Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright 2013 Emilio López
   3 *
   4 * Emilio López <emilio@elopez.com.ar>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#include <linux/clk-provider.h>
  18#include <linux/clkdev.h>
  19#include <linux/of.h>
  20#include <linux/of_address.h>
  21#include <linux/reset-controller.h>
  22
  23#include "clk-factors.h"
  24
  25static DEFINE_SPINLOCK(clk_lock);
  26
  27/* Maximum number of parents our clocks have */
  28#define SUNXI_MAX_PARENTS	5
  29
  30/**
  31 * sun4i_osc_clk_setup() - Setup function for gatable oscillator
  32 */
  33
  34#define SUNXI_OSC24M_GATE	0
  35
  36static void __init sun4i_osc_clk_setup(struct device_node *node)
  37{
  38	struct clk *clk;
  39	struct clk_fixed_rate *fixed;
  40	struct clk_gate *gate;
  41	const char *clk_name = node->name;
  42	u32 rate;
  43
  44	if (of_property_read_u32(node, "clock-frequency", &rate))
  45		return;
  46
  47	/* allocate fixed-rate and gate clock structs */
  48	fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
  49	if (!fixed)
  50		return;
  51	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
  52	if (!gate)
  53		goto err_free_fixed;
  54
  55	of_property_read_string(node, "clock-output-names", &clk_name);
  56
  57	/* set up gate and fixed rate properties */
  58	gate->reg = of_iomap(node, 0);
  59	gate->bit_idx = SUNXI_OSC24M_GATE;
  60	gate->lock = &clk_lock;
  61	fixed->fixed_rate = rate;
  62
  63	clk = clk_register_composite(NULL, clk_name,
  64			NULL, 0,
  65			NULL, NULL,
  66			&fixed->hw, &clk_fixed_rate_ops,
  67			&gate->hw, &clk_gate_ops,
  68			CLK_IS_ROOT);
  69
  70	if (IS_ERR(clk))
  71		goto err_free_gate;
  72
  73	of_clk_add_provider(node, of_clk_src_simple_get, clk);
  74	clk_register_clkdev(clk, clk_name, NULL);
  75
  76	return;
  77
  78err_free_gate:
  79	kfree(gate);
  80err_free_fixed:
  81	kfree(fixed);
  82}
  83CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-a10-osc-clk", sun4i_osc_clk_setup);
  84
  85
  86
  87/**
  88 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
  89 * PLL1 rate is calculated as follows
  90 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
  91 * parent_rate is always 24Mhz
  92 */
  93
  94static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
  95				   u8 *n, u8 *k, u8 *m, u8 *p)
  96{
  97	u8 div;
  98
  99	/* Normalize value to a 6M multiple */
 100	div = *freq / 6000000;
 101	*freq = 6000000 * div;
 102
 103	/* we were called to round the frequency, we can now return */
 104	if (n == NULL)
 105		return;
 106
 107	/* m is always zero for pll1 */
 108	*m = 0;
 109
 110	/* k is 1 only on these cases */
 111	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
 112		*k = 1;
 113	else
 114		*k = 0;
 115
 116	/* p will be 3 for divs under 10 */
 117	if (div < 10)
 118		*p = 3;
 119
 120	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
 121	else if (div < 20 || (div < 32 && (div & 1)))
 122		*p = 2;
 123
 124	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
 125	 * of divs between 40-62 */
 126	else if (div < 40 || (div < 64 && (div & 2)))
 127		*p = 1;
 128
 129	/* any other entries have p = 0 */
 130	else
 131		*p = 0;
 132
 133	/* calculate a suitable n based on k and p */
 134	div <<= *p;
 135	div /= (*k + 1);
 136	*n = div / 4;
 137}
 138
 139/**
 140 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 141 * PLL1 rate is calculated as follows
 142 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 143 * parent_rate should always be 24MHz
 144 */
 145static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
 146				       u8 *n, u8 *k, u8 *m, u8 *p)
 147{
 148	/*
 149	 * We can operate only on MHz, this will make our life easier
 150	 * later.
 151	 */
 152	u32 freq_mhz = *freq / 1000000;
 153	u32 parent_freq_mhz = parent_rate / 1000000;
 154
 155	/*
 156	 * Round down the frequency to the closest multiple of either
 157	 * 6 or 16
 158	 */
 159	u32 round_freq_6 = round_down(freq_mhz, 6);
 160	u32 round_freq_16 = round_down(freq_mhz, 16);
 161
 162	if (round_freq_6 > round_freq_16)
 163		freq_mhz = round_freq_6;
 164	else
 165		freq_mhz = round_freq_16;
 166
 167	*freq = freq_mhz * 1000000;
 168
 169	/*
 170	 * If the factors pointer are null, we were just called to
 171	 * round down the frequency.
 172	 * Exit.
 173	 */
 174	if (n == NULL)
 175		return;
 176
 177	/* If the frequency is a multiple of 32 MHz, k is always 3 */
 178	if (!(freq_mhz % 32))
 179		*k = 3;
 180	/* If the frequency is a multiple of 9 MHz, k is always 2 */
 181	else if (!(freq_mhz % 9))
 182		*k = 2;
 183	/* If the frequency is a multiple of 8 MHz, k is always 1 */
 184	else if (!(freq_mhz % 8))
 185		*k = 1;
 186	/* Otherwise, we don't use the k factor */
 187	else
 188		*k = 0;
 189
 190	/*
 191	 * If the frequency is a multiple of 2 but not a multiple of
 192	 * 3, m is 3. This is the first time we use 6 here, yet we
 193	 * will use it on several other places.
 194	 * We use this number because it's the lowest frequency we can
 195	 * generate (with n = 0, k = 0, m = 3), so every other frequency
 196	 * somehow relates to this frequency.
 197	 */
 198	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
 199		*m = 2;
 200	/*
 201	 * If the frequency is a multiple of 6MHz, but the factor is
 202	 * odd, m will be 3
 203	 */
 204	else if ((freq_mhz / 6) & 1)
 205		*m = 3;
 206	/* Otherwise, we end up with m = 1 */
 207	else
 208		*m = 1;
 209
 210	/* Calculate n thanks to the above factors we already got */
 211	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
 212
 213	/*
 214	 * If n end up being outbound, and that we can still decrease
 215	 * m, do it.
 216	 */
 217	if ((*n + 1) > 31 && (*m + 1) > 1) {
 218		*n = (*n + 1) / 2 - 1;
 219		*m = (*m + 1) / 2 - 1;
 220	}
 221}
 222
 223/**
 224 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
 225 * PLL5 rate is calculated as follows
 226 * rate = parent_rate * n * (k + 1)
 227 * parent_rate is always 24Mhz
 228 */
 229
 230static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
 231				   u8 *n, u8 *k, u8 *m, u8 *p)
 232{
 233	u8 div;
 234
 235	/* Normalize value to a parent_rate multiple (24M) */
 236	div = *freq / parent_rate;
 237	*freq = parent_rate * div;
 238
 239	/* we were called to round the frequency, we can now return */
 240	if (n == NULL)
 241		return;
 242
 243	if (div < 31)
 244		*k = 0;
 245	else if (div / 2 < 31)
 246		*k = 1;
 247	else if (div / 3 < 31)
 248		*k = 2;
 249	else
 250		*k = 3;
 251
 252	*n = DIV_ROUND_UP(div, (*k+1));
 253}
 254
 255/**
 256 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
 257 * PLL6 rate is calculated as follows
 258 * rate = parent_rate * n * (k + 1) / 2
 259 * parent_rate is always 24Mhz
 260 */
 261
 262static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
 263				       u8 *n, u8 *k, u8 *m, u8 *p)
 264{
 265	u8 div;
 266
 267	/*
 268	 * We always have 24MHz / 2, so we can just say that our
 269	 * parent clock is 12MHz.
 270	 */
 271	parent_rate = parent_rate / 2;
 272
 273	/* Normalize value to a parent_rate multiple (24M / 2) */
 274	div = *freq / parent_rate;
 275	*freq = parent_rate * div;
 276
 277	/* we were called to round the frequency, we can now return */
 278	if (n == NULL)
 279		return;
 280
 281	*k = div / 32;
 282	if (*k > 3)
 283		*k = 3;
 284
 285	*n = DIV_ROUND_UP(div, (*k+1));
 286}
 287
 288/**
 289 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
 290 * APB1 rate is calculated as follows
 291 * rate = (parent_rate >> p) / (m + 1);
 292 */
 293
 294static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
 295				   u8 *n, u8 *k, u8 *m, u8 *p)
 296{
 297	u8 calcm, calcp;
 298
 299	if (parent_rate < *freq)
 300		*freq = parent_rate;
 301
 302	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
 303
 304	/* Invalid rate! */
 305	if (parent_rate > 32)
 306		return;
 307
 308	if (parent_rate <= 4)
 309		calcp = 0;
 310	else if (parent_rate <= 8)
 311		calcp = 1;
 312	else if (parent_rate <= 16)
 313		calcp = 2;
 314	else
 315		calcp = 3;
 316
 317	calcm = (parent_rate >> calcp) - 1;
 318
 319	*freq = (parent_rate >> calcp) / (calcm + 1);
 320
 321	/* we were called to round the frequency, we can now return */
 322	if (n == NULL)
 323		return;
 324
 325	*m = calcm;
 326	*p = calcp;
 327}
 328
 329
 330
 331/**
 332 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
 333 * MOD0 rate is calculated as follows
 334 * rate = (parent_rate >> p) / (m + 1);
 335 */
 336
 337static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
 338				   u8 *n, u8 *k, u8 *m, u8 *p)
 339{
 340	u8 div, calcm, calcp;
 341
 342	/* These clocks can only divide, so we will never be able to achieve
 343	 * frequencies higher than the parent frequency */
 344	if (*freq > parent_rate)
 345		*freq = parent_rate;
 346
 347	div = DIV_ROUND_UP(parent_rate, *freq);
 348
 349	if (div < 16)
 350		calcp = 0;
 351	else if (div / 2 < 16)
 352		calcp = 1;
 353	else if (div / 4 < 16)
 354		calcp = 2;
 355	else
 356		calcp = 3;
 357
 358	calcm = DIV_ROUND_UP(div, 1 << calcp);
 359
 360	*freq = (parent_rate >> calcp) / calcm;
 361
 362	/* we were called to round the frequency, we can now return */
 363	if (n == NULL)
 364		return;
 365
 366	*m = calcm - 1;
 367	*p = calcp;
 368}
 369
 370
 371
 372/**
 373 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
 374 * CLK_OUT rate is calculated as follows
 375 * rate = (parent_rate >> p) / (m + 1);
 376 */
 377
 378static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
 379				      u8 *n, u8 *k, u8 *m, u8 *p)
 380{
 381	u8 div, calcm, calcp;
 382
 383	/* These clocks can only divide, so we will never be able to achieve
 384	 * frequencies higher than the parent frequency */
 385	if (*freq > parent_rate)
 386		*freq = parent_rate;
 387
 388	div = DIV_ROUND_UP(parent_rate, *freq);
 389
 390	if (div < 32)
 391		calcp = 0;
 392	else if (div / 2 < 32)
 393		calcp = 1;
 394	else if (div / 4 < 32)
 395		calcp = 2;
 396	else
 397		calcp = 3;
 398
 399	calcm = DIV_ROUND_UP(div, 1 << calcp);
 400
 401	*freq = (parent_rate >> calcp) / calcm;
 402
 403	/* we were called to round the frequency, we can now return */
 404	if (n == NULL)
 405		return;
 406
 407	*m = calcm - 1;
 408	*p = calcp;
 409}
 410
 411
 412
 413/**
 414 * sun7i_a20_gmac_clk_setup - Setup function for A20/A31 GMAC clock module
 415 *
 416 * This clock looks something like this
 417 *                               ________________________
 418 *  MII TX clock from PHY >-----|___________    _________|----> to GMAC core
 419 *  GMAC Int. RGMII TX clk >----|___________\__/__gate---|----> to PHY
 420 *  Ext. 125MHz RGMII TX clk >--|__divider__/            |
 421 *                              |________________________|
 422 *
 423 * The external 125 MHz reference is optional, i.e. GMAC can use its
 424 * internal TX clock just fine. The A31 GMAC clock module does not have
 425 * the divider controls for the external reference.
 426 *
 427 * To keep it simple, let the GMAC use either the MII TX clock for MII mode,
 428 * and its internal TX clock for GMII and RGMII modes. The GMAC driver should
 429 * select the appropriate source and gate/ungate the output to the PHY.
 430 *
 431 * Only the GMAC should use this clock. Altering the clock so that it doesn't
 432 * match the GMAC's operation parameters will result in the GMAC not being
 433 * able to send traffic out. The GMAC driver should set the clock rate and
 434 * enable/disable this clock to configure the required state. The clock
 435 * driver then responds by auto-reparenting the clock.
 436 */
 437
 438#define SUN7I_A20_GMAC_GPIT	2
 439#define SUN7I_A20_GMAC_MASK	0x3
 440#define SUN7I_A20_GMAC_PARENTS	2
 441
 442static void __init sun7i_a20_gmac_clk_setup(struct device_node *node)
 443{
 444	struct clk *clk;
 445	struct clk_mux *mux;
 446	struct clk_gate *gate;
 447	const char *clk_name = node->name;
 448	const char *parents[SUN7I_A20_GMAC_PARENTS];
 449	void *reg;
 450
 451	if (of_property_read_string(node, "clock-output-names", &clk_name))
 452		return;
 453
 454	/* allocate mux and gate clock structs */
 455	mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
 456	if (!mux)
 457		return;
 458
 459	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
 460	if (!gate)
 461		goto free_mux;
 462
 463	/* gmac clock requires exactly 2 parents */
 464	parents[0] = of_clk_get_parent_name(node, 0);
 465	parents[1] = of_clk_get_parent_name(node, 1);
 466	if (!parents[0] || !parents[1])
 467		goto free_gate;
 468
 469	reg = of_iomap(node, 0);
 470	if (!reg)
 471		goto free_gate;
 472
 473	/* set up gate and fixed rate properties */
 474	gate->reg = reg;
 475	gate->bit_idx = SUN7I_A20_GMAC_GPIT;
 476	gate->lock = &clk_lock;
 477	mux->reg = reg;
 478	mux->mask = SUN7I_A20_GMAC_MASK;
 479	mux->flags = CLK_MUX_INDEX_BIT;
 480	mux->lock = &clk_lock;
 481
 482	clk = clk_register_composite(NULL, clk_name,
 483			parents, SUN7I_A20_GMAC_PARENTS,
 484			&mux->hw, &clk_mux_ops,
 485			NULL, NULL,
 486			&gate->hw, &clk_gate_ops,
 487			0);
 488
 489	if (IS_ERR(clk))
 490		goto iounmap_reg;
 491
 492	of_clk_add_provider(node, of_clk_src_simple_get, clk);
 493	clk_register_clkdev(clk, clk_name, NULL);
 494
 495	return;
 496
 497iounmap_reg:
 498	iounmap(reg);
 499free_gate:
 500	kfree(gate);
 501free_mux:
 502	kfree(mux);
 503}
 504CLK_OF_DECLARE(sun7i_a20_gmac, "allwinner,sun7i-a20-gmac-clk",
 505		sun7i_a20_gmac_clk_setup);
 506
 507
 508
 509/**
 510 * sunxi_factors_clk_setup() - Setup function for factor clocks
 511 */
 512
 513#define SUNXI_FACTORS_MUX_MASK 0x3
 514
 515struct factors_data {
 516	int enable;
 517	int mux;
 518	struct clk_factors_config *table;
 519	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
 520	const char *name;
 521};
 522
 523static struct clk_factors_config sun4i_pll1_config = {
 524	.nshift = 8,
 525	.nwidth = 5,
 526	.kshift = 4,
 527	.kwidth = 2,
 528	.mshift = 0,
 529	.mwidth = 2,
 530	.pshift = 16,
 531	.pwidth = 2,
 532};
 533
 534static struct clk_factors_config sun6i_a31_pll1_config = {
 535	.nshift	= 8,
 536	.nwidth = 5,
 537	.kshift = 4,
 538	.kwidth = 2,
 539	.mshift = 0,
 540	.mwidth = 2,
 541};
 542
 543static struct clk_factors_config sun4i_pll5_config = {
 544	.nshift = 8,
 545	.nwidth = 5,
 546	.kshift = 4,
 547	.kwidth = 2,
 548};
 549
 550static struct clk_factors_config sun6i_a31_pll6_config = {
 551	.nshift	= 8,
 552	.nwidth = 5,
 553	.kshift = 4,
 554	.kwidth = 2,
 555};
 556
 557static struct clk_factors_config sun4i_apb1_config = {
 558	.mshift = 0,
 559	.mwidth = 5,
 560	.pshift = 16,
 561	.pwidth = 2,
 562};
 563
 564/* user manual says "n" but it's really "p" */
 565static struct clk_factors_config sun4i_mod0_config = {
 566	.mshift = 0,
 567	.mwidth = 4,
 568	.pshift = 16,
 569	.pwidth = 2,
 570};
 571
 572/* user manual says "n" but it's really "p" */
 573static struct clk_factors_config sun7i_a20_out_config = {
 574	.mshift = 8,
 575	.mwidth = 5,
 576	.pshift = 20,
 577	.pwidth = 2,
 578};
 579
 580static const struct factors_data sun4i_pll1_data __initconst = {
 581	.enable = 31,
 582	.table = &sun4i_pll1_config,
 583	.getter = sun4i_get_pll1_factors,
 584};
 585
 586static const struct factors_data sun6i_a31_pll1_data __initconst = {
 587	.enable = 31,
 588	.table = &sun6i_a31_pll1_config,
 589	.getter = sun6i_a31_get_pll1_factors,
 590};
 591
 592static const struct factors_data sun7i_a20_pll4_data __initconst = {
 593	.enable = 31,
 594	.table = &sun4i_pll5_config,
 595	.getter = sun4i_get_pll5_factors,
 596};
 597
 598static const struct factors_data sun4i_pll5_data __initconst = {
 599	.enable = 31,
 600	.table = &sun4i_pll5_config,
 601	.getter = sun4i_get_pll5_factors,
 602	.name = "pll5",
 603};
 604
 605static const struct factors_data sun4i_pll6_data __initconst = {
 606	.enable = 31,
 607	.table = &sun4i_pll5_config,
 608	.getter = sun4i_get_pll5_factors,
 609	.name = "pll6",
 610};
 611
 612static const struct factors_data sun6i_a31_pll6_data __initconst = {
 613	.enable = 31,
 614	.table = &sun6i_a31_pll6_config,
 615	.getter = sun6i_a31_get_pll6_factors,
 616};
 617
 618static const struct factors_data sun4i_apb1_data __initconst = {
 619	.table = &sun4i_apb1_config,
 620	.getter = sun4i_get_apb1_factors,
 621};
 622
 623static const struct factors_data sun4i_mod0_data __initconst = {
 624	.enable = 31,
 625	.mux = 24,
 626	.table = &sun4i_mod0_config,
 627	.getter = sun4i_get_mod0_factors,
 628};
 629
 630static const struct factors_data sun7i_a20_out_data __initconst = {
 631	.enable = 31,
 632	.mux = 24,
 633	.table = &sun7i_a20_out_config,
 634	.getter = sun7i_a20_get_out_factors,
 635};
 636
 637static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
 638						const struct factors_data *data)
 639{
 640	struct clk *clk;
 641	struct clk_factors *factors;
 642	struct clk_gate *gate = NULL;
 643	struct clk_mux *mux = NULL;
 644	struct clk_hw *gate_hw = NULL;
 645	struct clk_hw *mux_hw = NULL;
 646	const char *clk_name = node->name;
 647	const char *parents[SUNXI_MAX_PARENTS];
 648	void *reg;
 649	int i = 0;
 650
 651	reg = of_iomap(node, 0);
 652
 653	/* if we have a mux, we will have >1 parents */
 654	while (i < SUNXI_MAX_PARENTS &&
 655	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
 656		i++;
 657
 658	/*
 659	 * some factor clocks, such as pll5 and pll6, may have multiple
 660	 * outputs, and have their name designated in factors_data
 661	 */
 662	if (data->name)
 663		clk_name = data->name;
 664	else
 665		of_property_read_string(node, "clock-output-names", &clk_name);
 666
 667	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
 668	if (!factors)
 669		return NULL;
 670
 671	/* Add a gate if this factor clock can be gated */
 672	if (data->enable) {
 673		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
 674		if (!gate) {
 675			kfree(factors);
 676			return NULL;
 677		}
 678
 679		/* set up gate properties */
 680		gate->reg = reg;
 681		gate->bit_idx = data->enable;
 682		gate->lock = &clk_lock;
 683		gate_hw = &gate->hw;
 684	}
 685
 686	/* Add a mux if this factor clock can be muxed */
 687	if (data->mux) {
 688		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
 689		if (!mux) {
 690			kfree(factors);
 691			kfree(gate);
 692			return NULL;
 693		}
 694
 695		/* set up gate properties */
 696		mux->reg = reg;
 697		mux->shift = data->mux;
 698		mux->mask = SUNXI_FACTORS_MUX_MASK;
 699		mux->lock = &clk_lock;
 700		mux_hw = &mux->hw;
 701	}
 702
 703	/* set up factors properties */
 704	factors->reg = reg;
 705	factors->config = data->table;
 706	factors->get_factors = data->getter;
 707	factors->lock = &clk_lock;
 708
 709	clk = clk_register_composite(NULL, clk_name,
 710			parents, i,
 711			mux_hw, &clk_mux_ops,
 712			&factors->hw, &clk_factors_ops,
 713			gate_hw, &clk_gate_ops, 0);
 714
 715	if (!IS_ERR(clk)) {
 716		of_clk_add_provider(node, of_clk_src_simple_get, clk);
 717		clk_register_clkdev(clk, clk_name, NULL);
 718	}
 719
 720	return clk;
 721}
 722
 723
 724
 725/**
 726 * sunxi_mux_clk_setup() - Setup function for muxes
 727 */
 728
 729#define SUNXI_MUX_GATE_WIDTH	2
 730
 731struct mux_data {
 732	u8 shift;
 733};
 734
 735static const struct mux_data sun4i_cpu_mux_data __initconst = {
 736	.shift = 16,
 737};
 738
 739static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
 740	.shift = 12,
 741};
 742
 743static const struct mux_data sun4i_apb1_mux_data __initconst = {
 744	.shift = 24,
 745};
 746
 747static void __init sunxi_mux_clk_setup(struct device_node *node,
 748				       struct mux_data *data)
 749{
 750	struct clk *clk;
 751	const char *clk_name = node->name;
 752	const char *parents[SUNXI_MAX_PARENTS];
 753	void *reg;
 754	int i = 0;
 755
 756	reg = of_iomap(node, 0);
 757
 758	while (i < SUNXI_MAX_PARENTS &&
 759	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
 760		i++;
 761
 762	of_property_read_string(node, "clock-output-names", &clk_name);
 763
 764	clk = clk_register_mux(NULL, clk_name, parents, i,
 765			       CLK_SET_RATE_NO_REPARENT, reg,
 766			       data->shift, SUNXI_MUX_GATE_WIDTH,
 767			       0, &clk_lock);
 768
 769	if (clk) {
 770		of_clk_add_provider(node, of_clk_src_simple_get, clk);
 771		clk_register_clkdev(clk, clk_name, NULL);
 772	}
 773}
 774
 775
 776
 777/**
 778 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 779 */
 780
 781struct div_data {
 782	u8	shift;
 783	u8	pow;
 784	u8	width;
 785};
 786
 787static const struct div_data sun4i_axi_data __initconst = {
 788	.shift	= 0,
 789	.pow	= 0,
 790	.width	= 2,
 791};
 792
 793static const struct div_data sun4i_ahb_data __initconst = {
 794	.shift	= 4,
 795	.pow	= 1,
 796	.width	= 2,
 797};
 798
 799static const struct div_data sun4i_apb0_data __initconst = {
 800	.shift	= 8,
 801	.pow	= 1,
 802	.width	= 2,
 803};
 804
 805static const struct div_data sun6i_a31_apb2_div_data __initconst = {
 806	.shift	= 0,
 807	.pow	= 0,
 808	.width	= 4,
 809};
 810
 811static void __init sunxi_divider_clk_setup(struct device_node *node,
 812					   struct div_data *data)
 813{
 814	struct clk *clk;
 815	const char *clk_name = node->name;
 816	const char *clk_parent;
 817	void *reg;
 818
 819	reg = of_iomap(node, 0);
 820
 821	clk_parent = of_clk_get_parent_name(node, 0);
 822
 823	of_property_read_string(node, "clock-output-names", &clk_name);
 824
 825	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
 826				   reg, data->shift, data->width,
 827				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
 828				   &clk_lock);
 829	if (clk) {
 830		of_clk_add_provider(node, of_clk_src_simple_get, clk);
 831		clk_register_clkdev(clk, clk_name, NULL);
 832	}
 833}
 834
 835
 836
 837/**
 838 * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
 839 */
 840
 841struct gates_reset_data {
 842	void __iomem			*reg;
 843	spinlock_t			*lock;
 844	struct reset_controller_dev	rcdev;
 845};
 846
 847static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
 848			      unsigned long id)
 849{
 850	struct gates_reset_data *data = container_of(rcdev,
 851						     struct gates_reset_data,
 852						     rcdev);
 853	unsigned long flags;
 854	u32 reg;
 855
 856	spin_lock_irqsave(data->lock, flags);
 857
 858	reg = readl(data->reg);
 859	writel(reg & ~BIT(id), data->reg);
 860
 861	spin_unlock_irqrestore(data->lock, flags);
 862
 863	return 0;
 864}
 865
 866static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
 867				unsigned long id)
 868{
 869	struct gates_reset_data *data = container_of(rcdev,
 870						     struct gates_reset_data,
 871						     rcdev);
 872	unsigned long flags;
 873	u32 reg;
 874
 875	spin_lock_irqsave(data->lock, flags);
 876
 877	reg = readl(data->reg);
 878	writel(reg | BIT(id), data->reg);
 879
 880	spin_unlock_irqrestore(data->lock, flags);
 881
 882	return 0;
 883}
 884
 885static struct reset_control_ops sunxi_gates_reset_ops = {
 886	.assert		= sunxi_gates_reset_assert,
 887	.deassert	= sunxi_gates_reset_deassert,
 888};
 889
 890/**
 891 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 892 */
 893
 894#define SUNXI_GATES_MAX_SIZE	64
 895
 896struct gates_data {
 897	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
 898	u32 reset_mask;
 899};
 900
 901static const struct gates_data sun4i_axi_gates_data __initconst = {
 902	.mask = {1},
 903};
 904
 905static const struct gates_data sun4i_ahb_gates_data __initconst = {
 906	.mask = {0x7F77FFF, 0x14FB3F},
 907};
 908
 909static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
 910	.mask = {0x147667e7, 0x185915},
 911};
 912
 913static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
 914	.mask = {0x107067e7, 0x185111},
 915};
 916
 917static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
 918	.mask = {0xEDFE7F62, 0x794F931},
 919};
 920
 921static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
 922	.mask = { 0x12f77fff, 0x16ff3f },
 923};
 924
 925static const struct gates_data sun4i_apb0_gates_data __initconst = {
 926	.mask = {0x4EF},
 927};
 928
 929static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
 930	.mask = {0x469},
 931};
 932
 933static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
 934	.mask = {0x61},
 935};
 936
 937static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
 938	.mask = { 0x4ff },
 939};
 940
 941static const struct gates_data sun4i_apb1_gates_data __initconst = {
 942	.mask = {0xFF00F7},
 943};
 944
 945static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
 946	.mask = {0xf0007},
 947};
 948
 949static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
 950	.mask = {0xa0007},
 951};
 952
 953static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
 954	.mask = {0x3031},
 955};
 956
 957static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
 958	.mask = {0x3F000F},
 959};
 960
 961static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
 962	.mask = { 0xff80ff },
 963};
 964
 965static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
 966	.mask = {0x1C0},
 967	.reset_mask = 0x07,
 968};
 969
 970static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
 971	.mask = {0x140},
 972	.reset_mask = 0x03,
 973};
 974
 975static void __init sunxi_gates_clk_setup(struct device_node *node,
 976					 struct gates_data *data)
 977{
 978	struct clk_onecell_data *clk_data;
 979	struct gates_reset_data *reset_data;
 980	const char *clk_parent;
 981	const char *clk_name;
 982	void *reg;
 983	int qty;
 984	int i = 0;
 985	int j = 0;
 986	int ignore;
 987
 988	reg = of_iomap(node, 0);
 989
 990	clk_parent = of_clk_get_parent_name(node, 0);
 991
 992	/* Worst-case size approximation and memory allocation */
 993	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
 994	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
 995	if (!clk_data)
 996		return;
 997	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
 998	if (!clk_data->clks) {
 999		kfree(clk_data);
1000		return;
1001	}
1002
1003	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1004		of_property_read_string_index(node, "clock-output-names",
1005					      j, &clk_name);
1006
1007		/* No driver claims this clock, but it should remain gated */
1008		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
1009
1010		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1011						      clk_parent, ignore,
1012						      reg + 4 * (i/32), i % 32,
1013						      0, &clk_lock);
1014		WARN_ON(IS_ERR(clk_data->clks[i]));
1015
1016		j++;
1017	}
1018
1019	/* Adjust to the real max */
1020	clk_data->clk_num = i;
1021
1022	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1023
1024	/* Register a reset controler for gates with reset bits */
1025	if (data->reset_mask == 0)
1026		return;
1027
1028	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
1029	if (!reset_data)
1030		return;
1031
1032	reset_data->reg = reg;
1033	reset_data->lock = &clk_lock;
1034	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
1035	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
1036	reset_data->rcdev.of_node = node;
1037	reset_controller_register(&reset_data->rcdev);
1038}
1039
1040
1041
1042/**
1043 * sunxi_divs_clk_setup() helper data
1044 */
1045
1046#define SUNXI_DIVS_MAX_QTY	2
1047#define SUNXI_DIVISOR_WIDTH	2
1048
1049struct divs_data {
1050	const struct factors_data *factors; /* data for the factor clock */
1051	struct {
1052		u8 fixed; /* is it a fixed divisor? if not... */
1053		struct clk_div_table *table; /* is it a table based divisor? */
1054		u8 shift; /* otherwise it's a normal divisor with this shift */
1055		u8 pow;   /* is it power-of-two based? */
1056		u8 gate;  /* is it independently gateable? */
1057	} div[SUNXI_DIVS_MAX_QTY];
1058};
1059
1060static struct clk_div_table pll6_sata_tbl[] = {
1061	{ .val = 0, .div = 6, },
1062	{ .val = 1, .div = 12, },
1063	{ .val = 2, .div = 18, },
1064	{ .val = 3, .div = 24, },
1065	{ } /* sentinel */
1066};
1067
1068static const struct divs_data pll5_divs_data __initconst = {
1069	.factors = &sun4i_pll5_data,
1070	.div = {
1071		{ .shift = 0, .pow = 0, }, /* M, DDR */
1072		{ .shift = 16, .pow = 1, }, /* P, other */
1073	}
1074};
1075
1076static const struct divs_data pll6_divs_data __initconst = {
1077	.factors = &sun4i_pll6_data,
1078	.div = {
1079		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1080		{ .fixed = 2 }, /* P, other */
1081	}
1082};
1083
1084/**
1085 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1086 *
1087 * These clocks look something like this
1088 *            ________________________
1089 *           |         ___divisor 1---|----> to consumer
1090 * parent >--|  pll___/___divisor 2---|----> to consumer
1091 *           |        \_______________|____> to consumer
1092 *           |________________________|
1093 */
1094
1095static void __init sunxi_divs_clk_setup(struct device_node *node,
1096					struct divs_data *data)
1097{
1098	struct clk_onecell_data *clk_data;
1099	const char *parent;
1100	const char *clk_name;
1101	struct clk **clks, *pclk;
1102	struct clk_hw *gate_hw, *rate_hw;
1103	const struct clk_ops *rate_ops;
1104	struct clk_gate *gate = NULL;
1105	struct clk_fixed_factor *fix_factor;
1106	struct clk_divider *divider;
1107	void *reg;
1108	int i = 0;
1109	int flags, clkflags;
1110
1111	/* Set up factor clock that we will be dividing */
1112	pclk = sunxi_factors_clk_setup(node, data->factors);
1113	parent = __clk_get_name(pclk);
1114
1115	reg = of_iomap(node, 0);
1116
1117	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1118	if (!clk_data)
1119		return;
1120
1121	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1122	if (!clks)
1123		goto free_clkdata;
1124
1125	clk_data->clks = clks;
1126
1127	/* It's not a good idea to have automatic reparenting changing
1128	 * our RAM clock! */
1129	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1130
1131	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1132		if (of_property_read_string_index(node, "clock-output-names",
1133						  i, &clk_name) != 0)
1134			break;
1135
1136		gate_hw = NULL;
1137		rate_hw = NULL;
1138		rate_ops = NULL;
1139
1140		/* If this leaf clock can be gated, create a gate */
1141		if (data->div[i].gate) {
1142			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1143			if (!gate)
1144				goto free_clks;
1145
1146			gate->reg = reg;
1147			gate->bit_idx = data->div[i].gate;
1148			gate->lock = &clk_lock;
1149
1150			gate_hw = &gate->hw;
1151		}
1152
1153		/* Leaves can be fixed or configurable divisors */
1154		if (data->div[i].fixed) {
1155			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1156			if (!fix_factor)
1157				goto free_gate;
1158
1159			fix_factor->mult = 1;
1160			fix_factor->div = data->div[i].fixed;
1161
1162			rate_hw = &fix_factor->hw;
1163			rate_ops = &clk_fixed_factor_ops;
1164		} else {
1165			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1166			if (!divider)
1167				goto free_gate;
1168
1169			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1170
1171			divider->reg = reg;
1172			divider->shift = data->div[i].shift;
1173			divider->width = SUNXI_DIVISOR_WIDTH;
1174			divider->flags = flags;
1175			divider->lock = &clk_lock;
1176			divider->table = data->div[i].table;
1177
1178			rate_hw = &divider->hw;
1179			rate_ops = &clk_divider_ops;
1180		}
1181
1182		/* Wrap the (potential) gate and the divisor on a composite
1183		 * clock to unify them */
1184		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1185						 NULL, NULL,
1186						 rate_hw, rate_ops,
1187						 gate_hw, &clk_gate_ops,
1188						 clkflags);
1189
1190		WARN_ON(IS_ERR(clk_data->clks[i]));
1191		clk_register_clkdev(clks[i], clk_name, NULL);
1192	}
1193
1194	/* The last clock available on the getter is the parent */
1195	clks[i++] = pclk;
1196
1197	/* Adjust to the real max */
1198	clk_data->clk_num = i;
1199
1200	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1201
1202	return;
1203
1204free_gate:
1205	kfree(gate);
1206free_clks:
1207	kfree(clks);
1208free_clkdata:
1209	kfree(clk_data);
1210}
1211
1212
1213
1214/* Matches for factors clocks */
1215static const struct of_device_id clk_factors_match[] __initconst = {
1216	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1217	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1218	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1219	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1220	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1221	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1222	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1223	{}
1224};
1225
1226/* Matches for divider clocks */
1227static const struct of_device_id clk_div_match[] __initconst = {
1228	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1229	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1230	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1231	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1232	{}
1233};
1234
1235/* Matches for divided outputs */
1236static const struct of_device_id clk_divs_match[] __initconst = {
1237	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1238	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1239	{}
1240};
1241
1242/* Matches for mux clocks */
1243static const struct of_device_id clk_mux_match[] __initconst = {
1244	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1245	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1246	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1247	{}
1248};
1249
1250/* Matches for gate clocks */
1251static const struct of_device_id clk_gates_match[] __initconst = {
1252	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1253	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1254	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1255	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1256	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1257	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1258	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1259	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1260	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1261	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1262	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1263	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1264	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1265	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1266	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1267	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1268	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1269	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1270	{}
1271};
1272
1273static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1274					      void *function)
1275{
1276	struct device_node *np;
1277	const struct div_data *data;
1278	const struct of_device_id *match;
1279	void (*setup_function)(struct device_node *, const void *) = function;
1280
1281	for_each_matching_node(np, clk_match) {
1282		match = of_match_node(clk_match, np);
1283		data = match->data;
1284		setup_function(np, data);
1285	}
1286}
1287
1288/**
1289 * System clock protection
1290 *
1291 * By enabling these critical clocks, we prevent their accidental gating
1292 * by the framework
1293 */
1294static void __init sunxi_clock_protect(void)
1295{
1296	struct clk *clk;
1297
1298	/* memory bus clock - sun5i+ */
1299	clk = clk_get(NULL, "mbus");
1300	if (!IS_ERR(clk)) {
1301		clk_prepare_enable(clk);
1302		clk_put(clk);
1303	}
1304
1305	/* DDR clock - sun4i+ */
1306	clk = clk_get(NULL, "pll5_ddr");
1307	if (!IS_ERR(clk)) {
1308		clk_prepare_enable(clk);
1309		clk_put(clk);
1310	}
1311}
1312
1313static void __init sunxi_init_clocks(void)
1314{
1315	/* Register factor clocks */
1316	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1317
1318	/* Register divider clocks */
1319	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1320
1321	/* Register divided output clocks */
1322	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1323
1324	/* Register mux clocks */
1325	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1326
1327	/* Register gate clocks */
1328	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1329
1330	/* Enable core system clocks */
1331	sunxi_clock_protect();
1332}
1333CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
1334CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
1335CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
1336CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
1337CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);