Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include <linux/export.h>
  31#include "drmP.h"
  32#include "drm.h"
  33#include "drm_crtc.h"
  34#include "drm_crtc_helper.h"
  35#include "drm_edid.h"
  36#include "intel_drv.h"
  37#include "i915_drm.h"
  38#include "i915_drv.h"
  39#include "drm_dp_helper.h"
  40
  41#define DP_RECEIVER_CAP_SIZE	0xf
  42#define DP_LINK_STATUS_SIZE	6
  43#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  44
  45#define DP_LINK_CONFIGURATION_SIZE	9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47struct intel_dp {
  48	struct intel_encoder base;
  49	uint32_t output_reg;
  50	uint32_t DP;
  51	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
  52	bool has_audio;
  53	enum hdmi_force_audio force_audio;
  54	uint32_t color_range;
  55	int dpms_mode;
  56	uint8_t link_bw;
  57	uint8_t lane_count;
  58	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
  59	struct i2c_adapter adapter;
  60	struct i2c_algo_dp_aux_data algo;
  61	bool is_pch_edp;
  62	uint8_t	train_set[4];
  63	int panel_power_up_delay;
  64	int panel_power_down_delay;
  65	int panel_power_cycle_delay;
  66	int backlight_on_delay;
  67	int backlight_off_delay;
  68	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
  69	struct delayed_work panel_vdd_work;
  70	bool want_panel_vdd;
  71	struct edid *edid; /* cached EDID for eDP */
  72	int edid_mode_count;
  73};
  74
  75/**
  76 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  77 * @intel_dp: DP struct
  78 *
  79 * If a CPU or PCH DP output is attached to an eDP panel, this function
  80 * will return true, and false otherwise.
  81 */
  82static bool is_edp(struct intel_dp *intel_dp)
  83{
  84	return intel_dp->base.type == INTEL_OUTPUT_EDP;
  85}
  86
  87/**
  88 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  89 * @intel_dp: DP struct
  90 *
  91 * Returns true if the given DP struct corresponds to a PCH DP port attached
  92 * to an eDP panel, false otherwise.  Helpful for determining whether we
  93 * may need FDI resources for a given DP output or not.
  94 */
  95static bool is_pch_edp(struct intel_dp *intel_dp)
  96{
  97	return intel_dp->is_pch_edp;
  98}
  99
 100/**
 101 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
 102 * @intel_dp: DP struct
 103 *
 104 * Returns true if the given DP struct corresponds to a CPU eDP port.
 105 */
 106static bool is_cpu_edp(struct intel_dp *intel_dp)
 107{
 108	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
 109}
 110
 111static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
 112{
 113	return container_of(encoder, struct intel_dp, base.base);
 114}
 115
 116static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
 117{
 118	return container_of(intel_attached_encoder(connector),
 119			    struct intel_dp, base);
 120}
 121
 122/**
 123 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 124 * @encoder: DRM encoder
 125 *
 126 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 127 * by intel_display.c.
 128 */
 129bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
 130{
 131	struct intel_dp *intel_dp;
 132
 133	if (!encoder)
 134		return false;
 135
 136	intel_dp = enc_to_intel_dp(encoder);
 137
 138	return is_pch_edp(intel_dp);
 139}
 140
 141static void intel_dp_start_link_train(struct intel_dp *intel_dp);
 142static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
 143static void intel_dp_link_down(struct intel_dp *intel_dp);
 144
 145void
 146intel_edp_link_config(struct intel_encoder *intel_encoder,
 147		       int *lane_num, int *link_bw)
 148{
 149	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
 150
 151	*lane_num = intel_dp->lane_count;
 152	if (intel_dp->link_bw == DP_LINK_BW_1_62)
 153		*link_bw = 162000;
 154	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
 155		*link_bw = 270000;
 156}
 157
 158static int
 159intel_dp_max_lane_count(struct intel_dp *intel_dp)
 160{
 161	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 162	switch (max_lane_count) {
 163	case 1: case 2: case 4:
 164		break;
 165	default:
 166		max_lane_count = 4;
 167	}
 168	return max_lane_count;
 169}
 170
 171static int
 172intel_dp_max_link_bw(struct intel_dp *intel_dp)
 173{
 174	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 
 175
 176	switch (max_link_bw) {
 177	case DP_LINK_BW_1_62:
 178	case DP_LINK_BW_2_7:
 179		break;
 
 
 
 
 
 
 
 
 180	default:
 
 
 181		max_link_bw = DP_LINK_BW_1_62;
 182		break;
 183	}
 184	return max_link_bw;
 185}
 186
 187static int
 188intel_dp_link_clock(uint8_t link_bw)
 189{
 190	if (link_bw == DP_LINK_BW_2_7)
 191		return 270000;
 192	else
 193		return 162000;
 
 
 
 
 
 
 
 
 194}
 195
 196/*
 197 * The units on the numbers in the next two are... bizarre.  Examples will
 198 * make it clearer; this one parallels an example in the eDP spec.
 199 *
 200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 201 *
 202 *     270000 * 1 * 8 / 10 == 216000
 203 *
 204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 205 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 207 * 119000.  At 18bpp that's 2142000 kilobits per second.
 208 *
 209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 210 * get the result in decakilobits instead of kilobits.
 211 */
 212
 213static int
 214intel_dp_link_required(int pixel_clock, int bpp)
 215{
 216	return (pixel_clock * bpp + 9) / 10;
 217}
 218
 219static int
 220intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 221{
 222	return (max_link_clock * max_lanes * 8) / 10;
 223}
 224
 225static bool
 226intel_dp_adjust_dithering(struct intel_dp *intel_dp,
 227			  struct drm_display_mode *mode,
 228			  struct drm_display_mode *adjusted_mode)
 229{
 230	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
 231	int max_lanes = intel_dp_max_lane_count(intel_dp);
 232	int max_rate, mode_rate;
 233
 234	mode_rate = intel_dp_link_required(mode->clock, 24);
 235	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
 236
 237	if (mode_rate > max_rate) {
 238		mode_rate = intel_dp_link_required(mode->clock, 18);
 239		if (mode_rate > max_rate)
 240			return false;
 241
 242		if (adjusted_mode)
 243			adjusted_mode->private_flags
 244				|= INTEL_MODE_DP_FORCE_6BPC;
 245
 246		return true;
 247	}
 248
 249	return true;
 250}
 251
 252static int
 253intel_dp_mode_valid(struct drm_connector *connector,
 254		    struct drm_display_mode *mode)
 255{
 256	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
 
 
 257
 258	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
 259		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 260			return MODE_PANEL;
 261
 262		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 263			return MODE_PANEL;
 
 
 264	}
 265
 266	if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
 
 
 
 
 
 
 267		return MODE_CLOCK_HIGH;
 268
 269	if (mode->clock < 10000)
 270		return MODE_CLOCK_LOW;
 271
 272	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 273		return MODE_H_ILLEGAL;
 274
 275	return MODE_OK;
 276}
 277
 278static uint32_t
 279pack_aux(uint8_t *src, int src_bytes)
 280{
 281	int	i;
 282	uint32_t v = 0;
 283
 284	if (src_bytes > 4)
 285		src_bytes = 4;
 286	for (i = 0; i < src_bytes; i++)
 287		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 288	return v;
 289}
 290
 291static void
 292unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 293{
 294	int i;
 295	if (dst_bytes > 4)
 296		dst_bytes = 4;
 297	for (i = 0; i < dst_bytes; i++)
 298		dst[i] = src >> ((3-i) * 8);
 299}
 300
 301/* hrawclock is 1/4 the FSB frequency */
 302static int
 303intel_hrawclk(struct drm_device *dev)
 304{
 305	struct drm_i915_private *dev_priv = dev->dev_private;
 306	uint32_t clkcfg;
 307
 
 
 
 
 308	clkcfg = I915_READ(CLKCFG);
 309	switch (clkcfg & CLKCFG_FSB_MASK) {
 310	case CLKCFG_FSB_400:
 311		return 100;
 312	case CLKCFG_FSB_533:
 313		return 133;
 314	case CLKCFG_FSB_667:
 315		return 166;
 316	case CLKCFG_FSB_800:
 317		return 200;
 318	case CLKCFG_FSB_1067:
 319		return 266;
 320	case CLKCFG_FSB_1333:
 321		return 333;
 322	/* these two are just a guess; one of them might be right */
 323	case CLKCFG_FSB_1600:
 324	case CLKCFG_FSB_1600_ALT:
 325		return 400;
 326	default:
 327		return 133;
 328	}
 329}
 330
 331static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
 
 
 
 
 
 
 
 
 
 
 332{
 333	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 334	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 335
 336	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
 340{
 341	struct drm_device *dev = intel_dp->base.base.dev;
 342	struct drm_i915_private *dev_priv = dev->dev_private;
 343
 344	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
 
 345}
 346
 347static void
 348intel_dp_check_edp(struct intel_dp *intel_dp)
 349{
 350	struct drm_device *dev = intel_dp->base.base.dev;
 351	struct drm_i915_private *dev_priv = dev->dev_private;
 352
 353	if (!is_edp(intel_dp))
 354		return;
 355	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
 
 356		WARN(1, "eDP powered off while attempting aux channel communication.\n");
 357		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
 358			      I915_READ(PCH_PP_STATUS),
 359			      I915_READ(PCH_PP_CONTROL));
 360	}
 361}
 362
 363static int
 364intel_dp_aux_ch(struct intel_dp *intel_dp,
 365		uint8_t *send, int send_bytes,
 366		uint8_t *recv, int recv_size)
 367{
 368	uint32_t output_reg = intel_dp->output_reg;
 369	struct drm_device *dev = intel_dp->base.base.dev;
 370	struct drm_i915_private *dev_priv = dev->dev_private;
 371	uint32_t ch_ctl = output_reg + 0x10;
 372	uint32_t ch_data = ch_ctl + 4;
 373	int i;
 374	int recv_bytes;
 375	uint32_t status;
 376	uint32_t aux_clock_divider;
 377	int try, precharge;
 378
 379	intel_dp_check_edp(intel_dp);
 380	/* The clock divider is based off the hrawclk,
 381	 * and would like to run at 2MHz. So, take the
 382	 * hrawclk value and divide by 2 and use that
 383	 *
 384	 * Note that PCH attached eDP panels should use a 125MHz input
 385	 * clock divider.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386	 */
 387	if (is_cpu_edp(intel_dp)) {
 
 
 
 
 
 
 
 
 
 
 
 388		if (IS_GEN6(dev) || IS_GEN7(dev))
 389			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
 390		else
 391			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
 392	} else if (HAS_PCH_SPLIT(dev))
 393		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
 394	else
 395		aux_clock_divider = intel_hrawclk(dev) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 397	if (IS_GEN6(dev))
 398		precharge = 3;
 399	else
 400		precharge = 5;
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402	/* Try to wait for any previous AUX channel activity */
 403	for (try = 0; try < 3; try++) {
 404		status = I915_READ(ch_ctl);
 405		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 406			break;
 407		msleep(1);
 408	}
 409
 410	if (try == 3) {
 411		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 412		     I915_READ(ch_ctl));
 413		return -EBUSY;
 
 414	}
 415
 416	/* Must try at least 3 times according to DP spec */
 417	for (try = 0; try < 5; try++) {
 418		/* Load the send data into the aux channel data registers */
 419		for (i = 0; i < send_bytes; i += 4)
 420			I915_WRITE(ch_data + i,
 421				   pack_aux(send + i, send_bytes - i));
 422
 423		/* Send the command and wait for it to complete */
 424		I915_WRITE(ch_ctl,
 425			   DP_AUX_CH_CTL_SEND_BUSY |
 426			   DP_AUX_CH_CTL_TIME_OUT_400us |
 427			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 428			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 429			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 430			   DP_AUX_CH_CTL_DONE |
 431			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 432			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 433		for (;;) {
 434			status = I915_READ(ch_ctl);
 435			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436				break;
 437			udelay(100);
 438		}
 439
 440		/* Clear done status and any errors */
 441		I915_WRITE(ch_ctl,
 442			   status |
 443			   DP_AUX_CH_CTL_DONE |
 444			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 445			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 446
 447		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
 448			      DP_AUX_CH_CTL_RECEIVE_ERROR))
 449			continue;
 450		if (status & DP_AUX_CH_CTL_DONE)
 451			break;
 452	}
 453
 454	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 455		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 456		return -EBUSY;
 
 457	}
 458
 459	/* Check for timeout or receive error.
 460	 * Timeouts occur when the sink is not connected
 461	 */
 462	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 463		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 464		return -EIO;
 
 465	}
 466
 467	/* Timeouts occur when the device isn't connected, so they're
 468	 * "normal" -- don't fill the kernel log with these */
 469	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 470		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 471		return -ETIMEDOUT;
 
 472	}
 473
 474	/* Unload any bytes sent back from the other side */
 475	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 476		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 477	if (recv_bytes > recv_size)
 478		recv_bytes = recv_size;
 479
 480	for (i = 0; i < recv_bytes; i += 4)
 481		unpack_aux(I915_READ(ch_data + i),
 482			   recv + i, recv_bytes - i);
 483
 484	return recv_bytes;
 485}
 
 
 486
 487/* Write data to the aux channel in native mode */
 488static int
 489intel_dp_aux_native_write(struct intel_dp *intel_dp,
 490			  uint16_t address, uint8_t *send, int send_bytes)
 491{
 492	int ret;
 493	uint8_t	msg[20];
 494	int msg_bytes;
 495	uint8_t	ack;
 496
 497	intel_dp_check_edp(intel_dp);
 498	if (send_bytes > 16)
 499		return -1;
 500	msg[0] = AUX_NATIVE_WRITE << 4;
 501	msg[1] = address >> 8;
 502	msg[2] = address & 0xff;
 503	msg[3] = send_bytes - 1;
 504	memcpy(&msg[4], send, send_bytes);
 505	msg_bytes = send_bytes + 4;
 506	for (;;) {
 507		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
 508		if (ret < 0)
 509			return ret;
 510		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
 511			break;
 512		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 513			udelay(100);
 514		else
 515			return -EIO;
 516	}
 517	return send_bytes;
 518}
 519
 520/* Write a single byte to the aux channel in native mode */
 521static int
 522intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
 523			    uint16_t address, uint8_t byte)
 524{
 525	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
 526}
 527
 528/* read bytes from a native aux channel */
 529static int
 530intel_dp_aux_native_read(struct intel_dp *intel_dp,
 531			 uint16_t address, uint8_t *recv, int recv_bytes)
 532{
 533	uint8_t msg[4];
 534	int msg_bytes;
 535	uint8_t reply[20];
 536	int reply_bytes;
 537	uint8_t ack;
 538	int ret;
 539
 540	intel_dp_check_edp(intel_dp);
 541	msg[0] = AUX_NATIVE_READ << 4;
 542	msg[1] = address >> 8;
 543	msg[2] = address & 0xff;
 544	msg[3] = recv_bytes - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	msg_bytes = 4;
 547	reply_bytes = recv_bytes + 1;
 
 
 548
 549	for (;;) {
 550		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
 551				      reply, reply_bytes);
 552		if (ret == 0)
 553			return -EPROTO;
 554		if (ret < 0)
 555			return ret;
 556		ack = reply[0];
 557		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
 558			memcpy(recv, reply + 1, ret - 1);
 559			return ret - 1;
 
 
 
 
 
 
 
 
 560		}
 561		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 562			udelay(100);
 563		else
 564			return -EIO;
 
 565	}
 
 
 566}
 567
 568static int
 569intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 570		    uint8_t write_byte, uint8_t *read_byte)
 571{
 572	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 573	struct intel_dp *intel_dp = container_of(adapter,
 574						struct intel_dp,
 575						adapter);
 576	uint16_t address = algo_data->address;
 577	uint8_t msg[5];
 578	uint8_t reply[2];
 579	unsigned retry;
 580	int msg_bytes;
 581	int reply_bytes;
 582	int ret;
 583
 584	intel_dp_check_edp(intel_dp);
 585	/* Set up the command byte */
 586	if (mode & MODE_I2C_READ)
 587		msg[0] = AUX_I2C_READ << 4;
 588	else
 589		msg[0] = AUX_I2C_WRITE << 4;
 590
 591	if (!(mode & MODE_I2C_STOP))
 592		msg[0] |= AUX_I2C_MOT << 4;
 593
 594	msg[1] = address >> 8;
 595	msg[2] = address;
 596
 597	switch (mode) {
 598	case MODE_I2C_WRITE:
 599		msg[3] = 0;
 600		msg[4] = write_byte;
 601		msg_bytes = 5;
 602		reply_bytes = 1;
 603		break;
 604	case MODE_I2C_READ:
 605		msg[3] = 0;
 606		msg_bytes = 4;
 607		reply_bytes = 2;
 608		break;
 609	default:
 610		msg_bytes = 3;
 611		reply_bytes = 1;
 
 
 
 
 612		break;
 
 
 
 
 
 
 613	}
 614
 615	for (retry = 0; retry < 5; retry++) {
 616		ret = intel_dp_aux_ch(intel_dp,
 617				      msg, msg_bytes,
 618				      reply, reply_bytes);
 619		if (ret < 0) {
 620			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 621			return ret;
 622		}
 623
 624		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
 625		case AUX_NATIVE_REPLY_ACK:
 626			/* I2C-over-AUX Reply field is only valid
 627			 * when paired with AUX ACK.
 628			 */
 629			break;
 630		case AUX_NATIVE_REPLY_NACK:
 631			DRM_DEBUG_KMS("aux_ch native nack\n");
 632			return -EREMOTEIO;
 633		case AUX_NATIVE_REPLY_DEFER:
 634			udelay(100);
 635			continue;
 636		default:
 637			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 638				  reply[0]);
 639			return -EREMOTEIO;
 640		}
 641
 642		switch (reply[0] & AUX_I2C_REPLY_MASK) {
 643		case AUX_I2C_REPLY_ACK:
 644			if (mode == MODE_I2C_READ) {
 645				*read_byte = reply[1];
 646			}
 647			return reply_bytes - 1;
 648		case AUX_I2C_REPLY_NACK:
 649			DRM_DEBUG_KMS("aux_i2c nack\n");
 650			return -EREMOTEIO;
 651		case AUX_I2C_REPLY_DEFER:
 652			DRM_DEBUG_KMS("aux_i2c defer\n");
 653			udelay(100);
 654			break;
 655		default:
 656			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 657			return -EREMOTEIO;
 658		}
 659	}
 660
 661	DRM_ERROR("too many retries, giving up\n");
 662	return -EREMOTEIO;
 
 
 
 
 
 663}
 664
 665static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
 666static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
 667
 668static int
 669intel_dp_i2c_init(struct intel_dp *intel_dp,
 670		  struct intel_connector *intel_connector, const char *name)
 671{
 672	int	ret;
 673
 674	DRM_DEBUG_KMS("i2c_init %s\n", name);
 675	intel_dp->algo.running = false;
 676	intel_dp->algo.address = 0;
 677	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
 678
 679	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
 680	intel_dp->adapter.owner = THIS_MODULE;
 681	intel_dp->adapter.class = I2C_CLASS_DDC;
 682	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 683	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 684	intel_dp->adapter.algo_data = &intel_dp->algo;
 685	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
 686
 687	ironlake_edp_panel_vdd_on(intel_dp);
 688	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 689	ironlake_edp_panel_vdd_off(intel_dp, false);
 690	return ret;
 691}
 692
 693static bool
 694intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
 695		    struct drm_display_mode *adjusted_mode)
 696{
 697	struct drm_device *dev = encoder->dev;
 698	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	int lane_count, clock;
 
 700	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 701	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
 
 
 702	int bpp, mode_rate;
 703	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 
 704
 705	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
 706		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 707		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
 708					mode, adjusted_mode);
 709		/*
 710		 * the mode->clock is used to calculate the Data&Link M/N
 711		 * of the pipe. For the eDP the fixed clock should be used.
 712		 */
 713		mode->clock = intel_dp->panel_fixed_mode->clock;
 
 
 
 
 
 714	}
 715
 716	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 717		return false;
 718
 719	DRM_DEBUG_KMS("DP link computation with max lane count %i "
 720		      "max bw %02x pixel clock %iKHz\n",
 721		      max_lane_count, bws[max_clock], mode->clock);
 
 722
 723	if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
 724		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725
 726	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
 727	mode_rate = intel_dp_link_required(mode->clock, bpp);
 
 
 
 
 
 
 
 728
 729	for (clock = 0; clock <= max_clock; clock++) {
 730		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 731			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
 732
 733			if (mode_rate <= link_avail) {
 734				intel_dp->link_bw = bws[clock];
 735				intel_dp->lane_count = lane_count;
 736				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 737				DRM_DEBUG_KMS("DP link bw %02x lane "
 738						"count %d clock %d bpp %d\n",
 739				       intel_dp->link_bw, intel_dp->lane_count,
 740				       adjusted_mode->clock, bpp);
 741				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
 742					      mode_rate, link_avail);
 743				return true;
 744			}
 745		}
 746	}
 747
 748	return false;
 749}
 750
 751struct intel_dp_m_n {
 752	uint32_t	tu;
 753	uint32_t	gmch_m;
 754	uint32_t	gmch_n;
 755	uint32_t	link_m;
 756	uint32_t	link_n;
 757};
 758
 759static void
 760intel_reduce_ratio(uint32_t *num, uint32_t *den)
 761{
 762	while (*num > 0xffffff || *den > 0xffffff) {
 763		*num >>= 1;
 764		*den >>= 1;
 765	}
 766}
 767
 768static void
 769intel_dp_compute_m_n(int bpp,
 770		     int nlanes,
 771		     int pixel_clock,
 772		     int link_clock,
 773		     struct intel_dp_m_n *m_n)
 774{
 775	m_n->tu = 64;
 776	m_n->gmch_m = (pixel_clock * bpp) >> 3;
 777	m_n->gmch_n = link_clock * nlanes;
 778	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 779	m_n->link_m = pixel_clock;
 780	m_n->link_n = link_clock;
 781	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 
 
 
 
 
 
 
 
 782}
 783
 784void
 785intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 786		 struct drm_display_mode *adjusted_mode)
 787{
 788	struct drm_device *dev = crtc->dev;
 789	struct drm_mode_config *mode_config = &dev->mode_config;
 790	struct drm_encoder *encoder;
 791	struct drm_i915_private *dev_priv = dev->dev_private;
 792	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 793	int lane_count = 4;
 794	struct intel_dp_m_n m_n;
 795	int pipe = intel_crtc->pipe;
 796
 797	/*
 798	 * Find the lane count in the intel_encoder private
 799	 */
 800	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 801		struct intel_dp *intel_dp;
 802
 803		if (encoder->crtc != crtc)
 804			continue;
 
 805
 806		intel_dp = enc_to_intel_dp(encoder);
 807		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
 808		    intel_dp->base.type == INTEL_OUTPUT_EDP)
 809		{
 810			lane_count = intel_dp->lane_count;
 811			break;
 812		}
 
 
 
 813	}
 814
 815	/*
 816	 * Compute the GMCH and Link ratios. The '3' here is
 817	 * the number of bytes_per_pixel post-LUT, which we always
 818	 * set up for 8-bits of R/G/B, or 3 bytes total.
 819	 */
 820	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
 821			     mode->clock, adjusted_mode->clock, &m_n);
 822
 823	if (HAS_PCH_SPLIT(dev)) {
 824		I915_WRITE(TRANSDATA_M1(pipe),
 825			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 826			   m_n.gmch_m);
 827		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
 828		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
 829		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
 830	} else {
 831		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
 832			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 833			   m_n.gmch_m);
 834		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
 835		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
 836		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
 837	}
 838}
 839
 840static void ironlake_edp_pll_on(struct drm_encoder *encoder);
 841static void ironlake_edp_pll_off(struct drm_encoder *encoder);
 842
 843static void
 844intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
 845		  struct drm_display_mode *adjusted_mode)
 846{
 847	struct drm_device *dev = encoder->dev;
 848	struct drm_i915_private *dev_priv = dev->dev_private;
 849	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 850	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 851	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 852
 853	/* Turn on the eDP PLL if needed */
 854	if (is_edp(intel_dp)) {
 855		if (!is_pch_edp(intel_dp))
 856			ironlake_edp_pll_on(encoder);
 857		else
 858			ironlake_edp_pll_off(encoder);
 859	}
 860
 861	/*
 862	 * There are four kinds of DP registers:
 863	 *
 864	 * 	IBX PCH
 865	 * 	SNB CPU
 866	 *	IVB CPU
 867	 * 	CPT PCH
 868	 *
 869	 * IBX PCH and CPU are the same for almost everything,
 870	 * except that the CPU DP PLL is configured in this
 871	 * register
 872	 *
 873	 * CPT PCH is quite different, having many bits moved
 874	 * to the TRANS_DP_CTL register instead. That
 875	 * configuration happens (oddly) in ironlake_pch_enable
 876	 */
 877
 878	/* Preserve the BIOS-computed detected bit. This is
 879	 * supposed to be read-only.
 880	 */
 881	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
 882	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 883
 884	/* Handle DP bits in common between all three register formats */
 885
 886	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 
 887
 888	switch (intel_dp->lane_count) {
 889	case 1:
 890		intel_dp->DP |= DP_PORT_WIDTH_1;
 891		break;
 892	case 2:
 893		intel_dp->DP |= DP_PORT_WIDTH_2;
 894		break;
 895	case 4:
 896		intel_dp->DP |= DP_PORT_WIDTH_4;
 897		break;
 898	}
 899	if (intel_dp->has_audio) {
 900		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
 901				 pipe_name(intel_crtc->pipe));
 902		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 903		intel_write_eld(encoder, adjusted_mode);
 904	}
 905	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
 906	intel_dp->link_configuration[0] = intel_dp->link_bw;
 907	intel_dp->link_configuration[1] = intel_dp->lane_count;
 908	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
 909	/*
 910	 * Check for DPCD version > 1.1 and enhanced framing support
 911	 */
 912	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
 913	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
 914		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
 915	}
 916
 917	/* Split out the IBX/CPU vs CPT settings */
 918
 919	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
 920		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 921			intel_dp->DP |= DP_SYNC_HS_HIGH;
 922		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 923			intel_dp->DP |= DP_SYNC_VS_HIGH;
 924		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 925
 926		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
 927			intel_dp->DP |= DP_ENHANCED_FRAMING;
 928
 929		intel_dp->DP |= intel_crtc->pipe << 29;
 930
 931		/* don't miss out required setting for eDP */
 932		intel_dp->DP |= DP_PLL_ENABLE;
 933		if (adjusted_mode->clock < 200000)
 934			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 935		else
 936			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 937	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
 938		intel_dp->DP |= intel_dp->color_range;
 939
 940		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 941			intel_dp->DP |= DP_SYNC_HS_HIGH;
 942		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 943			intel_dp->DP |= DP_SYNC_VS_HIGH;
 944		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 945
 946		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
 947			intel_dp->DP |= DP_ENHANCED_FRAMING;
 948
 949		if (intel_crtc->pipe == 1)
 950			intel_dp->DP |= DP_PIPEB_SELECT;
 951
 952		if (is_cpu_edp(intel_dp)) {
 953			/* don't miss out required setting for eDP */
 954			intel_dp->DP |= DP_PLL_ENABLE;
 955			if (adjusted_mode->clock < 200000)
 956				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 957			else
 958				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 959		}
 960	} else {
 961		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 962	}
 
 
 
 963}
 964
 965#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 966#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
 967
 968#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 969#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
 970
 971#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
 972#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
 973
 974static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
 975				       u32 mask,
 976				       u32 value)
 977{
 978	struct drm_device *dev = intel_dp->base.base.dev;
 979	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 980
 981	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
 982		      mask, value,
 983		      I915_READ(PCH_PP_STATUS),
 984		      I915_READ(PCH_PP_CONTROL));
 985
 986	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
 987		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
 988			  I915_READ(PCH_PP_STATUS),
 989			  I915_READ(PCH_PP_CONTROL));
 990	}
 
 
 991}
 992
 993static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
 994{
 995	DRM_DEBUG_KMS("Wait for panel power on\n");
 996	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
 997}
 998
 999static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1000{
1001	DRM_DEBUG_KMS("Wait for panel power off time\n");
1002	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1003}
1004
1005static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1006{
1007	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1008	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
 
 
 
 
 
 
1009}
1010
 
 
 
 
 
 
 
 
 
 
 
1011
1012/* Read the current pp_control value, unlocking the register if it
1013 * is locked
1014 */
1015
1016static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1017{
1018	u32	control = I915_READ(PCH_PP_CONTROL);
 
 
1019
 
1020	control &= ~PANEL_UNLOCK_MASK;
1021	control |= PANEL_UNLOCK_REGS;
1022	return control;
1023}
1024
1025static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1026{
1027	struct drm_device *dev = intel_dp->base.base.dev;
1028	struct drm_i915_private *dev_priv = dev->dev_private;
1029	u32 pp;
 
 
1030
1031	if (!is_edp(intel_dp))
1032		return;
1033	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1034
1035	WARN(intel_dp->want_panel_vdd,
1036	     "eDP VDD already requested on\n");
1037
1038	intel_dp->want_panel_vdd = true;
1039
1040	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1041		DRM_DEBUG_KMS("eDP VDD already on\n");
1042		return;
1043	}
 
 
1044
1045	if (!ironlake_edp_have_panel_power(intel_dp))
1046		ironlake_wait_panel_power_cycle(intel_dp);
1047
1048	pp = ironlake_get_pp_control(dev_priv);
1049	pp |= EDP_FORCE_VDD;
1050	I915_WRITE(PCH_PP_CONTROL, pp);
1051	POSTING_READ(PCH_PP_CONTROL);
1052	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1053		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1054
 
 
 
 
 
 
 
1055	/*
1056	 * If the panel wasn't on, delay before accessing aux channel
1057	 */
1058	if (!ironlake_edp_have_panel_power(intel_dp)) {
1059		DRM_DEBUG_KMS("eDP was not running\n");
1060		msleep(intel_dp->panel_power_up_delay);
1061	}
 
 
 
 
 
 
 
 
 
 
 
1062}
1063
1064static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1065{
1066	struct drm_device *dev = intel_dp->base.base.dev;
1067	struct drm_i915_private *dev_priv = dev->dev_private;
1068	u32 pp;
 
 
 
1069
1070	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1071		pp = ironlake_get_pp_control(dev_priv);
 
 
1072		pp &= ~EDP_FORCE_VDD;
1073		I915_WRITE(PCH_PP_CONTROL, pp);
1074		POSTING_READ(PCH_PP_CONTROL);
 
 
 
 
1075
1076		/* Make sure sequencer is idle before allowing subsequent activity */
1077		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1078			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
 
 
 
1079
1080		msleep(intel_dp->panel_power_down_delay);
1081	}
1082}
1083
1084static void ironlake_panel_vdd_work(struct work_struct *__work)
1085{
1086	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1087						 struct intel_dp, panel_vdd_work);
1088	struct drm_device *dev = intel_dp->base.base.dev;
1089
1090	mutex_lock(&dev->mode_config.mutex);
1091	ironlake_panel_vdd_off_sync(intel_dp);
1092	mutex_unlock(&dev->mode_config.mutex);
1093}
1094
1095static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1096{
1097	if (!is_edp(intel_dp))
1098		return;
1099
1100	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1101	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1102
1103	intel_dp->want_panel_vdd = false;
1104
1105	if (sync) {
1106		ironlake_panel_vdd_off_sync(intel_dp);
1107	} else {
1108		/*
1109		 * Queue the timer to fire a long
1110		 * time from now (relative to the power down delay)
1111		 * to keep the panel power up across a sequence of operations
1112		 */
1113		schedule_delayed_work(&intel_dp->panel_vdd_work,
1114				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1115	}
1116}
1117
1118static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1119{
1120	struct drm_device *dev = intel_dp->base.base.dev;
1121	struct drm_i915_private *dev_priv = dev->dev_private;
1122	u32 pp;
 
1123
1124	if (!is_edp(intel_dp))
1125		return;
1126
1127	DRM_DEBUG_KMS("Turn eDP power on\n");
1128
1129	if (ironlake_edp_have_panel_power(intel_dp)) {
1130		DRM_DEBUG_KMS("eDP power already on\n");
1131		return;
1132	}
1133
1134	ironlake_wait_panel_power_cycle(intel_dp);
1135
1136	pp = ironlake_get_pp_control(dev_priv);
 
1137	if (IS_GEN5(dev)) {
1138		/* ILK workaround: disable reset around power sequence */
1139		pp &= ~PANEL_POWER_RESET;
1140		I915_WRITE(PCH_PP_CONTROL, pp);
1141		POSTING_READ(PCH_PP_CONTROL);
1142	}
1143
1144	pp |= POWER_TARGET_ON;
1145	if (!IS_GEN5(dev))
1146		pp |= PANEL_POWER_RESET;
1147
1148	I915_WRITE(PCH_PP_CONTROL, pp);
1149	POSTING_READ(PCH_PP_CONTROL);
1150
1151	ironlake_wait_panel_on(intel_dp);
 
1152
1153	if (IS_GEN5(dev)) {
1154		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1155		I915_WRITE(PCH_PP_CONTROL, pp);
1156		POSTING_READ(PCH_PP_CONTROL);
1157	}
1158}
1159
1160static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1161{
1162	struct drm_device *dev = intel_dp->base.base.dev;
1163	struct drm_i915_private *dev_priv = dev->dev_private;
1164	u32 pp;
 
1165
1166	if (!is_edp(intel_dp))
1167		return;
1168
1169	DRM_DEBUG_KMS("Turn eDP power off\n");
1170
 
 
1171	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1172
1173	pp = ironlake_get_pp_control(dev_priv);
1174	/* We need to switch off panel power _and_ force vdd, for otherwise some
1175	 * panels get very unhappy and cease to work. */
1176	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1177	I915_WRITE(PCH_PP_CONTROL, pp);
1178	POSTING_READ(PCH_PP_CONTROL);
 
1179
1180	intel_dp->want_panel_vdd = false;
1181
1182	ironlake_wait_panel_off(intel_dp);
 
 
 
 
 
 
 
1183}
1184
1185static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1186{
1187	struct drm_device *dev = intel_dp->base.base.dev;
 
1188	struct drm_i915_private *dev_priv = dev->dev_private;
1189	u32 pp;
 
1190
1191	if (!is_edp(intel_dp))
1192		return;
1193
1194	DRM_DEBUG_KMS("\n");
1195	/*
1196	 * If we enable the backlight right away following a panel power
1197	 * on, we may see slight flicker as the panel syncs with the eDP
1198	 * link.  So delay a bit to make sure the image is solid before
1199	 * allowing it to appear.
1200	 */
1201	msleep(intel_dp->backlight_on_delay);
1202	pp = ironlake_get_pp_control(dev_priv);
1203	pp |= EDP_BLC_ENABLE;
1204	I915_WRITE(PCH_PP_CONTROL, pp);
1205	POSTING_READ(PCH_PP_CONTROL);
 
 
 
 
 
1206}
1207
1208static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1209{
1210	struct drm_device *dev = intel_dp->base.base.dev;
1211	struct drm_i915_private *dev_priv = dev->dev_private;
1212	u32 pp;
 
1213
1214	if (!is_edp(intel_dp))
1215		return;
1216
 
 
1217	DRM_DEBUG_KMS("\n");
1218	pp = ironlake_get_pp_control(dev_priv);
1219	pp &= ~EDP_BLC_ENABLE;
1220	I915_WRITE(PCH_PP_CONTROL, pp);
1221	POSTING_READ(PCH_PP_CONTROL);
1222	msleep(intel_dp->backlight_off_delay);
 
 
 
1223}
1224
1225static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1226{
1227	struct drm_device *dev = encoder->dev;
 
 
1228	struct drm_i915_private *dev_priv = dev->dev_private;
1229	u32 dpa_ctl;
1230
 
 
 
1231	DRM_DEBUG_KMS("\n");
1232	dpa_ctl = I915_READ(DP_A);
1233	dpa_ctl |= DP_PLL_ENABLE;
1234	I915_WRITE(DP_A, dpa_ctl);
 
 
 
 
 
 
 
1235	POSTING_READ(DP_A);
1236	udelay(200);
1237}
1238
1239static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1240{
1241	struct drm_device *dev = encoder->dev;
 
 
1242	struct drm_i915_private *dev_priv = dev->dev_private;
1243	u32 dpa_ctl;
1244
 
 
 
1245	dpa_ctl = I915_READ(DP_A);
 
 
 
 
 
 
 
1246	dpa_ctl &= ~DP_PLL_ENABLE;
1247	I915_WRITE(DP_A, dpa_ctl);
1248	POSTING_READ(DP_A);
1249	udelay(200);
1250}
1251
1252/* If the sink supports it, try to set the power state appropriately */
1253static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1254{
1255	int ret, i;
1256
1257	/* Should have a valid DPCD by this point */
1258	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1259		return;
1260
1261	if (mode != DRM_MODE_DPMS_ON) {
1262		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1263						  DP_SET_POWER_D3);
1264		if (ret != 1)
1265			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1266	} else {
1267		/*
1268		 * When turning on, we need to retry for 1ms to give the sink
1269		 * time to wake up.
1270		 */
1271		for (i = 0; i < 3; i++) {
1272			ret = intel_dp_aux_native_write_1(intel_dp,
1273							  DP_SET_POWER,
1274							  DP_SET_POWER_D0);
1275			if (ret == 1)
1276				break;
1277			msleep(1);
1278		}
1279	}
1280}
1281
1282static void intel_dp_prepare(struct drm_encoder *encoder)
 
1283{
1284	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	/* Make sure the panel is off before trying to change the mode. But also
1288	 * ensure that we have vdd while we switch off the panel. */
1289	ironlake_edp_panel_vdd_on(intel_dp);
1290	ironlake_edp_backlight_off(intel_dp);
1291	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1292	ironlake_edp_panel_off(intel_dp);
1293	intel_dp_link_down(intel_dp);
 
 
 
1294}
1295
1296static void intel_dp_commit(struct drm_encoder *encoder)
1297{
1298	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1299	struct drm_device *dev = encoder->dev;
1300	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1301
1302	ironlake_edp_panel_vdd_on(intel_dp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1304	intel_dp_start_link_train(intel_dp);
1305	ironlake_edp_panel_on(intel_dp);
1306	ironlake_edp_panel_vdd_off(intel_dp, true);
1307	intel_dp_complete_link_train(intel_dp);
1308	ironlake_edp_backlight_on(intel_dp);
 
1309
1310	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
 
 
1311
1312	if (HAS_PCH_CPT(dev))
1313		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1314}
1315
1316static void
1317intel_dp_dpms(struct drm_encoder *encoder, int mode)
1318{
1319	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1320	struct drm_device *dev = encoder->dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	struct drm_i915_private *dev_priv = dev->dev_private;
1322	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
 
 
 
 
1323
1324	if (mode != DRM_MODE_DPMS_ON) {
1325		/* Switching the panel off requires vdd. */
1326		ironlake_edp_panel_vdd_on(intel_dp);
1327		ironlake_edp_backlight_off(intel_dp);
1328		intel_dp_sink_dpms(intel_dp, mode);
1329		ironlake_edp_panel_off(intel_dp);
1330		intel_dp_link_down(intel_dp);
1331
1332		if (is_cpu_edp(intel_dp))
1333			ironlake_edp_pll_off(encoder);
1334	} else {
1335		if (is_cpu_edp(intel_dp))
1336			ironlake_edp_pll_on(encoder);
 
 
 
 
 
1337
1338		ironlake_edp_panel_vdd_on(intel_dp);
1339		intel_dp_sink_dpms(intel_dp, mode);
1340		if (!(dp_reg & DP_PORT_EN)) {
1341			intel_dp_start_link_train(intel_dp);
1342			ironlake_edp_panel_on(intel_dp);
1343			ironlake_edp_panel_vdd_off(intel_dp, true);
1344			intel_dp_complete_link_train(intel_dp);
1345		} else
1346			ironlake_edp_panel_vdd_off(intel_dp, false);
1347		ironlake_edp_backlight_on(intel_dp);
1348	}
1349	intel_dp->dpms_mode = mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350}
1351
1352/*
1353 * Native read with retry for link status and receiver capability reads for
1354 * cases where the sink may still be asleep.
 
 
 
1355 */
1356static bool
1357intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1358			       uint8_t *recv, int recv_bytes)
1359{
1360	int ret, i;
 
1361
1362	/*
1363	 * Sinks are *supposed* to come up within 1ms from an off state,
1364	 * but we're also supposed to retry 3 times per the spec.
1365	 */
1366	for (i = 0; i < 3; i++) {
1367		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1368					       recv_bytes);
1369		if (ret == recv_bytes)
1370			return true;
1371		msleep(1);
1372	}
1373
1374	return false;
1375}
1376
1377/*
1378 * Fetch AUX CH registers 0x202 - 0x207 which contain
1379 * link status information
1380 */
1381static bool
1382intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1383{
1384	return intel_dp_aux_native_read_retry(intel_dp,
1385					      DP_LANE0_1_STATUS,
1386					      link_status,
1387					      DP_LINK_STATUS_SIZE);
1388}
1389
1390static uint8_t
1391intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1392		     int r)
1393{
1394	return link_status[r - DP_LANE0_1_STATUS];
1395}
1396
1397static uint8_t
1398intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1399				 int lane)
1400{
1401	int	    s = ((lane & 1) ?
1402			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1403			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1404	uint8_t l = adjust_request[lane>>1];
1405
1406	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1407}
1408
1409static uint8_t
1410intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1411				      int lane)
1412{
1413	int	    s = ((lane & 1) ?
1414			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1415			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1416	uint8_t l = adjust_request[lane>>1];
1417
1418	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1419}
1420
1421
1422#if 0
1423static char	*voltage_names[] = {
1424	"0.4V", "0.6V", "0.8V", "1.2V"
1425};
1426static char	*pre_emph_names[] = {
1427	"0dB", "3.5dB", "6dB", "9.5dB"
1428};
1429static char	*link_train_names[] = {
1430	"pattern 1", "pattern 2", "idle", "off"
1431};
1432#endif
1433
1434/*
1435 * These are source-specific values; current Intel hardware supports
1436 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1437 */
1438
1439static uint8_t
1440intel_dp_voltage_max(struct intel_dp *intel_dp)
1441{
1442	struct drm_device *dev = intel_dp->base.base.dev;
 
1443
1444	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
 
 
1445		return DP_TRAIN_VOLTAGE_SWING_800;
1446	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1447		return DP_TRAIN_VOLTAGE_SWING_1200;
1448	else
1449		return DP_TRAIN_VOLTAGE_SWING_800;
1450}
1451
1452static uint8_t
1453intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1454{
1455	struct drm_device *dev = intel_dp->base.base.dev;
 
1456
1457	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1459		case DP_TRAIN_VOLTAGE_SWING_400:
1460			return DP_TRAIN_PRE_EMPHASIS_6;
1461		case DP_TRAIN_VOLTAGE_SWING_600:
1462		case DP_TRAIN_VOLTAGE_SWING_800:
1463			return DP_TRAIN_PRE_EMPHASIS_3_5;
1464		default:
1465			return DP_TRAIN_PRE_EMPHASIS_0;
1466		}
1467	} else {
1468		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469		case DP_TRAIN_VOLTAGE_SWING_400:
1470			return DP_TRAIN_PRE_EMPHASIS_6;
1471		case DP_TRAIN_VOLTAGE_SWING_600:
1472			return DP_TRAIN_PRE_EMPHASIS_6;
1473		case DP_TRAIN_VOLTAGE_SWING_800:
1474			return DP_TRAIN_PRE_EMPHASIS_3_5;
1475		case DP_TRAIN_VOLTAGE_SWING_1200:
1476		default:
1477			return DP_TRAIN_PRE_EMPHASIS_0;
1478		}
1479	}
1480}
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482static void
1483intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
 
1484{
1485	uint8_t v = 0;
1486	uint8_t p = 0;
1487	int lane;
1488	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1489	uint8_t voltage_max;
1490	uint8_t preemph_max;
1491
1492	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1493		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1494		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1495
1496		if (this_v > v)
1497			v = this_v;
1498		if (this_p > p)
1499			p = this_p;
1500	}
1501
1502	voltage_max = intel_dp_voltage_max(intel_dp);
1503	if (v >= voltage_max)
1504		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1505
1506	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1507	if (p >= preemph_max)
1508		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1509
1510	for (lane = 0; lane < 4; lane++)
1511		intel_dp->train_set[lane] = v | p;
1512}
1513
1514static uint32_t
1515intel_dp_signal_levels(uint8_t train_set)
1516{
1517	uint32_t	signal_levels = 0;
1518
1519	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1520	case DP_TRAIN_VOLTAGE_SWING_400:
1521	default:
1522		signal_levels |= DP_VOLTAGE_0_4;
1523		break;
1524	case DP_TRAIN_VOLTAGE_SWING_600:
1525		signal_levels |= DP_VOLTAGE_0_6;
1526		break;
1527	case DP_TRAIN_VOLTAGE_SWING_800:
1528		signal_levels |= DP_VOLTAGE_0_8;
1529		break;
1530	case DP_TRAIN_VOLTAGE_SWING_1200:
1531		signal_levels |= DP_VOLTAGE_1_2;
1532		break;
1533	}
1534	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1535	case DP_TRAIN_PRE_EMPHASIS_0:
1536	default:
1537		signal_levels |= DP_PRE_EMPHASIS_0;
1538		break;
1539	case DP_TRAIN_PRE_EMPHASIS_3_5:
1540		signal_levels |= DP_PRE_EMPHASIS_3_5;
1541		break;
1542	case DP_TRAIN_PRE_EMPHASIS_6:
1543		signal_levels |= DP_PRE_EMPHASIS_6;
1544		break;
1545	case DP_TRAIN_PRE_EMPHASIS_9_5:
1546		signal_levels |= DP_PRE_EMPHASIS_9_5;
1547		break;
1548	}
1549	return signal_levels;
1550}
1551
1552/* Gen6's DP voltage swing and pre-emphasis control */
1553static uint32_t
1554intel_gen6_edp_signal_levels(uint8_t train_set)
1555{
1556	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1557					 DP_TRAIN_PRE_EMPHASIS_MASK);
1558	switch (signal_levels) {
1559	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1560	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1561		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1562	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1564	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1565	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1566		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1567	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1569		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1570	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1572		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1573	default:
1574		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1575			      "0x%x\n", signal_levels);
1576		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1577	}
1578}
1579
1580/* Gen7's DP voltage swing and pre-emphasis control */
1581static uint32_t
1582intel_gen7_edp_signal_levels(uint8_t train_set)
1583{
1584	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1585					 DP_TRAIN_PRE_EMPHASIS_MASK);
1586	switch (signal_levels) {
1587	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1588		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1589	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1591	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1592		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1593
1594	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1595		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1596	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1598
1599	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1600		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1601	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1602		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1603
1604	default:
1605		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606			      "0x%x\n", signal_levels);
1607		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1608	}
1609}
1610
1611static uint8_t
1612intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1613		      int lane)
1614{
1615	int s = (lane & 1) * 4;
1616	uint8_t l = link_status[lane>>1];
 
 
 
 
 
 
 
 
 
1617
1618	return (l >> s) & 0xf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619}
1620
1621/* Check for clock recovery is done on all channels */
1622static bool
1623intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1624{
1625	int lane;
1626	uint8_t lane_status;
 
 
 
 
 
 
 
1627
1628	for (lane = 0; lane < lane_count; lane++) {
1629		lane_status = intel_get_lane_status(link_status, lane);
1630		if ((lane_status & DP_LANE_CR_DONE) == 0)
1631			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632	}
1633	return true;
1634}
1635
1636/* Check to see if channel eq is done on all channels */
1637#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1638			 DP_LANE_CHANNEL_EQ_DONE|\
1639			 DP_LANE_SYMBOL_LOCKED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640static bool
1641intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
 
 
1642{
1643	uint8_t lane_align;
1644	uint8_t lane_status;
1645	int lane;
 
 
 
1646
1647	lane_align = intel_dp_link_status(link_status,
1648					  DP_LANE_ALIGN_STATUS_UPDATED);
1649	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1650		return false;
1651	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1652		lane_status = intel_get_lane_status(link_status, lane);
1653		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1654			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655	}
1656	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657}
1658
1659static bool
1660intel_dp_set_link_train(struct intel_dp *intel_dp,
1661			uint32_t dp_reg_value,
1662			uint8_t dp_train_pat)
1663{
1664	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
 
 
 
 
 
 
 
1665	struct drm_i915_private *dev_priv = dev->dev_private;
1666	int ret;
1667
1668	I915_WRITE(intel_dp->output_reg, dp_reg_value);
 
 
 
1669	POSTING_READ(intel_dp->output_reg);
1670
1671	intel_dp_aux_native_write_1(intel_dp,
1672				    DP_TRAINING_PATTERN_SET,
1673				    dp_train_pat);
1674
1675	ret = intel_dp_aux_native_write(intel_dp,
1676					DP_TRAINING_LANE0_SET,
1677					intel_dp->train_set,
1678					intel_dp->lane_count);
1679	if (ret != intel_dp->lane_count)
1680		return false;
1681
1682	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683}
1684
1685/* Enable corresponding port and start training pattern 1 */
1686static void
1687intel_dp_start_link_train(struct intel_dp *intel_dp)
1688{
1689	struct drm_device *dev = intel_dp->base.base.dev;
1690	struct drm_i915_private *dev_priv = dev->dev_private;
1691	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1692	int i;
1693	uint8_t voltage;
1694	bool clock_recovery = false;
1695	int voltage_tries, loop_tries;
1696	u32 reg;
1697	uint32_t DP = intel_dp->DP;
 
1698
1699	/*
1700	 * On CPT we have to enable the port in training pattern 1, which
1701	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1702	 * the port and wait for it to become active.
1703	 */
1704	if (!HAS_PCH_CPT(dev)) {
1705		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1706		POSTING_READ(intel_dp->output_reg);
1707		intel_wait_for_vblank(dev, intel_crtc->pipe);
1708	}
1709
1710	/* Write the link configuration data */
1711	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1712				  intel_dp->link_configuration,
1713				  DP_LINK_CONFIGURATION_SIZE);
 
 
 
 
 
 
1714
1715	DP |= DP_PORT_EN;
1716
1717	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1718		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1719	else
1720		DP &= ~DP_LINK_TRAIN_MASK;
1721	memset(intel_dp->train_set, 0, 4);
 
 
 
1722	voltage = 0xff;
1723	voltage_tries = 0;
1724	loop_tries = 0;
1725	clock_recovery = false;
1726	for (;;) {
1727		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1728		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1729		uint32_t    signal_levels;
1730
1731
1732		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1733			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1734			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1735		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1736			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1737			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1738		} else {
1739			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1740			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1741			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1742		}
1743
1744		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1745			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1746		else
1747			reg = DP | DP_LINK_TRAIN_PAT_1;
1748
1749		if (!intel_dp_set_link_train(intel_dp, reg,
1750					     DP_TRAINING_PATTERN_1 |
1751					     DP_LINK_SCRAMBLING_DISABLE))
1752			break;
1753		/* Set training pattern 1 */
1754
1755		udelay(100);
1756		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1757			DRM_ERROR("failed to get link status\n");
1758			break;
1759		}
1760
1761		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1762			DRM_DEBUG_KMS("clock recovery OK\n");
1763			clock_recovery = true;
1764			break;
1765		}
1766
1767		/* Check to see if we've tried the max voltage */
1768		for (i = 0; i < intel_dp->lane_count; i++)
1769			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1770				break;
1771		if (i == intel_dp->lane_count) {
1772			++loop_tries;
1773			if (loop_tries == 5) {
1774				DRM_DEBUG_KMS("too many full retries, give up\n");
1775				break;
1776			}
1777			memset(intel_dp->train_set, 0, 4);
 
 
1778			voltage_tries = 0;
1779			continue;
1780		}
1781
1782		/* Check to see if we've tried the same voltage 5 times */
1783		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1784			++voltage_tries;
1785			if (voltage_tries == 5) {
1786				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1787				break;
1788			}
1789		} else
1790			voltage_tries = 0;
1791		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1792
1793		/* Compute new intel_dp->train_set as requested by target */
1794		intel_get_adjust_train(intel_dp, link_status);
 
 
 
1795	}
1796
1797	intel_dp->DP = DP;
1798}
1799
1800static void
1801intel_dp_complete_link_train(struct intel_dp *intel_dp)
1802{
1803	struct drm_device *dev = intel_dp->base.base.dev;
1804	struct drm_i915_private *dev_priv = dev->dev_private;
1805	bool channel_eq = false;
1806	int tries, cr_tries;
1807	u32 reg;
1808	uint32_t DP = intel_dp->DP;
 
 
 
 
 
1809
1810	/* channel equalization */
 
 
 
 
 
 
 
1811	tries = 0;
1812	cr_tries = 0;
1813	channel_eq = false;
1814	for (;;) {
1815		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1816		uint32_t    signal_levels;
1817		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1818
1819		if (cr_tries > 5) {
1820			DRM_ERROR("failed to train DP, aborting\n");
1821			intel_dp_link_down(intel_dp);
1822			break;
1823		}
1824
1825		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1826			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1827			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1828		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1829			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1830			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1831		} else {
1832			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1833			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1834		}
1835
1836		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1837			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1838		else
1839			reg = DP | DP_LINK_TRAIN_PAT_2;
1840
1841		/* channel eq pattern */
1842		if (!intel_dp_set_link_train(intel_dp, reg,
1843					     DP_TRAINING_PATTERN_2 |
1844					     DP_LINK_SCRAMBLING_DISABLE))
1845			break;
1846
1847		udelay(400);
1848		if (!intel_dp_get_link_status(intel_dp, link_status))
1849			break;
 
1850
1851		/* Make sure clock is still ok */
1852		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1853			intel_dp_start_link_train(intel_dp);
 
 
 
1854			cr_tries++;
1855			continue;
1856		}
1857
1858		if (intel_channel_eq_ok(intel_dp, link_status)) {
1859			channel_eq = true;
1860			break;
1861		}
1862
1863		/* Try 5 times, then try clock recovery if that fails */
1864		if (tries > 5) {
1865			intel_dp_link_down(intel_dp);
1866			intel_dp_start_link_train(intel_dp);
 
 
 
1867			tries = 0;
1868			cr_tries++;
1869			continue;
1870		}
1871
1872		/* Compute new intel_dp->train_set as requested by target */
1873		intel_get_adjust_train(intel_dp, link_status);
 
 
 
1874		++tries;
1875	}
1876
1877	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1878		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1879	else
1880		reg = DP | DP_LINK_TRAIN_OFF;
1881
1882	I915_WRITE(intel_dp->output_reg, reg);
1883	POSTING_READ(intel_dp->output_reg);
1884	intel_dp_aux_native_write_1(intel_dp,
1885				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
 
 
 
 
 
 
 
1886}
1887
1888static void
1889intel_dp_link_down(struct intel_dp *intel_dp)
1890{
1891	struct drm_device *dev = intel_dp->base.base.dev;
 
 
1892	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
1893	uint32_t DP = intel_dp->DP;
1894
1895	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896		return;
1897
1898	DRM_DEBUG_KMS("\n");
1899
1900	if (is_edp(intel_dp)) {
1901		DP &= ~DP_PLL_ENABLE;
1902		I915_WRITE(intel_dp->output_reg, DP);
1903		POSTING_READ(intel_dp->output_reg);
1904		udelay(100);
1905	}
1906
1907	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1908		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1909		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1910	} else {
1911		DP &= ~DP_LINK_TRAIN_MASK;
1912		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1913	}
1914	POSTING_READ(intel_dp->output_reg);
1915
1916	msleep(17);
 
1917
1918	if (is_edp(intel_dp)) {
1919		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1920			DP |= DP_LINK_TRAIN_OFF_CPT;
1921		else
1922			DP |= DP_LINK_TRAIN_OFF;
1923	}
1924
1925	if (!HAS_PCH_CPT(dev) &&
1926	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1927		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1928
1929		/* Hardware workaround: leaving our transcoder select
1930		 * set to transcoder B while it's off will prevent the
1931		 * corresponding HDMI output on transcoder A.
1932		 *
1933		 * Combine this with another hardware workaround:
1934		 * transcoder select bit can only be cleared while the
1935		 * port is enabled.
1936		 */
1937		DP &= ~DP_PIPEB_SELECT;
1938		I915_WRITE(intel_dp->output_reg, DP);
1939
1940		/* Changes to enable or select take place the vblank
1941		 * after being written.
1942		 */
1943		if (crtc == NULL) {
1944			/* We can arrive here never having been attached
1945			 * to a CRTC, for instance, due to inheriting
1946			 * random state from the BIOS.
1947			 *
1948			 * If the pipe is not running, play safe and
1949			 * wait for the clocks to stabilise before
1950			 * continuing.
1951			 */
1952			POSTING_READ(intel_dp->output_reg);
1953			msleep(50);
1954		} else
1955			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1956	}
1957
1958	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1959	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1960	POSTING_READ(intel_dp->output_reg);
1961	msleep(intel_dp->panel_power_down_delay);
1962}
1963
1964static bool
1965intel_dp_get_dpcd(struct intel_dp *intel_dp)
1966{
1967	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1968					   sizeof(intel_dp->dpcd)) &&
1969	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1970		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971	}
1972
1973	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974}
1975
1976static void
1977intel_dp_probe_oui(struct intel_dp *intel_dp)
1978{
1979	u8 buf[3];
1980
1981	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1982		return;
1983
1984	ironlake_edp_panel_vdd_on(intel_dp);
1985
1986	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1987		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1988			      buf[0], buf[1], buf[2]);
1989
1990	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1991		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1992			      buf[0], buf[1], buf[2]);
1993
1994	ironlake_edp_panel_vdd_off(intel_dp, false);
1995}
1996
1997static bool
1998intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1999{
2000	int ret;
 
 
 
 
2001
2002	ret = intel_dp_aux_native_read_retry(intel_dp,
2003					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2004					     sink_irq_vector, 1);
2005	if (!ret)
2006		return false;
2007
2008	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009}
2010
2011static void
2012intel_dp_handle_test_request(struct intel_dp *intel_dp)
2013{
2014	/* NAK by default */
2015	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2016}
2017
2018/*
2019 * According to DP spec
2020 * 5.1.2:
2021 *  1. Read DPCD
2022 *  2. Configure link according to Receiver Capabilities
2023 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2024 *  4. Check link status on receipt of hot-plug interrupt
2025 */
2026
2027static void
2028intel_dp_check_link_status(struct intel_dp *intel_dp)
2029{
 
2030	u8 sink_irq_vector;
2031	u8 link_status[DP_LINK_STATUS_SIZE];
2032
2033	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2034		return;
2035
2036	if (!intel_dp->base.base.crtc)
2037		return;
2038
2039	/* Try to read receiver status if the link appears to be up */
2040	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2041		intel_dp_link_down(intel_dp);
2042		return;
2043	}
2044
2045	/* Now read the DPCD to see if it's actually running */
2046	if (!intel_dp_get_dpcd(intel_dp)) {
2047		intel_dp_link_down(intel_dp);
2048		return;
2049	}
2050
2051	/* Try to read the source of the interrupt */
2052	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2053	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2054		/* Clear interrupt source */
2055		intel_dp_aux_native_write_1(intel_dp,
2056					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2057					    sink_irq_vector);
2058
2059		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2060			intel_dp_handle_test_request(intel_dp);
2061		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2062			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2063	}
2064
2065	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2066		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2067			      drm_get_encoder_name(&intel_dp->base.base));
2068		intel_dp_start_link_train(intel_dp);
2069		intel_dp_complete_link_train(intel_dp);
 
2070	}
2071}
2072
 
2073static enum drm_connector_status
2074intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2075{
2076	if (intel_dp_get_dpcd(intel_dp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2077		return connector_status_connected;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078	return connector_status_disconnected;
2079}
2080
2081static enum drm_connector_status
2082ironlake_dp_detect(struct intel_dp *intel_dp)
2083{
 
 
 
2084	enum drm_connector_status status;
2085
2086	/* Can't disconnect eDP, but you can close the lid... */
2087	if (is_edp(intel_dp)) {
2088		status = intel_panel_detect(intel_dp->base.base.dev);
2089		if (status == connector_status_unknown)
2090			status = connector_status_connected;
2091		return status;
2092	}
2093
 
 
 
2094	return intel_dp_detect_dpcd(intel_dp);
2095}
2096
2097static enum drm_connector_status
2098g4x_dp_detect(struct intel_dp *intel_dp)
2099{
2100	struct drm_device *dev = intel_dp->base.base.dev;
2101	struct drm_i915_private *dev_priv = dev->dev_private;
2102	uint32_t temp, bit;
 
2103
2104	switch (intel_dp->output_reg) {
2105	case DP_B:
2106		bit = DPB_HOTPLUG_INT_STATUS;
2107		break;
2108	case DP_C:
2109		bit = DPC_HOTPLUG_INT_STATUS;
2110		break;
2111	case DP_D:
2112		bit = DPD_HOTPLUG_INT_STATUS;
2113		break;
2114	default:
2115		return connector_status_unknown;
2116	}
2117
2118	temp = I915_READ(PORT_HOTPLUG_STAT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119
2120	if ((temp & bit) == 0)
2121		return connector_status_disconnected;
2122
2123	return intel_dp_detect_dpcd(intel_dp);
2124}
2125
2126static struct edid *
2127intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128{
2129	struct intel_dp *intel_dp = intel_attached_dp(connector);
2130	struct edid	*edid;
2131	int size;
2132
2133	if (is_edp(intel_dp)) {
2134		if (!intel_dp->edid)
2135			return NULL;
2136
2137		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138		edid = kmalloc(size, GFP_KERNEL);
2139		if (!edid)
2140			return NULL;
2141
2142		memcpy(edid, intel_dp->edid, size);
2143		return edid;
2144	}
2145
2146	edid = drm_get_edid(connector, adapter);
2147	return edid;
2148}
2149
2150static int
2151intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152{
2153	struct intel_dp *intel_dp = intel_attached_dp(connector);
2154	int	ret;
2155
2156	if (is_edp(intel_dp)) {
2157		drm_mode_connector_update_edid_property(connector,
2158							intel_dp->edid);
2159		ret = drm_add_edid_modes(connector, intel_dp->edid);
2160		drm_edid_to_eld(connector,
2161				intel_dp->edid);
2162		connector->display_info.raw_edid = NULL;
2163		return intel_dp->edid_mode_count;
2164	}
2165
2166	ret = intel_ddc_get_modes(connector, adapter);
2167	return ret;
2168}
2169
2170
2171/**
2172 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173 *
2174 * \return true if DP port is connected.
2175 * \return false if DP port is disconnected.
2176 */
2177static enum drm_connector_status
2178intel_dp_detect(struct drm_connector *connector, bool force)
2179{
2180	struct intel_dp *intel_dp = intel_attached_dp(connector);
2181	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
2182	enum drm_connector_status status;
 
2183	struct edid *edid = NULL;
2184
 
 
 
 
 
 
 
 
2185	intel_dp->has_audio = false;
2186
2187	if (HAS_PCH_SPLIT(dev))
2188		status = ironlake_dp_detect(intel_dp);
2189	else
2190		status = g4x_dp_detect(intel_dp);
2191
2192	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197	if (status != connector_status_connected)
2198		return status;
2199
2200	intel_dp_probe_oui(intel_dp);
2201
2202	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204	} else {
2205		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206		if (edid) {
2207			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208			connector->display_info.raw_edid = NULL;
2209			kfree(edid);
2210		}
2211	}
2212
2213	return connector_status_connected;
 
 
 
 
 
 
 
 
 
2214}
2215
2216static int intel_dp_get_modes(struct drm_connector *connector)
2217{
2218	struct intel_dp *intel_dp = intel_attached_dp(connector);
2219	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
2220	struct drm_i915_private *dev_priv = dev->dev_private;
 
2221	int ret;
2222
2223	/* We should parse the EDID data and find out if it has an audio sink
2224	 */
2225
2226	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227	if (ret) {
2228		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229			struct drm_display_mode *newmode;
2230			list_for_each_entry(newmode, &connector->probed_modes,
2231					    head) {
2232				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233					intel_dp->panel_fixed_mode =
2234						drm_mode_duplicate(dev, newmode);
2235					break;
2236				}
2237			}
2238		}
2239		return ret;
2240	}
2241
2242	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2243	if (is_edp(intel_dp)) {
2244		/* initialize panel mode from VBT if available for eDP */
2245		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246			intel_dp->panel_fixed_mode =
2247				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248			if (intel_dp->panel_fixed_mode) {
2249				intel_dp->panel_fixed_mode->type |=
2250					DRM_MODE_TYPE_PREFERRED;
2251			}
2252		}
2253		if (intel_dp->panel_fixed_mode) {
2254			struct drm_display_mode *mode;
2255			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256			drm_mode_probed_add(connector, mode);
2257			return 1;
2258		}
2259	}
2260	return 0;
2261}
2262
2263static bool
2264intel_dp_detect_audio(struct drm_connector *connector)
2265{
2266	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
 
 
 
2267	struct edid *edid;
2268	bool has_audio = false;
2269
2270	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
 
 
 
2271	if (edid) {
2272		has_audio = drm_detect_monitor_audio(edid);
2273
2274		connector->display_info.raw_edid = NULL;
2275		kfree(edid);
2276	}
2277
 
 
2278	return has_audio;
2279}
2280
2281static int
2282intel_dp_set_property(struct drm_connector *connector,
2283		      struct drm_property *property,
2284		      uint64_t val)
2285{
2286	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
2288	int ret;
2289
2290	ret = drm_connector_property_set_value(connector, property, val);
2291	if (ret)
2292		return ret;
2293
2294	if (property == dev_priv->force_audio_property) {
2295		int i = val;
2296		bool has_audio;
2297
2298		if (i == intel_dp->force_audio)
2299			return 0;
2300
2301		intel_dp->force_audio = i;
2302
2303		if (i == HDMI_AUDIO_AUTO)
2304			has_audio = intel_dp_detect_audio(connector);
2305		else
2306			has_audio = (i == HDMI_AUDIO_ON);
2307
2308		if (has_audio == intel_dp->has_audio)
2309			return 0;
2310
2311		intel_dp->has_audio = has_audio;
2312		goto done;
2313	}
2314
2315	if (property == dev_priv->broadcast_rgb_property) {
2316		if (val == !!intel_dp->color_range)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317			return 0;
2318
2319		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320		goto done;
2321	}
2322
2323	return -EINVAL;
2324
2325done:
2326	if (intel_dp->base.base.crtc) {
2327		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329					 crtc->x, crtc->y,
2330					 crtc->fb);
2331	}
2332
2333	return 0;
2334}
2335
2336static void
2337intel_dp_destroy(struct drm_connector *connector)
2338{
2339	struct drm_device *dev = connector->dev;
2340
2341	if (intel_dpd_is_edp(dev))
2342		intel_panel_destroy_backlight(dev);
 
 
 
 
 
2343
2344	drm_sysfs_connector_remove(connector);
2345	drm_connector_cleanup(connector);
2346	kfree(connector);
2347}
2348
2349static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350{
2351	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
2352
2353	i2c_del_adapter(&intel_dp->adapter);
2354	drm_encoder_cleanup(encoder);
2355	if (is_edp(intel_dp)) {
2356		kfree(intel_dp->edid);
2357		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358		ironlake_panel_vdd_off_sync(intel_dp);
 
 
2359	}
2360	kfree(intel_dp);
2361}
2362
2363static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364	.dpms = intel_dp_dpms,
2365	.mode_fixup = intel_dp_mode_fixup,
2366	.prepare = intel_dp_prepare,
2367	.mode_set = intel_dp_mode_set,
2368	.commit = intel_dp_commit,
2369};
2370
2371static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372	.dpms = drm_helper_connector_dpms,
2373	.detect = intel_dp_detect,
2374	.fill_modes = drm_helper_probe_single_connector_modes,
2375	.set_property = intel_dp_set_property,
2376	.destroy = intel_dp_destroy,
2377};
2378
2379static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380	.get_modes = intel_dp_get_modes,
2381	.mode_valid = intel_dp_mode_valid,
2382	.best_encoder = intel_best_encoder,
2383};
2384
2385static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386	.destroy = intel_dp_encoder_destroy,
2387};
2388
2389static void
2390intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391{
2392	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394	intel_dp_check_link_status(intel_dp);
2395}
2396
2397/* Return which DP Port should be selected for Transcoder DP control */
2398int
2399intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400{
2401	struct drm_device *dev = crtc->dev;
2402	struct drm_mode_config *mode_config = &dev->mode_config;
2403	struct drm_encoder *encoder;
2404
2405	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2406		struct intel_dp *intel_dp;
2407
2408		if (encoder->crtc != crtc)
2409			continue;
2410
2411		intel_dp = enc_to_intel_dp(encoder);
2412		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2413		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2414			return intel_dp->output_reg;
2415	}
2416
2417	return -1;
2418}
2419
2420/* check the VBT to see whether the eDP is on DP-D port */
2421bool intel_dpd_is_edp(struct drm_device *dev)
2422{
2423	struct drm_i915_private *dev_priv = dev->dev_private;
2424	struct child_device_config *p_child;
2425	int i;
 
 
 
 
 
2426
2427	if (!dev_priv->child_dev_num)
 
 
 
2428		return false;
2429
2430	for (i = 0; i < dev_priv->child_dev_num; i++) {
2431		p_child = dev_priv->child_dev + i;
2432
2433		if (p_child->dvo_port == PORT_IDPD &&
2434		    p_child->device_type == DEVICE_TYPE_eDP)
 
2435			return true;
2436	}
2437	return false;
2438}
2439
2440static void
2441intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2442{
 
 
2443	intel_attach_force_audio_property(connector);
2444	intel_attach_broadcast_rgb_property(connector);
 
 
 
 
 
 
 
 
 
 
2445}
2446
2447void
2448intel_dp_init(struct drm_device *dev, int output_reg)
 
 
 
 
 
 
 
 
 
2449{
2450	struct drm_i915_private *dev_priv = dev->dev_private;
2451	struct drm_connector *connector;
2452	struct intel_dp *intel_dp;
2453	struct intel_encoder *intel_encoder;
2454	struct intel_connector *intel_connector;
2455	const char *name = NULL;
2456	int type;
2457
2458	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2459	if (!intel_dp)
2460		return;
 
 
 
 
2461
2462	intel_dp->output_reg = output_reg;
2463	intel_dp->dpms_mode = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2466	if (!intel_connector) {
2467		kfree(intel_dp);
2468		return;
2469	}
2470	intel_encoder = &intel_dp->base;
2471
2472	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2473		if (intel_dpd_is_edp(dev))
2474			intel_dp->is_pch_edp = true;
2475
2476	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2477		type = DRM_MODE_CONNECTOR_eDP;
2478		intel_encoder->type = INTEL_OUTPUT_EDP;
 
 
 
 
 
 
 
 
 
 
 
2479	} else {
2480		type = DRM_MODE_CONNECTOR_DisplayPort;
2481		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
 
 
 
2482	}
2483
2484	connector = &intel_connector->base;
2485	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2486	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	connector->polled = DRM_CONNECTOR_POLL_HPD;
2489
2490	if (output_reg == DP_B || output_reg == PCH_DP_B)
2491		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2492	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2493		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2494	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2495		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2496
2497	if (is_edp(intel_dp)) {
2498		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2499		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2500				  ironlake_panel_vdd_work);
2501	}
2502
2503	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
 
 
 
 
 
 
 
 
 
 
 
 
2504
2505	connector->interlace_allowed = true;
2506	connector->doublescan_allowed = 0;
2507
2508	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2509			 DRM_MODE_ENCODER_TMDS);
2510	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511
2512	intel_connector_attach_encoder(intel_connector, intel_encoder);
2513	drm_sysfs_connector_add(connector);
2514
2515	/* Set up the DDC bus. */
2516	switch (output_reg) {
2517		case DP_A:
2518			name = "DPDDC-A";
2519			break;
2520		case DP_B:
2521		case PCH_DP_B:
2522			dev_priv->hotplug_supported_mask |=
2523				HDMIB_HOTPLUG_INT_STATUS;
2524			name = "DPDDC-B";
2525			break;
2526		case DP_C:
2527		case PCH_DP_C:
2528			dev_priv->hotplug_supported_mask |=
2529				HDMIC_HOTPLUG_INT_STATUS;
2530			name = "DPDDC-C";
2531			break;
2532		case DP_D:
2533		case PCH_DP_D:
2534			dev_priv->hotplug_supported_mask |=
2535				HDMID_HOTPLUG_INT_STATUS;
2536			name = "DPDDC-D";
2537			break;
2538	}
 
2539
2540	intel_dp_i2c_init(intel_dp, intel_connector, name);
2541
2542	/* Cache some DPCD data in the eDP case */
2543	if (is_edp(intel_dp)) {
2544		bool ret;
2545		struct edp_power_seq	cur, vbt;
2546		u32 pp_on, pp_off, pp_div;
2547		struct edid *edid;
2548
2549		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2550		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2551		pp_div = I915_READ(PCH_PP_DIVISOR);
 
 
 
 
 
2552
2553		if (!pp_on || !pp_off || !pp_div) {
2554			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2555			intel_dp_encoder_destroy(&intel_dp->base.base);
2556			intel_dp_destroy(&intel_connector->base);
2557			return;
2558		}
2559
2560		/* Pull timing values out of registers */
2561		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2562			PANEL_POWER_UP_DELAY_SHIFT;
2563
2564		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2565			PANEL_LIGHT_ON_DELAY_SHIFT;
 
 
 
 
 
 
 
 
 
 
2566
2567		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2568			PANEL_LIGHT_OFF_DELAY_SHIFT;
 
 
 
 
 
 
 
2569
2570		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2571			PANEL_POWER_DOWN_DELAY_SHIFT;
2572
2573		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2574			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
 
2575
2576		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2577			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
 
 
2578
2579		vbt = dev_priv->edp.pps;
 
 
 
 
 
 
2580
2581		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2582			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
 
2583
2584#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
 
2585
2586		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2587		intel_dp->backlight_on_delay = get_delay(t8);
2588		intel_dp->backlight_off_delay = get_delay(t9);
2589		intel_dp->panel_power_down_delay = get_delay(t10);
2590		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2591
2592		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2593			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2594			      intel_dp->panel_power_cycle_delay);
2595
2596		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2597			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2598
2599		ironlake_edp_panel_vdd_on(intel_dp);
2600		ret = intel_dp_get_dpcd(intel_dp);
2601		ironlake_edp_panel_vdd_off(intel_dp, false);
 
 
2602
2603		if (ret) {
2604			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2605				dev_priv->no_aux_handshake =
2606					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2607					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2608		} else {
2609			/* if this fails, presume the device is a ghost */
2610			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2611			intel_dp_encoder_destroy(&intel_dp->base.base);
2612			intel_dp_destroy(&intel_connector->base);
2613			return;
2614		}
 
 
 
 
 
2615
2616		ironlake_edp_panel_vdd_on(intel_dp);
2617		edid = drm_get_edid(connector, &intel_dp->adapter);
2618		if (edid) {
2619			drm_mode_connector_update_edid_property(connector,
2620								edid);
2621			intel_dp->edid_mode_count =
2622				drm_add_edid_modes(connector, edid);
2623			drm_edid_to_eld(connector, edid);
2624			intel_dp->edid = edid;
2625		}
2626		ironlake_edp_panel_vdd_off(intel_dp, false);
2627	}
2628
2629	intel_encoder->hot_plug = intel_dp_hot_plug;
2630
2631	if (is_edp(intel_dp)) {
2632		dev_priv->int_edp_connector = connector;
2633		intel_panel_setup_backlight(dev);
 
 
 
 
 
 
 
 
 
 
2634	}
2635
2636	intel_dp_add_properties(intel_dp, connector);
2637
2638	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2639	 * 0xd.  Failure to do so will result in spurious interrupts being
2640	 * generated on the port when a cable is not attached.
2641	 */
2642	if (IS_G4X(dev) && !IS_GM45(dev)) {
2643		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2644		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	}
2646}
v3.15
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include <linux/export.h>
  31#include <drm/drmP.h>
  32#include <drm/drm_crtc.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_edid.h>
 
  35#include "intel_drv.h"
  36#include <drm/i915_drm.h>
  37#include "i915_drv.h"
 
  38
 
 
  39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  40
  41struct dp_link_dpll {
  42	int link_bw;
  43	struct dpll dpll;
  44};
  45
  46static const struct dp_link_dpll gen4_dpll[] = {
  47	{ DP_LINK_BW_1_62,
  48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  49	{ DP_LINK_BW_2_7,
  50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  51};
  52
  53static const struct dp_link_dpll pch_dpll[] = {
  54	{ DP_LINK_BW_1_62,
  55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  56	{ DP_LINK_BW_2_7,
  57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  58};
  59
  60static const struct dp_link_dpll vlv_dpll[] = {
  61	{ DP_LINK_BW_1_62,
  62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  63	{ DP_LINK_BW_2_7,
  64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65};
  66
  67/**
  68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69 * @intel_dp: DP struct
  70 *
  71 * If a CPU or PCH DP output is attached to an eDP panel, this function
  72 * will return true, and false otherwise.
  73 */
  74static bool is_edp(struct intel_dp *intel_dp)
  75{
  76	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 
  77
  78	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
 
 
 
 
 
 
  82{
  83	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 
  84
  85	return intel_dig_port->base.base.dev;
 
 
  86}
  87
  88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  89{
  90	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
 
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93static void intel_dp_link_down(struct intel_dp *intel_dp);
  94static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
  95static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97static int
  98intel_dp_max_link_bw(struct intel_dp *intel_dp)
  99{
 100	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 101	struct drm_device *dev = intel_dp->attached_connector->base.dev;
 102
 103	switch (max_link_bw) {
 104	case DP_LINK_BW_1_62:
 105	case DP_LINK_BW_2_7:
 106		break;
 107	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
 108		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
 109		     INTEL_INFO(dev)->gen >= 8) &&
 110		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
 111			max_link_bw = DP_LINK_BW_5_4;
 112		else
 113			max_link_bw = DP_LINK_BW_2_7;
 114		break;
 115	default:
 116		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
 117		     max_link_bw);
 118		max_link_bw = DP_LINK_BW_1_62;
 119		break;
 120	}
 121	return max_link_bw;
 122}
 123
 124static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
 
 125{
 126	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 127	struct drm_device *dev = intel_dig_port->base.base.dev;
 128	u8 source_max, sink_max;
 129
 130	source_max = 4;
 131	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
 132	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
 133		source_max = 2;
 134
 135	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
 136
 137	return min(source_max, sink_max);
 138}
 139
 140/*
 141 * The units on the numbers in the next two are... bizarre.  Examples will
 142 * make it clearer; this one parallels an example in the eDP spec.
 143 *
 144 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 145 *
 146 *     270000 * 1 * 8 / 10 == 216000
 147 *
 148 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 149 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 150 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 151 * 119000.  At 18bpp that's 2142000 kilobits per second.
 152 *
 153 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 154 * get the result in decakilobits instead of kilobits.
 155 */
 156
 157static int
 158intel_dp_link_required(int pixel_clock, int bpp)
 159{
 160	return (pixel_clock * bpp + 9) / 10;
 161}
 162
 163static int
 164intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 165{
 166	return (max_link_clock * max_lanes * 8) / 10;
 167}
 168
 169static enum drm_mode_status
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170intel_dp_mode_valid(struct drm_connector *connector,
 171		    struct drm_display_mode *mode)
 172{
 173	struct intel_dp *intel_dp = intel_attached_dp(connector);
 174	struct intel_connector *intel_connector = to_intel_connector(connector);
 175	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
 176	int target_clock = mode->clock;
 177	int max_rate, mode_rate, max_lanes, max_link_clock;
 178
 179	if (is_edp(intel_dp) && fixed_mode) {
 180		if (mode->hdisplay > fixed_mode->hdisplay)
 181			return MODE_PANEL;
 182
 183		if (mode->vdisplay > fixed_mode->vdisplay)
 184			return MODE_PANEL;
 185
 186		target_clock = fixed_mode->clock;
 187	}
 188
 189	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
 190	max_lanes = intel_dp_max_lane_count(intel_dp);
 191
 192	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
 193	mode_rate = intel_dp_link_required(target_clock, 18);
 194
 195	if (mode_rate > max_rate)
 196		return MODE_CLOCK_HIGH;
 197
 198	if (mode->clock < 10000)
 199		return MODE_CLOCK_LOW;
 200
 201	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 202		return MODE_H_ILLEGAL;
 203
 204	return MODE_OK;
 205}
 206
 207static uint32_t
 208pack_aux(uint8_t *src, int src_bytes)
 209{
 210	int	i;
 211	uint32_t v = 0;
 212
 213	if (src_bytes > 4)
 214		src_bytes = 4;
 215	for (i = 0; i < src_bytes; i++)
 216		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 217	return v;
 218}
 219
 220static void
 221unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 222{
 223	int i;
 224	if (dst_bytes > 4)
 225		dst_bytes = 4;
 226	for (i = 0; i < dst_bytes; i++)
 227		dst[i] = src >> ((3-i) * 8);
 228}
 229
 230/* hrawclock is 1/4 the FSB frequency */
 231static int
 232intel_hrawclk(struct drm_device *dev)
 233{
 234	struct drm_i915_private *dev_priv = dev->dev_private;
 235	uint32_t clkcfg;
 236
 237	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
 238	if (IS_VALLEYVIEW(dev))
 239		return 200;
 240
 241	clkcfg = I915_READ(CLKCFG);
 242	switch (clkcfg & CLKCFG_FSB_MASK) {
 243	case CLKCFG_FSB_400:
 244		return 100;
 245	case CLKCFG_FSB_533:
 246		return 133;
 247	case CLKCFG_FSB_667:
 248		return 166;
 249	case CLKCFG_FSB_800:
 250		return 200;
 251	case CLKCFG_FSB_1067:
 252		return 266;
 253	case CLKCFG_FSB_1333:
 254		return 333;
 255	/* these two are just a guess; one of them might be right */
 256	case CLKCFG_FSB_1600:
 257	case CLKCFG_FSB_1600_ALT:
 258		return 400;
 259	default:
 260		return 133;
 261	}
 262}
 263
 264static void
 265intel_dp_init_panel_power_sequencer(struct drm_device *dev,
 266				    struct intel_dp *intel_dp,
 267				    struct edp_power_seq *out);
 268static void
 269intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
 270					      struct intel_dp *intel_dp,
 271					      struct edp_power_seq *out);
 272
 273static enum pipe
 274vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
 275{
 276	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 277	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
 278	struct drm_device *dev = intel_dig_port->base.base.dev;
 279	struct drm_i915_private *dev_priv = dev->dev_private;
 280	enum port port = intel_dig_port->port;
 281	enum pipe pipe;
 282
 283	/* modeset should have pipe */
 284	if (crtc)
 285		return to_intel_crtc(crtc)->pipe;
 286
 287	/* init time, try to find a pipe with this port selected */
 288	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
 289		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
 290			PANEL_PORT_SELECT_MASK;
 291		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
 292			return pipe;
 293		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
 294			return pipe;
 295	}
 296
 297	/* shrug */
 298	return PIPE_A;
 299}
 300
 301static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
 302{
 303	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 304
 305	if (HAS_PCH_SPLIT(dev))
 306		return PCH_PP_CONTROL;
 307	else
 308		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
 309}
 310
 311static u32 _pp_stat_reg(struct intel_dp *intel_dp)
 312{
 313	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 314
 315	if (HAS_PCH_SPLIT(dev))
 316		return PCH_PP_STATUS;
 317	else
 318		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
 319}
 320
 321static bool edp_have_panel_power(struct intel_dp *intel_dp)
 322{
 323	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 324	struct drm_i915_private *dev_priv = dev->dev_private;
 325
 326	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
 327}
 328
 329static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
 330{
 331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333
 334	return !dev_priv->pm.suspended &&
 335	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
 336}
 337
 338static void
 339intel_dp_check_edp(struct intel_dp *intel_dp)
 340{
 341	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 342	struct drm_i915_private *dev_priv = dev->dev_private;
 343
 344	if (!is_edp(intel_dp))
 345		return;
 346
 347	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
 348		WARN(1, "eDP powered off while attempting aux channel communication.\n");
 349		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
 350			      I915_READ(_pp_stat_reg(intel_dp)),
 351			      I915_READ(_pp_ctrl_reg(intel_dp)));
 352	}
 353}
 354
 355static uint32_t
 356intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
 
 
 357{
 358	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 359	struct drm_device *dev = intel_dig_port->base.base.dev;
 360	struct drm_i915_private *dev_priv = dev->dev_private;
 361	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
 
 
 
 362	uint32_t status;
 363	bool done;
 
 364
 365#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 366	if (has_aux_irq)
 367		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
 368					  msecs_to_jiffies_timeout(10));
 369	else
 370		done = wait_for_atomic(C, 10) == 0;
 371	if (!done)
 372		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
 373			  has_aux_irq);
 374#undef C
 375
 376	return status;
 377}
 378
 379static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 380{
 381	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 382	struct drm_device *dev = intel_dig_port->base.base.dev;
 383
 384	/*
 385	 * The clock divider is based off the hrawclk, and would like to run at
 386	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
 387	 */
 388	return index ? 0 : intel_hrawclk(dev) / 2;
 389}
 390
 391static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 392{
 393	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 394	struct drm_device *dev = intel_dig_port->base.base.dev;
 395
 396	if (index)
 397		return 0;
 398
 399	if (intel_dig_port->port == PORT_A) {
 400		if (IS_GEN6(dev) || IS_GEN7(dev))
 401			return 200; /* SNB & IVB eDP input clock at 400Mhz */
 402		else
 403			return 225; /* eDP input clock at 450Mhz */
 404	} else {
 405		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
 406	}
 407}
 408
 409static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 410{
 411	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 412	struct drm_device *dev = intel_dig_port->base.base.dev;
 413	struct drm_i915_private *dev_priv = dev->dev_private;
 414
 415	if (intel_dig_port->port == PORT_A) {
 416		if (index)
 417			return 0;
 418		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
 419	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
 420		/* Workaround for non-ULT HSW */
 421		switch (index) {
 422		case 0: return 63;
 423		case 1: return 72;
 424		default: return 0;
 425		}
 426	} else  {
 427		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
 428	}
 429}
 430
 431static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 432{
 433	return index ? 0 : 100;
 434}
 435
 436static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
 437				      bool has_aux_irq,
 438				      int send_bytes,
 439				      uint32_t aux_clock_divider)
 440{
 441	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 442	struct drm_device *dev = intel_dig_port->base.base.dev;
 443	uint32_t precharge, timeout;
 444
 445	if (IS_GEN6(dev))
 446		precharge = 3;
 447	else
 448		precharge = 5;
 449
 450	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
 451		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
 452	else
 453		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
 454
 455	return DP_AUX_CH_CTL_SEND_BUSY |
 456	       DP_AUX_CH_CTL_DONE |
 457	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
 458	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
 459	       timeout |
 460	       DP_AUX_CH_CTL_RECEIVE_ERROR |
 461	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 462	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 463	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
 464}
 465
 466static int
 467intel_dp_aux_ch(struct intel_dp *intel_dp,
 468		uint8_t *send, int send_bytes,
 469		uint8_t *recv, int recv_size)
 470{
 471	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 472	struct drm_device *dev = intel_dig_port->base.base.dev;
 473	struct drm_i915_private *dev_priv = dev->dev_private;
 474	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
 475	uint32_t ch_data = ch_ctl + 4;
 476	uint32_t aux_clock_divider;
 477	int i, ret, recv_bytes;
 478	uint32_t status;
 479	int try, clock = 0;
 480	bool has_aux_irq = HAS_AUX_IRQ(dev);
 481	bool vdd;
 482
 483	vdd = _edp_panel_vdd_on(intel_dp);
 484
 485	/* dp aux is extremely sensitive to irq latency, hence request the
 486	 * lowest possible wakeup latency and so prevent the cpu from going into
 487	 * deep sleep states.
 488	 */
 489	pm_qos_update_request(&dev_priv->pm_qos, 0);
 490
 491	intel_dp_check_edp(intel_dp);
 492
 493	intel_aux_display_runtime_get(dev_priv);
 494
 495	/* Try to wait for any previous AUX channel activity */
 496	for (try = 0; try < 3; try++) {
 497		status = I915_READ_NOTRACE(ch_ctl);
 498		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 499			break;
 500		msleep(1);
 501	}
 502
 503	if (try == 3) {
 504		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 505		     I915_READ(ch_ctl));
 506		ret = -EBUSY;
 507		goto out;
 508	}
 509
 510	/* Only 5 data registers! */
 511	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
 512		ret = -E2BIG;
 513		goto out;
 514	}
 515
 516	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
 517		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
 518							  has_aux_irq,
 519							  send_bytes,
 520							  aux_clock_divider);
 521
 522		/* Must try at least 3 times according to DP spec */
 523		for (try = 0; try < 5; try++) {
 524			/* Load the send data into the aux channel data registers */
 525			for (i = 0; i < send_bytes; i += 4)
 526				I915_WRITE(ch_data + i,
 527					   pack_aux(send + i, send_bytes - i));
 528
 529			/* Send the command and wait for it to complete */
 530			I915_WRITE(ch_ctl, send_ctl);
 531
 532			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
 533
 534			/* Clear done status and any errors */
 535			I915_WRITE(ch_ctl,
 536				   status |
 537				   DP_AUX_CH_CTL_DONE |
 538				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 539				   DP_AUX_CH_CTL_RECEIVE_ERROR);
 540
 541			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
 542				      DP_AUX_CH_CTL_RECEIVE_ERROR))
 543				continue;
 544			if (status & DP_AUX_CH_CTL_DONE)
 545				break;
 
 546		}
 
 
 
 
 
 
 
 
 
 
 
 547		if (status & DP_AUX_CH_CTL_DONE)
 548			break;
 549	}
 550
 551	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 552		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 553		ret = -EBUSY;
 554		goto out;
 555	}
 556
 557	/* Check for timeout or receive error.
 558	 * Timeouts occur when the sink is not connected
 559	 */
 560	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 561		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 562		ret = -EIO;
 563		goto out;
 564	}
 565
 566	/* Timeouts occur when the device isn't connected, so they're
 567	 * "normal" -- don't fill the kernel log with these */
 568	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 569		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 570		ret = -ETIMEDOUT;
 571		goto out;
 572	}
 573
 574	/* Unload any bytes sent back from the other side */
 575	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 576		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 577	if (recv_bytes > recv_size)
 578		recv_bytes = recv_size;
 579
 580	for (i = 0; i < recv_bytes; i += 4)
 581		unpack_aux(I915_READ(ch_data + i),
 582			   recv + i, recv_bytes - i);
 583
 584	ret = recv_bytes;
 585out:
 586	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
 587	intel_aux_display_runtime_put(dev_priv);
 588
 589	if (vdd)
 590		edp_panel_vdd_off(intel_dp, false);
 
 
 
 
 
 
 
 591
 592	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593}
 594
 595#define BARE_ADDRESS_SIZE	3
 596#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
 597static ssize_t
 598intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
 599{
 600	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
 601	uint8_t txbuf[20], rxbuf[20];
 602	size_t txsize, rxsize;
 
 
 603	int ret;
 604
 605	txbuf[0] = msg->request << 4;
 606	txbuf[1] = msg->address >> 8;
 607	txbuf[2] = msg->address & 0xff;
 608	txbuf[3] = msg->size - 1;
 609
 610	switch (msg->request & ~DP_AUX_I2C_MOT) {
 611	case DP_AUX_NATIVE_WRITE:
 612	case DP_AUX_I2C_WRITE:
 613		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
 614		rxsize = 1;
 615
 616		if (WARN_ON(txsize > 20))
 617			return -E2BIG;
 618
 619		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
 620
 621		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
 622		if (ret > 0) {
 623			msg->reply = rxbuf[0] >> 4;
 624
 625			/* Return payload size. */
 626			ret = msg->size;
 627		}
 628		break;
 629
 630	case DP_AUX_NATIVE_READ:
 631	case DP_AUX_I2C_READ:
 632		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
 633		rxsize = msg->size + 1;
 634
 635		if (WARN_ON(rxsize > 20))
 636			return -E2BIG;
 637
 638		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
 639		if (ret > 0) {
 640			msg->reply = rxbuf[0] >> 4;
 641			/*
 642			 * Assume happy day, and copy the data. The caller is
 643			 * expected to check msg->reply before touching it.
 644			 *
 645			 * Return payload size.
 646			 */
 647			ret--;
 648			memcpy(msg->buffer, rxbuf + 1, ret);
 649		}
 650		break;
 651
 652	default:
 653		ret = -EINVAL;
 654		break;
 655	}
 656
 657	return ret;
 658}
 659
 660static void
 661intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
 
 662{
 663	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 664	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 665	enum port port = intel_dig_port->port;
 666	const char *name = NULL;
 
 
 
 
 
 
 667	int ret;
 668
 669	switch (port) {
 670	case PORT_A:
 671		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
 672		name = "DPDDC-A";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673		break;
 674	case PORT_B:
 675		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
 676		name = "DPDDC-B";
 677		break;
 678	case PORT_C:
 679		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
 680		name = "DPDDC-C";
 681		break;
 682	case PORT_D:
 683		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
 684		name = "DPDDC-D";
 685		break;
 686	default:
 687		BUG();
 688	}
 689
 690	if (!HAS_DDI(dev))
 691		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
 
 
 
 
 
 
 692
 693	intel_dp->aux.name = name;
 694	intel_dp->aux.dev = dev->dev;
 695	intel_dp->aux.transfer = intel_dp_aux_transfer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
 698		      connector->base.kdev->kobj.name);
 699
 700	ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
 701	if (ret < 0) {
 702		DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
 703			  name, ret);
 704		return;
 
 
 
 
 
 
 
 
 
 705	}
 706
 707	ret = sysfs_create_link(&connector->base.kdev->kobj,
 708				&intel_dp->aux.ddc.dev.kobj,
 709				intel_dp->aux.ddc.dev.kobj.name);
 710	if (ret < 0) {
 711		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
 712		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
 713	}
 714}
 715
 716static void
 717intel_dp_connector_unregister(struct intel_connector *intel_connector)
 
 
 
 
 718{
 719	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
 720
 721	sysfs_remove_link(&intel_connector->base.kdev->kobj,
 722			  intel_dp->aux.ddc.dev.kobj.name);
 723	intel_connector_unregister(intel_connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724}
 725
 726static void
 727intel_dp_set_clock(struct intel_encoder *encoder,
 728		   struct intel_crtc_config *pipe_config, int link_bw)
 729{
 730	struct drm_device *dev = encoder->base.dev;
 731	const struct dp_link_dpll *divisor = NULL;
 732	int i, count = 0;
 733
 734	if (IS_G4X(dev)) {
 735		divisor = gen4_dpll;
 736		count = ARRAY_SIZE(gen4_dpll);
 737	} else if (IS_HASWELL(dev)) {
 738		/* Haswell has special-purpose DP DDI clocks. */
 739	} else if (HAS_PCH_SPLIT(dev)) {
 740		divisor = pch_dpll;
 741		count = ARRAY_SIZE(pch_dpll);
 742	} else if (IS_VALLEYVIEW(dev)) {
 743		divisor = vlv_dpll;
 744		count = ARRAY_SIZE(vlv_dpll);
 745	}
 746
 747	if (divisor && count) {
 748		for (i = 0; i < count; i++) {
 749			if (link_bw == divisor[i].link_bw) {
 750				pipe_config->dpll = divisor[i].dpll;
 751				pipe_config->clock_set = true;
 752				break;
 753			}
 754		}
 755	}
 756}
 757
 758bool
 759intel_dp_compute_config(struct intel_encoder *encoder,
 760			struct intel_crtc_config *pipe_config)
 761{
 762	struct drm_device *dev = encoder->base.dev;
 763	struct drm_i915_private *dev_priv = dev->dev_private;
 764	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
 765	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 766	enum port port = dp_to_dig_port(intel_dp)->port;
 767	struct intel_crtc *intel_crtc = encoder->new_crtc;
 768	struct intel_connector *intel_connector = intel_dp->attached_connector;
 769	int lane_count, clock;
 770	int min_lane_count = 1;
 771	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 772	/* Conveniently, the link BW constants become indices with a shift...*/
 773	int min_clock = 0;
 774	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
 775	int bpp, mode_rate;
 776	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
 777	int link_avail, link_clock;
 778
 779	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
 780		pipe_config->has_pch_encoder = true;
 781
 782	pipe_config->has_dp_encoder = true;
 783
 784	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
 785		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
 786				       adjusted_mode);
 787		if (!HAS_PCH_SPLIT(dev))
 788			intel_gmch_panel_fitting(intel_crtc, pipe_config,
 789						 intel_connector->panel.fitting_mode);
 790		else
 791			intel_pch_panel_fitting(intel_crtc, pipe_config,
 792						intel_connector->panel.fitting_mode);
 793	}
 794
 795	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
 796		return false;
 797
 798	DRM_DEBUG_KMS("DP link computation with max lane count %i "
 799		      "max bw %02x pixel clock %iKHz\n",
 800		      max_lane_count, bws[max_clock],
 801		      adjusted_mode->crtc_clock);
 802
 803	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
 804	 * bpc in between. */
 805	bpp = pipe_config->pipe_bpp;
 806	if (is_edp(intel_dp)) {
 807		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
 808			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
 809				      dev_priv->vbt.edp_bpp);
 810			bpp = dev_priv->vbt.edp_bpp;
 811		}
 812
 813		if (IS_BROADWELL(dev)) {
 814			/* Yes, it's an ugly hack. */
 815			min_lane_count = max_lane_count;
 816			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
 817				      min_lane_count);
 818		} else if (dev_priv->vbt.edp_lanes) {
 819			min_lane_count = min(dev_priv->vbt.edp_lanes,
 820					     max_lane_count);
 821			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
 822				      min_lane_count);
 823		}
 824
 825		if (dev_priv->vbt.edp_rate) {
 826			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
 827			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
 828				      bws[min_clock]);
 829		}
 830	}
 831
 832	for (; bpp >= 6*3; bpp -= 2*3) {
 833		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
 834						   bpp);
 835
 836		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
 837			for (clock = min_clock; clock <= max_clock; clock++) {
 838				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
 839				link_avail = intel_dp_max_data_rate(link_clock,
 840								    lane_count);
 841
 842				if (mode_rate <= link_avail) {
 843					goto found;
 844				}
 
 
 
 
 
 
 
 
 
 
 
 
 845			}
 846		}
 847	}
 848
 849	return false;
 
 850
 851found:
 852	if (intel_dp->color_range_auto) {
 853		/*
 854		 * See:
 855		 * CEA-861-E - 5.1 Default Encoding Parameters
 856		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
 857		 */
 858		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
 859			intel_dp->color_range = DP_COLOR_RANGE_16_235;
 860		else
 861			intel_dp->color_range = 0;
 
 
 
 862	}
 
 863
 864	if (intel_dp->color_range)
 865		pipe_config->limited_color_range = true;
 866
 867	intel_dp->link_bw = bws[clock];
 868	intel_dp->lane_count = lane_count;
 869	pipe_config->pipe_bpp = bpp;
 870	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
 871
 872	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
 873		      intel_dp->link_bw, intel_dp->lane_count,
 874		      pipe_config->port_clock, bpp);
 875	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
 876		      mode_rate, link_avail);
 877
 878	intel_link_compute_m_n(bpp, lane_count,
 879			       adjusted_mode->crtc_clock,
 880			       pipe_config->port_clock,
 881			       &pipe_config->dp_m_n);
 882
 883	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
 884
 885	return true;
 886}
 887
 888static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
 
 
 889{
 890	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 891	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
 892	struct drm_device *dev = crtc->base.dev;
 893	struct drm_i915_private *dev_priv = dev->dev_private;
 894	u32 dpa_ctl;
 
 
 
 
 
 
 
 
 
 895
 896	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
 897	dpa_ctl = I915_READ(DP_A);
 898	dpa_ctl &= ~DP_PLL_FREQ_MASK;
 899
 900	if (crtc->config.port_clock == 162000) {
 901		/* For a long time we've carried around a ILK-DevA w/a for the
 902		 * 160MHz clock. If we're really unlucky, it's still required.
 903		 */
 904		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
 905		dpa_ctl |= DP_PLL_FREQ_160MHZ;
 906		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 907	} else {
 908		dpa_ctl |= DP_PLL_FREQ_270MHZ;
 909		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 910	}
 911
 912	I915_WRITE(DP_A, dpa_ctl);
 
 
 
 
 
 
 913
 914	POSTING_READ(DP_A);
 915	udelay(500);
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918static void intel_dp_mode_set(struct intel_encoder *encoder)
 
 
 
 
 
 919{
 920	struct drm_device *dev = encoder->base.dev;
 921	struct drm_i915_private *dev_priv = dev->dev_private;
 922	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 923	enum port port = dp_to_dig_port(intel_dp)->port;
 924	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
 925	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
 
 
 
 
 
 
 
 926
 927	/*
 928	 * There are four kinds of DP registers:
 929	 *
 930	 * 	IBX PCH
 931	 * 	SNB CPU
 932	 *	IVB CPU
 933	 * 	CPT PCH
 934	 *
 935	 * IBX PCH and CPU are the same for almost everything,
 936	 * except that the CPU DP PLL is configured in this
 937	 * register
 938	 *
 939	 * CPT PCH is quite different, having many bits moved
 940	 * to the TRANS_DP_CTL register instead. That
 941	 * configuration happens (oddly) in ironlake_pch_enable
 942	 */
 943
 944	/* Preserve the BIOS-computed detected bit. This is
 945	 * supposed to be read-only.
 946	 */
 947	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
 
 948
 949	/* Handle DP bits in common between all three register formats */
 
 950	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 951	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
 952
 
 
 
 
 
 
 
 
 
 
 
 953	if (intel_dp->has_audio) {
 954		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
 955				 pipe_name(crtc->pipe));
 956		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 957		intel_write_eld(&encoder->base, adjusted_mode);
 
 
 
 
 
 
 
 
 
 
 
 958	}
 959
 960	/* Split out the IBX/CPU vs CPT settings */
 961
 962	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
 963		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 964			intel_dp->DP |= DP_SYNC_HS_HIGH;
 965		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 966			intel_dp->DP |= DP_SYNC_VS_HIGH;
 967		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 968
 969		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
 970			intel_dp->DP |= DP_ENHANCED_FRAMING;
 971
 972		intel_dp->DP |= crtc->pipe << 29;
 973	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
 974		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
 975			intel_dp->DP |= intel_dp->color_range;
 
 
 
 
 
 
 976
 977		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 978			intel_dp->DP |= DP_SYNC_HS_HIGH;
 979		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 980			intel_dp->DP |= DP_SYNC_VS_HIGH;
 981		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 982
 983		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
 984			intel_dp->DP |= DP_ENHANCED_FRAMING;
 985
 986		if (crtc->pipe == 1)
 987			intel_dp->DP |= DP_PIPEB_SELECT;
 
 
 
 
 
 
 
 
 
 988	} else {
 989		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 990	}
 991
 992	if (port == PORT_A && !IS_VALLEYVIEW(dev))
 993		ironlake_set_pll_cpu_edp(intel_dp);
 994}
 995
 996#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 997#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
 998
 999#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1000#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1001
1002#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005static void wait_panel_status(struct intel_dp *intel_dp,
1006				       u32 mask,
1007				       u32 value)
1008{
1009	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010	struct drm_i915_private *dev_priv = dev->dev_private;
1011	u32 pp_stat_reg, pp_ctrl_reg;
1012
1013	pp_stat_reg = _pp_stat_reg(intel_dp);
1014	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1015
1016	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017			mask, value,
1018			I915_READ(pp_stat_reg),
1019			I915_READ(pp_ctrl_reg));
1020
1021	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023				I915_READ(pp_stat_reg),
1024				I915_READ(pp_ctrl_reg));
1025	}
1026
1027	DRM_DEBUG_KMS("Wait complete\n");
1028}
1029
1030static void wait_panel_on(struct intel_dp *intel_dp)
1031{
1032	DRM_DEBUG_KMS("Wait for panel power on\n");
1033	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1034}
1035
1036static void wait_panel_off(struct intel_dp *intel_dp)
1037{
1038	DRM_DEBUG_KMS("Wait for panel power off time\n");
1039	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1040}
1041
1042static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1043{
1044	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1045
1046	/* When we disable the VDD override bit last we have to do the manual
1047	 * wait. */
1048	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1049				       intel_dp->panel_power_cycle_delay);
1050
1051	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052}
1053
1054static void wait_backlight_on(struct intel_dp *intel_dp)
1055{
1056	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1057				       intel_dp->backlight_on_delay);
1058}
1059
1060static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1061{
1062	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1063				       intel_dp->backlight_off_delay);
1064}
1065
1066/* Read the current pp_control value, unlocking the register if it
1067 * is locked
1068 */
1069
1070static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1071{
1072	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1073	struct drm_i915_private *dev_priv = dev->dev_private;
1074	u32 control;
1075
1076	control = I915_READ(_pp_ctrl_reg(intel_dp));
1077	control &= ~PANEL_UNLOCK_MASK;
1078	control |= PANEL_UNLOCK_REGS;
1079	return control;
1080}
1081
1082static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1083{
1084	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1085	struct drm_i915_private *dev_priv = dev->dev_private;
1086	u32 pp;
1087	u32 pp_stat_reg, pp_ctrl_reg;
1088	bool need_to_disable = !intel_dp->want_panel_vdd;
1089
1090	if (!is_edp(intel_dp))
1091		return false;
 
 
 
 
1092
1093	intel_dp->want_panel_vdd = true;
1094
1095	if (edp_have_panel_vdd(intel_dp))
1096		return need_to_disable;
1097
1098	intel_runtime_pm_get(dev_priv);
1099
1100	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1101
1102	if (!edp_have_panel_power(intel_dp))
1103		wait_panel_power_cycle(intel_dp);
1104
1105	pp = ironlake_get_pp_control(intel_dp);
1106	pp |= EDP_FORCE_VDD;
 
 
 
 
1107
1108	pp_stat_reg = _pp_stat_reg(intel_dp);
1109	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1110
1111	I915_WRITE(pp_ctrl_reg, pp);
1112	POSTING_READ(pp_ctrl_reg);
1113	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1114			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1115	/*
1116	 * If the panel wasn't on, delay before accessing aux channel
1117	 */
1118	if (!edp_have_panel_power(intel_dp)) {
1119		DRM_DEBUG_KMS("eDP was not running\n");
1120		msleep(intel_dp->panel_power_up_delay);
1121	}
1122
1123	return need_to_disable;
1124}
1125
1126void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1127{
1128	if (is_edp(intel_dp)) {
1129		bool vdd = _edp_panel_vdd_on(intel_dp);
1130
1131		WARN(!vdd, "eDP VDD already requested on\n");
1132	}
1133}
1134
1135static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1136{
1137	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1138	struct drm_i915_private *dev_priv = dev->dev_private;
1139	u32 pp;
1140	u32 pp_stat_reg, pp_ctrl_reg;
1141
1142	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1143
1144	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1145		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1146
1147		pp = ironlake_get_pp_control(intel_dp);
1148		pp &= ~EDP_FORCE_VDD;
1149
1150		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1151		pp_stat_reg = _pp_stat_reg(intel_dp);
1152
1153		I915_WRITE(pp_ctrl_reg, pp);
1154		POSTING_READ(pp_ctrl_reg);
1155
1156		/* Make sure sequencer is idle before allowing subsequent activity */
1157		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1158		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1159
1160		if ((pp & POWER_TARGET_ON) == 0)
1161			intel_dp->last_power_cycle = jiffies;
1162
1163		intel_runtime_pm_put(dev_priv);
1164	}
1165}
1166
1167static void edp_panel_vdd_work(struct work_struct *__work)
1168{
1169	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1170						 struct intel_dp, panel_vdd_work);
1171	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172
1173	mutex_lock(&dev->mode_config.mutex);
1174	edp_panel_vdd_off_sync(intel_dp);
1175	mutex_unlock(&dev->mode_config.mutex);
1176}
1177
1178static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1179{
1180	if (!is_edp(intel_dp))
1181		return;
1182
 
1183	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1184
1185	intel_dp->want_panel_vdd = false;
1186
1187	if (sync) {
1188		edp_panel_vdd_off_sync(intel_dp);
1189	} else {
1190		/*
1191		 * Queue the timer to fire a long
1192		 * time from now (relative to the power down delay)
1193		 * to keep the panel power up across a sequence of operations
1194		 */
1195		schedule_delayed_work(&intel_dp->panel_vdd_work,
1196				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1197	}
1198}
1199
1200void intel_edp_panel_on(struct intel_dp *intel_dp)
1201{
1202	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1203	struct drm_i915_private *dev_priv = dev->dev_private;
1204	u32 pp;
1205	u32 pp_ctrl_reg;
1206
1207	if (!is_edp(intel_dp))
1208		return;
1209
1210	DRM_DEBUG_KMS("Turn eDP power on\n");
1211
1212	if (edp_have_panel_power(intel_dp)) {
1213		DRM_DEBUG_KMS("eDP power already on\n");
1214		return;
1215	}
1216
1217	wait_panel_power_cycle(intel_dp);
1218
1219	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1220	pp = ironlake_get_pp_control(intel_dp);
1221	if (IS_GEN5(dev)) {
1222		/* ILK workaround: disable reset around power sequence */
1223		pp &= ~PANEL_POWER_RESET;
1224		I915_WRITE(pp_ctrl_reg, pp);
1225		POSTING_READ(pp_ctrl_reg);
1226	}
1227
1228	pp |= POWER_TARGET_ON;
1229	if (!IS_GEN5(dev))
1230		pp |= PANEL_POWER_RESET;
1231
1232	I915_WRITE(pp_ctrl_reg, pp);
1233	POSTING_READ(pp_ctrl_reg);
1234
1235	wait_panel_on(intel_dp);
1236	intel_dp->last_power_on = jiffies;
1237
1238	if (IS_GEN5(dev)) {
1239		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1240		I915_WRITE(pp_ctrl_reg, pp);
1241		POSTING_READ(pp_ctrl_reg);
1242	}
1243}
1244
1245void intel_edp_panel_off(struct intel_dp *intel_dp)
1246{
1247	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	u32 pp;
1250	u32 pp_ctrl_reg;
1251
1252	if (!is_edp(intel_dp))
1253		return;
1254
1255	DRM_DEBUG_KMS("Turn eDP power off\n");
1256
1257	edp_wait_backlight_off(intel_dp);
1258
1259	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1260
1261	pp = ironlake_get_pp_control(intel_dp);
1262	/* We need to switch off panel power _and_ force vdd, for otherwise some
1263	 * panels get very unhappy and cease to work. */
1264	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1265		EDP_BLC_ENABLE);
1266
1267	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1268
1269	intel_dp->want_panel_vdd = false;
1270
1271	I915_WRITE(pp_ctrl_reg, pp);
1272	POSTING_READ(pp_ctrl_reg);
1273
1274	intel_dp->last_power_cycle = jiffies;
1275	wait_panel_off(intel_dp);
1276
1277	/* We got a reference when we enabled the VDD. */
1278	intel_runtime_pm_put(dev_priv);
1279}
1280
1281void intel_edp_backlight_on(struct intel_dp *intel_dp)
1282{
1283	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284	struct drm_device *dev = intel_dig_port->base.base.dev;
1285	struct drm_i915_private *dev_priv = dev->dev_private;
1286	u32 pp;
1287	u32 pp_ctrl_reg;
1288
1289	if (!is_edp(intel_dp))
1290		return;
1291
1292	DRM_DEBUG_KMS("\n");
1293	/*
1294	 * If we enable the backlight right away following a panel power
1295	 * on, we may see slight flicker as the panel syncs with the eDP
1296	 * link.  So delay a bit to make sure the image is solid before
1297	 * allowing it to appear.
1298	 */
1299	wait_backlight_on(intel_dp);
1300	pp = ironlake_get_pp_control(intel_dp);
1301	pp |= EDP_BLC_ENABLE;
1302
1303	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1304
1305	I915_WRITE(pp_ctrl_reg, pp);
1306	POSTING_READ(pp_ctrl_reg);
1307
1308	intel_panel_enable_backlight(intel_dp->attached_connector);
1309}
1310
1311void intel_edp_backlight_off(struct intel_dp *intel_dp)
1312{
1313	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1314	struct drm_i915_private *dev_priv = dev->dev_private;
1315	u32 pp;
1316	u32 pp_ctrl_reg;
1317
1318	if (!is_edp(intel_dp))
1319		return;
1320
1321	intel_panel_disable_backlight(intel_dp->attached_connector);
1322
1323	DRM_DEBUG_KMS("\n");
1324	pp = ironlake_get_pp_control(intel_dp);
1325	pp &= ~EDP_BLC_ENABLE;
1326
1327	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1328
1329	I915_WRITE(pp_ctrl_reg, pp);
1330	POSTING_READ(pp_ctrl_reg);
1331	intel_dp->last_backlight_off = jiffies;
1332}
1333
1334static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1335{
1336	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338	struct drm_device *dev = crtc->dev;
1339	struct drm_i915_private *dev_priv = dev->dev_private;
1340	u32 dpa_ctl;
1341
1342	assert_pipe_disabled(dev_priv,
1343			     to_intel_crtc(crtc)->pipe);
1344
1345	DRM_DEBUG_KMS("\n");
1346	dpa_ctl = I915_READ(DP_A);
1347	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1348	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350	/* We don't adjust intel_dp->DP while tearing down the link, to
1351	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1352	 * enable bits here to ensure that we don't enable too much. */
1353	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1354	intel_dp->DP |= DP_PLL_ENABLE;
1355	I915_WRITE(DP_A, intel_dp->DP);
1356	POSTING_READ(DP_A);
1357	udelay(200);
1358}
1359
1360static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1361{
1362	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1363	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1364	struct drm_device *dev = crtc->dev;
1365	struct drm_i915_private *dev_priv = dev->dev_private;
1366	u32 dpa_ctl;
1367
1368	assert_pipe_disabled(dev_priv,
1369			     to_intel_crtc(crtc)->pipe);
1370
1371	dpa_ctl = I915_READ(DP_A);
1372	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1373	     "dp pll off, should be on\n");
1374	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1375
1376	/* We can't rely on the value tracked for the DP register in
1377	 * intel_dp->DP because link_down must not change that (otherwise link
1378	 * re-training will fail. */
1379	dpa_ctl &= ~DP_PLL_ENABLE;
1380	I915_WRITE(DP_A, dpa_ctl);
1381	POSTING_READ(DP_A);
1382	udelay(200);
1383}
1384
1385/* If the sink supports it, try to set the power state appropriately */
1386void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1387{
1388	int ret, i;
1389
1390	/* Should have a valid DPCD by this point */
1391	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1392		return;
1393
1394	if (mode != DRM_MODE_DPMS_ON) {
1395		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1396					 DP_SET_POWER_D3);
1397		if (ret != 1)
1398			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1399	} else {
1400		/*
1401		 * When turning on, we need to retry for 1ms to give the sink
1402		 * time to wake up.
1403		 */
1404		for (i = 0; i < 3; i++) {
1405			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1406						 DP_SET_POWER_D0);
 
1407			if (ret == 1)
1408				break;
1409			msleep(1);
1410		}
1411	}
1412}
1413
1414static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1415				  enum pipe *pipe)
1416{
1417	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418	enum port port = dp_to_dig_port(intel_dp)->port;
1419	struct drm_device *dev = encoder->base.dev;
1420	struct drm_i915_private *dev_priv = dev->dev_private;
1421	enum intel_display_power_domain power_domain;
1422	u32 tmp;
1423
1424	power_domain = intel_display_port_power_domain(encoder);
1425	if (!intel_display_power_enabled(dev_priv, power_domain))
1426		return false;
1427
1428	tmp = I915_READ(intel_dp->output_reg);
1429
1430	if (!(tmp & DP_PORT_EN))
1431		return false;
1432
1433	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1434		*pipe = PORT_TO_PIPE_CPT(tmp);
1435	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1436		*pipe = PORT_TO_PIPE(tmp);
1437	} else {
1438		u32 trans_sel;
1439		u32 trans_dp;
1440		int i;
1441
1442		switch (intel_dp->output_reg) {
1443		case PCH_DP_B:
1444			trans_sel = TRANS_DP_PORT_SEL_B;
1445			break;
1446		case PCH_DP_C:
1447			trans_sel = TRANS_DP_PORT_SEL_C;
1448			break;
1449		case PCH_DP_D:
1450			trans_sel = TRANS_DP_PORT_SEL_D;
1451			break;
1452		default:
1453			return true;
1454		}
1455
1456		for_each_pipe(i) {
1457			trans_dp = I915_READ(TRANS_DP_CTL(i));
1458			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1459				*pipe = i;
1460				return true;
1461			}
1462		}
1463
1464		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1465			      intel_dp->output_reg);
1466	}
1467
1468	return true;
1469}
1470
1471static void intel_dp_get_config(struct intel_encoder *encoder,
1472				struct intel_crtc_config *pipe_config)
1473{
1474	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1475	u32 tmp, flags = 0;
1476	struct drm_device *dev = encoder->base.dev;
1477	struct drm_i915_private *dev_priv = dev->dev_private;
1478	enum port port = dp_to_dig_port(intel_dp)->port;
1479	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1480	int dotclock;
1481
1482	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1483		tmp = I915_READ(intel_dp->output_reg);
1484		if (tmp & DP_SYNC_HS_HIGH)
1485			flags |= DRM_MODE_FLAG_PHSYNC;
1486		else
1487			flags |= DRM_MODE_FLAG_NHSYNC;
1488
1489		if (tmp & DP_SYNC_VS_HIGH)
1490			flags |= DRM_MODE_FLAG_PVSYNC;
1491		else
1492			flags |= DRM_MODE_FLAG_NVSYNC;
1493	} else {
1494		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1495		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1496			flags |= DRM_MODE_FLAG_PHSYNC;
1497		else
1498			flags |= DRM_MODE_FLAG_NHSYNC;
1499
1500		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1501			flags |= DRM_MODE_FLAG_PVSYNC;
1502		else
1503			flags |= DRM_MODE_FLAG_NVSYNC;
1504	}
1505
1506	pipe_config->adjusted_mode.flags |= flags;
1507
1508	pipe_config->has_dp_encoder = true;
1509
1510	intel_dp_get_m_n(crtc, pipe_config);
1511
1512	if (port == PORT_A) {
1513		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1514			pipe_config->port_clock = 162000;
1515		else
1516			pipe_config->port_clock = 270000;
1517	}
1518
1519	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1520					    &pipe_config->dp_m_n);
1521
1522	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1523		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1524
1525	pipe_config->adjusted_mode.crtc_clock = dotclock;
1526
1527	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1528	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1529		/*
1530		 * This is a big fat ugly hack.
1531		 *
1532		 * Some machines in UEFI boot mode provide us a VBT that has 18
1533		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1534		 * unknown we fail to light up. Yet the same BIOS boots up with
1535		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1536		 * max, not what it tells us to use.
1537		 *
1538		 * Note: This will still be broken if the eDP panel is not lit
1539		 * up by the BIOS, and thus we can't get the mode at module
1540		 * load.
1541		 */
1542		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1543			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1544		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1545	}
1546}
1547
1548static bool is_edp_psr(struct drm_device *dev)
1549{
1550	struct drm_i915_private *dev_priv = dev->dev_private;
1551
1552	return dev_priv->psr.sink_support;
1553}
1554
1555static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1556{
1557	struct drm_i915_private *dev_priv = dev->dev_private;
1558
1559	if (!HAS_PSR(dev))
1560		return false;
1561
1562	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1563}
1564
1565static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1566				    struct edp_vsc_psr *vsc_psr)
1567{
1568	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1569	struct drm_device *dev = dig_port->base.base.dev;
1570	struct drm_i915_private *dev_priv = dev->dev_private;
1571	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1572	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1573	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1574	uint32_t *data = (uint32_t *) vsc_psr;
1575	unsigned int i;
1576
1577	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1578	   the video DIP being updated before program video DIP data buffer
1579	   registers for DIP being updated. */
1580	I915_WRITE(ctl_reg, 0);
1581	POSTING_READ(ctl_reg);
1582
1583	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1584		if (i < sizeof(struct edp_vsc_psr))
1585			I915_WRITE(data_reg + i, *data++);
1586		else
1587			I915_WRITE(data_reg + i, 0);
1588	}
1589
1590	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1591	POSTING_READ(ctl_reg);
1592}
1593
1594static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1595{
1596	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597	struct drm_i915_private *dev_priv = dev->dev_private;
1598	struct edp_vsc_psr psr_vsc;
1599
1600	if (intel_dp->psr_setup_done)
1601		return;
1602
1603	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1604	memset(&psr_vsc, 0, sizeof(psr_vsc));
1605	psr_vsc.sdp_header.HB0 = 0;
1606	psr_vsc.sdp_header.HB1 = 0x7;
1607	psr_vsc.sdp_header.HB2 = 0x2;
1608	psr_vsc.sdp_header.HB3 = 0x8;
1609	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1610
1611	/* Avoid continuous PSR exit by masking memup and hpd */
1612	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1613		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1614
1615	intel_dp->psr_setup_done = true;
1616}
1617
1618static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1619{
1620	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1621	struct drm_i915_private *dev_priv = dev->dev_private;
1622	uint32_t aux_clock_divider;
1623	int precharge = 0x3;
1624	int msg_size = 5;       /* Header(4) + Message(1) */
1625
1626	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1627
1628	/* Enable PSR in sink */
1629	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1630		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1631				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1632	else
1633		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1634				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1635
1636	/* Setup AUX registers */
1637	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1638	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1639	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1640		   DP_AUX_CH_CTL_TIME_OUT_400us |
1641		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1642		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1643		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1644}
1645
1646static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1647{
1648	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	uint32_t max_sleep_time = 0x1f;
1651	uint32_t idle_frames = 1;
1652	uint32_t val = 0x0;
1653	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1654
1655	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1656		val |= EDP_PSR_LINK_STANDBY;
1657		val |= EDP_PSR_TP2_TP3_TIME_0us;
1658		val |= EDP_PSR_TP1_TIME_0us;
1659		val |= EDP_PSR_SKIP_AUX_EXIT;
1660	} else
1661		val |= EDP_PSR_LINK_DISABLE;
1662
1663	I915_WRITE(EDP_PSR_CTL(dev), val |
1664		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1665		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1666		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1667		   EDP_PSR_ENABLE);
1668}
1669
1670static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1671{
1672	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1673	struct drm_device *dev = dig_port->base.base.dev;
1674	struct drm_i915_private *dev_priv = dev->dev_private;
1675	struct drm_crtc *crtc = dig_port->base.base.crtc;
1676	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1678	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1679
1680	dev_priv->psr.source_ok = false;
1681
1682	if (!HAS_PSR(dev)) {
1683		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1684		return false;
1685	}
1686
1687	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1688	    (dig_port->port != PORT_A)) {
1689		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1690		return false;
1691	}
1692
1693	if (!i915.enable_psr) {
1694		DRM_DEBUG_KMS("PSR disable by flag\n");
1695		return false;
1696	}
1697
1698	crtc = dig_port->base.base.crtc;
1699	if (crtc == NULL) {
1700		DRM_DEBUG_KMS("crtc not active for PSR\n");
1701		return false;
1702	}
1703
1704	intel_crtc = to_intel_crtc(crtc);
1705	if (!intel_crtc_active(crtc)) {
1706		DRM_DEBUG_KMS("crtc not active for PSR\n");
1707		return false;
1708	}
1709
1710	obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1711	if (obj->tiling_mode != I915_TILING_X ||
1712	    obj->fence_reg == I915_FENCE_REG_NONE) {
1713		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1714		return false;
1715	}
1716
1717	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1718		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1719		return false;
1720	}
1721
1722	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1723	    S3D_ENABLE) {
1724		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1725		return false;
1726	}
1727
1728	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1729		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1730		return false;
1731	}
1732
1733	dev_priv->psr.source_ok = true;
1734	return true;
1735}
1736
1737static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1738{
1739	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1740
1741	if (!intel_edp_psr_match_conditions(intel_dp) ||
1742	    intel_edp_is_psr_enabled(dev))
1743		return;
1744
1745	/* Setup PSR once */
1746	intel_edp_psr_setup(intel_dp);
1747
1748	/* Enable PSR on the panel */
1749	intel_edp_psr_enable_sink(intel_dp);
1750
1751	/* Enable PSR on the host */
1752	intel_edp_psr_enable_source(intel_dp);
1753}
1754
1755void intel_edp_psr_enable(struct intel_dp *intel_dp)
1756{
1757	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1758
1759	if (intel_edp_psr_match_conditions(intel_dp) &&
1760	    !intel_edp_is_psr_enabled(dev))
1761		intel_edp_psr_do_enable(intel_dp);
1762}
1763
1764void intel_edp_psr_disable(struct intel_dp *intel_dp)
1765{
1766	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1767	struct drm_i915_private *dev_priv = dev->dev_private;
1768
1769	if (!intel_edp_is_psr_enabled(dev))
1770		return;
1771
1772	I915_WRITE(EDP_PSR_CTL(dev),
1773		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1774
1775	/* Wait till PSR is idle */
1776	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1777		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1778		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1779}
1780
1781void intel_edp_psr_update(struct drm_device *dev)
1782{
1783	struct intel_encoder *encoder;
1784	struct intel_dp *intel_dp = NULL;
1785
1786	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1787		if (encoder->type == INTEL_OUTPUT_EDP) {
1788			intel_dp = enc_to_intel_dp(&encoder->base);
1789
1790			if (!is_edp_psr(dev))
1791				return;
1792
1793			if (!intel_edp_psr_match_conditions(intel_dp))
1794				intel_edp_psr_disable(intel_dp);
1795			else
1796				if (!intel_edp_is_psr_enabled(dev))
1797					intel_edp_psr_do_enable(intel_dp);
1798		}
1799}
1800
1801static void intel_disable_dp(struct intel_encoder *encoder)
1802{
1803	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1804	enum port port = dp_to_dig_port(intel_dp)->port;
1805	struct drm_device *dev = encoder->base.dev;
1806
1807	/* Make sure the panel is off before trying to change the mode. But also
1808	 * ensure that we have vdd while we switch off the panel. */
1809	intel_edp_panel_vdd_on(intel_dp);
1810	intel_edp_backlight_off(intel_dp);
1811	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1812	intel_edp_panel_off(intel_dp);
1813
1814	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1815	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1816		intel_dp_link_down(intel_dp);
1817}
1818
1819static void intel_post_disable_dp(struct intel_encoder *encoder)
1820{
1821	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1822	enum port port = dp_to_dig_port(intel_dp)->port;
1823	struct drm_device *dev = encoder->base.dev;
1824
1825	if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1826		intel_dp_link_down(intel_dp);
1827		if (!IS_VALLEYVIEW(dev))
1828			ironlake_edp_pll_off(intel_dp);
1829	}
1830}
1831
1832static void intel_enable_dp(struct intel_encoder *encoder)
1833{
1834	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1835	struct drm_device *dev = encoder->base.dev;
1836	struct drm_i915_private *dev_priv = dev->dev_private;
1837	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1838
1839	if (WARN_ON(dp_reg & DP_PORT_EN))
1840		return;
1841
1842	intel_edp_panel_vdd_on(intel_dp);
1843	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1844	intel_dp_start_link_train(intel_dp);
1845	intel_edp_panel_on(intel_dp);
1846	edp_panel_vdd_off(intel_dp, true);
1847	intel_dp_complete_link_train(intel_dp);
1848	intel_dp_stop_link_train(intel_dp);
1849}
1850
1851static void g4x_enable_dp(struct intel_encoder *encoder)
1852{
1853	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1854
1855	intel_enable_dp(encoder);
1856	intel_edp_backlight_on(intel_dp);
1857}
1858
1859static void vlv_enable_dp(struct intel_encoder *encoder)
 
1860{
1861	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1862
1863	intel_edp_backlight_on(intel_dp);
1864}
1865
1866static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1867{
1868	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1870
1871	if (dport->port == PORT_A)
1872		ironlake_edp_pll_on(intel_dp);
1873}
1874
1875static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1876{
1877	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1878	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1879	struct drm_device *dev = encoder->base.dev;
1880	struct drm_i915_private *dev_priv = dev->dev_private;
1881	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1882	enum dpio_channel port = vlv_dport_to_channel(dport);
1883	int pipe = intel_crtc->pipe;
1884	struct edp_power_seq power_seq;
1885	u32 val;
1886
1887	mutex_lock(&dev_priv->dpio_lock);
 
 
 
 
 
 
1888
1889	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1890	val = 0;
1891	if (pipe)
1892		val |= (1<<21);
1893	else
1894		val &= ~(1<<21);
1895	val |= 0x001000c4;
1896	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1897	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1898	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1899
1900	mutex_unlock(&dev_priv->dpio_lock);
1901
1902	if (is_edp(intel_dp)) {
1903		/* init power sequencer on this pipe and port */
1904		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1905		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1906							      &power_seq);
 
 
 
1907	}
1908
1909	intel_enable_dp(encoder);
1910
1911	vlv_wait_port_ready(dev_priv, dport);
1912}
1913
1914static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1915{
1916	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1917	struct drm_device *dev = encoder->base.dev;
1918	struct drm_i915_private *dev_priv = dev->dev_private;
1919	struct intel_crtc *intel_crtc =
1920		to_intel_crtc(encoder->base.crtc);
1921	enum dpio_channel port = vlv_dport_to_channel(dport);
1922	int pipe = intel_crtc->pipe;
1923
1924	/* Program Tx lane resets to default */
1925	mutex_lock(&dev_priv->dpio_lock);
1926	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1927			 DPIO_PCS_TX_LANE2_RESET |
1928			 DPIO_PCS_TX_LANE1_RESET);
1929	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1930			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1931			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1932			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1933				 DPIO_PCS_CLK_SOFT_RESET);
1934
1935	/* Fix up inter-pair skew failure */
1936	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1937	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1938	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1939	mutex_unlock(&dev_priv->dpio_lock);
1940}
1941
1942/*
1943 * Native read with retry for link status and receiver capability reads for
1944 * cases where the sink may still be asleep.
1945 *
1946 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1947 * supposed to retry 3 times per the spec.
1948 */
1949static ssize_t
1950intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1951			void *buffer, size_t size)
1952{
1953	ssize_t ret;
1954	int i;
1955
 
 
 
 
1956	for (i = 0; i < 3; i++) {
1957		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1958		if (ret == size)
1959			return ret;
 
1960		msleep(1);
1961	}
1962
1963	return ret;
1964}
1965
1966/*
1967 * Fetch AUX CH registers 0x202 - 0x207 which contain
1968 * link status information
1969 */
1970static bool
1971intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1972{
1973	return intel_dp_dpcd_read_wake(&intel_dp->aux,
1974				       DP_LANE0_1_STATUS,
1975				       link_status,
1976				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1977}
1978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979/*
1980 * These are source-specific values; current Intel hardware supports
1981 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1982 */
1983
1984static uint8_t
1985intel_dp_voltage_max(struct intel_dp *intel_dp)
1986{
1987	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1988	enum port port = dp_to_dig_port(intel_dp)->port;
1989
1990	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1991		return DP_TRAIN_VOLTAGE_SWING_1200;
1992	else if (IS_GEN7(dev) && port == PORT_A)
1993		return DP_TRAIN_VOLTAGE_SWING_800;
1994	else if (HAS_PCH_CPT(dev) && port != PORT_A)
1995		return DP_TRAIN_VOLTAGE_SWING_1200;
1996	else
1997		return DP_TRAIN_VOLTAGE_SWING_800;
1998}
1999
2000static uint8_t
2001intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2002{
2003	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2004	enum port port = dp_to_dig_port(intel_dp)->port;
2005
2006	if (IS_BROADWELL(dev)) {
2007		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2008		case DP_TRAIN_VOLTAGE_SWING_400:
2009		case DP_TRAIN_VOLTAGE_SWING_600:
2010			return DP_TRAIN_PRE_EMPHASIS_6;
2011		case DP_TRAIN_VOLTAGE_SWING_800:
2012			return DP_TRAIN_PRE_EMPHASIS_3_5;
2013		case DP_TRAIN_VOLTAGE_SWING_1200:
2014		default:
2015			return DP_TRAIN_PRE_EMPHASIS_0;
2016		}
2017	} else if (IS_HASWELL(dev)) {
2018		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2019		case DP_TRAIN_VOLTAGE_SWING_400:
2020			return DP_TRAIN_PRE_EMPHASIS_9_5;
2021		case DP_TRAIN_VOLTAGE_SWING_600:
2022			return DP_TRAIN_PRE_EMPHASIS_6;
2023		case DP_TRAIN_VOLTAGE_SWING_800:
2024			return DP_TRAIN_PRE_EMPHASIS_3_5;
2025		case DP_TRAIN_VOLTAGE_SWING_1200:
2026		default:
2027			return DP_TRAIN_PRE_EMPHASIS_0;
2028		}
2029	} else if (IS_VALLEYVIEW(dev)) {
2030		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031		case DP_TRAIN_VOLTAGE_SWING_400:
2032			return DP_TRAIN_PRE_EMPHASIS_9_5;
2033		case DP_TRAIN_VOLTAGE_SWING_600:
2034			return DP_TRAIN_PRE_EMPHASIS_6;
2035		case DP_TRAIN_VOLTAGE_SWING_800:
2036			return DP_TRAIN_PRE_EMPHASIS_3_5;
2037		case DP_TRAIN_VOLTAGE_SWING_1200:
2038		default:
2039			return DP_TRAIN_PRE_EMPHASIS_0;
2040		}
2041	} else if (IS_GEN7(dev) && port == PORT_A) {
2042		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2043		case DP_TRAIN_VOLTAGE_SWING_400:
2044			return DP_TRAIN_PRE_EMPHASIS_6;
2045		case DP_TRAIN_VOLTAGE_SWING_600:
2046		case DP_TRAIN_VOLTAGE_SWING_800:
2047			return DP_TRAIN_PRE_EMPHASIS_3_5;
2048		default:
2049			return DP_TRAIN_PRE_EMPHASIS_0;
2050		}
2051	} else {
2052		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2053		case DP_TRAIN_VOLTAGE_SWING_400:
2054			return DP_TRAIN_PRE_EMPHASIS_6;
2055		case DP_TRAIN_VOLTAGE_SWING_600:
2056			return DP_TRAIN_PRE_EMPHASIS_6;
2057		case DP_TRAIN_VOLTAGE_SWING_800:
2058			return DP_TRAIN_PRE_EMPHASIS_3_5;
2059		case DP_TRAIN_VOLTAGE_SWING_1200:
2060		default:
2061			return DP_TRAIN_PRE_EMPHASIS_0;
2062		}
2063	}
2064}
2065
2066static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2067{
2068	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2069	struct drm_i915_private *dev_priv = dev->dev_private;
2070	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2071	struct intel_crtc *intel_crtc =
2072		to_intel_crtc(dport->base.base.crtc);
2073	unsigned long demph_reg_value, preemph_reg_value,
2074		uniqtranscale_reg_value;
2075	uint8_t train_set = intel_dp->train_set[0];
2076	enum dpio_channel port = vlv_dport_to_channel(dport);
2077	int pipe = intel_crtc->pipe;
2078
2079	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2080	case DP_TRAIN_PRE_EMPHASIS_0:
2081		preemph_reg_value = 0x0004000;
2082		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2083		case DP_TRAIN_VOLTAGE_SWING_400:
2084			demph_reg_value = 0x2B405555;
2085			uniqtranscale_reg_value = 0x552AB83A;
2086			break;
2087		case DP_TRAIN_VOLTAGE_SWING_600:
2088			demph_reg_value = 0x2B404040;
2089			uniqtranscale_reg_value = 0x5548B83A;
2090			break;
2091		case DP_TRAIN_VOLTAGE_SWING_800:
2092			demph_reg_value = 0x2B245555;
2093			uniqtranscale_reg_value = 0x5560B83A;
2094			break;
2095		case DP_TRAIN_VOLTAGE_SWING_1200:
2096			demph_reg_value = 0x2B405555;
2097			uniqtranscale_reg_value = 0x5598DA3A;
2098			break;
2099		default:
2100			return 0;
2101		}
2102		break;
2103	case DP_TRAIN_PRE_EMPHASIS_3_5:
2104		preemph_reg_value = 0x0002000;
2105		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106		case DP_TRAIN_VOLTAGE_SWING_400:
2107			demph_reg_value = 0x2B404040;
2108			uniqtranscale_reg_value = 0x5552B83A;
2109			break;
2110		case DP_TRAIN_VOLTAGE_SWING_600:
2111			demph_reg_value = 0x2B404848;
2112			uniqtranscale_reg_value = 0x5580B83A;
2113			break;
2114		case DP_TRAIN_VOLTAGE_SWING_800:
2115			demph_reg_value = 0x2B404040;
2116			uniqtranscale_reg_value = 0x55ADDA3A;
2117			break;
2118		default:
2119			return 0;
2120		}
2121		break;
2122	case DP_TRAIN_PRE_EMPHASIS_6:
2123		preemph_reg_value = 0x0000000;
2124		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125		case DP_TRAIN_VOLTAGE_SWING_400:
2126			demph_reg_value = 0x2B305555;
2127			uniqtranscale_reg_value = 0x5570B83A;
2128			break;
2129		case DP_TRAIN_VOLTAGE_SWING_600:
2130			demph_reg_value = 0x2B2B4040;
2131			uniqtranscale_reg_value = 0x55ADDA3A;
2132			break;
2133		default:
2134			return 0;
2135		}
2136		break;
2137	case DP_TRAIN_PRE_EMPHASIS_9_5:
2138		preemph_reg_value = 0x0006000;
2139		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2140		case DP_TRAIN_VOLTAGE_SWING_400:
2141			demph_reg_value = 0x1B405555;
2142			uniqtranscale_reg_value = 0x55ADDA3A;
2143			break;
2144		default:
2145			return 0;
2146		}
2147		break;
2148	default:
2149		return 0;
2150	}
2151
2152	mutex_lock(&dev_priv->dpio_lock);
2153	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2154	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2155	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2156			 uniqtranscale_reg_value);
2157	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2158	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2159	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2160	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2161	mutex_unlock(&dev_priv->dpio_lock);
2162
2163	return 0;
2164}
2165
2166static void
2167intel_get_adjust_train(struct intel_dp *intel_dp,
2168		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2169{
2170	uint8_t v = 0;
2171	uint8_t p = 0;
2172	int lane;
 
2173	uint8_t voltage_max;
2174	uint8_t preemph_max;
2175
2176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2177		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2178		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2179
2180		if (this_v > v)
2181			v = this_v;
2182		if (this_p > p)
2183			p = this_p;
2184	}
2185
2186	voltage_max = intel_dp_voltage_max(intel_dp);
2187	if (v >= voltage_max)
2188		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2189
2190	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2191	if (p >= preemph_max)
2192		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2193
2194	for (lane = 0; lane < 4; lane++)
2195		intel_dp->train_set[lane] = v | p;
2196}
2197
2198static uint32_t
2199intel_gen4_signal_levels(uint8_t train_set)
2200{
2201	uint32_t	signal_levels = 0;
2202
2203	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2204	case DP_TRAIN_VOLTAGE_SWING_400:
2205	default:
2206		signal_levels |= DP_VOLTAGE_0_4;
2207		break;
2208	case DP_TRAIN_VOLTAGE_SWING_600:
2209		signal_levels |= DP_VOLTAGE_0_6;
2210		break;
2211	case DP_TRAIN_VOLTAGE_SWING_800:
2212		signal_levels |= DP_VOLTAGE_0_8;
2213		break;
2214	case DP_TRAIN_VOLTAGE_SWING_1200:
2215		signal_levels |= DP_VOLTAGE_1_2;
2216		break;
2217	}
2218	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2219	case DP_TRAIN_PRE_EMPHASIS_0:
2220	default:
2221		signal_levels |= DP_PRE_EMPHASIS_0;
2222		break;
2223	case DP_TRAIN_PRE_EMPHASIS_3_5:
2224		signal_levels |= DP_PRE_EMPHASIS_3_5;
2225		break;
2226	case DP_TRAIN_PRE_EMPHASIS_6:
2227		signal_levels |= DP_PRE_EMPHASIS_6;
2228		break;
2229	case DP_TRAIN_PRE_EMPHASIS_9_5:
2230		signal_levels |= DP_PRE_EMPHASIS_9_5;
2231		break;
2232	}
2233	return signal_levels;
2234}
2235
2236/* Gen6's DP voltage swing and pre-emphasis control */
2237static uint32_t
2238intel_gen6_edp_signal_levels(uint8_t train_set)
2239{
2240	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2241					 DP_TRAIN_PRE_EMPHASIS_MASK);
2242	switch (signal_levels) {
2243	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2244	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2245		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2248	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2250		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2251	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2254	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2255	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2256		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2257	default:
2258		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2259			      "0x%x\n", signal_levels);
2260		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2261	}
2262}
2263
2264/* Gen7's DP voltage swing and pre-emphasis control */
2265static uint32_t
2266intel_gen7_edp_signal_levels(uint8_t train_set)
2267{
2268	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2269					 DP_TRAIN_PRE_EMPHASIS_MASK);
2270	switch (signal_levels) {
2271	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2272		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2273	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2274		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2275	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2276		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2277
2278	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2279		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2280	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2281		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2282
2283	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2284		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2285	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2286		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2287
2288	default:
2289		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2290			      "0x%x\n", signal_levels);
2291		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2292	}
2293}
2294
2295/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2296static uint32_t
2297intel_hsw_signal_levels(uint8_t train_set)
2298{
2299	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2300					 DP_TRAIN_PRE_EMPHASIS_MASK);
2301	switch (signal_levels) {
2302	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2303		return DDI_BUF_EMP_400MV_0DB_HSW;
2304	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2305		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2306	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2307		return DDI_BUF_EMP_400MV_6DB_HSW;
2308	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2309		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2310
2311	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2312		return DDI_BUF_EMP_600MV_0DB_HSW;
2313	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2315	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2316		return DDI_BUF_EMP_600MV_6DB_HSW;
2317
2318	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2319		return DDI_BUF_EMP_800MV_0DB_HSW;
2320	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2321		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2322	default:
2323		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2324			      "0x%x\n", signal_levels);
2325		return DDI_BUF_EMP_400MV_0DB_HSW;
2326	}
2327}
2328
2329static uint32_t
2330intel_bdw_signal_levels(uint8_t train_set)
 
2331{
2332	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2333					 DP_TRAIN_PRE_EMPHASIS_MASK);
2334	switch (signal_levels) {
2335	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2336		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2337	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2338		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2339	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2340		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2341
2342	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2343		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2344	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2345		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2346	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2347		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2348
2349	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2350		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2351	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2352		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2353
2354	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2355		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2356
2357	default:
2358		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2359			      "0x%x\n", signal_levels);
2360		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2361	}
 
2362}
2363
2364/* Properly updates "DP" with the correct signal levels. */
2365static void
2366intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2367{
2368	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2369	enum port port = intel_dig_port->port;
2370	struct drm_device *dev = intel_dig_port->base.base.dev;
2371	uint32_t signal_levels, mask;
2372	uint8_t train_set = intel_dp->train_set[0];
2373
2374	if (IS_BROADWELL(dev)) {
2375		signal_levels = intel_bdw_signal_levels(train_set);
2376		mask = DDI_BUF_EMP_MASK;
2377	} else if (IS_HASWELL(dev)) {
2378		signal_levels = intel_hsw_signal_levels(train_set);
2379		mask = DDI_BUF_EMP_MASK;
2380	} else if (IS_VALLEYVIEW(dev)) {
2381		signal_levels = intel_vlv_signal_levels(intel_dp);
2382		mask = 0;
2383	} else if (IS_GEN7(dev) && port == PORT_A) {
2384		signal_levels = intel_gen7_edp_signal_levels(train_set);
2385		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2386	} else if (IS_GEN6(dev) && port == PORT_A) {
2387		signal_levels = intel_gen6_edp_signal_levels(train_set);
2388		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2389	} else {
2390		signal_levels = intel_gen4_signal_levels(train_set);
2391		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2392	}
2393
2394	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2395
2396	*DP = (*DP & ~mask) | signal_levels;
2397}
2398
2399static bool
2400intel_dp_set_link_train(struct intel_dp *intel_dp,
2401			uint32_t *DP,
2402			uint8_t dp_train_pat)
2403{
2404	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2405	struct drm_device *dev = intel_dig_port->base.base.dev;
2406	struct drm_i915_private *dev_priv = dev->dev_private;
2407	enum port port = intel_dig_port->port;
2408	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2409	int ret, len;
2410
2411	if (HAS_DDI(dev)) {
2412		uint32_t temp = I915_READ(DP_TP_CTL(port));
2413
2414		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2415			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2416		else
2417			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2418
2419		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2420		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421		case DP_TRAINING_PATTERN_DISABLE:
2422			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2423
2424			break;
2425		case DP_TRAINING_PATTERN_1:
2426			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2427			break;
2428		case DP_TRAINING_PATTERN_2:
2429			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2430			break;
2431		case DP_TRAINING_PATTERN_3:
2432			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2433			break;
2434		}
2435		I915_WRITE(DP_TP_CTL(port), temp);
2436
2437	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2438		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2439
2440		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2441		case DP_TRAINING_PATTERN_DISABLE:
2442			*DP |= DP_LINK_TRAIN_OFF_CPT;
2443			break;
2444		case DP_TRAINING_PATTERN_1:
2445			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2446			break;
2447		case DP_TRAINING_PATTERN_2:
2448			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2449			break;
2450		case DP_TRAINING_PATTERN_3:
2451			DRM_ERROR("DP training pattern 3 not supported\n");
2452			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2453			break;
2454		}
2455
2456	} else {
2457		*DP &= ~DP_LINK_TRAIN_MASK;
2458
2459		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2460		case DP_TRAINING_PATTERN_DISABLE:
2461			*DP |= DP_LINK_TRAIN_OFF;
2462			break;
2463		case DP_TRAINING_PATTERN_1:
2464			*DP |= DP_LINK_TRAIN_PAT_1;
2465			break;
2466		case DP_TRAINING_PATTERN_2:
2467			*DP |= DP_LINK_TRAIN_PAT_2;
2468			break;
2469		case DP_TRAINING_PATTERN_3:
2470			DRM_ERROR("DP training pattern 3 not supported\n");
2471			*DP |= DP_LINK_TRAIN_PAT_2;
2472			break;
2473		}
2474	}
2475
2476	I915_WRITE(intel_dp->output_reg, *DP);
2477	POSTING_READ(intel_dp->output_reg);
2478
2479	buf[0] = dp_train_pat;
2480	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2481	    DP_TRAINING_PATTERN_DISABLE) {
2482		/* don't write DP_TRAINING_LANEx_SET on disable */
2483		len = 1;
2484	} else {
2485		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2486		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2487		len = intel_dp->lane_count + 1;
2488	}
2489
2490	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2491				buf, len);
2492
2493	return ret == len;
2494}
2495
2496static bool
2497intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
 
2498			uint8_t dp_train_pat)
2499{
2500	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2501	intel_dp_set_signal_levels(intel_dp, DP);
2502	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2503}
2504
2505static bool
2506intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2507			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2508{
2509	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2510	struct drm_device *dev = intel_dig_port->base.base.dev;
2511	struct drm_i915_private *dev_priv = dev->dev_private;
2512	int ret;
2513
2514	intel_get_adjust_train(intel_dp, link_status);
2515	intel_dp_set_signal_levels(intel_dp, DP);
2516
2517	I915_WRITE(intel_dp->output_reg, *DP);
2518	POSTING_READ(intel_dp->output_reg);
2519
2520	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2521				intel_dp->train_set, intel_dp->lane_count);
 
 
 
 
 
 
 
 
2522
2523	return ret == intel_dp->lane_count;
2524}
2525
2526static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2527{
2528	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529	struct drm_device *dev = intel_dig_port->base.base.dev;
2530	struct drm_i915_private *dev_priv = dev->dev_private;
2531	enum port port = intel_dig_port->port;
2532	uint32_t val;
2533
2534	if (!HAS_DDI(dev))
2535		return;
2536
2537	val = I915_READ(DP_TP_CTL(port));
2538	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2539	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2540	I915_WRITE(DP_TP_CTL(port), val);
2541
2542	/*
2543	 * On PORT_A we can have only eDP in SST mode. There the only reason
2544	 * we need to set idle transmission mode is to work around a HW issue
2545	 * where we enable the pipe while not in idle link-training mode.
2546	 * In this case there is requirement to wait for a minimum number of
2547	 * idle patterns to be sent.
2548	 */
2549	if (port == PORT_A)
2550		return;
2551
2552	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2553		     1))
2554		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2555}
2556
2557/* Enable corresponding port and start training pattern 1 */
2558void
2559intel_dp_start_link_train(struct intel_dp *intel_dp)
2560{
2561	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2562	struct drm_device *dev = encoder->dev;
 
2563	int i;
2564	uint8_t voltage;
 
2565	int voltage_tries, loop_tries;
 
2566	uint32_t DP = intel_dp->DP;
2567	uint8_t link_config[2];
2568
2569	if (HAS_DDI(dev))
2570		intel_ddi_prepare_link_retrain(encoder);
 
 
 
 
 
 
 
 
2571
2572	/* Write the link configuration data */
2573	link_config[0] = intel_dp->link_bw;
2574	link_config[1] = intel_dp->lane_count;
2575	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2576		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2577	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2578
2579	link_config[0] = 0;
2580	link_config[1] = DP_SET_ANSI_8B10B;
2581	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2582
2583	DP |= DP_PORT_EN;
2584
2585	/* clock recovery */
2586	if (!intel_dp_reset_link_train(intel_dp, &DP,
2587				       DP_TRAINING_PATTERN_1 |
2588				       DP_LINK_SCRAMBLING_DISABLE)) {
2589		DRM_ERROR("failed to enable link training\n");
2590		return;
2591	}
2592
2593	voltage = 0xff;
2594	voltage_tries = 0;
2595	loop_tries = 0;
 
2596	for (;;) {
2597		uint8_t link_status[DP_LINK_STATUS_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
 
 
 
 
 
 
2600		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2601			DRM_ERROR("failed to get link status\n");
2602			break;
2603		}
2604
2605		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2606			DRM_DEBUG_KMS("clock recovery OK\n");
 
2607			break;
2608		}
2609
2610		/* Check to see if we've tried the max voltage */
2611		for (i = 0; i < intel_dp->lane_count; i++)
2612			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2613				break;
2614		if (i == intel_dp->lane_count) {
2615			++loop_tries;
2616			if (loop_tries == 5) {
2617				DRM_ERROR("too many full retries, give up\n");
2618				break;
2619			}
2620			intel_dp_reset_link_train(intel_dp, &DP,
2621						  DP_TRAINING_PATTERN_1 |
2622						  DP_LINK_SCRAMBLING_DISABLE);
2623			voltage_tries = 0;
2624			continue;
2625		}
2626
2627		/* Check to see if we've tried the same voltage 5 times */
2628		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2629			++voltage_tries;
2630			if (voltage_tries == 5) {
2631				DRM_ERROR("too many voltage retries, give up\n");
2632				break;
2633			}
2634		} else
2635			voltage_tries = 0;
2636		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2637
2638		/* Update training set as requested by target */
2639		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2640			DRM_ERROR("failed to update link training\n");
2641			break;
2642		}
2643	}
2644
2645	intel_dp->DP = DP;
2646}
2647
2648void
2649intel_dp_complete_link_train(struct intel_dp *intel_dp)
2650{
 
 
2651	bool channel_eq = false;
2652	int tries, cr_tries;
 
2653	uint32_t DP = intel_dp->DP;
2654	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2655
2656	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2657	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2658		training_pattern = DP_TRAINING_PATTERN_3;
2659
2660	/* channel equalization */
2661	if (!intel_dp_set_link_train(intel_dp, &DP,
2662				     training_pattern |
2663				     DP_LINK_SCRAMBLING_DISABLE)) {
2664		DRM_ERROR("failed to start channel equalization\n");
2665		return;
2666	}
2667
2668	tries = 0;
2669	cr_tries = 0;
2670	channel_eq = false;
2671	for (;;) {
2672		uint8_t link_status[DP_LINK_STATUS_SIZE];
 
 
2673
2674		if (cr_tries > 5) {
2675			DRM_ERROR("failed to train DP, aborting\n");
 
2676			break;
2677		}
2678
2679		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2680		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2681			DRM_ERROR("failed to get link status\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2682			break;
2683		}
2684
2685		/* Make sure clock is still ok */
2686		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2687			intel_dp_start_link_train(intel_dp);
2688			intel_dp_set_link_train(intel_dp, &DP,
2689						training_pattern |
2690						DP_LINK_SCRAMBLING_DISABLE);
2691			cr_tries++;
2692			continue;
2693		}
2694
2695		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2696			channel_eq = true;
2697			break;
2698		}
2699
2700		/* Try 5 times, then try clock recovery if that fails */
2701		if (tries > 5) {
2702			intel_dp_link_down(intel_dp);
2703			intel_dp_start_link_train(intel_dp);
2704			intel_dp_set_link_train(intel_dp, &DP,
2705						training_pattern |
2706						DP_LINK_SCRAMBLING_DISABLE);
2707			tries = 0;
2708			cr_tries++;
2709			continue;
2710		}
2711
2712		/* Update training set as requested by target */
2713		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2714			DRM_ERROR("failed to update link training\n");
2715			break;
2716		}
2717		++tries;
2718	}
2719
2720	intel_dp_set_idle_link_train(intel_dp);
 
 
 
2721
2722	intel_dp->DP = DP;
2723
2724	if (channel_eq)
2725		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2726
2727}
2728
2729void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2730{
2731	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2732				DP_TRAINING_PATTERN_DISABLE);
2733}
2734
2735static void
2736intel_dp_link_down(struct intel_dp *intel_dp)
2737{
2738	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2739	enum port port = intel_dig_port->port;
2740	struct drm_device *dev = intel_dig_port->base.base.dev;
2741	struct drm_i915_private *dev_priv = dev->dev_private;
2742	struct intel_crtc *intel_crtc =
2743		to_intel_crtc(intel_dig_port->base.base.crtc);
2744	uint32_t DP = intel_dp->DP;
2745
2746	/*
2747	 * DDI code has a strict mode set sequence and we should try to respect
2748	 * it, otherwise we might hang the machine in many different ways. So we
2749	 * really should be disabling the port only on a complete crtc_disable
2750	 * sequence. This function is just called under two conditions on DDI
2751	 * code:
2752	 * - Link train failed while doing crtc_enable, and on this case we
2753	 *   really should respect the mode set sequence and wait for a
2754	 *   crtc_disable.
2755	 * - Someone turned the monitor off and intel_dp_check_link_status
2756	 *   called us. We don't need to disable the whole port on this case, so
2757	 *   when someone turns the monitor on again,
2758	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2759	 *   train.
2760	 */
2761	if (HAS_DDI(dev))
2762		return;
2763
2764	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2765		return;
2766
2767	DRM_DEBUG_KMS("\n");
2768
2769	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
 
 
 
 
 
 
 
2770		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2771		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2772	} else {
2773		DP &= ~DP_LINK_TRAIN_MASK;
2774		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2775	}
2776	POSTING_READ(intel_dp->output_reg);
2777
2778	/* We don't really know why we're doing this */
2779	intel_wait_for_vblank(dev, intel_crtc->pipe);
2780
2781	if (HAS_PCH_IBX(dev) &&
 
 
 
 
 
 
 
2782	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2783		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2784
2785		/* Hardware workaround: leaving our transcoder select
2786		 * set to transcoder B while it's off will prevent the
2787		 * corresponding HDMI output on transcoder A.
2788		 *
2789		 * Combine this with another hardware workaround:
2790		 * transcoder select bit can only be cleared while the
2791		 * port is enabled.
2792		 */
2793		DP &= ~DP_PIPEB_SELECT;
2794		I915_WRITE(intel_dp->output_reg, DP);
2795
2796		/* Changes to enable or select take place the vblank
2797		 * after being written.
2798		 */
2799		if (WARN_ON(crtc == NULL)) {
2800			/* We should never try to disable a port without a crtc
2801			 * attached. For paranoia keep the code around for a
2802			 * bit. */
 
 
 
 
 
2803			POSTING_READ(intel_dp->output_reg);
2804			msleep(50);
2805		} else
2806			intel_wait_for_vblank(dev, intel_crtc->pipe);
2807	}
2808
2809	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2810	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2811	POSTING_READ(intel_dp->output_reg);
2812	msleep(intel_dp->panel_power_down_delay);
2813}
2814
2815static bool
2816intel_dp_get_dpcd(struct intel_dp *intel_dp)
2817{
2818	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2819	struct drm_device *dev = dig_port->base.base.dev;
2820	struct drm_i915_private *dev_priv = dev->dev_private;
2821
2822	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2823
2824	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2825				    sizeof(intel_dp->dpcd)) < 0)
2826		return false; /* aux transfer failed */
2827
2828	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2829			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2830	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2831
2832	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2833		return false; /* DPCD not present */
2834
2835	/* Check if the panel supports PSR */
2836	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2837	if (is_edp(intel_dp)) {
2838		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2839					intel_dp->psr_dpcd,
2840					sizeof(intel_dp->psr_dpcd));
2841		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2842			dev_priv->psr.sink_support = true;
2843			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2844		}
2845	}
2846
2847	/* Training Pattern 3 support */
2848	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2849	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2850		intel_dp->use_tps3 = true;
2851		DRM_DEBUG_KMS("Displayport TPS3 supported");
2852	} else
2853		intel_dp->use_tps3 = false;
2854
2855	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2856	      DP_DWN_STRM_PORT_PRESENT))
2857		return true; /* native DP sink */
2858
2859	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2860		return true; /* no per-port downstream info */
2861
2862	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2863				    intel_dp->downstream_ports,
2864				    DP_MAX_DOWNSTREAM_PORTS) < 0)
2865		return false; /* downstream port status fetch failed */
2866
2867	return true;
2868}
2869
2870static void
2871intel_dp_probe_oui(struct intel_dp *intel_dp)
2872{
2873	u8 buf[3];
2874
2875	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2876		return;
2877
2878	intel_edp_panel_vdd_on(intel_dp);
2879
2880	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2881		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2882			      buf[0], buf[1], buf[2]);
2883
2884	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2885		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2886			      buf[0], buf[1], buf[2]);
2887
2888	edp_panel_vdd_off(intel_dp, false);
2889}
2890
2891int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
 
2892{
2893	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2894	struct drm_device *dev = intel_dig_port->base.base.dev;
2895	struct intel_crtc *intel_crtc =
2896		to_intel_crtc(intel_dig_port->base.base.crtc);
2897	u8 buf[1];
2898
2899	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2900		return -EAGAIN;
 
 
 
2901
2902	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2903		return -ENOTTY;
2904
2905	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2906			       DP_TEST_SINK_START) < 0)
2907		return -EAGAIN;
2908
2909	/* Wait 2 vblanks to be sure we will have the correct CRC value */
2910	intel_wait_for_vblank(dev, intel_crtc->pipe);
2911	intel_wait_for_vblank(dev, intel_crtc->pipe);
2912
2913	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2914		return -EAGAIN;
2915
2916	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2917	return 0;
2918}
2919
2920static bool
2921intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2922{
2923	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2924				       DP_DEVICE_SERVICE_IRQ_VECTOR,
2925				       sink_irq_vector, 1) == 1;
2926}
2927
2928static void
2929intel_dp_handle_test_request(struct intel_dp *intel_dp)
2930{
2931	/* NAK by default */
2932	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2933}
2934
2935/*
2936 * According to DP spec
2937 * 5.1.2:
2938 *  1. Read DPCD
2939 *  2. Configure link according to Receiver Capabilities
2940 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2941 *  4. Check link status on receipt of hot-plug interrupt
2942 */
2943
2944void
2945intel_dp_check_link_status(struct intel_dp *intel_dp)
2946{
2947	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2948	u8 sink_irq_vector;
2949	u8 link_status[DP_LINK_STATUS_SIZE];
2950
2951	if (!intel_encoder->connectors_active)
2952		return;
2953
2954	if (WARN_ON(!intel_encoder->base.crtc))
2955		return;
2956
2957	/* Try to read receiver status if the link appears to be up */
2958	if (!intel_dp_get_link_status(intel_dp, link_status)) {
 
2959		return;
2960	}
2961
2962	/* Now read the DPCD to see if it's actually running */
2963	if (!intel_dp_get_dpcd(intel_dp)) {
 
2964		return;
2965	}
2966
2967	/* Try to read the source of the interrupt */
2968	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2969	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2970		/* Clear interrupt source */
2971		drm_dp_dpcd_writeb(&intel_dp->aux,
2972				   DP_DEVICE_SERVICE_IRQ_VECTOR,
2973				   sink_irq_vector);
2974
2975		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2976			intel_dp_handle_test_request(intel_dp);
2977		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2978			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2979	}
2980
2981	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2982		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2983			      drm_get_encoder_name(&intel_encoder->base));
2984		intel_dp_start_link_train(intel_dp);
2985		intel_dp_complete_link_train(intel_dp);
2986		intel_dp_stop_link_train(intel_dp);
2987	}
2988}
2989
2990/* XXX this is probably wrong for multiple downstream ports */
2991static enum drm_connector_status
2992intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2993{
2994	uint8_t *dpcd = intel_dp->dpcd;
2995	uint8_t type;
2996
2997	if (!intel_dp_get_dpcd(intel_dp))
2998		return connector_status_disconnected;
2999
3000	/* if there's no downstream port, we're done */
3001	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3002		return connector_status_connected;
3003
3004	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3005	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3006	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3007		uint8_t reg;
3008
3009		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3010					    &reg, 1) < 0)
3011			return connector_status_unknown;
3012
3013		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3014					      : connector_status_disconnected;
3015	}
3016
3017	/* If no HPD, poke DDC gently */
3018	if (drm_probe_ddc(&intel_dp->aux.ddc))
3019		return connector_status_connected;
3020
3021	/* Well we tried, say unknown for unreliable port types */
3022	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3023		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3024		if (type == DP_DS_PORT_TYPE_VGA ||
3025		    type == DP_DS_PORT_TYPE_NON_EDID)
3026			return connector_status_unknown;
3027	} else {
3028		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3029			DP_DWN_STRM_PORT_TYPE_MASK;
3030		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3031		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3032			return connector_status_unknown;
3033	}
3034
3035	/* Anything else is out of spec, warn and ignore */
3036	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3037	return connector_status_disconnected;
3038}
3039
3040static enum drm_connector_status
3041ironlake_dp_detect(struct intel_dp *intel_dp)
3042{
3043	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3044	struct drm_i915_private *dev_priv = dev->dev_private;
3045	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3046	enum drm_connector_status status;
3047
3048	/* Can't disconnect eDP, but you can close the lid... */
3049	if (is_edp(intel_dp)) {
3050		status = intel_panel_detect(dev);
3051		if (status == connector_status_unknown)
3052			status = connector_status_connected;
3053		return status;
3054	}
3055
3056	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3057		return connector_status_disconnected;
3058
3059	return intel_dp_detect_dpcd(intel_dp);
3060}
3061
3062static enum drm_connector_status
3063g4x_dp_detect(struct intel_dp *intel_dp)
3064{
3065	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3066	struct drm_i915_private *dev_priv = dev->dev_private;
3067	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3068	uint32_t bit;
3069
3070	/* Can't disconnect eDP, but you can close the lid... */
3071	if (is_edp(intel_dp)) {
3072		enum drm_connector_status status;
3073
3074		status = intel_panel_detect(dev);
3075		if (status == connector_status_unknown)
3076			status = connector_status_connected;
3077		return status;
 
 
 
 
3078	}
3079
3080	if (IS_VALLEYVIEW(dev)) {
3081		switch (intel_dig_port->port) {
3082		case PORT_B:
3083			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3084			break;
3085		case PORT_C:
3086			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3087			break;
3088		case PORT_D:
3089			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3090			break;
3091		default:
3092			return connector_status_unknown;
3093		}
3094	} else {
3095		switch (intel_dig_port->port) {
3096		case PORT_B:
3097			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3098			break;
3099		case PORT_C:
3100			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3101			break;
3102		case PORT_D:
3103			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3104			break;
3105		default:
3106			return connector_status_unknown;
3107		}
3108	}
3109
3110	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3111		return connector_status_disconnected;
3112
3113	return intel_dp_detect_dpcd(intel_dp);
3114}
3115
3116static struct edid *
3117intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3118{
3119	struct intel_connector *intel_connector = to_intel_connector(connector);
 
 
3120
3121	/* use cached edid if we have one */
3122	if (intel_connector->edid) {
3123		/* invalid edid */
3124		if (IS_ERR(intel_connector->edid))
 
 
 
3125			return NULL;
3126
3127		return drm_edid_duplicate(intel_connector->edid);
 
3128	}
3129
3130	return drm_get_edid(connector, adapter);
 
3131}
3132
3133static int
3134intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3135{
3136	struct intel_connector *intel_connector = to_intel_connector(connector);
 
3137
3138	/* use cached edid if we have one */
3139	if (intel_connector->edid) {
3140		/* invalid edid */
3141		if (IS_ERR(intel_connector->edid))
3142			return 0;
3143
3144		return intel_connector_update_modes(connector,
3145						    intel_connector->edid);
3146	}
3147
3148	return intel_ddc_get_modes(connector, adapter);
 
3149}
3150
 
 
 
 
 
 
 
3151static enum drm_connector_status
3152intel_dp_detect(struct drm_connector *connector, bool force)
3153{
3154	struct intel_dp *intel_dp = intel_attached_dp(connector);
3155	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3156	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3157	struct drm_device *dev = connector->dev;
3158	struct drm_i915_private *dev_priv = dev->dev_private;
3159	enum drm_connector_status status;
3160	enum intel_display_power_domain power_domain;
3161	struct edid *edid = NULL;
3162
3163	intel_runtime_pm_get(dev_priv);
3164
3165	power_domain = intel_display_port_power_domain(intel_encoder);
3166	intel_display_power_get(dev_priv, power_domain);
3167
3168	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3169		      connector->base.id, drm_get_connector_name(connector));
3170
3171	intel_dp->has_audio = false;
3172
3173	if (HAS_PCH_SPLIT(dev))
3174		status = ironlake_dp_detect(intel_dp);
3175	else
3176		status = g4x_dp_detect(intel_dp);
3177
 
 
 
 
 
3178	if (status != connector_status_connected)
3179		goto out;
3180
3181	intel_dp_probe_oui(intel_dp);
3182
3183	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3184		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3185	} else {
3186		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3187		if (edid) {
3188			intel_dp->has_audio = drm_detect_monitor_audio(edid);
 
3189			kfree(edid);
3190		}
3191	}
3192
3193	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3194		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3195	status = connector_status_connected;
3196
3197out:
3198	intel_display_power_put(dev_priv, power_domain);
3199
3200	intel_runtime_pm_put(dev_priv);
3201
3202	return status;
3203}
3204
3205static int intel_dp_get_modes(struct drm_connector *connector)
3206{
3207	struct intel_dp *intel_dp = intel_attached_dp(connector);
3208	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3209	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3210	struct intel_connector *intel_connector = to_intel_connector(connector);
3211	struct drm_device *dev = connector->dev;
3212	struct drm_i915_private *dev_priv = dev->dev_private;
3213	enum intel_display_power_domain power_domain;
3214	int ret;
3215
3216	/* We should parse the EDID data and find out if it has an audio sink
3217	 */
3218
3219	power_domain = intel_display_port_power_domain(intel_encoder);
3220	intel_display_power_get(dev_priv, power_domain);
3221
3222	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3223	intel_display_power_put(dev_priv, power_domain);
3224	if (ret)
 
 
 
 
 
 
 
3225		return ret;
 
3226
3227	/* if eDP has no EDID, fall back to fixed mode */
3228	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3229		struct drm_display_mode *mode;
3230		mode = drm_mode_duplicate(dev,
3231					  intel_connector->panel.fixed_mode);
3232		if (mode) {
 
 
 
 
 
 
 
 
3233			drm_mode_probed_add(connector, mode);
3234			return 1;
3235		}
3236	}
3237	return 0;
3238}
3239
3240static bool
3241intel_dp_detect_audio(struct drm_connector *connector)
3242{
3243	struct intel_dp *intel_dp = intel_attached_dp(connector);
3244	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3245	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3246	struct drm_device *dev = connector->dev;
3247	struct drm_i915_private *dev_priv = dev->dev_private;
3248	enum intel_display_power_domain power_domain;
3249	struct edid *edid;
3250	bool has_audio = false;
3251
3252	power_domain = intel_display_port_power_domain(intel_encoder);
3253	intel_display_power_get(dev_priv, power_domain);
3254
3255	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3256	if (edid) {
3257		has_audio = drm_detect_monitor_audio(edid);
 
 
3258		kfree(edid);
3259	}
3260
3261	intel_display_power_put(dev_priv, power_domain);
3262
3263	return has_audio;
3264}
3265
3266static int
3267intel_dp_set_property(struct drm_connector *connector,
3268		      struct drm_property *property,
3269		      uint64_t val)
3270{
3271	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3272	struct intel_connector *intel_connector = to_intel_connector(connector);
3273	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3274	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3275	int ret;
3276
3277	ret = drm_object_property_set_value(&connector->base, property, val);
3278	if (ret)
3279		return ret;
3280
3281	if (property == dev_priv->force_audio_property) {
3282		int i = val;
3283		bool has_audio;
3284
3285		if (i == intel_dp->force_audio)
3286			return 0;
3287
3288		intel_dp->force_audio = i;
3289
3290		if (i == HDMI_AUDIO_AUTO)
3291			has_audio = intel_dp_detect_audio(connector);
3292		else
3293			has_audio = (i == HDMI_AUDIO_ON);
3294
3295		if (has_audio == intel_dp->has_audio)
3296			return 0;
3297
3298		intel_dp->has_audio = has_audio;
3299		goto done;
3300	}
3301
3302	if (property == dev_priv->broadcast_rgb_property) {
3303		bool old_auto = intel_dp->color_range_auto;
3304		uint32_t old_range = intel_dp->color_range;
3305
3306		switch (val) {
3307		case INTEL_BROADCAST_RGB_AUTO:
3308			intel_dp->color_range_auto = true;
3309			break;
3310		case INTEL_BROADCAST_RGB_FULL:
3311			intel_dp->color_range_auto = false;
3312			intel_dp->color_range = 0;
3313			break;
3314		case INTEL_BROADCAST_RGB_LIMITED:
3315			intel_dp->color_range_auto = false;
3316			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3317			break;
3318		default:
3319			return -EINVAL;
3320		}
3321
3322		if (old_auto == intel_dp->color_range_auto &&
3323		    old_range == intel_dp->color_range)
3324			return 0;
3325
3326		goto done;
3327	}
3328
3329	if (is_edp(intel_dp) &&
3330	    property == connector->dev->mode_config.scaling_mode_property) {
3331		if (val == DRM_MODE_SCALE_NONE) {
3332			DRM_DEBUG_KMS("no scaling not supported\n");
3333			return -EINVAL;
3334		}
3335
3336		if (intel_connector->panel.fitting_mode == val) {
3337			/* the eDP scaling property is not changed */
3338			return 0;
3339		}
3340		intel_connector->panel.fitting_mode = val;
3341
3342		goto done;
3343	}
3344
3345	return -EINVAL;
3346
3347done:
3348	if (intel_encoder->base.crtc)
3349		intel_crtc_restore_mode(intel_encoder->base.crtc);
 
 
 
 
3350
3351	return 0;
3352}
3353
3354static void
3355intel_dp_connector_destroy(struct drm_connector *connector)
3356{
3357	struct intel_connector *intel_connector = to_intel_connector(connector);
3358
3359	if (!IS_ERR_OR_NULL(intel_connector->edid))
3360		kfree(intel_connector->edid);
3361
3362	/* Can't call is_edp() since the encoder may have been destroyed
3363	 * already. */
3364	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3365		intel_panel_fini(&intel_connector->panel);
3366
 
3367	drm_connector_cleanup(connector);
3368	kfree(connector);
3369}
3370
3371void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3372{
3373	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3374	struct intel_dp *intel_dp = &intel_dig_port->dp;
3375	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3376
3377	drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3378	drm_encoder_cleanup(encoder);
3379	if (is_edp(intel_dp)) {
 
3380		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3381		mutex_lock(&dev->mode_config.mutex);
3382		edp_panel_vdd_off_sync(intel_dp);
3383		mutex_unlock(&dev->mode_config.mutex);
3384	}
3385	kfree(intel_dig_port);
3386}
3387
 
 
 
 
 
 
 
 
3388static const struct drm_connector_funcs intel_dp_connector_funcs = {
3389	.dpms = intel_connector_dpms,
3390	.detect = intel_dp_detect,
3391	.fill_modes = drm_helper_probe_single_connector_modes,
3392	.set_property = intel_dp_set_property,
3393	.destroy = intel_dp_connector_destroy,
3394};
3395
3396static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3397	.get_modes = intel_dp_get_modes,
3398	.mode_valid = intel_dp_mode_valid,
3399	.best_encoder = intel_best_encoder,
3400};
3401
3402static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3403	.destroy = intel_dp_encoder_destroy,
3404};
3405
3406static void
3407intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3408{
3409	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3410
3411	intel_dp_check_link_status(intel_dp);
3412}
3413
3414/* Return which DP Port should be selected for Transcoder DP control */
3415int
3416intel_trans_dp_port_sel(struct drm_crtc *crtc)
3417{
3418	struct drm_device *dev = crtc->dev;
3419	struct intel_encoder *intel_encoder;
3420	struct intel_dp *intel_dp;
 
 
 
3421
3422	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3423		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3424
3425		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3426		    intel_encoder->type == INTEL_OUTPUT_EDP)
 
3427			return intel_dp->output_reg;
3428	}
3429
3430	return -1;
3431}
3432
3433/* check the VBT to see whether the eDP is on DP-D port */
3434bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3435{
3436	struct drm_i915_private *dev_priv = dev->dev_private;
3437	union child_device_config *p_child;
3438	int i;
3439	static const short port_mapping[] = {
3440		[PORT_B] = PORT_IDPB,
3441		[PORT_C] = PORT_IDPC,
3442		[PORT_D] = PORT_IDPD,
3443	};
3444
3445	if (port == PORT_A)
3446		return true;
3447
3448	if (!dev_priv->vbt.child_dev_num)
3449		return false;
3450
3451	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3452		p_child = dev_priv->vbt.child_dev + i;
3453
3454		if (p_child->common.dvo_port == port_mapping[port] &&
3455		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3456		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3457			return true;
3458	}
3459	return false;
3460}
3461
3462static void
3463intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3464{
3465	struct intel_connector *intel_connector = to_intel_connector(connector);
3466
3467	intel_attach_force_audio_property(connector);
3468	intel_attach_broadcast_rgb_property(connector);
3469	intel_dp->color_range_auto = true;
3470
3471	if (is_edp(intel_dp)) {
3472		drm_mode_create_scaling_mode_property(connector->dev);
3473		drm_object_attach_property(
3474			&connector->base,
3475			connector->dev->mode_config.scaling_mode_property,
3476			DRM_MODE_SCALE_ASPECT);
3477		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3478	}
3479}
3480
3481static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3482{
3483	intel_dp->last_power_cycle = jiffies;
3484	intel_dp->last_power_on = jiffies;
3485	intel_dp->last_backlight_off = jiffies;
3486}
3487
3488static void
3489intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3490				    struct intel_dp *intel_dp,
3491				    struct edp_power_seq *out)
3492{
3493	struct drm_i915_private *dev_priv = dev->dev_private;
3494	struct edp_power_seq cur, vbt, spec, final;
3495	u32 pp_on, pp_off, pp_div, pp;
3496	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
 
 
 
3497
3498	if (HAS_PCH_SPLIT(dev)) {
3499		pp_ctrl_reg = PCH_PP_CONTROL;
3500		pp_on_reg = PCH_PP_ON_DELAYS;
3501		pp_off_reg = PCH_PP_OFF_DELAYS;
3502		pp_div_reg = PCH_PP_DIVISOR;
3503	} else {
3504		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3505
3506		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3507		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3508		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3509		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3510	}
3511
3512	/* Workaround: Need to write PP_CONTROL with the unlock key as
3513	 * the very first thing. */
3514	pp = ironlake_get_pp_control(intel_dp);
3515	I915_WRITE(pp_ctrl_reg, pp);
3516
3517	pp_on = I915_READ(pp_on_reg);
3518	pp_off = I915_READ(pp_off_reg);
3519	pp_div = I915_READ(pp_div_reg);
3520
3521	/* Pull timing values out of registers */
3522	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3523		PANEL_POWER_UP_DELAY_SHIFT;
3524
3525	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3526		PANEL_LIGHT_ON_DELAY_SHIFT;
3527
3528	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3529		PANEL_LIGHT_OFF_DELAY_SHIFT;
3530
3531	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3532		PANEL_POWER_DOWN_DELAY_SHIFT;
3533
3534	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3535		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3536
3537	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3538		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3539
3540	vbt = dev_priv->vbt.edp_pps;
3541
3542	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3543	 * our hw here, which are all in 100usec. */
3544	spec.t1_t3 = 210 * 10;
3545	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3546	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3547	spec.t10 = 500 * 10;
3548	/* This one is special and actually in units of 100ms, but zero
3549	 * based in the hw (so we need to add 100 ms). But the sw vbt
3550	 * table multiplies it with 1000 to make it in units of 100usec,
3551	 * too. */
3552	spec.t11_t12 = (510 + 100) * 10;
3553
3554	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3555		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3556
3557	/* Use the max of the register settings and vbt. If both are
3558	 * unset, fall back to the spec limits. */
3559#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3560				       spec.field : \
3561				       max(cur.field, vbt.field))
3562	assign_final(t1_t3);
3563	assign_final(t8);
3564	assign_final(t9);
3565	assign_final(t10);
3566	assign_final(t11_t12);
3567#undef assign_final
3568
3569#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3570	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3571	intel_dp->backlight_on_delay = get_delay(t8);
3572	intel_dp->backlight_off_delay = get_delay(t9);
3573	intel_dp->panel_power_down_delay = get_delay(t10);
3574	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3575#undef get_delay
3576
3577	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3578		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3579		      intel_dp->panel_power_cycle_delay);
3580
3581	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3582		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
 
 
 
 
3583
3584	if (out)
3585		*out = final;
3586}
3587
3588static void
3589intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3590					      struct intel_dp *intel_dp,
3591					      struct edp_power_seq *seq)
3592{
3593	struct drm_i915_private *dev_priv = dev->dev_private;
3594	u32 pp_on, pp_off, pp_div, port_sel = 0;
3595	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3596	int pp_on_reg, pp_off_reg, pp_div_reg;
3597
3598	if (HAS_PCH_SPLIT(dev)) {
3599		pp_on_reg = PCH_PP_ON_DELAYS;
3600		pp_off_reg = PCH_PP_OFF_DELAYS;
3601		pp_div_reg = PCH_PP_DIVISOR;
3602	} else {
3603		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3604
3605		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3606		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3607		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3608	}
3609
3610	/*
3611	 * And finally store the new values in the power sequencer. The
3612	 * backlight delays are set to 1 because we do manual waits on them. For
3613	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3614	 * we'll end up waiting for the backlight off delay twice: once when we
3615	 * do the manual sleep, and once when we disable the panel and wait for
3616	 * the PP_STATUS bit to become zero.
3617	 */
3618	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3619		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3620	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3621		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3622	/* Compute the divisor for the pp clock, simply match the Bspec
3623	 * formula. */
3624	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3625	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3626			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3627
3628	/* Haswell doesn't have any port selection bits for the panel
3629	 * power sequencer any more. */
3630	if (IS_VALLEYVIEW(dev)) {
3631		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3632			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3633		else
3634			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3635	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3636		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3637			port_sel = PANEL_PORT_SELECT_DPA;
3638		else
3639			port_sel = PANEL_PORT_SELECT_DPD;
3640	}
3641
3642	pp_on |= port_sel;
3643
3644	I915_WRITE(pp_on_reg, pp_on);
3645	I915_WRITE(pp_off_reg, pp_off);
3646	I915_WRITE(pp_div_reg, pp_div);
 
 
 
3647
3648	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3649		      I915_READ(pp_on_reg),
3650		      I915_READ(pp_off_reg),
3651		      I915_READ(pp_div_reg));
3652}
3653
3654static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3655				     struct intel_connector *intel_connector,
3656				     struct edp_power_seq *power_seq)
3657{
3658	struct drm_connector *connector = &intel_connector->base;
3659	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3661	struct drm_device *dev = intel_encoder->base.dev;
3662	struct drm_i915_private *dev_priv = dev->dev_private;
3663	struct drm_display_mode *fixed_mode = NULL;
3664	bool has_dpcd;
3665	struct drm_display_mode *scan;
3666	struct edid *edid;
3667
3668	if (!is_edp(intel_dp))
3669		return true;
3670
3671	/* The VDD bit needs a power domain reference, so if the bit is already
3672	 * enabled when we boot, grab this reference. */
3673	if (edp_have_panel_vdd(intel_dp)) {
3674		enum intel_display_power_domain power_domain;
3675		power_domain = intel_display_port_power_domain(intel_encoder);
3676		intel_display_power_get(dev_priv, power_domain);
3677	}
3678
3679	/* Cache DPCD and EDID for edp. */
3680	intel_edp_panel_vdd_on(intel_dp);
3681	has_dpcd = intel_dp_get_dpcd(intel_dp);
3682	edp_panel_vdd_off(intel_dp, false);
3683
3684	if (has_dpcd) {
3685		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3686			dev_priv->no_aux_handshake =
3687				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3688				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3689	} else {
3690		/* if this fails, presume the device is a ghost */
3691		DRM_INFO("failed to retrieve link info, disabling eDP\n");
3692		return false;
3693	}
3694
3695	/* We now know it's not a ghost, init power sequence regs. */
3696	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3697
3698	mutex_lock(&dev->mode_config.mutex);
3699	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3700	if (edid) {
3701		if (drm_add_edid_modes(connector, edid)) {
3702			drm_mode_connector_update_edid_property(connector,
3703								edid);
3704			drm_edid_to_eld(connector, edid);
3705		} else {
3706			kfree(edid);
3707			edid = ERR_PTR(-EINVAL);
3708		}
3709	} else {
3710		edid = ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
 
 
 
3711	}
3712	intel_connector->edid = edid;
3713
3714	/* prefer fixed mode from EDID if available */
3715	list_for_each_entry(scan, &connector->probed_modes, head) {
3716		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3717			fixed_mode = drm_mode_duplicate(dev, scan);
3718			break;
3719		}
3720	}
 
3721
3722	/* fallback to VBT if available for eDP */
3723	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3724		fixed_mode = drm_mode_duplicate(dev,
3725					dev_priv->vbt.lfp_lvds_vbt_mode);
3726		if (fixed_mode)
3727			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3728	}
3729	mutex_unlock(&dev->mode_config.mutex);
3730
3731	intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3732	intel_panel_setup_backlight(connector);
 
 
 
 
3733
3734	return true;
3735}
 
3736
3737bool
3738intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3739			struct intel_connector *intel_connector)
3740{
3741	struct drm_connector *connector = &intel_connector->base;
3742	struct intel_dp *intel_dp = &intel_dig_port->dp;
3743	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3744	struct drm_device *dev = intel_encoder->base.dev;
3745	struct drm_i915_private *dev_priv = dev->dev_private;
3746	enum port port = intel_dig_port->port;
3747	struct edp_power_seq power_seq = { 0 };
3748	int type;
3749
3750	/* intel_dp vfuncs */
3751	if (IS_VALLEYVIEW(dev))
3752		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3753	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3754		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3755	else if (HAS_PCH_SPLIT(dev))
3756		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3757	else
3758		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3759
3760	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
 
3761
3762	/* Preserve the current hw state. */
3763	intel_dp->DP = I915_READ(intel_dp->output_reg);
3764	intel_dp->attached_connector = intel_connector;
3765
3766	if (intel_dp_is_edp(dev, port))
3767		type = DRM_MODE_CONNECTOR_eDP;
3768	else
3769		type = DRM_MODE_CONNECTOR_DisplayPort;
3770
3771	/*
3772	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3773	 * for DP the encoder type can be set by the caller to
3774	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3775	 */
3776	if (type == DRM_MODE_CONNECTOR_eDP)
3777		intel_encoder->type = INTEL_OUTPUT_EDP;
3778
3779	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3780			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3781			port_name(port));
3782
3783	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3784	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3785
3786	connector->interlace_allowed = true;
3787	connector->doublescan_allowed = 0;
 
 
 
3788
3789	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3790			  edp_panel_vdd_work);
 
3791
3792	intel_connector_attach_encoder(intel_connector, intel_encoder);
3793	drm_sysfs_connector_add(connector);
3794
3795	if (HAS_DDI(dev))
3796		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3797	else
3798		intel_connector->get_hw_state = intel_connector_get_hw_state;
3799	intel_connector->unregister = intel_dp_connector_unregister;
3800
3801	/* Set up the hotplug pin. */
3802	switch (port) {
3803	case PORT_A:
3804		intel_encoder->hpd_pin = HPD_PORT_A;
3805		break;
3806	case PORT_B:
3807		intel_encoder->hpd_pin = HPD_PORT_B;
3808		break;
3809	case PORT_C:
3810		intel_encoder->hpd_pin = HPD_PORT_C;
3811		break;
3812	case PORT_D:
3813		intel_encoder->hpd_pin = HPD_PORT_D;
3814		break;
3815	default:
3816		BUG();
3817	}
3818
3819	if (is_edp(intel_dp)) {
3820		intel_dp_init_panel_power_timestamps(intel_dp);
3821		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
 
 
 
 
 
 
 
 
3822	}
3823
3824	intel_dp_aux_init(intel_dp, intel_connector);
3825
3826	intel_dp->psr_setup_done = false;
3827
3828	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3829		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3830		if (is_edp(intel_dp)) {
3831			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3832			mutex_lock(&dev->mode_config.mutex);
3833			edp_panel_vdd_off_sync(intel_dp);
3834			mutex_unlock(&dev->mode_config.mutex);
3835		}
3836		drm_sysfs_connector_remove(connector);
3837		drm_connector_cleanup(connector);
3838		return false;
3839	}
3840
3841	intel_dp_add_properties(intel_dp, connector);
3842
3843	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3844	 * 0xd.  Failure to do so will result in spurious interrupts being
3845	 * generated on the port when a cable is not attached.
3846	 */
3847	if (IS_G4X(dev) && !IS_GM45(dev)) {
3848		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3849		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3850	}
3851
3852	return true;
3853}
3854
3855void
3856intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3857{
3858	struct intel_digital_port *intel_dig_port;
3859	struct intel_encoder *intel_encoder;
3860	struct drm_encoder *encoder;
3861	struct intel_connector *intel_connector;
3862
3863	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3864	if (!intel_dig_port)
3865		return;
3866
3867	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3868	if (!intel_connector) {
3869		kfree(intel_dig_port);
3870		return;
3871	}
3872
3873	intel_encoder = &intel_dig_port->base;
3874	encoder = &intel_encoder->base;
3875
3876	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3877			 DRM_MODE_ENCODER_TMDS);
3878
3879	intel_encoder->compute_config = intel_dp_compute_config;
3880	intel_encoder->mode_set = intel_dp_mode_set;
3881	intel_encoder->disable = intel_disable_dp;
3882	intel_encoder->post_disable = intel_post_disable_dp;
3883	intel_encoder->get_hw_state = intel_dp_get_hw_state;
3884	intel_encoder->get_config = intel_dp_get_config;
3885	if (IS_VALLEYVIEW(dev)) {
3886		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3887		intel_encoder->pre_enable = vlv_pre_enable_dp;
3888		intel_encoder->enable = vlv_enable_dp;
3889	} else {
3890		intel_encoder->pre_enable = g4x_pre_enable_dp;
3891		intel_encoder->enable = g4x_enable_dp;
3892	}
3893
3894	intel_dig_port->port = port;
3895	intel_dig_port->dp.output_reg = output_reg;
3896
3897	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3898	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3899	intel_encoder->cloneable = 0;
3900	intel_encoder->hot_plug = intel_dp_hot_plug;
3901
3902	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3903		drm_encoder_cleanup(encoder);
3904		kfree(intel_dig_port);
3905		kfree(intel_connector);
3906	}
3907}