		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1494		pmd_populate_kernel(&init_mm, pmd, new);
1495	}
1496}
1497
1498void __init setup_per_cpu_areas(void)
1499{
1500	unsigned long delta;
1501	unsigned int cpu;
1502	int rc = -EINVAL;
1503
1504	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1505		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1506					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1507					    pcpu_cpu_distance,
1508					    pcpu_alloc_bootmem,
1509					    pcpu_free_bootmem);
1510		if (rc)
1511			pr_warning("PERCPU: %s allocator failed (%d), "
1512				   "falling back to page size\n",
1513				   pcpu_fc_names[pcpu_chosen_fc], rc);
1514	}
1515	if (rc < 0)
1516		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1517					   pcpu_alloc_bootmem,
1518					   pcpu_free_bootmem,
1519					   pcpu_populate_pte);
1520	if (rc < 0)
1521		panic("cannot initialize percpu area (err=%d)", rc);
1522
1523	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1524	for_each_possible_cpu(cpu)
1525		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1526
1527	/* Setup %g5 for the boot cpu.  */
1528	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1529
1530	of_fill_in_cpu_data();
1531	if (tlb_type == hypervisor)
1532		mdesc_fill_in_cpu_data(cpu_all_mask);
1533}