Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#endif
 95#include <linux/log2.h>
 96
 97static struct kmem_cache *jbd2_revoke_record_cache;
 98static struct kmem_cache *jbd2_revoke_table_cache;
 99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd2_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned long long	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd2_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct journal_head **, int *,
 
126				    struct jbd2_revoke_record_s *, int);
127static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128#endif
129
130/* Utility functions to maintain the revoke table */
131
132/* Borrowed from buffer.c: this is a tried and tested block hash function */
133static inline int hash(journal_t *journal, unsigned long long block)
134{
135	struct jbd2_revoke_table_s *table = journal->j_revoke;
136	int hash_shift = table->hash_shift;
137	int hash = (int)block ^ (int)((block >> 31) >> 1);
138
139	return ((hash << (hash_shift - 6)) ^
140		(hash >> 13) ^
141		(hash << (hash_shift - 12))) & (table->hash_size - 1);
142}
143
144static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
145			      tid_t seq)
146{
147	struct list_head *hash_list;
148	struct jbd2_revoke_record_s *record;
149
150repeat:
151	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
152	if (!record)
153		goto oom;
154
155	record->sequence = seq;
156	record->blocknr = blocknr;
157	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
158	spin_lock(&journal->j_revoke_lock);
159	list_add(&record->hash, hash_list);
160	spin_unlock(&journal->j_revoke_lock);
161	return 0;
162
163oom:
164	if (!journal_oom_retry)
165		return -ENOMEM;
166	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
167	yield();
168	goto repeat;
169}
170
171/* Find a revoke record in the journal's hash table. */
172
173static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
174						      unsigned long long blocknr)
175{
176	struct list_head *hash_list;
177	struct jbd2_revoke_record_s *record;
178
179	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
180
181	spin_lock(&journal->j_revoke_lock);
182	record = (struct jbd2_revoke_record_s *) hash_list->next;
183	while (&(record->hash) != hash_list) {
184		if (record->blocknr == blocknr) {
185			spin_unlock(&journal->j_revoke_lock);
186			return record;
187		}
188		record = (struct jbd2_revoke_record_s *) record->hash.next;
189	}
190	spin_unlock(&journal->j_revoke_lock);
191	return NULL;
192}
193
194void jbd2_journal_destroy_revoke_caches(void)
195{
196	if (jbd2_revoke_record_cache) {
197		kmem_cache_destroy(jbd2_revoke_record_cache);
198		jbd2_revoke_record_cache = NULL;
199	}
200	if (jbd2_revoke_table_cache) {
201		kmem_cache_destroy(jbd2_revoke_table_cache);
202		jbd2_revoke_table_cache = NULL;
203	}
204}
205
206int __init jbd2_journal_init_revoke_caches(void)
207{
208	J_ASSERT(!jbd2_revoke_record_cache);
209	J_ASSERT(!jbd2_revoke_table_cache);
210
211	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
212					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
213	if (!jbd2_revoke_record_cache)
214		goto record_cache_failure;
215
216	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
217					     SLAB_TEMPORARY);
218	if (!jbd2_revoke_table_cache)
219		goto table_cache_failure;
220	return 0;
221table_cache_failure:
222	jbd2_journal_destroy_revoke_caches();
223record_cache_failure:
224		return -ENOMEM;
225}
226
227static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
228{
229	int shift = 0;
230	int tmp = hash_size;
231	struct jbd2_revoke_table_s *table;
232
233	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
234	if (!table)
235		goto out;
236
237	while((tmp >>= 1UL) != 0UL)
238		shift++;
239
240	table->hash_size = hash_size;
241	table->hash_shift = shift;
242	table->hash_table =
243		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
244	if (!table->hash_table) {
245		kmem_cache_free(jbd2_revoke_table_cache, table);
246		table = NULL;
247		goto out;
248	}
249
250	for (tmp = 0; tmp < hash_size; tmp++)
251		INIT_LIST_HEAD(&table->hash_table[tmp]);
252
253out:
254	return table;
255}
256
257static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
258{
259	int i;
260	struct list_head *hash_list;
261
262	for (i = 0; i < table->hash_size; i++) {
263		hash_list = &table->hash_table[i];
264		J_ASSERT(list_empty(hash_list));
265	}
266
267	kfree(table->hash_table);
268	kmem_cache_free(jbd2_revoke_table_cache, table);
269}
270
271/* Initialise the revoke table for a given journal to a given size. */
272int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
273{
274	J_ASSERT(journal->j_revoke_table[0] == NULL);
275	J_ASSERT(is_power_of_2(hash_size));
276
277	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
278	if (!journal->j_revoke_table[0])
279		goto fail0;
280
281	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
282	if (!journal->j_revoke_table[1])
283		goto fail1;
284
285	journal->j_revoke = journal->j_revoke_table[1];
286
287	spin_lock_init(&journal->j_revoke_lock);
288
289	return 0;
290
291fail1:
292	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293fail0:
294	return -ENOMEM;
295}
296
297/* Destroy a journal's revoke table.  The table must already be empty! */
298void jbd2_journal_destroy_revoke(journal_t *journal)
299{
300	journal->j_revoke = NULL;
301	if (journal->j_revoke_table[0])
302		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
303	if (journal->j_revoke_table[1])
304		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
305}
306
307
308#ifdef __KERNEL__
309
310/*
311 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
312 * prevents the block from being replayed during recovery if we take a
313 * crash after this current transaction commits.  Any subsequent
314 * metadata writes of the buffer in this transaction cancel the
315 * revoke.
316 *
317 * Note that this call may block --- it is up to the caller to make
318 * sure that there are no further calls to journal_write_metadata
319 * before the revoke is complete.  In ext3, this implies calling the
320 * revoke before clearing the block bitmap when we are deleting
321 * metadata.
322 *
323 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
324 * parameter, but does _not_ forget the buffer_head if the bh was only
325 * found implicitly.
326 *
327 * bh_in may not be a journalled buffer - it may have come off
328 * the hash tables without an attached journal_head.
329 *
330 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
331 * by one.
332 */
333
334int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
335		   struct buffer_head *bh_in)
336{
337	struct buffer_head *bh = NULL;
338	journal_t *journal;
339	struct block_device *bdev;
340	int err;
341
342	might_sleep();
343	if (bh_in)
344		BUFFER_TRACE(bh_in, "enter");
345
346	journal = handle->h_transaction->t_journal;
347	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
348		J_ASSERT (!"Cannot set revoke feature!");
349		return -EINVAL;
350	}
351
352	bdev = journal->j_fs_dev;
353	bh = bh_in;
354
355	if (!bh) {
356		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
357		if (bh)
358			BUFFER_TRACE(bh, "found on hash");
359	}
360#ifdef JBD2_EXPENSIVE_CHECKING
361	else {
362		struct buffer_head *bh2;
363
364		/* If there is a different buffer_head lying around in
365		 * memory anywhere... */
366		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
367		if (bh2) {
368			/* ... and it has RevokeValid status... */
369			if (bh2 != bh && buffer_revokevalid(bh2))
370				/* ...then it better be revoked too,
371				 * since it's illegal to create a revoke
372				 * record against a buffer_head which is
373				 * not marked revoked --- that would
374				 * risk missing a subsequent revoke
375				 * cancel. */
376				J_ASSERT_BH(bh2, buffer_revoked(bh2));
377			put_bh(bh2);
378		}
379	}
380#endif
381
382	/* We really ought not ever to revoke twice in a row without
383           first having the revoke cancelled: it's illegal to free a
384           block twice without allocating it in between! */
385	if (bh) {
386		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
387				 "inconsistent data on disk")) {
388			if (!bh_in)
389				brelse(bh);
390			return -EIO;
391		}
392		set_buffer_revoked(bh);
393		set_buffer_revokevalid(bh);
394		if (bh_in) {
395			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
396			jbd2_journal_forget(handle, bh_in);
397		} else {
398			BUFFER_TRACE(bh, "call brelse");
399			__brelse(bh);
400		}
401	}
402
403	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
404	err = insert_revoke_hash(journal, blocknr,
405				handle->h_transaction->t_tid);
406	BUFFER_TRACE(bh_in, "exit");
407	return err;
408}
409
410/*
411 * Cancel an outstanding revoke.  For use only internally by the
412 * journaling code (called from jbd2_journal_get_write_access).
413 *
414 * We trust buffer_revoked() on the buffer if the buffer is already
415 * being journaled: if there is no revoke pending on the buffer, then we
416 * don't do anything here.
417 *
418 * This would break if it were possible for a buffer to be revoked and
419 * discarded, and then reallocated within the same transaction.  In such
420 * a case we would have lost the revoked bit, but when we arrived here
421 * the second time we would still have a pending revoke to cancel.  So,
422 * do not trust the Revoked bit on buffers unless RevokeValid is also
423 * set.
424 */
425int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
426{
427	struct jbd2_revoke_record_s *record;
428	journal_t *journal = handle->h_transaction->t_journal;
429	int need_cancel;
430	int did_revoke = 0;	/* akpm: debug */
431	struct buffer_head *bh = jh2bh(jh);
432
433	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
434
435	/* Is the existing Revoke bit valid?  If so, we trust it, and
436	 * only perform the full cancel if the revoke bit is set.  If
437	 * not, we can't trust the revoke bit, and we need to do the
438	 * full search for a revoke record. */
439	if (test_set_buffer_revokevalid(bh)) {
440		need_cancel = test_clear_buffer_revoked(bh);
441	} else {
442		need_cancel = 1;
443		clear_buffer_revoked(bh);
444	}
445
446	if (need_cancel) {
447		record = find_revoke_record(journal, bh->b_blocknr);
448		if (record) {
449			jbd_debug(4, "cancelled existing revoke on "
450				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
451			spin_lock(&journal->j_revoke_lock);
452			list_del(&record->hash);
453			spin_unlock(&journal->j_revoke_lock);
454			kmem_cache_free(jbd2_revoke_record_cache, record);
455			did_revoke = 1;
456		}
457	}
458
459#ifdef JBD2_EXPENSIVE_CHECKING
460	/* There better not be one left behind by now! */
461	record = find_revoke_record(journal, bh->b_blocknr);
462	J_ASSERT_JH(jh, record == NULL);
463#endif
464
465	/* Finally, have we just cleared revoke on an unhashed
466	 * buffer_head?  If so, we'd better make sure we clear the
467	 * revoked status on any hashed alias too, otherwise the revoke
468	 * state machine will get very upset later on. */
469	if (need_cancel) {
470		struct buffer_head *bh2;
471		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
472		if (bh2) {
473			if (bh2 != bh)
474				clear_buffer_revoked(bh2);
475			__brelse(bh2);
476		}
477	}
478	return did_revoke;
479}
480
481/*
482 * journal_clear_revoked_flag clears revoked flag of buffers in
483 * revoke table to reflect there is no revoked buffers in the next
484 * transaction which is going to be started.
485 */
486void jbd2_clear_buffer_revoked_flags(journal_t *journal)
487{
488	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
489	int i = 0;
490
491	for (i = 0; i < revoke->hash_size; i++) {
492		struct list_head *hash_list;
493		struct list_head *list_entry;
494		hash_list = &revoke->hash_table[i];
495
496		list_for_each(list_entry, hash_list) {
497			struct jbd2_revoke_record_s *record;
498			struct buffer_head *bh;
499			record = (struct jbd2_revoke_record_s *)list_entry;
500			bh = __find_get_block(journal->j_fs_dev,
501					      record->blocknr,
502					      journal->j_blocksize);
503			if (bh) {
504				clear_buffer_revoked(bh);
505				__brelse(bh);
506			}
507		}
508	}
509}
510
511/* journal_switch_revoke table select j_revoke for next transaction
512 * we do not want to suspend any processing until all revokes are
513 * written -bzzz
514 */
515void jbd2_journal_switch_revoke_table(journal_t *journal)
516{
517	int i;
518
519	if (journal->j_revoke == journal->j_revoke_table[0])
520		journal->j_revoke = journal->j_revoke_table[1];
521	else
522		journal->j_revoke = journal->j_revoke_table[0];
523
524	for (i = 0; i < journal->j_revoke->hash_size; i++)
525		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
526}
527
528/*
529 * Write revoke records to the journal for all entries in the current
530 * revoke hash, deleting the entries as we go.
531 */
532void jbd2_journal_write_revoke_records(journal_t *journal,
533				       transaction_t *transaction,
 
534				       int write_op)
535{
536	struct journal_head *descriptor;
537	struct jbd2_revoke_record_s *record;
538	struct jbd2_revoke_table_s *revoke;
539	struct list_head *hash_list;
540	int i, offset, count;
541
542	descriptor = NULL;
543	offset = 0;
544	count = 0;
545
546	/* select revoke table for committing transaction */
547	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
548		journal->j_revoke_table[1] : journal->j_revoke_table[0];
549
550	for (i = 0; i < revoke->hash_size; i++) {
551		hash_list = &revoke->hash_table[i];
552
553		while (!list_empty(hash_list)) {
554			record = (struct jbd2_revoke_record_s *)
555				hash_list->next;
556			write_one_revoke_record(journal, transaction,
557						&descriptor, &offset,
558						record, write_op);
559			count++;
560			list_del(&record->hash);
561			kmem_cache_free(jbd2_revoke_record_cache, record);
562		}
563	}
564	if (descriptor)
565		flush_descriptor(journal, descriptor, offset, write_op);
566	jbd_debug(1, "Wrote %d revoke records\n", count);
567}
568
569/*
570 * Write out one revoke record.  We need to create a new descriptor
571 * block if the old one is full or if we have not already created one.
572 */
573
574static void write_one_revoke_record(journal_t *journal,
575				    transaction_t *transaction,
576				    struct journal_head **descriptorp,
 
577				    int *offsetp,
578				    struct jbd2_revoke_record_s *record,
579				    int write_op)
580{
581	int csum_size = 0;
582	struct journal_head *descriptor;
583	int offset;
584	journal_header_t *header;
585
586	/* If we are already aborting, this all becomes a noop.  We
587           still need to go round the loop in
588           jbd2_journal_write_revoke_records in order to free all of the
589           revoke records: only the IO to the journal is omitted. */
590	if (is_journal_aborted(journal))
591		return;
592
593	descriptor = *descriptorp;
594	offset = *offsetp;
595
596	/* Do we need to leave space at the end for a checksum? */
597	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
598		csum_size = sizeof(struct jbd2_journal_revoke_tail);
599
600	/* Make sure we have a descriptor with space left for the record */
601	if (descriptor) {
602		if (offset >= journal->j_blocksize - csum_size) {
603			flush_descriptor(journal, descriptor, offset, write_op);
604			descriptor = NULL;
605		}
606	}
607
608	if (!descriptor) {
609		descriptor = jbd2_journal_get_descriptor_buffer(journal);
610		if (!descriptor)
611			return;
612		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
613		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
614		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
615		header->h_sequence  = cpu_to_be32(transaction->t_tid);
616
617		/* Record it so that we can wait for IO completion later */
618		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
619		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
620
621		offset = sizeof(jbd2_journal_revoke_header_t);
622		*descriptorp = descriptor;
623	}
624
625	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
626		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
627			cpu_to_be64(record->blocknr);
628		offset += 8;
629
630	} else {
631		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
632			cpu_to_be32(record->blocknr);
633		offset += 4;
634	}
635
636	*offsetp = offset;
637}
638
639static void jbd2_revoke_csum_set(journal_t *j,
640				 struct journal_head *descriptor)
641{
642	struct jbd2_journal_revoke_tail *tail;
643	__u32 csum;
644
645	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
646		return;
647
648	tail = (struct jbd2_journal_revoke_tail *)
649			(jh2bh(descriptor)->b_data + j->j_blocksize -
650			sizeof(struct jbd2_journal_revoke_tail));
651	tail->r_checksum = 0;
652	csum = jbd2_chksum(j, j->j_csum_seed, jh2bh(descriptor)->b_data,
653			   j->j_blocksize);
654	tail->r_checksum = cpu_to_be32(csum);
655}
656
657/*
658 * Flush a revoke descriptor out to the journal.  If we are aborting,
659 * this is a noop; otherwise we are generating a buffer which needs to
660 * be waited for during commit, so it has to go onto the appropriate
661 * journal buffer list.
662 */
663
664static void flush_descriptor(journal_t *journal,
665			     struct journal_head *descriptor,
666			     int offset, int write_op)
667{
668	jbd2_journal_revoke_header_t *header;
669	struct buffer_head *bh = jh2bh(descriptor);
670
671	if (is_journal_aborted(journal)) {
672		put_bh(bh);
673		return;
674	}
675
676	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
677	header->r_count = cpu_to_be32(offset);
678	jbd2_revoke_csum_set(journal, descriptor);
679
680	set_buffer_jwrite(bh);
681	BUFFER_TRACE(bh, "write");
682	set_buffer_dirty(bh);
683	write_dirty_buffer(bh, write_op);
684}
685#endif
686
687/*
688 * Revoke support for recovery.
689 *
690 * Recovery needs to be able to:
691 *
692 *  record all revoke records, including the tid of the latest instance
693 *  of each revoke in the journal
694 *
695 *  check whether a given block in a given transaction should be replayed
696 *  (ie. has not been revoked by a revoke record in that or a subsequent
697 *  transaction)
698 *
699 *  empty the revoke table after recovery.
700 */
701
702/*
703 * First, setting revoke records.  We create a new revoke record for
704 * every block ever revoked in the log as we scan it for recovery, and
705 * we update the existing records if we find multiple revokes for a
706 * single block.
707 */
708
709int jbd2_journal_set_revoke(journal_t *journal,
710		       unsigned long long blocknr,
711		       tid_t sequence)
712{
713	struct jbd2_revoke_record_s *record;
714
715	record = find_revoke_record(journal, blocknr);
716	if (record) {
717		/* If we have multiple occurrences, only record the
718		 * latest sequence number in the hashed record */
719		if (tid_gt(sequence, record->sequence))
720			record->sequence = sequence;
721		return 0;
722	}
723	return insert_revoke_hash(journal, blocknr, sequence);
724}
725
726/*
727 * Test revoke records.  For a given block referenced in the log, has
728 * that block been revoked?  A revoke record with a given transaction
729 * sequence number revokes all blocks in that transaction and earlier
730 * ones, but later transactions still need replayed.
731 */
732
733int jbd2_journal_test_revoke(journal_t *journal,
734			unsigned long long blocknr,
735			tid_t sequence)
736{
737	struct jbd2_revoke_record_s *record;
738
739	record = find_revoke_record(journal, blocknr);
740	if (!record)
741		return 0;
742	if (tid_gt(sequence, record->sequence))
743		return 0;
744	return 1;
745}
746
747/*
748 * Finally, once recovery is over, we need to clear the revoke table so
749 * that it can be reused by the running filesystem.
750 */
751
752void jbd2_journal_clear_revoke(journal_t *journal)
753{
754	int i;
755	struct list_head *hash_list;
756	struct jbd2_revoke_record_s *record;
757	struct jbd2_revoke_table_s *revoke;
758
759	revoke = journal->j_revoke;
760
761	for (i = 0; i < revoke->hash_size; i++) {
762		hash_list = &revoke->hash_table[i];
763		while (!list_empty(hash_list)) {
764			record = (struct jbd2_revoke_record_s*) hash_list->next;
765			list_del(&record->hash);
766			kmem_cache_free(jbd2_revoke_record_cache, record);
767		}
768	}
769}
v3.15
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#endif
 95#include <linux/log2.h>
 96
 97static struct kmem_cache *jbd2_revoke_record_cache;
 98static struct kmem_cache *jbd2_revoke_table_cache;
 99
100/* Each revoke record represents one single revoked block.  During
101   journal replay, this involves recording the transaction ID of the
102   last transaction to revoke this block. */
103
104struct jbd2_revoke_record_s
105{
106	struct list_head  hash;
107	tid_t		  sequence;	/* Used for recovery only */
108	unsigned long long	  blocknr;
109};
110
111
112/* The revoke table is just a simple hash table of revoke records. */
113struct jbd2_revoke_table_s
114{
115	/* It is conceivable that we might want a larger hash table
116	 * for recovery.  Must be a power of two. */
117	int		  hash_size;
118	int		  hash_shift;
119	struct list_head *hash_table;
120};
121
122
123#ifdef __KERNEL__
124static void write_one_revoke_record(journal_t *, transaction_t *,
125				    struct list_head *,
126				    struct buffer_head **, int *,
127				    struct jbd2_revoke_record_s *, int);
128static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129#endif
130
131/* Utility functions to maintain the revoke table */
132
133/* Borrowed from buffer.c: this is a tried and tested block hash function */
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	struct jbd2_revoke_table_s *table = journal->j_revoke;
137	int hash_shift = table->hash_shift;
138	int hash = (int)block ^ (int)((block >> 31) >> 1);
139
140	return ((hash << (hash_shift - 6)) ^
141		(hash >> 13) ^
142		(hash << (hash_shift - 12))) & (table->hash_size - 1);
143}
144
145static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
146			      tid_t seq)
147{
148	struct list_head *hash_list;
149	struct jbd2_revoke_record_s *record;
150
151repeat:
152	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
153	if (!record)
154		goto oom;
155
156	record->sequence = seq;
157	record->blocknr = blocknr;
158	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
159	spin_lock(&journal->j_revoke_lock);
160	list_add(&record->hash, hash_list);
161	spin_unlock(&journal->j_revoke_lock);
162	return 0;
163
164oom:
165	if (!journal_oom_retry)
166		return -ENOMEM;
167	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
168	yield();
169	goto repeat;
170}
171
172/* Find a revoke record in the journal's hash table. */
173
174static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
175						      unsigned long long blocknr)
176{
177	struct list_head *hash_list;
178	struct jbd2_revoke_record_s *record;
179
180	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
181
182	spin_lock(&journal->j_revoke_lock);
183	record = (struct jbd2_revoke_record_s *) hash_list->next;
184	while (&(record->hash) != hash_list) {
185		if (record->blocknr == blocknr) {
186			spin_unlock(&journal->j_revoke_lock);
187			return record;
188		}
189		record = (struct jbd2_revoke_record_s *) record->hash.next;
190	}
191	spin_unlock(&journal->j_revoke_lock);
192	return NULL;
193}
194
195void jbd2_journal_destroy_revoke_caches(void)
196{
197	if (jbd2_revoke_record_cache) {
198		kmem_cache_destroy(jbd2_revoke_record_cache);
199		jbd2_revoke_record_cache = NULL;
200	}
201	if (jbd2_revoke_table_cache) {
202		kmem_cache_destroy(jbd2_revoke_table_cache);
203		jbd2_revoke_table_cache = NULL;
204	}
205}
206
207int __init jbd2_journal_init_revoke_caches(void)
208{
209	J_ASSERT(!jbd2_revoke_record_cache);
210	J_ASSERT(!jbd2_revoke_table_cache);
211
212	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
213					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
214	if (!jbd2_revoke_record_cache)
215		goto record_cache_failure;
216
217	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
218					     SLAB_TEMPORARY);
219	if (!jbd2_revoke_table_cache)
220		goto table_cache_failure;
221	return 0;
222table_cache_failure:
223	jbd2_journal_destroy_revoke_caches();
224record_cache_failure:
225		return -ENOMEM;
226}
227
228static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
229{
230	int shift = 0;
231	int tmp = hash_size;
232	struct jbd2_revoke_table_s *table;
233
234	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
235	if (!table)
236		goto out;
237
238	while((tmp >>= 1UL) != 0UL)
239		shift++;
240
241	table->hash_size = hash_size;
242	table->hash_shift = shift;
243	table->hash_table =
244		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245	if (!table->hash_table) {
246		kmem_cache_free(jbd2_revoke_table_cache, table);
247		table = NULL;
248		goto out;
249	}
250
251	for (tmp = 0; tmp < hash_size; tmp++)
252		INIT_LIST_HEAD(&table->hash_table[tmp]);
253
254out:
255	return table;
256}
257
258static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
259{
260	int i;
261	struct list_head *hash_list;
262
263	for (i = 0; i < table->hash_size; i++) {
264		hash_list = &table->hash_table[i];
265		J_ASSERT(list_empty(hash_list));
266	}
267
268	kfree(table->hash_table);
269	kmem_cache_free(jbd2_revoke_table_cache, table);
270}
271
272/* Initialise the revoke table for a given journal to a given size. */
273int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
274{
275	J_ASSERT(journal->j_revoke_table[0] == NULL);
276	J_ASSERT(is_power_of_2(hash_size));
277
278	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
279	if (!journal->j_revoke_table[0])
280		goto fail0;
281
282	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
283	if (!journal->j_revoke_table[1])
284		goto fail1;
285
286	journal->j_revoke = journal->j_revoke_table[1];
287
288	spin_lock_init(&journal->j_revoke_lock);
289
290	return 0;
291
292fail1:
293	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
294fail0:
295	return -ENOMEM;
296}
297
298/* Destroy a journal's revoke table.  The table must already be empty! */
299void jbd2_journal_destroy_revoke(journal_t *journal)
300{
301	journal->j_revoke = NULL;
302	if (journal->j_revoke_table[0])
303		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
304	if (journal->j_revoke_table[1])
305		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
306}
307
308
309#ifdef __KERNEL__
310
311/*
312 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
313 * prevents the block from being replayed during recovery if we take a
314 * crash after this current transaction commits.  Any subsequent
315 * metadata writes of the buffer in this transaction cancel the
316 * revoke.
317 *
318 * Note that this call may block --- it is up to the caller to make
319 * sure that there are no further calls to journal_write_metadata
320 * before the revoke is complete.  In ext3, this implies calling the
321 * revoke before clearing the block bitmap when we are deleting
322 * metadata.
323 *
324 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
325 * parameter, but does _not_ forget the buffer_head if the bh was only
326 * found implicitly.
327 *
328 * bh_in may not be a journalled buffer - it may have come off
329 * the hash tables without an attached journal_head.
330 *
331 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
332 * by one.
333 */
334
335int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
336		   struct buffer_head *bh_in)
337{
338	struct buffer_head *bh = NULL;
339	journal_t *journal;
340	struct block_device *bdev;
341	int err;
342
343	might_sleep();
344	if (bh_in)
345		BUFFER_TRACE(bh_in, "enter");
346
347	journal = handle->h_transaction->t_journal;
348	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
349		J_ASSERT (!"Cannot set revoke feature!");
350		return -EINVAL;
351	}
352
353	bdev = journal->j_fs_dev;
354	bh = bh_in;
355
356	if (!bh) {
357		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358		if (bh)
359			BUFFER_TRACE(bh, "found on hash");
360	}
361#ifdef JBD2_EXPENSIVE_CHECKING
362	else {
363		struct buffer_head *bh2;
364
365		/* If there is a different buffer_head lying around in
366		 * memory anywhere... */
367		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368		if (bh2) {
369			/* ... and it has RevokeValid status... */
370			if (bh2 != bh && buffer_revokevalid(bh2))
371				/* ...then it better be revoked too,
372				 * since it's illegal to create a revoke
373				 * record against a buffer_head which is
374				 * not marked revoked --- that would
375				 * risk missing a subsequent revoke
376				 * cancel. */
377				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378			put_bh(bh2);
379		}
380	}
381#endif
382
383	/* We really ought not ever to revoke twice in a row without
384           first having the revoke cancelled: it's illegal to free a
385           block twice without allocating it in between! */
386	if (bh) {
387		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388				 "inconsistent data on disk")) {
389			if (!bh_in)
390				brelse(bh);
391			return -EIO;
392		}
393		set_buffer_revoked(bh);
394		set_buffer_revokevalid(bh);
395		if (bh_in) {
396			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
397			jbd2_journal_forget(handle, bh_in);
398		} else {
399			BUFFER_TRACE(bh, "call brelse");
400			__brelse(bh);
401		}
402	}
403
404	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
405	err = insert_revoke_hash(journal, blocknr,
406				handle->h_transaction->t_tid);
407	BUFFER_TRACE(bh_in, "exit");
408	return err;
409}
410
411/*
412 * Cancel an outstanding revoke.  For use only internally by the
413 * journaling code (called from jbd2_journal_get_write_access).
414 *
415 * We trust buffer_revoked() on the buffer if the buffer is already
416 * being journaled: if there is no revoke pending on the buffer, then we
417 * don't do anything here.
418 *
419 * This would break if it were possible for a buffer to be revoked and
420 * discarded, and then reallocated within the same transaction.  In such
421 * a case we would have lost the revoked bit, but when we arrived here
422 * the second time we would still have a pending revoke to cancel.  So,
423 * do not trust the Revoked bit on buffers unless RevokeValid is also
424 * set.
425 */
426int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427{
428	struct jbd2_revoke_record_s *record;
429	journal_t *journal = handle->h_transaction->t_journal;
430	int need_cancel;
431	int did_revoke = 0;	/* akpm: debug */
432	struct buffer_head *bh = jh2bh(jh);
433
434	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435
436	/* Is the existing Revoke bit valid?  If so, we trust it, and
437	 * only perform the full cancel if the revoke bit is set.  If
438	 * not, we can't trust the revoke bit, and we need to do the
439	 * full search for a revoke record. */
440	if (test_set_buffer_revokevalid(bh)) {
441		need_cancel = test_clear_buffer_revoked(bh);
442	} else {
443		need_cancel = 1;
444		clear_buffer_revoked(bh);
445	}
446
447	if (need_cancel) {
448		record = find_revoke_record(journal, bh->b_blocknr);
449		if (record) {
450			jbd_debug(4, "cancelled existing revoke on "
451				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452			spin_lock(&journal->j_revoke_lock);
453			list_del(&record->hash);
454			spin_unlock(&journal->j_revoke_lock);
455			kmem_cache_free(jbd2_revoke_record_cache, record);
456			did_revoke = 1;
457		}
458	}
459
460#ifdef JBD2_EXPENSIVE_CHECKING
461	/* There better not be one left behind by now! */
462	record = find_revoke_record(journal, bh->b_blocknr);
463	J_ASSERT_JH(jh, record == NULL);
464#endif
465
466	/* Finally, have we just cleared revoke on an unhashed
467	 * buffer_head?  If so, we'd better make sure we clear the
468	 * revoked status on any hashed alias too, otherwise the revoke
469	 * state machine will get very upset later on. */
470	if (need_cancel) {
471		struct buffer_head *bh2;
472		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473		if (bh2) {
474			if (bh2 != bh)
475				clear_buffer_revoked(bh2);
476			__brelse(bh2);
477		}
478	}
479	return did_revoke;
480}
481
482/*
483 * journal_clear_revoked_flag clears revoked flag of buffers in
484 * revoke table to reflect there is no revoked buffers in the next
485 * transaction which is going to be started.
486 */
487void jbd2_clear_buffer_revoked_flags(journal_t *journal)
488{
489	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
490	int i = 0;
491
492	for (i = 0; i < revoke->hash_size; i++) {
493		struct list_head *hash_list;
494		struct list_head *list_entry;
495		hash_list = &revoke->hash_table[i];
496
497		list_for_each(list_entry, hash_list) {
498			struct jbd2_revoke_record_s *record;
499			struct buffer_head *bh;
500			record = (struct jbd2_revoke_record_s *)list_entry;
501			bh = __find_get_block(journal->j_fs_dev,
502					      record->blocknr,
503					      journal->j_blocksize);
504			if (bh) {
505				clear_buffer_revoked(bh);
506				__brelse(bh);
507			}
508		}
509	}
510}
511
512/* journal_switch_revoke table select j_revoke for next transaction
513 * we do not want to suspend any processing until all revokes are
514 * written -bzzz
515 */
516void jbd2_journal_switch_revoke_table(journal_t *journal)
517{
518	int i;
519
520	if (journal->j_revoke == journal->j_revoke_table[0])
521		journal->j_revoke = journal->j_revoke_table[1];
522	else
523		journal->j_revoke = journal->j_revoke_table[0];
524
525	for (i = 0; i < journal->j_revoke->hash_size; i++)
526		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
527}
528
529/*
530 * Write revoke records to the journal for all entries in the current
531 * revoke hash, deleting the entries as we go.
532 */
533void jbd2_journal_write_revoke_records(journal_t *journal,
534				       transaction_t *transaction,
535				       struct list_head *log_bufs,
536				       int write_op)
537{
538	struct buffer_head *descriptor;
539	struct jbd2_revoke_record_s *record;
540	struct jbd2_revoke_table_s *revoke;
541	struct list_head *hash_list;
542	int i, offset, count;
543
544	descriptor = NULL;
545	offset = 0;
546	count = 0;
547
548	/* select revoke table for committing transaction */
549	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
550		journal->j_revoke_table[1] : journal->j_revoke_table[0];
551
552	for (i = 0; i < revoke->hash_size; i++) {
553		hash_list = &revoke->hash_table[i];
554
555		while (!list_empty(hash_list)) {
556			record = (struct jbd2_revoke_record_s *)
557				hash_list->next;
558			write_one_revoke_record(journal, transaction, log_bufs,
559						&descriptor, &offset,
560						record, write_op);
561			count++;
562			list_del(&record->hash);
563			kmem_cache_free(jbd2_revoke_record_cache, record);
564		}
565	}
566	if (descriptor)
567		flush_descriptor(journal, descriptor, offset, write_op);
568	jbd_debug(1, "Wrote %d revoke records\n", count);
569}
570
571/*
572 * Write out one revoke record.  We need to create a new descriptor
573 * block if the old one is full or if we have not already created one.
574 */
575
576static void write_one_revoke_record(journal_t *journal,
577				    transaction_t *transaction,
578				    struct list_head *log_bufs,
579				    struct buffer_head **descriptorp,
580				    int *offsetp,
581				    struct jbd2_revoke_record_s *record,
582				    int write_op)
583{
584	int csum_size = 0;
585	struct buffer_head *descriptor;
586	int offset;
587	journal_header_t *header;
588
589	/* If we are already aborting, this all becomes a noop.  We
590           still need to go round the loop in
591           jbd2_journal_write_revoke_records in order to free all of the
592           revoke records: only the IO to the journal is omitted. */
593	if (is_journal_aborted(journal))
594		return;
595
596	descriptor = *descriptorp;
597	offset = *offsetp;
598
599	/* Do we need to leave space at the end for a checksum? */
600	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
601		csum_size = sizeof(struct jbd2_journal_revoke_tail);
602
603	/* Make sure we have a descriptor with space left for the record */
604	if (descriptor) {
605		if (offset >= journal->j_blocksize - csum_size) {
606			flush_descriptor(journal, descriptor, offset, write_op);
607			descriptor = NULL;
608		}
609	}
610
611	if (!descriptor) {
612		descriptor = jbd2_journal_get_descriptor_buffer(journal);
613		if (!descriptor)
614			return;
615		header = (journal_header_t *)descriptor->b_data;
616		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
617		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
618		header->h_sequence  = cpu_to_be32(transaction->t_tid);
619
620		/* Record it so that we can wait for IO completion later */
621		BUFFER_TRACE(descriptor, "file in log_bufs");
622		jbd2_file_log_bh(log_bufs, descriptor);
623
624		offset = sizeof(jbd2_journal_revoke_header_t);
625		*descriptorp = descriptor;
626	}
627
628	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
629		* ((__be64 *)(&descriptor->b_data[offset])) =
630			cpu_to_be64(record->blocknr);
631		offset += 8;
632
633	} else {
634		* ((__be32 *)(&descriptor->b_data[offset])) =
635			cpu_to_be32(record->blocknr);
636		offset += 4;
637	}
638
639	*offsetp = offset;
640}
641
642static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
 
643{
644	struct jbd2_journal_revoke_tail *tail;
645	__u32 csum;
646
647	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
648		return;
649
650	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
 
651			sizeof(struct jbd2_journal_revoke_tail));
652	tail->r_checksum = 0;
653	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 
654	tail->r_checksum = cpu_to_be32(csum);
655}
656
657/*
658 * Flush a revoke descriptor out to the journal.  If we are aborting,
659 * this is a noop; otherwise we are generating a buffer which needs to
660 * be waited for during commit, so it has to go onto the appropriate
661 * journal buffer list.
662 */
663
664static void flush_descriptor(journal_t *journal,
665			     struct buffer_head *descriptor,
666			     int offset, int write_op)
667{
668	jbd2_journal_revoke_header_t *header;
 
669
670	if (is_journal_aborted(journal)) {
671		put_bh(descriptor);
672		return;
673	}
674
675	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
676	header->r_count = cpu_to_be32(offset);
677	jbd2_revoke_csum_set(journal, descriptor);
678
679	set_buffer_jwrite(descriptor);
680	BUFFER_TRACE(descriptor, "write");
681	set_buffer_dirty(descriptor);
682	write_dirty_buffer(descriptor, write_op);
683}
684#endif
685
686/*
687 * Revoke support for recovery.
688 *
689 * Recovery needs to be able to:
690 *
691 *  record all revoke records, including the tid of the latest instance
692 *  of each revoke in the journal
693 *
694 *  check whether a given block in a given transaction should be replayed
695 *  (ie. has not been revoked by a revoke record in that or a subsequent
696 *  transaction)
697 *
698 *  empty the revoke table after recovery.
699 */
700
701/*
702 * First, setting revoke records.  We create a new revoke record for
703 * every block ever revoked in the log as we scan it for recovery, and
704 * we update the existing records if we find multiple revokes for a
705 * single block.
706 */
707
708int jbd2_journal_set_revoke(journal_t *journal,
709		       unsigned long long blocknr,
710		       tid_t sequence)
711{
712	struct jbd2_revoke_record_s *record;
713
714	record = find_revoke_record(journal, blocknr);
715	if (record) {
716		/* If we have multiple occurrences, only record the
717		 * latest sequence number in the hashed record */
718		if (tid_gt(sequence, record->sequence))
719			record->sequence = sequence;
720		return 0;
721	}
722	return insert_revoke_hash(journal, blocknr, sequence);
723}
724
725/*
726 * Test revoke records.  For a given block referenced in the log, has
727 * that block been revoked?  A revoke record with a given transaction
728 * sequence number revokes all blocks in that transaction and earlier
729 * ones, but later transactions still need replayed.
730 */
731
732int jbd2_journal_test_revoke(journal_t *journal,
733			unsigned long long blocknr,
734			tid_t sequence)
735{
736	struct jbd2_revoke_record_s *record;
737
738	record = find_revoke_record(journal, blocknr);
739	if (!record)
740		return 0;
741	if (tid_gt(sequence, record->sequence))
742		return 0;
743	return 1;
744}
745
746/*
747 * Finally, once recovery is over, we need to clear the revoke table so
748 * that it can be reused by the running filesystem.
749 */
750
751void jbd2_journal_clear_revoke(journal_t *journal)
752{
753	int i;
754	struct list_head *hash_list;
755	struct jbd2_revoke_record_s *record;
756	struct jbd2_revoke_table_s *revoke;
757
758	revoke = journal->j_revoke;
759
760	for (i = 0; i < revoke->hash_size; i++) {
761		hash_list = &revoke->hash_table[i];
762		while (!list_empty(hash_list)) {
763			record = (struct jbd2_revoke_record_s*) hash_list->next;
764			list_del(&record->hash);
765			kmem_cache_free(jbd2_revoke_record_cache, record);
766		}
767	}
768}