Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.5.6
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/mutex.h>
  32#include <linux/scatterlist.h>
  33#include <linux/string_helpers.h>
  34#include <linux/delay.h>
  35#include <linux/capability.h>
  36#include <linux/compat.h>
 
  37
  38#include <linux/mmc/ioctl.h>
  39#include <linux/mmc/card.h>
  40#include <linux/mmc/host.h>
  41#include <linux/mmc/mmc.h>
  42#include <linux/mmc/sd.h>
  43
  44#include <asm/uaccess.h>
  45
  46#include "queue.h"
  47
  48MODULE_ALIAS("mmc:block");
  49#ifdef MODULE_PARAM_PREFIX
  50#undef MODULE_PARAM_PREFIX
  51#endif
  52#define MODULE_PARAM_PREFIX "mmcblk."
  53
  54#define INAND_CMD38_ARG_EXT_CSD  113
  55#define INAND_CMD38_ARG_ERASE    0x00
  56#define INAND_CMD38_ARG_TRIM     0x01
  57#define INAND_CMD38_ARG_SECERASE 0x80
  58#define INAND_CMD38_ARG_SECTRIM1 0x81
  59#define INAND_CMD38_ARG_SECTRIM2 0x88
 
 
 
 
 
 
 
 
 
  60
  61static DEFINE_MUTEX(block_mutex);
  62
  63/*
  64 * The defaults come from config options but can be overriden by module
  65 * or bootarg options.
  66 */
  67static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  68
  69/*
  70 * We've only got one major, so number of mmcblk devices is
  71 * limited to 256 / number of minors per device.
  72 */
  73static int max_devices;
  74
  75/* 256 minors, so at most 256 separate devices */
  76static DECLARE_BITMAP(dev_use, 256);
  77static DECLARE_BITMAP(name_use, 256);
  78
  79/*
  80 * There is one mmc_blk_data per slot.
  81 */
  82struct mmc_blk_data {
  83	spinlock_t	lock;
  84	struct gendisk	*disk;
  85	struct mmc_queue queue;
  86	struct list_head part;
  87
  88	unsigned int	flags;
  89#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
  90#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 
  91
  92	unsigned int	usage;
  93	unsigned int	read_only;
  94	unsigned int	part_type;
  95	unsigned int	name_idx;
  96	unsigned int	reset_done;
  97#define MMC_BLK_READ		BIT(0)
  98#define MMC_BLK_WRITE		BIT(1)
  99#define MMC_BLK_DISCARD		BIT(2)
 100#define MMC_BLK_SECDISCARD	BIT(3)
 101
 102	/*
 103	 * Only set in main mmc_blk_data associated
 104	 * with mmc_card with mmc_set_drvdata, and keeps
 105	 * track of the current selected device partition.
 106	 */
 107	unsigned int	part_curr;
 108	struct device_attribute force_ro;
 109	struct device_attribute power_ro_lock;
 110	int	area_type;
 111};
 112
 113static DEFINE_MUTEX(open_lock);
 114
 115enum mmc_blk_status {
 116	MMC_BLK_SUCCESS = 0,
 117	MMC_BLK_PARTIAL,
 118	MMC_BLK_CMD_ERR,
 119	MMC_BLK_RETRY,
 120	MMC_BLK_ABORT,
 121	MMC_BLK_DATA_ERR,
 122	MMC_BLK_ECC_ERR,
 123	MMC_BLK_NOMEDIUM,
 124};
 125
 126module_param(perdev_minors, int, 0444);
 127MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 130{
 131	struct mmc_blk_data *md;
 132
 133	mutex_lock(&open_lock);
 134	md = disk->private_data;
 135	if (md && md->usage == 0)
 136		md = NULL;
 137	if (md)
 138		md->usage++;
 139	mutex_unlock(&open_lock);
 140
 141	return md;
 142}
 143
 144static inline int mmc_get_devidx(struct gendisk *disk)
 145{
 146	int devmaj = MAJOR(disk_devt(disk));
 147	int devidx = MINOR(disk_devt(disk)) / perdev_minors;
 148
 149	if (!devmaj)
 150		devidx = disk->first_minor / perdev_minors;
 151	return devidx;
 152}
 153
 154static void mmc_blk_put(struct mmc_blk_data *md)
 155{
 156	mutex_lock(&open_lock);
 157	md->usage--;
 158	if (md->usage == 0) {
 159		int devidx = mmc_get_devidx(md->disk);
 160		blk_cleanup_queue(md->queue.queue);
 161
 162		__clear_bit(devidx, dev_use);
 163
 164		put_disk(md->disk);
 165		kfree(md);
 166	}
 167	mutex_unlock(&open_lock);
 168}
 169
 170static ssize_t power_ro_lock_show(struct device *dev,
 171		struct device_attribute *attr, char *buf)
 172{
 173	int ret;
 174	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 175	struct mmc_card *card = md->queue.card;
 176	int locked = 0;
 177
 178	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 179		locked = 2;
 180	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 181		locked = 1;
 182
 183	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 184
 185	return ret;
 186}
 187
 188static ssize_t power_ro_lock_store(struct device *dev,
 189		struct device_attribute *attr, const char *buf, size_t count)
 190{
 191	int ret;
 192	struct mmc_blk_data *md, *part_md;
 193	struct mmc_card *card;
 194	unsigned long set;
 195
 196	if (kstrtoul(buf, 0, &set))
 197		return -EINVAL;
 198
 199	if (set != 1)
 200		return count;
 201
 202	md = mmc_blk_get(dev_to_disk(dev));
 203	card = md->queue.card;
 204
 205	mmc_claim_host(card->host);
 206
 207	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
 208				card->ext_csd.boot_ro_lock |
 209				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
 210				card->ext_csd.part_time);
 211	if (ret)
 212		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
 213	else
 214		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
 215
 216	mmc_release_host(card->host);
 217
 218	if (!ret) {
 219		pr_info("%s: Locking boot partition ro until next power on\n",
 220			md->disk->disk_name);
 221		set_disk_ro(md->disk, 1);
 222
 223		list_for_each_entry(part_md, &md->part, part)
 224			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 225				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 226				set_disk_ro(part_md->disk, 1);
 227			}
 228	}
 229
 230	mmc_blk_put(md);
 231	return count;
 232}
 233
 234static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 235			     char *buf)
 236{
 237	int ret;
 238	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 239
 240	ret = snprintf(buf, PAGE_SIZE, "%d",
 241		       get_disk_ro(dev_to_disk(dev)) ^
 242		       md->read_only);
 243	mmc_blk_put(md);
 244	return ret;
 245}
 246
 247static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 248			      const char *buf, size_t count)
 249{
 250	int ret;
 251	char *end;
 252	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 253	unsigned long set = simple_strtoul(buf, &end, 0);
 254	if (end == buf) {
 255		ret = -EINVAL;
 256		goto out;
 257	}
 258
 259	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 260	ret = count;
 261out:
 262	mmc_blk_put(md);
 263	return ret;
 264}
 265
 266static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 267{
 268	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 269	int ret = -ENXIO;
 270
 271	mutex_lock(&block_mutex);
 272	if (md) {
 273		if (md->usage == 2)
 274			check_disk_change(bdev);
 275		ret = 0;
 276
 277		if ((mode & FMODE_WRITE) && md->read_only) {
 278			mmc_blk_put(md);
 279			ret = -EROFS;
 280		}
 281	}
 282	mutex_unlock(&block_mutex);
 283
 284	return ret;
 285}
 286
 287static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
 288{
 289	struct mmc_blk_data *md = disk->private_data;
 290
 291	mutex_lock(&block_mutex);
 292	mmc_blk_put(md);
 293	mutex_unlock(&block_mutex);
 294	return 0;
 295}
 296
 297static int
 298mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 299{
 300	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 301	geo->heads = 4;
 302	geo->sectors = 16;
 303	return 0;
 304}
 305
 306struct mmc_blk_ioc_data {
 307	struct mmc_ioc_cmd ic;
 308	unsigned char *buf;
 309	u64 buf_bytes;
 310};
 311
 312static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 313	struct mmc_ioc_cmd __user *user)
 314{
 315	struct mmc_blk_ioc_data *idata;
 316	int err;
 317
 318	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 319	if (!idata) {
 320		err = -ENOMEM;
 321		goto out;
 322	}
 323
 324	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 325		err = -EFAULT;
 326		goto idata_err;
 327	}
 328
 329	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 330	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 331		err = -EOVERFLOW;
 332		goto idata_err;
 333	}
 334
 335	if (!idata->buf_bytes)
 336		return idata;
 337
 338	idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
 339	if (!idata->buf) {
 340		err = -ENOMEM;
 341		goto idata_err;
 342	}
 343
 344	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
 345					idata->ic.data_ptr, idata->buf_bytes)) {
 346		err = -EFAULT;
 347		goto copy_err;
 348	}
 349
 350	return idata;
 351
 352copy_err:
 353	kfree(idata->buf);
 354idata_err:
 355	kfree(idata);
 356out:
 357	return ERR_PTR(err);
 358}
 359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360static int mmc_blk_ioctl_cmd(struct block_device *bdev,
 361	struct mmc_ioc_cmd __user *ic_ptr)
 362{
 363	struct mmc_blk_ioc_data *idata;
 364	struct mmc_blk_data *md;
 365	struct mmc_card *card;
 366	struct mmc_command cmd = {0};
 367	struct mmc_data data = {0};
 368	struct mmc_request mrq = {NULL};
 369	struct scatterlist sg;
 370	int err;
 
 
 371
 372	/*
 373	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 374	 * whole block device, not on a partition.  This prevents overspray
 375	 * between sibling partitions.
 376	 */
 377	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 378		return -EPERM;
 379
 380	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 381	if (IS_ERR(idata))
 382		return PTR_ERR(idata);
 383
 384	md = mmc_blk_get(bdev->bd_disk);
 385	if (!md) {
 386		err = -EINVAL;
 387		goto cmd_err;
 388	}
 389
 
 
 
 390	card = md->queue.card;
 391	if (IS_ERR(card)) {
 392		err = PTR_ERR(card);
 393		goto cmd_done;
 394	}
 395
 396	cmd.opcode = idata->ic.opcode;
 397	cmd.arg = idata->ic.arg;
 398	cmd.flags = idata->ic.flags;
 399
 400	if (idata->buf_bytes) {
 401		data.sg = &sg;
 402		data.sg_len = 1;
 403		data.blksz = idata->ic.blksz;
 404		data.blocks = idata->ic.blocks;
 405
 406		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 407
 408		if (idata->ic.write_flag)
 409			data.flags = MMC_DATA_WRITE;
 410		else
 411			data.flags = MMC_DATA_READ;
 412
 413		/* data.flags must already be set before doing this. */
 414		mmc_set_data_timeout(&data, card);
 415
 416		/* Allow overriding the timeout_ns for empirical tuning. */
 417		if (idata->ic.data_timeout_ns)
 418			data.timeout_ns = idata->ic.data_timeout_ns;
 419
 420		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 421			/*
 422			 * Pretend this is a data transfer and rely on the
 423			 * host driver to compute timeout.  When all host
 424			 * drivers support cmd.cmd_timeout for R1B, this
 425			 * can be changed to:
 426			 *
 427			 *     mrq.data = NULL;
 428			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 429			 */
 430			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 431		}
 432
 433		mrq.data = &data;
 434	}
 435
 436	mrq.cmd = &cmd;
 437
 438	mmc_claim_host(card->host);
 
 
 
 
 439
 440	if (idata->ic.is_acmd) {
 441		err = mmc_app_cmd(card->host, card);
 442		if (err)
 443			goto cmd_rel_host;
 444	}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446	mmc_wait_for_req(card->host, &mrq);
 447
 448	if (cmd.error) {
 449		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 450						__func__, cmd.error);
 451		err = cmd.error;
 452		goto cmd_rel_host;
 453	}
 454	if (data.error) {
 455		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 456						__func__, data.error);
 457		err = data.error;
 458		goto cmd_rel_host;
 459	}
 460
 461	/*
 462	 * According to the SD specs, some commands require a delay after
 463	 * issuing the command.
 464	 */
 465	if (idata->ic.postsleep_min_us)
 466		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 467
 468	if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
 469		err = -EFAULT;
 470		goto cmd_rel_host;
 471	}
 472
 473	if (!idata->ic.write_flag) {
 474		if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
 475						idata->buf, idata->buf_bytes)) {
 476			err = -EFAULT;
 477			goto cmd_rel_host;
 478		}
 479	}
 480
 
 
 
 
 
 
 
 
 
 
 
 
 481cmd_rel_host:
 482	mmc_release_host(card->host);
 483
 484cmd_done:
 485	mmc_blk_put(md);
 486cmd_err:
 487	kfree(idata->buf);
 488	kfree(idata);
 489	return err;
 490}
 491
 492static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 493	unsigned int cmd, unsigned long arg)
 494{
 495	int ret = -EINVAL;
 496	if (cmd == MMC_IOC_CMD)
 497		ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
 498	return ret;
 499}
 500
 501#ifdef CONFIG_COMPAT
 502static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 503	unsigned int cmd, unsigned long arg)
 504{
 505	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 506}
 507#endif
 508
 509static const struct block_device_operations mmc_bdops = {
 510	.open			= mmc_blk_open,
 511	.release		= mmc_blk_release,
 512	.getgeo			= mmc_blk_getgeo,
 513	.owner			= THIS_MODULE,
 514	.ioctl			= mmc_blk_ioctl,
 515#ifdef CONFIG_COMPAT
 516	.compat_ioctl		= mmc_blk_compat_ioctl,
 517#endif
 518};
 519
 520static inline int mmc_blk_part_switch(struct mmc_card *card,
 521				      struct mmc_blk_data *md)
 522{
 523	int ret;
 524	struct mmc_blk_data *main_md = mmc_get_drvdata(card);
 525
 526	if (main_md->part_curr == md->part_type)
 527		return 0;
 528
 529	if (mmc_card_mmc(card)) {
 530		u8 part_config = card->ext_csd.part_config;
 531
 532		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 533		part_config |= md->part_type;
 534
 535		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 536				 EXT_CSD_PART_CONFIG, part_config,
 537				 card->ext_csd.part_time);
 538		if (ret)
 539			return ret;
 540
 541		card->ext_csd.part_config = part_config;
 542	}
 543
 544	main_md->part_curr = md->part_type;
 545	return 0;
 546}
 547
 548static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
 549{
 550	int err;
 551	u32 result;
 552	__be32 *blocks;
 553
 554	struct mmc_request mrq = {NULL};
 555	struct mmc_command cmd = {0};
 556	struct mmc_data data = {0};
 557
 558	struct scatterlist sg;
 559
 560	cmd.opcode = MMC_APP_CMD;
 561	cmd.arg = card->rca << 16;
 562	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 563
 564	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 565	if (err)
 566		return (u32)-1;
 567	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 568		return (u32)-1;
 569
 570	memset(&cmd, 0, sizeof(struct mmc_command));
 571
 572	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 573	cmd.arg = 0;
 574	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 575
 576	data.blksz = 4;
 577	data.blocks = 1;
 578	data.flags = MMC_DATA_READ;
 579	data.sg = &sg;
 580	data.sg_len = 1;
 581	mmc_set_data_timeout(&data, card);
 582
 583	mrq.cmd = &cmd;
 584	mrq.data = &data;
 585
 586	blocks = kmalloc(4, GFP_KERNEL);
 587	if (!blocks)
 588		return (u32)-1;
 589
 590	sg_init_one(&sg, blocks, 4);
 591
 592	mmc_wait_for_req(card->host, &mrq);
 593
 594	result = ntohl(*blocks);
 595	kfree(blocks);
 596
 597	if (cmd.error || data.error)
 598		result = (u32)-1;
 599
 600	return result;
 601}
 602
 603static int send_stop(struct mmc_card *card, u32 *status)
 604{
 605	struct mmc_command cmd = {0};
 606	int err;
 607
 608	cmd.opcode = MMC_STOP_TRANSMISSION;
 609	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
 610	err = mmc_wait_for_cmd(card->host, &cmd, 5);
 611	if (err == 0)
 612		*status = cmd.resp[0];
 613	return err;
 614}
 615
 616static int get_card_status(struct mmc_card *card, u32 *status, int retries)
 617{
 618	struct mmc_command cmd = {0};
 619	int err;
 620
 621	cmd.opcode = MMC_SEND_STATUS;
 622	if (!mmc_host_is_spi(card->host))
 623		cmd.arg = card->rca << 16;
 624	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
 625	err = mmc_wait_for_cmd(card->host, &cmd, retries);
 626	if (err == 0)
 627		*status = cmd.resp[0];
 628	return err;
 629}
 630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631#define ERR_NOMEDIUM	3
 632#define ERR_RETRY	2
 633#define ERR_ABORT	1
 634#define ERR_CONTINUE	0
 635
 636static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
 637	bool status_valid, u32 status)
 638{
 639	switch (error) {
 640	case -EILSEQ:
 641		/* response crc error, retry the r/w cmd */
 642		pr_err("%s: %s sending %s command, card status %#x\n",
 643			req->rq_disk->disk_name, "response CRC error",
 644			name, status);
 645		return ERR_RETRY;
 646
 647	case -ETIMEDOUT:
 648		pr_err("%s: %s sending %s command, card status %#x\n",
 649			req->rq_disk->disk_name, "timed out", name, status);
 650
 651		/* If the status cmd initially failed, retry the r/w cmd */
 652		if (!status_valid)
 653			return ERR_RETRY;
 654
 655		/*
 656		 * If it was a r/w cmd crc error, or illegal command
 657		 * (eg, issued in wrong state) then retry - we should
 658		 * have corrected the state problem above.
 659		 */
 660		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
 661			return ERR_RETRY;
 662
 663		/* Otherwise abort the command */
 664		return ERR_ABORT;
 665
 666	default:
 667		/* We don't understand the error code the driver gave us */
 668		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
 669		       req->rq_disk->disk_name, error, status);
 670		return ERR_ABORT;
 671	}
 672}
 673
 674/*
 675 * Initial r/w and stop cmd error recovery.
 676 * We don't know whether the card received the r/w cmd or not, so try to
 677 * restore things back to a sane state.  Essentially, we do this as follows:
 678 * - Obtain card status.  If the first attempt to obtain card status fails,
 679 *   the status word will reflect the failed status cmd, not the failed
 680 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
 681 *   longer communicate with the card.
 682 * - Check the card state.  If the card received the cmd but there was a
 683 *   transient problem with the response, it might still be in a data transfer
 684 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
 685 * - If the r/w cmd failed due to a response CRC error, it was probably
 686 *   transient, so retry the cmd.
 687 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
 688 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
 689 *   illegal cmd, retry.
 690 * Otherwise we don't understand what happened, so abort.
 691 */
 692static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
 693	struct mmc_blk_request *brq, int *ecc_err)
 694{
 695	bool prev_cmd_status_valid = true;
 696	u32 status, stop_status = 0;
 697	int err, retry;
 698
 699	if (mmc_card_removed(card))
 700		return ERR_NOMEDIUM;
 701
 702	/*
 703	 * Try to get card status which indicates both the card state
 704	 * and why there was no response.  If the first attempt fails,
 705	 * we can't be sure the returned status is for the r/w command.
 706	 */
 707	for (retry = 2; retry >= 0; retry--) {
 708		err = get_card_status(card, &status, 0);
 709		if (!err)
 710			break;
 711
 712		prev_cmd_status_valid = false;
 713		pr_err("%s: error %d sending status command, %sing\n",
 714		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
 715	}
 716
 717	/* We couldn't get a response from the card.  Give up. */
 718	if (err) {
 719		/* Check if the card is removed */
 720		if (mmc_detect_card_removed(card->host))
 721			return ERR_NOMEDIUM;
 722		return ERR_ABORT;
 723	}
 724
 725	/* Flag ECC errors */
 726	if ((status & R1_CARD_ECC_FAILED) ||
 727	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
 728	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
 729		*ecc_err = 1;
 730
 
 
 
 
 
 
 
 
 
 
 731	/*
 732	 * Check the current card state.  If it is in some data transfer
 733	 * mode, tell it to stop (and hopefully transition back to TRAN.)
 734	 */
 735	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
 736	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
 737		err = send_stop(card, &stop_status);
 738		if (err)
 
 
 739			pr_err("%s: error %d sending stop command\n",
 740			       req->rq_disk->disk_name, err);
 741
 742		/*
 743		 * If the stop cmd also timed out, the card is probably
 744		 * not present, so abort.  Other errors are bad news too.
 745		 */
 746		if (err)
 747			return ERR_ABORT;
 
 
 748		if (stop_status & R1_CARD_ECC_FAILED)
 749			*ecc_err = 1;
 750	}
 751
 752	/* Check for set block count errors */
 753	if (brq->sbc.error)
 754		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
 755				prev_cmd_status_valid, status);
 756
 757	/* Check for r/w command errors */
 758	if (brq->cmd.error)
 759		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
 760				prev_cmd_status_valid, status);
 761
 762	/* Data errors */
 763	if (!brq->stop.error)
 764		return ERR_CONTINUE;
 765
 766	/* Now for stop errors.  These aren't fatal to the transfer. */
 767	pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
 768	       req->rq_disk->disk_name, brq->stop.error,
 769	       brq->cmd.resp[0], status);
 770
 771	/*
 772	 * Subsitute in our own stop status as this will give the error
 773	 * state which happened during the execution of the r/w command.
 774	 */
 775	if (stop_status) {
 776		brq->stop.resp[0] = stop_status;
 777		brq->stop.error = 0;
 778	}
 779	return ERR_CONTINUE;
 780}
 781
 782static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 783			 int type)
 784{
 785	int err;
 786
 787	if (md->reset_done & type)
 788		return -EEXIST;
 789
 790	md->reset_done |= type;
 791	err = mmc_hw_reset(host);
 792	/* Ensure we switch back to the correct partition */
 793	if (err != -EOPNOTSUPP) {
 794		struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
 795		int part_err;
 796
 797		main_md->part_curr = main_md->part_type;
 798		part_err = mmc_blk_part_switch(host->card, md);
 799		if (part_err) {
 800			/*
 801			 * We have failed to get back into the correct
 802			 * partition, so we need to abort the whole request.
 803			 */
 804			return -ENODEV;
 805		}
 806	}
 807	return err;
 808}
 809
 810static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
 811{
 812	md->reset_done &= ~type;
 813}
 814
 815static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
 816{
 817	struct mmc_blk_data *md = mq->data;
 818	struct mmc_card *card = md->queue.card;
 819	unsigned int from, nr, arg;
 820	int err = 0, type = MMC_BLK_DISCARD;
 821
 822	if (!mmc_can_erase(card)) {
 823		err = -EOPNOTSUPP;
 824		goto out;
 825	}
 826
 827	from = blk_rq_pos(req);
 828	nr = blk_rq_sectors(req);
 829
 830	if (mmc_can_discard(card))
 831		arg = MMC_DISCARD_ARG;
 832	else if (mmc_can_trim(card))
 833		arg = MMC_TRIM_ARG;
 834	else
 835		arg = MMC_ERASE_ARG;
 836retry:
 837	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 838		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 839				 INAND_CMD38_ARG_EXT_CSD,
 840				 arg == MMC_TRIM_ARG ?
 841				 INAND_CMD38_ARG_TRIM :
 842				 INAND_CMD38_ARG_ERASE,
 843				 0);
 844		if (err)
 845			goto out;
 846	}
 847	err = mmc_erase(card, from, nr, arg);
 848out:
 849	if (err == -EIO && !mmc_blk_reset(md, card->host, type))
 850		goto retry;
 851	if (!err)
 852		mmc_blk_reset_success(md, type);
 853	spin_lock_irq(&md->lock);
 854	__blk_end_request(req, err, blk_rq_bytes(req));
 855	spin_unlock_irq(&md->lock);
 856
 857	return err ? 0 : 1;
 858}
 859
 860static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
 861				       struct request *req)
 862{
 863	struct mmc_blk_data *md = mq->data;
 864	struct mmc_card *card = md->queue.card;
 865	unsigned int from, nr, arg, trim_arg, erase_arg;
 866	int err = 0, type = MMC_BLK_SECDISCARD;
 867
 868	if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
 869		err = -EOPNOTSUPP;
 870		goto out;
 871	}
 872
 873	from = blk_rq_pos(req);
 874	nr = blk_rq_sectors(req);
 875
 876	/* The sanitize operation is supported at v4.5 only */
 877	if (mmc_can_sanitize(card)) {
 878		erase_arg = MMC_ERASE_ARG;
 879		trim_arg = MMC_TRIM_ARG;
 880	} else {
 881		erase_arg = MMC_SECURE_ERASE_ARG;
 882		trim_arg = MMC_SECURE_TRIM1_ARG;
 883	}
 884
 885	if (mmc_erase_group_aligned(card, from, nr))
 886		arg = erase_arg;
 887	else if (mmc_can_trim(card))
 888		arg = trim_arg;
 889	else {
 890		err = -EINVAL;
 891		goto out;
 892	}
 893retry:
 894	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 895		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 896				 INAND_CMD38_ARG_EXT_CSD,
 897				 arg == MMC_SECURE_TRIM1_ARG ?
 898				 INAND_CMD38_ARG_SECTRIM1 :
 899				 INAND_CMD38_ARG_SECERASE,
 900				 0);
 901		if (err)
 902			goto out_retry;
 903	}
 904
 905	err = mmc_erase(card, from, nr, arg);
 906	if (err == -EIO)
 907		goto out_retry;
 908	if (err)
 909		goto out;
 910
 911	if (arg == MMC_SECURE_TRIM1_ARG) {
 912		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
 913			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 914					 INAND_CMD38_ARG_EXT_CSD,
 915					 INAND_CMD38_ARG_SECTRIM2,
 916					 0);
 917			if (err)
 918				goto out_retry;
 919		}
 920
 921		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
 922		if (err == -EIO)
 923			goto out_retry;
 924		if (err)
 925			goto out;
 926	}
 927
 928	if (mmc_can_sanitize(card))
 929		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 930				 EXT_CSD_SANITIZE_START, 1, 0);
 931out_retry:
 932	if (err && !mmc_blk_reset(md, card->host, type))
 933		goto retry;
 934	if (!err)
 935		mmc_blk_reset_success(md, type);
 936out:
 937	spin_lock_irq(&md->lock);
 938	__blk_end_request(req, err, blk_rq_bytes(req));
 939	spin_unlock_irq(&md->lock);
 940
 941	return err ? 0 : 1;
 942}
 943
 944static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
 945{
 946	struct mmc_blk_data *md = mq->data;
 947	struct mmc_card *card = md->queue.card;
 948	int ret = 0;
 949
 950	ret = mmc_flush_cache(card);
 951	if (ret)
 952		ret = -EIO;
 953
 954	spin_lock_irq(&md->lock);
 955	__blk_end_request_all(req, ret);
 956	spin_unlock_irq(&md->lock);
 957
 958	return ret ? 0 : 1;
 959}
 960
 961/*
 962 * Reformat current write as a reliable write, supporting
 963 * both legacy and the enhanced reliable write MMC cards.
 964 * In each transfer we'll handle only as much as a single
 965 * reliable write can handle, thus finish the request in
 966 * partial completions.
 967 */
 968static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
 969				    struct mmc_card *card,
 970				    struct request *req)
 971{
 972	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
 973		/* Legacy mode imposes restrictions on transfers. */
 974		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
 975			brq->data.blocks = 1;
 976
 977		if (brq->data.blocks > card->ext_csd.rel_sectors)
 978			brq->data.blocks = card->ext_csd.rel_sectors;
 979		else if (brq->data.blocks < card->ext_csd.rel_sectors)
 980			brq->data.blocks = 1;
 981	}
 982}
 983
 984#define CMD_ERRORS							\
 985	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
 986	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
 987	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
 988	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
 989	 R1_CC_ERROR |		/* Card controller error */		\
 990	 R1_ERROR)		/* General/unknown error */
 991
 992static int mmc_blk_err_check(struct mmc_card *card,
 993			     struct mmc_async_req *areq)
 994{
 995	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
 996						    mmc_active);
 997	struct mmc_blk_request *brq = &mq_mrq->brq;
 998	struct request *req = mq_mrq->req;
 999	int ecc_err = 0;
1000
1001	/*
1002	 * sbc.error indicates a problem with the set block count
1003	 * command.  No data will have been transferred.
1004	 *
1005	 * cmd.error indicates a problem with the r/w command.  No
1006	 * data will have been transferred.
1007	 *
1008	 * stop.error indicates a problem with the stop command.  Data
1009	 * may have been transferred, or may still be transferring.
1010	 */
1011	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1012	    brq->data.error) {
1013		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1014		case ERR_RETRY:
1015			return MMC_BLK_RETRY;
1016		case ERR_ABORT:
1017			return MMC_BLK_ABORT;
1018		case ERR_NOMEDIUM:
1019			return MMC_BLK_NOMEDIUM;
1020		case ERR_CONTINUE:
1021			break;
1022		}
1023	}
1024
1025	/*
1026	 * Check for errors relating to the execution of the
1027	 * initial command - such as address errors.  No data
1028	 * has been transferred.
1029	 */
1030	if (brq->cmd.resp[0] & CMD_ERRORS) {
1031		pr_err("%s: r/w command failed, status = %#x\n",
1032		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1033		return MMC_BLK_ABORT;
1034	}
1035
1036	/*
1037	 * Everything else is either success, or a data error of some
1038	 * kind.  If it was a write, we may have transitioned to
1039	 * program mode, which we have to wait for it to complete.
1040	 */
1041	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1042		u32 status;
1043		do {
1044			int err = get_card_status(card, &status, 5);
1045			if (err) {
1046				pr_err("%s: error %d requesting status\n",
1047				       req->rq_disk->disk_name, err);
1048				return MMC_BLK_CMD_ERR;
1049			}
1050			/*
1051			 * Some cards mishandle the status bits,
1052			 * so make sure to check both the busy
1053			 * indication and the card state.
1054			 */
1055		} while (!(status & R1_READY_FOR_DATA) ||
1056			 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
 
 
 
 
 
 
1057	}
1058
1059	if (brq->data.error) {
1060		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1061		       req->rq_disk->disk_name, brq->data.error,
1062		       (unsigned)blk_rq_pos(req),
1063		       (unsigned)blk_rq_sectors(req),
1064		       brq->cmd.resp[0], brq->stop.resp[0]);
1065
1066		if (rq_data_dir(req) == READ) {
1067			if (ecc_err)
1068				return MMC_BLK_ECC_ERR;
1069			return MMC_BLK_DATA_ERR;
1070		} else {
1071			return MMC_BLK_CMD_ERR;
1072		}
1073	}
1074
1075	if (!brq->data.bytes_xfered)
1076		return MMC_BLK_RETRY;
1077
 
 
 
 
 
 
 
1078	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1079		return MMC_BLK_PARTIAL;
1080
1081	return MMC_BLK_SUCCESS;
1082}
1083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1085			       struct mmc_card *card,
1086			       int disable_multi,
1087			       struct mmc_queue *mq)
1088{
1089	u32 readcmd, writecmd;
1090	struct mmc_blk_request *brq = &mqrq->brq;
1091	struct request *req = mqrq->req;
1092	struct mmc_blk_data *md = mq->data;
1093	bool do_data_tag;
1094
1095	/*
1096	 * Reliable writes are used to implement Forced Unit Access and
1097	 * REQ_META accesses, and are supported only on MMCs.
1098	 *
1099	 * XXX: this really needs a good explanation of why REQ_META
1100	 * is treated special.
1101	 */
1102	bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1103			  (req->cmd_flags & REQ_META)) &&
1104		(rq_data_dir(req) == WRITE) &&
1105		(md->flags & MMC_BLK_REL_WR);
1106
1107	memset(brq, 0, sizeof(struct mmc_blk_request));
1108	brq->mrq.cmd = &brq->cmd;
1109	brq->mrq.data = &brq->data;
1110
1111	brq->cmd.arg = blk_rq_pos(req);
1112	if (!mmc_card_blockaddr(card))
1113		brq->cmd.arg <<= 9;
1114	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1115	brq->data.blksz = 512;
1116	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1117	brq->stop.arg = 0;
1118	brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1119	brq->data.blocks = blk_rq_sectors(req);
1120
1121	/*
1122	 * The block layer doesn't support all sector count
1123	 * restrictions, so we need to be prepared for too big
1124	 * requests.
1125	 */
1126	if (brq->data.blocks > card->host->max_blk_count)
1127		brq->data.blocks = card->host->max_blk_count;
1128
1129	if (brq->data.blocks > 1) {
1130		/*
1131		 * After a read error, we redo the request one sector
1132		 * at a time in order to accurately determine which
1133		 * sectors can be read successfully.
1134		 */
1135		if (disable_multi)
1136			brq->data.blocks = 1;
1137
1138		/* Some controllers can't do multiblock reads due to hw bugs */
1139		if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1140		    rq_data_dir(req) == READ)
1141			brq->data.blocks = 1;
1142	}
1143
1144	if (brq->data.blocks > 1 || do_rel_wr) {
1145		/* SPI multiblock writes terminate using a special
1146		 * token, not a STOP_TRANSMISSION request.
1147		 */
1148		if (!mmc_host_is_spi(card->host) ||
1149		    rq_data_dir(req) == READ)
1150			brq->mrq.stop = &brq->stop;
1151		readcmd = MMC_READ_MULTIPLE_BLOCK;
1152		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1153	} else {
1154		brq->mrq.stop = NULL;
1155		readcmd = MMC_READ_SINGLE_BLOCK;
1156		writecmd = MMC_WRITE_BLOCK;
1157	}
1158	if (rq_data_dir(req) == READ) {
1159		brq->cmd.opcode = readcmd;
1160		brq->data.flags |= MMC_DATA_READ;
 
 
 
1161	} else {
1162		brq->cmd.opcode = writecmd;
1163		brq->data.flags |= MMC_DATA_WRITE;
 
 
 
1164	}
1165
1166	if (do_rel_wr)
1167		mmc_apply_rel_rw(brq, card, req);
1168
1169	/*
1170	 * Data tag is used only during writing meta data to speed
1171	 * up write and any subsequent read of this meta data
1172	 */
1173	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1174		(req->cmd_flags & REQ_META) &&
1175		(rq_data_dir(req) == WRITE) &&
1176		((brq->data.blocks * brq->data.blksz) >=
1177		 card->ext_csd.data_tag_unit_size);
1178
1179	/*
1180	 * Pre-defined multi-block transfers are preferable to
1181	 * open ended-ones (and necessary for reliable writes).
1182	 * However, it is not sufficient to just send CMD23,
1183	 * and avoid the final CMD12, as on an error condition
1184	 * CMD12 (stop) needs to be sent anyway. This, coupled
1185	 * with Auto-CMD23 enhancements provided by some
1186	 * hosts, means that the complexity of dealing
1187	 * with this is best left to the host. If CMD23 is
1188	 * supported by card and host, we'll fill sbc in and let
1189	 * the host deal with handling it correctly. This means
1190	 * that for hosts that don't expose MMC_CAP_CMD23, no
1191	 * change of behavior will be observed.
1192	 *
1193	 * N.B: Some MMC cards experience perf degradation.
1194	 * We'll avoid using CMD23-bounded multiblock writes for
1195	 * these, while retaining features like reliable writes.
1196	 */
1197	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1198	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1199	     do_data_tag)) {
1200		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1201		brq->sbc.arg = brq->data.blocks |
1202			(do_rel_wr ? (1 << 31) : 0) |
1203			(do_data_tag ? (1 << 29) : 0);
1204		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1205		brq->mrq.sbc = &brq->sbc;
1206	}
1207
1208	mmc_set_data_timeout(&brq->data, card);
1209
1210	brq->data.sg = mqrq->sg;
1211	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1212
1213	/*
1214	 * Adjust the sg list so it is the same size as the
1215	 * request.
1216	 */
1217	if (brq->data.blocks != blk_rq_sectors(req)) {
1218		int i, data_size = brq->data.blocks << 9;
1219		struct scatterlist *sg;
1220
1221		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1222			data_size -= sg->length;
1223			if (data_size <= 0) {
1224				sg->length += data_size;
1225				i++;
1226				break;
1227			}
1228		}
1229		brq->data.sg_len = i;
1230	}
1231
1232	mqrq->mmc_active.mrq = &brq->mrq;
1233	mqrq->mmc_active.err_check = mmc_blk_err_check;
1234
1235	mmc_queue_bounce_pre(mqrq);
1236}
1237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1239			   struct mmc_blk_request *brq, struct request *req,
1240			   int ret)
1241{
 
 
 
1242	/*
1243	 * If this is an SD card and we're writing, we can first
1244	 * mark the known good sectors as ok.
1245	 *
1246	 * If the card is not SD, we can still ok written sectors
1247	 * as reported by the controller (which might be less than
1248	 * the real number of written sectors, but never more).
1249	 */
1250	if (mmc_card_sd(card)) {
1251		u32 blocks;
1252
1253		blocks = mmc_sd_num_wr_blocks(card);
1254		if (blocks != (u32)-1) {
1255			spin_lock_irq(&md->lock);
1256			ret = __blk_end_request(req, 0, blocks << 9);
1257			spin_unlock_irq(&md->lock);
1258		}
1259	} else {
1260		spin_lock_irq(&md->lock);
1261		ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1262		spin_unlock_irq(&md->lock);
1263	}
1264	return ret;
1265}
1266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1268{
1269	struct mmc_blk_data *md = mq->data;
1270	struct mmc_card *card = md->queue.card;
1271	struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1272	int ret = 1, disable_multi = 0, retry = 0, type;
1273	enum mmc_blk_status status;
1274	struct mmc_queue_req *mq_rq;
1275	struct request *req = rqc;
1276	struct mmc_async_req *areq;
 
 
1277
1278	if (!rqc && !mq->mqrq_prev->req)
1279		return 0;
1280
 
 
 
1281	do {
1282		if (rqc) {
1283			/*
1284			 * When 4KB native sector is enabled, only 8 blocks
1285			 * multiple read or write is allowed
1286			 */
1287			if ((brq->data.blocks & 0x07) &&
1288			    (card->ext_csd.data_sector_size == 4096)) {
1289				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1290					req->rq_disk->disk_name);
 
1291				goto cmd_abort;
1292			}
1293			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
 
 
 
 
 
1294			areq = &mq->mqrq_cur->mmc_active;
1295		} else
1296			areq = NULL;
1297		areq = mmc_start_req(card->host, areq, (int *) &status);
1298		if (!areq)
 
 
1299			return 0;
 
1300
1301		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1302		brq = &mq_rq->brq;
1303		req = mq_rq->req;
1304		type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1305		mmc_queue_bounce_post(mq_rq);
1306
1307		switch (status) {
1308		case MMC_BLK_SUCCESS:
1309		case MMC_BLK_PARTIAL:
1310			/*
1311			 * A block was successfully transferred.
1312			 */
1313			mmc_blk_reset_success(md, type);
1314			spin_lock_irq(&md->lock);
1315			ret = __blk_end_request(req, 0,
 
 
 
 
1316						brq->data.bytes_xfered);
1317			spin_unlock_irq(&md->lock);
 
1318			/*
1319			 * If the blk_end_request function returns non-zero even
1320			 * though all data has been transferred and no errors
1321			 * were returned by the host controller, it's a bug.
1322			 */
1323			if (status == MMC_BLK_SUCCESS && ret) {
1324				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1325				       __func__, blk_rq_bytes(req),
1326				       brq->data.bytes_xfered);
1327				rqc = NULL;
1328				goto cmd_abort;
1329			}
1330			break;
1331		case MMC_BLK_CMD_ERR:
1332			ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1333			if (!mmc_blk_reset(md, card->host, type))
1334				break;
1335			goto cmd_abort;
1336		case MMC_BLK_RETRY:
1337			if (retry++ < 5)
1338				break;
1339			/* Fall through */
1340		case MMC_BLK_ABORT:
1341			if (!mmc_blk_reset(md, card->host, type))
1342				break;
1343			goto cmd_abort;
1344		case MMC_BLK_DATA_ERR: {
1345			int err;
1346
1347			err = mmc_blk_reset(md, card->host, type);
1348			if (!err)
1349				break;
1350			if (err == -ENODEV)
 
1351				goto cmd_abort;
1352			/* Fall through */
1353		}
1354		case MMC_BLK_ECC_ERR:
1355			if (brq->data.blocks > 1) {
1356				/* Redo read one sector at a time */
1357				pr_warning("%s: retrying using single block read\n",
1358					   req->rq_disk->disk_name);
1359				disable_multi = 1;
1360				break;
1361			}
1362			/*
1363			 * After an error, we redo I/O one sector at a
1364			 * time, so we only reach here after trying to
1365			 * read a single sector.
1366			 */
1367			spin_lock_irq(&md->lock);
1368			ret = __blk_end_request(req, -EIO,
1369						brq->data.blksz);
1370			spin_unlock_irq(&md->lock);
1371			if (!ret)
1372				goto start_new_req;
1373			break;
1374		case MMC_BLK_NOMEDIUM:
1375			goto cmd_abort;
 
 
 
 
1376		}
1377
1378		if (ret) {
1379			/*
1380			 * In case of a incomplete request
1381			 * prepare it again and resend.
1382			 */
1383			mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1384			mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
 
 
 
 
 
 
 
 
 
 
 
1385		}
1386	} while (ret);
1387
1388	return 1;
1389
1390 cmd_abort:
1391	spin_lock_irq(&md->lock);
1392	if (mmc_card_removed(card))
1393		req->cmd_flags |= REQ_QUIET;
1394	while (ret)
1395		ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1396	spin_unlock_irq(&md->lock);
 
 
 
1397
1398 start_new_req:
1399	if (rqc) {
1400		mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1401		mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
1402	}
1403
1404	return 0;
1405}
1406
1407static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1408{
1409	int ret;
1410	struct mmc_blk_data *md = mq->data;
1411	struct mmc_card *card = md->queue.card;
 
 
 
1412
1413	if (req && !mq->mqrq_prev->req)
1414		/* claim host only for the first request */
1415		mmc_claim_host(card->host);
1416
1417	ret = mmc_blk_part_switch(card, md);
1418	if (ret) {
1419		if (req) {
1420			spin_lock_irq(&md->lock);
1421			__blk_end_request_all(req, -EIO);
1422			spin_unlock_irq(&md->lock);
1423		}
1424		ret = 0;
1425		goto out;
1426	}
1427
1428	if (req && req->cmd_flags & REQ_DISCARD) {
 
1429		/* complete ongoing async transfer before issuing discard */
1430		if (card->host->areq)
1431			mmc_blk_issue_rw_rq(mq, NULL);
1432		if (req->cmd_flags & REQ_SECURE &&
1433			!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1434			ret = mmc_blk_issue_secdiscard_rq(mq, req);
1435		else
1436			ret = mmc_blk_issue_discard_rq(mq, req);
1437	} else if (req && req->cmd_flags & REQ_FLUSH) {
1438		/* complete ongoing async transfer before issuing flush */
1439		if (card->host->areq)
1440			mmc_blk_issue_rw_rq(mq, NULL);
1441		ret = mmc_blk_issue_flush(mq, req);
1442	} else {
 
 
 
 
 
1443		ret = mmc_blk_issue_rw_rq(mq, req);
1444	}
1445
1446out:
1447	if (!req)
1448		/* release host only when there are no more requests */
1449		mmc_release_host(card->host);
 
 
 
 
 
 
1450	return ret;
1451}
1452
1453static inline int mmc_blk_readonly(struct mmc_card *card)
1454{
1455	return mmc_card_readonly(card) ||
1456	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1457}
1458
1459static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1460					      struct device *parent,
1461					      sector_t size,
1462					      bool default_ro,
1463					      const char *subname,
1464					      int area_type)
1465{
1466	struct mmc_blk_data *md;
1467	int devidx, ret;
1468
1469	devidx = find_first_zero_bit(dev_use, max_devices);
1470	if (devidx >= max_devices)
1471		return ERR_PTR(-ENOSPC);
1472	__set_bit(devidx, dev_use);
1473
1474	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1475	if (!md) {
1476		ret = -ENOMEM;
1477		goto out;
1478	}
1479
1480	/*
1481	 * !subname implies we are creating main mmc_blk_data that will be
1482	 * associated with mmc_card with mmc_set_drvdata. Due to device
1483	 * partitions, devidx will not coincide with a per-physical card
1484	 * index anymore so we keep track of a name index.
1485	 */
1486	if (!subname) {
1487		md->name_idx = find_first_zero_bit(name_use, max_devices);
1488		__set_bit(md->name_idx, name_use);
1489	} else
1490		md->name_idx = ((struct mmc_blk_data *)
1491				dev_to_disk(parent)->private_data)->name_idx;
1492
1493	md->area_type = area_type;
1494
1495	/*
1496	 * Set the read-only status based on the supported commands
1497	 * and the write protect switch.
1498	 */
1499	md->read_only = mmc_blk_readonly(card);
1500
1501	md->disk = alloc_disk(perdev_minors);
1502	if (md->disk == NULL) {
1503		ret = -ENOMEM;
1504		goto err_kfree;
1505	}
1506
1507	spin_lock_init(&md->lock);
1508	INIT_LIST_HEAD(&md->part);
1509	md->usage = 1;
1510
1511	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1512	if (ret)
1513		goto err_putdisk;
1514
1515	md->queue.issue_fn = mmc_blk_issue_rq;
1516	md->queue.data = md;
1517
1518	md->disk->major	= MMC_BLOCK_MAJOR;
1519	md->disk->first_minor = devidx * perdev_minors;
1520	md->disk->fops = &mmc_bdops;
1521	md->disk->private_data = md;
1522	md->disk->queue = md->queue.queue;
1523	md->disk->driverfs_dev = parent;
1524	set_disk_ro(md->disk, md->read_only || default_ro);
 
 
1525
1526	/*
1527	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1528	 *
1529	 * - be set for removable media with permanent block devices
1530	 * - be unset for removable block devices with permanent media
1531	 *
1532	 * Since MMC block devices clearly fall under the second
1533	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1534	 * should use the block device creation/destruction hotplug
1535	 * messages to tell when the card is present.
1536	 */
1537
1538	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1539		 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1540
1541	if (mmc_card_mmc(card))
1542		blk_queue_logical_block_size(md->queue.queue,
1543					     card->ext_csd.data_sector_size);
1544	else
1545		blk_queue_logical_block_size(md->queue.queue, 512);
1546
1547	set_capacity(md->disk, size);
1548
1549	if (mmc_host_cmd23(card->host)) {
1550		if (mmc_card_mmc(card) ||
1551		    (mmc_card_sd(card) &&
1552		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1553			md->flags |= MMC_BLK_CMD23;
1554	}
1555
1556	if (mmc_card_mmc(card) &&
1557	    md->flags & MMC_BLK_CMD23 &&
1558	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1559	     card->ext_csd.rel_sectors)) {
1560		md->flags |= MMC_BLK_REL_WR;
1561		blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1562	}
1563
 
 
 
 
 
 
 
 
1564	return md;
1565
1566 err_putdisk:
1567	put_disk(md->disk);
1568 err_kfree:
1569	kfree(md);
1570 out:
1571	return ERR_PTR(ret);
1572}
1573
1574static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1575{
1576	sector_t size;
1577	struct mmc_blk_data *md;
1578
1579	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1580		/*
1581		 * The EXT_CSD sector count is in number or 512 byte
1582		 * sectors.
1583		 */
1584		size = card->ext_csd.sectors;
1585	} else {
1586		/*
1587		 * The CSD capacity field is in units of read_blkbits.
1588		 * set_capacity takes units of 512 bytes.
1589		 */
1590		size = card->csd.capacity << (card->csd.read_blkbits - 9);
1591	}
1592
1593	md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1594					MMC_BLK_DATA_AREA_MAIN);
1595	return md;
1596}
1597
1598static int mmc_blk_alloc_part(struct mmc_card *card,
1599			      struct mmc_blk_data *md,
1600			      unsigned int part_type,
1601			      sector_t size,
1602			      bool default_ro,
1603			      const char *subname,
1604			      int area_type)
1605{
1606	char cap_str[10];
1607	struct mmc_blk_data *part_md;
1608
1609	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1610				    subname, area_type);
1611	if (IS_ERR(part_md))
1612		return PTR_ERR(part_md);
1613	part_md->part_type = part_type;
1614	list_add(&part_md->part, &md->part);
1615
1616	string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1617			cap_str, sizeof(cap_str));
1618	pr_info("%s: %s %s partition %u %s\n",
1619	       part_md->disk->disk_name, mmc_card_id(card),
1620	       mmc_card_name(card), part_md->part_type, cap_str);
1621	return 0;
1622}
1623
1624/* MMC Physical partitions consist of two boot partitions and
1625 * up to four general purpose partitions.
1626 * For each partition enabled in EXT_CSD a block device will be allocatedi
1627 * to provide access to the partition.
1628 */
1629
1630static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1631{
1632	int idx, ret = 0;
1633
1634	if (!mmc_card_mmc(card))
1635		return 0;
1636
1637	for (idx = 0; idx < card->nr_parts; idx++) {
1638		if (card->part[idx].size) {
1639			ret = mmc_blk_alloc_part(card, md,
1640				card->part[idx].part_cfg,
1641				card->part[idx].size >> 9,
1642				card->part[idx].force_ro,
1643				card->part[idx].name,
1644				card->part[idx].area_type);
1645			if (ret)
1646				return ret;
1647		}
1648	}
1649
1650	return ret;
1651}
1652
1653static void mmc_blk_remove_req(struct mmc_blk_data *md)
1654{
1655	struct mmc_card *card;
1656
1657	if (md) {
 
 
 
 
 
1658		card = md->queue.card;
 
 
 
1659		if (md->disk->flags & GENHD_FL_UP) {
1660			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1661			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1662					card->ext_csd.boot_ro_lockable)
1663				device_remove_file(disk_to_dev(md->disk),
1664					&md->power_ro_lock);
1665
1666			/* Stop new requests from getting into the queue */
1667			del_gendisk(md->disk);
1668		}
1669
1670		/* Then flush out any already in there */
1671		mmc_cleanup_queue(&md->queue);
1672		mmc_blk_put(md);
1673	}
1674}
1675
1676static void mmc_blk_remove_parts(struct mmc_card *card,
1677				 struct mmc_blk_data *md)
1678{
1679	struct list_head *pos, *q;
1680	struct mmc_blk_data *part_md;
1681
1682	__clear_bit(md->name_idx, name_use);
1683	list_for_each_safe(pos, q, &md->part) {
1684		part_md = list_entry(pos, struct mmc_blk_data, part);
1685		list_del(pos);
1686		mmc_blk_remove_req(part_md);
1687	}
1688}
1689
1690static int mmc_add_disk(struct mmc_blk_data *md)
1691{
1692	int ret;
1693	struct mmc_card *card = md->queue.card;
1694
1695	add_disk(md->disk);
1696	md->force_ro.show = force_ro_show;
1697	md->force_ro.store = force_ro_store;
1698	sysfs_attr_init(&md->force_ro.attr);
1699	md->force_ro.attr.name = "force_ro";
1700	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1701	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1702	if (ret)
1703		goto force_ro_fail;
1704
1705	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1706	     card->ext_csd.boot_ro_lockable) {
1707		umode_t mode;
1708
1709		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1710			mode = S_IRUGO;
1711		else
1712			mode = S_IRUGO | S_IWUSR;
1713
1714		md->power_ro_lock.show = power_ro_lock_show;
1715		md->power_ro_lock.store = power_ro_lock_store;
1716		sysfs_attr_init(&md->power_ro_lock.attr);
1717		md->power_ro_lock.attr.mode = mode;
1718		md->power_ro_lock.attr.name =
1719					"ro_lock_until_next_power_on";
1720		ret = device_create_file(disk_to_dev(md->disk),
1721				&md->power_ro_lock);
1722		if (ret)
1723			goto power_ro_lock_fail;
1724	}
1725	return ret;
1726
1727power_ro_lock_fail:
1728	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1729force_ro_fail:
1730	del_gendisk(md->disk);
1731
1732	return ret;
1733}
1734
1735#define CID_MANFID_SANDISK	0x2
1736#define CID_MANFID_TOSHIBA	0x11
1737#define CID_MANFID_MICRON	0x13
1738#define CID_MANFID_SAMSUNG	0x15
1739
1740static const struct mmc_fixup blk_fixups[] =
1741{
1742	MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1743		  MMC_QUIRK_INAND_CMD38),
1744	MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1745		  MMC_QUIRK_INAND_CMD38),
1746	MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1747		  MMC_QUIRK_INAND_CMD38),
1748	MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1749		  MMC_QUIRK_INAND_CMD38),
1750	MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1751		  MMC_QUIRK_INAND_CMD38),
1752
1753	/*
1754	 * Some MMC cards experience performance degradation with CMD23
1755	 * instead of CMD12-bounded multiblock transfers. For now we'll
1756	 * black list what's bad...
1757	 * - Certain Toshiba cards.
1758	 *
1759	 * N.B. This doesn't affect SD cards.
1760	 */
1761	MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1762		  MMC_QUIRK_BLK_NO_CMD23),
1763	MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1764		  MMC_QUIRK_BLK_NO_CMD23),
1765	MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1766		  MMC_QUIRK_BLK_NO_CMD23),
1767
1768	/*
1769	 * Some Micron MMC cards needs longer data read timeout than
1770	 * indicated in CSD.
1771	 */
1772	MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1773		  MMC_QUIRK_LONG_READ_TIME),
1774
1775	/*
1776	 * On these Samsung MoviNAND parts, performing secure erase or
1777	 * secure trim can result in unrecoverable corruption due to a
1778	 * firmware bug.
1779	 */
1780	MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1781		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1782	MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1783		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1784	MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1785		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1786	MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1787		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1788	MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1789		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1790	MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1791		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1792	MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1793		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1794	MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1795		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1796
1797	END_FIXUP
1798};
1799
1800static int mmc_blk_probe(struct mmc_card *card)
1801{
1802	struct mmc_blk_data *md, *part_md;
1803	char cap_str[10];
1804
1805	/*
1806	 * Check that the card supports the command class(es) we need.
1807	 */
1808	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1809		return -ENODEV;
1810
1811	md = mmc_blk_alloc(card);
1812	if (IS_ERR(md))
1813		return PTR_ERR(md);
1814
1815	string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1816			cap_str, sizeof(cap_str));
1817	pr_info("%s: %s %s %s %s\n",
1818		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1819		cap_str, md->read_only ? "(ro)" : "");
1820
1821	if (mmc_blk_alloc_parts(card, md))
1822		goto out;
1823
1824	mmc_set_drvdata(card, md);
1825	mmc_fixup_device(card, blk_fixups);
1826
1827	if (mmc_add_disk(md))
1828		goto out;
1829
1830	list_for_each_entry(part_md, &md->part, part) {
1831		if (mmc_add_disk(part_md))
1832			goto out;
1833	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1834	return 0;
1835
1836 out:
1837	mmc_blk_remove_parts(card, md);
1838	mmc_blk_remove_req(md);
1839	return 0;
1840}
1841
1842static void mmc_blk_remove(struct mmc_card *card)
1843{
1844	struct mmc_blk_data *md = mmc_get_drvdata(card);
1845
1846	mmc_blk_remove_parts(card, md);
 
1847	mmc_claim_host(card->host);
1848	mmc_blk_part_switch(card, md);
1849	mmc_release_host(card->host);
 
 
 
1850	mmc_blk_remove_req(md);
1851	mmc_set_drvdata(card, NULL);
1852}
1853
1854#ifdef CONFIG_PM
1855static int mmc_blk_suspend(struct mmc_card *card)
1856{
1857	struct mmc_blk_data *part_md;
1858	struct mmc_blk_data *md = mmc_get_drvdata(card);
1859
1860	if (md) {
1861		mmc_queue_suspend(&md->queue);
1862		list_for_each_entry(part_md, &md->part, part) {
1863			mmc_queue_suspend(&part_md->queue);
1864		}
1865	}
1866	return 0;
1867}
1868
 
 
 
 
 
 
 
 
 
 
 
1869static int mmc_blk_resume(struct mmc_card *card)
1870{
1871	struct mmc_blk_data *part_md;
1872	struct mmc_blk_data *md = mmc_get_drvdata(card);
1873
1874	if (md) {
1875		/*
1876		 * Resume involves the card going into idle state,
1877		 * so current partition is always the main one.
1878		 */
1879		md->part_curr = md->part_type;
1880		mmc_queue_resume(&md->queue);
1881		list_for_each_entry(part_md, &md->part, part) {
1882			mmc_queue_resume(&part_md->queue);
1883		}
1884	}
1885	return 0;
1886}
1887#else
1888#define	mmc_blk_suspend	NULL
1889#define mmc_blk_resume	NULL
1890#endif
1891
1892static struct mmc_driver mmc_driver = {
1893	.drv		= {
1894		.name	= "mmcblk",
1895	},
1896	.probe		= mmc_blk_probe,
1897	.remove		= mmc_blk_remove,
1898	.suspend	= mmc_blk_suspend,
1899	.resume		= mmc_blk_resume,
 
1900};
1901
1902static int __init mmc_blk_init(void)
1903{
1904	int res;
1905
1906	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1907		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1908
1909	max_devices = 256 / perdev_minors;
1910
1911	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1912	if (res)
1913		goto out;
1914
1915	res = mmc_register_driver(&mmc_driver);
1916	if (res)
1917		goto out2;
1918
1919	return 0;
1920 out2:
1921	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1922 out:
1923	return res;
1924}
1925
1926static void __exit mmc_blk_exit(void)
1927{
1928	mmc_unregister_driver(&mmc_driver);
1929	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1930}
1931
1932module_init(mmc_blk_init);
1933module_exit(mmc_blk_exit);
1934
1935MODULE_LICENSE("GPL");
1936MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1937
v3.15
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/mutex.h>
  32#include <linux/scatterlist.h>
  33#include <linux/string_helpers.h>
  34#include <linux/delay.h>
  35#include <linux/capability.h>
  36#include <linux/compat.h>
  37#include <linux/pm_runtime.h>
  38
  39#include <linux/mmc/ioctl.h>
  40#include <linux/mmc/card.h>
  41#include <linux/mmc/host.h>
  42#include <linux/mmc/mmc.h>
  43#include <linux/mmc/sd.h>
  44
  45#include <asm/uaccess.h>
  46
  47#include "queue.h"
  48
  49MODULE_ALIAS("mmc:block");
  50#ifdef MODULE_PARAM_PREFIX
  51#undef MODULE_PARAM_PREFIX
  52#endif
  53#define MODULE_PARAM_PREFIX "mmcblk."
  54
  55#define INAND_CMD38_ARG_EXT_CSD  113
  56#define INAND_CMD38_ARG_ERASE    0x00
  57#define INAND_CMD38_ARG_TRIM     0x01
  58#define INAND_CMD38_ARG_SECERASE 0x80
  59#define INAND_CMD38_ARG_SECTRIM1 0x81
  60#define INAND_CMD38_ARG_SECTRIM2 0x88
  61#define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
  62#define MMC_SANITIZE_REQ_TIMEOUT 240000
  63#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  64
  65#define mmc_req_rel_wr(req)	(((req->cmd_flags & REQ_FUA) || \
  66				  (req->cmd_flags & REQ_META)) && \
  67				  (rq_data_dir(req) == WRITE))
  68#define PACKED_CMD_VER	0x01
  69#define PACKED_CMD_WR	0x02
  70
  71static DEFINE_MUTEX(block_mutex);
  72
  73/*
  74 * The defaults come from config options but can be overriden by module
  75 * or bootarg options.
  76 */
  77static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  78
  79/*
  80 * We've only got one major, so number of mmcblk devices is
  81 * limited to 256 / number of minors per device.
  82 */
  83static int max_devices;
  84
  85/* 256 minors, so at most 256 separate devices */
  86static DECLARE_BITMAP(dev_use, 256);
  87static DECLARE_BITMAP(name_use, 256);
  88
  89/*
  90 * There is one mmc_blk_data per slot.
  91 */
  92struct mmc_blk_data {
  93	spinlock_t	lock;
  94	struct gendisk	*disk;
  95	struct mmc_queue queue;
  96	struct list_head part;
  97
  98	unsigned int	flags;
  99#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 100#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 101#define MMC_BLK_PACKED_CMD	(1 << 2)	/* MMC packed command support */
 102
 103	unsigned int	usage;
 104	unsigned int	read_only;
 105	unsigned int	part_type;
 106	unsigned int	name_idx;
 107	unsigned int	reset_done;
 108#define MMC_BLK_READ		BIT(0)
 109#define MMC_BLK_WRITE		BIT(1)
 110#define MMC_BLK_DISCARD		BIT(2)
 111#define MMC_BLK_SECDISCARD	BIT(3)
 112
 113	/*
 114	 * Only set in main mmc_blk_data associated
 115	 * with mmc_card with mmc_set_drvdata, and keeps
 116	 * track of the current selected device partition.
 117	 */
 118	unsigned int	part_curr;
 119	struct device_attribute force_ro;
 120	struct device_attribute power_ro_lock;
 121	int	area_type;
 122};
 123
 124static DEFINE_MUTEX(open_lock);
 125
 126enum {
 127	MMC_PACKED_NR_IDX = -1,
 128	MMC_PACKED_NR_ZERO,
 129	MMC_PACKED_NR_SINGLE,
 
 
 
 
 
 130};
 131
 132module_param(perdev_minors, int, 0444);
 133MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 134
 135static inline int mmc_blk_part_switch(struct mmc_card *card,
 136				      struct mmc_blk_data *md);
 137static int get_card_status(struct mmc_card *card, u32 *status, int retries);
 138
 139static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
 140{
 141	struct mmc_packed *packed = mqrq->packed;
 142
 143	BUG_ON(!packed);
 144
 145	mqrq->cmd_type = MMC_PACKED_NONE;
 146	packed->nr_entries = MMC_PACKED_NR_ZERO;
 147	packed->idx_failure = MMC_PACKED_NR_IDX;
 148	packed->retries = 0;
 149	packed->blocks = 0;
 150}
 151
 152static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 153{
 154	struct mmc_blk_data *md;
 155
 156	mutex_lock(&open_lock);
 157	md = disk->private_data;
 158	if (md && md->usage == 0)
 159		md = NULL;
 160	if (md)
 161		md->usage++;
 162	mutex_unlock(&open_lock);
 163
 164	return md;
 165}
 166
 167static inline int mmc_get_devidx(struct gendisk *disk)
 168{
 169	int devmaj = MAJOR(disk_devt(disk));
 170	int devidx = MINOR(disk_devt(disk)) / perdev_minors;
 171
 172	if (!devmaj)
 173		devidx = disk->first_minor / perdev_minors;
 174	return devidx;
 175}
 176
 177static void mmc_blk_put(struct mmc_blk_data *md)
 178{
 179	mutex_lock(&open_lock);
 180	md->usage--;
 181	if (md->usage == 0) {
 182		int devidx = mmc_get_devidx(md->disk);
 183		blk_cleanup_queue(md->queue.queue);
 184
 185		__clear_bit(devidx, dev_use);
 186
 187		put_disk(md->disk);
 188		kfree(md);
 189	}
 190	mutex_unlock(&open_lock);
 191}
 192
 193static ssize_t power_ro_lock_show(struct device *dev,
 194		struct device_attribute *attr, char *buf)
 195{
 196	int ret;
 197	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 198	struct mmc_card *card = md->queue.card;
 199	int locked = 0;
 200
 201	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 202		locked = 2;
 203	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 204		locked = 1;
 205
 206	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 207
 208	return ret;
 209}
 210
 211static ssize_t power_ro_lock_store(struct device *dev,
 212		struct device_attribute *attr, const char *buf, size_t count)
 213{
 214	int ret;
 215	struct mmc_blk_data *md, *part_md;
 216	struct mmc_card *card;
 217	unsigned long set;
 218
 219	if (kstrtoul(buf, 0, &set))
 220		return -EINVAL;
 221
 222	if (set != 1)
 223		return count;
 224
 225	md = mmc_blk_get(dev_to_disk(dev));
 226	card = md->queue.card;
 227
 228	mmc_get_card(card);
 229
 230	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
 231				card->ext_csd.boot_ro_lock |
 232				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
 233				card->ext_csd.part_time);
 234	if (ret)
 235		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
 236	else
 237		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
 238
 239	mmc_put_card(card);
 240
 241	if (!ret) {
 242		pr_info("%s: Locking boot partition ro until next power on\n",
 243			md->disk->disk_name);
 244		set_disk_ro(md->disk, 1);
 245
 246		list_for_each_entry(part_md, &md->part, part)
 247			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 248				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 249				set_disk_ro(part_md->disk, 1);
 250			}
 251	}
 252
 253	mmc_blk_put(md);
 254	return count;
 255}
 256
 257static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 258			     char *buf)
 259{
 260	int ret;
 261	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 262
 263	ret = snprintf(buf, PAGE_SIZE, "%d",
 264		       get_disk_ro(dev_to_disk(dev)) ^
 265		       md->read_only);
 266	mmc_blk_put(md);
 267	return ret;
 268}
 269
 270static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 271			      const char *buf, size_t count)
 272{
 273	int ret;
 274	char *end;
 275	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 276	unsigned long set = simple_strtoul(buf, &end, 0);
 277	if (end == buf) {
 278		ret = -EINVAL;
 279		goto out;
 280	}
 281
 282	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 283	ret = count;
 284out:
 285	mmc_blk_put(md);
 286	return ret;
 287}
 288
 289static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 290{
 291	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 292	int ret = -ENXIO;
 293
 294	mutex_lock(&block_mutex);
 295	if (md) {
 296		if (md->usage == 2)
 297			check_disk_change(bdev);
 298		ret = 0;
 299
 300		if ((mode & FMODE_WRITE) && md->read_only) {
 301			mmc_blk_put(md);
 302			ret = -EROFS;
 303		}
 304	}
 305	mutex_unlock(&block_mutex);
 306
 307	return ret;
 308}
 309
 310static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 311{
 312	struct mmc_blk_data *md = disk->private_data;
 313
 314	mutex_lock(&block_mutex);
 315	mmc_blk_put(md);
 316	mutex_unlock(&block_mutex);
 
 317}
 318
 319static int
 320mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 321{
 322	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 323	geo->heads = 4;
 324	geo->sectors = 16;
 325	return 0;
 326}
 327
 328struct mmc_blk_ioc_data {
 329	struct mmc_ioc_cmd ic;
 330	unsigned char *buf;
 331	u64 buf_bytes;
 332};
 333
 334static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 335	struct mmc_ioc_cmd __user *user)
 336{
 337	struct mmc_blk_ioc_data *idata;
 338	int err;
 339
 340	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 341	if (!idata) {
 342		err = -ENOMEM;
 343		goto out;
 344	}
 345
 346	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 347		err = -EFAULT;
 348		goto idata_err;
 349	}
 350
 351	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 352	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 353		err = -EOVERFLOW;
 354		goto idata_err;
 355	}
 356
 357	if (!idata->buf_bytes)
 358		return idata;
 359
 360	idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
 361	if (!idata->buf) {
 362		err = -ENOMEM;
 363		goto idata_err;
 364	}
 365
 366	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
 367					idata->ic.data_ptr, idata->buf_bytes)) {
 368		err = -EFAULT;
 369		goto copy_err;
 370	}
 371
 372	return idata;
 373
 374copy_err:
 375	kfree(idata->buf);
 376idata_err:
 377	kfree(idata);
 378out:
 379	return ERR_PTR(err);
 380}
 381
 382static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
 383				       u32 retries_max)
 384{
 385	int err;
 386	u32 retry_count = 0;
 387
 388	if (!status || !retries_max)
 389		return -EINVAL;
 390
 391	do {
 392		err = get_card_status(card, status, 5);
 393		if (err)
 394			break;
 395
 396		if (!R1_STATUS(*status) &&
 397				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
 398			break; /* RPMB programming operation complete */
 399
 400		/*
 401		 * Rechedule to give the MMC device a chance to continue
 402		 * processing the previous command without being polled too
 403		 * frequently.
 404		 */
 405		usleep_range(1000, 5000);
 406	} while (++retry_count < retries_max);
 407
 408	if (retry_count == retries_max)
 409		err = -EPERM;
 410
 411	return err;
 412}
 413
 414static int ioctl_do_sanitize(struct mmc_card *card)
 415{
 416	int err;
 417
 418	if (!mmc_can_sanitize(card)) {
 419			pr_warn("%s: %s - SANITIZE is not supported\n",
 420				mmc_hostname(card->host), __func__);
 421			err = -EOPNOTSUPP;
 422			goto out;
 423	}
 424
 425	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
 426		mmc_hostname(card->host), __func__);
 427
 428	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 429					EXT_CSD_SANITIZE_START, 1,
 430					MMC_SANITIZE_REQ_TIMEOUT);
 431
 432	if (err)
 433		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
 434		       mmc_hostname(card->host), __func__, err);
 435
 436	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
 437					     __func__);
 438out:
 439	return err;
 440}
 441
 442static int mmc_blk_ioctl_cmd(struct block_device *bdev,
 443	struct mmc_ioc_cmd __user *ic_ptr)
 444{
 445	struct mmc_blk_ioc_data *idata;
 446	struct mmc_blk_data *md;
 447	struct mmc_card *card;
 448	struct mmc_command cmd = {0};
 449	struct mmc_data data = {0};
 450	struct mmc_request mrq = {NULL};
 451	struct scatterlist sg;
 452	int err;
 453	int is_rpmb = false;
 454	u32 status = 0;
 455
 456	/*
 457	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 458	 * whole block device, not on a partition.  This prevents overspray
 459	 * between sibling partitions.
 460	 */
 461	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 462		return -EPERM;
 463
 464	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 465	if (IS_ERR(idata))
 466		return PTR_ERR(idata);
 467
 468	md = mmc_blk_get(bdev->bd_disk);
 469	if (!md) {
 470		err = -EINVAL;
 471		goto cmd_err;
 472	}
 473
 474	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
 475		is_rpmb = true;
 476
 477	card = md->queue.card;
 478	if (IS_ERR(card)) {
 479		err = PTR_ERR(card);
 480		goto cmd_done;
 481	}
 482
 483	cmd.opcode = idata->ic.opcode;
 484	cmd.arg = idata->ic.arg;
 485	cmd.flags = idata->ic.flags;
 486
 487	if (idata->buf_bytes) {
 488		data.sg = &sg;
 489		data.sg_len = 1;
 490		data.blksz = idata->ic.blksz;
 491		data.blocks = idata->ic.blocks;
 492
 493		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 494
 495		if (idata->ic.write_flag)
 496			data.flags = MMC_DATA_WRITE;
 497		else
 498			data.flags = MMC_DATA_READ;
 499
 500		/* data.flags must already be set before doing this. */
 501		mmc_set_data_timeout(&data, card);
 502
 503		/* Allow overriding the timeout_ns for empirical tuning. */
 504		if (idata->ic.data_timeout_ns)
 505			data.timeout_ns = idata->ic.data_timeout_ns;
 506
 507		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 508			/*
 509			 * Pretend this is a data transfer and rely on the
 510			 * host driver to compute timeout.  When all host
 511			 * drivers support cmd.cmd_timeout for R1B, this
 512			 * can be changed to:
 513			 *
 514			 *     mrq.data = NULL;
 515			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 516			 */
 517			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 518		}
 519
 520		mrq.data = &data;
 521	}
 522
 523	mrq.cmd = &cmd;
 524
 525	mmc_get_card(card);
 526
 527	err = mmc_blk_part_switch(card, md);
 528	if (err)
 529		goto cmd_rel_host;
 530
 531	if (idata->ic.is_acmd) {
 532		err = mmc_app_cmd(card->host, card);
 533		if (err)
 534			goto cmd_rel_host;
 535	}
 536
 537	if (is_rpmb) {
 538		err = mmc_set_blockcount(card, data.blocks,
 539			idata->ic.write_flag & (1 << 31));
 540		if (err)
 541			goto cmd_rel_host;
 542	}
 543
 544	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 545	    (cmd.opcode == MMC_SWITCH)) {
 546		err = ioctl_do_sanitize(card);
 547
 548		if (err)
 549			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
 550			       __func__, err);
 551
 552		goto cmd_rel_host;
 553	}
 554
 555	mmc_wait_for_req(card->host, &mrq);
 556
 557	if (cmd.error) {
 558		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 559						__func__, cmd.error);
 560		err = cmd.error;
 561		goto cmd_rel_host;
 562	}
 563	if (data.error) {
 564		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 565						__func__, data.error);
 566		err = data.error;
 567		goto cmd_rel_host;
 568	}
 569
 570	/*
 571	 * According to the SD specs, some commands require a delay after
 572	 * issuing the command.
 573	 */
 574	if (idata->ic.postsleep_min_us)
 575		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 576
 577	if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
 578		err = -EFAULT;
 579		goto cmd_rel_host;
 580	}
 581
 582	if (!idata->ic.write_flag) {
 583		if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
 584						idata->buf, idata->buf_bytes)) {
 585			err = -EFAULT;
 586			goto cmd_rel_host;
 587		}
 588	}
 589
 590	if (is_rpmb) {
 591		/*
 592		 * Ensure RPMB command has completed by polling CMD13
 593		 * "Send Status".
 594		 */
 595		err = ioctl_rpmb_card_status_poll(card, &status, 5);
 596		if (err)
 597			dev_err(mmc_dev(card->host),
 598					"%s: Card Status=0x%08X, error %d\n",
 599					__func__, status, err);
 600	}
 601
 602cmd_rel_host:
 603	mmc_put_card(card);
 604
 605cmd_done:
 606	mmc_blk_put(md);
 607cmd_err:
 608	kfree(idata->buf);
 609	kfree(idata);
 610	return err;
 611}
 612
 613static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 614	unsigned int cmd, unsigned long arg)
 615{
 616	int ret = -EINVAL;
 617	if (cmd == MMC_IOC_CMD)
 618		ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
 619	return ret;
 620}
 621
 622#ifdef CONFIG_COMPAT
 623static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 624	unsigned int cmd, unsigned long arg)
 625{
 626	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 627}
 628#endif
 629
 630static const struct block_device_operations mmc_bdops = {
 631	.open			= mmc_blk_open,
 632	.release		= mmc_blk_release,
 633	.getgeo			= mmc_blk_getgeo,
 634	.owner			= THIS_MODULE,
 635	.ioctl			= mmc_blk_ioctl,
 636#ifdef CONFIG_COMPAT
 637	.compat_ioctl		= mmc_blk_compat_ioctl,
 638#endif
 639};
 640
 641static inline int mmc_blk_part_switch(struct mmc_card *card,
 642				      struct mmc_blk_data *md)
 643{
 644	int ret;
 645	struct mmc_blk_data *main_md = mmc_get_drvdata(card);
 646
 647	if (main_md->part_curr == md->part_type)
 648		return 0;
 649
 650	if (mmc_card_mmc(card)) {
 651		u8 part_config = card->ext_csd.part_config;
 652
 653		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 654		part_config |= md->part_type;
 655
 656		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 657				 EXT_CSD_PART_CONFIG, part_config,
 658				 card->ext_csd.part_time);
 659		if (ret)
 660			return ret;
 661
 662		card->ext_csd.part_config = part_config;
 663	}
 664
 665	main_md->part_curr = md->part_type;
 666	return 0;
 667}
 668
 669static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
 670{
 671	int err;
 672	u32 result;
 673	__be32 *blocks;
 674
 675	struct mmc_request mrq = {NULL};
 676	struct mmc_command cmd = {0};
 677	struct mmc_data data = {0};
 678
 679	struct scatterlist sg;
 680
 681	cmd.opcode = MMC_APP_CMD;
 682	cmd.arg = card->rca << 16;
 683	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 684
 685	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 686	if (err)
 687		return (u32)-1;
 688	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 689		return (u32)-1;
 690
 691	memset(&cmd, 0, sizeof(struct mmc_command));
 692
 693	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 694	cmd.arg = 0;
 695	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 696
 697	data.blksz = 4;
 698	data.blocks = 1;
 699	data.flags = MMC_DATA_READ;
 700	data.sg = &sg;
 701	data.sg_len = 1;
 702	mmc_set_data_timeout(&data, card);
 703
 704	mrq.cmd = &cmd;
 705	mrq.data = &data;
 706
 707	blocks = kmalloc(4, GFP_KERNEL);
 708	if (!blocks)
 709		return (u32)-1;
 710
 711	sg_init_one(&sg, blocks, 4);
 712
 713	mmc_wait_for_req(card->host, &mrq);
 714
 715	result = ntohl(*blocks);
 716	kfree(blocks);
 717
 718	if (cmd.error || data.error)
 719		result = (u32)-1;
 720
 721	return result;
 722}
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 724static int get_card_status(struct mmc_card *card, u32 *status, int retries)
 725{
 726	struct mmc_command cmd = {0};
 727	int err;
 728
 729	cmd.opcode = MMC_SEND_STATUS;
 730	if (!mmc_host_is_spi(card->host))
 731		cmd.arg = card->rca << 16;
 732	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
 733	err = mmc_wait_for_cmd(card->host, &cmd, retries);
 734	if (err == 0)
 735		*status = cmd.resp[0];
 736	return err;
 737}
 738
 739static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 740		bool hw_busy_detect, struct request *req, int *gen_err)
 741{
 742	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 743	int err = 0;
 744	u32 status;
 745
 746	do {
 747		err = get_card_status(card, &status, 5);
 748		if (err) {
 749			pr_err("%s: error %d requesting status\n",
 750			       req->rq_disk->disk_name, err);
 751			return err;
 752		}
 753
 754		if (status & R1_ERROR) {
 755			pr_err("%s: %s: error sending status cmd, status %#x\n",
 756				req->rq_disk->disk_name, __func__, status);
 757			*gen_err = 1;
 758		}
 759
 760		/* We may rely on the host hw to handle busy detection.*/
 761		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
 762			hw_busy_detect)
 763			break;
 764
 765		/*
 766		 * Timeout if the device never becomes ready for data and never
 767		 * leaves the program state.
 768		 */
 769		if (time_after(jiffies, timeout)) {
 770			pr_err("%s: Card stuck in programming state! %s %s\n",
 771				mmc_hostname(card->host),
 772				req->rq_disk->disk_name, __func__);
 773			return -ETIMEDOUT;
 774		}
 775
 776		/*
 777		 * Some cards mishandle the status bits,
 778		 * so make sure to check both the busy
 779		 * indication and the card state.
 780		 */
 781	} while (!(status & R1_READY_FOR_DATA) ||
 782		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
 783
 784	return err;
 785}
 786
 787static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
 788		struct request *req, int *gen_err, u32 *stop_status)
 789{
 790	struct mmc_host *host = card->host;
 791	struct mmc_command cmd = {0};
 792	int err;
 793	bool use_r1b_resp = rq_data_dir(req) == WRITE;
 794
 795	/*
 796	 * Normally we use R1B responses for WRITE, but in cases where the host
 797	 * has specified a max_busy_timeout we need to validate it. A failure
 798	 * means we need to prevent the host from doing hw busy detection, which
 799	 * is done by converting to a R1 response instead.
 800	 */
 801	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
 802		use_r1b_resp = false;
 803
 804	cmd.opcode = MMC_STOP_TRANSMISSION;
 805	if (use_r1b_resp) {
 806		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
 807		cmd.busy_timeout = timeout_ms;
 808	} else {
 809		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 810	}
 811
 812	err = mmc_wait_for_cmd(host, &cmd, 5);
 813	if (err)
 814		return err;
 815
 816	*stop_status = cmd.resp[0];
 817
 818	/* No need to check card status in case of READ. */
 819	if (rq_data_dir(req) == READ)
 820		return 0;
 821
 822	if (!mmc_host_is_spi(host) &&
 823		(*stop_status & R1_ERROR)) {
 824		pr_err("%s: %s: general error sending stop command, resp %#x\n",
 825			req->rq_disk->disk_name, __func__, *stop_status);
 826		*gen_err = 1;
 827	}
 828
 829	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
 830}
 831
 832#define ERR_NOMEDIUM	3
 833#define ERR_RETRY	2
 834#define ERR_ABORT	1
 835#define ERR_CONTINUE	0
 836
 837static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
 838	bool status_valid, u32 status)
 839{
 840	switch (error) {
 841	case -EILSEQ:
 842		/* response crc error, retry the r/w cmd */
 843		pr_err("%s: %s sending %s command, card status %#x\n",
 844			req->rq_disk->disk_name, "response CRC error",
 845			name, status);
 846		return ERR_RETRY;
 847
 848	case -ETIMEDOUT:
 849		pr_err("%s: %s sending %s command, card status %#x\n",
 850			req->rq_disk->disk_name, "timed out", name, status);
 851
 852		/* If the status cmd initially failed, retry the r/w cmd */
 853		if (!status_valid)
 854			return ERR_RETRY;
 855
 856		/*
 857		 * If it was a r/w cmd crc error, or illegal command
 858		 * (eg, issued in wrong state) then retry - we should
 859		 * have corrected the state problem above.
 860		 */
 861		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
 862			return ERR_RETRY;
 863
 864		/* Otherwise abort the command */
 865		return ERR_ABORT;
 866
 867	default:
 868		/* We don't understand the error code the driver gave us */
 869		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
 870		       req->rq_disk->disk_name, error, status);
 871		return ERR_ABORT;
 872	}
 873}
 874
 875/*
 876 * Initial r/w and stop cmd error recovery.
 877 * We don't know whether the card received the r/w cmd or not, so try to
 878 * restore things back to a sane state.  Essentially, we do this as follows:
 879 * - Obtain card status.  If the first attempt to obtain card status fails,
 880 *   the status word will reflect the failed status cmd, not the failed
 881 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
 882 *   longer communicate with the card.
 883 * - Check the card state.  If the card received the cmd but there was a
 884 *   transient problem with the response, it might still be in a data transfer
 885 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
 886 * - If the r/w cmd failed due to a response CRC error, it was probably
 887 *   transient, so retry the cmd.
 888 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
 889 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
 890 *   illegal cmd, retry.
 891 * Otherwise we don't understand what happened, so abort.
 892 */
 893static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
 894	struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
 895{
 896	bool prev_cmd_status_valid = true;
 897	u32 status, stop_status = 0;
 898	int err, retry;
 899
 900	if (mmc_card_removed(card))
 901		return ERR_NOMEDIUM;
 902
 903	/*
 904	 * Try to get card status which indicates both the card state
 905	 * and why there was no response.  If the first attempt fails,
 906	 * we can't be sure the returned status is for the r/w command.
 907	 */
 908	for (retry = 2; retry >= 0; retry--) {
 909		err = get_card_status(card, &status, 0);
 910		if (!err)
 911			break;
 912
 913		prev_cmd_status_valid = false;
 914		pr_err("%s: error %d sending status command, %sing\n",
 915		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
 916	}
 917
 918	/* We couldn't get a response from the card.  Give up. */
 919	if (err) {
 920		/* Check if the card is removed */
 921		if (mmc_detect_card_removed(card->host))
 922			return ERR_NOMEDIUM;
 923		return ERR_ABORT;
 924	}
 925
 926	/* Flag ECC errors */
 927	if ((status & R1_CARD_ECC_FAILED) ||
 928	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
 929	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
 930		*ecc_err = 1;
 931
 932	/* Flag General errors */
 933	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
 934		if ((status & R1_ERROR) ||
 935			(brq->stop.resp[0] & R1_ERROR)) {
 936			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
 937			       req->rq_disk->disk_name, __func__,
 938			       brq->stop.resp[0], status);
 939			*gen_err = 1;
 940		}
 941
 942	/*
 943	 * Check the current card state.  If it is in some data transfer
 944	 * mode, tell it to stop (and hopefully transition back to TRAN.)
 945	 */
 946	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
 947	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
 948		err = send_stop(card,
 949			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
 950			req, gen_err, &stop_status);
 951		if (err) {
 952			pr_err("%s: error %d sending stop command\n",
 953			       req->rq_disk->disk_name, err);
 954			/*
 955			 * If the stop cmd also timed out, the card is probably
 956			 * not present, so abort. Other errors are bad news too.
 957			 */
 
 
 958			return ERR_ABORT;
 959		}
 960
 961		if (stop_status & R1_CARD_ECC_FAILED)
 962			*ecc_err = 1;
 963	}
 964
 965	/* Check for set block count errors */
 966	if (brq->sbc.error)
 967		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
 968				prev_cmd_status_valid, status);
 969
 970	/* Check for r/w command errors */
 971	if (brq->cmd.error)
 972		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
 973				prev_cmd_status_valid, status);
 974
 975	/* Data errors */
 976	if (!brq->stop.error)
 977		return ERR_CONTINUE;
 978
 979	/* Now for stop errors.  These aren't fatal to the transfer. */
 980	pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
 981	       req->rq_disk->disk_name, brq->stop.error,
 982	       brq->cmd.resp[0], status);
 983
 984	/*
 985	 * Subsitute in our own stop status as this will give the error
 986	 * state which happened during the execution of the r/w command.
 987	 */
 988	if (stop_status) {
 989		brq->stop.resp[0] = stop_status;
 990		brq->stop.error = 0;
 991	}
 992	return ERR_CONTINUE;
 993}
 994
 995static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 996			 int type)
 997{
 998	int err;
 999
1000	if (md->reset_done & type)
1001		return -EEXIST;
1002
1003	md->reset_done |= type;
1004	err = mmc_hw_reset(host);
1005	/* Ensure we switch back to the correct partition */
1006	if (err != -EOPNOTSUPP) {
1007		struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
1008		int part_err;
1009
1010		main_md->part_curr = main_md->part_type;
1011		part_err = mmc_blk_part_switch(host->card, md);
1012		if (part_err) {
1013			/*
1014			 * We have failed to get back into the correct
1015			 * partition, so we need to abort the whole request.
1016			 */
1017			return -ENODEV;
1018		}
1019	}
1020	return err;
1021}
1022
1023static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1024{
1025	md->reset_done &= ~type;
1026}
1027
1028static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1029{
1030	struct mmc_blk_data *md = mq->data;
1031	struct mmc_card *card = md->queue.card;
1032	unsigned int from, nr, arg;
1033	int err = 0, type = MMC_BLK_DISCARD;
1034
1035	if (!mmc_can_erase(card)) {
1036		err = -EOPNOTSUPP;
1037		goto out;
1038	}
1039
1040	from = blk_rq_pos(req);
1041	nr = blk_rq_sectors(req);
1042
1043	if (mmc_can_discard(card))
1044		arg = MMC_DISCARD_ARG;
1045	else if (mmc_can_trim(card))
1046		arg = MMC_TRIM_ARG;
1047	else
1048		arg = MMC_ERASE_ARG;
1049retry:
1050	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1051		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1052				 INAND_CMD38_ARG_EXT_CSD,
1053				 arg == MMC_TRIM_ARG ?
1054				 INAND_CMD38_ARG_TRIM :
1055				 INAND_CMD38_ARG_ERASE,
1056				 0);
1057		if (err)
1058			goto out;
1059	}
1060	err = mmc_erase(card, from, nr, arg);
1061out:
1062	if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1063		goto retry;
1064	if (!err)
1065		mmc_blk_reset_success(md, type);
1066	blk_end_request(req, err, blk_rq_bytes(req));
 
 
1067
1068	return err ? 0 : 1;
1069}
1070
1071static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1072				       struct request *req)
1073{
1074	struct mmc_blk_data *md = mq->data;
1075	struct mmc_card *card = md->queue.card;
1076	unsigned int from, nr, arg;
1077	int err = 0, type = MMC_BLK_SECDISCARD;
1078
1079	if (!(mmc_can_secure_erase_trim(card))) {
1080		err = -EOPNOTSUPP;
1081		goto out;
1082	}
1083
1084	from = blk_rq_pos(req);
1085	nr = blk_rq_sectors(req);
1086
1087	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088		arg = MMC_SECURE_TRIM1_ARG;
1089	else
1090		arg = MMC_SECURE_ERASE_ARG;
 
 
 
 
1091
 
 
 
 
 
 
 
 
1092retry:
1093	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095				 INAND_CMD38_ARG_EXT_CSD,
1096				 arg == MMC_SECURE_TRIM1_ARG ?
1097				 INAND_CMD38_ARG_SECTRIM1 :
1098				 INAND_CMD38_ARG_SECERASE,
1099				 0);
1100		if (err)
1101			goto out_retry;
1102	}
1103
1104	err = mmc_erase(card, from, nr, arg);
1105	if (err == -EIO)
1106		goto out_retry;
1107	if (err)
1108		goto out;
1109
1110	if (arg == MMC_SECURE_TRIM1_ARG) {
1111		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1112			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1113					 INAND_CMD38_ARG_EXT_CSD,
1114					 INAND_CMD38_ARG_SECTRIM2,
1115					 0);
1116			if (err)
1117				goto out_retry;
1118		}
1119
1120		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1121		if (err == -EIO)
1122			goto out_retry;
1123		if (err)
1124			goto out;
1125	}
1126
 
 
 
1127out_retry:
1128	if (err && !mmc_blk_reset(md, card->host, type))
1129		goto retry;
1130	if (!err)
1131		mmc_blk_reset_success(md, type);
1132out:
1133	blk_end_request(req, err, blk_rq_bytes(req));
 
 
1134
1135	return err ? 0 : 1;
1136}
1137
1138static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1139{
1140	struct mmc_blk_data *md = mq->data;
1141	struct mmc_card *card = md->queue.card;
1142	int ret = 0;
1143
1144	ret = mmc_flush_cache(card);
1145	if (ret)
1146		ret = -EIO;
1147
1148	blk_end_request_all(req, ret);
 
 
1149
1150	return ret ? 0 : 1;
1151}
1152
1153/*
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1159 */
1160static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161				    struct mmc_card *card,
1162				    struct request *req)
1163{
1164	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165		/* Legacy mode imposes restrictions on transfers. */
1166		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1167			brq->data.blocks = 1;
1168
1169		if (brq->data.blocks > card->ext_csd.rel_sectors)
1170			brq->data.blocks = card->ext_csd.rel_sectors;
1171		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172			brq->data.blocks = 1;
1173	}
1174}
1175
1176#define CMD_ERRORS							\
1177	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1178	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1179	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1180	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1181	 R1_CC_ERROR |		/* Card controller error */		\
1182	 R1_ERROR)		/* General/unknown error */
1183
1184static int mmc_blk_err_check(struct mmc_card *card,
1185			     struct mmc_async_req *areq)
1186{
1187	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1188						    mmc_active);
1189	struct mmc_blk_request *brq = &mq_mrq->brq;
1190	struct request *req = mq_mrq->req;
1191	int ecc_err = 0, gen_err = 0;
1192
1193	/*
1194	 * sbc.error indicates a problem with the set block count
1195	 * command.  No data will have been transferred.
1196	 *
1197	 * cmd.error indicates a problem with the r/w command.  No
1198	 * data will have been transferred.
1199	 *
1200	 * stop.error indicates a problem with the stop command.  Data
1201	 * may have been transferred, or may still be transferring.
1202	 */
1203	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1204	    brq->data.error) {
1205		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1206		case ERR_RETRY:
1207			return MMC_BLK_RETRY;
1208		case ERR_ABORT:
1209			return MMC_BLK_ABORT;
1210		case ERR_NOMEDIUM:
1211			return MMC_BLK_NOMEDIUM;
1212		case ERR_CONTINUE:
1213			break;
1214		}
1215	}
1216
1217	/*
1218	 * Check for errors relating to the execution of the
1219	 * initial command - such as address errors.  No data
1220	 * has been transferred.
1221	 */
1222	if (brq->cmd.resp[0] & CMD_ERRORS) {
1223		pr_err("%s: r/w command failed, status = %#x\n",
1224		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1225		return MMC_BLK_ABORT;
1226	}
1227
1228	/*
1229	 * Everything else is either success, or a data error of some
1230	 * kind.  If it was a write, we may have transitioned to
1231	 * program mode, which we have to wait for it to complete.
1232	 */
1233	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1234		int err;
1235
1236		/* Check stop command response */
1237		if (brq->stop.resp[0] & R1_ERROR) {
1238			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1239			       req->rq_disk->disk_name, __func__,
1240			       brq->stop.resp[0]);
1241			gen_err = 1;
1242		}
1243
1244		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1245					&gen_err);
1246		if (err)
1247			return MMC_BLK_CMD_ERR;
1248	}
1249
1250	/* if general error occurs, retry the write operation. */
1251	if (gen_err) {
1252		pr_warn("%s: retrying write for general error\n",
1253				req->rq_disk->disk_name);
1254		return MMC_BLK_RETRY;
1255	}
1256
1257	if (brq->data.error) {
1258		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1259		       req->rq_disk->disk_name, brq->data.error,
1260		       (unsigned)blk_rq_pos(req),
1261		       (unsigned)blk_rq_sectors(req),
1262		       brq->cmd.resp[0], brq->stop.resp[0]);
1263
1264		if (rq_data_dir(req) == READ) {
1265			if (ecc_err)
1266				return MMC_BLK_ECC_ERR;
1267			return MMC_BLK_DATA_ERR;
1268		} else {
1269			return MMC_BLK_CMD_ERR;
1270		}
1271	}
1272
1273	if (!brq->data.bytes_xfered)
1274		return MMC_BLK_RETRY;
1275
1276	if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1277		if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1278			return MMC_BLK_PARTIAL;
1279		else
1280			return MMC_BLK_SUCCESS;
1281	}
1282
1283	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1284		return MMC_BLK_PARTIAL;
1285
1286	return MMC_BLK_SUCCESS;
1287}
1288
1289static int mmc_blk_packed_err_check(struct mmc_card *card,
1290				    struct mmc_async_req *areq)
1291{
1292	struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1293			mmc_active);
1294	struct request *req = mq_rq->req;
1295	struct mmc_packed *packed = mq_rq->packed;
1296	int err, check, status;
1297	u8 *ext_csd;
1298
1299	BUG_ON(!packed);
1300
1301	packed->retries--;
1302	check = mmc_blk_err_check(card, areq);
1303	err = get_card_status(card, &status, 0);
1304	if (err) {
1305		pr_err("%s: error %d sending status command\n",
1306		       req->rq_disk->disk_name, err);
1307		return MMC_BLK_ABORT;
1308	}
1309
1310	if (status & R1_EXCEPTION_EVENT) {
1311		ext_csd = kzalloc(512, GFP_KERNEL);
1312		if (!ext_csd) {
1313			pr_err("%s: unable to allocate buffer for ext_csd\n",
1314			       req->rq_disk->disk_name);
1315			return -ENOMEM;
1316		}
1317
1318		err = mmc_send_ext_csd(card, ext_csd);
1319		if (err) {
1320			pr_err("%s: error %d sending ext_csd\n",
1321			       req->rq_disk->disk_name, err);
1322			check = MMC_BLK_ABORT;
1323			goto free;
1324		}
1325
1326		if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1327		     EXT_CSD_PACKED_FAILURE) &&
1328		    (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1329		     EXT_CSD_PACKED_GENERIC_ERROR)) {
1330			if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1331			    EXT_CSD_PACKED_INDEXED_ERROR) {
1332				packed->idx_failure =
1333				  ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1334				check = MMC_BLK_PARTIAL;
1335			}
1336			pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1337			       "failure index: %d\n",
1338			       req->rq_disk->disk_name, packed->nr_entries,
1339			       packed->blocks, packed->idx_failure);
1340		}
1341free:
1342		kfree(ext_csd);
1343	}
1344
1345	return check;
1346}
1347
1348static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1349			       struct mmc_card *card,
1350			       int disable_multi,
1351			       struct mmc_queue *mq)
1352{
1353	u32 readcmd, writecmd;
1354	struct mmc_blk_request *brq = &mqrq->brq;
1355	struct request *req = mqrq->req;
1356	struct mmc_blk_data *md = mq->data;
1357	bool do_data_tag;
1358
1359	/*
1360	 * Reliable writes are used to implement Forced Unit Access and
1361	 * REQ_META accesses, and are supported only on MMCs.
1362	 *
1363	 * XXX: this really needs a good explanation of why REQ_META
1364	 * is treated special.
1365	 */
1366	bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1367			  (req->cmd_flags & REQ_META)) &&
1368		(rq_data_dir(req) == WRITE) &&
1369		(md->flags & MMC_BLK_REL_WR);
1370
1371	memset(brq, 0, sizeof(struct mmc_blk_request));
1372	brq->mrq.cmd = &brq->cmd;
1373	brq->mrq.data = &brq->data;
1374
1375	brq->cmd.arg = blk_rq_pos(req);
1376	if (!mmc_card_blockaddr(card))
1377		brq->cmd.arg <<= 9;
1378	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1379	brq->data.blksz = 512;
1380	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1381	brq->stop.arg = 0;
 
1382	brq->data.blocks = blk_rq_sectors(req);
1383
1384	/*
1385	 * The block layer doesn't support all sector count
1386	 * restrictions, so we need to be prepared for too big
1387	 * requests.
1388	 */
1389	if (brq->data.blocks > card->host->max_blk_count)
1390		brq->data.blocks = card->host->max_blk_count;
1391
1392	if (brq->data.blocks > 1) {
1393		/*
1394		 * After a read error, we redo the request one sector
1395		 * at a time in order to accurately determine which
1396		 * sectors can be read successfully.
1397		 */
1398		if (disable_multi)
1399			brq->data.blocks = 1;
1400
1401		/* Some controllers can't do multiblock reads due to hw bugs */
1402		if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1403		    rq_data_dir(req) == READ)
1404			brq->data.blocks = 1;
1405	}
1406
1407	if (brq->data.blocks > 1 || do_rel_wr) {
1408		/* SPI multiblock writes terminate using a special
1409		 * token, not a STOP_TRANSMISSION request.
1410		 */
1411		if (!mmc_host_is_spi(card->host) ||
1412		    rq_data_dir(req) == READ)
1413			brq->mrq.stop = &brq->stop;
1414		readcmd = MMC_READ_MULTIPLE_BLOCK;
1415		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1416	} else {
1417		brq->mrq.stop = NULL;
1418		readcmd = MMC_READ_SINGLE_BLOCK;
1419		writecmd = MMC_WRITE_BLOCK;
1420	}
1421	if (rq_data_dir(req) == READ) {
1422		brq->cmd.opcode = readcmd;
1423		brq->data.flags |= MMC_DATA_READ;
1424		if (brq->mrq.stop)
1425			brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1426					MMC_CMD_AC;
1427	} else {
1428		brq->cmd.opcode = writecmd;
1429		brq->data.flags |= MMC_DATA_WRITE;
1430		if (brq->mrq.stop)
1431			brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1432					MMC_CMD_AC;
1433	}
1434
1435	if (do_rel_wr)
1436		mmc_apply_rel_rw(brq, card, req);
1437
1438	/*
1439	 * Data tag is used only during writing meta data to speed
1440	 * up write and any subsequent read of this meta data
1441	 */
1442	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1443		(req->cmd_flags & REQ_META) &&
1444		(rq_data_dir(req) == WRITE) &&
1445		((brq->data.blocks * brq->data.blksz) >=
1446		 card->ext_csd.data_tag_unit_size);
1447
1448	/*
1449	 * Pre-defined multi-block transfers are preferable to
1450	 * open ended-ones (and necessary for reliable writes).
1451	 * However, it is not sufficient to just send CMD23,
1452	 * and avoid the final CMD12, as on an error condition
1453	 * CMD12 (stop) needs to be sent anyway. This, coupled
1454	 * with Auto-CMD23 enhancements provided by some
1455	 * hosts, means that the complexity of dealing
1456	 * with this is best left to the host. If CMD23 is
1457	 * supported by card and host, we'll fill sbc in and let
1458	 * the host deal with handling it correctly. This means
1459	 * that for hosts that don't expose MMC_CAP_CMD23, no
1460	 * change of behavior will be observed.
1461	 *
1462	 * N.B: Some MMC cards experience perf degradation.
1463	 * We'll avoid using CMD23-bounded multiblock writes for
1464	 * these, while retaining features like reliable writes.
1465	 */
1466	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1467	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1468	     do_data_tag)) {
1469		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1470		brq->sbc.arg = brq->data.blocks |
1471			(do_rel_wr ? (1 << 31) : 0) |
1472			(do_data_tag ? (1 << 29) : 0);
1473		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1474		brq->mrq.sbc = &brq->sbc;
1475	}
1476
1477	mmc_set_data_timeout(&brq->data, card);
1478
1479	brq->data.sg = mqrq->sg;
1480	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1481
1482	/*
1483	 * Adjust the sg list so it is the same size as the
1484	 * request.
1485	 */
1486	if (brq->data.blocks != blk_rq_sectors(req)) {
1487		int i, data_size = brq->data.blocks << 9;
1488		struct scatterlist *sg;
1489
1490		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1491			data_size -= sg->length;
1492			if (data_size <= 0) {
1493				sg->length += data_size;
1494				i++;
1495				break;
1496			}
1497		}
1498		brq->data.sg_len = i;
1499	}
1500
1501	mqrq->mmc_active.mrq = &brq->mrq;
1502	mqrq->mmc_active.err_check = mmc_blk_err_check;
1503
1504	mmc_queue_bounce_pre(mqrq);
1505}
1506
1507static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1508					  struct mmc_card *card)
1509{
1510	unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1511	unsigned int max_seg_sz = queue_max_segment_size(q);
1512	unsigned int len, nr_segs = 0;
1513
1514	do {
1515		len = min(hdr_sz, max_seg_sz);
1516		hdr_sz -= len;
1517		nr_segs++;
1518	} while (hdr_sz);
1519
1520	return nr_segs;
1521}
1522
1523static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1524{
1525	struct request_queue *q = mq->queue;
1526	struct mmc_card *card = mq->card;
1527	struct request *cur = req, *next = NULL;
1528	struct mmc_blk_data *md = mq->data;
1529	struct mmc_queue_req *mqrq = mq->mqrq_cur;
1530	bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1531	unsigned int req_sectors = 0, phys_segments = 0;
1532	unsigned int max_blk_count, max_phys_segs;
1533	bool put_back = true;
1534	u8 max_packed_rw = 0;
1535	u8 reqs = 0;
1536
1537	if (!(md->flags & MMC_BLK_PACKED_CMD))
1538		goto no_packed;
1539
1540	if ((rq_data_dir(cur) == WRITE) &&
1541	    mmc_host_packed_wr(card->host))
1542		max_packed_rw = card->ext_csd.max_packed_writes;
1543
1544	if (max_packed_rw == 0)
1545		goto no_packed;
1546
1547	if (mmc_req_rel_wr(cur) &&
1548	    (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1549		goto no_packed;
1550
1551	if (mmc_large_sector(card) &&
1552	    !IS_ALIGNED(blk_rq_sectors(cur), 8))
1553		goto no_packed;
1554
1555	mmc_blk_clear_packed(mqrq);
1556
1557	max_blk_count = min(card->host->max_blk_count,
1558			    card->host->max_req_size >> 9);
1559	if (unlikely(max_blk_count > 0xffff))
1560		max_blk_count = 0xffff;
1561
1562	max_phys_segs = queue_max_segments(q);
1563	req_sectors += blk_rq_sectors(cur);
1564	phys_segments += cur->nr_phys_segments;
1565
1566	if (rq_data_dir(cur) == WRITE) {
1567		req_sectors += mmc_large_sector(card) ? 8 : 1;
1568		phys_segments += mmc_calc_packed_hdr_segs(q, card);
1569	}
1570
1571	do {
1572		if (reqs >= max_packed_rw - 1) {
1573			put_back = false;
1574			break;
1575		}
1576
1577		spin_lock_irq(q->queue_lock);
1578		next = blk_fetch_request(q);
1579		spin_unlock_irq(q->queue_lock);
1580		if (!next) {
1581			put_back = false;
1582			break;
1583		}
1584
1585		if (mmc_large_sector(card) &&
1586		    !IS_ALIGNED(blk_rq_sectors(next), 8))
1587			break;
1588
1589		if (next->cmd_flags & REQ_DISCARD ||
1590		    next->cmd_flags & REQ_FLUSH)
1591			break;
1592
1593		if (rq_data_dir(cur) != rq_data_dir(next))
1594			break;
1595
1596		if (mmc_req_rel_wr(next) &&
1597		    (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1598			break;
1599
1600		req_sectors += blk_rq_sectors(next);
1601		if (req_sectors > max_blk_count)
1602			break;
1603
1604		phys_segments +=  next->nr_phys_segments;
1605		if (phys_segments > max_phys_segs)
1606			break;
1607
1608		list_add_tail(&next->queuelist, &mqrq->packed->list);
1609		cur = next;
1610		reqs++;
1611	} while (1);
1612
1613	if (put_back) {
1614		spin_lock_irq(q->queue_lock);
1615		blk_requeue_request(q, next);
1616		spin_unlock_irq(q->queue_lock);
1617	}
1618
1619	if (reqs > 0) {
1620		list_add(&req->queuelist, &mqrq->packed->list);
1621		mqrq->packed->nr_entries = ++reqs;
1622		mqrq->packed->retries = reqs;
1623		return reqs;
1624	}
1625
1626no_packed:
1627	mqrq->cmd_type = MMC_PACKED_NONE;
1628	return 0;
1629}
1630
1631static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1632					struct mmc_card *card,
1633					struct mmc_queue *mq)
1634{
1635	struct mmc_blk_request *brq = &mqrq->brq;
1636	struct request *req = mqrq->req;
1637	struct request *prq;
1638	struct mmc_blk_data *md = mq->data;
1639	struct mmc_packed *packed = mqrq->packed;
1640	bool do_rel_wr, do_data_tag;
1641	u32 *packed_cmd_hdr;
1642	u8 hdr_blocks;
1643	u8 i = 1;
1644
1645	BUG_ON(!packed);
1646
1647	mqrq->cmd_type = MMC_PACKED_WRITE;
1648	packed->blocks = 0;
1649	packed->idx_failure = MMC_PACKED_NR_IDX;
1650
1651	packed_cmd_hdr = packed->cmd_hdr;
1652	memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1653	packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1654		(PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1655	hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1656
1657	/*
1658	 * Argument for each entry of packed group
1659	 */
1660	list_for_each_entry(prq, &packed->list, queuelist) {
1661		do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1662		do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1663			(prq->cmd_flags & REQ_META) &&
1664			(rq_data_dir(prq) == WRITE) &&
1665			((brq->data.blocks * brq->data.blksz) >=
1666			 card->ext_csd.data_tag_unit_size);
1667		/* Argument of CMD23 */
1668		packed_cmd_hdr[(i * 2)] =
1669			(do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1670			(do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1671			blk_rq_sectors(prq);
1672		/* Argument of CMD18 or CMD25 */
1673		packed_cmd_hdr[((i * 2)) + 1] =
1674			mmc_card_blockaddr(card) ?
1675			blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1676		packed->blocks += blk_rq_sectors(prq);
1677		i++;
1678	}
1679
1680	memset(brq, 0, sizeof(struct mmc_blk_request));
1681	brq->mrq.cmd = &brq->cmd;
1682	brq->mrq.data = &brq->data;
1683	brq->mrq.sbc = &brq->sbc;
1684	brq->mrq.stop = &brq->stop;
1685
1686	brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1687	brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1688	brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1689
1690	brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1691	brq->cmd.arg = blk_rq_pos(req);
1692	if (!mmc_card_blockaddr(card))
1693		brq->cmd.arg <<= 9;
1694	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1695
1696	brq->data.blksz = 512;
1697	brq->data.blocks = packed->blocks + hdr_blocks;
1698	brq->data.flags |= MMC_DATA_WRITE;
1699
1700	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1701	brq->stop.arg = 0;
1702	brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1703
1704	mmc_set_data_timeout(&brq->data, card);
1705
1706	brq->data.sg = mqrq->sg;
1707	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1708
1709	mqrq->mmc_active.mrq = &brq->mrq;
1710	mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1711
1712	mmc_queue_bounce_pre(mqrq);
1713}
1714
1715static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1716			   struct mmc_blk_request *brq, struct request *req,
1717			   int ret)
1718{
1719	struct mmc_queue_req *mq_rq;
1720	mq_rq = container_of(brq, struct mmc_queue_req, brq);
1721
1722	/*
1723	 * If this is an SD card and we're writing, we can first
1724	 * mark the known good sectors as ok.
1725	 *
1726	 * If the card is not SD, we can still ok written sectors
1727	 * as reported by the controller (which might be less than
1728	 * the real number of written sectors, but never more).
1729	 */
1730	if (mmc_card_sd(card)) {
1731		u32 blocks;
1732
1733		blocks = mmc_sd_num_wr_blocks(card);
1734		if (blocks != (u32)-1) {
1735			ret = blk_end_request(req, 0, blocks << 9);
 
 
1736		}
1737	} else {
1738		if (!mmc_packed_cmd(mq_rq->cmd_type))
1739			ret = blk_end_request(req, 0, brq->data.bytes_xfered);
 
1740	}
1741	return ret;
1742}
1743
1744static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1745{
1746	struct request *prq;
1747	struct mmc_packed *packed = mq_rq->packed;
1748	int idx = packed->idx_failure, i = 0;
1749	int ret = 0;
1750
1751	BUG_ON(!packed);
1752
1753	while (!list_empty(&packed->list)) {
1754		prq = list_entry_rq(packed->list.next);
1755		if (idx == i) {
1756			/* retry from error index */
1757			packed->nr_entries -= idx;
1758			mq_rq->req = prq;
1759			ret = 1;
1760
1761			if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1762				list_del_init(&prq->queuelist);
1763				mmc_blk_clear_packed(mq_rq);
1764			}
1765			return ret;
1766		}
1767		list_del_init(&prq->queuelist);
1768		blk_end_request(prq, 0, blk_rq_bytes(prq));
1769		i++;
1770	}
1771
1772	mmc_blk_clear_packed(mq_rq);
1773	return ret;
1774}
1775
1776static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1777{
1778	struct request *prq;
1779	struct mmc_packed *packed = mq_rq->packed;
1780
1781	BUG_ON(!packed);
1782
1783	while (!list_empty(&packed->list)) {
1784		prq = list_entry_rq(packed->list.next);
1785		list_del_init(&prq->queuelist);
1786		blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1787	}
1788
1789	mmc_blk_clear_packed(mq_rq);
1790}
1791
1792static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1793				      struct mmc_queue_req *mq_rq)
1794{
1795	struct request *prq;
1796	struct request_queue *q = mq->queue;
1797	struct mmc_packed *packed = mq_rq->packed;
1798
1799	BUG_ON(!packed);
1800
1801	while (!list_empty(&packed->list)) {
1802		prq = list_entry_rq(packed->list.prev);
1803		if (prq->queuelist.prev != &packed->list) {
1804			list_del_init(&prq->queuelist);
1805			spin_lock_irq(q->queue_lock);
1806			blk_requeue_request(mq->queue, prq);
1807			spin_unlock_irq(q->queue_lock);
1808		} else {
1809			list_del_init(&prq->queuelist);
1810		}
1811	}
1812
1813	mmc_blk_clear_packed(mq_rq);
1814}
1815
1816static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1817{
1818	struct mmc_blk_data *md = mq->data;
1819	struct mmc_card *card = md->queue.card;
1820	struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1821	int ret = 1, disable_multi = 0, retry = 0, type;
1822	enum mmc_blk_status status;
1823	struct mmc_queue_req *mq_rq;
1824	struct request *req = rqc;
1825	struct mmc_async_req *areq;
1826	const u8 packed_nr = 2;
1827	u8 reqs = 0;
1828
1829	if (!rqc && !mq->mqrq_prev->req)
1830		return 0;
1831
1832	if (rqc)
1833		reqs = mmc_blk_prep_packed_list(mq, rqc);
1834
1835	do {
1836		if (rqc) {
1837			/*
1838			 * When 4KB native sector is enabled, only 8 blocks
1839			 * multiple read or write is allowed
1840			 */
1841			if ((brq->data.blocks & 0x07) &&
1842			    (card->ext_csd.data_sector_size == 4096)) {
1843				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1844					req->rq_disk->disk_name);
1845				mq_rq = mq->mqrq_cur;
1846				goto cmd_abort;
1847			}
1848
1849			if (reqs >= packed_nr)
1850				mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1851							    card, mq);
1852			else
1853				mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1854			areq = &mq->mqrq_cur->mmc_active;
1855		} else
1856			areq = NULL;
1857		areq = mmc_start_req(card->host, areq, (int *) &status);
1858		if (!areq) {
1859			if (status == MMC_BLK_NEW_REQUEST)
1860				mq->flags |= MMC_QUEUE_NEW_REQUEST;
1861			return 0;
1862		}
1863
1864		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1865		brq = &mq_rq->brq;
1866		req = mq_rq->req;
1867		type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1868		mmc_queue_bounce_post(mq_rq);
1869
1870		switch (status) {
1871		case MMC_BLK_SUCCESS:
1872		case MMC_BLK_PARTIAL:
1873			/*
1874			 * A block was successfully transferred.
1875			 */
1876			mmc_blk_reset_success(md, type);
1877
1878			if (mmc_packed_cmd(mq_rq->cmd_type)) {
1879				ret = mmc_blk_end_packed_req(mq_rq);
1880				break;
1881			} else {
1882				ret = blk_end_request(req, 0,
1883						brq->data.bytes_xfered);
1884			}
1885
1886			/*
1887			 * If the blk_end_request function returns non-zero even
1888			 * though all data has been transferred and no errors
1889			 * were returned by the host controller, it's a bug.
1890			 */
1891			if (status == MMC_BLK_SUCCESS && ret) {
1892				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1893				       __func__, blk_rq_bytes(req),
1894				       brq->data.bytes_xfered);
1895				rqc = NULL;
1896				goto cmd_abort;
1897			}
1898			break;
1899		case MMC_BLK_CMD_ERR:
1900			ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1901			if (!mmc_blk_reset(md, card->host, type))
1902				break;
1903			goto cmd_abort;
1904		case MMC_BLK_RETRY:
1905			if (retry++ < 5)
1906				break;
1907			/* Fall through */
1908		case MMC_BLK_ABORT:
1909			if (!mmc_blk_reset(md, card->host, type))
1910				break;
1911			goto cmd_abort;
1912		case MMC_BLK_DATA_ERR: {
1913			int err;
1914
1915			err = mmc_blk_reset(md, card->host, type);
1916			if (!err)
1917				break;
1918			if (err == -ENODEV ||
1919				mmc_packed_cmd(mq_rq->cmd_type))
1920				goto cmd_abort;
1921			/* Fall through */
1922		}
1923		case MMC_BLK_ECC_ERR:
1924			if (brq->data.blocks > 1) {
1925				/* Redo read one sector at a time */
1926				pr_warning("%s: retrying using single block read\n",
1927					   req->rq_disk->disk_name);
1928				disable_multi = 1;
1929				break;
1930			}
1931			/*
1932			 * After an error, we redo I/O one sector at a
1933			 * time, so we only reach here after trying to
1934			 * read a single sector.
1935			 */
1936			ret = blk_end_request(req, -EIO,
 
1937						brq->data.blksz);
 
1938			if (!ret)
1939				goto start_new_req;
1940			break;
1941		case MMC_BLK_NOMEDIUM:
1942			goto cmd_abort;
1943		default:
1944			pr_err("%s: Unhandled return value (%d)",
1945					req->rq_disk->disk_name, status);
1946			goto cmd_abort;
1947		}
1948
1949		if (ret) {
1950			if (mmc_packed_cmd(mq_rq->cmd_type)) {
1951				if (!mq_rq->packed->retries)
1952					goto cmd_abort;
1953				mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1954				mmc_start_req(card->host,
1955					      &mq_rq->mmc_active, NULL);
1956			} else {
1957
1958				/*
1959				 * In case of a incomplete request
1960				 * prepare it again and resend.
1961				 */
1962				mmc_blk_rw_rq_prep(mq_rq, card,
1963						disable_multi, mq);
1964				mmc_start_req(card->host,
1965						&mq_rq->mmc_active, NULL);
1966			}
1967		}
1968	} while (ret);
1969
1970	return 1;
1971
1972 cmd_abort:
1973	if (mmc_packed_cmd(mq_rq->cmd_type)) {
1974		mmc_blk_abort_packed_req(mq_rq);
1975	} else {
1976		if (mmc_card_removed(card))
1977			req->cmd_flags |= REQ_QUIET;
1978		while (ret)
1979			ret = blk_end_request(req, -EIO,
1980					blk_rq_cur_bytes(req));
1981	}
1982
1983 start_new_req:
1984	if (rqc) {
1985		if (mmc_card_removed(card)) {
1986			rqc->cmd_flags |= REQ_QUIET;
1987			blk_end_request_all(rqc, -EIO);
1988		} else {
1989			/*
1990			 * If current request is packed, it needs to put back.
1991			 */
1992			if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1993				mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1994
1995			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1996			mmc_start_req(card->host,
1997				      &mq->mqrq_cur->mmc_active, NULL);
1998		}
1999	}
2000
2001	return 0;
2002}
2003
2004static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2005{
2006	int ret;
2007	struct mmc_blk_data *md = mq->data;
2008	struct mmc_card *card = md->queue.card;
2009	struct mmc_host *host = card->host;
2010	unsigned long flags;
2011	unsigned int cmd_flags = req ? req->cmd_flags : 0;
2012
2013	if (req && !mq->mqrq_prev->req)
2014		/* claim host only for the first request */
2015		mmc_get_card(card);
2016
2017	ret = mmc_blk_part_switch(card, md);
2018	if (ret) {
2019		if (req) {
2020			blk_end_request_all(req, -EIO);
 
 
2021		}
2022		ret = 0;
2023		goto out;
2024	}
2025
2026	mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2027	if (cmd_flags & REQ_DISCARD) {
2028		/* complete ongoing async transfer before issuing discard */
2029		if (card->host->areq)
2030			mmc_blk_issue_rw_rq(mq, NULL);
2031		if (req->cmd_flags & REQ_SECURE &&
2032			!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2033			ret = mmc_blk_issue_secdiscard_rq(mq, req);
2034		else
2035			ret = mmc_blk_issue_discard_rq(mq, req);
2036	} else if (cmd_flags & REQ_FLUSH) {
2037		/* complete ongoing async transfer before issuing flush */
2038		if (card->host->areq)
2039			mmc_blk_issue_rw_rq(mq, NULL);
2040		ret = mmc_blk_issue_flush(mq, req);
2041	} else {
2042		if (!req && host->areq) {
2043			spin_lock_irqsave(&host->context_info.lock, flags);
2044			host->context_info.is_waiting_last_req = true;
2045			spin_unlock_irqrestore(&host->context_info.lock, flags);
2046		}
2047		ret = mmc_blk_issue_rw_rq(mq, req);
2048	}
2049
2050out:
2051	if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2052	     (cmd_flags & MMC_REQ_SPECIAL_MASK))
2053		/*
2054		 * Release host when there are no more requests
2055		 * and after special request(discard, flush) is done.
2056		 * In case sepecial request, there is no reentry to
2057		 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2058		 */
2059		mmc_put_card(card);
2060	return ret;
2061}
2062
2063static inline int mmc_blk_readonly(struct mmc_card *card)
2064{
2065	return mmc_card_readonly(card) ||
2066	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2067}
2068
2069static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2070					      struct device *parent,
2071					      sector_t size,
2072					      bool default_ro,
2073					      const char *subname,
2074					      int area_type)
2075{
2076	struct mmc_blk_data *md;
2077	int devidx, ret;
2078
2079	devidx = find_first_zero_bit(dev_use, max_devices);
2080	if (devidx >= max_devices)
2081		return ERR_PTR(-ENOSPC);
2082	__set_bit(devidx, dev_use);
2083
2084	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2085	if (!md) {
2086		ret = -ENOMEM;
2087		goto out;
2088	}
2089
2090	/*
2091	 * !subname implies we are creating main mmc_blk_data that will be
2092	 * associated with mmc_card with mmc_set_drvdata. Due to device
2093	 * partitions, devidx will not coincide with a per-physical card
2094	 * index anymore so we keep track of a name index.
2095	 */
2096	if (!subname) {
2097		md->name_idx = find_first_zero_bit(name_use, max_devices);
2098		__set_bit(md->name_idx, name_use);
2099	} else
2100		md->name_idx = ((struct mmc_blk_data *)
2101				dev_to_disk(parent)->private_data)->name_idx;
2102
2103	md->area_type = area_type;
2104
2105	/*
2106	 * Set the read-only status based on the supported commands
2107	 * and the write protect switch.
2108	 */
2109	md->read_only = mmc_blk_readonly(card);
2110
2111	md->disk = alloc_disk(perdev_minors);
2112	if (md->disk == NULL) {
2113		ret = -ENOMEM;
2114		goto err_kfree;
2115	}
2116
2117	spin_lock_init(&md->lock);
2118	INIT_LIST_HEAD(&md->part);
2119	md->usage = 1;
2120
2121	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2122	if (ret)
2123		goto err_putdisk;
2124
2125	md->queue.issue_fn = mmc_blk_issue_rq;
2126	md->queue.data = md;
2127
2128	md->disk->major	= MMC_BLOCK_MAJOR;
2129	md->disk->first_minor = devidx * perdev_minors;
2130	md->disk->fops = &mmc_bdops;
2131	md->disk->private_data = md;
2132	md->disk->queue = md->queue.queue;
2133	md->disk->driverfs_dev = parent;
2134	set_disk_ro(md->disk, md->read_only || default_ro);
2135	if (area_type & MMC_BLK_DATA_AREA_RPMB)
2136		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2137
2138	/*
2139	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2140	 *
2141	 * - be set for removable media with permanent block devices
2142	 * - be unset for removable block devices with permanent media
2143	 *
2144	 * Since MMC block devices clearly fall under the second
2145	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2146	 * should use the block device creation/destruction hotplug
2147	 * messages to tell when the card is present.
2148	 */
2149
2150	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2151		 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2152
2153	if (mmc_card_mmc(card))
2154		blk_queue_logical_block_size(md->queue.queue,
2155					     card->ext_csd.data_sector_size);
2156	else
2157		blk_queue_logical_block_size(md->queue.queue, 512);
2158
2159	set_capacity(md->disk, size);
2160
2161	if (mmc_host_cmd23(card->host)) {
2162		if (mmc_card_mmc(card) ||
2163		    (mmc_card_sd(card) &&
2164		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2165			md->flags |= MMC_BLK_CMD23;
2166	}
2167
2168	if (mmc_card_mmc(card) &&
2169	    md->flags & MMC_BLK_CMD23 &&
2170	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2171	     card->ext_csd.rel_sectors)) {
2172		md->flags |= MMC_BLK_REL_WR;
2173		blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2174	}
2175
2176	if (mmc_card_mmc(card) &&
2177	    (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2178	    (md->flags & MMC_BLK_CMD23) &&
2179	    card->ext_csd.packed_event_en) {
2180		if (!mmc_packed_init(&md->queue, card))
2181			md->flags |= MMC_BLK_PACKED_CMD;
2182	}
2183
2184	return md;
2185
2186 err_putdisk:
2187	put_disk(md->disk);
2188 err_kfree:
2189	kfree(md);
2190 out:
2191	return ERR_PTR(ret);
2192}
2193
2194static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2195{
2196	sector_t size;
2197	struct mmc_blk_data *md;
2198
2199	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2200		/*
2201		 * The EXT_CSD sector count is in number or 512 byte
2202		 * sectors.
2203		 */
2204		size = card->ext_csd.sectors;
2205	} else {
2206		/*
2207		 * The CSD capacity field is in units of read_blkbits.
2208		 * set_capacity takes units of 512 bytes.
2209		 */
2210		size = card->csd.capacity << (card->csd.read_blkbits - 9);
2211	}
2212
2213	md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2214					MMC_BLK_DATA_AREA_MAIN);
2215	return md;
2216}
2217
2218static int mmc_blk_alloc_part(struct mmc_card *card,
2219			      struct mmc_blk_data *md,
2220			      unsigned int part_type,
2221			      sector_t size,
2222			      bool default_ro,
2223			      const char *subname,
2224			      int area_type)
2225{
2226	char cap_str[10];
2227	struct mmc_blk_data *part_md;
2228
2229	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2230				    subname, area_type);
2231	if (IS_ERR(part_md))
2232		return PTR_ERR(part_md);
2233	part_md->part_type = part_type;
2234	list_add(&part_md->part, &md->part);
2235
2236	string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2237			cap_str, sizeof(cap_str));
2238	pr_info("%s: %s %s partition %u %s\n",
2239	       part_md->disk->disk_name, mmc_card_id(card),
2240	       mmc_card_name(card), part_md->part_type, cap_str);
2241	return 0;
2242}
2243
2244/* MMC Physical partitions consist of two boot partitions and
2245 * up to four general purpose partitions.
2246 * For each partition enabled in EXT_CSD a block device will be allocatedi
2247 * to provide access to the partition.
2248 */
2249
2250static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2251{
2252	int idx, ret = 0;
2253
2254	if (!mmc_card_mmc(card))
2255		return 0;
2256
2257	for (idx = 0; idx < card->nr_parts; idx++) {
2258		if (card->part[idx].size) {
2259			ret = mmc_blk_alloc_part(card, md,
2260				card->part[idx].part_cfg,
2261				card->part[idx].size >> 9,
2262				card->part[idx].force_ro,
2263				card->part[idx].name,
2264				card->part[idx].area_type);
2265			if (ret)
2266				return ret;
2267		}
2268	}
2269
2270	return ret;
2271}
2272
2273static void mmc_blk_remove_req(struct mmc_blk_data *md)
2274{
2275	struct mmc_card *card;
2276
2277	if (md) {
2278		/*
2279		 * Flush remaining requests and free queues. It
2280		 * is freeing the queue that stops new requests
2281		 * from being accepted.
2282		 */
2283		card = md->queue.card;
2284		mmc_cleanup_queue(&md->queue);
2285		if (md->flags & MMC_BLK_PACKED_CMD)
2286			mmc_packed_clean(&md->queue);
2287		if (md->disk->flags & GENHD_FL_UP) {
2288			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2289			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2290					card->ext_csd.boot_ro_lockable)
2291				device_remove_file(disk_to_dev(md->disk),
2292					&md->power_ro_lock);
2293
 
2294			del_gendisk(md->disk);
2295		}
 
 
 
2296		mmc_blk_put(md);
2297	}
2298}
2299
2300static void mmc_blk_remove_parts(struct mmc_card *card,
2301				 struct mmc_blk_data *md)
2302{
2303	struct list_head *pos, *q;
2304	struct mmc_blk_data *part_md;
2305
2306	__clear_bit(md->name_idx, name_use);
2307	list_for_each_safe(pos, q, &md->part) {
2308		part_md = list_entry(pos, struct mmc_blk_data, part);
2309		list_del(pos);
2310		mmc_blk_remove_req(part_md);
2311	}
2312}
2313
2314static int mmc_add_disk(struct mmc_blk_data *md)
2315{
2316	int ret;
2317	struct mmc_card *card = md->queue.card;
2318
2319	add_disk(md->disk);
2320	md->force_ro.show = force_ro_show;
2321	md->force_ro.store = force_ro_store;
2322	sysfs_attr_init(&md->force_ro.attr);
2323	md->force_ro.attr.name = "force_ro";
2324	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2325	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2326	if (ret)
2327		goto force_ro_fail;
2328
2329	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2330	     card->ext_csd.boot_ro_lockable) {
2331		umode_t mode;
2332
2333		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2334			mode = S_IRUGO;
2335		else
2336			mode = S_IRUGO | S_IWUSR;
2337
2338		md->power_ro_lock.show = power_ro_lock_show;
2339		md->power_ro_lock.store = power_ro_lock_store;
2340		sysfs_attr_init(&md->power_ro_lock.attr);
2341		md->power_ro_lock.attr.mode = mode;
2342		md->power_ro_lock.attr.name =
2343					"ro_lock_until_next_power_on";
2344		ret = device_create_file(disk_to_dev(md->disk),
2345				&md->power_ro_lock);
2346		if (ret)
2347			goto power_ro_lock_fail;
2348	}
2349	return ret;
2350
2351power_ro_lock_fail:
2352	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2353force_ro_fail:
2354	del_gendisk(md->disk);
2355
2356	return ret;
2357}
2358
2359#define CID_MANFID_SANDISK	0x2
2360#define CID_MANFID_TOSHIBA	0x11
2361#define CID_MANFID_MICRON	0x13
2362#define CID_MANFID_SAMSUNG	0x15
2363
2364static const struct mmc_fixup blk_fixups[] =
2365{
2366	MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2367		  MMC_QUIRK_INAND_CMD38),
2368	MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2369		  MMC_QUIRK_INAND_CMD38),
2370	MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2371		  MMC_QUIRK_INAND_CMD38),
2372	MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2373		  MMC_QUIRK_INAND_CMD38),
2374	MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2375		  MMC_QUIRK_INAND_CMD38),
2376
2377	/*
2378	 * Some MMC cards experience performance degradation with CMD23
2379	 * instead of CMD12-bounded multiblock transfers. For now we'll
2380	 * black list what's bad...
2381	 * - Certain Toshiba cards.
2382	 *
2383	 * N.B. This doesn't affect SD cards.
2384	 */
2385	MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2386		  MMC_QUIRK_BLK_NO_CMD23),
2387	MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2388		  MMC_QUIRK_BLK_NO_CMD23),
2389	MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2390		  MMC_QUIRK_BLK_NO_CMD23),
2391
2392	/*
2393	 * Some Micron MMC cards needs longer data read timeout than
2394	 * indicated in CSD.
2395	 */
2396	MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2397		  MMC_QUIRK_LONG_READ_TIME),
2398
2399	/*
2400	 * On these Samsung MoviNAND parts, performing secure erase or
2401	 * secure trim can result in unrecoverable corruption due to a
2402	 * firmware bug.
2403	 */
2404	MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2405		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2406	MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2407		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2408	MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2409		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2410	MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2411		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2412	MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2413		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2414	MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2415		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2416	MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2417		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2418	MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2419		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2420
2421	END_FIXUP
2422};
2423
2424static int mmc_blk_probe(struct mmc_card *card)
2425{
2426	struct mmc_blk_data *md, *part_md;
2427	char cap_str[10];
2428
2429	/*
2430	 * Check that the card supports the command class(es) we need.
2431	 */
2432	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2433		return -ENODEV;
2434
2435	md = mmc_blk_alloc(card);
2436	if (IS_ERR(md))
2437		return PTR_ERR(md);
2438
2439	string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2440			cap_str, sizeof(cap_str));
2441	pr_info("%s: %s %s %s %s\n",
2442		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2443		cap_str, md->read_only ? "(ro)" : "");
2444
2445	if (mmc_blk_alloc_parts(card, md))
2446		goto out;
2447
2448	mmc_set_drvdata(card, md);
2449	mmc_fixup_device(card, blk_fixups);
2450
2451	if (mmc_add_disk(md))
2452		goto out;
2453
2454	list_for_each_entry(part_md, &md->part, part) {
2455		if (mmc_add_disk(part_md))
2456			goto out;
2457	}
2458
2459	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2460	pm_runtime_use_autosuspend(&card->dev);
2461
2462	/*
2463	 * Don't enable runtime PM for SD-combo cards here. Leave that
2464	 * decision to be taken during the SDIO init sequence instead.
2465	 */
2466	if (card->type != MMC_TYPE_SD_COMBO) {
2467		pm_runtime_set_active(&card->dev);
2468		pm_runtime_enable(&card->dev);
2469	}
2470
2471	return 0;
2472
2473 out:
2474	mmc_blk_remove_parts(card, md);
2475	mmc_blk_remove_req(md);
2476	return 0;
2477}
2478
2479static void mmc_blk_remove(struct mmc_card *card)
2480{
2481	struct mmc_blk_data *md = mmc_get_drvdata(card);
2482
2483	mmc_blk_remove_parts(card, md);
2484	pm_runtime_get_sync(&card->dev);
2485	mmc_claim_host(card->host);
2486	mmc_blk_part_switch(card, md);
2487	mmc_release_host(card->host);
2488	if (card->type != MMC_TYPE_SD_COMBO)
2489		pm_runtime_disable(&card->dev);
2490	pm_runtime_put_noidle(&card->dev);
2491	mmc_blk_remove_req(md);
2492	mmc_set_drvdata(card, NULL);
2493}
2494
2495static int _mmc_blk_suspend(struct mmc_card *card)
 
2496{
2497	struct mmc_blk_data *part_md;
2498	struct mmc_blk_data *md = mmc_get_drvdata(card);
2499
2500	if (md) {
2501		mmc_queue_suspend(&md->queue);
2502		list_for_each_entry(part_md, &md->part, part) {
2503			mmc_queue_suspend(&part_md->queue);
2504		}
2505	}
2506	return 0;
2507}
2508
2509static void mmc_blk_shutdown(struct mmc_card *card)
2510{
2511	_mmc_blk_suspend(card);
2512}
2513
2514#ifdef CONFIG_PM
2515static int mmc_blk_suspend(struct mmc_card *card)
2516{
2517	return _mmc_blk_suspend(card);
2518}
2519
2520static int mmc_blk_resume(struct mmc_card *card)
2521{
2522	struct mmc_blk_data *part_md;
2523	struct mmc_blk_data *md = mmc_get_drvdata(card);
2524
2525	if (md) {
2526		/*
2527		 * Resume involves the card going into idle state,
2528		 * so current partition is always the main one.
2529		 */
2530		md->part_curr = md->part_type;
2531		mmc_queue_resume(&md->queue);
2532		list_for_each_entry(part_md, &md->part, part) {
2533			mmc_queue_resume(&part_md->queue);
2534		}
2535	}
2536	return 0;
2537}
2538#else
2539#define	mmc_blk_suspend	NULL
2540#define mmc_blk_resume	NULL
2541#endif
2542
2543static struct mmc_driver mmc_driver = {
2544	.drv		= {
2545		.name	= "mmcblk",
2546	},
2547	.probe		= mmc_blk_probe,
2548	.remove		= mmc_blk_remove,
2549	.suspend	= mmc_blk_suspend,
2550	.resume		= mmc_blk_resume,
2551	.shutdown	= mmc_blk_shutdown,
2552};
2553
2554static int __init mmc_blk_init(void)
2555{
2556	int res;
2557
2558	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2559		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2560
2561	max_devices = 256 / perdev_minors;
2562
2563	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2564	if (res)
2565		goto out;
2566
2567	res = mmc_register_driver(&mmc_driver);
2568	if (res)
2569		goto out2;
2570
2571	return 0;
2572 out2:
2573	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2574 out:
2575	return res;
2576}
2577
2578static void __exit mmc_blk_exit(void)
2579{
2580	mmc_unregister_driver(&mmc_driver);
2581	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2582}
2583
2584module_init(mmc_blk_init);
2585module_exit(mmc_blk_exit);
2586
2587MODULE_LICENSE("GPL");
2588MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2589