Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * net/sched/sch_choke.c	CHOKE scheduler
  3 *
  4 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
  5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 *
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/types.h>
 15#include <linux/kernel.h>
 16#include <linux/skbuff.h>
 17#include <linux/reciprocal_div.h>
 18#include <linux/vmalloc.h>
 19#include <net/pkt_sched.h>
 20#include <net/inet_ecn.h>
 21#include <net/red.h>
 22#include <net/flow_keys.h>
 23
 24/*
 25   CHOKe stateless AQM for fair bandwidth allocation
 26   =================================================
 27
 28   CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
 29   unresponsive flows) is a variant of RED that penalizes misbehaving flows but
 30   maintains no flow state. The difference from RED is an additional step
 31   during the enqueuing process. If average queue size is over the
 32   low threshold (qmin), a packet is chosen at random from the queue.
 33   If both the new and chosen packet are from the same flow, both
 34   are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
 35   needs to access packets in queue randomly. It has a minimal class
 36   interface to allow overriding the builtin flow classifier with
 37   filters.
 38
 39   Source:
 40   R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
 41   Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
 42   IEEE INFOCOM, 2000.
 43
 44   A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
 45   Characteristics", IEEE/ACM Transactions on Networking, 2004
 46
 47 */
 48
 49/* Upper bound on size of sk_buff table (packets) */
 50#define CHOKE_MAX_QUEUE	(128*1024 - 1)
 51
 52struct choke_sched_data {
 53/* Parameters */
 54	u32		 limit;
 55	unsigned char	 flags;
 56
 57	struct red_parms parms;
 58
 59/* Variables */
 60	struct red_vars  vars;
 61	struct tcf_proto *filter_list;
 62	struct {
 63		u32	prob_drop;	/* Early probability drops */
 64		u32	prob_mark;	/* Early probability marks */
 65		u32	forced_drop;	/* Forced drops, qavg > max_thresh */
 66		u32	forced_mark;	/* Forced marks, qavg > max_thresh */
 67		u32	pdrop;          /* Drops due to queue limits */
 68		u32	other;          /* Drops due to drop() calls */
 69		u32	matched;	/* Drops to flow match */
 70	} stats;
 71
 72	unsigned int	 head;
 73	unsigned int	 tail;
 74
 75	unsigned int	 tab_mask; /* size - 1 */
 76
 77	struct sk_buff **tab;
 78};
 79
 80/* deliver a random number between 0 and N - 1 */
 81static u32 random_N(unsigned int N)
 82{
 83	return reciprocal_divide(random32(), N);
 84}
 85
 86/* number of elements in queue including holes */
 87static unsigned int choke_len(const struct choke_sched_data *q)
 88{
 89	return (q->tail - q->head) & q->tab_mask;
 90}
 91
 92/* Is ECN parameter configured */
 93static int use_ecn(const struct choke_sched_data *q)
 94{
 95	return q->flags & TC_RED_ECN;
 96}
 97
 98/* Should packets over max just be dropped (versus marked) */
 99static int use_harddrop(const struct choke_sched_data *q)
100{
101	return q->flags & TC_RED_HARDDROP;
102}
103
104/* Move head pointer forward to skip over holes */
105static void choke_zap_head_holes(struct choke_sched_data *q)
106{
107	do {
108		q->head = (q->head + 1) & q->tab_mask;
109		if (q->head == q->tail)
110			break;
111	} while (q->tab[q->head] == NULL);
112}
113
114/* Move tail pointer backwards to reuse holes */
115static void choke_zap_tail_holes(struct choke_sched_data *q)
116{
117	do {
118		q->tail = (q->tail - 1) & q->tab_mask;
119		if (q->head == q->tail)
120			break;
121	} while (q->tab[q->tail] == NULL);
122}
123
124/* Drop packet from queue array by creating a "hole" */
125static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx)
126{
127	struct choke_sched_data *q = qdisc_priv(sch);
128	struct sk_buff *skb = q->tab[idx];
129
130	q->tab[idx] = NULL;
131
132	if (idx == q->head)
133		choke_zap_head_holes(q);
134	if (idx == q->tail)
135		choke_zap_tail_holes(q);
136
137	sch->qstats.backlog -= qdisc_pkt_len(skb);
138	qdisc_drop(skb, sch);
139	qdisc_tree_decrease_qlen(sch, 1);
140	--sch->q.qlen;
141}
142
143struct choke_skb_cb {
144	u16			classid;
145	u8			keys_valid;
146	struct flow_keys	keys;
147};
148
149static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
150{
151	qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
152	return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
153}
154
155static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
156{
157	choke_skb_cb(skb)->classid = classid;
158}
159
160static u16 choke_get_classid(const struct sk_buff *skb)
161{
162	return choke_skb_cb(skb)->classid;
163}
164
165/*
166 * Compare flow of two packets
167 *  Returns true only if source and destination address and port match.
168 *          false for special cases
169 */
170static bool choke_match_flow(struct sk_buff *skb1,
171			     struct sk_buff *skb2)
172{
173	if (skb1->protocol != skb2->protocol)
174		return false;
175
176	if (!choke_skb_cb(skb1)->keys_valid) {
177		choke_skb_cb(skb1)->keys_valid = 1;
178		skb_flow_dissect(skb1, &choke_skb_cb(skb1)->keys);
179	}
180
181	if (!choke_skb_cb(skb2)->keys_valid) {
182		choke_skb_cb(skb2)->keys_valid = 1;
183		skb_flow_dissect(skb2, &choke_skb_cb(skb2)->keys);
184	}
185
186	return !memcmp(&choke_skb_cb(skb1)->keys,
187		       &choke_skb_cb(skb2)->keys,
188		       sizeof(struct flow_keys));
189}
190
191/*
192 * Classify flow using either:
193 *  1. pre-existing classification result in skb
194 *  2. fast internal classification
195 *  3. use TC filter based classification
196 */
197static bool choke_classify(struct sk_buff *skb,
198			   struct Qdisc *sch, int *qerr)
199
200{
201	struct choke_sched_data *q = qdisc_priv(sch);
202	struct tcf_result res;
203	int result;
204
205	result = tc_classify(skb, q->filter_list, &res);
206	if (result >= 0) {
207#ifdef CONFIG_NET_CLS_ACT
208		switch (result) {
209		case TC_ACT_STOLEN:
210		case TC_ACT_QUEUED:
211			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
212		case TC_ACT_SHOT:
213			return false;
214		}
215#endif
216		choke_set_classid(skb, TC_H_MIN(res.classid));
217		return true;
218	}
219
220	return false;
221}
222
223/*
224 * Select a packet at random from queue
225 * HACK: since queue can have holes from previous deletion; retry several
226 *   times to find a random skb but then just give up and return the head
227 * Will return NULL if queue is empty (q->head == q->tail)
228 */
229static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
230					 unsigned int *pidx)
231{
232	struct sk_buff *skb;
233	int retrys = 3;
234
235	do {
236		*pidx = (q->head + random_N(choke_len(q))) & q->tab_mask;
237		skb = q->tab[*pidx];
238		if (skb)
239			return skb;
240	} while (--retrys > 0);
241
242	return q->tab[*pidx = q->head];
243}
244
245/*
246 * Compare new packet with random packet in queue
247 * returns true if matched and sets *pidx
248 */
249static bool choke_match_random(const struct choke_sched_data *q,
250			       struct sk_buff *nskb,
251			       unsigned int *pidx)
252{
253	struct sk_buff *oskb;
254
255	if (q->head == q->tail)
256		return false;
257
258	oskb = choke_peek_random(q, pidx);
259	if (q->filter_list)
260		return choke_get_classid(nskb) == choke_get_classid(oskb);
261
262	return choke_match_flow(oskb, nskb);
263}
264
265static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch)
266{
267	struct choke_sched_data *q = qdisc_priv(sch);
268	const struct red_parms *p = &q->parms;
269	int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
270
271	if (q->filter_list) {
272		/* If using external classifiers, get result and record it. */
273		if (!choke_classify(skb, sch, &ret))
274			goto other_drop;	/* Packet was eaten by filter */
275	}
276
277	choke_skb_cb(skb)->keys_valid = 0;
278	/* Compute average queue usage (see RED) */
279	q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
280	if (red_is_idling(&q->vars))
281		red_end_of_idle_period(&q->vars);
282
283	/* Is queue small? */
284	if (q->vars.qavg <= p->qth_min)
285		q->vars.qcount = -1;
286	else {
287		unsigned int idx;
288
289		/* Draw a packet at random from queue and compare flow */
290		if (choke_match_random(q, skb, &idx)) {
291			q->stats.matched++;
292			choke_drop_by_idx(sch, idx);
293			goto congestion_drop;
294		}
295
296		/* Queue is large, always mark/drop */
297		if (q->vars.qavg > p->qth_max) {
298			q->vars.qcount = -1;
299
300			sch->qstats.overlimits++;
301			if (use_harddrop(q) || !use_ecn(q) ||
302			    !INET_ECN_set_ce(skb)) {
303				q->stats.forced_drop++;
304				goto congestion_drop;
305			}
306
307			q->stats.forced_mark++;
308		} else if (++q->vars.qcount) {
309			if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
310				q->vars.qcount = 0;
311				q->vars.qR = red_random(p);
312
313				sch->qstats.overlimits++;
314				if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
315					q->stats.prob_drop++;
316					goto congestion_drop;
317				}
318
319				q->stats.prob_mark++;
320			}
321		} else
322			q->vars.qR = red_random(p);
323	}
324
325	/* Admit new packet */
326	if (sch->q.qlen < q->limit) {
327		q->tab[q->tail] = skb;
328		q->tail = (q->tail + 1) & q->tab_mask;
329		++sch->q.qlen;
330		sch->qstats.backlog += qdisc_pkt_len(skb);
331		return NET_XMIT_SUCCESS;
332	}
333
334	q->stats.pdrop++;
335	return qdisc_drop(skb, sch);
336
337congestion_drop:
338	qdisc_drop(skb, sch);
339	return NET_XMIT_CN;
340
341other_drop:
342	if (ret & __NET_XMIT_BYPASS)
343		sch->qstats.drops++;
344	kfree_skb(skb);
345	return ret;
346}
347
348static struct sk_buff *choke_dequeue(struct Qdisc *sch)
349{
350	struct choke_sched_data *q = qdisc_priv(sch);
351	struct sk_buff *skb;
352
353	if (q->head == q->tail) {
354		if (!red_is_idling(&q->vars))
355			red_start_of_idle_period(&q->vars);
356		return NULL;
357	}
358
359	skb = q->tab[q->head];
360	q->tab[q->head] = NULL;
361	choke_zap_head_holes(q);
362	--sch->q.qlen;
363	sch->qstats.backlog -= qdisc_pkt_len(skb);
364	qdisc_bstats_update(sch, skb);
365
366	return skb;
367}
368
369static unsigned int choke_drop(struct Qdisc *sch)
370{
371	struct choke_sched_data *q = qdisc_priv(sch);
372	unsigned int len;
373
374	len = qdisc_queue_drop(sch);
375	if (len > 0)
376		q->stats.other++;
377	else {
378		if (!red_is_idling(&q->vars))
379			red_start_of_idle_period(&q->vars);
380	}
381
382	return len;
383}
384
385static void choke_reset(struct Qdisc *sch)
386{
387	struct choke_sched_data *q = qdisc_priv(sch);
388
389	red_restart(&q->vars);
390}
391
392static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
393	[TCA_CHOKE_PARMS]	= { .len = sizeof(struct tc_red_qopt) },
394	[TCA_CHOKE_STAB]	= { .len = RED_STAB_SIZE },
395	[TCA_CHOKE_MAX_P]	= { .type = NLA_U32 },
396};
397
398
399static void choke_free(void *addr)
400{
401	if (addr) {
402		if (is_vmalloc_addr(addr))
403			vfree(addr);
404		else
405			kfree(addr);
406	}
407}
408
409static int choke_change(struct Qdisc *sch, struct nlattr *opt)
410{
411	struct choke_sched_data *q = qdisc_priv(sch);
412	struct nlattr *tb[TCA_CHOKE_MAX + 1];
413	const struct tc_red_qopt *ctl;
414	int err;
415	struct sk_buff **old = NULL;
416	unsigned int mask;
417	u32 max_P;
418
419	if (opt == NULL)
420		return -EINVAL;
421
422	err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy);
423	if (err < 0)
424		return err;
425
426	if (tb[TCA_CHOKE_PARMS] == NULL ||
427	    tb[TCA_CHOKE_STAB] == NULL)
428		return -EINVAL;
429
430	max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
431
432	ctl = nla_data(tb[TCA_CHOKE_PARMS]);
433
434	if (ctl->limit > CHOKE_MAX_QUEUE)
435		return -EINVAL;
436
437	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
438	if (mask != q->tab_mask) {
439		struct sk_buff **ntab;
440
441		ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
 
442		if (!ntab)
443			ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *));
444		if (!ntab)
445			return -ENOMEM;
446
447		sch_tree_lock(sch);
448		old = q->tab;
449		if (old) {
450			unsigned int oqlen = sch->q.qlen, tail = 0;
451
452			while (q->head != q->tail) {
453				struct sk_buff *skb = q->tab[q->head];
454
455				q->head = (q->head + 1) & q->tab_mask;
456				if (!skb)
457					continue;
458				if (tail < mask) {
459					ntab[tail++] = skb;
460					continue;
461				}
462				sch->qstats.backlog -= qdisc_pkt_len(skb);
463				--sch->q.qlen;
464				qdisc_drop(skb, sch);
465			}
466			qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen);
467			q->head = 0;
468			q->tail = tail;
469		}
470
471		q->tab_mask = mask;
472		q->tab = ntab;
473	} else
474		sch_tree_lock(sch);
475
476	q->flags = ctl->flags;
477	q->limit = ctl->limit;
478
479	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
480		      ctl->Plog, ctl->Scell_log,
481		      nla_data(tb[TCA_CHOKE_STAB]),
482		      max_P);
483	red_set_vars(&q->vars);
484
485	if (q->head == q->tail)
486		red_end_of_idle_period(&q->vars);
487
488	sch_tree_unlock(sch);
489	choke_free(old);
490	return 0;
491}
492
493static int choke_init(struct Qdisc *sch, struct nlattr *opt)
494{
495	return choke_change(sch, opt);
496}
497
498static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
499{
500	struct choke_sched_data *q = qdisc_priv(sch);
501	struct nlattr *opts = NULL;
502	struct tc_red_qopt opt = {
503		.limit		= q->limit,
504		.flags		= q->flags,
505		.qth_min	= q->parms.qth_min >> q->parms.Wlog,
506		.qth_max	= q->parms.qth_max >> q->parms.Wlog,
507		.Wlog		= q->parms.Wlog,
508		.Plog		= q->parms.Plog,
509		.Scell_log	= q->parms.Scell_log,
510	};
511
512	opts = nla_nest_start(skb, TCA_OPTIONS);
513	if (opts == NULL)
514		goto nla_put_failure;
515
516	if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
517	    nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
518		goto nla_put_failure;
519	return nla_nest_end(skb, opts);
520
521nla_put_failure:
522	nla_nest_cancel(skb, opts);
523	return -EMSGSIZE;
524}
525
526static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
527{
528	struct choke_sched_data *q = qdisc_priv(sch);
529	struct tc_choke_xstats st = {
530		.early	= q->stats.prob_drop + q->stats.forced_drop,
531		.marked	= q->stats.prob_mark + q->stats.forced_mark,
532		.pdrop	= q->stats.pdrop,
533		.other	= q->stats.other,
534		.matched = q->stats.matched,
535	};
536
537	return gnet_stats_copy_app(d, &st, sizeof(st));
538}
539
540static void choke_destroy(struct Qdisc *sch)
541{
542	struct choke_sched_data *q = qdisc_priv(sch);
543
544	tcf_destroy_chain(&q->filter_list);
545	choke_free(q->tab);
546}
547
548static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg)
549{
550	return NULL;
551}
552
553static unsigned long choke_get(struct Qdisc *sch, u32 classid)
554{
555	return 0;
556}
557
558static void choke_put(struct Qdisc *q, unsigned long cl)
559{
560}
561
562static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent,
563				u32 classid)
564{
565	return 0;
566}
567
568static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl)
569{
570	struct choke_sched_data *q = qdisc_priv(sch);
571
572	if (cl)
573		return NULL;
574	return &q->filter_list;
575}
576
577static int choke_dump_class(struct Qdisc *sch, unsigned long cl,
578			  struct sk_buff *skb, struct tcmsg *tcm)
579{
580	tcm->tcm_handle |= TC_H_MIN(cl);
581	return 0;
582}
583
584static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg)
585{
586	if (!arg->stop) {
587		if (arg->fn(sch, 1, arg) < 0) {
588			arg->stop = 1;
589			return;
590		}
591		arg->count++;
592	}
593}
594
595static const struct Qdisc_class_ops choke_class_ops = {
596	.leaf		=	choke_leaf,
597	.get		=	choke_get,
598	.put		=	choke_put,
599	.tcf_chain	=	choke_find_tcf,
600	.bind_tcf	=	choke_bind,
601	.unbind_tcf	=	choke_put,
602	.dump		=	choke_dump_class,
603	.walk		=	choke_walk,
604};
605
606static struct sk_buff *choke_peek_head(struct Qdisc *sch)
607{
608	struct choke_sched_data *q = qdisc_priv(sch);
609
610	return (q->head != q->tail) ? q->tab[q->head] : NULL;
611}
612
613static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
614	.id		=	"choke",
615	.priv_size	=	sizeof(struct choke_sched_data),
616
617	.enqueue	=	choke_enqueue,
618	.dequeue	=	choke_dequeue,
619	.peek		=	choke_peek_head,
620	.drop		=	choke_drop,
621	.init		=	choke_init,
622	.destroy	=	choke_destroy,
623	.reset		=	choke_reset,
624	.change		=	choke_change,
625	.dump		=	choke_dump,
626	.dump_stats	=	choke_dump_stats,
627	.owner		=	THIS_MODULE,
628};
629
630static int __init choke_module_init(void)
631{
632	return register_qdisc(&choke_qdisc_ops);
633}
634
635static void __exit choke_module_exit(void)
636{
637	unregister_qdisc(&choke_qdisc_ops);
638}
639
640module_init(choke_module_init)
641module_exit(choke_module_exit)
642
643MODULE_LICENSE("GPL");
v3.15
  1/*
  2 * net/sched/sch_choke.c	CHOKE scheduler
  3 *
  4 * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
  5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * version 2 as published by the Free Software Foundation.
 10 *
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/types.h>
 15#include <linux/kernel.h>
 16#include <linux/skbuff.h>
 
 17#include <linux/vmalloc.h>
 18#include <net/pkt_sched.h>
 19#include <net/inet_ecn.h>
 20#include <net/red.h>
 21#include <net/flow_keys.h>
 22
 23/*
 24   CHOKe stateless AQM for fair bandwidth allocation
 25   =================================================
 26
 27   CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
 28   unresponsive flows) is a variant of RED that penalizes misbehaving flows but
 29   maintains no flow state. The difference from RED is an additional step
 30   during the enqueuing process. If average queue size is over the
 31   low threshold (qmin), a packet is chosen at random from the queue.
 32   If both the new and chosen packet are from the same flow, both
 33   are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
 34   needs to access packets in queue randomly. It has a minimal class
 35   interface to allow overriding the builtin flow classifier with
 36   filters.
 37
 38   Source:
 39   R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
 40   Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
 41   IEEE INFOCOM, 2000.
 42
 43   A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
 44   Characteristics", IEEE/ACM Transactions on Networking, 2004
 45
 46 */
 47
 48/* Upper bound on size of sk_buff table (packets) */
 49#define CHOKE_MAX_QUEUE	(128*1024 - 1)
 50
 51struct choke_sched_data {
 52/* Parameters */
 53	u32		 limit;
 54	unsigned char	 flags;
 55
 56	struct red_parms parms;
 57
 58/* Variables */
 59	struct red_vars  vars;
 60	struct tcf_proto *filter_list;
 61	struct {
 62		u32	prob_drop;	/* Early probability drops */
 63		u32	prob_mark;	/* Early probability marks */
 64		u32	forced_drop;	/* Forced drops, qavg > max_thresh */
 65		u32	forced_mark;	/* Forced marks, qavg > max_thresh */
 66		u32	pdrop;          /* Drops due to queue limits */
 67		u32	other;          /* Drops due to drop() calls */
 68		u32	matched;	/* Drops to flow match */
 69	} stats;
 70
 71	unsigned int	 head;
 72	unsigned int	 tail;
 73
 74	unsigned int	 tab_mask; /* size - 1 */
 75
 76	struct sk_buff **tab;
 77};
 78
 
 
 
 
 
 
 79/* number of elements in queue including holes */
 80static unsigned int choke_len(const struct choke_sched_data *q)
 81{
 82	return (q->tail - q->head) & q->tab_mask;
 83}
 84
 85/* Is ECN parameter configured */
 86static int use_ecn(const struct choke_sched_data *q)
 87{
 88	return q->flags & TC_RED_ECN;
 89}
 90
 91/* Should packets over max just be dropped (versus marked) */
 92static int use_harddrop(const struct choke_sched_data *q)
 93{
 94	return q->flags & TC_RED_HARDDROP;
 95}
 96
 97/* Move head pointer forward to skip over holes */
 98static void choke_zap_head_holes(struct choke_sched_data *q)
 99{
100	do {
101		q->head = (q->head + 1) & q->tab_mask;
102		if (q->head == q->tail)
103			break;
104	} while (q->tab[q->head] == NULL);
105}
106
107/* Move tail pointer backwards to reuse holes */
108static void choke_zap_tail_holes(struct choke_sched_data *q)
109{
110	do {
111		q->tail = (q->tail - 1) & q->tab_mask;
112		if (q->head == q->tail)
113			break;
114	} while (q->tab[q->tail] == NULL);
115}
116
117/* Drop packet from queue array by creating a "hole" */
118static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx)
119{
120	struct choke_sched_data *q = qdisc_priv(sch);
121	struct sk_buff *skb = q->tab[idx];
122
123	q->tab[idx] = NULL;
124
125	if (idx == q->head)
126		choke_zap_head_holes(q);
127	if (idx == q->tail)
128		choke_zap_tail_holes(q);
129
130	sch->qstats.backlog -= qdisc_pkt_len(skb);
131	qdisc_drop(skb, sch);
132	qdisc_tree_decrease_qlen(sch, 1);
133	--sch->q.qlen;
134}
135
136struct choke_skb_cb {
137	u16			classid;
138	u8			keys_valid;
139	struct flow_keys	keys;
140};
141
142static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
143{
144	qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
145	return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
146}
147
148static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
149{
150	choke_skb_cb(skb)->classid = classid;
151}
152
153static u16 choke_get_classid(const struct sk_buff *skb)
154{
155	return choke_skb_cb(skb)->classid;
156}
157
158/*
159 * Compare flow of two packets
160 *  Returns true only if source and destination address and port match.
161 *          false for special cases
162 */
163static bool choke_match_flow(struct sk_buff *skb1,
164			     struct sk_buff *skb2)
165{
166	if (skb1->protocol != skb2->protocol)
167		return false;
168
169	if (!choke_skb_cb(skb1)->keys_valid) {
170		choke_skb_cb(skb1)->keys_valid = 1;
171		skb_flow_dissect(skb1, &choke_skb_cb(skb1)->keys);
172	}
173
174	if (!choke_skb_cb(skb2)->keys_valid) {
175		choke_skb_cb(skb2)->keys_valid = 1;
176		skb_flow_dissect(skb2, &choke_skb_cb(skb2)->keys);
177	}
178
179	return !memcmp(&choke_skb_cb(skb1)->keys,
180		       &choke_skb_cb(skb2)->keys,
181		       sizeof(struct flow_keys));
182}
183
184/*
185 * Classify flow using either:
186 *  1. pre-existing classification result in skb
187 *  2. fast internal classification
188 *  3. use TC filter based classification
189 */
190static bool choke_classify(struct sk_buff *skb,
191			   struct Qdisc *sch, int *qerr)
192
193{
194	struct choke_sched_data *q = qdisc_priv(sch);
195	struct tcf_result res;
196	int result;
197
198	result = tc_classify(skb, q->filter_list, &res);
199	if (result >= 0) {
200#ifdef CONFIG_NET_CLS_ACT
201		switch (result) {
202		case TC_ACT_STOLEN:
203		case TC_ACT_QUEUED:
204			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
205		case TC_ACT_SHOT:
206			return false;
207		}
208#endif
209		choke_set_classid(skb, TC_H_MIN(res.classid));
210		return true;
211	}
212
213	return false;
214}
215
216/*
217 * Select a packet at random from queue
218 * HACK: since queue can have holes from previous deletion; retry several
219 *   times to find a random skb but then just give up and return the head
220 * Will return NULL if queue is empty (q->head == q->tail)
221 */
222static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
223					 unsigned int *pidx)
224{
225	struct sk_buff *skb;
226	int retrys = 3;
227
228	do {
229		*pidx = (q->head + prandom_u32_max(choke_len(q))) & q->tab_mask;
230		skb = q->tab[*pidx];
231		if (skb)
232			return skb;
233	} while (--retrys > 0);
234
235	return q->tab[*pidx = q->head];
236}
237
238/*
239 * Compare new packet with random packet in queue
240 * returns true if matched and sets *pidx
241 */
242static bool choke_match_random(const struct choke_sched_data *q,
243			       struct sk_buff *nskb,
244			       unsigned int *pidx)
245{
246	struct sk_buff *oskb;
247
248	if (q->head == q->tail)
249		return false;
250
251	oskb = choke_peek_random(q, pidx);
252	if (q->filter_list)
253		return choke_get_classid(nskb) == choke_get_classid(oskb);
254
255	return choke_match_flow(oskb, nskb);
256}
257
258static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch)
259{
260	struct choke_sched_data *q = qdisc_priv(sch);
261	const struct red_parms *p = &q->parms;
262	int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
263
264	if (q->filter_list) {
265		/* If using external classifiers, get result and record it. */
266		if (!choke_classify(skb, sch, &ret))
267			goto other_drop;	/* Packet was eaten by filter */
268	}
269
270	choke_skb_cb(skb)->keys_valid = 0;
271	/* Compute average queue usage (see RED) */
272	q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
273	if (red_is_idling(&q->vars))
274		red_end_of_idle_period(&q->vars);
275
276	/* Is queue small? */
277	if (q->vars.qavg <= p->qth_min)
278		q->vars.qcount = -1;
279	else {
280		unsigned int idx;
281
282		/* Draw a packet at random from queue and compare flow */
283		if (choke_match_random(q, skb, &idx)) {
284			q->stats.matched++;
285			choke_drop_by_idx(sch, idx);
286			goto congestion_drop;
287		}
288
289		/* Queue is large, always mark/drop */
290		if (q->vars.qavg > p->qth_max) {
291			q->vars.qcount = -1;
292
293			sch->qstats.overlimits++;
294			if (use_harddrop(q) || !use_ecn(q) ||
295			    !INET_ECN_set_ce(skb)) {
296				q->stats.forced_drop++;
297				goto congestion_drop;
298			}
299
300			q->stats.forced_mark++;
301		} else if (++q->vars.qcount) {
302			if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
303				q->vars.qcount = 0;
304				q->vars.qR = red_random(p);
305
306				sch->qstats.overlimits++;
307				if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
308					q->stats.prob_drop++;
309					goto congestion_drop;
310				}
311
312				q->stats.prob_mark++;
313			}
314		} else
315			q->vars.qR = red_random(p);
316	}
317
318	/* Admit new packet */
319	if (sch->q.qlen < q->limit) {
320		q->tab[q->tail] = skb;
321		q->tail = (q->tail + 1) & q->tab_mask;
322		++sch->q.qlen;
323		sch->qstats.backlog += qdisc_pkt_len(skb);
324		return NET_XMIT_SUCCESS;
325	}
326
327	q->stats.pdrop++;
328	return qdisc_drop(skb, sch);
329
330congestion_drop:
331	qdisc_drop(skb, sch);
332	return NET_XMIT_CN;
333
334other_drop:
335	if (ret & __NET_XMIT_BYPASS)
336		sch->qstats.drops++;
337	kfree_skb(skb);
338	return ret;
339}
340
341static struct sk_buff *choke_dequeue(struct Qdisc *sch)
342{
343	struct choke_sched_data *q = qdisc_priv(sch);
344	struct sk_buff *skb;
345
346	if (q->head == q->tail) {
347		if (!red_is_idling(&q->vars))
348			red_start_of_idle_period(&q->vars);
349		return NULL;
350	}
351
352	skb = q->tab[q->head];
353	q->tab[q->head] = NULL;
354	choke_zap_head_holes(q);
355	--sch->q.qlen;
356	sch->qstats.backlog -= qdisc_pkt_len(skb);
357	qdisc_bstats_update(sch, skb);
358
359	return skb;
360}
361
362static unsigned int choke_drop(struct Qdisc *sch)
363{
364	struct choke_sched_data *q = qdisc_priv(sch);
365	unsigned int len;
366
367	len = qdisc_queue_drop(sch);
368	if (len > 0)
369		q->stats.other++;
370	else {
371		if (!red_is_idling(&q->vars))
372			red_start_of_idle_period(&q->vars);
373	}
374
375	return len;
376}
377
378static void choke_reset(struct Qdisc *sch)
379{
380	struct choke_sched_data *q = qdisc_priv(sch);
381
382	red_restart(&q->vars);
383}
384
385static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
386	[TCA_CHOKE_PARMS]	= { .len = sizeof(struct tc_red_qopt) },
387	[TCA_CHOKE_STAB]	= { .len = RED_STAB_SIZE },
388	[TCA_CHOKE_MAX_P]	= { .type = NLA_U32 },
389};
390
391
392static void choke_free(void *addr)
393{
394	if (addr) {
395		if (is_vmalloc_addr(addr))
396			vfree(addr);
397		else
398			kfree(addr);
399	}
400}
401
402static int choke_change(struct Qdisc *sch, struct nlattr *opt)
403{
404	struct choke_sched_data *q = qdisc_priv(sch);
405	struct nlattr *tb[TCA_CHOKE_MAX + 1];
406	const struct tc_red_qopt *ctl;
407	int err;
408	struct sk_buff **old = NULL;
409	unsigned int mask;
410	u32 max_P;
411
412	if (opt == NULL)
413		return -EINVAL;
414
415	err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy);
416	if (err < 0)
417		return err;
418
419	if (tb[TCA_CHOKE_PARMS] == NULL ||
420	    tb[TCA_CHOKE_STAB] == NULL)
421		return -EINVAL;
422
423	max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
424
425	ctl = nla_data(tb[TCA_CHOKE_PARMS]);
426
427	if (ctl->limit > CHOKE_MAX_QUEUE)
428		return -EINVAL;
429
430	mask = roundup_pow_of_two(ctl->limit + 1) - 1;
431	if (mask != q->tab_mask) {
432		struct sk_buff **ntab;
433
434		ntab = kcalloc(mask + 1, sizeof(struct sk_buff *),
435			       GFP_KERNEL | __GFP_NOWARN);
436		if (!ntab)
437			ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *));
438		if (!ntab)
439			return -ENOMEM;
440
441		sch_tree_lock(sch);
442		old = q->tab;
443		if (old) {
444			unsigned int oqlen = sch->q.qlen, tail = 0;
445
446			while (q->head != q->tail) {
447				struct sk_buff *skb = q->tab[q->head];
448
449				q->head = (q->head + 1) & q->tab_mask;
450				if (!skb)
451					continue;
452				if (tail < mask) {
453					ntab[tail++] = skb;
454					continue;
455				}
456				sch->qstats.backlog -= qdisc_pkt_len(skb);
457				--sch->q.qlen;
458				qdisc_drop(skb, sch);
459			}
460			qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen);
461			q->head = 0;
462			q->tail = tail;
463		}
464
465		q->tab_mask = mask;
466		q->tab = ntab;
467	} else
468		sch_tree_lock(sch);
469
470	q->flags = ctl->flags;
471	q->limit = ctl->limit;
472
473	red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
474		      ctl->Plog, ctl->Scell_log,
475		      nla_data(tb[TCA_CHOKE_STAB]),
476		      max_P);
477	red_set_vars(&q->vars);
478
479	if (q->head == q->tail)
480		red_end_of_idle_period(&q->vars);
481
482	sch_tree_unlock(sch);
483	choke_free(old);
484	return 0;
485}
486
487static int choke_init(struct Qdisc *sch, struct nlattr *opt)
488{
489	return choke_change(sch, opt);
490}
491
492static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
493{
494	struct choke_sched_data *q = qdisc_priv(sch);
495	struct nlattr *opts = NULL;
496	struct tc_red_qopt opt = {
497		.limit		= q->limit,
498		.flags		= q->flags,
499		.qth_min	= q->parms.qth_min >> q->parms.Wlog,
500		.qth_max	= q->parms.qth_max >> q->parms.Wlog,
501		.Wlog		= q->parms.Wlog,
502		.Plog		= q->parms.Plog,
503		.Scell_log	= q->parms.Scell_log,
504	};
505
506	opts = nla_nest_start(skb, TCA_OPTIONS);
507	if (opts == NULL)
508		goto nla_put_failure;
509
510	if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
511	    nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
512		goto nla_put_failure;
513	return nla_nest_end(skb, opts);
514
515nla_put_failure:
516	nla_nest_cancel(skb, opts);
517	return -EMSGSIZE;
518}
519
520static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
521{
522	struct choke_sched_data *q = qdisc_priv(sch);
523	struct tc_choke_xstats st = {
524		.early	= q->stats.prob_drop + q->stats.forced_drop,
525		.marked	= q->stats.prob_mark + q->stats.forced_mark,
526		.pdrop	= q->stats.pdrop,
527		.other	= q->stats.other,
528		.matched = q->stats.matched,
529	};
530
531	return gnet_stats_copy_app(d, &st, sizeof(st));
532}
533
534static void choke_destroy(struct Qdisc *sch)
535{
536	struct choke_sched_data *q = qdisc_priv(sch);
537
538	tcf_destroy_chain(&q->filter_list);
539	choke_free(q->tab);
540}
541
542static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg)
543{
544	return NULL;
545}
546
547static unsigned long choke_get(struct Qdisc *sch, u32 classid)
548{
549	return 0;
550}
551
552static void choke_put(struct Qdisc *q, unsigned long cl)
553{
554}
555
556static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent,
557				u32 classid)
558{
559	return 0;
560}
561
562static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl)
563{
564	struct choke_sched_data *q = qdisc_priv(sch);
565
566	if (cl)
567		return NULL;
568	return &q->filter_list;
569}
570
571static int choke_dump_class(struct Qdisc *sch, unsigned long cl,
572			  struct sk_buff *skb, struct tcmsg *tcm)
573{
574	tcm->tcm_handle |= TC_H_MIN(cl);
575	return 0;
576}
577
578static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg)
579{
580	if (!arg->stop) {
581		if (arg->fn(sch, 1, arg) < 0) {
582			arg->stop = 1;
583			return;
584		}
585		arg->count++;
586	}
587}
588
589static const struct Qdisc_class_ops choke_class_ops = {
590	.leaf		=	choke_leaf,
591	.get		=	choke_get,
592	.put		=	choke_put,
593	.tcf_chain	=	choke_find_tcf,
594	.bind_tcf	=	choke_bind,
595	.unbind_tcf	=	choke_put,
596	.dump		=	choke_dump_class,
597	.walk		=	choke_walk,
598};
599
600static struct sk_buff *choke_peek_head(struct Qdisc *sch)
601{
602	struct choke_sched_data *q = qdisc_priv(sch);
603
604	return (q->head != q->tail) ? q->tab[q->head] : NULL;
605}
606
607static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
608	.id		=	"choke",
609	.priv_size	=	sizeof(struct choke_sched_data),
610
611	.enqueue	=	choke_enqueue,
612	.dequeue	=	choke_dequeue,
613	.peek		=	choke_peek_head,
614	.drop		=	choke_drop,
615	.init		=	choke_init,
616	.destroy	=	choke_destroy,
617	.reset		=	choke_reset,
618	.change		=	choke_change,
619	.dump		=	choke_dump,
620	.dump_stats	=	choke_dump_stats,
621	.owner		=	THIS_MODULE,
622};
623
624static int __init choke_module_init(void)
625{
626	return register_qdisc(&choke_qdisc_ops);
627}
628
629static void __exit choke_module_exit(void)
630{
631	unregister_qdisc(&choke_qdisc_ops);
632}
633
634module_init(choke_module_init)
635module_exit(choke_module_exit)
636
637MODULE_LICENSE("GPL");