Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 40	struct hrtimer		timer;
 41	ktime_t			(*gettime)(void);
 42	clockid_t		base_clockid;
 43} alarm_bases[ALARM_NUMTYPE];
 44
 45/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 46static ktime_t freezer_delta;
 47static DEFINE_SPINLOCK(freezer_delta_lock);
 48
 
 
 49#ifdef CONFIG_RTC_CLASS
 50/* rtc timer and device for setting alarm wakeups at suspend */
 51static struct rtc_timer		rtctimer;
 52static struct rtc_device	*rtcdev;
 53static DEFINE_SPINLOCK(rtcdev_lock);
 54
 55/**
 56 * alarmtimer_get_rtcdev - Return selected rtcdevice
 57 *
 58 * This function returns the rtc device to use for wakealarms.
 59 * If one has not already been chosen, it checks to see if a
 60 * functional rtc device is available.
 61 */
 62struct rtc_device *alarmtimer_get_rtcdev(void)
 63{
 64	unsigned long flags;
 65	struct rtc_device *ret;
 66
 67	spin_lock_irqsave(&rtcdev_lock, flags);
 68	ret = rtcdev;
 69	spin_unlock_irqrestore(&rtcdev_lock, flags);
 70
 71	return ret;
 72}
 73
 74
 75static int alarmtimer_rtc_add_device(struct device *dev,
 76				struct class_interface *class_intf)
 77{
 78	unsigned long flags;
 79	struct rtc_device *rtc = to_rtc_device(dev);
 80
 81	if (rtcdev)
 82		return -EBUSY;
 83
 84	if (!rtc->ops->set_alarm)
 85		return -1;
 86	if (!device_may_wakeup(rtc->dev.parent))
 87		return -1;
 88
 89	spin_lock_irqsave(&rtcdev_lock, flags);
 90	if (!rtcdev) {
 91		rtcdev = rtc;
 92		/* hold a reference so it doesn't go away */
 93		get_device(dev);
 94	}
 95	spin_unlock_irqrestore(&rtcdev_lock, flags);
 96	return 0;
 97}
 98
 99static inline void alarmtimer_rtc_timer_init(void)
100{
101	rtc_timer_init(&rtctimer, NULL, NULL);
102}
103
104static struct class_interface alarmtimer_rtc_interface = {
105	.add_dev = &alarmtimer_rtc_add_device,
106};
107
108static int alarmtimer_rtc_interface_setup(void)
109{
110	alarmtimer_rtc_interface.class = rtc_class;
111	return class_interface_register(&alarmtimer_rtc_interface);
112}
113static void alarmtimer_rtc_interface_remove(void)
114{
115	class_interface_unregister(&alarmtimer_rtc_interface);
116}
117#else
118struct rtc_device *alarmtimer_get_rtcdev(void)
119{
120	return NULL;
121}
122#define rtcdev (NULL)
123static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124static inline void alarmtimer_rtc_interface_remove(void) { }
125static inline void alarmtimer_rtc_timer_init(void) { }
126#endif
127
128/**
129 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130 * @base: pointer to the base where the timer is being run
131 * @alarm: pointer to alarm being enqueued.
132 *
133 * Adds alarm to a alarm_base timerqueue and if necessary sets
134 * an hrtimer to run.
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
 
 
 
140	timerqueue_add(&base->timerqueue, &alarm->node);
141	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
142
143	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
144		hrtimer_try_to_cancel(&base->timer);
145		hrtimer_start(&base->timer, alarm->node.expires,
146				HRTIMER_MODE_ABS);
147	}
148}
149
150/**
151 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
152 * @base: pointer to the base where the timer is running
153 * @alarm: pointer to alarm being removed
154 *
155 * Removes alarm to a alarm_base timerqueue and if necessary sets
156 * a new timer to run.
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
161{
162	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
163
164	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165		return;
166
167	timerqueue_del(&base->timerqueue, &alarm->node);
168	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169
170	if (next == &alarm->node) {
171		hrtimer_try_to_cancel(&base->timer);
172		next = timerqueue_getnext(&base->timerqueue);
173		if (!next)
174			return;
175		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
176	}
177}
178
179
180/**
181 * alarmtimer_fired - Handles alarm hrtimer being fired.
182 * @timer: pointer to hrtimer being run
183 *
184 * When a alarm timer fires, this runs through the timerqueue to
185 * see which alarms expired, and runs those. If there are more alarm
186 * timers queued for the future, we set the hrtimer to fire when
187 * when the next future alarm timer expires.
188 */
189static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190{
191	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192	struct timerqueue_node *next;
193	unsigned long flags;
194	ktime_t now;
195	int ret = HRTIMER_NORESTART;
196	int restart = ALARMTIMER_NORESTART;
197
198	spin_lock_irqsave(&base->lock, flags);
199	now = base->gettime();
200	while ((next = timerqueue_getnext(&base->timerqueue))) {
201		struct alarm *alarm;
202		ktime_t expired = next->expires;
203
204		if (expired.tv64 > now.tv64)
205			break;
206
207		alarm = container_of(next, struct alarm, node);
208
209		timerqueue_del(&base->timerqueue, &alarm->node);
210		alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211
212		alarm->state |= ALARMTIMER_STATE_CALLBACK;
213		spin_unlock_irqrestore(&base->lock, flags);
214		if (alarm->function)
215			restart = alarm->function(alarm, now);
216		spin_lock_irqsave(&base->lock, flags);
217		alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218
219		if (restart != ALARMTIMER_NORESTART) {
220			timerqueue_add(&base->timerqueue, &alarm->node);
221			alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222		}
223	}
224
225	if (next) {
226		hrtimer_set_expires(&base->timer, next->expires);
 
 
227		ret = HRTIMER_RESTART;
228	}
229	spin_unlock_irqrestore(&base->lock, flags);
230
231	return ret;
232
233}
234
 
 
 
 
 
 
 
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248	struct rtc_time tm;
249	ktime_t min, now;
250	unsigned long flags;
251	struct rtc_device *rtc;
252	int i;
 
253
254	spin_lock_irqsave(&freezer_delta_lock, flags);
255	min = freezer_delta;
256	freezer_delta = ktime_set(0, 0);
257	spin_unlock_irqrestore(&freezer_delta_lock, flags);
258
259	rtc = alarmtimer_get_rtcdev();
260	/* If we have no rtcdev, just return */
261	if (!rtc)
262		return 0;
263
264	/* Find the soonest timer to expire*/
265	for (i = 0; i < ALARM_NUMTYPE; i++) {
266		struct alarm_base *base = &alarm_bases[i];
267		struct timerqueue_node *next;
268		ktime_t delta;
269
270		spin_lock_irqsave(&base->lock, flags);
271		next = timerqueue_getnext(&base->timerqueue);
272		spin_unlock_irqrestore(&base->lock, flags);
273		if (!next)
274			continue;
275		delta = ktime_sub(next->expires, base->gettime());
276		if (!min.tv64 || (delta.tv64 < min.tv64))
277			min = delta;
278	}
279	if (min.tv64 == 0)
280		return 0;
281
282	/* XXX - Should we enforce a minimum sleep time? */
283	WARN_ON(min.tv64 < NSEC_PER_SEC);
 
 
284
285	/* Setup an rtc timer to fire that far in the future */
286	rtc_timer_cancel(rtc, &rtctimer);
287	rtc_read_time(rtc, &tm);
288	now = rtc_tm_to_ktime(tm);
289	now = ktime_add(now, min);
290
291	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
292
293	return 0;
 
 
294}
295#else
296static int alarmtimer_suspend(struct device *dev)
297{
298	return 0;
299}
300#endif
301
302static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
303{
304	ktime_t delta;
305	unsigned long flags;
306	struct alarm_base *base = &alarm_bases[type];
307
308	delta = ktime_sub(absexp, base->gettime());
309
310	spin_lock_irqsave(&freezer_delta_lock, flags);
311	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
312		freezer_delta = delta;
313	spin_unlock_irqrestore(&freezer_delta_lock, flags);
314}
315
316
317/**
318 * alarm_init - Initialize an alarm structure
319 * @alarm: ptr to alarm to be initialized
320 * @type: the type of the alarm
321 * @function: callback that is run when the alarm fires
322 */
323void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325{
326	timerqueue_init(&alarm->node);
 
 
 
327	alarm->function = function;
328	alarm->type = type;
329	alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
 
331
332/**
333 * alarm_start - Sets an alarm to fire
334 * @alarm: ptr to alarm to set
335 * @start: time to run the alarm
336 */
337void alarm_start(struct alarm *alarm, ktime_t start)
338{
339	struct alarm_base *base = &alarm_bases[alarm->type];
340	unsigned long flags;
 
341
342	spin_lock_irqsave(&base->lock, flags);
343	if (alarmtimer_active(alarm))
344		alarmtimer_remove(base, alarm);
345	alarm->node.expires = start;
346	alarmtimer_enqueue(base, alarm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347	spin_unlock_irqrestore(&base->lock, flags);
348}
 
349
350/**
351 * alarm_try_to_cancel - Tries to cancel an alarm timer
352 * @alarm: ptr to alarm to be canceled
353 *
354 * Returns 1 if the timer was canceled, 0 if it was not running,
355 * and -1 if the callback was running
356 */
357int alarm_try_to_cancel(struct alarm *alarm)
358{
359	struct alarm_base *base = &alarm_bases[alarm->type];
360	unsigned long flags;
361	int ret = -1;
362	spin_lock_irqsave(&base->lock, flags);
363
364	if (alarmtimer_callback_running(alarm))
365		goto out;
366
367	if (alarmtimer_is_queued(alarm)) {
368		alarmtimer_remove(base, alarm);
369		ret = 1;
370	} else
371		ret = 0;
372out:
373	spin_unlock_irqrestore(&base->lock, flags);
374	return ret;
375}
 
376
377
378/**
379 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
380 * @alarm: ptr to alarm to be canceled
381 *
382 * Returns 1 if the timer was canceled, 0 if it was not active.
383 */
384int alarm_cancel(struct alarm *alarm)
385{
386	for (;;) {
387		int ret = alarm_try_to_cancel(alarm);
388		if (ret >= 0)
389			return ret;
390		cpu_relax();
391	}
392}
 
393
394
395u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
396{
397	u64 overrun = 1;
398	ktime_t delta;
399
400	delta = ktime_sub(now, alarm->node.expires);
401
402	if (delta.tv64 < 0)
403		return 0;
404
405	if (unlikely(delta.tv64 >= interval.tv64)) {
406		s64 incr = ktime_to_ns(interval);
407
408		overrun = ktime_divns(delta, incr);
409
410		alarm->node.expires = ktime_add_ns(alarm->node.expires,
411							incr*overrun);
412
413		if (alarm->node.expires.tv64 > now.tv64)
414			return overrun;
415		/*
416		 * This (and the ktime_add() below) is the
417		 * correction for exact:
418		 */
419		overrun++;
420	}
421
422	alarm->node.expires = ktime_add(alarm->node.expires, interval);
423	return overrun;
424}
 
425
 
 
 
426
 
 
 
427
428
429/**
430 * clock2alarm - helper that converts from clockid to alarmtypes
431 * @clockid: clockid.
432 */
433static enum alarmtimer_type clock2alarm(clockid_t clockid)
434{
435	if (clockid == CLOCK_REALTIME_ALARM)
436		return ALARM_REALTIME;
437	if (clockid == CLOCK_BOOTTIME_ALARM)
438		return ALARM_BOOTTIME;
439	return -1;
440}
441
442/**
443 * alarm_handle_timer - Callback for posix timers
444 * @alarm: alarm that fired
445 *
446 * Posix timer callback for expired alarm timers.
447 */
448static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
449							ktime_t now)
450{
451	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452						it.alarm.alarmtimer);
453	if (posix_timer_event(ptr, 0) != 0)
454		ptr->it_overrun++;
455
456	/* Re-add periodic timers */
457	if (ptr->it.alarm.interval.tv64) {
458		ptr->it_overrun += alarm_forward(alarm, now,
459						ptr->it.alarm.interval);
460		return ALARMTIMER_RESTART;
461	}
462	return ALARMTIMER_NORESTART;
463}
464
465/**
466 * alarm_clock_getres - posix getres interface
467 * @which_clock: clockid
468 * @tp: timespec to fill
469 *
470 * Returns the granularity of underlying alarm base clock
471 */
472static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
473{
474	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
475
476	if (!alarmtimer_get_rtcdev())
477		return -ENOTSUPP;
478
479	return hrtimer_get_res(baseid, tp);
480}
481
482/**
483 * alarm_clock_get - posix clock_get interface
484 * @which_clock: clockid
485 * @tp: timespec to fill.
486 *
487 * Provides the underlying alarm base time.
488 */
489static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
490{
491	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
492
493	if (!alarmtimer_get_rtcdev())
494		return -ENOTSUPP;
495
496	*tp = ktime_to_timespec(base->gettime());
497	return 0;
498}
499
500/**
501 * alarm_timer_create - posix timer_create interface
502 * @new_timer: k_itimer pointer to manage
503 *
504 * Initializes the k_itimer structure.
505 */
506static int alarm_timer_create(struct k_itimer *new_timer)
507{
508	enum  alarmtimer_type type;
509	struct alarm_base *base;
510
511	if (!alarmtimer_get_rtcdev())
512		return -ENOTSUPP;
513
514	if (!capable(CAP_WAKE_ALARM))
515		return -EPERM;
516
517	type = clock2alarm(new_timer->it_clock);
518	base = &alarm_bases[type];
519	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520	return 0;
521}
522
523/**
524 * alarm_timer_get - posix timer_get interface
525 * @new_timer: k_itimer pointer
526 * @cur_setting: itimerspec data to fill
527 *
528 * Copies the itimerspec data out from the k_itimer
529 */
530static void alarm_timer_get(struct k_itimer *timr,
531				struct itimerspec *cur_setting)
532{
533	memset(cur_setting, 0, sizeof(struct itimerspec));
534
535	cur_setting->it_interval =
536			ktime_to_timespec(timr->it.alarm.interval);
537	cur_setting->it_value =
538		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539	return;
540}
541
542/**
543 * alarm_timer_del - posix timer_del interface
544 * @timr: k_itimer pointer to be deleted
545 *
546 * Cancels any programmed alarms for the given timer.
547 */
548static int alarm_timer_del(struct k_itimer *timr)
549{
550	if (!rtcdev)
551		return -ENOTSUPP;
552
553	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
554		return TIMER_RETRY;
555
556	return 0;
557}
558
559/**
560 * alarm_timer_set - posix timer_set interface
561 * @timr: k_itimer pointer to be deleted
562 * @flags: timer flags
563 * @new_setting: itimerspec to be used
564 * @old_setting: itimerspec being replaced
565 *
566 * Sets the timer to new_setting, and starts the timer.
567 */
568static int alarm_timer_set(struct k_itimer *timr, int flags,
569				struct itimerspec *new_setting,
570				struct itimerspec *old_setting)
571{
572	if (!rtcdev)
573		return -ENOTSUPP;
574
575	if (old_setting)
576		alarm_timer_get(timr, old_setting);
577
578	/* If the timer was already set, cancel it */
579	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
580		return TIMER_RETRY;
581
582	/* start the timer */
583	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
584	alarm_start(&timr->it.alarm.alarmtimer,
585			timespec_to_ktime(new_setting->it_value));
586	return 0;
587}
588
589/**
590 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
591 * @alarm: ptr to alarm that fired
592 *
593 * Wakes up the task that set the alarmtimer
594 */
595static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
596								ktime_t now)
597{
598	struct task_struct *task = (struct task_struct *)alarm->data;
599
600	alarm->data = NULL;
601	if (task)
602		wake_up_process(task);
603	return ALARMTIMER_NORESTART;
604}
605
606/**
607 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
608 * @alarm: ptr to alarmtimer
609 * @absexp: absolute expiration time
610 *
611 * Sets the alarm timer and sleeps until it is fired or interrupted.
612 */
613static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
614{
615	alarm->data = (void *)current;
616	do {
617		set_current_state(TASK_INTERRUPTIBLE);
618		alarm_start(alarm, absexp);
619		if (likely(alarm->data))
620			schedule();
621
622		alarm_cancel(alarm);
623	} while (alarm->data && !signal_pending(current));
624
625	__set_current_state(TASK_RUNNING);
626
627	return (alarm->data == NULL);
628}
629
630
631/**
632 * update_rmtp - Update remaining timespec value
633 * @exp: expiration time
634 * @type: timer type
635 * @rmtp: user pointer to remaining timepsec value
636 *
637 * Helper function that fills in rmtp value with time between
638 * now and the exp value
639 */
640static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
641			struct timespec __user *rmtp)
642{
643	struct timespec rmt;
644	ktime_t rem;
645
646	rem = ktime_sub(exp, alarm_bases[type].gettime());
647
648	if (rem.tv64 <= 0)
649		return 0;
650	rmt = ktime_to_timespec(rem);
651
652	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
653		return -EFAULT;
654
655	return 1;
656
657}
658
659/**
660 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
661 * @restart: ptr to restart block
662 *
663 * Handles restarted clock_nanosleep calls
664 */
665static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
666{
667	enum  alarmtimer_type type = restart->nanosleep.clockid;
668	ktime_t exp;
669	struct timespec __user  *rmtp;
670	struct alarm alarm;
671	int ret = 0;
672
673	exp.tv64 = restart->nanosleep.expires;
674	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
675
676	if (alarmtimer_do_nsleep(&alarm, exp))
677		goto out;
678
679	if (freezing(current))
680		alarmtimer_freezerset(exp, type);
681
682	rmtp = restart->nanosleep.rmtp;
683	if (rmtp) {
684		ret = update_rmtp(exp, type, rmtp);
685		if (ret <= 0)
686			goto out;
687	}
688
689
690	/* The other values in restart are already filled in */
691	ret = -ERESTART_RESTARTBLOCK;
692out:
693	return ret;
694}
695
696/**
697 * alarm_timer_nsleep - alarmtimer nanosleep
698 * @which_clock: clockid
699 * @flags: determins abstime or relative
700 * @tsreq: requested sleep time (abs or rel)
701 * @rmtp: remaining sleep time saved
702 *
703 * Handles clock_nanosleep calls against _ALARM clockids
704 */
705static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
706		     struct timespec *tsreq, struct timespec __user *rmtp)
707{
708	enum  alarmtimer_type type = clock2alarm(which_clock);
709	struct alarm alarm;
710	ktime_t exp;
711	int ret = 0;
712	struct restart_block *restart;
713
714	if (!alarmtimer_get_rtcdev())
715		return -ENOTSUPP;
716
717	if (!capable(CAP_WAKE_ALARM))
718		return -EPERM;
719
720	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
721
722	exp = timespec_to_ktime(*tsreq);
723	/* Convert (if necessary) to absolute time */
724	if (flags != TIMER_ABSTIME) {
725		ktime_t now = alarm_bases[type].gettime();
726		exp = ktime_add(now, exp);
727	}
728
729	if (alarmtimer_do_nsleep(&alarm, exp))
730		goto out;
731
732	if (freezing(current))
733		alarmtimer_freezerset(exp, type);
734
735	/* abs timers don't set remaining time or restart */
736	if (flags == TIMER_ABSTIME) {
737		ret = -ERESTARTNOHAND;
738		goto out;
739	}
740
741	if (rmtp) {
742		ret = update_rmtp(exp, type, rmtp);
743		if (ret <= 0)
744			goto out;
745	}
746
747	restart = &current_thread_info()->restart_block;
748	restart->fn = alarm_timer_nsleep_restart;
749	restart->nanosleep.clockid = type;
750	restart->nanosleep.expires = exp.tv64;
751	restart->nanosleep.rmtp = rmtp;
752	ret = -ERESTART_RESTARTBLOCK;
753
754out:
755	return ret;
756}
757
758
759/* Suspend hook structures */
760static const struct dev_pm_ops alarmtimer_pm_ops = {
761	.suspend = alarmtimer_suspend,
762};
763
764static struct platform_driver alarmtimer_driver = {
765	.driver = {
766		.name = "alarmtimer",
767		.pm = &alarmtimer_pm_ops,
768	}
769};
770
771/**
772 * alarmtimer_init - Initialize alarm timer code
773 *
774 * This function initializes the alarm bases and registers
775 * the posix clock ids.
776 */
777static int __init alarmtimer_init(void)
778{
779	struct platform_device *pdev;
780	int error = 0;
781	int i;
782	struct k_clock alarm_clock = {
783		.clock_getres	= alarm_clock_getres,
784		.clock_get	= alarm_clock_get,
785		.timer_create	= alarm_timer_create,
786		.timer_set	= alarm_timer_set,
787		.timer_del	= alarm_timer_del,
788		.timer_get	= alarm_timer_get,
789		.nsleep		= alarm_timer_nsleep,
790	};
791
792	alarmtimer_rtc_timer_init();
793
794	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
795	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796
797	/* Initialize alarm bases */
798	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
799	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
800	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
801	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
802	for (i = 0; i < ALARM_NUMTYPE; i++) {
803		timerqueue_init_head(&alarm_bases[i].timerqueue);
804		spin_lock_init(&alarm_bases[i].lock);
805		hrtimer_init(&alarm_bases[i].timer,
806				alarm_bases[i].base_clockid,
807				HRTIMER_MODE_ABS);
808		alarm_bases[i].timer.function = alarmtimer_fired;
809	}
810
811	error = alarmtimer_rtc_interface_setup();
812	if (error)
813		return error;
814
815	error = platform_driver_register(&alarmtimer_driver);
816	if (error)
817		goto out_if;
818
819	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
820	if (IS_ERR(pdev)) {
821		error = PTR_ERR(pdev);
822		goto out_drv;
823	}
 
824	return 0;
825
826out_drv:
827	platform_driver_unregister(&alarmtimer_driver);
828out_if:
829	alarmtimer_rtc_interface_remove();
830	return error;
831}
832device_initcall(alarmtimer_init);
v3.15
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 28
 29/**
 30 * struct alarm_base - Alarm timer bases
 31 * @lock:		Lock for syncrhonized access to the base
 32 * @timerqueue:		Timerqueue head managing the list of events
 33 * @timer: 		hrtimer used to schedule events while running
 34 * @gettime:		Function to read the time correlating to the base
 35 * @base_clockid:	clockid for the base
 36 */
 37static struct alarm_base {
 38	spinlock_t		lock;
 39	struct timerqueue_head	timerqueue;
 
 40	ktime_t			(*gettime)(void);
 41	clockid_t		base_clockid;
 42} alarm_bases[ALARM_NUMTYPE];
 43
 44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
 45static ktime_t freezer_delta;
 46static DEFINE_SPINLOCK(freezer_delta_lock);
 47
 48static struct wakeup_source *ws;
 49
 50#ifdef CONFIG_RTC_CLASS
 51/* rtc timer and device for setting alarm wakeups at suspend */
 52static struct rtc_timer		rtctimer;
 53static struct rtc_device	*rtcdev;
 54static DEFINE_SPINLOCK(rtcdev_lock);
 55
 56/**
 57 * alarmtimer_get_rtcdev - Return selected rtcdevice
 58 *
 59 * This function returns the rtc device to use for wakealarms.
 60 * If one has not already been chosen, it checks to see if a
 61 * functional rtc device is available.
 62 */
 63struct rtc_device *alarmtimer_get_rtcdev(void)
 64{
 65	unsigned long flags;
 66	struct rtc_device *ret;
 67
 68	spin_lock_irqsave(&rtcdev_lock, flags);
 69	ret = rtcdev;
 70	spin_unlock_irqrestore(&rtcdev_lock, flags);
 71
 72	return ret;
 73}
 74
 75
 76static int alarmtimer_rtc_add_device(struct device *dev,
 77				struct class_interface *class_intf)
 78{
 79	unsigned long flags;
 80	struct rtc_device *rtc = to_rtc_device(dev);
 81
 82	if (rtcdev)
 83		return -EBUSY;
 84
 85	if (!rtc->ops->set_alarm)
 86		return -1;
 87	if (!device_may_wakeup(rtc->dev.parent))
 88		return -1;
 89
 90	spin_lock_irqsave(&rtcdev_lock, flags);
 91	if (!rtcdev) {
 92		rtcdev = rtc;
 93		/* hold a reference so it doesn't go away */
 94		get_device(dev);
 95	}
 96	spin_unlock_irqrestore(&rtcdev_lock, flags);
 97	return 0;
 98}
 99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102	rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106	.add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111	alarmtimer_rtc_interface.class = rtc_class;
112	return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116	class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121	return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
 
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141		timerqueue_del(&base->timerqueue, &alarm->node);
142
143	timerqueue_add(&base->timerqueue, &alarm->node);
144	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
 
 
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
 
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
 
 
158	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159		return;
160
161	timerqueue_del(&base->timerqueue, &alarm->node);
162	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
 
 
 
 
 
 
 
 
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177	struct alarm *alarm = container_of(timer, struct alarm, timer);
178	struct alarm_base *base = &alarm_bases[alarm->type];
179	unsigned long flags;
 
180	int ret = HRTIMER_NORESTART;
181	int restart = ALARMTIMER_NORESTART;
182
183	spin_lock_irqsave(&base->lock, flags);
184	alarmtimer_dequeue(base, alarm);
185	spin_unlock_irqrestore(&base->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
187	if (alarm->function)
188		restart = alarm->function(alarm, base->gettime());
 
 
 
189
190	spin_lock_irqsave(&base->lock, flags);
191	if (restart != ALARMTIMER_NORESTART) {
192		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193		alarmtimer_enqueue(base, alarm);
194		ret = HRTIMER_RESTART;
195	}
196	spin_unlock_irqrestore(&base->lock, flags);
197
198	return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204	struct alarm_base *base = &alarm_bases[alarm->type];
205	return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
222	struct rtc_time tm;
223	ktime_t min, now;
224	unsigned long flags;
225	struct rtc_device *rtc;
226	int i;
227	int ret;
228
229	spin_lock_irqsave(&freezer_delta_lock, flags);
230	min = freezer_delta;
231	freezer_delta = ktime_set(0, 0);
232	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234	rtc = alarmtimer_get_rtcdev();
235	/* If we have no rtcdev, just return */
236	if (!rtc)
237		return 0;
238
239	/* Find the soonest timer to expire*/
240	for (i = 0; i < ALARM_NUMTYPE; i++) {
241		struct alarm_base *base = &alarm_bases[i];
242		struct timerqueue_node *next;
243		ktime_t delta;
244
245		spin_lock_irqsave(&base->lock, flags);
246		next = timerqueue_getnext(&base->timerqueue);
247		spin_unlock_irqrestore(&base->lock, flags);
248		if (!next)
249			continue;
250		delta = ktime_sub(next->expires, base->gettime());
251		if (!min.tv64 || (delta.tv64 < min.tv64))
252			min = delta;
253	}
254	if (min.tv64 == 0)
255		return 0;
256
257	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259		return -EBUSY;
260	}
261
262	/* Setup an rtc timer to fire that far in the future */
263	rtc_timer_cancel(rtc, &rtctimer);
264	rtc_read_time(rtc, &tm);
265	now = rtc_tm_to_ktime(tm);
266	now = ktime_add(now, min);
267
268	/* Set alarm, if in the past reject suspend briefly to handle */
269	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270	if (ret < 0)
271		__pm_wakeup_event(ws, MSEC_PER_SEC);
272	return ret;
273}
274#else
275static int alarmtimer_suspend(struct device *dev)
276{
277	return 0;
278}
279#endif
280
281static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282{
283	ktime_t delta;
284	unsigned long flags;
285	struct alarm_base *base = &alarm_bases[type];
286
287	delta = ktime_sub(absexp, base->gettime());
288
289	spin_lock_irqsave(&freezer_delta_lock, flags);
290	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291		freezer_delta = delta;
292	spin_unlock_irqrestore(&freezer_delta_lock, flags);
293}
294
295
296/**
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
301 */
302void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304{
305	timerqueue_init(&alarm->node);
306	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307			HRTIMER_MODE_ABS);
308	alarm->timer.function = alarmtimer_fired;
309	alarm->function = function;
310	alarm->type = type;
311	alarm->state = ALARMTIMER_STATE_INACTIVE;
312}
313EXPORT_SYMBOL_GPL(alarm_init);
314
315/**
316 * alarm_start - Sets an absolute alarm to fire
317 * @alarm: ptr to alarm to set
318 * @start: time to run the alarm
319 */
320int alarm_start(struct alarm *alarm, ktime_t start)
321{
322	struct alarm_base *base = &alarm_bases[alarm->type];
323	unsigned long flags;
324	int ret;
325
326	spin_lock_irqsave(&base->lock, flags);
 
 
327	alarm->node.expires = start;
328	alarmtimer_enqueue(base, alarm);
329	ret = hrtimer_start(&alarm->timer, alarm->node.expires,
330				HRTIMER_MODE_ABS);
331	spin_unlock_irqrestore(&base->lock, flags);
332	return ret;
333}
334EXPORT_SYMBOL_GPL(alarm_start);
335
336/**
337 * alarm_start_relative - Sets a relative alarm to fire
338 * @alarm: ptr to alarm to set
339 * @start: time relative to now to run the alarm
340 */
341int alarm_start_relative(struct alarm *alarm, ktime_t start)
342{
343	struct alarm_base *base = &alarm_bases[alarm->type];
344
345	start = ktime_add(start, base->gettime());
346	return alarm_start(alarm, start);
347}
348EXPORT_SYMBOL_GPL(alarm_start_relative);
349
350void alarm_restart(struct alarm *alarm)
351{
352	struct alarm_base *base = &alarm_bases[alarm->type];
353	unsigned long flags;
354
355	spin_lock_irqsave(&base->lock, flags);
356	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
357	hrtimer_restart(&alarm->timer);
358	alarmtimer_enqueue(base, alarm);
359	spin_unlock_irqrestore(&base->lock, flags);
360}
361EXPORT_SYMBOL_GPL(alarm_restart);
362
363/**
364 * alarm_try_to_cancel - Tries to cancel an alarm timer
365 * @alarm: ptr to alarm to be canceled
366 *
367 * Returns 1 if the timer was canceled, 0 if it was not running,
368 * and -1 if the callback was running
369 */
370int alarm_try_to_cancel(struct alarm *alarm)
371{
372	struct alarm_base *base = &alarm_bases[alarm->type];
373	unsigned long flags;
374	int ret;
 
 
 
 
375
376	spin_lock_irqsave(&base->lock, flags);
377	ret = hrtimer_try_to_cancel(&alarm->timer);
378	if (ret >= 0)
379		alarmtimer_dequeue(base, alarm);
 
 
380	spin_unlock_irqrestore(&base->lock, flags);
381	return ret;
382}
383EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
384
385
386/**
387 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
388 * @alarm: ptr to alarm to be canceled
389 *
390 * Returns 1 if the timer was canceled, 0 if it was not active.
391 */
392int alarm_cancel(struct alarm *alarm)
393{
394	for (;;) {
395		int ret = alarm_try_to_cancel(alarm);
396		if (ret >= 0)
397			return ret;
398		cpu_relax();
399	}
400}
401EXPORT_SYMBOL_GPL(alarm_cancel);
402
403
404u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
405{
406	u64 overrun = 1;
407	ktime_t delta;
408
409	delta = ktime_sub(now, alarm->node.expires);
410
411	if (delta.tv64 < 0)
412		return 0;
413
414	if (unlikely(delta.tv64 >= interval.tv64)) {
415		s64 incr = ktime_to_ns(interval);
416
417		overrun = ktime_divns(delta, incr);
418
419		alarm->node.expires = ktime_add_ns(alarm->node.expires,
420							incr*overrun);
421
422		if (alarm->node.expires.tv64 > now.tv64)
423			return overrun;
424		/*
425		 * This (and the ktime_add() below) is the
426		 * correction for exact:
427		 */
428		overrun++;
429	}
430
431	alarm->node.expires = ktime_add(alarm->node.expires, interval);
432	return overrun;
433}
434EXPORT_SYMBOL_GPL(alarm_forward);
435
436u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
437{
438	struct alarm_base *base = &alarm_bases[alarm->type];
439
440	return alarm_forward(alarm, base->gettime(), interval);
441}
442EXPORT_SYMBOL_GPL(alarm_forward_now);
443
444
445/**
446 * clock2alarm - helper that converts from clockid to alarmtypes
447 * @clockid: clockid.
448 */
449static enum alarmtimer_type clock2alarm(clockid_t clockid)
450{
451	if (clockid == CLOCK_REALTIME_ALARM)
452		return ALARM_REALTIME;
453	if (clockid == CLOCK_BOOTTIME_ALARM)
454		return ALARM_BOOTTIME;
455	return -1;
456}
457
458/**
459 * alarm_handle_timer - Callback for posix timers
460 * @alarm: alarm that fired
461 *
462 * Posix timer callback for expired alarm timers.
463 */
464static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
465							ktime_t now)
466{
467	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
468						it.alarm.alarmtimer);
469	if (posix_timer_event(ptr, 0) != 0)
470		ptr->it_overrun++;
471
472	/* Re-add periodic timers */
473	if (ptr->it.alarm.interval.tv64) {
474		ptr->it_overrun += alarm_forward(alarm, now,
475						ptr->it.alarm.interval);
476		return ALARMTIMER_RESTART;
477	}
478	return ALARMTIMER_NORESTART;
479}
480
481/**
482 * alarm_clock_getres - posix getres interface
483 * @which_clock: clockid
484 * @tp: timespec to fill
485 *
486 * Returns the granularity of underlying alarm base clock
487 */
488static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
489{
490	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
491
492	if (!alarmtimer_get_rtcdev())
493		return -EINVAL;
494
495	return hrtimer_get_res(baseid, tp);
496}
497
498/**
499 * alarm_clock_get - posix clock_get interface
500 * @which_clock: clockid
501 * @tp: timespec to fill.
502 *
503 * Provides the underlying alarm base time.
504 */
505static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
506{
507	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
508
509	if (!alarmtimer_get_rtcdev())
510		return -EINVAL;
511
512	*tp = ktime_to_timespec(base->gettime());
513	return 0;
514}
515
516/**
517 * alarm_timer_create - posix timer_create interface
518 * @new_timer: k_itimer pointer to manage
519 *
520 * Initializes the k_itimer structure.
521 */
522static int alarm_timer_create(struct k_itimer *new_timer)
523{
524	enum  alarmtimer_type type;
525	struct alarm_base *base;
526
527	if (!alarmtimer_get_rtcdev())
528		return -ENOTSUPP;
529
530	if (!capable(CAP_WAKE_ALARM))
531		return -EPERM;
532
533	type = clock2alarm(new_timer->it_clock);
534	base = &alarm_bases[type];
535	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
536	return 0;
537}
538
539/**
540 * alarm_timer_get - posix timer_get interface
541 * @new_timer: k_itimer pointer
542 * @cur_setting: itimerspec data to fill
543 *
544 * Copies the itimerspec data out from the k_itimer
545 */
546static void alarm_timer_get(struct k_itimer *timr,
547				struct itimerspec *cur_setting)
548{
549	memset(cur_setting, 0, sizeof(struct itimerspec));
550
551	cur_setting->it_interval =
552			ktime_to_timespec(timr->it.alarm.interval);
553	cur_setting->it_value =
554		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
555	return;
556}
557
558/**
559 * alarm_timer_del - posix timer_del interface
560 * @timr: k_itimer pointer to be deleted
561 *
562 * Cancels any programmed alarms for the given timer.
563 */
564static int alarm_timer_del(struct k_itimer *timr)
565{
566	if (!rtcdev)
567		return -ENOTSUPP;
568
569	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
570		return TIMER_RETRY;
571
572	return 0;
573}
574
575/**
576 * alarm_timer_set - posix timer_set interface
577 * @timr: k_itimer pointer to be deleted
578 * @flags: timer flags
579 * @new_setting: itimerspec to be used
580 * @old_setting: itimerspec being replaced
581 *
582 * Sets the timer to new_setting, and starts the timer.
583 */
584static int alarm_timer_set(struct k_itimer *timr, int flags,
585				struct itimerspec *new_setting,
586				struct itimerspec *old_setting)
587{
588	if (!rtcdev)
589		return -ENOTSUPP;
590
591	if (old_setting)
592		alarm_timer_get(timr, old_setting);
593
594	/* If the timer was already set, cancel it */
595	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
596		return TIMER_RETRY;
597
598	/* start the timer */
599	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
600	alarm_start(&timr->it.alarm.alarmtimer,
601			timespec_to_ktime(new_setting->it_value));
602	return 0;
603}
604
605/**
606 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
607 * @alarm: ptr to alarm that fired
608 *
609 * Wakes up the task that set the alarmtimer
610 */
611static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
612								ktime_t now)
613{
614	struct task_struct *task = (struct task_struct *)alarm->data;
615
616	alarm->data = NULL;
617	if (task)
618		wake_up_process(task);
619	return ALARMTIMER_NORESTART;
620}
621
622/**
623 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
624 * @alarm: ptr to alarmtimer
625 * @absexp: absolute expiration time
626 *
627 * Sets the alarm timer and sleeps until it is fired or interrupted.
628 */
629static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
630{
631	alarm->data = (void *)current;
632	do {
633		set_current_state(TASK_INTERRUPTIBLE);
634		alarm_start(alarm, absexp);
635		if (likely(alarm->data))
636			schedule();
637
638		alarm_cancel(alarm);
639	} while (alarm->data && !signal_pending(current));
640
641	__set_current_state(TASK_RUNNING);
642
643	return (alarm->data == NULL);
644}
645
646
647/**
648 * update_rmtp - Update remaining timespec value
649 * @exp: expiration time
650 * @type: timer type
651 * @rmtp: user pointer to remaining timepsec value
652 *
653 * Helper function that fills in rmtp value with time between
654 * now and the exp value
655 */
656static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
657			struct timespec __user *rmtp)
658{
659	struct timespec rmt;
660	ktime_t rem;
661
662	rem = ktime_sub(exp, alarm_bases[type].gettime());
663
664	if (rem.tv64 <= 0)
665		return 0;
666	rmt = ktime_to_timespec(rem);
667
668	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
669		return -EFAULT;
670
671	return 1;
672
673}
674
675/**
676 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
677 * @restart: ptr to restart block
678 *
679 * Handles restarted clock_nanosleep calls
680 */
681static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
682{
683	enum  alarmtimer_type type = restart->nanosleep.clockid;
684	ktime_t exp;
685	struct timespec __user  *rmtp;
686	struct alarm alarm;
687	int ret = 0;
688
689	exp.tv64 = restart->nanosleep.expires;
690	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
691
692	if (alarmtimer_do_nsleep(&alarm, exp))
693		goto out;
694
695	if (freezing(current))
696		alarmtimer_freezerset(exp, type);
697
698	rmtp = restart->nanosleep.rmtp;
699	if (rmtp) {
700		ret = update_rmtp(exp, type, rmtp);
701		if (ret <= 0)
702			goto out;
703	}
704
705
706	/* The other values in restart are already filled in */
707	ret = -ERESTART_RESTARTBLOCK;
708out:
709	return ret;
710}
711
712/**
713 * alarm_timer_nsleep - alarmtimer nanosleep
714 * @which_clock: clockid
715 * @flags: determins abstime or relative
716 * @tsreq: requested sleep time (abs or rel)
717 * @rmtp: remaining sleep time saved
718 *
719 * Handles clock_nanosleep calls against _ALARM clockids
720 */
721static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
722		     struct timespec *tsreq, struct timespec __user *rmtp)
723{
724	enum  alarmtimer_type type = clock2alarm(which_clock);
725	struct alarm alarm;
726	ktime_t exp;
727	int ret = 0;
728	struct restart_block *restart;
729
730	if (!alarmtimer_get_rtcdev())
731		return -ENOTSUPP;
732
733	if (!capable(CAP_WAKE_ALARM))
734		return -EPERM;
735
736	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
737
738	exp = timespec_to_ktime(*tsreq);
739	/* Convert (if necessary) to absolute time */
740	if (flags != TIMER_ABSTIME) {
741		ktime_t now = alarm_bases[type].gettime();
742		exp = ktime_add(now, exp);
743	}
744
745	if (alarmtimer_do_nsleep(&alarm, exp))
746		goto out;
747
748	if (freezing(current))
749		alarmtimer_freezerset(exp, type);
750
751	/* abs timers don't set remaining time or restart */
752	if (flags == TIMER_ABSTIME) {
753		ret = -ERESTARTNOHAND;
754		goto out;
755	}
756
757	if (rmtp) {
758		ret = update_rmtp(exp, type, rmtp);
759		if (ret <= 0)
760			goto out;
761	}
762
763	restart = &current_thread_info()->restart_block;
764	restart->fn = alarm_timer_nsleep_restart;
765	restart->nanosleep.clockid = type;
766	restart->nanosleep.expires = exp.tv64;
767	restart->nanosleep.rmtp = rmtp;
768	ret = -ERESTART_RESTARTBLOCK;
769
770out:
771	return ret;
772}
773
774
775/* Suspend hook structures */
776static const struct dev_pm_ops alarmtimer_pm_ops = {
777	.suspend = alarmtimer_suspend,
778};
779
780static struct platform_driver alarmtimer_driver = {
781	.driver = {
782		.name = "alarmtimer",
783		.pm = &alarmtimer_pm_ops,
784	}
785};
786
787/**
788 * alarmtimer_init - Initialize alarm timer code
789 *
790 * This function initializes the alarm bases and registers
791 * the posix clock ids.
792 */
793static int __init alarmtimer_init(void)
794{
795	struct platform_device *pdev;
796	int error = 0;
797	int i;
798	struct k_clock alarm_clock = {
799		.clock_getres	= alarm_clock_getres,
800		.clock_get	= alarm_clock_get,
801		.timer_create	= alarm_timer_create,
802		.timer_set	= alarm_timer_set,
803		.timer_del	= alarm_timer_del,
804		.timer_get	= alarm_timer_get,
805		.nsleep		= alarm_timer_nsleep,
806	};
807
808	alarmtimer_rtc_timer_init();
809
810	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
811	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
812
813	/* Initialize alarm bases */
814	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
815	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
816	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
817	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
818	for (i = 0; i < ALARM_NUMTYPE; i++) {
819		timerqueue_init_head(&alarm_bases[i].timerqueue);
820		spin_lock_init(&alarm_bases[i].lock);
 
 
 
 
821	}
822
823	error = alarmtimer_rtc_interface_setup();
824	if (error)
825		return error;
826
827	error = platform_driver_register(&alarmtimer_driver);
828	if (error)
829		goto out_if;
830
831	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
832	if (IS_ERR(pdev)) {
833		error = PTR_ERR(pdev);
834		goto out_drv;
835	}
836	ws = wakeup_source_register("alarmtimer");
837	return 0;
838
839out_drv:
840	platform_driver_unregister(&alarmtimer_driver);
841out_if:
842	alarmtimer_rtc_interface_remove();
843	return error;
844}
845device_initcall(alarmtimer_init);