Loading...
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "drm_edid.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
39#include "drm_dp_helper.h"
40
41#define DP_RECEIVER_CAP_SIZE 0xf
42#define DP_LINK_STATUS_SIZE 6
43#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
44
45#define DP_LINK_CONFIGURATION_SIZE 9
46
47struct intel_dp {
48 struct intel_encoder base;
49 uint32_t output_reg;
50 uint32_t DP;
51 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
52 bool has_audio;
53 enum hdmi_force_audio force_audio;
54 uint32_t color_range;
55 int dpms_mode;
56 uint8_t link_bw;
57 uint8_t lane_count;
58 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
59 struct i2c_adapter adapter;
60 struct i2c_algo_dp_aux_data algo;
61 bool is_pch_edp;
62 uint8_t train_set[4];
63 int panel_power_up_delay;
64 int panel_power_down_delay;
65 int panel_power_cycle_delay;
66 int backlight_on_delay;
67 int backlight_off_delay;
68 struct drm_display_mode *panel_fixed_mode; /* for eDP */
69 struct delayed_work panel_vdd_work;
70 bool want_panel_vdd;
71 struct edid *edid; /* cached EDID for eDP */
72 int edid_mode_count;
73};
74
75/**
76 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77 * @intel_dp: DP struct
78 *
79 * If a CPU or PCH DP output is attached to an eDP panel, this function
80 * will return true, and false otherwise.
81 */
82static bool is_edp(struct intel_dp *intel_dp)
83{
84 return intel_dp->base.type == INTEL_OUTPUT_EDP;
85}
86
87/**
88 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89 * @intel_dp: DP struct
90 *
91 * Returns true if the given DP struct corresponds to a PCH DP port attached
92 * to an eDP panel, false otherwise. Helpful for determining whether we
93 * may need FDI resources for a given DP output or not.
94 */
95static bool is_pch_edp(struct intel_dp *intel_dp)
96{
97 return intel_dp->is_pch_edp;
98}
99
100/**
101 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102 * @intel_dp: DP struct
103 *
104 * Returns true if the given DP struct corresponds to a CPU eDP port.
105 */
106static bool is_cpu_edp(struct intel_dp *intel_dp)
107{
108 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109}
110
111static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112{
113 return container_of(encoder, struct intel_dp, base.base);
114}
115
116static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117{
118 return container_of(intel_attached_encoder(connector),
119 struct intel_dp, base);
120}
121
122/**
123 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124 * @encoder: DRM encoder
125 *
126 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
127 * by intel_display.c.
128 */
129bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130{
131 struct intel_dp *intel_dp;
132
133 if (!encoder)
134 return false;
135
136 intel_dp = enc_to_intel_dp(encoder);
137
138 return is_pch_edp(intel_dp);
139}
140
141static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145void
146intel_edp_link_config(struct intel_encoder *intel_encoder,
147 int *lane_num, int *link_bw)
148{
149 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151 *lane_num = intel_dp->lane_count;
152 if (intel_dp->link_bw == DP_LINK_BW_1_62)
153 *link_bw = 162000;
154 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155 *link_bw = 270000;
156}
157
158static int
159intel_dp_max_lane_count(struct intel_dp *intel_dp)
160{
161 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
162 switch (max_lane_count) {
163 case 1: case 2: case 4:
164 break;
165 default:
166 max_lane_count = 4;
167 }
168 return max_lane_count;
169}
170
171static int
172intel_dp_max_link_bw(struct intel_dp *intel_dp)
173{
174 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176 switch (max_link_bw) {
177 case DP_LINK_BW_1_62:
178 case DP_LINK_BW_2_7:
179 break;
180 default:
181 max_link_bw = DP_LINK_BW_1_62;
182 break;
183 }
184 return max_link_bw;
185}
186
187static int
188intel_dp_link_clock(uint8_t link_bw)
189{
190 if (link_bw == DP_LINK_BW_2_7)
191 return 270000;
192 else
193 return 162000;
194}
195
196/*
197 * The units on the numbers in the next two are... bizarre. Examples will
198 * make it clearer; this one parallels an example in the eDP spec.
199 *
200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201 *
202 * 270000 * 1 * 8 / 10 == 216000
203 *
204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
205 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207 * 119000. At 18bpp that's 2142000 kilobits per second.
208 *
209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
210 * get the result in decakilobits instead of kilobits.
211 */
212
213static int
214intel_dp_link_required(int pixel_clock, int bpp)
215{
216 return (pixel_clock * bpp + 9) / 10;
217}
218
219static int
220intel_dp_max_data_rate(int max_link_clock, int max_lanes)
221{
222 return (max_link_clock * max_lanes * 8) / 10;
223}
224
225static bool
226intel_dp_adjust_dithering(struct intel_dp *intel_dp,
227 struct drm_display_mode *mode,
228 struct drm_display_mode *adjusted_mode)
229{
230 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
231 int max_lanes = intel_dp_max_lane_count(intel_dp);
232 int max_rate, mode_rate;
233
234 mode_rate = intel_dp_link_required(mode->clock, 24);
235 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
236
237 if (mode_rate > max_rate) {
238 mode_rate = intel_dp_link_required(mode->clock, 18);
239 if (mode_rate > max_rate)
240 return false;
241
242 if (adjusted_mode)
243 adjusted_mode->private_flags
244 |= INTEL_MODE_DP_FORCE_6BPC;
245
246 return true;
247 }
248
249 return true;
250}
251
252static int
253intel_dp_mode_valid(struct drm_connector *connector,
254 struct drm_display_mode *mode)
255{
256 struct intel_dp *intel_dp = intel_attached_dp(connector);
257
258 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
259 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
260 return MODE_PANEL;
261
262 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
263 return MODE_PANEL;
264 }
265
266 if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
267 return MODE_CLOCK_HIGH;
268
269 if (mode->clock < 10000)
270 return MODE_CLOCK_LOW;
271
272 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
273 return MODE_H_ILLEGAL;
274
275 return MODE_OK;
276}
277
278static uint32_t
279pack_aux(uint8_t *src, int src_bytes)
280{
281 int i;
282 uint32_t v = 0;
283
284 if (src_bytes > 4)
285 src_bytes = 4;
286 for (i = 0; i < src_bytes; i++)
287 v |= ((uint32_t) src[i]) << ((3-i) * 8);
288 return v;
289}
290
291static void
292unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
293{
294 int i;
295 if (dst_bytes > 4)
296 dst_bytes = 4;
297 for (i = 0; i < dst_bytes; i++)
298 dst[i] = src >> ((3-i) * 8);
299}
300
301/* hrawclock is 1/4 the FSB frequency */
302static int
303intel_hrawclk(struct drm_device *dev)
304{
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 uint32_t clkcfg;
307
308 clkcfg = I915_READ(CLKCFG);
309 switch (clkcfg & CLKCFG_FSB_MASK) {
310 case CLKCFG_FSB_400:
311 return 100;
312 case CLKCFG_FSB_533:
313 return 133;
314 case CLKCFG_FSB_667:
315 return 166;
316 case CLKCFG_FSB_800:
317 return 200;
318 case CLKCFG_FSB_1067:
319 return 266;
320 case CLKCFG_FSB_1333:
321 return 333;
322 /* these two are just a guess; one of them might be right */
323 case CLKCFG_FSB_1600:
324 case CLKCFG_FSB_1600_ALT:
325 return 400;
326 default:
327 return 133;
328 }
329}
330
331static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
332{
333 struct drm_device *dev = intel_dp->base.base.dev;
334 struct drm_i915_private *dev_priv = dev->dev_private;
335
336 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
337}
338
339static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
340{
341 struct drm_device *dev = intel_dp->base.base.dev;
342 struct drm_i915_private *dev_priv = dev->dev_private;
343
344 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
345}
346
347static void
348intel_dp_check_edp(struct intel_dp *intel_dp)
349{
350 struct drm_device *dev = intel_dp->base.base.dev;
351 struct drm_i915_private *dev_priv = dev->dev_private;
352
353 if (!is_edp(intel_dp))
354 return;
355 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
356 WARN(1, "eDP powered off while attempting aux channel communication.\n");
357 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
358 I915_READ(PCH_PP_STATUS),
359 I915_READ(PCH_PP_CONTROL));
360 }
361}
362
363static int
364intel_dp_aux_ch(struct intel_dp *intel_dp,
365 uint8_t *send, int send_bytes,
366 uint8_t *recv, int recv_size)
367{
368 uint32_t output_reg = intel_dp->output_reg;
369 struct drm_device *dev = intel_dp->base.base.dev;
370 struct drm_i915_private *dev_priv = dev->dev_private;
371 uint32_t ch_ctl = output_reg + 0x10;
372 uint32_t ch_data = ch_ctl + 4;
373 int i;
374 int recv_bytes;
375 uint32_t status;
376 uint32_t aux_clock_divider;
377 int try, precharge;
378
379 intel_dp_check_edp(intel_dp);
380 /* The clock divider is based off the hrawclk,
381 * and would like to run at 2MHz. So, take the
382 * hrawclk value and divide by 2 and use that
383 *
384 * Note that PCH attached eDP panels should use a 125MHz input
385 * clock divider.
386 */
387 if (is_cpu_edp(intel_dp)) {
388 if (IS_GEN6(dev) || IS_GEN7(dev))
389 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
390 else
391 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
392 } else if (HAS_PCH_SPLIT(dev))
393 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
394 else
395 aux_clock_divider = intel_hrawclk(dev) / 2;
396
397 if (IS_GEN6(dev))
398 precharge = 3;
399 else
400 precharge = 5;
401
402 /* Try to wait for any previous AUX channel activity */
403 for (try = 0; try < 3; try++) {
404 status = I915_READ(ch_ctl);
405 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
406 break;
407 msleep(1);
408 }
409
410 if (try == 3) {
411 WARN(1, "dp_aux_ch not started status 0x%08x\n",
412 I915_READ(ch_ctl));
413 return -EBUSY;
414 }
415
416 /* Must try at least 3 times according to DP spec */
417 for (try = 0; try < 5; try++) {
418 /* Load the send data into the aux channel data registers */
419 for (i = 0; i < send_bytes; i += 4)
420 I915_WRITE(ch_data + i,
421 pack_aux(send + i, send_bytes - i));
422
423 /* Send the command and wait for it to complete */
424 I915_WRITE(ch_ctl,
425 DP_AUX_CH_CTL_SEND_BUSY |
426 DP_AUX_CH_CTL_TIME_OUT_400us |
427 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
428 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
429 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
430 DP_AUX_CH_CTL_DONE |
431 DP_AUX_CH_CTL_TIME_OUT_ERROR |
432 DP_AUX_CH_CTL_RECEIVE_ERROR);
433 for (;;) {
434 status = I915_READ(ch_ctl);
435 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
436 break;
437 udelay(100);
438 }
439
440 /* Clear done status and any errors */
441 I915_WRITE(ch_ctl,
442 status |
443 DP_AUX_CH_CTL_DONE |
444 DP_AUX_CH_CTL_TIME_OUT_ERROR |
445 DP_AUX_CH_CTL_RECEIVE_ERROR);
446
447 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
448 DP_AUX_CH_CTL_RECEIVE_ERROR))
449 continue;
450 if (status & DP_AUX_CH_CTL_DONE)
451 break;
452 }
453
454 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
455 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
456 return -EBUSY;
457 }
458
459 /* Check for timeout or receive error.
460 * Timeouts occur when the sink is not connected
461 */
462 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
463 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
464 return -EIO;
465 }
466
467 /* Timeouts occur when the device isn't connected, so they're
468 * "normal" -- don't fill the kernel log with these */
469 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
470 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
471 return -ETIMEDOUT;
472 }
473
474 /* Unload any bytes sent back from the other side */
475 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
476 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
477 if (recv_bytes > recv_size)
478 recv_bytes = recv_size;
479
480 for (i = 0; i < recv_bytes; i += 4)
481 unpack_aux(I915_READ(ch_data + i),
482 recv + i, recv_bytes - i);
483
484 return recv_bytes;
485}
486
487/* Write data to the aux channel in native mode */
488static int
489intel_dp_aux_native_write(struct intel_dp *intel_dp,
490 uint16_t address, uint8_t *send, int send_bytes)
491{
492 int ret;
493 uint8_t msg[20];
494 int msg_bytes;
495 uint8_t ack;
496
497 intel_dp_check_edp(intel_dp);
498 if (send_bytes > 16)
499 return -1;
500 msg[0] = AUX_NATIVE_WRITE << 4;
501 msg[1] = address >> 8;
502 msg[2] = address & 0xff;
503 msg[3] = send_bytes - 1;
504 memcpy(&msg[4], send, send_bytes);
505 msg_bytes = send_bytes + 4;
506 for (;;) {
507 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
508 if (ret < 0)
509 return ret;
510 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
511 break;
512 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
513 udelay(100);
514 else
515 return -EIO;
516 }
517 return send_bytes;
518}
519
520/* Write a single byte to the aux channel in native mode */
521static int
522intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
523 uint16_t address, uint8_t byte)
524{
525 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
526}
527
528/* read bytes from a native aux channel */
529static int
530intel_dp_aux_native_read(struct intel_dp *intel_dp,
531 uint16_t address, uint8_t *recv, int recv_bytes)
532{
533 uint8_t msg[4];
534 int msg_bytes;
535 uint8_t reply[20];
536 int reply_bytes;
537 uint8_t ack;
538 int ret;
539
540 intel_dp_check_edp(intel_dp);
541 msg[0] = AUX_NATIVE_READ << 4;
542 msg[1] = address >> 8;
543 msg[2] = address & 0xff;
544 msg[3] = recv_bytes - 1;
545
546 msg_bytes = 4;
547 reply_bytes = recv_bytes + 1;
548
549 for (;;) {
550 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
551 reply, reply_bytes);
552 if (ret == 0)
553 return -EPROTO;
554 if (ret < 0)
555 return ret;
556 ack = reply[0];
557 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
558 memcpy(recv, reply + 1, ret - 1);
559 return ret - 1;
560 }
561 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
562 udelay(100);
563 else
564 return -EIO;
565 }
566}
567
568static int
569intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
570 uint8_t write_byte, uint8_t *read_byte)
571{
572 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
573 struct intel_dp *intel_dp = container_of(adapter,
574 struct intel_dp,
575 adapter);
576 uint16_t address = algo_data->address;
577 uint8_t msg[5];
578 uint8_t reply[2];
579 unsigned retry;
580 int msg_bytes;
581 int reply_bytes;
582 int ret;
583
584 intel_dp_check_edp(intel_dp);
585 /* Set up the command byte */
586 if (mode & MODE_I2C_READ)
587 msg[0] = AUX_I2C_READ << 4;
588 else
589 msg[0] = AUX_I2C_WRITE << 4;
590
591 if (!(mode & MODE_I2C_STOP))
592 msg[0] |= AUX_I2C_MOT << 4;
593
594 msg[1] = address >> 8;
595 msg[2] = address;
596
597 switch (mode) {
598 case MODE_I2C_WRITE:
599 msg[3] = 0;
600 msg[4] = write_byte;
601 msg_bytes = 5;
602 reply_bytes = 1;
603 break;
604 case MODE_I2C_READ:
605 msg[3] = 0;
606 msg_bytes = 4;
607 reply_bytes = 2;
608 break;
609 default:
610 msg_bytes = 3;
611 reply_bytes = 1;
612 break;
613 }
614
615 for (retry = 0; retry < 5; retry++) {
616 ret = intel_dp_aux_ch(intel_dp,
617 msg, msg_bytes,
618 reply, reply_bytes);
619 if (ret < 0) {
620 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
621 return ret;
622 }
623
624 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
625 case AUX_NATIVE_REPLY_ACK:
626 /* I2C-over-AUX Reply field is only valid
627 * when paired with AUX ACK.
628 */
629 break;
630 case AUX_NATIVE_REPLY_NACK:
631 DRM_DEBUG_KMS("aux_ch native nack\n");
632 return -EREMOTEIO;
633 case AUX_NATIVE_REPLY_DEFER:
634 udelay(100);
635 continue;
636 default:
637 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
638 reply[0]);
639 return -EREMOTEIO;
640 }
641
642 switch (reply[0] & AUX_I2C_REPLY_MASK) {
643 case AUX_I2C_REPLY_ACK:
644 if (mode == MODE_I2C_READ) {
645 *read_byte = reply[1];
646 }
647 return reply_bytes - 1;
648 case AUX_I2C_REPLY_NACK:
649 DRM_DEBUG_KMS("aux_i2c nack\n");
650 return -EREMOTEIO;
651 case AUX_I2C_REPLY_DEFER:
652 DRM_DEBUG_KMS("aux_i2c defer\n");
653 udelay(100);
654 break;
655 default:
656 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
657 return -EREMOTEIO;
658 }
659 }
660
661 DRM_ERROR("too many retries, giving up\n");
662 return -EREMOTEIO;
663}
664
665static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
666static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
667
668static int
669intel_dp_i2c_init(struct intel_dp *intel_dp,
670 struct intel_connector *intel_connector, const char *name)
671{
672 int ret;
673
674 DRM_DEBUG_KMS("i2c_init %s\n", name);
675 intel_dp->algo.running = false;
676 intel_dp->algo.address = 0;
677 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
678
679 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
680 intel_dp->adapter.owner = THIS_MODULE;
681 intel_dp->adapter.class = I2C_CLASS_DDC;
682 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
683 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
684 intel_dp->adapter.algo_data = &intel_dp->algo;
685 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
686
687 ironlake_edp_panel_vdd_on(intel_dp);
688 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
689 ironlake_edp_panel_vdd_off(intel_dp, false);
690 return ret;
691}
692
693static bool
694intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
695 struct drm_display_mode *adjusted_mode)
696{
697 struct drm_device *dev = encoder->dev;
698 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
699 int lane_count, clock;
700 int max_lane_count = intel_dp_max_lane_count(intel_dp);
701 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
702 int bpp, mode_rate;
703 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
704
705 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
706 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
707 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
708 mode, adjusted_mode);
709 /*
710 * the mode->clock is used to calculate the Data&Link M/N
711 * of the pipe. For the eDP the fixed clock should be used.
712 */
713 mode->clock = intel_dp->panel_fixed_mode->clock;
714 }
715
716 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
717 return false;
718
719 DRM_DEBUG_KMS("DP link computation with max lane count %i "
720 "max bw %02x pixel clock %iKHz\n",
721 max_lane_count, bws[max_clock], mode->clock);
722
723 if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
724 return false;
725
726 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
727 mode_rate = intel_dp_link_required(mode->clock, bpp);
728
729 for (clock = 0; clock <= max_clock; clock++) {
730 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
731 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
732
733 if (mode_rate <= link_avail) {
734 intel_dp->link_bw = bws[clock];
735 intel_dp->lane_count = lane_count;
736 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
737 DRM_DEBUG_KMS("DP link bw %02x lane "
738 "count %d clock %d bpp %d\n",
739 intel_dp->link_bw, intel_dp->lane_count,
740 adjusted_mode->clock, bpp);
741 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
742 mode_rate, link_avail);
743 return true;
744 }
745 }
746 }
747
748 return false;
749}
750
751struct intel_dp_m_n {
752 uint32_t tu;
753 uint32_t gmch_m;
754 uint32_t gmch_n;
755 uint32_t link_m;
756 uint32_t link_n;
757};
758
759static void
760intel_reduce_ratio(uint32_t *num, uint32_t *den)
761{
762 while (*num > 0xffffff || *den > 0xffffff) {
763 *num >>= 1;
764 *den >>= 1;
765 }
766}
767
768static void
769intel_dp_compute_m_n(int bpp,
770 int nlanes,
771 int pixel_clock,
772 int link_clock,
773 struct intel_dp_m_n *m_n)
774{
775 m_n->tu = 64;
776 m_n->gmch_m = (pixel_clock * bpp) >> 3;
777 m_n->gmch_n = link_clock * nlanes;
778 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
779 m_n->link_m = pixel_clock;
780 m_n->link_n = link_clock;
781 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
782}
783
784void
785intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
786 struct drm_display_mode *adjusted_mode)
787{
788 struct drm_device *dev = crtc->dev;
789 struct drm_mode_config *mode_config = &dev->mode_config;
790 struct drm_encoder *encoder;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793 int lane_count = 4;
794 struct intel_dp_m_n m_n;
795 int pipe = intel_crtc->pipe;
796
797 /*
798 * Find the lane count in the intel_encoder private
799 */
800 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
801 struct intel_dp *intel_dp;
802
803 if (encoder->crtc != crtc)
804 continue;
805
806 intel_dp = enc_to_intel_dp(encoder);
807 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
808 intel_dp->base.type == INTEL_OUTPUT_EDP)
809 {
810 lane_count = intel_dp->lane_count;
811 break;
812 }
813 }
814
815 /*
816 * Compute the GMCH and Link ratios. The '3' here is
817 * the number of bytes_per_pixel post-LUT, which we always
818 * set up for 8-bits of R/G/B, or 3 bytes total.
819 */
820 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
821 mode->clock, adjusted_mode->clock, &m_n);
822
823 if (HAS_PCH_SPLIT(dev)) {
824 I915_WRITE(TRANSDATA_M1(pipe),
825 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
826 m_n.gmch_m);
827 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
828 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
829 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
830 } else {
831 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
832 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
833 m_n.gmch_m);
834 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
835 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
836 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
837 }
838}
839
840static void ironlake_edp_pll_on(struct drm_encoder *encoder);
841static void ironlake_edp_pll_off(struct drm_encoder *encoder);
842
843static void
844intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
845 struct drm_display_mode *adjusted_mode)
846{
847 struct drm_device *dev = encoder->dev;
848 struct drm_i915_private *dev_priv = dev->dev_private;
849 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
850 struct drm_crtc *crtc = intel_dp->base.base.crtc;
851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
852
853 /* Turn on the eDP PLL if needed */
854 if (is_edp(intel_dp)) {
855 if (!is_pch_edp(intel_dp))
856 ironlake_edp_pll_on(encoder);
857 else
858 ironlake_edp_pll_off(encoder);
859 }
860
861 /*
862 * There are four kinds of DP registers:
863 *
864 * IBX PCH
865 * SNB CPU
866 * IVB CPU
867 * CPT PCH
868 *
869 * IBX PCH and CPU are the same for almost everything,
870 * except that the CPU DP PLL is configured in this
871 * register
872 *
873 * CPT PCH is quite different, having many bits moved
874 * to the TRANS_DP_CTL register instead. That
875 * configuration happens (oddly) in ironlake_pch_enable
876 */
877
878 /* Preserve the BIOS-computed detected bit. This is
879 * supposed to be read-only.
880 */
881 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
882 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
883
884 /* Handle DP bits in common between all three register formats */
885
886 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
887
888 switch (intel_dp->lane_count) {
889 case 1:
890 intel_dp->DP |= DP_PORT_WIDTH_1;
891 break;
892 case 2:
893 intel_dp->DP |= DP_PORT_WIDTH_2;
894 break;
895 case 4:
896 intel_dp->DP |= DP_PORT_WIDTH_4;
897 break;
898 }
899 if (intel_dp->has_audio) {
900 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
901 pipe_name(intel_crtc->pipe));
902 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
903 intel_write_eld(encoder, adjusted_mode);
904 }
905 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
906 intel_dp->link_configuration[0] = intel_dp->link_bw;
907 intel_dp->link_configuration[1] = intel_dp->lane_count;
908 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
909 /*
910 * Check for DPCD version > 1.1 and enhanced framing support
911 */
912 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
913 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
914 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
915 }
916
917 /* Split out the IBX/CPU vs CPT settings */
918
919 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
920 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
921 intel_dp->DP |= DP_SYNC_HS_HIGH;
922 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
923 intel_dp->DP |= DP_SYNC_VS_HIGH;
924 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
925
926 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
927 intel_dp->DP |= DP_ENHANCED_FRAMING;
928
929 intel_dp->DP |= intel_crtc->pipe << 29;
930
931 /* don't miss out required setting for eDP */
932 intel_dp->DP |= DP_PLL_ENABLE;
933 if (adjusted_mode->clock < 200000)
934 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
935 else
936 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
937 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
938 intel_dp->DP |= intel_dp->color_range;
939
940 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
941 intel_dp->DP |= DP_SYNC_HS_HIGH;
942 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
943 intel_dp->DP |= DP_SYNC_VS_HIGH;
944 intel_dp->DP |= DP_LINK_TRAIN_OFF;
945
946 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
947 intel_dp->DP |= DP_ENHANCED_FRAMING;
948
949 if (intel_crtc->pipe == 1)
950 intel_dp->DP |= DP_PIPEB_SELECT;
951
952 if (is_cpu_edp(intel_dp)) {
953 /* don't miss out required setting for eDP */
954 intel_dp->DP |= DP_PLL_ENABLE;
955 if (adjusted_mode->clock < 200000)
956 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
957 else
958 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
959 }
960 } else {
961 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
962 }
963}
964
965#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
966#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
967
968#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
969#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
970
971#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
972#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
973
974static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
975 u32 mask,
976 u32 value)
977{
978 struct drm_device *dev = intel_dp->base.base.dev;
979 struct drm_i915_private *dev_priv = dev->dev_private;
980
981 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
982 mask, value,
983 I915_READ(PCH_PP_STATUS),
984 I915_READ(PCH_PP_CONTROL));
985
986 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
987 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
988 I915_READ(PCH_PP_STATUS),
989 I915_READ(PCH_PP_CONTROL));
990 }
991}
992
993static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
994{
995 DRM_DEBUG_KMS("Wait for panel power on\n");
996 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
997}
998
999static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1000{
1001 DRM_DEBUG_KMS("Wait for panel power off time\n");
1002 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1003}
1004
1005static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1006{
1007 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1008 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1009}
1010
1011
1012/* Read the current pp_control value, unlocking the register if it
1013 * is locked
1014 */
1015
1016static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1017{
1018 u32 control = I915_READ(PCH_PP_CONTROL);
1019
1020 control &= ~PANEL_UNLOCK_MASK;
1021 control |= PANEL_UNLOCK_REGS;
1022 return control;
1023}
1024
1025static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1026{
1027 struct drm_device *dev = intel_dp->base.base.dev;
1028 struct drm_i915_private *dev_priv = dev->dev_private;
1029 u32 pp;
1030
1031 if (!is_edp(intel_dp))
1032 return;
1033 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1034
1035 WARN(intel_dp->want_panel_vdd,
1036 "eDP VDD already requested on\n");
1037
1038 intel_dp->want_panel_vdd = true;
1039
1040 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1041 DRM_DEBUG_KMS("eDP VDD already on\n");
1042 return;
1043 }
1044
1045 if (!ironlake_edp_have_panel_power(intel_dp))
1046 ironlake_wait_panel_power_cycle(intel_dp);
1047
1048 pp = ironlake_get_pp_control(dev_priv);
1049 pp |= EDP_FORCE_VDD;
1050 I915_WRITE(PCH_PP_CONTROL, pp);
1051 POSTING_READ(PCH_PP_CONTROL);
1052 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1053 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1054
1055 /*
1056 * If the panel wasn't on, delay before accessing aux channel
1057 */
1058 if (!ironlake_edp_have_panel_power(intel_dp)) {
1059 DRM_DEBUG_KMS("eDP was not running\n");
1060 msleep(intel_dp->panel_power_up_delay);
1061 }
1062}
1063
1064static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1065{
1066 struct drm_device *dev = intel_dp->base.base.dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 u32 pp;
1069
1070 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1071 pp = ironlake_get_pp_control(dev_priv);
1072 pp &= ~EDP_FORCE_VDD;
1073 I915_WRITE(PCH_PP_CONTROL, pp);
1074 POSTING_READ(PCH_PP_CONTROL);
1075
1076 /* Make sure sequencer is idle before allowing subsequent activity */
1077 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1078 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1079
1080 msleep(intel_dp->panel_power_down_delay);
1081 }
1082}
1083
1084static void ironlake_panel_vdd_work(struct work_struct *__work)
1085{
1086 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1087 struct intel_dp, panel_vdd_work);
1088 struct drm_device *dev = intel_dp->base.base.dev;
1089
1090 mutex_lock(&dev->mode_config.mutex);
1091 ironlake_panel_vdd_off_sync(intel_dp);
1092 mutex_unlock(&dev->mode_config.mutex);
1093}
1094
1095static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1096{
1097 if (!is_edp(intel_dp))
1098 return;
1099
1100 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1101 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1102
1103 intel_dp->want_panel_vdd = false;
1104
1105 if (sync) {
1106 ironlake_panel_vdd_off_sync(intel_dp);
1107 } else {
1108 /*
1109 * Queue the timer to fire a long
1110 * time from now (relative to the power down delay)
1111 * to keep the panel power up across a sequence of operations
1112 */
1113 schedule_delayed_work(&intel_dp->panel_vdd_work,
1114 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1115 }
1116}
1117
1118static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1119{
1120 struct drm_device *dev = intel_dp->base.base.dev;
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 u32 pp;
1123
1124 if (!is_edp(intel_dp))
1125 return;
1126
1127 DRM_DEBUG_KMS("Turn eDP power on\n");
1128
1129 if (ironlake_edp_have_panel_power(intel_dp)) {
1130 DRM_DEBUG_KMS("eDP power already on\n");
1131 return;
1132 }
1133
1134 ironlake_wait_panel_power_cycle(intel_dp);
1135
1136 pp = ironlake_get_pp_control(dev_priv);
1137 if (IS_GEN5(dev)) {
1138 /* ILK workaround: disable reset around power sequence */
1139 pp &= ~PANEL_POWER_RESET;
1140 I915_WRITE(PCH_PP_CONTROL, pp);
1141 POSTING_READ(PCH_PP_CONTROL);
1142 }
1143
1144 pp |= POWER_TARGET_ON;
1145 if (!IS_GEN5(dev))
1146 pp |= PANEL_POWER_RESET;
1147
1148 I915_WRITE(PCH_PP_CONTROL, pp);
1149 POSTING_READ(PCH_PP_CONTROL);
1150
1151 ironlake_wait_panel_on(intel_dp);
1152
1153 if (IS_GEN5(dev)) {
1154 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1155 I915_WRITE(PCH_PP_CONTROL, pp);
1156 POSTING_READ(PCH_PP_CONTROL);
1157 }
1158}
1159
1160static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1161{
1162 struct drm_device *dev = intel_dp->base.base.dev;
1163 struct drm_i915_private *dev_priv = dev->dev_private;
1164 u32 pp;
1165
1166 if (!is_edp(intel_dp))
1167 return;
1168
1169 DRM_DEBUG_KMS("Turn eDP power off\n");
1170
1171 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1172
1173 pp = ironlake_get_pp_control(dev_priv);
1174 /* We need to switch off panel power _and_ force vdd, for otherwise some
1175 * panels get very unhappy and cease to work. */
1176 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1177 I915_WRITE(PCH_PP_CONTROL, pp);
1178 POSTING_READ(PCH_PP_CONTROL);
1179
1180 intel_dp->want_panel_vdd = false;
1181
1182 ironlake_wait_panel_off(intel_dp);
1183}
1184
1185static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1186{
1187 struct drm_device *dev = intel_dp->base.base.dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 u32 pp;
1190
1191 if (!is_edp(intel_dp))
1192 return;
1193
1194 DRM_DEBUG_KMS("\n");
1195 /*
1196 * If we enable the backlight right away following a panel power
1197 * on, we may see slight flicker as the panel syncs with the eDP
1198 * link. So delay a bit to make sure the image is solid before
1199 * allowing it to appear.
1200 */
1201 msleep(intel_dp->backlight_on_delay);
1202 pp = ironlake_get_pp_control(dev_priv);
1203 pp |= EDP_BLC_ENABLE;
1204 I915_WRITE(PCH_PP_CONTROL, pp);
1205 POSTING_READ(PCH_PP_CONTROL);
1206}
1207
1208static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1209{
1210 struct drm_device *dev = intel_dp->base.base.dev;
1211 struct drm_i915_private *dev_priv = dev->dev_private;
1212 u32 pp;
1213
1214 if (!is_edp(intel_dp))
1215 return;
1216
1217 DRM_DEBUG_KMS("\n");
1218 pp = ironlake_get_pp_control(dev_priv);
1219 pp &= ~EDP_BLC_ENABLE;
1220 I915_WRITE(PCH_PP_CONTROL, pp);
1221 POSTING_READ(PCH_PP_CONTROL);
1222 msleep(intel_dp->backlight_off_delay);
1223}
1224
1225static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1226{
1227 struct drm_device *dev = encoder->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 u32 dpa_ctl;
1230
1231 DRM_DEBUG_KMS("\n");
1232 dpa_ctl = I915_READ(DP_A);
1233 dpa_ctl |= DP_PLL_ENABLE;
1234 I915_WRITE(DP_A, dpa_ctl);
1235 POSTING_READ(DP_A);
1236 udelay(200);
1237}
1238
1239static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1240{
1241 struct drm_device *dev = encoder->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 dpa_ctl;
1244
1245 dpa_ctl = I915_READ(DP_A);
1246 dpa_ctl &= ~DP_PLL_ENABLE;
1247 I915_WRITE(DP_A, dpa_ctl);
1248 POSTING_READ(DP_A);
1249 udelay(200);
1250}
1251
1252/* If the sink supports it, try to set the power state appropriately */
1253static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1254{
1255 int ret, i;
1256
1257 /* Should have a valid DPCD by this point */
1258 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1259 return;
1260
1261 if (mode != DRM_MODE_DPMS_ON) {
1262 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1263 DP_SET_POWER_D3);
1264 if (ret != 1)
1265 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1266 } else {
1267 /*
1268 * When turning on, we need to retry for 1ms to give the sink
1269 * time to wake up.
1270 */
1271 for (i = 0; i < 3; i++) {
1272 ret = intel_dp_aux_native_write_1(intel_dp,
1273 DP_SET_POWER,
1274 DP_SET_POWER_D0);
1275 if (ret == 1)
1276 break;
1277 msleep(1);
1278 }
1279 }
1280}
1281
1282static void intel_dp_prepare(struct drm_encoder *encoder)
1283{
1284 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1285
1286
1287 /* Make sure the panel is off before trying to change the mode. But also
1288 * ensure that we have vdd while we switch off the panel. */
1289 ironlake_edp_panel_vdd_on(intel_dp);
1290 ironlake_edp_backlight_off(intel_dp);
1291 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1292 ironlake_edp_panel_off(intel_dp);
1293 intel_dp_link_down(intel_dp);
1294}
1295
1296static void intel_dp_commit(struct drm_encoder *encoder)
1297{
1298 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1299 struct drm_device *dev = encoder->dev;
1300 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1301
1302 ironlake_edp_panel_vdd_on(intel_dp);
1303 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1304 intel_dp_start_link_train(intel_dp);
1305 ironlake_edp_panel_on(intel_dp);
1306 ironlake_edp_panel_vdd_off(intel_dp, true);
1307 intel_dp_complete_link_train(intel_dp);
1308 ironlake_edp_backlight_on(intel_dp);
1309
1310 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1311
1312 if (HAS_PCH_CPT(dev))
1313 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1314}
1315
1316static void
1317intel_dp_dpms(struct drm_encoder *encoder, int mode)
1318{
1319 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1320 struct drm_device *dev = encoder->dev;
1321 struct drm_i915_private *dev_priv = dev->dev_private;
1322 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1323
1324 if (mode != DRM_MODE_DPMS_ON) {
1325 /* Switching the panel off requires vdd. */
1326 ironlake_edp_panel_vdd_on(intel_dp);
1327 ironlake_edp_backlight_off(intel_dp);
1328 intel_dp_sink_dpms(intel_dp, mode);
1329 ironlake_edp_panel_off(intel_dp);
1330 intel_dp_link_down(intel_dp);
1331
1332 if (is_cpu_edp(intel_dp))
1333 ironlake_edp_pll_off(encoder);
1334 } else {
1335 if (is_cpu_edp(intel_dp))
1336 ironlake_edp_pll_on(encoder);
1337
1338 ironlake_edp_panel_vdd_on(intel_dp);
1339 intel_dp_sink_dpms(intel_dp, mode);
1340 if (!(dp_reg & DP_PORT_EN)) {
1341 intel_dp_start_link_train(intel_dp);
1342 ironlake_edp_panel_on(intel_dp);
1343 ironlake_edp_panel_vdd_off(intel_dp, true);
1344 intel_dp_complete_link_train(intel_dp);
1345 } else
1346 ironlake_edp_panel_vdd_off(intel_dp, false);
1347 ironlake_edp_backlight_on(intel_dp);
1348 }
1349 intel_dp->dpms_mode = mode;
1350}
1351
1352/*
1353 * Native read with retry for link status and receiver capability reads for
1354 * cases where the sink may still be asleep.
1355 */
1356static bool
1357intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1358 uint8_t *recv, int recv_bytes)
1359{
1360 int ret, i;
1361
1362 /*
1363 * Sinks are *supposed* to come up within 1ms from an off state,
1364 * but we're also supposed to retry 3 times per the spec.
1365 */
1366 for (i = 0; i < 3; i++) {
1367 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1368 recv_bytes);
1369 if (ret == recv_bytes)
1370 return true;
1371 msleep(1);
1372 }
1373
1374 return false;
1375}
1376
1377/*
1378 * Fetch AUX CH registers 0x202 - 0x207 which contain
1379 * link status information
1380 */
1381static bool
1382intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1383{
1384 return intel_dp_aux_native_read_retry(intel_dp,
1385 DP_LANE0_1_STATUS,
1386 link_status,
1387 DP_LINK_STATUS_SIZE);
1388}
1389
1390static uint8_t
1391intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1392 int r)
1393{
1394 return link_status[r - DP_LANE0_1_STATUS];
1395}
1396
1397static uint8_t
1398intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1399 int lane)
1400{
1401 int s = ((lane & 1) ?
1402 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1403 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1404 uint8_t l = adjust_request[lane>>1];
1405
1406 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1407}
1408
1409static uint8_t
1410intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1411 int lane)
1412{
1413 int s = ((lane & 1) ?
1414 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1415 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1416 uint8_t l = adjust_request[lane>>1];
1417
1418 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1419}
1420
1421
1422#if 0
1423static char *voltage_names[] = {
1424 "0.4V", "0.6V", "0.8V", "1.2V"
1425};
1426static char *pre_emph_names[] = {
1427 "0dB", "3.5dB", "6dB", "9.5dB"
1428};
1429static char *link_train_names[] = {
1430 "pattern 1", "pattern 2", "idle", "off"
1431};
1432#endif
1433
1434/*
1435 * These are source-specific values; current Intel hardware supports
1436 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1437 */
1438
1439static uint8_t
1440intel_dp_voltage_max(struct intel_dp *intel_dp)
1441{
1442 struct drm_device *dev = intel_dp->base.base.dev;
1443
1444 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1445 return DP_TRAIN_VOLTAGE_SWING_800;
1446 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1447 return DP_TRAIN_VOLTAGE_SWING_1200;
1448 else
1449 return DP_TRAIN_VOLTAGE_SWING_800;
1450}
1451
1452static uint8_t
1453intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1454{
1455 struct drm_device *dev = intel_dp->base.base.dev;
1456
1457 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1458 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1459 case DP_TRAIN_VOLTAGE_SWING_400:
1460 return DP_TRAIN_PRE_EMPHASIS_6;
1461 case DP_TRAIN_VOLTAGE_SWING_600:
1462 case DP_TRAIN_VOLTAGE_SWING_800:
1463 return DP_TRAIN_PRE_EMPHASIS_3_5;
1464 default:
1465 return DP_TRAIN_PRE_EMPHASIS_0;
1466 }
1467 } else {
1468 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469 case DP_TRAIN_VOLTAGE_SWING_400:
1470 return DP_TRAIN_PRE_EMPHASIS_6;
1471 case DP_TRAIN_VOLTAGE_SWING_600:
1472 return DP_TRAIN_PRE_EMPHASIS_6;
1473 case DP_TRAIN_VOLTAGE_SWING_800:
1474 return DP_TRAIN_PRE_EMPHASIS_3_5;
1475 case DP_TRAIN_VOLTAGE_SWING_1200:
1476 default:
1477 return DP_TRAIN_PRE_EMPHASIS_0;
1478 }
1479 }
1480}
1481
1482static void
1483intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1484{
1485 uint8_t v = 0;
1486 uint8_t p = 0;
1487 int lane;
1488 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1489 uint8_t voltage_max;
1490 uint8_t preemph_max;
1491
1492 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1493 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1494 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1495
1496 if (this_v > v)
1497 v = this_v;
1498 if (this_p > p)
1499 p = this_p;
1500 }
1501
1502 voltage_max = intel_dp_voltage_max(intel_dp);
1503 if (v >= voltage_max)
1504 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1505
1506 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1507 if (p >= preemph_max)
1508 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1509
1510 for (lane = 0; lane < 4; lane++)
1511 intel_dp->train_set[lane] = v | p;
1512}
1513
1514static uint32_t
1515intel_dp_signal_levels(uint8_t train_set)
1516{
1517 uint32_t signal_levels = 0;
1518
1519 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1520 case DP_TRAIN_VOLTAGE_SWING_400:
1521 default:
1522 signal_levels |= DP_VOLTAGE_0_4;
1523 break;
1524 case DP_TRAIN_VOLTAGE_SWING_600:
1525 signal_levels |= DP_VOLTAGE_0_6;
1526 break;
1527 case DP_TRAIN_VOLTAGE_SWING_800:
1528 signal_levels |= DP_VOLTAGE_0_8;
1529 break;
1530 case DP_TRAIN_VOLTAGE_SWING_1200:
1531 signal_levels |= DP_VOLTAGE_1_2;
1532 break;
1533 }
1534 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1535 case DP_TRAIN_PRE_EMPHASIS_0:
1536 default:
1537 signal_levels |= DP_PRE_EMPHASIS_0;
1538 break;
1539 case DP_TRAIN_PRE_EMPHASIS_3_5:
1540 signal_levels |= DP_PRE_EMPHASIS_3_5;
1541 break;
1542 case DP_TRAIN_PRE_EMPHASIS_6:
1543 signal_levels |= DP_PRE_EMPHASIS_6;
1544 break;
1545 case DP_TRAIN_PRE_EMPHASIS_9_5:
1546 signal_levels |= DP_PRE_EMPHASIS_9_5;
1547 break;
1548 }
1549 return signal_levels;
1550}
1551
1552/* Gen6's DP voltage swing and pre-emphasis control */
1553static uint32_t
1554intel_gen6_edp_signal_levels(uint8_t train_set)
1555{
1556 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1557 DP_TRAIN_PRE_EMPHASIS_MASK);
1558 switch (signal_levels) {
1559 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1560 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1561 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1562 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1564 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1565 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1566 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1567 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1569 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1570 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1572 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1573 default:
1574 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1575 "0x%x\n", signal_levels);
1576 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1577 }
1578}
1579
1580/* Gen7's DP voltage swing and pre-emphasis control */
1581static uint32_t
1582intel_gen7_edp_signal_levels(uint8_t train_set)
1583{
1584 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1585 DP_TRAIN_PRE_EMPHASIS_MASK);
1586 switch (signal_levels) {
1587 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1588 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1589 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1591 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1592 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1593
1594 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1595 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1596 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1598
1599 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1600 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1601 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1602 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1603
1604 default:
1605 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606 "0x%x\n", signal_levels);
1607 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1608 }
1609}
1610
1611static uint8_t
1612intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1613 int lane)
1614{
1615 int s = (lane & 1) * 4;
1616 uint8_t l = link_status[lane>>1];
1617
1618 return (l >> s) & 0xf;
1619}
1620
1621/* Check for clock recovery is done on all channels */
1622static bool
1623intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1624{
1625 int lane;
1626 uint8_t lane_status;
1627
1628 for (lane = 0; lane < lane_count; lane++) {
1629 lane_status = intel_get_lane_status(link_status, lane);
1630 if ((lane_status & DP_LANE_CR_DONE) == 0)
1631 return false;
1632 }
1633 return true;
1634}
1635
1636/* Check to see if channel eq is done on all channels */
1637#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1638 DP_LANE_CHANNEL_EQ_DONE|\
1639 DP_LANE_SYMBOL_LOCKED)
1640static bool
1641intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1642{
1643 uint8_t lane_align;
1644 uint8_t lane_status;
1645 int lane;
1646
1647 lane_align = intel_dp_link_status(link_status,
1648 DP_LANE_ALIGN_STATUS_UPDATED);
1649 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1650 return false;
1651 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1652 lane_status = intel_get_lane_status(link_status, lane);
1653 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1654 return false;
1655 }
1656 return true;
1657}
1658
1659static bool
1660intel_dp_set_link_train(struct intel_dp *intel_dp,
1661 uint32_t dp_reg_value,
1662 uint8_t dp_train_pat)
1663{
1664 struct drm_device *dev = intel_dp->base.base.dev;
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 int ret;
1667
1668 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1669 POSTING_READ(intel_dp->output_reg);
1670
1671 intel_dp_aux_native_write_1(intel_dp,
1672 DP_TRAINING_PATTERN_SET,
1673 dp_train_pat);
1674
1675 ret = intel_dp_aux_native_write(intel_dp,
1676 DP_TRAINING_LANE0_SET,
1677 intel_dp->train_set,
1678 intel_dp->lane_count);
1679 if (ret != intel_dp->lane_count)
1680 return false;
1681
1682 return true;
1683}
1684
1685/* Enable corresponding port and start training pattern 1 */
1686static void
1687intel_dp_start_link_train(struct intel_dp *intel_dp)
1688{
1689 struct drm_device *dev = intel_dp->base.base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1692 int i;
1693 uint8_t voltage;
1694 bool clock_recovery = false;
1695 int voltage_tries, loop_tries;
1696 u32 reg;
1697 uint32_t DP = intel_dp->DP;
1698
1699 /*
1700 * On CPT we have to enable the port in training pattern 1, which
1701 * will happen below in intel_dp_set_link_train. Otherwise, enable
1702 * the port and wait for it to become active.
1703 */
1704 if (!HAS_PCH_CPT(dev)) {
1705 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1706 POSTING_READ(intel_dp->output_reg);
1707 intel_wait_for_vblank(dev, intel_crtc->pipe);
1708 }
1709
1710 /* Write the link configuration data */
1711 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1712 intel_dp->link_configuration,
1713 DP_LINK_CONFIGURATION_SIZE);
1714
1715 DP |= DP_PORT_EN;
1716
1717 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1718 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1719 else
1720 DP &= ~DP_LINK_TRAIN_MASK;
1721 memset(intel_dp->train_set, 0, 4);
1722 voltage = 0xff;
1723 voltage_tries = 0;
1724 loop_tries = 0;
1725 clock_recovery = false;
1726 for (;;) {
1727 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1728 uint8_t link_status[DP_LINK_STATUS_SIZE];
1729 uint32_t signal_levels;
1730
1731
1732 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1733 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1734 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1735 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1736 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1737 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1738 } else {
1739 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1740 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1741 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1742 }
1743
1744 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1745 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1746 else
1747 reg = DP | DP_LINK_TRAIN_PAT_1;
1748
1749 if (!intel_dp_set_link_train(intel_dp, reg,
1750 DP_TRAINING_PATTERN_1 |
1751 DP_LINK_SCRAMBLING_DISABLE))
1752 break;
1753 /* Set training pattern 1 */
1754
1755 udelay(100);
1756 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1757 DRM_ERROR("failed to get link status\n");
1758 break;
1759 }
1760
1761 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1762 DRM_DEBUG_KMS("clock recovery OK\n");
1763 clock_recovery = true;
1764 break;
1765 }
1766
1767 /* Check to see if we've tried the max voltage */
1768 for (i = 0; i < intel_dp->lane_count; i++)
1769 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1770 break;
1771 if (i == intel_dp->lane_count) {
1772 ++loop_tries;
1773 if (loop_tries == 5) {
1774 DRM_DEBUG_KMS("too many full retries, give up\n");
1775 break;
1776 }
1777 memset(intel_dp->train_set, 0, 4);
1778 voltage_tries = 0;
1779 continue;
1780 }
1781
1782 /* Check to see if we've tried the same voltage 5 times */
1783 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1784 ++voltage_tries;
1785 if (voltage_tries == 5) {
1786 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1787 break;
1788 }
1789 } else
1790 voltage_tries = 0;
1791 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1792
1793 /* Compute new intel_dp->train_set as requested by target */
1794 intel_get_adjust_train(intel_dp, link_status);
1795 }
1796
1797 intel_dp->DP = DP;
1798}
1799
1800static void
1801intel_dp_complete_link_train(struct intel_dp *intel_dp)
1802{
1803 struct drm_device *dev = intel_dp->base.base.dev;
1804 struct drm_i915_private *dev_priv = dev->dev_private;
1805 bool channel_eq = false;
1806 int tries, cr_tries;
1807 u32 reg;
1808 uint32_t DP = intel_dp->DP;
1809
1810 /* channel equalization */
1811 tries = 0;
1812 cr_tries = 0;
1813 channel_eq = false;
1814 for (;;) {
1815 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1816 uint32_t signal_levels;
1817 uint8_t link_status[DP_LINK_STATUS_SIZE];
1818
1819 if (cr_tries > 5) {
1820 DRM_ERROR("failed to train DP, aborting\n");
1821 intel_dp_link_down(intel_dp);
1822 break;
1823 }
1824
1825 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1826 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1827 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1828 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1829 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1830 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1831 } else {
1832 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1833 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1834 }
1835
1836 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1837 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1838 else
1839 reg = DP | DP_LINK_TRAIN_PAT_2;
1840
1841 /* channel eq pattern */
1842 if (!intel_dp_set_link_train(intel_dp, reg,
1843 DP_TRAINING_PATTERN_2 |
1844 DP_LINK_SCRAMBLING_DISABLE))
1845 break;
1846
1847 udelay(400);
1848 if (!intel_dp_get_link_status(intel_dp, link_status))
1849 break;
1850
1851 /* Make sure clock is still ok */
1852 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1853 intel_dp_start_link_train(intel_dp);
1854 cr_tries++;
1855 continue;
1856 }
1857
1858 if (intel_channel_eq_ok(intel_dp, link_status)) {
1859 channel_eq = true;
1860 break;
1861 }
1862
1863 /* Try 5 times, then try clock recovery if that fails */
1864 if (tries > 5) {
1865 intel_dp_link_down(intel_dp);
1866 intel_dp_start_link_train(intel_dp);
1867 tries = 0;
1868 cr_tries++;
1869 continue;
1870 }
1871
1872 /* Compute new intel_dp->train_set as requested by target */
1873 intel_get_adjust_train(intel_dp, link_status);
1874 ++tries;
1875 }
1876
1877 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1878 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1879 else
1880 reg = DP | DP_LINK_TRAIN_OFF;
1881
1882 I915_WRITE(intel_dp->output_reg, reg);
1883 POSTING_READ(intel_dp->output_reg);
1884 intel_dp_aux_native_write_1(intel_dp,
1885 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1886}
1887
1888static void
1889intel_dp_link_down(struct intel_dp *intel_dp)
1890{
1891 struct drm_device *dev = intel_dp->base.base.dev;
1892 struct drm_i915_private *dev_priv = dev->dev_private;
1893 uint32_t DP = intel_dp->DP;
1894
1895 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1896 return;
1897
1898 DRM_DEBUG_KMS("\n");
1899
1900 if (is_edp(intel_dp)) {
1901 DP &= ~DP_PLL_ENABLE;
1902 I915_WRITE(intel_dp->output_reg, DP);
1903 POSTING_READ(intel_dp->output_reg);
1904 udelay(100);
1905 }
1906
1907 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1908 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1909 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1910 } else {
1911 DP &= ~DP_LINK_TRAIN_MASK;
1912 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1913 }
1914 POSTING_READ(intel_dp->output_reg);
1915
1916 msleep(17);
1917
1918 if (is_edp(intel_dp)) {
1919 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1920 DP |= DP_LINK_TRAIN_OFF_CPT;
1921 else
1922 DP |= DP_LINK_TRAIN_OFF;
1923 }
1924
1925 if (!HAS_PCH_CPT(dev) &&
1926 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1927 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1928
1929 /* Hardware workaround: leaving our transcoder select
1930 * set to transcoder B while it's off will prevent the
1931 * corresponding HDMI output on transcoder A.
1932 *
1933 * Combine this with another hardware workaround:
1934 * transcoder select bit can only be cleared while the
1935 * port is enabled.
1936 */
1937 DP &= ~DP_PIPEB_SELECT;
1938 I915_WRITE(intel_dp->output_reg, DP);
1939
1940 /* Changes to enable or select take place the vblank
1941 * after being written.
1942 */
1943 if (crtc == NULL) {
1944 /* We can arrive here never having been attached
1945 * to a CRTC, for instance, due to inheriting
1946 * random state from the BIOS.
1947 *
1948 * If the pipe is not running, play safe and
1949 * wait for the clocks to stabilise before
1950 * continuing.
1951 */
1952 POSTING_READ(intel_dp->output_reg);
1953 msleep(50);
1954 } else
1955 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1956 }
1957
1958 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1959 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1960 POSTING_READ(intel_dp->output_reg);
1961 msleep(intel_dp->panel_power_down_delay);
1962}
1963
1964static bool
1965intel_dp_get_dpcd(struct intel_dp *intel_dp)
1966{
1967 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1968 sizeof(intel_dp->dpcd)) &&
1969 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1970 return true;
1971 }
1972
1973 return false;
1974}
1975
1976static void
1977intel_dp_probe_oui(struct intel_dp *intel_dp)
1978{
1979 u8 buf[3];
1980
1981 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1982 return;
1983
1984 ironlake_edp_panel_vdd_on(intel_dp);
1985
1986 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1987 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1988 buf[0], buf[1], buf[2]);
1989
1990 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1991 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1992 buf[0], buf[1], buf[2]);
1993
1994 ironlake_edp_panel_vdd_off(intel_dp, false);
1995}
1996
1997static bool
1998intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1999{
2000 int ret;
2001
2002 ret = intel_dp_aux_native_read_retry(intel_dp,
2003 DP_DEVICE_SERVICE_IRQ_VECTOR,
2004 sink_irq_vector, 1);
2005 if (!ret)
2006 return false;
2007
2008 return true;
2009}
2010
2011static void
2012intel_dp_handle_test_request(struct intel_dp *intel_dp)
2013{
2014 /* NAK by default */
2015 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2016}
2017
2018/*
2019 * According to DP spec
2020 * 5.1.2:
2021 * 1. Read DPCD
2022 * 2. Configure link according to Receiver Capabilities
2023 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2024 * 4. Check link status on receipt of hot-plug interrupt
2025 */
2026
2027static void
2028intel_dp_check_link_status(struct intel_dp *intel_dp)
2029{
2030 u8 sink_irq_vector;
2031 u8 link_status[DP_LINK_STATUS_SIZE];
2032
2033 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2034 return;
2035
2036 if (!intel_dp->base.base.crtc)
2037 return;
2038
2039 /* Try to read receiver status if the link appears to be up */
2040 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2041 intel_dp_link_down(intel_dp);
2042 return;
2043 }
2044
2045 /* Now read the DPCD to see if it's actually running */
2046 if (!intel_dp_get_dpcd(intel_dp)) {
2047 intel_dp_link_down(intel_dp);
2048 return;
2049 }
2050
2051 /* Try to read the source of the interrupt */
2052 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2053 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2054 /* Clear interrupt source */
2055 intel_dp_aux_native_write_1(intel_dp,
2056 DP_DEVICE_SERVICE_IRQ_VECTOR,
2057 sink_irq_vector);
2058
2059 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2060 intel_dp_handle_test_request(intel_dp);
2061 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2062 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2063 }
2064
2065 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2066 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2067 drm_get_encoder_name(&intel_dp->base.base));
2068 intel_dp_start_link_train(intel_dp);
2069 intel_dp_complete_link_train(intel_dp);
2070 }
2071}
2072
2073static enum drm_connector_status
2074intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2075{
2076 if (intel_dp_get_dpcd(intel_dp))
2077 return connector_status_connected;
2078 return connector_status_disconnected;
2079}
2080
2081static enum drm_connector_status
2082ironlake_dp_detect(struct intel_dp *intel_dp)
2083{
2084 enum drm_connector_status status;
2085
2086 /* Can't disconnect eDP, but you can close the lid... */
2087 if (is_edp(intel_dp)) {
2088 status = intel_panel_detect(intel_dp->base.base.dev);
2089 if (status == connector_status_unknown)
2090 status = connector_status_connected;
2091 return status;
2092 }
2093
2094 return intel_dp_detect_dpcd(intel_dp);
2095}
2096
2097static enum drm_connector_status
2098g4x_dp_detect(struct intel_dp *intel_dp)
2099{
2100 struct drm_device *dev = intel_dp->base.base.dev;
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 uint32_t temp, bit;
2103
2104 switch (intel_dp->output_reg) {
2105 case DP_B:
2106 bit = DPB_HOTPLUG_INT_STATUS;
2107 break;
2108 case DP_C:
2109 bit = DPC_HOTPLUG_INT_STATUS;
2110 break;
2111 case DP_D:
2112 bit = DPD_HOTPLUG_INT_STATUS;
2113 break;
2114 default:
2115 return connector_status_unknown;
2116 }
2117
2118 temp = I915_READ(PORT_HOTPLUG_STAT);
2119
2120 if ((temp & bit) == 0)
2121 return connector_status_disconnected;
2122
2123 return intel_dp_detect_dpcd(intel_dp);
2124}
2125
2126static struct edid *
2127intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128{
2129 struct intel_dp *intel_dp = intel_attached_dp(connector);
2130 struct edid *edid;
2131 int size;
2132
2133 if (is_edp(intel_dp)) {
2134 if (!intel_dp->edid)
2135 return NULL;
2136
2137 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138 edid = kmalloc(size, GFP_KERNEL);
2139 if (!edid)
2140 return NULL;
2141
2142 memcpy(edid, intel_dp->edid, size);
2143 return edid;
2144 }
2145
2146 edid = drm_get_edid(connector, adapter);
2147 return edid;
2148}
2149
2150static int
2151intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152{
2153 struct intel_dp *intel_dp = intel_attached_dp(connector);
2154 int ret;
2155
2156 if (is_edp(intel_dp)) {
2157 drm_mode_connector_update_edid_property(connector,
2158 intel_dp->edid);
2159 ret = drm_add_edid_modes(connector, intel_dp->edid);
2160 drm_edid_to_eld(connector,
2161 intel_dp->edid);
2162 connector->display_info.raw_edid = NULL;
2163 return intel_dp->edid_mode_count;
2164 }
2165
2166 ret = intel_ddc_get_modes(connector, adapter);
2167 return ret;
2168}
2169
2170
2171/**
2172 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173 *
2174 * \return true if DP port is connected.
2175 * \return false if DP port is disconnected.
2176 */
2177static enum drm_connector_status
2178intel_dp_detect(struct drm_connector *connector, bool force)
2179{
2180 struct intel_dp *intel_dp = intel_attached_dp(connector);
2181 struct drm_device *dev = intel_dp->base.base.dev;
2182 enum drm_connector_status status;
2183 struct edid *edid = NULL;
2184
2185 intel_dp->has_audio = false;
2186
2187 if (HAS_PCH_SPLIT(dev))
2188 status = ironlake_dp_detect(intel_dp);
2189 else
2190 status = g4x_dp_detect(intel_dp);
2191
2192 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197 if (status != connector_status_connected)
2198 return status;
2199
2200 intel_dp_probe_oui(intel_dp);
2201
2202 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204 } else {
2205 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206 if (edid) {
2207 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208 connector->display_info.raw_edid = NULL;
2209 kfree(edid);
2210 }
2211 }
2212
2213 return connector_status_connected;
2214}
2215
2216static int intel_dp_get_modes(struct drm_connector *connector)
2217{
2218 struct intel_dp *intel_dp = intel_attached_dp(connector);
2219 struct drm_device *dev = intel_dp->base.base.dev;
2220 struct drm_i915_private *dev_priv = dev->dev_private;
2221 int ret;
2222
2223 /* We should parse the EDID data and find out if it has an audio sink
2224 */
2225
2226 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227 if (ret) {
2228 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229 struct drm_display_mode *newmode;
2230 list_for_each_entry(newmode, &connector->probed_modes,
2231 head) {
2232 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233 intel_dp->panel_fixed_mode =
2234 drm_mode_duplicate(dev, newmode);
2235 break;
2236 }
2237 }
2238 }
2239 return ret;
2240 }
2241
2242 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2243 if (is_edp(intel_dp)) {
2244 /* initialize panel mode from VBT if available for eDP */
2245 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246 intel_dp->panel_fixed_mode =
2247 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248 if (intel_dp->panel_fixed_mode) {
2249 intel_dp->panel_fixed_mode->type |=
2250 DRM_MODE_TYPE_PREFERRED;
2251 }
2252 }
2253 if (intel_dp->panel_fixed_mode) {
2254 struct drm_display_mode *mode;
2255 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256 drm_mode_probed_add(connector, mode);
2257 return 1;
2258 }
2259 }
2260 return 0;
2261}
2262
2263static bool
2264intel_dp_detect_audio(struct drm_connector *connector)
2265{
2266 struct intel_dp *intel_dp = intel_attached_dp(connector);
2267 struct edid *edid;
2268 bool has_audio = false;
2269
2270 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2271 if (edid) {
2272 has_audio = drm_detect_monitor_audio(edid);
2273
2274 connector->display_info.raw_edid = NULL;
2275 kfree(edid);
2276 }
2277
2278 return has_audio;
2279}
2280
2281static int
2282intel_dp_set_property(struct drm_connector *connector,
2283 struct drm_property *property,
2284 uint64_t val)
2285{
2286 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287 struct intel_dp *intel_dp = intel_attached_dp(connector);
2288 int ret;
2289
2290 ret = drm_connector_property_set_value(connector, property, val);
2291 if (ret)
2292 return ret;
2293
2294 if (property == dev_priv->force_audio_property) {
2295 int i = val;
2296 bool has_audio;
2297
2298 if (i == intel_dp->force_audio)
2299 return 0;
2300
2301 intel_dp->force_audio = i;
2302
2303 if (i == HDMI_AUDIO_AUTO)
2304 has_audio = intel_dp_detect_audio(connector);
2305 else
2306 has_audio = (i == HDMI_AUDIO_ON);
2307
2308 if (has_audio == intel_dp->has_audio)
2309 return 0;
2310
2311 intel_dp->has_audio = has_audio;
2312 goto done;
2313 }
2314
2315 if (property == dev_priv->broadcast_rgb_property) {
2316 if (val == !!intel_dp->color_range)
2317 return 0;
2318
2319 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320 goto done;
2321 }
2322
2323 return -EINVAL;
2324
2325done:
2326 if (intel_dp->base.base.crtc) {
2327 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329 crtc->x, crtc->y,
2330 crtc->fb);
2331 }
2332
2333 return 0;
2334}
2335
2336static void
2337intel_dp_destroy(struct drm_connector *connector)
2338{
2339 struct drm_device *dev = connector->dev;
2340
2341 if (intel_dpd_is_edp(dev))
2342 intel_panel_destroy_backlight(dev);
2343
2344 drm_sysfs_connector_remove(connector);
2345 drm_connector_cleanup(connector);
2346 kfree(connector);
2347}
2348
2349static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350{
2351 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2352
2353 i2c_del_adapter(&intel_dp->adapter);
2354 drm_encoder_cleanup(encoder);
2355 if (is_edp(intel_dp)) {
2356 kfree(intel_dp->edid);
2357 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358 ironlake_panel_vdd_off_sync(intel_dp);
2359 }
2360 kfree(intel_dp);
2361}
2362
2363static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364 .dpms = intel_dp_dpms,
2365 .mode_fixup = intel_dp_mode_fixup,
2366 .prepare = intel_dp_prepare,
2367 .mode_set = intel_dp_mode_set,
2368 .commit = intel_dp_commit,
2369};
2370
2371static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372 .dpms = drm_helper_connector_dpms,
2373 .detect = intel_dp_detect,
2374 .fill_modes = drm_helper_probe_single_connector_modes,
2375 .set_property = intel_dp_set_property,
2376 .destroy = intel_dp_destroy,
2377};
2378
2379static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380 .get_modes = intel_dp_get_modes,
2381 .mode_valid = intel_dp_mode_valid,
2382 .best_encoder = intel_best_encoder,
2383};
2384
2385static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386 .destroy = intel_dp_encoder_destroy,
2387};
2388
2389static void
2390intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391{
2392 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394 intel_dp_check_link_status(intel_dp);
2395}
2396
2397/* Return which DP Port should be selected for Transcoder DP control */
2398int
2399intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400{
2401 struct drm_device *dev = crtc->dev;
2402 struct drm_mode_config *mode_config = &dev->mode_config;
2403 struct drm_encoder *encoder;
2404
2405 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2406 struct intel_dp *intel_dp;
2407
2408 if (encoder->crtc != crtc)
2409 continue;
2410
2411 intel_dp = enc_to_intel_dp(encoder);
2412 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2413 intel_dp->base.type == INTEL_OUTPUT_EDP)
2414 return intel_dp->output_reg;
2415 }
2416
2417 return -1;
2418}
2419
2420/* check the VBT to see whether the eDP is on DP-D port */
2421bool intel_dpd_is_edp(struct drm_device *dev)
2422{
2423 struct drm_i915_private *dev_priv = dev->dev_private;
2424 struct child_device_config *p_child;
2425 int i;
2426
2427 if (!dev_priv->child_dev_num)
2428 return false;
2429
2430 for (i = 0; i < dev_priv->child_dev_num; i++) {
2431 p_child = dev_priv->child_dev + i;
2432
2433 if (p_child->dvo_port == PORT_IDPD &&
2434 p_child->device_type == DEVICE_TYPE_eDP)
2435 return true;
2436 }
2437 return false;
2438}
2439
2440static void
2441intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2442{
2443 intel_attach_force_audio_property(connector);
2444 intel_attach_broadcast_rgb_property(connector);
2445}
2446
2447void
2448intel_dp_init(struct drm_device *dev, int output_reg)
2449{
2450 struct drm_i915_private *dev_priv = dev->dev_private;
2451 struct drm_connector *connector;
2452 struct intel_dp *intel_dp;
2453 struct intel_encoder *intel_encoder;
2454 struct intel_connector *intel_connector;
2455 const char *name = NULL;
2456 int type;
2457
2458 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2459 if (!intel_dp)
2460 return;
2461
2462 intel_dp->output_reg = output_reg;
2463 intel_dp->dpms_mode = -1;
2464
2465 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2466 if (!intel_connector) {
2467 kfree(intel_dp);
2468 return;
2469 }
2470 intel_encoder = &intel_dp->base;
2471
2472 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2473 if (intel_dpd_is_edp(dev))
2474 intel_dp->is_pch_edp = true;
2475
2476 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2477 type = DRM_MODE_CONNECTOR_eDP;
2478 intel_encoder->type = INTEL_OUTPUT_EDP;
2479 } else {
2480 type = DRM_MODE_CONNECTOR_DisplayPort;
2481 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2482 }
2483
2484 connector = &intel_connector->base;
2485 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2486 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2487
2488 connector->polled = DRM_CONNECTOR_POLL_HPD;
2489
2490 if (output_reg == DP_B || output_reg == PCH_DP_B)
2491 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2492 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2493 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2494 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2495 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2496
2497 if (is_edp(intel_dp)) {
2498 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2499 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2500 ironlake_panel_vdd_work);
2501 }
2502
2503 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2504
2505 connector->interlace_allowed = true;
2506 connector->doublescan_allowed = 0;
2507
2508 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2509 DRM_MODE_ENCODER_TMDS);
2510 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2511
2512 intel_connector_attach_encoder(intel_connector, intel_encoder);
2513 drm_sysfs_connector_add(connector);
2514
2515 /* Set up the DDC bus. */
2516 switch (output_reg) {
2517 case DP_A:
2518 name = "DPDDC-A";
2519 break;
2520 case DP_B:
2521 case PCH_DP_B:
2522 dev_priv->hotplug_supported_mask |=
2523 HDMIB_HOTPLUG_INT_STATUS;
2524 name = "DPDDC-B";
2525 break;
2526 case DP_C:
2527 case PCH_DP_C:
2528 dev_priv->hotplug_supported_mask |=
2529 HDMIC_HOTPLUG_INT_STATUS;
2530 name = "DPDDC-C";
2531 break;
2532 case DP_D:
2533 case PCH_DP_D:
2534 dev_priv->hotplug_supported_mask |=
2535 HDMID_HOTPLUG_INT_STATUS;
2536 name = "DPDDC-D";
2537 break;
2538 }
2539
2540 intel_dp_i2c_init(intel_dp, intel_connector, name);
2541
2542 /* Cache some DPCD data in the eDP case */
2543 if (is_edp(intel_dp)) {
2544 bool ret;
2545 struct edp_power_seq cur, vbt;
2546 u32 pp_on, pp_off, pp_div;
2547 struct edid *edid;
2548
2549 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2550 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2551 pp_div = I915_READ(PCH_PP_DIVISOR);
2552
2553 if (!pp_on || !pp_off || !pp_div) {
2554 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2555 intel_dp_encoder_destroy(&intel_dp->base.base);
2556 intel_dp_destroy(&intel_connector->base);
2557 return;
2558 }
2559
2560 /* Pull timing values out of registers */
2561 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2562 PANEL_POWER_UP_DELAY_SHIFT;
2563
2564 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2565 PANEL_LIGHT_ON_DELAY_SHIFT;
2566
2567 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2568 PANEL_LIGHT_OFF_DELAY_SHIFT;
2569
2570 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2571 PANEL_POWER_DOWN_DELAY_SHIFT;
2572
2573 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2574 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2575
2576 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2577 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2578
2579 vbt = dev_priv->edp.pps;
2580
2581 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2582 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2583
2584#define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2585
2586 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2587 intel_dp->backlight_on_delay = get_delay(t8);
2588 intel_dp->backlight_off_delay = get_delay(t9);
2589 intel_dp->panel_power_down_delay = get_delay(t10);
2590 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2591
2592 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2593 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2594 intel_dp->panel_power_cycle_delay);
2595
2596 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2597 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2598
2599 ironlake_edp_panel_vdd_on(intel_dp);
2600 ret = intel_dp_get_dpcd(intel_dp);
2601 ironlake_edp_panel_vdd_off(intel_dp, false);
2602
2603 if (ret) {
2604 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2605 dev_priv->no_aux_handshake =
2606 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2607 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2608 } else {
2609 /* if this fails, presume the device is a ghost */
2610 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2611 intel_dp_encoder_destroy(&intel_dp->base.base);
2612 intel_dp_destroy(&intel_connector->base);
2613 return;
2614 }
2615
2616 ironlake_edp_panel_vdd_on(intel_dp);
2617 edid = drm_get_edid(connector, &intel_dp->adapter);
2618 if (edid) {
2619 drm_mode_connector_update_edid_property(connector,
2620 edid);
2621 intel_dp->edid_mode_count =
2622 drm_add_edid_modes(connector, edid);
2623 drm_edid_to_eld(connector, edid);
2624 intel_dp->edid = edid;
2625 }
2626 ironlake_edp_panel_vdd_off(intel_dp, false);
2627 }
2628
2629 intel_encoder->hot_plug = intel_dp_hot_plug;
2630
2631 if (is_edp(intel_dp)) {
2632 dev_priv->int_edp_connector = connector;
2633 intel_panel_setup_backlight(dev);
2634 }
2635
2636 intel_dp_add_properties(intel_dp, connector);
2637
2638 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2639 * 0xd. Failure to do so will result in spurious interrupts being
2640 * generated on the port when a cable is not attached.
2641 */
2642 if (IS_G4X(dev) && !IS_GM45(dev)) {
2643 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2644 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2645 }
2646}
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74static bool is_edp(struct intel_dp *intel_dp)
75{
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79}
80
81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82{
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86}
87
88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89{
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91}
92
93static void intel_dp_link_down(struct intel_dp *intel_dp);
94static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97static int
98intel_dp_max_link_bw(struct intel_dp *intel_dp)
99{
100 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101 struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103 switch (max_link_bw) {
104 case DP_LINK_BW_1_62:
105 case DP_LINK_BW_2_7:
106 break;
107 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
109 INTEL_INFO(dev)->gen >= 8) &&
110 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
111 max_link_bw = DP_LINK_BW_5_4;
112 else
113 max_link_bw = DP_LINK_BW_2_7;
114 break;
115 default:
116 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
117 max_link_bw);
118 max_link_bw = DP_LINK_BW_1_62;
119 break;
120 }
121 return max_link_bw;
122}
123
124static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
125{
126 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
127 struct drm_device *dev = intel_dig_port->base.base.dev;
128 u8 source_max, sink_max;
129
130 source_max = 4;
131 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
132 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
133 source_max = 2;
134
135 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
136
137 return min(source_max, sink_max);
138}
139
140/*
141 * The units on the numbers in the next two are... bizarre. Examples will
142 * make it clearer; this one parallels an example in the eDP spec.
143 *
144 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
145 *
146 * 270000 * 1 * 8 / 10 == 216000
147 *
148 * The actual data capacity of that configuration is 2.16Gbit/s, so the
149 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
150 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
151 * 119000. At 18bpp that's 2142000 kilobits per second.
152 *
153 * Thus the strange-looking division by 10 in intel_dp_link_required, to
154 * get the result in decakilobits instead of kilobits.
155 */
156
157static int
158intel_dp_link_required(int pixel_clock, int bpp)
159{
160 return (pixel_clock * bpp + 9) / 10;
161}
162
163static int
164intel_dp_max_data_rate(int max_link_clock, int max_lanes)
165{
166 return (max_link_clock * max_lanes * 8) / 10;
167}
168
169static enum drm_mode_status
170intel_dp_mode_valid(struct drm_connector *connector,
171 struct drm_display_mode *mode)
172{
173 struct intel_dp *intel_dp = intel_attached_dp(connector);
174 struct intel_connector *intel_connector = to_intel_connector(connector);
175 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
176 int target_clock = mode->clock;
177 int max_rate, mode_rate, max_lanes, max_link_clock;
178
179 if (is_edp(intel_dp) && fixed_mode) {
180 if (mode->hdisplay > fixed_mode->hdisplay)
181 return MODE_PANEL;
182
183 if (mode->vdisplay > fixed_mode->vdisplay)
184 return MODE_PANEL;
185
186 target_clock = fixed_mode->clock;
187 }
188
189 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
190 max_lanes = intel_dp_max_lane_count(intel_dp);
191
192 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
193 mode_rate = intel_dp_link_required(target_clock, 18);
194
195 if (mode_rate > max_rate)
196 return MODE_CLOCK_HIGH;
197
198 if (mode->clock < 10000)
199 return MODE_CLOCK_LOW;
200
201 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
202 return MODE_H_ILLEGAL;
203
204 return MODE_OK;
205}
206
207static uint32_t
208pack_aux(uint8_t *src, int src_bytes)
209{
210 int i;
211 uint32_t v = 0;
212
213 if (src_bytes > 4)
214 src_bytes = 4;
215 for (i = 0; i < src_bytes; i++)
216 v |= ((uint32_t) src[i]) << ((3-i) * 8);
217 return v;
218}
219
220static void
221unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
222{
223 int i;
224 if (dst_bytes > 4)
225 dst_bytes = 4;
226 for (i = 0; i < dst_bytes; i++)
227 dst[i] = src >> ((3-i) * 8);
228}
229
230/* hrawclock is 1/4 the FSB frequency */
231static int
232intel_hrawclk(struct drm_device *dev)
233{
234 struct drm_i915_private *dev_priv = dev->dev_private;
235 uint32_t clkcfg;
236
237 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
238 if (IS_VALLEYVIEW(dev))
239 return 200;
240
241 clkcfg = I915_READ(CLKCFG);
242 switch (clkcfg & CLKCFG_FSB_MASK) {
243 case CLKCFG_FSB_400:
244 return 100;
245 case CLKCFG_FSB_533:
246 return 133;
247 case CLKCFG_FSB_667:
248 return 166;
249 case CLKCFG_FSB_800:
250 return 200;
251 case CLKCFG_FSB_1067:
252 return 266;
253 case CLKCFG_FSB_1333:
254 return 333;
255 /* these two are just a guess; one of them might be right */
256 case CLKCFG_FSB_1600:
257 case CLKCFG_FSB_1600_ALT:
258 return 400;
259 default:
260 return 133;
261 }
262}
263
264static void
265intel_dp_init_panel_power_sequencer(struct drm_device *dev,
266 struct intel_dp *intel_dp,
267 struct edp_power_seq *out);
268static void
269intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
270 struct intel_dp *intel_dp,
271 struct edp_power_seq *out);
272
273static enum pipe
274vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
275{
276 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
277 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
278 struct drm_device *dev = intel_dig_port->base.base.dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 enum port port = intel_dig_port->port;
281 enum pipe pipe;
282
283 /* modeset should have pipe */
284 if (crtc)
285 return to_intel_crtc(crtc)->pipe;
286
287 /* init time, try to find a pipe with this port selected */
288 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
289 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
290 PANEL_PORT_SELECT_MASK;
291 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
292 return pipe;
293 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
294 return pipe;
295 }
296
297 /* shrug */
298 return PIPE_A;
299}
300
301static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
302{
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304
305 if (HAS_PCH_SPLIT(dev))
306 return PCH_PP_CONTROL;
307 else
308 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
309}
310
311static u32 _pp_stat_reg(struct intel_dp *intel_dp)
312{
313 struct drm_device *dev = intel_dp_to_dev(intel_dp);
314
315 if (HAS_PCH_SPLIT(dev))
316 return PCH_PP_STATUS;
317 else
318 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
319}
320
321static bool edp_have_panel_power(struct intel_dp *intel_dp)
322{
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
327}
328
329static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
330{
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 return !dev_priv->pm.suspended &&
335 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
336}
337
338static void
339intel_dp_check_edp(struct intel_dp *intel_dp)
340{
341 struct drm_device *dev = intel_dp_to_dev(intel_dp);
342 struct drm_i915_private *dev_priv = dev->dev_private;
343
344 if (!is_edp(intel_dp))
345 return;
346
347 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
348 WARN(1, "eDP powered off while attempting aux channel communication.\n");
349 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
350 I915_READ(_pp_stat_reg(intel_dp)),
351 I915_READ(_pp_ctrl_reg(intel_dp)));
352 }
353}
354
355static uint32_t
356intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
357{
358 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
359 struct drm_device *dev = intel_dig_port->base.base.dev;
360 struct drm_i915_private *dev_priv = dev->dev_private;
361 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
362 uint32_t status;
363 bool done;
364
365#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
366 if (has_aux_irq)
367 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
368 msecs_to_jiffies_timeout(10));
369 else
370 done = wait_for_atomic(C, 10) == 0;
371 if (!done)
372 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
373 has_aux_irq);
374#undef C
375
376 return status;
377}
378
379static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
380{
381 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
382 struct drm_device *dev = intel_dig_port->base.base.dev;
383
384 /*
385 * The clock divider is based off the hrawclk, and would like to run at
386 * 2MHz. So, take the hrawclk value and divide by 2 and use that
387 */
388 return index ? 0 : intel_hrawclk(dev) / 2;
389}
390
391static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
392{
393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394 struct drm_device *dev = intel_dig_port->base.base.dev;
395
396 if (index)
397 return 0;
398
399 if (intel_dig_port->port == PORT_A) {
400 if (IS_GEN6(dev) || IS_GEN7(dev))
401 return 200; /* SNB & IVB eDP input clock at 400Mhz */
402 else
403 return 225; /* eDP input clock at 450Mhz */
404 } else {
405 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
406 }
407}
408
409static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
410{
411 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412 struct drm_device *dev = intel_dig_port->base.base.dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 if (intel_dig_port->port == PORT_A) {
416 if (index)
417 return 0;
418 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
419 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
420 /* Workaround for non-ULT HSW */
421 switch (index) {
422 case 0: return 63;
423 case 1: return 72;
424 default: return 0;
425 }
426 } else {
427 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
428 }
429}
430
431static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
432{
433 return index ? 0 : 100;
434}
435
436static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
437 bool has_aux_irq,
438 int send_bytes,
439 uint32_t aux_clock_divider)
440{
441 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
442 struct drm_device *dev = intel_dig_port->base.base.dev;
443 uint32_t precharge, timeout;
444
445 if (IS_GEN6(dev))
446 precharge = 3;
447 else
448 precharge = 5;
449
450 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
451 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
452 else
453 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
454
455 return DP_AUX_CH_CTL_SEND_BUSY |
456 DP_AUX_CH_CTL_DONE |
457 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
458 DP_AUX_CH_CTL_TIME_OUT_ERROR |
459 timeout |
460 DP_AUX_CH_CTL_RECEIVE_ERROR |
461 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
462 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
463 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
464}
465
466static int
467intel_dp_aux_ch(struct intel_dp *intel_dp,
468 uint8_t *send, int send_bytes,
469 uint8_t *recv, int recv_size)
470{
471 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
472 struct drm_device *dev = intel_dig_port->base.base.dev;
473 struct drm_i915_private *dev_priv = dev->dev_private;
474 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
475 uint32_t ch_data = ch_ctl + 4;
476 uint32_t aux_clock_divider;
477 int i, ret, recv_bytes;
478 uint32_t status;
479 int try, clock = 0;
480 bool has_aux_irq = HAS_AUX_IRQ(dev);
481 bool vdd;
482
483 vdd = _edp_panel_vdd_on(intel_dp);
484
485 /* dp aux is extremely sensitive to irq latency, hence request the
486 * lowest possible wakeup latency and so prevent the cpu from going into
487 * deep sleep states.
488 */
489 pm_qos_update_request(&dev_priv->pm_qos, 0);
490
491 intel_dp_check_edp(intel_dp);
492
493 intel_aux_display_runtime_get(dev_priv);
494
495 /* Try to wait for any previous AUX channel activity */
496 for (try = 0; try < 3; try++) {
497 status = I915_READ_NOTRACE(ch_ctl);
498 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
499 break;
500 msleep(1);
501 }
502
503 if (try == 3) {
504 WARN(1, "dp_aux_ch not started status 0x%08x\n",
505 I915_READ(ch_ctl));
506 ret = -EBUSY;
507 goto out;
508 }
509
510 /* Only 5 data registers! */
511 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
512 ret = -E2BIG;
513 goto out;
514 }
515
516 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
517 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
518 has_aux_irq,
519 send_bytes,
520 aux_clock_divider);
521
522 /* Must try at least 3 times according to DP spec */
523 for (try = 0; try < 5; try++) {
524 /* Load the send data into the aux channel data registers */
525 for (i = 0; i < send_bytes; i += 4)
526 I915_WRITE(ch_data + i,
527 pack_aux(send + i, send_bytes - i));
528
529 /* Send the command and wait for it to complete */
530 I915_WRITE(ch_ctl, send_ctl);
531
532 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
533
534 /* Clear done status and any errors */
535 I915_WRITE(ch_ctl,
536 status |
537 DP_AUX_CH_CTL_DONE |
538 DP_AUX_CH_CTL_TIME_OUT_ERROR |
539 DP_AUX_CH_CTL_RECEIVE_ERROR);
540
541 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
542 DP_AUX_CH_CTL_RECEIVE_ERROR))
543 continue;
544 if (status & DP_AUX_CH_CTL_DONE)
545 break;
546 }
547 if (status & DP_AUX_CH_CTL_DONE)
548 break;
549 }
550
551 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
552 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
553 ret = -EBUSY;
554 goto out;
555 }
556
557 /* Check for timeout or receive error.
558 * Timeouts occur when the sink is not connected
559 */
560 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
561 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
562 ret = -EIO;
563 goto out;
564 }
565
566 /* Timeouts occur when the device isn't connected, so they're
567 * "normal" -- don't fill the kernel log with these */
568 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
569 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
570 ret = -ETIMEDOUT;
571 goto out;
572 }
573
574 /* Unload any bytes sent back from the other side */
575 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
576 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
577 if (recv_bytes > recv_size)
578 recv_bytes = recv_size;
579
580 for (i = 0; i < recv_bytes; i += 4)
581 unpack_aux(I915_READ(ch_data + i),
582 recv + i, recv_bytes - i);
583
584 ret = recv_bytes;
585out:
586 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
587 intel_aux_display_runtime_put(dev_priv);
588
589 if (vdd)
590 edp_panel_vdd_off(intel_dp, false);
591
592 return ret;
593}
594
595#define BARE_ADDRESS_SIZE 3
596#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
597static ssize_t
598intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
599{
600 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
601 uint8_t txbuf[20], rxbuf[20];
602 size_t txsize, rxsize;
603 int ret;
604
605 txbuf[0] = msg->request << 4;
606 txbuf[1] = msg->address >> 8;
607 txbuf[2] = msg->address & 0xff;
608 txbuf[3] = msg->size - 1;
609
610 switch (msg->request & ~DP_AUX_I2C_MOT) {
611 case DP_AUX_NATIVE_WRITE:
612 case DP_AUX_I2C_WRITE:
613 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
614 rxsize = 1;
615
616 if (WARN_ON(txsize > 20))
617 return -E2BIG;
618
619 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
620
621 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
622 if (ret > 0) {
623 msg->reply = rxbuf[0] >> 4;
624
625 /* Return payload size. */
626 ret = msg->size;
627 }
628 break;
629
630 case DP_AUX_NATIVE_READ:
631 case DP_AUX_I2C_READ:
632 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
633 rxsize = msg->size + 1;
634
635 if (WARN_ON(rxsize > 20))
636 return -E2BIG;
637
638 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
639 if (ret > 0) {
640 msg->reply = rxbuf[0] >> 4;
641 /*
642 * Assume happy day, and copy the data. The caller is
643 * expected to check msg->reply before touching it.
644 *
645 * Return payload size.
646 */
647 ret--;
648 memcpy(msg->buffer, rxbuf + 1, ret);
649 }
650 break;
651
652 default:
653 ret = -EINVAL;
654 break;
655 }
656
657 return ret;
658}
659
660static void
661intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
662{
663 struct drm_device *dev = intel_dp_to_dev(intel_dp);
664 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
665 enum port port = intel_dig_port->port;
666 const char *name = NULL;
667 int ret;
668
669 switch (port) {
670 case PORT_A:
671 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
672 name = "DPDDC-A";
673 break;
674 case PORT_B:
675 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
676 name = "DPDDC-B";
677 break;
678 case PORT_C:
679 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
680 name = "DPDDC-C";
681 break;
682 case PORT_D:
683 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
684 name = "DPDDC-D";
685 break;
686 default:
687 BUG();
688 }
689
690 if (!HAS_DDI(dev))
691 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
692
693 intel_dp->aux.name = name;
694 intel_dp->aux.dev = dev->dev;
695 intel_dp->aux.transfer = intel_dp_aux_transfer;
696
697 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
698 connector->base.kdev->kobj.name);
699
700 ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
701 if (ret < 0) {
702 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
703 name, ret);
704 return;
705 }
706
707 ret = sysfs_create_link(&connector->base.kdev->kobj,
708 &intel_dp->aux.ddc.dev.kobj,
709 intel_dp->aux.ddc.dev.kobj.name);
710 if (ret < 0) {
711 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
712 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
713 }
714}
715
716static void
717intel_dp_connector_unregister(struct intel_connector *intel_connector)
718{
719 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
720
721 sysfs_remove_link(&intel_connector->base.kdev->kobj,
722 intel_dp->aux.ddc.dev.kobj.name);
723 intel_connector_unregister(intel_connector);
724}
725
726static void
727intel_dp_set_clock(struct intel_encoder *encoder,
728 struct intel_crtc_config *pipe_config, int link_bw)
729{
730 struct drm_device *dev = encoder->base.dev;
731 const struct dp_link_dpll *divisor = NULL;
732 int i, count = 0;
733
734 if (IS_G4X(dev)) {
735 divisor = gen4_dpll;
736 count = ARRAY_SIZE(gen4_dpll);
737 } else if (IS_HASWELL(dev)) {
738 /* Haswell has special-purpose DP DDI clocks. */
739 } else if (HAS_PCH_SPLIT(dev)) {
740 divisor = pch_dpll;
741 count = ARRAY_SIZE(pch_dpll);
742 } else if (IS_VALLEYVIEW(dev)) {
743 divisor = vlv_dpll;
744 count = ARRAY_SIZE(vlv_dpll);
745 }
746
747 if (divisor && count) {
748 for (i = 0; i < count; i++) {
749 if (link_bw == divisor[i].link_bw) {
750 pipe_config->dpll = divisor[i].dpll;
751 pipe_config->clock_set = true;
752 break;
753 }
754 }
755 }
756}
757
758bool
759intel_dp_compute_config(struct intel_encoder *encoder,
760 struct intel_crtc_config *pipe_config)
761{
762 struct drm_device *dev = encoder->base.dev;
763 struct drm_i915_private *dev_priv = dev->dev_private;
764 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
765 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
766 enum port port = dp_to_dig_port(intel_dp)->port;
767 struct intel_crtc *intel_crtc = encoder->new_crtc;
768 struct intel_connector *intel_connector = intel_dp->attached_connector;
769 int lane_count, clock;
770 int min_lane_count = 1;
771 int max_lane_count = intel_dp_max_lane_count(intel_dp);
772 /* Conveniently, the link BW constants become indices with a shift...*/
773 int min_clock = 0;
774 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
775 int bpp, mode_rate;
776 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
777 int link_avail, link_clock;
778
779 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
780 pipe_config->has_pch_encoder = true;
781
782 pipe_config->has_dp_encoder = true;
783
784 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
785 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
786 adjusted_mode);
787 if (!HAS_PCH_SPLIT(dev))
788 intel_gmch_panel_fitting(intel_crtc, pipe_config,
789 intel_connector->panel.fitting_mode);
790 else
791 intel_pch_panel_fitting(intel_crtc, pipe_config,
792 intel_connector->panel.fitting_mode);
793 }
794
795 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
796 return false;
797
798 DRM_DEBUG_KMS("DP link computation with max lane count %i "
799 "max bw %02x pixel clock %iKHz\n",
800 max_lane_count, bws[max_clock],
801 adjusted_mode->crtc_clock);
802
803 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
804 * bpc in between. */
805 bpp = pipe_config->pipe_bpp;
806 if (is_edp(intel_dp)) {
807 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
808 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
809 dev_priv->vbt.edp_bpp);
810 bpp = dev_priv->vbt.edp_bpp;
811 }
812
813 if (IS_BROADWELL(dev)) {
814 /* Yes, it's an ugly hack. */
815 min_lane_count = max_lane_count;
816 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
817 min_lane_count);
818 } else if (dev_priv->vbt.edp_lanes) {
819 min_lane_count = min(dev_priv->vbt.edp_lanes,
820 max_lane_count);
821 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
822 min_lane_count);
823 }
824
825 if (dev_priv->vbt.edp_rate) {
826 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
827 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
828 bws[min_clock]);
829 }
830 }
831
832 for (; bpp >= 6*3; bpp -= 2*3) {
833 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
834 bpp);
835
836 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
837 for (clock = min_clock; clock <= max_clock; clock++) {
838 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
839 link_avail = intel_dp_max_data_rate(link_clock,
840 lane_count);
841
842 if (mode_rate <= link_avail) {
843 goto found;
844 }
845 }
846 }
847 }
848
849 return false;
850
851found:
852 if (intel_dp->color_range_auto) {
853 /*
854 * See:
855 * CEA-861-E - 5.1 Default Encoding Parameters
856 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
857 */
858 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
859 intel_dp->color_range = DP_COLOR_RANGE_16_235;
860 else
861 intel_dp->color_range = 0;
862 }
863
864 if (intel_dp->color_range)
865 pipe_config->limited_color_range = true;
866
867 intel_dp->link_bw = bws[clock];
868 intel_dp->lane_count = lane_count;
869 pipe_config->pipe_bpp = bpp;
870 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
871
872 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
873 intel_dp->link_bw, intel_dp->lane_count,
874 pipe_config->port_clock, bpp);
875 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
876 mode_rate, link_avail);
877
878 intel_link_compute_m_n(bpp, lane_count,
879 adjusted_mode->crtc_clock,
880 pipe_config->port_clock,
881 &pipe_config->dp_m_n);
882
883 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
884
885 return true;
886}
887
888static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
889{
890 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
891 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
892 struct drm_device *dev = crtc->base.dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 u32 dpa_ctl;
895
896 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
897 dpa_ctl = I915_READ(DP_A);
898 dpa_ctl &= ~DP_PLL_FREQ_MASK;
899
900 if (crtc->config.port_clock == 162000) {
901 /* For a long time we've carried around a ILK-DevA w/a for the
902 * 160MHz clock. If we're really unlucky, it's still required.
903 */
904 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
905 dpa_ctl |= DP_PLL_FREQ_160MHZ;
906 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
907 } else {
908 dpa_ctl |= DP_PLL_FREQ_270MHZ;
909 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910 }
911
912 I915_WRITE(DP_A, dpa_ctl);
913
914 POSTING_READ(DP_A);
915 udelay(500);
916}
917
918static void intel_dp_mode_set(struct intel_encoder *encoder)
919{
920 struct drm_device *dev = encoder->base.dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
923 enum port port = dp_to_dig_port(intel_dp)->port;
924 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
925 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
926
927 /*
928 * There are four kinds of DP registers:
929 *
930 * IBX PCH
931 * SNB CPU
932 * IVB CPU
933 * CPT PCH
934 *
935 * IBX PCH and CPU are the same for almost everything,
936 * except that the CPU DP PLL is configured in this
937 * register
938 *
939 * CPT PCH is quite different, having many bits moved
940 * to the TRANS_DP_CTL register instead. That
941 * configuration happens (oddly) in ironlake_pch_enable
942 */
943
944 /* Preserve the BIOS-computed detected bit. This is
945 * supposed to be read-only.
946 */
947 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
948
949 /* Handle DP bits in common between all three register formats */
950 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
951 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
952
953 if (intel_dp->has_audio) {
954 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
955 pipe_name(crtc->pipe));
956 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
957 intel_write_eld(&encoder->base, adjusted_mode);
958 }
959
960 /* Split out the IBX/CPU vs CPT settings */
961
962 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
963 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
964 intel_dp->DP |= DP_SYNC_HS_HIGH;
965 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
966 intel_dp->DP |= DP_SYNC_VS_HIGH;
967 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
968
969 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
970 intel_dp->DP |= DP_ENHANCED_FRAMING;
971
972 intel_dp->DP |= crtc->pipe << 29;
973 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
974 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
975 intel_dp->DP |= intel_dp->color_range;
976
977 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978 intel_dp->DP |= DP_SYNC_HS_HIGH;
979 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980 intel_dp->DP |= DP_SYNC_VS_HIGH;
981 intel_dp->DP |= DP_LINK_TRAIN_OFF;
982
983 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984 intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986 if (crtc->pipe == 1)
987 intel_dp->DP |= DP_PIPEB_SELECT;
988 } else {
989 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990 }
991
992 if (port == PORT_A && !IS_VALLEYVIEW(dev))
993 ironlake_set_pll_cpu_edp(intel_dp);
994}
995
996#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
997#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
998
999#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1000#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1001
1002#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005static void wait_panel_status(struct intel_dp *intel_dp,
1006 u32 mask,
1007 u32 value)
1008{
1009 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp_stat_reg, pp_ctrl_reg;
1012
1013 pp_stat_reg = _pp_stat_reg(intel_dp);
1014 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1015
1016 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017 mask, value,
1018 I915_READ(pp_stat_reg),
1019 I915_READ(pp_ctrl_reg));
1020
1021 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023 I915_READ(pp_stat_reg),
1024 I915_READ(pp_ctrl_reg));
1025 }
1026
1027 DRM_DEBUG_KMS("Wait complete\n");
1028}
1029
1030static void wait_panel_on(struct intel_dp *intel_dp)
1031{
1032 DRM_DEBUG_KMS("Wait for panel power on\n");
1033 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1034}
1035
1036static void wait_panel_off(struct intel_dp *intel_dp)
1037{
1038 DRM_DEBUG_KMS("Wait for panel power off time\n");
1039 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1040}
1041
1042static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1043{
1044 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1045
1046 /* When we disable the VDD override bit last we have to do the manual
1047 * wait. */
1048 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1049 intel_dp->panel_power_cycle_delay);
1050
1051 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052}
1053
1054static void wait_backlight_on(struct intel_dp *intel_dp)
1055{
1056 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1057 intel_dp->backlight_on_delay);
1058}
1059
1060static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1061{
1062 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1063 intel_dp->backlight_off_delay);
1064}
1065
1066/* Read the current pp_control value, unlocking the register if it
1067 * is locked
1068 */
1069
1070static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1071{
1072 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 u32 control;
1075
1076 control = I915_READ(_pp_ctrl_reg(intel_dp));
1077 control &= ~PANEL_UNLOCK_MASK;
1078 control |= PANEL_UNLOCK_REGS;
1079 return control;
1080}
1081
1082static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1083{
1084 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 u32 pp;
1087 u32 pp_stat_reg, pp_ctrl_reg;
1088 bool need_to_disable = !intel_dp->want_panel_vdd;
1089
1090 if (!is_edp(intel_dp))
1091 return false;
1092
1093 intel_dp->want_panel_vdd = true;
1094
1095 if (edp_have_panel_vdd(intel_dp))
1096 return need_to_disable;
1097
1098 intel_runtime_pm_get(dev_priv);
1099
1100 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1101
1102 if (!edp_have_panel_power(intel_dp))
1103 wait_panel_power_cycle(intel_dp);
1104
1105 pp = ironlake_get_pp_control(intel_dp);
1106 pp |= EDP_FORCE_VDD;
1107
1108 pp_stat_reg = _pp_stat_reg(intel_dp);
1109 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1110
1111 I915_WRITE(pp_ctrl_reg, pp);
1112 POSTING_READ(pp_ctrl_reg);
1113 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1114 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1115 /*
1116 * If the panel wasn't on, delay before accessing aux channel
1117 */
1118 if (!edp_have_panel_power(intel_dp)) {
1119 DRM_DEBUG_KMS("eDP was not running\n");
1120 msleep(intel_dp->panel_power_up_delay);
1121 }
1122
1123 return need_to_disable;
1124}
1125
1126void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1127{
1128 if (is_edp(intel_dp)) {
1129 bool vdd = _edp_panel_vdd_on(intel_dp);
1130
1131 WARN(!vdd, "eDP VDD already requested on\n");
1132 }
1133}
1134
1135static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1136{
1137 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 u32 pp;
1140 u32 pp_stat_reg, pp_ctrl_reg;
1141
1142 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1143
1144 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1145 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1146
1147 pp = ironlake_get_pp_control(intel_dp);
1148 pp &= ~EDP_FORCE_VDD;
1149
1150 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1151 pp_stat_reg = _pp_stat_reg(intel_dp);
1152
1153 I915_WRITE(pp_ctrl_reg, pp);
1154 POSTING_READ(pp_ctrl_reg);
1155
1156 /* Make sure sequencer is idle before allowing subsequent activity */
1157 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1158 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1159
1160 if ((pp & POWER_TARGET_ON) == 0)
1161 intel_dp->last_power_cycle = jiffies;
1162
1163 intel_runtime_pm_put(dev_priv);
1164 }
1165}
1166
1167static void edp_panel_vdd_work(struct work_struct *__work)
1168{
1169 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1170 struct intel_dp, panel_vdd_work);
1171 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172
1173 mutex_lock(&dev->mode_config.mutex);
1174 edp_panel_vdd_off_sync(intel_dp);
1175 mutex_unlock(&dev->mode_config.mutex);
1176}
1177
1178static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1179{
1180 if (!is_edp(intel_dp))
1181 return;
1182
1183 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1184
1185 intel_dp->want_panel_vdd = false;
1186
1187 if (sync) {
1188 edp_panel_vdd_off_sync(intel_dp);
1189 } else {
1190 /*
1191 * Queue the timer to fire a long
1192 * time from now (relative to the power down delay)
1193 * to keep the panel power up across a sequence of operations
1194 */
1195 schedule_delayed_work(&intel_dp->panel_vdd_work,
1196 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1197 }
1198}
1199
1200void intel_edp_panel_on(struct intel_dp *intel_dp)
1201{
1202 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1203 struct drm_i915_private *dev_priv = dev->dev_private;
1204 u32 pp;
1205 u32 pp_ctrl_reg;
1206
1207 if (!is_edp(intel_dp))
1208 return;
1209
1210 DRM_DEBUG_KMS("Turn eDP power on\n");
1211
1212 if (edp_have_panel_power(intel_dp)) {
1213 DRM_DEBUG_KMS("eDP power already on\n");
1214 return;
1215 }
1216
1217 wait_panel_power_cycle(intel_dp);
1218
1219 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1220 pp = ironlake_get_pp_control(intel_dp);
1221 if (IS_GEN5(dev)) {
1222 /* ILK workaround: disable reset around power sequence */
1223 pp &= ~PANEL_POWER_RESET;
1224 I915_WRITE(pp_ctrl_reg, pp);
1225 POSTING_READ(pp_ctrl_reg);
1226 }
1227
1228 pp |= POWER_TARGET_ON;
1229 if (!IS_GEN5(dev))
1230 pp |= PANEL_POWER_RESET;
1231
1232 I915_WRITE(pp_ctrl_reg, pp);
1233 POSTING_READ(pp_ctrl_reg);
1234
1235 wait_panel_on(intel_dp);
1236 intel_dp->last_power_on = jiffies;
1237
1238 if (IS_GEN5(dev)) {
1239 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1240 I915_WRITE(pp_ctrl_reg, pp);
1241 POSTING_READ(pp_ctrl_reg);
1242 }
1243}
1244
1245void intel_edp_panel_off(struct intel_dp *intel_dp)
1246{
1247 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 u32 pp;
1250 u32 pp_ctrl_reg;
1251
1252 if (!is_edp(intel_dp))
1253 return;
1254
1255 DRM_DEBUG_KMS("Turn eDP power off\n");
1256
1257 edp_wait_backlight_off(intel_dp);
1258
1259 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1260
1261 pp = ironlake_get_pp_control(intel_dp);
1262 /* We need to switch off panel power _and_ force vdd, for otherwise some
1263 * panels get very unhappy and cease to work. */
1264 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1265 EDP_BLC_ENABLE);
1266
1267 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1268
1269 intel_dp->want_panel_vdd = false;
1270
1271 I915_WRITE(pp_ctrl_reg, pp);
1272 POSTING_READ(pp_ctrl_reg);
1273
1274 intel_dp->last_power_cycle = jiffies;
1275 wait_panel_off(intel_dp);
1276
1277 /* We got a reference when we enabled the VDD. */
1278 intel_runtime_pm_put(dev_priv);
1279}
1280
1281void intel_edp_backlight_on(struct intel_dp *intel_dp)
1282{
1283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284 struct drm_device *dev = intel_dig_port->base.base.dev;
1285 struct drm_i915_private *dev_priv = dev->dev_private;
1286 u32 pp;
1287 u32 pp_ctrl_reg;
1288
1289 if (!is_edp(intel_dp))
1290 return;
1291
1292 DRM_DEBUG_KMS("\n");
1293 /*
1294 * If we enable the backlight right away following a panel power
1295 * on, we may see slight flicker as the panel syncs with the eDP
1296 * link. So delay a bit to make sure the image is solid before
1297 * allowing it to appear.
1298 */
1299 wait_backlight_on(intel_dp);
1300 pp = ironlake_get_pp_control(intel_dp);
1301 pp |= EDP_BLC_ENABLE;
1302
1303 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1304
1305 I915_WRITE(pp_ctrl_reg, pp);
1306 POSTING_READ(pp_ctrl_reg);
1307
1308 intel_panel_enable_backlight(intel_dp->attached_connector);
1309}
1310
1311void intel_edp_backlight_off(struct intel_dp *intel_dp)
1312{
1313 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1315 u32 pp;
1316 u32 pp_ctrl_reg;
1317
1318 if (!is_edp(intel_dp))
1319 return;
1320
1321 intel_panel_disable_backlight(intel_dp->attached_connector);
1322
1323 DRM_DEBUG_KMS("\n");
1324 pp = ironlake_get_pp_control(intel_dp);
1325 pp &= ~EDP_BLC_ENABLE;
1326
1327 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1328
1329 I915_WRITE(pp_ctrl_reg, pp);
1330 POSTING_READ(pp_ctrl_reg);
1331 intel_dp->last_backlight_off = jiffies;
1332}
1333
1334static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1335{
1336 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338 struct drm_device *dev = crtc->dev;
1339 struct drm_i915_private *dev_priv = dev->dev_private;
1340 u32 dpa_ctl;
1341
1342 assert_pipe_disabled(dev_priv,
1343 to_intel_crtc(crtc)->pipe);
1344
1345 DRM_DEBUG_KMS("\n");
1346 dpa_ctl = I915_READ(DP_A);
1347 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1348 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350 /* We don't adjust intel_dp->DP while tearing down the link, to
1351 * facilitate link retraining (e.g. after hotplug). Hence clear all
1352 * enable bits here to ensure that we don't enable too much. */
1353 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1354 intel_dp->DP |= DP_PLL_ENABLE;
1355 I915_WRITE(DP_A, intel_dp->DP);
1356 POSTING_READ(DP_A);
1357 udelay(200);
1358}
1359
1360static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1361{
1362 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1363 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1364 struct drm_device *dev = crtc->dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 u32 dpa_ctl;
1367
1368 assert_pipe_disabled(dev_priv,
1369 to_intel_crtc(crtc)->pipe);
1370
1371 dpa_ctl = I915_READ(DP_A);
1372 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1373 "dp pll off, should be on\n");
1374 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1375
1376 /* We can't rely on the value tracked for the DP register in
1377 * intel_dp->DP because link_down must not change that (otherwise link
1378 * re-training will fail. */
1379 dpa_ctl &= ~DP_PLL_ENABLE;
1380 I915_WRITE(DP_A, dpa_ctl);
1381 POSTING_READ(DP_A);
1382 udelay(200);
1383}
1384
1385/* If the sink supports it, try to set the power state appropriately */
1386void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1387{
1388 int ret, i;
1389
1390 /* Should have a valid DPCD by this point */
1391 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1392 return;
1393
1394 if (mode != DRM_MODE_DPMS_ON) {
1395 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1396 DP_SET_POWER_D3);
1397 if (ret != 1)
1398 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1399 } else {
1400 /*
1401 * When turning on, we need to retry for 1ms to give the sink
1402 * time to wake up.
1403 */
1404 for (i = 0; i < 3; i++) {
1405 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1406 DP_SET_POWER_D0);
1407 if (ret == 1)
1408 break;
1409 msleep(1);
1410 }
1411 }
1412}
1413
1414static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1415 enum pipe *pipe)
1416{
1417 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418 enum port port = dp_to_dig_port(intel_dp)->port;
1419 struct drm_device *dev = encoder->base.dev;
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 enum intel_display_power_domain power_domain;
1422 u32 tmp;
1423
1424 power_domain = intel_display_port_power_domain(encoder);
1425 if (!intel_display_power_enabled(dev_priv, power_domain))
1426 return false;
1427
1428 tmp = I915_READ(intel_dp->output_reg);
1429
1430 if (!(tmp & DP_PORT_EN))
1431 return false;
1432
1433 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1434 *pipe = PORT_TO_PIPE_CPT(tmp);
1435 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1436 *pipe = PORT_TO_PIPE(tmp);
1437 } else {
1438 u32 trans_sel;
1439 u32 trans_dp;
1440 int i;
1441
1442 switch (intel_dp->output_reg) {
1443 case PCH_DP_B:
1444 trans_sel = TRANS_DP_PORT_SEL_B;
1445 break;
1446 case PCH_DP_C:
1447 trans_sel = TRANS_DP_PORT_SEL_C;
1448 break;
1449 case PCH_DP_D:
1450 trans_sel = TRANS_DP_PORT_SEL_D;
1451 break;
1452 default:
1453 return true;
1454 }
1455
1456 for_each_pipe(i) {
1457 trans_dp = I915_READ(TRANS_DP_CTL(i));
1458 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1459 *pipe = i;
1460 return true;
1461 }
1462 }
1463
1464 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1465 intel_dp->output_reg);
1466 }
1467
1468 return true;
1469}
1470
1471static void intel_dp_get_config(struct intel_encoder *encoder,
1472 struct intel_crtc_config *pipe_config)
1473{
1474 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1475 u32 tmp, flags = 0;
1476 struct drm_device *dev = encoder->base.dev;
1477 struct drm_i915_private *dev_priv = dev->dev_private;
1478 enum port port = dp_to_dig_port(intel_dp)->port;
1479 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1480 int dotclock;
1481
1482 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1483 tmp = I915_READ(intel_dp->output_reg);
1484 if (tmp & DP_SYNC_HS_HIGH)
1485 flags |= DRM_MODE_FLAG_PHSYNC;
1486 else
1487 flags |= DRM_MODE_FLAG_NHSYNC;
1488
1489 if (tmp & DP_SYNC_VS_HIGH)
1490 flags |= DRM_MODE_FLAG_PVSYNC;
1491 else
1492 flags |= DRM_MODE_FLAG_NVSYNC;
1493 } else {
1494 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1495 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1496 flags |= DRM_MODE_FLAG_PHSYNC;
1497 else
1498 flags |= DRM_MODE_FLAG_NHSYNC;
1499
1500 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1501 flags |= DRM_MODE_FLAG_PVSYNC;
1502 else
1503 flags |= DRM_MODE_FLAG_NVSYNC;
1504 }
1505
1506 pipe_config->adjusted_mode.flags |= flags;
1507
1508 pipe_config->has_dp_encoder = true;
1509
1510 intel_dp_get_m_n(crtc, pipe_config);
1511
1512 if (port == PORT_A) {
1513 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1514 pipe_config->port_clock = 162000;
1515 else
1516 pipe_config->port_clock = 270000;
1517 }
1518
1519 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1520 &pipe_config->dp_m_n);
1521
1522 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1523 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1524
1525 pipe_config->adjusted_mode.crtc_clock = dotclock;
1526
1527 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1528 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1529 /*
1530 * This is a big fat ugly hack.
1531 *
1532 * Some machines in UEFI boot mode provide us a VBT that has 18
1533 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1534 * unknown we fail to light up. Yet the same BIOS boots up with
1535 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1536 * max, not what it tells us to use.
1537 *
1538 * Note: This will still be broken if the eDP panel is not lit
1539 * up by the BIOS, and thus we can't get the mode at module
1540 * load.
1541 */
1542 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1543 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1544 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1545 }
1546}
1547
1548static bool is_edp_psr(struct drm_device *dev)
1549{
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551
1552 return dev_priv->psr.sink_support;
1553}
1554
1555static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1556{
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558
1559 if (!HAS_PSR(dev))
1560 return false;
1561
1562 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1563}
1564
1565static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1566 struct edp_vsc_psr *vsc_psr)
1567{
1568 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1569 struct drm_device *dev = dig_port->base.base.dev;
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1572 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1573 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1574 uint32_t *data = (uint32_t *) vsc_psr;
1575 unsigned int i;
1576
1577 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1578 the video DIP being updated before program video DIP data buffer
1579 registers for DIP being updated. */
1580 I915_WRITE(ctl_reg, 0);
1581 POSTING_READ(ctl_reg);
1582
1583 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1584 if (i < sizeof(struct edp_vsc_psr))
1585 I915_WRITE(data_reg + i, *data++);
1586 else
1587 I915_WRITE(data_reg + i, 0);
1588 }
1589
1590 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1591 POSTING_READ(ctl_reg);
1592}
1593
1594static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1595{
1596 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 struct edp_vsc_psr psr_vsc;
1599
1600 if (intel_dp->psr_setup_done)
1601 return;
1602
1603 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1604 memset(&psr_vsc, 0, sizeof(psr_vsc));
1605 psr_vsc.sdp_header.HB0 = 0;
1606 psr_vsc.sdp_header.HB1 = 0x7;
1607 psr_vsc.sdp_header.HB2 = 0x2;
1608 psr_vsc.sdp_header.HB3 = 0x8;
1609 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1610
1611 /* Avoid continuous PSR exit by masking memup and hpd */
1612 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1613 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1614
1615 intel_dp->psr_setup_done = true;
1616}
1617
1618static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1619{
1620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 uint32_t aux_clock_divider;
1623 int precharge = 0x3;
1624 int msg_size = 5; /* Header(4) + Message(1) */
1625
1626 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1627
1628 /* Enable PSR in sink */
1629 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1630 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1631 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1632 else
1633 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1634 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1635
1636 /* Setup AUX registers */
1637 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1638 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1639 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1640 DP_AUX_CH_CTL_TIME_OUT_400us |
1641 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1642 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1643 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1644}
1645
1646static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1647{
1648 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 uint32_t max_sleep_time = 0x1f;
1651 uint32_t idle_frames = 1;
1652 uint32_t val = 0x0;
1653 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1654
1655 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1656 val |= EDP_PSR_LINK_STANDBY;
1657 val |= EDP_PSR_TP2_TP3_TIME_0us;
1658 val |= EDP_PSR_TP1_TIME_0us;
1659 val |= EDP_PSR_SKIP_AUX_EXIT;
1660 } else
1661 val |= EDP_PSR_LINK_DISABLE;
1662
1663 I915_WRITE(EDP_PSR_CTL(dev), val |
1664 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1665 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1666 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1667 EDP_PSR_ENABLE);
1668}
1669
1670static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1671{
1672 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1673 struct drm_device *dev = dig_port->base.base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct drm_crtc *crtc = dig_port->base.base.crtc;
1676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1678 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1679
1680 dev_priv->psr.source_ok = false;
1681
1682 if (!HAS_PSR(dev)) {
1683 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1684 return false;
1685 }
1686
1687 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1688 (dig_port->port != PORT_A)) {
1689 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1690 return false;
1691 }
1692
1693 if (!i915.enable_psr) {
1694 DRM_DEBUG_KMS("PSR disable by flag\n");
1695 return false;
1696 }
1697
1698 crtc = dig_port->base.base.crtc;
1699 if (crtc == NULL) {
1700 DRM_DEBUG_KMS("crtc not active for PSR\n");
1701 return false;
1702 }
1703
1704 intel_crtc = to_intel_crtc(crtc);
1705 if (!intel_crtc_active(crtc)) {
1706 DRM_DEBUG_KMS("crtc not active for PSR\n");
1707 return false;
1708 }
1709
1710 obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1711 if (obj->tiling_mode != I915_TILING_X ||
1712 obj->fence_reg == I915_FENCE_REG_NONE) {
1713 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1714 return false;
1715 }
1716
1717 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1718 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1719 return false;
1720 }
1721
1722 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1723 S3D_ENABLE) {
1724 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1725 return false;
1726 }
1727
1728 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1729 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1730 return false;
1731 }
1732
1733 dev_priv->psr.source_ok = true;
1734 return true;
1735}
1736
1737static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1738{
1739 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1740
1741 if (!intel_edp_psr_match_conditions(intel_dp) ||
1742 intel_edp_is_psr_enabled(dev))
1743 return;
1744
1745 /* Setup PSR once */
1746 intel_edp_psr_setup(intel_dp);
1747
1748 /* Enable PSR on the panel */
1749 intel_edp_psr_enable_sink(intel_dp);
1750
1751 /* Enable PSR on the host */
1752 intel_edp_psr_enable_source(intel_dp);
1753}
1754
1755void intel_edp_psr_enable(struct intel_dp *intel_dp)
1756{
1757 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1758
1759 if (intel_edp_psr_match_conditions(intel_dp) &&
1760 !intel_edp_is_psr_enabled(dev))
1761 intel_edp_psr_do_enable(intel_dp);
1762}
1763
1764void intel_edp_psr_disable(struct intel_dp *intel_dp)
1765{
1766 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768
1769 if (!intel_edp_is_psr_enabled(dev))
1770 return;
1771
1772 I915_WRITE(EDP_PSR_CTL(dev),
1773 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1774
1775 /* Wait till PSR is idle */
1776 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1777 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1778 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1779}
1780
1781void intel_edp_psr_update(struct drm_device *dev)
1782{
1783 struct intel_encoder *encoder;
1784 struct intel_dp *intel_dp = NULL;
1785
1786 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1787 if (encoder->type == INTEL_OUTPUT_EDP) {
1788 intel_dp = enc_to_intel_dp(&encoder->base);
1789
1790 if (!is_edp_psr(dev))
1791 return;
1792
1793 if (!intel_edp_psr_match_conditions(intel_dp))
1794 intel_edp_psr_disable(intel_dp);
1795 else
1796 if (!intel_edp_is_psr_enabled(dev))
1797 intel_edp_psr_do_enable(intel_dp);
1798 }
1799}
1800
1801static void intel_disable_dp(struct intel_encoder *encoder)
1802{
1803 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1804 enum port port = dp_to_dig_port(intel_dp)->port;
1805 struct drm_device *dev = encoder->base.dev;
1806
1807 /* Make sure the panel is off before trying to change the mode. But also
1808 * ensure that we have vdd while we switch off the panel. */
1809 intel_edp_panel_vdd_on(intel_dp);
1810 intel_edp_backlight_off(intel_dp);
1811 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1812 intel_edp_panel_off(intel_dp);
1813
1814 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1815 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1816 intel_dp_link_down(intel_dp);
1817}
1818
1819static void intel_post_disable_dp(struct intel_encoder *encoder)
1820{
1821 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1822 enum port port = dp_to_dig_port(intel_dp)->port;
1823 struct drm_device *dev = encoder->base.dev;
1824
1825 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1826 intel_dp_link_down(intel_dp);
1827 if (!IS_VALLEYVIEW(dev))
1828 ironlake_edp_pll_off(intel_dp);
1829 }
1830}
1831
1832static void intel_enable_dp(struct intel_encoder *encoder)
1833{
1834 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1835 struct drm_device *dev = encoder->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1838
1839 if (WARN_ON(dp_reg & DP_PORT_EN))
1840 return;
1841
1842 intel_edp_panel_vdd_on(intel_dp);
1843 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1844 intel_dp_start_link_train(intel_dp);
1845 intel_edp_panel_on(intel_dp);
1846 edp_panel_vdd_off(intel_dp, true);
1847 intel_dp_complete_link_train(intel_dp);
1848 intel_dp_stop_link_train(intel_dp);
1849}
1850
1851static void g4x_enable_dp(struct intel_encoder *encoder)
1852{
1853 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1854
1855 intel_enable_dp(encoder);
1856 intel_edp_backlight_on(intel_dp);
1857}
1858
1859static void vlv_enable_dp(struct intel_encoder *encoder)
1860{
1861 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1862
1863 intel_edp_backlight_on(intel_dp);
1864}
1865
1866static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1867{
1868 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1870
1871 if (dport->port == PORT_A)
1872 ironlake_edp_pll_on(intel_dp);
1873}
1874
1875static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1876{
1877 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1878 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1879 struct drm_device *dev = encoder->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1882 enum dpio_channel port = vlv_dport_to_channel(dport);
1883 int pipe = intel_crtc->pipe;
1884 struct edp_power_seq power_seq;
1885 u32 val;
1886
1887 mutex_lock(&dev_priv->dpio_lock);
1888
1889 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1890 val = 0;
1891 if (pipe)
1892 val |= (1<<21);
1893 else
1894 val &= ~(1<<21);
1895 val |= 0x001000c4;
1896 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1897 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1898 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1899
1900 mutex_unlock(&dev_priv->dpio_lock);
1901
1902 if (is_edp(intel_dp)) {
1903 /* init power sequencer on this pipe and port */
1904 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1905 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1906 &power_seq);
1907 }
1908
1909 intel_enable_dp(encoder);
1910
1911 vlv_wait_port_ready(dev_priv, dport);
1912}
1913
1914static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1915{
1916 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1917 struct drm_device *dev = encoder->base.dev;
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 struct intel_crtc *intel_crtc =
1920 to_intel_crtc(encoder->base.crtc);
1921 enum dpio_channel port = vlv_dport_to_channel(dport);
1922 int pipe = intel_crtc->pipe;
1923
1924 /* Program Tx lane resets to default */
1925 mutex_lock(&dev_priv->dpio_lock);
1926 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1927 DPIO_PCS_TX_LANE2_RESET |
1928 DPIO_PCS_TX_LANE1_RESET);
1929 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1930 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1931 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1932 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1933 DPIO_PCS_CLK_SOFT_RESET);
1934
1935 /* Fix up inter-pair skew failure */
1936 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1937 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1938 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1939 mutex_unlock(&dev_priv->dpio_lock);
1940}
1941
1942/*
1943 * Native read with retry for link status and receiver capability reads for
1944 * cases where the sink may still be asleep.
1945 *
1946 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1947 * supposed to retry 3 times per the spec.
1948 */
1949static ssize_t
1950intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1951 void *buffer, size_t size)
1952{
1953 ssize_t ret;
1954 int i;
1955
1956 for (i = 0; i < 3; i++) {
1957 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1958 if (ret == size)
1959 return ret;
1960 msleep(1);
1961 }
1962
1963 return ret;
1964}
1965
1966/*
1967 * Fetch AUX CH registers 0x202 - 0x207 which contain
1968 * link status information
1969 */
1970static bool
1971intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1972{
1973 return intel_dp_dpcd_read_wake(&intel_dp->aux,
1974 DP_LANE0_1_STATUS,
1975 link_status,
1976 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1977}
1978
1979/*
1980 * These are source-specific values; current Intel hardware supports
1981 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1982 */
1983
1984static uint8_t
1985intel_dp_voltage_max(struct intel_dp *intel_dp)
1986{
1987 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1988 enum port port = dp_to_dig_port(intel_dp)->port;
1989
1990 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1991 return DP_TRAIN_VOLTAGE_SWING_1200;
1992 else if (IS_GEN7(dev) && port == PORT_A)
1993 return DP_TRAIN_VOLTAGE_SWING_800;
1994 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1995 return DP_TRAIN_VOLTAGE_SWING_1200;
1996 else
1997 return DP_TRAIN_VOLTAGE_SWING_800;
1998}
1999
2000static uint8_t
2001intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2002{
2003 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2004 enum port port = dp_to_dig_port(intel_dp)->port;
2005
2006 if (IS_BROADWELL(dev)) {
2007 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2008 case DP_TRAIN_VOLTAGE_SWING_400:
2009 case DP_TRAIN_VOLTAGE_SWING_600:
2010 return DP_TRAIN_PRE_EMPHASIS_6;
2011 case DP_TRAIN_VOLTAGE_SWING_800:
2012 return DP_TRAIN_PRE_EMPHASIS_3_5;
2013 case DP_TRAIN_VOLTAGE_SWING_1200:
2014 default:
2015 return DP_TRAIN_PRE_EMPHASIS_0;
2016 }
2017 } else if (IS_HASWELL(dev)) {
2018 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2019 case DP_TRAIN_VOLTAGE_SWING_400:
2020 return DP_TRAIN_PRE_EMPHASIS_9_5;
2021 case DP_TRAIN_VOLTAGE_SWING_600:
2022 return DP_TRAIN_PRE_EMPHASIS_6;
2023 case DP_TRAIN_VOLTAGE_SWING_800:
2024 return DP_TRAIN_PRE_EMPHASIS_3_5;
2025 case DP_TRAIN_VOLTAGE_SWING_1200:
2026 default:
2027 return DP_TRAIN_PRE_EMPHASIS_0;
2028 }
2029 } else if (IS_VALLEYVIEW(dev)) {
2030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031 case DP_TRAIN_VOLTAGE_SWING_400:
2032 return DP_TRAIN_PRE_EMPHASIS_9_5;
2033 case DP_TRAIN_VOLTAGE_SWING_600:
2034 return DP_TRAIN_PRE_EMPHASIS_6;
2035 case DP_TRAIN_VOLTAGE_SWING_800:
2036 return DP_TRAIN_PRE_EMPHASIS_3_5;
2037 case DP_TRAIN_VOLTAGE_SWING_1200:
2038 default:
2039 return DP_TRAIN_PRE_EMPHASIS_0;
2040 }
2041 } else if (IS_GEN7(dev) && port == PORT_A) {
2042 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2043 case DP_TRAIN_VOLTAGE_SWING_400:
2044 return DP_TRAIN_PRE_EMPHASIS_6;
2045 case DP_TRAIN_VOLTAGE_SWING_600:
2046 case DP_TRAIN_VOLTAGE_SWING_800:
2047 return DP_TRAIN_PRE_EMPHASIS_3_5;
2048 default:
2049 return DP_TRAIN_PRE_EMPHASIS_0;
2050 }
2051 } else {
2052 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2053 case DP_TRAIN_VOLTAGE_SWING_400:
2054 return DP_TRAIN_PRE_EMPHASIS_6;
2055 case DP_TRAIN_VOLTAGE_SWING_600:
2056 return DP_TRAIN_PRE_EMPHASIS_6;
2057 case DP_TRAIN_VOLTAGE_SWING_800:
2058 return DP_TRAIN_PRE_EMPHASIS_3_5;
2059 case DP_TRAIN_VOLTAGE_SWING_1200:
2060 default:
2061 return DP_TRAIN_PRE_EMPHASIS_0;
2062 }
2063 }
2064}
2065
2066static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2067{
2068 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2071 struct intel_crtc *intel_crtc =
2072 to_intel_crtc(dport->base.base.crtc);
2073 unsigned long demph_reg_value, preemph_reg_value,
2074 uniqtranscale_reg_value;
2075 uint8_t train_set = intel_dp->train_set[0];
2076 enum dpio_channel port = vlv_dport_to_channel(dport);
2077 int pipe = intel_crtc->pipe;
2078
2079 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2080 case DP_TRAIN_PRE_EMPHASIS_0:
2081 preemph_reg_value = 0x0004000;
2082 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2083 case DP_TRAIN_VOLTAGE_SWING_400:
2084 demph_reg_value = 0x2B405555;
2085 uniqtranscale_reg_value = 0x552AB83A;
2086 break;
2087 case DP_TRAIN_VOLTAGE_SWING_600:
2088 demph_reg_value = 0x2B404040;
2089 uniqtranscale_reg_value = 0x5548B83A;
2090 break;
2091 case DP_TRAIN_VOLTAGE_SWING_800:
2092 demph_reg_value = 0x2B245555;
2093 uniqtranscale_reg_value = 0x5560B83A;
2094 break;
2095 case DP_TRAIN_VOLTAGE_SWING_1200:
2096 demph_reg_value = 0x2B405555;
2097 uniqtranscale_reg_value = 0x5598DA3A;
2098 break;
2099 default:
2100 return 0;
2101 }
2102 break;
2103 case DP_TRAIN_PRE_EMPHASIS_3_5:
2104 preemph_reg_value = 0x0002000;
2105 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106 case DP_TRAIN_VOLTAGE_SWING_400:
2107 demph_reg_value = 0x2B404040;
2108 uniqtranscale_reg_value = 0x5552B83A;
2109 break;
2110 case DP_TRAIN_VOLTAGE_SWING_600:
2111 demph_reg_value = 0x2B404848;
2112 uniqtranscale_reg_value = 0x5580B83A;
2113 break;
2114 case DP_TRAIN_VOLTAGE_SWING_800:
2115 demph_reg_value = 0x2B404040;
2116 uniqtranscale_reg_value = 0x55ADDA3A;
2117 break;
2118 default:
2119 return 0;
2120 }
2121 break;
2122 case DP_TRAIN_PRE_EMPHASIS_6:
2123 preemph_reg_value = 0x0000000;
2124 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125 case DP_TRAIN_VOLTAGE_SWING_400:
2126 demph_reg_value = 0x2B305555;
2127 uniqtranscale_reg_value = 0x5570B83A;
2128 break;
2129 case DP_TRAIN_VOLTAGE_SWING_600:
2130 demph_reg_value = 0x2B2B4040;
2131 uniqtranscale_reg_value = 0x55ADDA3A;
2132 break;
2133 default:
2134 return 0;
2135 }
2136 break;
2137 case DP_TRAIN_PRE_EMPHASIS_9_5:
2138 preemph_reg_value = 0x0006000;
2139 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2140 case DP_TRAIN_VOLTAGE_SWING_400:
2141 demph_reg_value = 0x1B405555;
2142 uniqtranscale_reg_value = 0x55ADDA3A;
2143 break;
2144 default:
2145 return 0;
2146 }
2147 break;
2148 default:
2149 return 0;
2150 }
2151
2152 mutex_lock(&dev_priv->dpio_lock);
2153 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2154 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2155 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2156 uniqtranscale_reg_value);
2157 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2158 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2159 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2160 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2161 mutex_unlock(&dev_priv->dpio_lock);
2162
2163 return 0;
2164}
2165
2166static void
2167intel_get_adjust_train(struct intel_dp *intel_dp,
2168 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2169{
2170 uint8_t v = 0;
2171 uint8_t p = 0;
2172 int lane;
2173 uint8_t voltage_max;
2174 uint8_t preemph_max;
2175
2176 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2177 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2178 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2179
2180 if (this_v > v)
2181 v = this_v;
2182 if (this_p > p)
2183 p = this_p;
2184 }
2185
2186 voltage_max = intel_dp_voltage_max(intel_dp);
2187 if (v >= voltage_max)
2188 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2189
2190 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2191 if (p >= preemph_max)
2192 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2193
2194 for (lane = 0; lane < 4; lane++)
2195 intel_dp->train_set[lane] = v | p;
2196}
2197
2198static uint32_t
2199intel_gen4_signal_levels(uint8_t train_set)
2200{
2201 uint32_t signal_levels = 0;
2202
2203 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2204 case DP_TRAIN_VOLTAGE_SWING_400:
2205 default:
2206 signal_levels |= DP_VOLTAGE_0_4;
2207 break;
2208 case DP_TRAIN_VOLTAGE_SWING_600:
2209 signal_levels |= DP_VOLTAGE_0_6;
2210 break;
2211 case DP_TRAIN_VOLTAGE_SWING_800:
2212 signal_levels |= DP_VOLTAGE_0_8;
2213 break;
2214 case DP_TRAIN_VOLTAGE_SWING_1200:
2215 signal_levels |= DP_VOLTAGE_1_2;
2216 break;
2217 }
2218 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2219 case DP_TRAIN_PRE_EMPHASIS_0:
2220 default:
2221 signal_levels |= DP_PRE_EMPHASIS_0;
2222 break;
2223 case DP_TRAIN_PRE_EMPHASIS_3_5:
2224 signal_levels |= DP_PRE_EMPHASIS_3_5;
2225 break;
2226 case DP_TRAIN_PRE_EMPHASIS_6:
2227 signal_levels |= DP_PRE_EMPHASIS_6;
2228 break;
2229 case DP_TRAIN_PRE_EMPHASIS_9_5:
2230 signal_levels |= DP_PRE_EMPHASIS_9_5;
2231 break;
2232 }
2233 return signal_levels;
2234}
2235
2236/* Gen6's DP voltage swing and pre-emphasis control */
2237static uint32_t
2238intel_gen6_edp_signal_levels(uint8_t train_set)
2239{
2240 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2241 DP_TRAIN_PRE_EMPHASIS_MASK);
2242 switch (signal_levels) {
2243 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2244 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2245 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2246 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2248 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2249 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2250 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2251 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2254 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2255 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2256 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2257 default:
2258 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2259 "0x%x\n", signal_levels);
2260 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2261 }
2262}
2263
2264/* Gen7's DP voltage swing and pre-emphasis control */
2265static uint32_t
2266intel_gen7_edp_signal_levels(uint8_t train_set)
2267{
2268 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2269 DP_TRAIN_PRE_EMPHASIS_MASK);
2270 switch (signal_levels) {
2271 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2272 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2273 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2274 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2275 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2276 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2277
2278 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2279 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2280 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2281 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2282
2283 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2284 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2285 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2286 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2287
2288 default:
2289 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2290 "0x%x\n", signal_levels);
2291 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2292 }
2293}
2294
2295/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2296static uint32_t
2297intel_hsw_signal_levels(uint8_t train_set)
2298{
2299 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2300 DP_TRAIN_PRE_EMPHASIS_MASK);
2301 switch (signal_levels) {
2302 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2303 return DDI_BUF_EMP_400MV_0DB_HSW;
2304 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2305 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2306 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2307 return DDI_BUF_EMP_400MV_6DB_HSW;
2308 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2309 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2310
2311 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2312 return DDI_BUF_EMP_600MV_0DB_HSW;
2313 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2315 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2316 return DDI_BUF_EMP_600MV_6DB_HSW;
2317
2318 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2319 return DDI_BUF_EMP_800MV_0DB_HSW;
2320 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2321 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2322 default:
2323 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2324 "0x%x\n", signal_levels);
2325 return DDI_BUF_EMP_400MV_0DB_HSW;
2326 }
2327}
2328
2329static uint32_t
2330intel_bdw_signal_levels(uint8_t train_set)
2331{
2332 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2333 DP_TRAIN_PRE_EMPHASIS_MASK);
2334 switch (signal_levels) {
2335 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2336 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2337 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2338 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2339 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2340 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2341
2342 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2343 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2344 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2345 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2346 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2347 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2348
2349 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2350 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2351 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2352 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2353
2354 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2355 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2356
2357 default:
2358 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2359 "0x%x\n", signal_levels);
2360 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2361 }
2362}
2363
2364/* Properly updates "DP" with the correct signal levels. */
2365static void
2366intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2367{
2368 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2369 enum port port = intel_dig_port->port;
2370 struct drm_device *dev = intel_dig_port->base.base.dev;
2371 uint32_t signal_levels, mask;
2372 uint8_t train_set = intel_dp->train_set[0];
2373
2374 if (IS_BROADWELL(dev)) {
2375 signal_levels = intel_bdw_signal_levels(train_set);
2376 mask = DDI_BUF_EMP_MASK;
2377 } else if (IS_HASWELL(dev)) {
2378 signal_levels = intel_hsw_signal_levels(train_set);
2379 mask = DDI_BUF_EMP_MASK;
2380 } else if (IS_VALLEYVIEW(dev)) {
2381 signal_levels = intel_vlv_signal_levels(intel_dp);
2382 mask = 0;
2383 } else if (IS_GEN7(dev) && port == PORT_A) {
2384 signal_levels = intel_gen7_edp_signal_levels(train_set);
2385 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2386 } else if (IS_GEN6(dev) && port == PORT_A) {
2387 signal_levels = intel_gen6_edp_signal_levels(train_set);
2388 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2389 } else {
2390 signal_levels = intel_gen4_signal_levels(train_set);
2391 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2392 }
2393
2394 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2395
2396 *DP = (*DP & ~mask) | signal_levels;
2397}
2398
2399static bool
2400intel_dp_set_link_train(struct intel_dp *intel_dp,
2401 uint32_t *DP,
2402 uint8_t dp_train_pat)
2403{
2404 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2405 struct drm_device *dev = intel_dig_port->base.base.dev;
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 enum port port = intel_dig_port->port;
2408 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2409 int ret, len;
2410
2411 if (HAS_DDI(dev)) {
2412 uint32_t temp = I915_READ(DP_TP_CTL(port));
2413
2414 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2415 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2416 else
2417 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2418
2419 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2420 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421 case DP_TRAINING_PATTERN_DISABLE:
2422 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2423
2424 break;
2425 case DP_TRAINING_PATTERN_1:
2426 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2427 break;
2428 case DP_TRAINING_PATTERN_2:
2429 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2430 break;
2431 case DP_TRAINING_PATTERN_3:
2432 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2433 break;
2434 }
2435 I915_WRITE(DP_TP_CTL(port), temp);
2436
2437 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2438 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2439
2440 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2441 case DP_TRAINING_PATTERN_DISABLE:
2442 *DP |= DP_LINK_TRAIN_OFF_CPT;
2443 break;
2444 case DP_TRAINING_PATTERN_1:
2445 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2446 break;
2447 case DP_TRAINING_PATTERN_2:
2448 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2449 break;
2450 case DP_TRAINING_PATTERN_3:
2451 DRM_ERROR("DP training pattern 3 not supported\n");
2452 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2453 break;
2454 }
2455
2456 } else {
2457 *DP &= ~DP_LINK_TRAIN_MASK;
2458
2459 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2460 case DP_TRAINING_PATTERN_DISABLE:
2461 *DP |= DP_LINK_TRAIN_OFF;
2462 break;
2463 case DP_TRAINING_PATTERN_1:
2464 *DP |= DP_LINK_TRAIN_PAT_1;
2465 break;
2466 case DP_TRAINING_PATTERN_2:
2467 *DP |= DP_LINK_TRAIN_PAT_2;
2468 break;
2469 case DP_TRAINING_PATTERN_3:
2470 DRM_ERROR("DP training pattern 3 not supported\n");
2471 *DP |= DP_LINK_TRAIN_PAT_2;
2472 break;
2473 }
2474 }
2475
2476 I915_WRITE(intel_dp->output_reg, *DP);
2477 POSTING_READ(intel_dp->output_reg);
2478
2479 buf[0] = dp_train_pat;
2480 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2481 DP_TRAINING_PATTERN_DISABLE) {
2482 /* don't write DP_TRAINING_LANEx_SET on disable */
2483 len = 1;
2484 } else {
2485 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2486 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2487 len = intel_dp->lane_count + 1;
2488 }
2489
2490 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2491 buf, len);
2492
2493 return ret == len;
2494}
2495
2496static bool
2497intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2498 uint8_t dp_train_pat)
2499{
2500 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2501 intel_dp_set_signal_levels(intel_dp, DP);
2502 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2503}
2504
2505static bool
2506intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2507 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2508{
2509 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2510 struct drm_device *dev = intel_dig_port->base.base.dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512 int ret;
2513
2514 intel_get_adjust_train(intel_dp, link_status);
2515 intel_dp_set_signal_levels(intel_dp, DP);
2516
2517 I915_WRITE(intel_dp->output_reg, *DP);
2518 POSTING_READ(intel_dp->output_reg);
2519
2520 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2521 intel_dp->train_set, intel_dp->lane_count);
2522
2523 return ret == intel_dp->lane_count;
2524}
2525
2526static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2527{
2528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529 struct drm_device *dev = intel_dig_port->base.base.dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531 enum port port = intel_dig_port->port;
2532 uint32_t val;
2533
2534 if (!HAS_DDI(dev))
2535 return;
2536
2537 val = I915_READ(DP_TP_CTL(port));
2538 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2539 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2540 I915_WRITE(DP_TP_CTL(port), val);
2541
2542 /*
2543 * On PORT_A we can have only eDP in SST mode. There the only reason
2544 * we need to set idle transmission mode is to work around a HW issue
2545 * where we enable the pipe while not in idle link-training mode.
2546 * In this case there is requirement to wait for a minimum number of
2547 * idle patterns to be sent.
2548 */
2549 if (port == PORT_A)
2550 return;
2551
2552 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2553 1))
2554 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2555}
2556
2557/* Enable corresponding port and start training pattern 1 */
2558void
2559intel_dp_start_link_train(struct intel_dp *intel_dp)
2560{
2561 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2562 struct drm_device *dev = encoder->dev;
2563 int i;
2564 uint8_t voltage;
2565 int voltage_tries, loop_tries;
2566 uint32_t DP = intel_dp->DP;
2567 uint8_t link_config[2];
2568
2569 if (HAS_DDI(dev))
2570 intel_ddi_prepare_link_retrain(encoder);
2571
2572 /* Write the link configuration data */
2573 link_config[0] = intel_dp->link_bw;
2574 link_config[1] = intel_dp->lane_count;
2575 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2576 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2577 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2578
2579 link_config[0] = 0;
2580 link_config[1] = DP_SET_ANSI_8B10B;
2581 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2582
2583 DP |= DP_PORT_EN;
2584
2585 /* clock recovery */
2586 if (!intel_dp_reset_link_train(intel_dp, &DP,
2587 DP_TRAINING_PATTERN_1 |
2588 DP_LINK_SCRAMBLING_DISABLE)) {
2589 DRM_ERROR("failed to enable link training\n");
2590 return;
2591 }
2592
2593 voltage = 0xff;
2594 voltage_tries = 0;
2595 loop_tries = 0;
2596 for (;;) {
2597 uint8_t link_status[DP_LINK_STATUS_SIZE];
2598
2599 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2600 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2601 DRM_ERROR("failed to get link status\n");
2602 break;
2603 }
2604
2605 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2606 DRM_DEBUG_KMS("clock recovery OK\n");
2607 break;
2608 }
2609
2610 /* Check to see if we've tried the max voltage */
2611 for (i = 0; i < intel_dp->lane_count; i++)
2612 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2613 break;
2614 if (i == intel_dp->lane_count) {
2615 ++loop_tries;
2616 if (loop_tries == 5) {
2617 DRM_ERROR("too many full retries, give up\n");
2618 break;
2619 }
2620 intel_dp_reset_link_train(intel_dp, &DP,
2621 DP_TRAINING_PATTERN_1 |
2622 DP_LINK_SCRAMBLING_DISABLE);
2623 voltage_tries = 0;
2624 continue;
2625 }
2626
2627 /* Check to see if we've tried the same voltage 5 times */
2628 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2629 ++voltage_tries;
2630 if (voltage_tries == 5) {
2631 DRM_ERROR("too many voltage retries, give up\n");
2632 break;
2633 }
2634 } else
2635 voltage_tries = 0;
2636 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2637
2638 /* Update training set as requested by target */
2639 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2640 DRM_ERROR("failed to update link training\n");
2641 break;
2642 }
2643 }
2644
2645 intel_dp->DP = DP;
2646}
2647
2648void
2649intel_dp_complete_link_train(struct intel_dp *intel_dp)
2650{
2651 bool channel_eq = false;
2652 int tries, cr_tries;
2653 uint32_t DP = intel_dp->DP;
2654 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2655
2656 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2657 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2658 training_pattern = DP_TRAINING_PATTERN_3;
2659
2660 /* channel equalization */
2661 if (!intel_dp_set_link_train(intel_dp, &DP,
2662 training_pattern |
2663 DP_LINK_SCRAMBLING_DISABLE)) {
2664 DRM_ERROR("failed to start channel equalization\n");
2665 return;
2666 }
2667
2668 tries = 0;
2669 cr_tries = 0;
2670 channel_eq = false;
2671 for (;;) {
2672 uint8_t link_status[DP_LINK_STATUS_SIZE];
2673
2674 if (cr_tries > 5) {
2675 DRM_ERROR("failed to train DP, aborting\n");
2676 break;
2677 }
2678
2679 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2680 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2681 DRM_ERROR("failed to get link status\n");
2682 break;
2683 }
2684
2685 /* Make sure clock is still ok */
2686 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2687 intel_dp_start_link_train(intel_dp);
2688 intel_dp_set_link_train(intel_dp, &DP,
2689 training_pattern |
2690 DP_LINK_SCRAMBLING_DISABLE);
2691 cr_tries++;
2692 continue;
2693 }
2694
2695 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2696 channel_eq = true;
2697 break;
2698 }
2699
2700 /* Try 5 times, then try clock recovery if that fails */
2701 if (tries > 5) {
2702 intel_dp_link_down(intel_dp);
2703 intel_dp_start_link_train(intel_dp);
2704 intel_dp_set_link_train(intel_dp, &DP,
2705 training_pattern |
2706 DP_LINK_SCRAMBLING_DISABLE);
2707 tries = 0;
2708 cr_tries++;
2709 continue;
2710 }
2711
2712 /* Update training set as requested by target */
2713 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2714 DRM_ERROR("failed to update link training\n");
2715 break;
2716 }
2717 ++tries;
2718 }
2719
2720 intel_dp_set_idle_link_train(intel_dp);
2721
2722 intel_dp->DP = DP;
2723
2724 if (channel_eq)
2725 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2726
2727}
2728
2729void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2730{
2731 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2732 DP_TRAINING_PATTERN_DISABLE);
2733}
2734
2735static void
2736intel_dp_link_down(struct intel_dp *intel_dp)
2737{
2738 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2739 enum port port = intel_dig_port->port;
2740 struct drm_device *dev = intel_dig_port->base.base.dev;
2741 struct drm_i915_private *dev_priv = dev->dev_private;
2742 struct intel_crtc *intel_crtc =
2743 to_intel_crtc(intel_dig_port->base.base.crtc);
2744 uint32_t DP = intel_dp->DP;
2745
2746 /*
2747 * DDI code has a strict mode set sequence and we should try to respect
2748 * it, otherwise we might hang the machine in many different ways. So we
2749 * really should be disabling the port only on a complete crtc_disable
2750 * sequence. This function is just called under two conditions on DDI
2751 * code:
2752 * - Link train failed while doing crtc_enable, and on this case we
2753 * really should respect the mode set sequence and wait for a
2754 * crtc_disable.
2755 * - Someone turned the monitor off and intel_dp_check_link_status
2756 * called us. We don't need to disable the whole port on this case, so
2757 * when someone turns the monitor on again,
2758 * intel_ddi_prepare_link_retrain will take care of redoing the link
2759 * train.
2760 */
2761 if (HAS_DDI(dev))
2762 return;
2763
2764 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2765 return;
2766
2767 DRM_DEBUG_KMS("\n");
2768
2769 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2770 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2771 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2772 } else {
2773 DP &= ~DP_LINK_TRAIN_MASK;
2774 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2775 }
2776 POSTING_READ(intel_dp->output_reg);
2777
2778 /* We don't really know why we're doing this */
2779 intel_wait_for_vblank(dev, intel_crtc->pipe);
2780
2781 if (HAS_PCH_IBX(dev) &&
2782 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2783 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2784
2785 /* Hardware workaround: leaving our transcoder select
2786 * set to transcoder B while it's off will prevent the
2787 * corresponding HDMI output on transcoder A.
2788 *
2789 * Combine this with another hardware workaround:
2790 * transcoder select bit can only be cleared while the
2791 * port is enabled.
2792 */
2793 DP &= ~DP_PIPEB_SELECT;
2794 I915_WRITE(intel_dp->output_reg, DP);
2795
2796 /* Changes to enable or select take place the vblank
2797 * after being written.
2798 */
2799 if (WARN_ON(crtc == NULL)) {
2800 /* We should never try to disable a port without a crtc
2801 * attached. For paranoia keep the code around for a
2802 * bit. */
2803 POSTING_READ(intel_dp->output_reg);
2804 msleep(50);
2805 } else
2806 intel_wait_for_vblank(dev, intel_crtc->pipe);
2807 }
2808
2809 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2810 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2811 POSTING_READ(intel_dp->output_reg);
2812 msleep(intel_dp->panel_power_down_delay);
2813}
2814
2815static bool
2816intel_dp_get_dpcd(struct intel_dp *intel_dp)
2817{
2818 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2819 struct drm_device *dev = dig_port->base.base.dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821
2822 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2823
2824 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2825 sizeof(intel_dp->dpcd)) < 0)
2826 return false; /* aux transfer failed */
2827
2828 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2829 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2830 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2831
2832 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2833 return false; /* DPCD not present */
2834
2835 /* Check if the panel supports PSR */
2836 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2837 if (is_edp(intel_dp)) {
2838 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2839 intel_dp->psr_dpcd,
2840 sizeof(intel_dp->psr_dpcd));
2841 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2842 dev_priv->psr.sink_support = true;
2843 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2844 }
2845 }
2846
2847 /* Training Pattern 3 support */
2848 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2849 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2850 intel_dp->use_tps3 = true;
2851 DRM_DEBUG_KMS("Displayport TPS3 supported");
2852 } else
2853 intel_dp->use_tps3 = false;
2854
2855 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2856 DP_DWN_STRM_PORT_PRESENT))
2857 return true; /* native DP sink */
2858
2859 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2860 return true; /* no per-port downstream info */
2861
2862 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2863 intel_dp->downstream_ports,
2864 DP_MAX_DOWNSTREAM_PORTS) < 0)
2865 return false; /* downstream port status fetch failed */
2866
2867 return true;
2868}
2869
2870static void
2871intel_dp_probe_oui(struct intel_dp *intel_dp)
2872{
2873 u8 buf[3];
2874
2875 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2876 return;
2877
2878 intel_edp_panel_vdd_on(intel_dp);
2879
2880 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2881 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2882 buf[0], buf[1], buf[2]);
2883
2884 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2885 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2886 buf[0], buf[1], buf[2]);
2887
2888 edp_panel_vdd_off(intel_dp, false);
2889}
2890
2891int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2892{
2893 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2894 struct drm_device *dev = intel_dig_port->base.base.dev;
2895 struct intel_crtc *intel_crtc =
2896 to_intel_crtc(intel_dig_port->base.base.crtc);
2897 u8 buf[1];
2898
2899 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2900 return -EAGAIN;
2901
2902 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2903 return -ENOTTY;
2904
2905 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2906 DP_TEST_SINK_START) < 0)
2907 return -EAGAIN;
2908
2909 /* Wait 2 vblanks to be sure we will have the correct CRC value */
2910 intel_wait_for_vblank(dev, intel_crtc->pipe);
2911 intel_wait_for_vblank(dev, intel_crtc->pipe);
2912
2913 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2914 return -EAGAIN;
2915
2916 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2917 return 0;
2918}
2919
2920static bool
2921intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2922{
2923 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2924 DP_DEVICE_SERVICE_IRQ_VECTOR,
2925 sink_irq_vector, 1) == 1;
2926}
2927
2928static void
2929intel_dp_handle_test_request(struct intel_dp *intel_dp)
2930{
2931 /* NAK by default */
2932 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2933}
2934
2935/*
2936 * According to DP spec
2937 * 5.1.2:
2938 * 1. Read DPCD
2939 * 2. Configure link according to Receiver Capabilities
2940 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2941 * 4. Check link status on receipt of hot-plug interrupt
2942 */
2943
2944void
2945intel_dp_check_link_status(struct intel_dp *intel_dp)
2946{
2947 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2948 u8 sink_irq_vector;
2949 u8 link_status[DP_LINK_STATUS_SIZE];
2950
2951 if (!intel_encoder->connectors_active)
2952 return;
2953
2954 if (WARN_ON(!intel_encoder->base.crtc))
2955 return;
2956
2957 /* Try to read receiver status if the link appears to be up */
2958 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2959 return;
2960 }
2961
2962 /* Now read the DPCD to see if it's actually running */
2963 if (!intel_dp_get_dpcd(intel_dp)) {
2964 return;
2965 }
2966
2967 /* Try to read the source of the interrupt */
2968 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2969 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2970 /* Clear interrupt source */
2971 drm_dp_dpcd_writeb(&intel_dp->aux,
2972 DP_DEVICE_SERVICE_IRQ_VECTOR,
2973 sink_irq_vector);
2974
2975 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2976 intel_dp_handle_test_request(intel_dp);
2977 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2978 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2979 }
2980
2981 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2982 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2983 drm_get_encoder_name(&intel_encoder->base));
2984 intel_dp_start_link_train(intel_dp);
2985 intel_dp_complete_link_train(intel_dp);
2986 intel_dp_stop_link_train(intel_dp);
2987 }
2988}
2989
2990/* XXX this is probably wrong for multiple downstream ports */
2991static enum drm_connector_status
2992intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2993{
2994 uint8_t *dpcd = intel_dp->dpcd;
2995 uint8_t type;
2996
2997 if (!intel_dp_get_dpcd(intel_dp))
2998 return connector_status_disconnected;
2999
3000 /* if there's no downstream port, we're done */
3001 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3002 return connector_status_connected;
3003
3004 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3005 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3006 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3007 uint8_t reg;
3008
3009 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3010 ®, 1) < 0)
3011 return connector_status_unknown;
3012
3013 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3014 : connector_status_disconnected;
3015 }
3016
3017 /* If no HPD, poke DDC gently */
3018 if (drm_probe_ddc(&intel_dp->aux.ddc))
3019 return connector_status_connected;
3020
3021 /* Well we tried, say unknown for unreliable port types */
3022 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3023 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3024 if (type == DP_DS_PORT_TYPE_VGA ||
3025 type == DP_DS_PORT_TYPE_NON_EDID)
3026 return connector_status_unknown;
3027 } else {
3028 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3029 DP_DWN_STRM_PORT_TYPE_MASK;
3030 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3031 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3032 return connector_status_unknown;
3033 }
3034
3035 /* Anything else is out of spec, warn and ignore */
3036 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3037 return connector_status_disconnected;
3038}
3039
3040static enum drm_connector_status
3041ironlake_dp_detect(struct intel_dp *intel_dp)
3042{
3043 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3046 enum drm_connector_status status;
3047
3048 /* Can't disconnect eDP, but you can close the lid... */
3049 if (is_edp(intel_dp)) {
3050 status = intel_panel_detect(dev);
3051 if (status == connector_status_unknown)
3052 status = connector_status_connected;
3053 return status;
3054 }
3055
3056 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3057 return connector_status_disconnected;
3058
3059 return intel_dp_detect_dpcd(intel_dp);
3060}
3061
3062static enum drm_connector_status
3063g4x_dp_detect(struct intel_dp *intel_dp)
3064{
3065 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3068 uint32_t bit;
3069
3070 /* Can't disconnect eDP, but you can close the lid... */
3071 if (is_edp(intel_dp)) {
3072 enum drm_connector_status status;
3073
3074 status = intel_panel_detect(dev);
3075 if (status == connector_status_unknown)
3076 status = connector_status_connected;
3077 return status;
3078 }
3079
3080 if (IS_VALLEYVIEW(dev)) {
3081 switch (intel_dig_port->port) {
3082 case PORT_B:
3083 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3084 break;
3085 case PORT_C:
3086 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3087 break;
3088 case PORT_D:
3089 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3090 break;
3091 default:
3092 return connector_status_unknown;
3093 }
3094 } else {
3095 switch (intel_dig_port->port) {
3096 case PORT_B:
3097 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3098 break;
3099 case PORT_C:
3100 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3101 break;
3102 case PORT_D:
3103 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3104 break;
3105 default:
3106 return connector_status_unknown;
3107 }
3108 }
3109
3110 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3111 return connector_status_disconnected;
3112
3113 return intel_dp_detect_dpcd(intel_dp);
3114}
3115
3116static struct edid *
3117intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3118{
3119 struct intel_connector *intel_connector = to_intel_connector(connector);
3120
3121 /* use cached edid if we have one */
3122 if (intel_connector->edid) {
3123 /* invalid edid */
3124 if (IS_ERR(intel_connector->edid))
3125 return NULL;
3126
3127 return drm_edid_duplicate(intel_connector->edid);
3128 }
3129
3130 return drm_get_edid(connector, adapter);
3131}
3132
3133static int
3134intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3135{
3136 struct intel_connector *intel_connector = to_intel_connector(connector);
3137
3138 /* use cached edid if we have one */
3139 if (intel_connector->edid) {
3140 /* invalid edid */
3141 if (IS_ERR(intel_connector->edid))
3142 return 0;
3143
3144 return intel_connector_update_modes(connector,
3145 intel_connector->edid);
3146 }
3147
3148 return intel_ddc_get_modes(connector, adapter);
3149}
3150
3151static enum drm_connector_status
3152intel_dp_detect(struct drm_connector *connector, bool force)
3153{
3154 struct intel_dp *intel_dp = intel_attached_dp(connector);
3155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3156 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3157 struct drm_device *dev = connector->dev;
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 enum drm_connector_status status;
3160 enum intel_display_power_domain power_domain;
3161 struct edid *edid = NULL;
3162
3163 intel_runtime_pm_get(dev_priv);
3164
3165 power_domain = intel_display_port_power_domain(intel_encoder);
3166 intel_display_power_get(dev_priv, power_domain);
3167
3168 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3169 connector->base.id, drm_get_connector_name(connector));
3170
3171 intel_dp->has_audio = false;
3172
3173 if (HAS_PCH_SPLIT(dev))
3174 status = ironlake_dp_detect(intel_dp);
3175 else
3176 status = g4x_dp_detect(intel_dp);
3177
3178 if (status != connector_status_connected)
3179 goto out;
3180
3181 intel_dp_probe_oui(intel_dp);
3182
3183 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3184 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3185 } else {
3186 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3187 if (edid) {
3188 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3189 kfree(edid);
3190 }
3191 }
3192
3193 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3194 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3195 status = connector_status_connected;
3196
3197out:
3198 intel_display_power_put(dev_priv, power_domain);
3199
3200 intel_runtime_pm_put(dev_priv);
3201
3202 return status;
3203}
3204
3205static int intel_dp_get_modes(struct drm_connector *connector)
3206{
3207 struct intel_dp *intel_dp = intel_attached_dp(connector);
3208 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3209 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3210 struct intel_connector *intel_connector = to_intel_connector(connector);
3211 struct drm_device *dev = connector->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 enum intel_display_power_domain power_domain;
3214 int ret;
3215
3216 /* We should parse the EDID data and find out if it has an audio sink
3217 */
3218
3219 power_domain = intel_display_port_power_domain(intel_encoder);
3220 intel_display_power_get(dev_priv, power_domain);
3221
3222 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3223 intel_display_power_put(dev_priv, power_domain);
3224 if (ret)
3225 return ret;
3226
3227 /* if eDP has no EDID, fall back to fixed mode */
3228 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3229 struct drm_display_mode *mode;
3230 mode = drm_mode_duplicate(dev,
3231 intel_connector->panel.fixed_mode);
3232 if (mode) {
3233 drm_mode_probed_add(connector, mode);
3234 return 1;
3235 }
3236 }
3237 return 0;
3238}
3239
3240static bool
3241intel_dp_detect_audio(struct drm_connector *connector)
3242{
3243 struct intel_dp *intel_dp = intel_attached_dp(connector);
3244 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3245 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3246 struct drm_device *dev = connector->dev;
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 enum intel_display_power_domain power_domain;
3249 struct edid *edid;
3250 bool has_audio = false;
3251
3252 power_domain = intel_display_port_power_domain(intel_encoder);
3253 intel_display_power_get(dev_priv, power_domain);
3254
3255 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3256 if (edid) {
3257 has_audio = drm_detect_monitor_audio(edid);
3258 kfree(edid);
3259 }
3260
3261 intel_display_power_put(dev_priv, power_domain);
3262
3263 return has_audio;
3264}
3265
3266static int
3267intel_dp_set_property(struct drm_connector *connector,
3268 struct drm_property *property,
3269 uint64_t val)
3270{
3271 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3272 struct intel_connector *intel_connector = to_intel_connector(connector);
3273 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3274 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3275 int ret;
3276
3277 ret = drm_object_property_set_value(&connector->base, property, val);
3278 if (ret)
3279 return ret;
3280
3281 if (property == dev_priv->force_audio_property) {
3282 int i = val;
3283 bool has_audio;
3284
3285 if (i == intel_dp->force_audio)
3286 return 0;
3287
3288 intel_dp->force_audio = i;
3289
3290 if (i == HDMI_AUDIO_AUTO)
3291 has_audio = intel_dp_detect_audio(connector);
3292 else
3293 has_audio = (i == HDMI_AUDIO_ON);
3294
3295 if (has_audio == intel_dp->has_audio)
3296 return 0;
3297
3298 intel_dp->has_audio = has_audio;
3299 goto done;
3300 }
3301
3302 if (property == dev_priv->broadcast_rgb_property) {
3303 bool old_auto = intel_dp->color_range_auto;
3304 uint32_t old_range = intel_dp->color_range;
3305
3306 switch (val) {
3307 case INTEL_BROADCAST_RGB_AUTO:
3308 intel_dp->color_range_auto = true;
3309 break;
3310 case INTEL_BROADCAST_RGB_FULL:
3311 intel_dp->color_range_auto = false;
3312 intel_dp->color_range = 0;
3313 break;
3314 case INTEL_BROADCAST_RGB_LIMITED:
3315 intel_dp->color_range_auto = false;
3316 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3317 break;
3318 default:
3319 return -EINVAL;
3320 }
3321
3322 if (old_auto == intel_dp->color_range_auto &&
3323 old_range == intel_dp->color_range)
3324 return 0;
3325
3326 goto done;
3327 }
3328
3329 if (is_edp(intel_dp) &&
3330 property == connector->dev->mode_config.scaling_mode_property) {
3331 if (val == DRM_MODE_SCALE_NONE) {
3332 DRM_DEBUG_KMS("no scaling not supported\n");
3333 return -EINVAL;
3334 }
3335
3336 if (intel_connector->panel.fitting_mode == val) {
3337 /* the eDP scaling property is not changed */
3338 return 0;
3339 }
3340 intel_connector->panel.fitting_mode = val;
3341
3342 goto done;
3343 }
3344
3345 return -EINVAL;
3346
3347done:
3348 if (intel_encoder->base.crtc)
3349 intel_crtc_restore_mode(intel_encoder->base.crtc);
3350
3351 return 0;
3352}
3353
3354static void
3355intel_dp_connector_destroy(struct drm_connector *connector)
3356{
3357 struct intel_connector *intel_connector = to_intel_connector(connector);
3358
3359 if (!IS_ERR_OR_NULL(intel_connector->edid))
3360 kfree(intel_connector->edid);
3361
3362 /* Can't call is_edp() since the encoder may have been destroyed
3363 * already. */
3364 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3365 intel_panel_fini(&intel_connector->panel);
3366
3367 drm_connector_cleanup(connector);
3368 kfree(connector);
3369}
3370
3371void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3372{
3373 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3374 struct intel_dp *intel_dp = &intel_dig_port->dp;
3375 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3376
3377 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3378 drm_encoder_cleanup(encoder);
3379 if (is_edp(intel_dp)) {
3380 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3381 mutex_lock(&dev->mode_config.mutex);
3382 edp_panel_vdd_off_sync(intel_dp);
3383 mutex_unlock(&dev->mode_config.mutex);
3384 }
3385 kfree(intel_dig_port);
3386}
3387
3388static const struct drm_connector_funcs intel_dp_connector_funcs = {
3389 .dpms = intel_connector_dpms,
3390 .detect = intel_dp_detect,
3391 .fill_modes = drm_helper_probe_single_connector_modes,
3392 .set_property = intel_dp_set_property,
3393 .destroy = intel_dp_connector_destroy,
3394};
3395
3396static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3397 .get_modes = intel_dp_get_modes,
3398 .mode_valid = intel_dp_mode_valid,
3399 .best_encoder = intel_best_encoder,
3400};
3401
3402static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3403 .destroy = intel_dp_encoder_destroy,
3404};
3405
3406static void
3407intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3408{
3409 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3410
3411 intel_dp_check_link_status(intel_dp);
3412}
3413
3414/* Return which DP Port should be selected for Transcoder DP control */
3415int
3416intel_trans_dp_port_sel(struct drm_crtc *crtc)
3417{
3418 struct drm_device *dev = crtc->dev;
3419 struct intel_encoder *intel_encoder;
3420 struct intel_dp *intel_dp;
3421
3422 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3423 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3424
3425 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3426 intel_encoder->type == INTEL_OUTPUT_EDP)
3427 return intel_dp->output_reg;
3428 }
3429
3430 return -1;
3431}
3432
3433/* check the VBT to see whether the eDP is on DP-D port */
3434bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3435{
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 union child_device_config *p_child;
3438 int i;
3439 static const short port_mapping[] = {
3440 [PORT_B] = PORT_IDPB,
3441 [PORT_C] = PORT_IDPC,
3442 [PORT_D] = PORT_IDPD,
3443 };
3444
3445 if (port == PORT_A)
3446 return true;
3447
3448 if (!dev_priv->vbt.child_dev_num)
3449 return false;
3450
3451 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3452 p_child = dev_priv->vbt.child_dev + i;
3453
3454 if (p_child->common.dvo_port == port_mapping[port] &&
3455 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3456 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3457 return true;
3458 }
3459 return false;
3460}
3461
3462static void
3463intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3464{
3465 struct intel_connector *intel_connector = to_intel_connector(connector);
3466
3467 intel_attach_force_audio_property(connector);
3468 intel_attach_broadcast_rgb_property(connector);
3469 intel_dp->color_range_auto = true;
3470
3471 if (is_edp(intel_dp)) {
3472 drm_mode_create_scaling_mode_property(connector->dev);
3473 drm_object_attach_property(
3474 &connector->base,
3475 connector->dev->mode_config.scaling_mode_property,
3476 DRM_MODE_SCALE_ASPECT);
3477 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3478 }
3479}
3480
3481static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3482{
3483 intel_dp->last_power_cycle = jiffies;
3484 intel_dp->last_power_on = jiffies;
3485 intel_dp->last_backlight_off = jiffies;
3486}
3487
3488static void
3489intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3490 struct intel_dp *intel_dp,
3491 struct edp_power_seq *out)
3492{
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494 struct edp_power_seq cur, vbt, spec, final;
3495 u32 pp_on, pp_off, pp_div, pp;
3496 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3497
3498 if (HAS_PCH_SPLIT(dev)) {
3499 pp_ctrl_reg = PCH_PP_CONTROL;
3500 pp_on_reg = PCH_PP_ON_DELAYS;
3501 pp_off_reg = PCH_PP_OFF_DELAYS;
3502 pp_div_reg = PCH_PP_DIVISOR;
3503 } else {
3504 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3505
3506 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3507 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3508 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3509 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3510 }
3511
3512 /* Workaround: Need to write PP_CONTROL with the unlock key as
3513 * the very first thing. */
3514 pp = ironlake_get_pp_control(intel_dp);
3515 I915_WRITE(pp_ctrl_reg, pp);
3516
3517 pp_on = I915_READ(pp_on_reg);
3518 pp_off = I915_READ(pp_off_reg);
3519 pp_div = I915_READ(pp_div_reg);
3520
3521 /* Pull timing values out of registers */
3522 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3523 PANEL_POWER_UP_DELAY_SHIFT;
3524
3525 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3526 PANEL_LIGHT_ON_DELAY_SHIFT;
3527
3528 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3529 PANEL_LIGHT_OFF_DELAY_SHIFT;
3530
3531 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3532 PANEL_POWER_DOWN_DELAY_SHIFT;
3533
3534 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3535 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3536
3537 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3538 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3539
3540 vbt = dev_priv->vbt.edp_pps;
3541
3542 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3543 * our hw here, which are all in 100usec. */
3544 spec.t1_t3 = 210 * 10;
3545 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3546 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3547 spec.t10 = 500 * 10;
3548 /* This one is special and actually in units of 100ms, but zero
3549 * based in the hw (so we need to add 100 ms). But the sw vbt
3550 * table multiplies it with 1000 to make it in units of 100usec,
3551 * too. */
3552 spec.t11_t12 = (510 + 100) * 10;
3553
3554 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3555 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3556
3557 /* Use the max of the register settings and vbt. If both are
3558 * unset, fall back to the spec limits. */
3559#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3560 spec.field : \
3561 max(cur.field, vbt.field))
3562 assign_final(t1_t3);
3563 assign_final(t8);
3564 assign_final(t9);
3565 assign_final(t10);
3566 assign_final(t11_t12);
3567#undef assign_final
3568
3569#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3570 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3571 intel_dp->backlight_on_delay = get_delay(t8);
3572 intel_dp->backlight_off_delay = get_delay(t9);
3573 intel_dp->panel_power_down_delay = get_delay(t10);
3574 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3575#undef get_delay
3576
3577 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3578 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3579 intel_dp->panel_power_cycle_delay);
3580
3581 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3582 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3583
3584 if (out)
3585 *out = final;
3586}
3587
3588static void
3589intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3590 struct intel_dp *intel_dp,
3591 struct edp_power_seq *seq)
3592{
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 u32 pp_on, pp_off, pp_div, port_sel = 0;
3595 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3596 int pp_on_reg, pp_off_reg, pp_div_reg;
3597
3598 if (HAS_PCH_SPLIT(dev)) {
3599 pp_on_reg = PCH_PP_ON_DELAYS;
3600 pp_off_reg = PCH_PP_OFF_DELAYS;
3601 pp_div_reg = PCH_PP_DIVISOR;
3602 } else {
3603 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3604
3605 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3606 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3607 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3608 }
3609
3610 /*
3611 * And finally store the new values in the power sequencer. The
3612 * backlight delays are set to 1 because we do manual waits on them. For
3613 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3614 * we'll end up waiting for the backlight off delay twice: once when we
3615 * do the manual sleep, and once when we disable the panel and wait for
3616 * the PP_STATUS bit to become zero.
3617 */
3618 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3619 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3620 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3621 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3622 /* Compute the divisor for the pp clock, simply match the Bspec
3623 * formula. */
3624 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3625 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3626 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3627
3628 /* Haswell doesn't have any port selection bits for the panel
3629 * power sequencer any more. */
3630 if (IS_VALLEYVIEW(dev)) {
3631 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3632 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3633 else
3634 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3635 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3636 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3637 port_sel = PANEL_PORT_SELECT_DPA;
3638 else
3639 port_sel = PANEL_PORT_SELECT_DPD;
3640 }
3641
3642 pp_on |= port_sel;
3643
3644 I915_WRITE(pp_on_reg, pp_on);
3645 I915_WRITE(pp_off_reg, pp_off);
3646 I915_WRITE(pp_div_reg, pp_div);
3647
3648 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3649 I915_READ(pp_on_reg),
3650 I915_READ(pp_off_reg),
3651 I915_READ(pp_div_reg));
3652}
3653
3654static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3655 struct intel_connector *intel_connector,
3656 struct edp_power_seq *power_seq)
3657{
3658 struct drm_connector *connector = &intel_connector->base;
3659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3661 struct drm_device *dev = intel_encoder->base.dev;
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 struct drm_display_mode *fixed_mode = NULL;
3664 bool has_dpcd;
3665 struct drm_display_mode *scan;
3666 struct edid *edid;
3667
3668 if (!is_edp(intel_dp))
3669 return true;
3670
3671 /* The VDD bit needs a power domain reference, so if the bit is already
3672 * enabled when we boot, grab this reference. */
3673 if (edp_have_panel_vdd(intel_dp)) {
3674 enum intel_display_power_domain power_domain;
3675 power_domain = intel_display_port_power_domain(intel_encoder);
3676 intel_display_power_get(dev_priv, power_domain);
3677 }
3678
3679 /* Cache DPCD and EDID for edp. */
3680 intel_edp_panel_vdd_on(intel_dp);
3681 has_dpcd = intel_dp_get_dpcd(intel_dp);
3682 edp_panel_vdd_off(intel_dp, false);
3683
3684 if (has_dpcd) {
3685 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3686 dev_priv->no_aux_handshake =
3687 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3688 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3689 } else {
3690 /* if this fails, presume the device is a ghost */
3691 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3692 return false;
3693 }
3694
3695 /* We now know it's not a ghost, init power sequence regs. */
3696 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3697
3698 mutex_lock(&dev->mode_config.mutex);
3699 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3700 if (edid) {
3701 if (drm_add_edid_modes(connector, edid)) {
3702 drm_mode_connector_update_edid_property(connector,
3703 edid);
3704 drm_edid_to_eld(connector, edid);
3705 } else {
3706 kfree(edid);
3707 edid = ERR_PTR(-EINVAL);
3708 }
3709 } else {
3710 edid = ERR_PTR(-ENOENT);
3711 }
3712 intel_connector->edid = edid;
3713
3714 /* prefer fixed mode from EDID if available */
3715 list_for_each_entry(scan, &connector->probed_modes, head) {
3716 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3717 fixed_mode = drm_mode_duplicate(dev, scan);
3718 break;
3719 }
3720 }
3721
3722 /* fallback to VBT if available for eDP */
3723 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3724 fixed_mode = drm_mode_duplicate(dev,
3725 dev_priv->vbt.lfp_lvds_vbt_mode);
3726 if (fixed_mode)
3727 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3728 }
3729 mutex_unlock(&dev->mode_config.mutex);
3730
3731 intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3732 intel_panel_setup_backlight(connector);
3733
3734 return true;
3735}
3736
3737bool
3738intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3739 struct intel_connector *intel_connector)
3740{
3741 struct drm_connector *connector = &intel_connector->base;
3742 struct intel_dp *intel_dp = &intel_dig_port->dp;
3743 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3744 struct drm_device *dev = intel_encoder->base.dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 enum port port = intel_dig_port->port;
3747 struct edp_power_seq power_seq = { 0 };
3748 int type;
3749
3750 /* intel_dp vfuncs */
3751 if (IS_VALLEYVIEW(dev))
3752 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3753 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3754 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3755 else if (HAS_PCH_SPLIT(dev))
3756 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3757 else
3758 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3759
3760 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3761
3762 /* Preserve the current hw state. */
3763 intel_dp->DP = I915_READ(intel_dp->output_reg);
3764 intel_dp->attached_connector = intel_connector;
3765
3766 if (intel_dp_is_edp(dev, port))
3767 type = DRM_MODE_CONNECTOR_eDP;
3768 else
3769 type = DRM_MODE_CONNECTOR_DisplayPort;
3770
3771 /*
3772 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3773 * for DP the encoder type can be set by the caller to
3774 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3775 */
3776 if (type == DRM_MODE_CONNECTOR_eDP)
3777 intel_encoder->type = INTEL_OUTPUT_EDP;
3778
3779 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3780 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3781 port_name(port));
3782
3783 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3784 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3785
3786 connector->interlace_allowed = true;
3787 connector->doublescan_allowed = 0;
3788
3789 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3790 edp_panel_vdd_work);
3791
3792 intel_connector_attach_encoder(intel_connector, intel_encoder);
3793 drm_sysfs_connector_add(connector);
3794
3795 if (HAS_DDI(dev))
3796 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3797 else
3798 intel_connector->get_hw_state = intel_connector_get_hw_state;
3799 intel_connector->unregister = intel_dp_connector_unregister;
3800
3801 /* Set up the hotplug pin. */
3802 switch (port) {
3803 case PORT_A:
3804 intel_encoder->hpd_pin = HPD_PORT_A;
3805 break;
3806 case PORT_B:
3807 intel_encoder->hpd_pin = HPD_PORT_B;
3808 break;
3809 case PORT_C:
3810 intel_encoder->hpd_pin = HPD_PORT_C;
3811 break;
3812 case PORT_D:
3813 intel_encoder->hpd_pin = HPD_PORT_D;
3814 break;
3815 default:
3816 BUG();
3817 }
3818
3819 if (is_edp(intel_dp)) {
3820 intel_dp_init_panel_power_timestamps(intel_dp);
3821 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3822 }
3823
3824 intel_dp_aux_init(intel_dp, intel_connector);
3825
3826 intel_dp->psr_setup_done = false;
3827
3828 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3829 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3830 if (is_edp(intel_dp)) {
3831 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3832 mutex_lock(&dev->mode_config.mutex);
3833 edp_panel_vdd_off_sync(intel_dp);
3834 mutex_unlock(&dev->mode_config.mutex);
3835 }
3836 drm_sysfs_connector_remove(connector);
3837 drm_connector_cleanup(connector);
3838 return false;
3839 }
3840
3841 intel_dp_add_properties(intel_dp, connector);
3842
3843 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3844 * 0xd. Failure to do so will result in spurious interrupts being
3845 * generated on the port when a cable is not attached.
3846 */
3847 if (IS_G4X(dev) && !IS_GM45(dev)) {
3848 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3849 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3850 }
3851
3852 return true;
3853}
3854
3855void
3856intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3857{
3858 struct intel_digital_port *intel_dig_port;
3859 struct intel_encoder *intel_encoder;
3860 struct drm_encoder *encoder;
3861 struct intel_connector *intel_connector;
3862
3863 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3864 if (!intel_dig_port)
3865 return;
3866
3867 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3868 if (!intel_connector) {
3869 kfree(intel_dig_port);
3870 return;
3871 }
3872
3873 intel_encoder = &intel_dig_port->base;
3874 encoder = &intel_encoder->base;
3875
3876 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3877 DRM_MODE_ENCODER_TMDS);
3878
3879 intel_encoder->compute_config = intel_dp_compute_config;
3880 intel_encoder->mode_set = intel_dp_mode_set;
3881 intel_encoder->disable = intel_disable_dp;
3882 intel_encoder->post_disable = intel_post_disable_dp;
3883 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3884 intel_encoder->get_config = intel_dp_get_config;
3885 if (IS_VALLEYVIEW(dev)) {
3886 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3887 intel_encoder->pre_enable = vlv_pre_enable_dp;
3888 intel_encoder->enable = vlv_enable_dp;
3889 } else {
3890 intel_encoder->pre_enable = g4x_pre_enable_dp;
3891 intel_encoder->enable = g4x_enable_dp;
3892 }
3893
3894 intel_dig_port->port = port;
3895 intel_dig_port->dp.output_reg = output_reg;
3896
3897 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3898 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3899 intel_encoder->cloneable = 0;
3900 intel_encoder->hot_plug = intel_dp_hot_plug;
3901
3902 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3903 drm_encoder_cleanup(encoder);
3904 kfree(intel_dig_port);
3905 kfree(intel_connector);
3906 }
3907}