Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 14#include <asm/proc-fns.h>
 15
 16#ifndef CONFIG_MMU
 17
 18#include <asm-generic/4level-fixup.h>
 19#include "pgtable-nommu.h"
 20
 21#else
 22
 23#include <asm-generic/pgtable-nopud.h>
 24#include <asm/memory.h>
 25#include <asm/pgtable-hwdef.h>
 26
 
 
 
 27#ifdef CONFIG_ARM_LPAE
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33/*
 34 * Just any arbitrary offset to the start of the vmalloc VM area: the
 35 * current 8MB value just means that there will be a 8MB "hole" after the
 36 * physical memory until the kernel virtual memory starts.  That means that
 37 * any out-of-bounds memory accesses will hopefully be caught.
 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 39 * area for the same reason. ;)
 40 */
 41#define VMALLOC_OFFSET		(8*1024*1024)
 42#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 43#define VMALLOC_END		0xff000000UL
 44
 45#define LIBRARY_TEXT_START	0x0c000000
 46
 47#ifndef __ASSEMBLY__
 48extern void __pte_error(const char *file, int line, pte_t);
 49extern void __pmd_error(const char *file, int line, pmd_t);
 50extern void __pgd_error(const char *file, int line, pgd_t);
 51
 52#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 53#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 54#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 55
 56/*
 57 * This is the lowest virtual address we can permit any user space
 58 * mapping to be mapped at.  This is particularly important for
 59 * non-high vector CPUs.
 60 */
 61#define FIRST_USER_ADDRESS	PAGE_SIZE
 
 
 
 
 
 
 
 
 
 62
 63/*
 64 * The pgprot_* and protection_map entries will be fixed up in runtime
 65 * to include the cachable and bufferable bits based on memory policy,
 66 * as well as any architecture dependent bits like global/ASID and SMP
 67 * shared mapping bits.
 68 */
 69#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 70
 71extern pgprot_t		pgprot_user;
 72extern pgprot_t		pgprot_kernel;
 
 
 
 73
 74#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 75
 76#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
 77#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 78#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 79#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 80#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 81#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 82#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 83#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 84#define PAGE_KERNEL_EXEC	pgprot_kernel
 
 
 
 
 85
 86#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
 87#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 88#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 89#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 90#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 91#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 92#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 93
 94#define __pgprot_modify(prot,mask,bits)		\
 95	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
 96
 97#define pgprot_noncached(prot) \
 98	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
 99
100#define pgprot_writecombine(prot) \
101	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
102
103#define pgprot_stronglyordered(prot) \
104	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
105
106#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
107#define pgprot_dmacoherent(prot) \
108	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
109#define __HAVE_PHYS_MEM_ACCESS_PROT
110struct file;
111extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
112				     unsigned long size, pgprot_t vma_prot);
113#else
114#define pgprot_dmacoherent(prot) \
115	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
116#endif
117
118#endif /* __ASSEMBLY__ */
119
120/*
121 * The table below defines the page protection levels that we insert into our
122 * Linux page table version.  These get translated into the best that the
123 * architecture can perform.  Note that on most ARM hardware:
124 *  1) We cannot do execute protection
125 *  2) If we could do execute protection, then read is implied
126 *  3) write implies read permissions
127 */
128#define __P000  __PAGE_NONE
129#define __P001  __PAGE_READONLY
130#define __P010  __PAGE_COPY
131#define __P011  __PAGE_COPY
132#define __P100  __PAGE_READONLY_EXEC
133#define __P101  __PAGE_READONLY_EXEC
134#define __P110  __PAGE_COPY_EXEC
135#define __P111  __PAGE_COPY_EXEC
136
137#define __S000  __PAGE_NONE
138#define __S001  __PAGE_READONLY
139#define __S010  __PAGE_SHARED
140#define __S011  __PAGE_SHARED
141#define __S100  __PAGE_READONLY_EXEC
142#define __S101  __PAGE_READONLY_EXEC
143#define __S110  __PAGE_SHARED_EXEC
144#define __S111  __PAGE_SHARED_EXEC
145
146#ifndef __ASSEMBLY__
147/*
148 * ZERO_PAGE is a global shared page that is always zero: used
149 * for zero-mapped memory areas etc..
150 */
151extern struct page *empty_zero_page;
152#define ZERO_PAGE(vaddr)	(empty_zero_page)
153
154
155extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
156
157/* to find an entry in a page-table-directory */
158#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
159
160#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
161
162/* to find an entry in a kernel page-table-directory */
163#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
164
165#define pmd_none(pmd)		(!pmd_val(pmd))
166#define pmd_present(pmd)	(pmd_val(pmd))
167
168static inline pte_t *pmd_page_vaddr(pmd_t pmd)
169{
170	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
171}
172
173#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
174
175#ifndef CONFIG_HIGHPTE
176#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
177#define __pte_unmap(pte)	do { } while (0)
178#else
179#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
180#define __pte_unmap(pte)	kunmap_atomic(pte)
181#endif
182
183#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
184
185#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
186
187#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
188#define pte_unmap(pte)			__pte_unmap(pte)
189
190#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
191#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
192
193#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
194#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
195
196#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
197
198#define pte_none(pte)		(!pte_val(pte))
199#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
 
 
200#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
201#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
202#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
203#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
204#define pte_special(pte)	(0)
205
206#define pte_present_user(pte) \
207	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
208	 (L_PTE_PRESENT | L_PTE_USER))
209
210#if __LINUX_ARM_ARCH__ < 6
211static inline void __sync_icache_dcache(pte_t pteval)
212{
213}
214#else
215extern void __sync_icache_dcache(pte_t pteval);
216#endif
217
218static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
219			      pte_t *ptep, pte_t pteval)
220{
221	unsigned long ext = 0;
222
223	if (addr < TASK_SIZE && pte_present_user(pteval)) {
224		__sync_icache_dcache(pteval);
225		ext |= PTE_EXT_NG;
226	}
227
228	set_pte_ext(ptep, pteval, ext);
229}
230
231#define PTE_BIT_FUNC(fn,op) \
232static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
233
234PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
235PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
236PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
237PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
238PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
239PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
 
 
240
241static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
242
243static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
244{
245	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
 
246	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
247	return pte;
248}
249
250/*
251 * Encode and decode a swap entry.  Swap entries are stored in the Linux
252 * page tables as follows:
253 *
254 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
255 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
256 *   <--------------- offset ----------------------> < type -> 0 0 0
257 *
258 * This gives us up to 31 swap files and 64GB per swap file.  Note that
259 * the offset field is always non-zero.
260 */
261#define __SWP_TYPE_SHIFT	3
262#define __SWP_TYPE_BITS		5
263#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
264#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
265
266#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
267#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
268#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
269
270#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
271#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
272
273/*
274 * It is an error for the kernel to have more swap files than we can
275 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
276 * is increased beyond what we presently support.
277 */
278#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
279
280/*
281 * Encode and decode a file entry.  File entries are stored in the Linux
282 * page tables as follows:
283 *
284 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
285 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
286 *   <----------------------- offset ------------------------> 1 0 0
287 */
288#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
289#define pte_to_pgoff(x)		(pte_val(x) >> 3)
290#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
291
292#define PTE_FILE_MAX_BITS	29
293
294/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
295/* FIXME: this is not correct */
296#define kern_addr_valid(addr)	(1)
297
298#include <asm-generic/pgtable.h>
299
300/*
301 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
302 */
303#define HAVE_ARCH_UNMAPPED_AREA
304#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
305
306/*
307 * remap a physical page `pfn' of size `size' with page protection `prot'
308 * into virtual address `from'
309 */
310#define io_remap_pfn_range(vma,from,pfn,size,prot) \
311		remap_pfn_range(vma, from, pfn, size, prot)
312
313#define pgtable_cache_init() do { } while (0)
314
315#endif /* !__ASSEMBLY__ */
316
317#endif /* CONFIG_MMU */
318
319#endif /* _ASMARM_PGTABLE_H */
v3.15
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 14#include <asm/proc-fns.h>
 15
 16#ifndef CONFIG_MMU
 17
 18#include <asm-generic/4level-fixup.h>
 19#include <asm/pgtable-nommu.h>
 20
 21#else
 22
 23#include <asm-generic/pgtable-nopud.h>
 24#include <asm/memory.h>
 25#include <asm/pgtable-hwdef.h>
 26
 27
 28#include <asm/tlbflush.h>
 29
 30#ifdef CONFIG_ARM_LPAE
 31#include <asm/pgtable-3level.h>
 32#else
 33#include <asm/pgtable-2level.h>
 34#endif
 35
 36/*
 37 * Just any arbitrary offset to the start of the vmalloc VM area: the
 38 * current 8MB value just means that there will be a 8MB "hole" after the
 39 * physical memory until the kernel virtual memory starts.  That means that
 40 * any out-of-bounds memory accesses will hopefully be caught.
 41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 42 * area for the same reason. ;)
 43 */
 44#define VMALLOC_OFFSET		(8*1024*1024)
 45#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 46#define VMALLOC_END		0xff000000UL
 47
 48#define LIBRARY_TEXT_START	0x0c000000
 49
 50#ifndef __ASSEMBLY__
 51extern void __pte_error(const char *file, int line, pte_t);
 52extern void __pmd_error(const char *file, int line, pmd_t);
 53extern void __pgd_error(const char *file, int line, pgd_t);
 54
 55#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 56#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 57#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 58
 59/*
 60 * This is the lowest virtual address we can permit any user space
 61 * mapping to be mapped at.  This is particularly important for
 62 * non-high vector CPUs.
 63 */
 64#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 65
 66/*
 67 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 68 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 69 * page shared between user and kernel).
 70 */
 71#ifdef CONFIG_ARM_LPAE
 72#define USER_PGTABLES_CEILING	TASK_SIZE
 73#endif
 74
 75/*
 76 * The pgprot_* and protection_map entries will be fixed up in runtime
 77 * to include the cachable and bufferable bits based on memory policy,
 78 * as well as any architecture dependent bits like global/ASID and SMP
 79 * shared mapping bits.
 80 */
 81#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 82
 83extern pgprot_t		pgprot_user;
 84extern pgprot_t		pgprot_kernel;
 85extern pgprot_t		pgprot_hyp_device;
 86extern pgprot_t		pgprot_s2;
 87extern pgprot_t		pgprot_s2_device;
 88
 89#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 90
 91#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 92#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 93#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 94#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 95#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 96#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 97#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 98#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 99#define PAGE_KERNEL_EXEC	pgprot_kernel
100#define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP)
101#define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
102#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
103#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDWR)
104
105#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
106#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
107#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
108#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
109#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
110#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112
113#define __pgprot_modify(prot,mask,bits)		\
114	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
115
116#define pgprot_noncached(prot) \
117	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
118
119#define pgprot_writecombine(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
121
122#define pgprot_stronglyordered(prot) \
123	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
124
125#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
128#define __HAVE_PHYS_MEM_ACCESS_PROT
129struct file;
130extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
131				     unsigned long size, pgprot_t vma_prot);
132#else
133#define pgprot_dmacoherent(prot) \
134	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
135#endif
136
137#endif /* __ASSEMBLY__ */
138
139/*
140 * The table below defines the page protection levels that we insert into our
141 * Linux page table version.  These get translated into the best that the
142 * architecture can perform.  Note that on most ARM hardware:
143 *  1) We cannot do execute protection
144 *  2) If we could do execute protection, then read is implied
145 *  3) write implies read permissions
146 */
147#define __P000  __PAGE_NONE
148#define __P001  __PAGE_READONLY
149#define __P010  __PAGE_COPY
150#define __P011  __PAGE_COPY
151#define __P100  __PAGE_READONLY_EXEC
152#define __P101  __PAGE_READONLY_EXEC
153#define __P110  __PAGE_COPY_EXEC
154#define __P111  __PAGE_COPY_EXEC
155
156#define __S000  __PAGE_NONE
157#define __S001  __PAGE_READONLY
158#define __S010  __PAGE_SHARED
159#define __S011  __PAGE_SHARED
160#define __S100  __PAGE_READONLY_EXEC
161#define __S101  __PAGE_READONLY_EXEC
162#define __S110  __PAGE_SHARED_EXEC
163#define __S111  __PAGE_SHARED_EXEC
164
165#ifndef __ASSEMBLY__
166/*
167 * ZERO_PAGE is a global shared page that is always zero: used
168 * for zero-mapped memory areas etc..
169 */
170extern struct page *empty_zero_page;
171#define ZERO_PAGE(vaddr)	(empty_zero_page)
172
173
174extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
175
176/* to find an entry in a page-table-directory */
177#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
178
179#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
180
181/* to find an entry in a kernel page-table-directory */
182#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
183
184#define pmd_none(pmd)		(!pmd_val(pmd))
185#define pmd_present(pmd)	(pmd_val(pmd))
186
187static inline pte_t *pmd_page_vaddr(pmd_t pmd)
188{
189	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
190}
191
192#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
193
194#ifndef CONFIG_HIGHPTE
195#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
196#define __pte_unmap(pte)	do { } while (0)
197#else
198#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
199#define __pte_unmap(pte)	kunmap_atomic(pte)
200#endif
201
202#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
203
204#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
205
206#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
207#define pte_unmap(pte)			__pte_unmap(pte)
208
209#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
210#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
211
212#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
213#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
214
215#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
216
217#define pte_none(pte)		(!pte_val(pte))
218#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
219#define pte_valid(pte)		(pte_val(pte) & L_PTE_VALID)
220#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
221#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
222#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
223#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
224#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
225#define pte_special(pte)	(0)
226
227#define pte_valid_user(pte)	\
228	(pte_valid(pte) && (pte_val(pte) & L_PTE_USER) && pte_young(pte))
 
229
230#if __LINUX_ARM_ARCH__ < 6
231static inline void __sync_icache_dcache(pte_t pteval)
232{
233}
234#else
235extern void __sync_icache_dcache(pte_t pteval);
236#endif
237
238static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
239			      pte_t *ptep, pte_t pteval)
240{
241	unsigned long ext = 0;
242
243	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
244		__sync_icache_dcache(pteval);
245		ext |= PTE_EXT_NG;
246	}
247
248	set_pte_ext(ptep, pteval, ext);
249}
250
251#define PTE_BIT_FUNC(fn,op) \
252static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
253
254PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
255PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
256PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
257PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
258PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
259PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
260PTE_BIT_FUNC(mkexec,   &= ~L_PTE_XN);
261PTE_BIT_FUNC(mknexec,   |= L_PTE_XN);
262
263static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
264
265static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
266{
267	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
268		L_PTE_NONE | L_PTE_VALID;
269	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
270	return pte;
271}
272
273/*
274 * Encode and decode a swap entry.  Swap entries are stored in the Linux
275 * page tables as follows:
276 *
277 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
278 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
279 *   <--------------- offset ----------------------> < type -> 0 0 0
280 *
281 * This gives us up to 31 swap files and 64GB per swap file.  Note that
282 * the offset field is always non-zero.
283 */
284#define __SWP_TYPE_SHIFT	3
285#define __SWP_TYPE_BITS		5
286#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
287#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
288
289#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
290#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
291#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
292
293#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
294#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
295
296/*
297 * It is an error for the kernel to have more swap files than we can
298 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
299 * is increased beyond what we presently support.
300 */
301#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
302
303/*
304 * Encode and decode a file entry.  File entries are stored in the Linux
305 * page tables as follows:
306 *
307 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
308 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
309 *   <----------------------- offset ------------------------> 1 0 0
310 */
311#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
312#define pte_to_pgoff(x)		(pte_val(x) >> 3)
313#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
314
315#define PTE_FILE_MAX_BITS	29
316
317/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
318/* FIXME: this is not correct */
319#define kern_addr_valid(addr)	(1)
320
321#include <asm-generic/pgtable.h>
322
323/*
324 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
325 */
326#define HAVE_ARCH_UNMAPPED_AREA
327#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 
 
 
 
 
 
 
328
329#define pgtable_cache_init() do { } while (0)
330
331#endif /* !__ASSEMBLY__ */
332
333#endif /* CONFIG_MMU */
334
335#endif /* _ASMARM_PGTABLE_H */