Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/acpi.h>
  37#include <linux/dmi.h>
  38#include <linux/moduleparam.h>
  39#include <linux/sched.h>	/* need_resched() */
  40#include <linux/pm_qos.h>
  41#include <linux/clockchips.h>
  42#include <linux/cpuidle.h>
  43#include <linux/irqflags.h>
 
  44
  45/*
  46 * Include the apic definitions for x86 to have the APIC timer related defines
  47 * available also for UP (on SMP it gets magically included via linux/smp.h).
  48 * asm/acpi.h is not an option, as it would require more include magic. Also
  49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50 */
  51#ifdef CONFIG_X86
  52#include <asm/apic.h>
  53#endif
  54
  55#include <asm/io.h>
  56#include <asm/uaccess.h>
  57
  58#include <acpi/acpi_bus.h>
  59#include <acpi/processor.h>
  60#include <asm/processor.h>
  61
  62#define PREFIX "ACPI: "
  63
  64#define ACPI_PROCESSOR_CLASS            "processor"
  65#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  66ACPI_MODULE_NAME("processor_idle");
  67#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
  68#define C2_OVERHEAD			1	/* 1us */
  69#define C3_OVERHEAD			1	/* 1us */
  70#define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  71
  72static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  73module_param(max_cstate, uint, 0000);
  74static unsigned int nocst __read_mostly;
  75module_param(nocst, uint, 0000);
  76static int bm_check_disable __read_mostly;
  77module_param(bm_check_disable, uint, 0000);
  78
  79static unsigned int latency_factor __read_mostly = 2;
  80module_param(latency_factor, uint, 0644);
  81
 
 
 
 
 
  82static int disabled_by_idle_boot_param(void)
  83{
  84	return boot_option_idle_override == IDLE_POLL ||
  85		boot_option_idle_override == IDLE_FORCE_MWAIT ||
  86		boot_option_idle_override == IDLE_HALT;
  87}
  88
  89/*
  90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  91 * For now disable this. Probably a bug somewhere else.
  92 *
  93 * To skip this limit, boot/load with a large max_cstate limit.
  94 */
  95static int set_max_cstate(const struct dmi_system_id *id)
  96{
  97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  98		return 0;
  99
 100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 103
 104	max_cstate = (long)id->driver_data;
 105
 106	return 0;
 107}
 108
 109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
 110   callers to only run once -AK */
 111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 112	{ set_max_cstate, "Clevo 5600D", {
 113	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 114	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 115	 (void *)2},
 116	{ set_max_cstate, "Pavilion zv5000", {
 117	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 118	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 119	 (void *)1},
 120	{ set_max_cstate, "Asus L8400B", {
 121	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 122	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 123	 (void *)1},
 124	{},
 125};
 126
 127
 128/*
 129 * Callers should disable interrupts before the call and enable
 130 * interrupts after return.
 131 */
 132static void acpi_safe_halt(void)
 133{
 134	current_thread_info()->status &= ~TS_POLLING;
 135	/*
 136	 * TS_POLLING-cleared state must be visible before we
 137	 * test NEED_RESCHED:
 138	 */
 139	smp_mb();
 140	if (!need_resched()) {
 141		safe_halt();
 142		local_irq_disable();
 143	}
 144	current_thread_info()->status |= TS_POLLING;
 145}
 146
 147#ifdef ARCH_APICTIMER_STOPS_ON_C3
 148
 149/*
 150 * Some BIOS implementations switch to C3 in the published C2 state.
 151 * This seems to be a common problem on AMD boxen, but other vendors
 152 * are affected too. We pick the most conservative approach: we assume
 153 * that the local APIC stops in both C2 and C3.
 154 */
 155static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 156				   struct acpi_processor_cx *cx)
 157{
 158	struct acpi_processor_power *pwr = &pr->power;
 159	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 160
 161	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 162		return;
 163
 164	if (amd_e400_c1e_detected)
 165		type = ACPI_STATE_C1;
 166
 167	/*
 168	 * Check, if one of the previous states already marked the lapic
 169	 * unstable
 170	 */
 171	if (pwr->timer_broadcast_on_state < state)
 172		return;
 173
 174	if (cx->type >= type)
 175		pr->power.timer_broadcast_on_state = state;
 176}
 177
 178static void __lapic_timer_propagate_broadcast(void *arg)
 179{
 180	struct acpi_processor *pr = (struct acpi_processor *) arg;
 181	unsigned long reason;
 182
 183	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 184		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 185
 186	clockevents_notify(reason, &pr->id);
 187}
 188
 189static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 190{
 191	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 192				 (void *)pr, 1);
 193}
 194
 195/* Power(C) State timer broadcast control */
 196static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 197				       struct acpi_processor_cx *cx,
 198				       int broadcast)
 199{
 200	int state = cx - pr->power.states;
 201
 202	if (state >= pr->power.timer_broadcast_on_state) {
 203		unsigned long reason;
 204
 205		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 206			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 207		clockevents_notify(reason, &pr->id);
 208	}
 209}
 210
 211#else
 212
 213static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 214				   struct acpi_processor_cx *cstate) { }
 215static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 216static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 217				       struct acpi_processor_cx *cx,
 218				       int broadcast)
 219{
 220}
 221
 222#endif
 223
 224/*
 225 * Suspend / resume control
 226 */
 227static int acpi_idle_suspend;
 228static u32 saved_bm_rld;
 229
 230static void acpi_idle_bm_rld_save(void)
 231{
 232	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 
 233}
 234static void acpi_idle_bm_rld_restore(void)
 
 235{
 236	u32 resumed_bm_rld;
 237
 238	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 
 
 239
 240	if (resumed_bm_rld != saved_bm_rld)
 241		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 242}
 243
 244int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 245{
 246	if (acpi_idle_suspend == 1)
 247		return 0;
 248
 249	acpi_idle_bm_rld_save();
 250	acpi_idle_suspend = 1;
 251	return 0;
 252}
 253
 254int acpi_processor_resume(struct acpi_device * device)
 255{
 256	if (acpi_idle_suspend == 0)
 257		return 0;
 258
 259	acpi_idle_bm_rld_restore();
 260	acpi_idle_suspend = 0;
 261	return 0;
 262}
 
 263
 264#if defined(CONFIG_X86)
 265static void tsc_check_state(int state)
 266{
 267	switch (boot_cpu_data.x86_vendor) {
 268	case X86_VENDOR_AMD:
 269	case X86_VENDOR_INTEL:
 270		/*
 271		 * AMD Fam10h TSC will tick in all
 272		 * C/P/S0/S1 states when this bit is set.
 273		 */
 274		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 275			return;
 276
 277		/*FALL THROUGH*/
 278	default:
 279		/* TSC could halt in idle, so notify users */
 280		if (state > ACPI_STATE_C1)
 281			mark_tsc_unstable("TSC halts in idle");
 282	}
 283}
 284#else
 285static void tsc_check_state(int state) { return; }
 286#endif
 287
 288static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 289{
 290
 291	if (!pr)
 292		return -EINVAL;
 293
 294	if (!pr->pblk)
 295		return -ENODEV;
 296
 297	/* if info is obtained from pblk/fadt, type equals state */
 298	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 299	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 300
 301#ifndef CONFIG_HOTPLUG_CPU
 302	/*
 303	 * Check for P_LVL2_UP flag before entering C2 and above on
 304	 * an SMP system.
 305	 */
 306	if ((num_online_cpus() > 1) &&
 307	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 308		return -ENODEV;
 309#endif
 310
 311	/* determine C2 and C3 address from pblk */
 312	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 313	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 314
 315	/* determine latencies from FADT */
 316	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 317	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 318
 319	/*
 320	 * FADT specified C2 latency must be less than or equal to
 321	 * 100 microseconds.
 322	 */
 323	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 325			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
 326		/* invalidate C2 */
 327		pr->power.states[ACPI_STATE_C2].address = 0;
 328	}
 329
 330	/*
 331	 * FADT supplied C3 latency must be less than or equal to
 332	 * 1000 microseconds.
 333	 */
 334	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 335		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 336			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
 337		/* invalidate C3 */
 338		pr->power.states[ACPI_STATE_C3].address = 0;
 339	}
 340
 341	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 342			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 343			  pr->power.states[ACPI_STATE_C2].address,
 344			  pr->power.states[ACPI_STATE_C3].address));
 345
 346	return 0;
 347}
 348
 349static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 350{
 351	if (!pr->power.states[ACPI_STATE_C1].valid) {
 352		/* set the first C-State to C1 */
 353		/* all processors need to support C1 */
 354		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 355		pr->power.states[ACPI_STATE_C1].valid = 1;
 356		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 357	}
 358	/* the C0 state only exists as a filler in our array */
 359	pr->power.states[ACPI_STATE_C0].valid = 1;
 360	return 0;
 361}
 362
 363static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 364{
 365	acpi_status status = 0;
 366	u64 count;
 367	int current_count;
 368	int i;
 369	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 370	union acpi_object *cst;
 371
 372
 373	if (nocst)
 374		return -ENODEV;
 375
 376	current_count = 0;
 377
 378	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 379	if (ACPI_FAILURE(status)) {
 380		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 381		return -ENODEV;
 382	}
 383
 384	cst = buffer.pointer;
 385
 386	/* There must be at least 2 elements */
 387	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 388		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 389		status = -EFAULT;
 390		goto end;
 391	}
 392
 393	count = cst->package.elements[0].integer.value;
 394
 395	/* Validate number of power states. */
 396	if (count < 1 || count != cst->package.count - 1) {
 397		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 398		status = -EFAULT;
 399		goto end;
 400	}
 401
 402	/* Tell driver that at least _CST is supported. */
 403	pr->flags.has_cst = 1;
 404
 405	for (i = 1; i <= count; i++) {
 406		union acpi_object *element;
 407		union acpi_object *obj;
 408		struct acpi_power_register *reg;
 409		struct acpi_processor_cx cx;
 410
 411		memset(&cx, 0, sizeof(cx));
 412
 413		element = &(cst->package.elements[i]);
 414		if (element->type != ACPI_TYPE_PACKAGE)
 415			continue;
 416
 417		if (element->package.count != 4)
 418			continue;
 419
 420		obj = &(element->package.elements[0]);
 421
 422		if (obj->type != ACPI_TYPE_BUFFER)
 423			continue;
 424
 425		reg = (struct acpi_power_register *)obj->buffer.pointer;
 426
 427		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 428		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 429			continue;
 430
 431		/* There should be an easy way to extract an integer... */
 432		obj = &(element->package.elements[1]);
 433		if (obj->type != ACPI_TYPE_INTEGER)
 434			continue;
 435
 436		cx.type = obj->integer.value;
 437		/*
 438		 * Some buggy BIOSes won't list C1 in _CST -
 439		 * Let acpi_processor_get_power_info_default() handle them later
 440		 */
 441		if (i == 1 && cx.type != ACPI_STATE_C1)
 442			current_count++;
 443
 444		cx.address = reg->address;
 445		cx.index = current_count + 1;
 446
 447		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 448		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 449			if (acpi_processor_ffh_cstate_probe
 450					(pr->id, &cx, reg) == 0) {
 451				cx.entry_method = ACPI_CSTATE_FFH;
 452			} else if (cx.type == ACPI_STATE_C1) {
 453				/*
 454				 * C1 is a special case where FIXED_HARDWARE
 455				 * can be handled in non-MWAIT way as well.
 456				 * In that case, save this _CST entry info.
 457				 * Otherwise, ignore this info and continue.
 458				 */
 459				cx.entry_method = ACPI_CSTATE_HALT;
 460				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 461			} else {
 462				continue;
 463			}
 464			if (cx.type == ACPI_STATE_C1 &&
 465			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 466				/*
 467				 * In most cases the C1 space_id obtained from
 468				 * _CST object is FIXED_HARDWARE access mode.
 469				 * But when the option of idle=halt is added,
 470				 * the entry_method type should be changed from
 471				 * CSTATE_FFH to CSTATE_HALT.
 472				 * When the option of idle=nomwait is added,
 473				 * the C1 entry_method type should be
 474				 * CSTATE_HALT.
 475				 */
 476				cx.entry_method = ACPI_CSTATE_HALT;
 477				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 478			}
 479		} else {
 480			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 481				 cx.address);
 482		}
 483
 484		if (cx.type == ACPI_STATE_C1) {
 485			cx.valid = 1;
 486		}
 487
 488		obj = &(element->package.elements[2]);
 489		if (obj->type != ACPI_TYPE_INTEGER)
 490			continue;
 491
 492		cx.latency = obj->integer.value;
 493
 494		obj = &(element->package.elements[3]);
 495		if (obj->type != ACPI_TYPE_INTEGER)
 496			continue;
 497
 498		cx.power = obj->integer.value;
 499
 500		current_count++;
 501		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 502
 503		/*
 504		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 505		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 506		 */
 507		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 508			printk(KERN_WARNING
 509			       "Limiting number of power states to max (%d)\n",
 510			       ACPI_PROCESSOR_MAX_POWER);
 511			printk(KERN_WARNING
 512			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 513			break;
 514		}
 515	}
 516
 517	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 518			  current_count));
 519
 520	/* Validate number of power states discovered */
 521	if (current_count < 2)
 522		status = -EFAULT;
 523
 524      end:
 525	kfree(buffer.pointer);
 526
 527	return status;
 528}
 529
 530static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 531					   struct acpi_processor_cx *cx)
 532{
 533	static int bm_check_flag = -1;
 534	static int bm_control_flag = -1;
 535
 536
 537	if (!cx->address)
 538		return;
 539
 540	/*
 541	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 542	 * DMA transfers are used by any ISA device to avoid livelock.
 543	 * Note that we could disable Type-F DMA (as recommended by
 544	 * the erratum), but this is known to disrupt certain ISA
 545	 * devices thus we take the conservative approach.
 546	 */
 547	else if (errata.piix4.fdma) {
 548		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 549				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 550		return;
 551	}
 552
 553	/* All the logic here assumes flags.bm_check is same across all CPUs */
 554	if (bm_check_flag == -1) {
 555		/* Determine whether bm_check is needed based on CPU  */
 556		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 557		bm_check_flag = pr->flags.bm_check;
 558		bm_control_flag = pr->flags.bm_control;
 559	} else {
 560		pr->flags.bm_check = bm_check_flag;
 561		pr->flags.bm_control = bm_control_flag;
 562	}
 563
 564	if (pr->flags.bm_check) {
 565		if (!pr->flags.bm_control) {
 566			if (pr->flags.has_cst != 1) {
 567				/* bus mastering control is necessary */
 568				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 569					"C3 support requires BM control\n"));
 570				return;
 571			} else {
 572				/* Here we enter C3 without bus mastering */
 573				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 574					"C3 support without BM control\n"));
 575			}
 576		}
 577	} else {
 578		/*
 579		 * WBINVD should be set in fadt, for C3 state to be
 580		 * supported on when bm_check is not required.
 581		 */
 582		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 583			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 584					  "Cache invalidation should work properly"
 585					  " for C3 to be enabled on SMP systems\n"));
 586			return;
 587		}
 588	}
 589
 590	/*
 591	 * Otherwise we've met all of our C3 requirements.
 592	 * Normalize the C3 latency to expidite policy.  Enable
 593	 * checking of bus mastering status (bm_check) so we can
 594	 * use this in our C3 policy
 595	 */
 596	cx->valid = 1;
 597
 598	cx->latency_ticks = cx->latency;
 599	/*
 600	 * On older chipsets, BM_RLD needs to be set
 601	 * in order for Bus Master activity to wake the
 602	 * system from C3.  Newer chipsets handle DMA
 603	 * during C3 automatically and BM_RLD is a NOP.
 604	 * In either case, the proper way to
 605	 * handle BM_RLD is to set it and leave it set.
 606	 */
 607	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 608
 609	return;
 610}
 611
 612static int acpi_processor_power_verify(struct acpi_processor *pr)
 613{
 614	unsigned int i;
 615	unsigned int working = 0;
 616
 617	pr->power.timer_broadcast_on_state = INT_MAX;
 618
 619	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 620		struct acpi_processor_cx *cx = &pr->power.states[i];
 621
 622		switch (cx->type) {
 623		case ACPI_STATE_C1:
 624			cx->valid = 1;
 625			break;
 626
 627		case ACPI_STATE_C2:
 628			if (!cx->address)
 629				break;
 630			cx->valid = 1; 
 631			cx->latency_ticks = cx->latency; /* Normalize latency */
 632			break;
 633
 634		case ACPI_STATE_C3:
 635			acpi_processor_power_verify_c3(pr, cx);
 636			break;
 637		}
 638		if (!cx->valid)
 639			continue;
 640
 641		lapic_timer_check_state(i, pr, cx);
 642		tsc_check_state(cx->type);
 643		working++;
 644	}
 645
 646	lapic_timer_propagate_broadcast(pr);
 647
 648	return (working);
 649}
 650
 651static int acpi_processor_get_power_info(struct acpi_processor *pr)
 652{
 653	unsigned int i;
 654	int result;
 655
 656
 657	/* NOTE: the idle thread may not be running while calling
 658	 * this function */
 659
 660	/* Zero initialize all the C-states info. */
 661	memset(pr->power.states, 0, sizeof(pr->power.states));
 662
 663	result = acpi_processor_get_power_info_cst(pr);
 664	if (result == -ENODEV)
 665		result = acpi_processor_get_power_info_fadt(pr);
 666
 667	if (result)
 668		return result;
 669
 670	acpi_processor_get_power_info_default(pr);
 671
 672	pr->power.count = acpi_processor_power_verify(pr);
 673
 674	/*
 675	 * if one state of type C2 or C3 is available, mark this
 676	 * CPU as being "idle manageable"
 677	 */
 678	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 679		if (pr->power.states[i].valid) {
 680			pr->power.count = i;
 681			if (pr->power.states[i].type >= ACPI_STATE_C2)
 682				pr->flags.power = 1;
 683		}
 684	}
 685
 686	return 0;
 687}
 688
 689/**
 690 * acpi_idle_bm_check - checks if bus master activity was detected
 691 */
 692static int acpi_idle_bm_check(void)
 693{
 694	u32 bm_status = 0;
 695
 696	if (bm_check_disable)
 697		return 0;
 698
 699	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 700	if (bm_status)
 701		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 702	/*
 703	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 704	 * the true state of bus mastering activity; forcing us to
 705	 * manually check the BMIDEA bit of each IDE channel.
 706	 */
 707	else if (errata.piix4.bmisx) {
 708		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 709		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 710			bm_status = 1;
 711	}
 712	return bm_status;
 713}
 714
 715/**
 716 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 717 * @cx: cstate data
 718 *
 719 * Caller disables interrupt before call and enables interrupt after return.
 720 */
 721static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 722{
 723	/* Don't trace irqs off for idle */
 724	stop_critical_timings();
 725	if (cx->entry_method == ACPI_CSTATE_FFH) {
 726		/* Call into architectural FFH based C-state */
 727		acpi_processor_ffh_cstate_enter(cx);
 728	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 729		acpi_safe_halt();
 730	} else {
 731		/* IO port based C-state */
 732		inb(cx->address);
 733		/* Dummy wait op - must do something useless after P_LVL2 read
 734		   because chipsets cannot guarantee that STPCLK# signal
 735		   gets asserted in time to freeze execution properly. */
 736		inl(acpi_gbl_FADT.xpm_timer_block.address);
 737	}
 738	start_critical_timings();
 739}
 740
 741/**
 742 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 743 * @dev: the target CPU
 744 * @drv: cpuidle driver containing cpuidle state info
 745 * @index: index of target state
 746 *
 747 * This is equivalent to the HALT instruction.
 748 */
 749static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 750		struct cpuidle_driver *drv, int index)
 751{
 752	ktime_t  kt1, kt2;
 753	s64 idle_time;
 754	struct acpi_processor *pr;
 755	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 756	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 757
 758	pr = __this_cpu_read(processors);
 759	dev->last_residency = 0;
 760
 761	if (unlikely(!pr))
 762		return -EINVAL;
 763
 764	local_irq_disable();
 765
 766	if (acpi_idle_suspend) {
 767		local_irq_enable();
 768		cpu_relax();
 769		return -EBUSY;
 770	}
 771
 772	lapic_timer_state_broadcast(pr, cx, 1);
 773	kt1 = ktime_get_real();
 774	acpi_idle_do_entry(cx);
 775	kt2 = ktime_get_real();
 776	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
 777
 778	/* Update device last_residency*/
 779	dev->last_residency = (int)idle_time;
 780
 781	local_irq_enable();
 782	cx->usage++;
 783	lapic_timer_state_broadcast(pr, cx, 0);
 784
 785	return index;
 786}
 787
 788
 789/**
 790 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 791 * @dev: the target CPU
 792 * @index: the index of suggested state
 793 */
 794static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 795{
 796	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 797	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 798
 799	ACPI_FLUSH_CPU_CACHE();
 800
 801	while (1) {
 802
 803		if (cx->entry_method == ACPI_CSTATE_HALT)
 804			safe_halt();
 805		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 806			inb(cx->address);
 807			/* See comment in acpi_idle_do_entry() */
 808			inl(acpi_gbl_FADT.xpm_timer_block.address);
 809		} else
 810			return -ENODEV;
 811	}
 812
 813	/* Never reached */
 814	return 0;
 815}
 816
 817/**
 818 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 819 * @dev: the target CPU
 820 * @drv: cpuidle driver with cpuidle state information
 821 * @index: the index of suggested state
 822 */
 823static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 824		struct cpuidle_driver *drv, int index)
 825{
 826	struct acpi_processor *pr;
 827	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 828	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 829	ktime_t  kt1, kt2;
 830	s64 idle_time_ns;
 831	s64 idle_time;
 832
 833	pr = __this_cpu_read(processors);
 834	dev->last_residency = 0;
 835
 836	if (unlikely(!pr))
 837		return -EINVAL;
 838
 839	local_irq_disable();
 840
 841	if (acpi_idle_suspend) {
 842		local_irq_enable();
 843		cpu_relax();
 844		return -EBUSY;
 845	}
 846
 847	if (cx->entry_method != ACPI_CSTATE_FFH) {
 848		current_thread_info()->status &= ~TS_POLLING;
 849		/*
 850		 * TS_POLLING-cleared state must be visible before we test
 851		 * NEED_RESCHED:
 852		 */
 853		smp_mb();
 854
 855		if (unlikely(need_resched())) {
 856			current_thread_info()->status |= TS_POLLING;
 857			local_irq_enable();
 858			return -EINVAL;
 859		}
 860	}
 861
 862	/*
 863	 * Must be done before busmaster disable as we might need to
 864	 * access HPET !
 865	 */
 866	lapic_timer_state_broadcast(pr, cx, 1);
 867
 868	if (cx->type == ACPI_STATE_C3)
 869		ACPI_FLUSH_CPU_CACHE();
 870
 871	kt1 = ktime_get_real();
 872	/* Tell the scheduler that we are going deep-idle: */
 873	sched_clock_idle_sleep_event();
 874	acpi_idle_do_entry(cx);
 875	kt2 = ktime_get_real();
 876	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
 877	idle_time = idle_time_ns;
 878	do_div(idle_time, NSEC_PER_USEC);
 879
 880	/* Update device last_residency*/
 881	dev->last_residency = (int)idle_time;
 882
 883	/* Tell the scheduler how much we idled: */
 884	sched_clock_idle_wakeup_event(idle_time_ns);
 885
 886	local_irq_enable();
 887	if (cx->entry_method != ACPI_CSTATE_FFH)
 888		current_thread_info()->status |= TS_POLLING;
 889
 890	cx->usage++;
 891
 892	lapic_timer_state_broadcast(pr, cx, 0);
 893	cx->time += idle_time;
 894	return index;
 895}
 896
 897static int c3_cpu_count;
 898static DEFINE_RAW_SPINLOCK(c3_lock);
 899
 900/**
 901 * acpi_idle_enter_bm - enters C3 with proper BM handling
 902 * @dev: the target CPU
 903 * @drv: cpuidle driver containing state data
 904 * @index: the index of suggested state
 905 *
 906 * If BM is detected, the deepest non-C3 idle state is entered instead.
 907 */
 908static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 909		struct cpuidle_driver *drv, int index)
 910{
 911	struct acpi_processor *pr;
 912	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
 913	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
 914	ktime_t  kt1, kt2;
 915	s64 idle_time_ns;
 916	s64 idle_time;
 917
 918
 919	pr = __this_cpu_read(processors);
 920	dev->last_residency = 0;
 921
 922	if (unlikely(!pr))
 923		return -EINVAL;
 924
 
 
 
 
 
 
 
 925	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 926		if (drv->safe_state_index >= 0) {
 927			return drv->states[drv->safe_state_index].enter(dev,
 928						drv, drv->safe_state_index);
 929		} else {
 930			local_irq_disable();
 931			if (!acpi_idle_suspend)
 932				acpi_safe_halt();
 933			local_irq_enable();
 934			return -EBUSY;
 935		}
 936	}
 937
 938	local_irq_disable();
 939
 940	if (acpi_idle_suspend) {
 941		local_irq_enable();
 942		cpu_relax();
 943		return -EBUSY;
 944	}
 945
 946	if (cx->entry_method != ACPI_CSTATE_FFH) {
 947		current_thread_info()->status &= ~TS_POLLING;
 948		/*
 949		 * TS_POLLING-cleared state must be visible before we test
 950		 * NEED_RESCHED:
 951		 */
 952		smp_mb();
 953
 954		if (unlikely(need_resched())) {
 955			current_thread_info()->status |= TS_POLLING;
 956			local_irq_enable();
 957			return -EINVAL;
 958		}
 959	}
 960
 961	acpi_unlazy_tlb(smp_processor_id());
 962
 963	/* Tell the scheduler that we are going deep-idle: */
 964	sched_clock_idle_sleep_event();
 965	/*
 966	 * Must be done before busmaster disable as we might need to
 967	 * access HPET !
 968	 */
 969	lapic_timer_state_broadcast(pr, cx, 1);
 970
 971	kt1 = ktime_get_real();
 972	/*
 973	 * disable bus master
 974	 * bm_check implies we need ARB_DIS
 975	 * !bm_check implies we need cache flush
 976	 * bm_control implies whether we can do ARB_DIS
 977	 *
 978	 * That leaves a case where bm_check is set and bm_control is
 979	 * not set. In that case we cannot do much, we enter C3
 980	 * without doing anything.
 981	 */
 982	if (pr->flags.bm_check && pr->flags.bm_control) {
 983		raw_spin_lock(&c3_lock);
 984		c3_cpu_count++;
 985		/* Disable bus master arbitration when all CPUs are in C3 */
 986		if (c3_cpu_count == num_online_cpus())
 987			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 988		raw_spin_unlock(&c3_lock);
 989	} else if (!pr->flags.bm_check) {
 990		ACPI_FLUSH_CPU_CACHE();
 991	}
 992
 993	acpi_idle_do_entry(cx);
 994
 995	/* Re-enable bus master arbitration */
 996	if (pr->flags.bm_check && pr->flags.bm_control) {
 997		raw_spin_lock(&c3_lock);
 998		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 999		c3_cpu_count--;
1000		raw_spin_unlock(&c3_lock);
1001	}
1002	kt2 = ktime_get_real();
1003	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
1004	idle_time = idle_time_ns;
1005	do_div(idle_time, NSEC_PER_USEC);
1006
1007	/* Update device last_residency*/
1008	dev->last_residency = (int)idle_time;
1009
1010	/* Tell the scheduler how much we idled: */
1011	sched_clock_idle_wakeup_event(idle_time_ns);
1012
1013	local_irq_enable();
1014	if (cx->entry_method != ACPI_CSTATE_FFH)
1015		current_thread_info()->status |= TS_POLLING;
1016
1017	cx->usage++;
1018
1019	lapic_timer_state_broadcast(pr, cx, 0);
1020	cx->time += idle_time;
1021	return index;
1022}
1023
1024struct cpuidle_driver acpi_idle_driver = {
1025	.name =		"acpi_idle",
1026	.owner =	THIS_MODULE,
1027};
1028
1029/**
1030 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
1031 * device i.e. per-cpu data
1032 *
1033 * @pr: the ACPI processor
 
1034 */
1035static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
 
1036{
1037	int i, count = CPUIDLE_DRIVER_STATE_START;
1038	struct acpi_processor_cx *cx;
1039	struct cpuidle_state_usage *state_usage;
1040	struct cpuidle_device *dev = &pr->power.dev;
1041
1042	if (!pr->flags.power_setup_done)
1043		return -EINVAL;
1044
1045	if (pr->flags.power == 0) {
1046		return -EINVAL;
1047	}
1048
 
 
 
1049	dev->cpu = pr->id;
1050
1051	if (max_cstate == 0)
1052		max_cstate = 1;
1053
1054	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1055		cx = &pr->power.states[i];
1056		state_usage = &dev->states_usage[count];
1057
1058		if (!cx->valid)
1059			continue;
1060
1061#ifdef CONFIG_HOTPLUG_CPU
1062		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1063		    !pr->flags.has_cst &&
1064		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1065			continue;
1066#endif
1067
1068		cpuidle_set_statedata(state_usage, cx);
1069
1070		count++;
1071		if (count == CPUIDLE_STATE_MAX)
1072			break;
1073	}
1074
1075	dev->state_count = count;
1076
1077	if (!count)
1078		return -EINVAL;
1079
1080	return 0;
1081}
1082
1083/**
1084 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1085 * global state data i.e. idle routines
1086 *
1087 * @pr: the ACPI processor
1088 */
1089static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1090{
1091	int i, count = CPUIDLE_DRIVER_STATE_START;
1092	struct acpi_processor_cx *cx;
1093	struct cpuidle_state *state;
1094	struct cpuidle_driver *drv = &acpi_idle_driver;
1095
1096	if (!pr->flags.power_setup_done)
1097		return -EINVAL;
1098
1099	if (pr->flags.power == 0)
1100		return -EINVAL;
1101
1102	drv->safe_state_index = -1;
1103	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1104		drv->states[i].name[0] = '\0';
1105		drv->states[i].desc[0] = '\0';
1106	}
1107
1108	if (max_cstate == 0)
1109		max_cstate = 1;
1110
1111	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1112		cx = &pr->power.states[i];
1113
1114		if (!cx->valid)
1115			continue;
1116
1117#ifdef CONFIG_HOTPLUG_CPU
1118		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1119		    !pr->flags.has_cst &&
1120		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1121			continue;
1122#endif
1123
1124		state = &drv->states[count];
1125		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1126		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1127		state->exit_latency = cx->latency;
1128		state->target_residency = cx->latency * latency_factor;
1129
1130		state->flags = 0;
1131		switch (cx->type) {
1132			case ACPI_STATE_C1:
1133			if (cx->entry_method == ACPI_CSTATE_FFH)
1134				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1135
1136			state->enter = acpi_idle_enter_c1;
1137			state->enter_dead = acpi_idle_play_dead;
1138			drv->safe_state_index = count;
1139			break;
1140
1141			case ACPI_STATE_C2:
1142			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1143			state->enter = acpi_idle_enter_simple;
1144			state->enter_dead = acpi_idle_play_dead;
1145			drv->safe_state_index = count;
1146			break;
1147
1148			case ACPI_STATE_C3:
1149			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1150			state->enter = pr->flags.bm_check ?
1151					acpi_idle_enter_bm :
1152					acpi_idle_enter_simple;
1153			break;
1154		}
1155
1156		count++;
1157		if (count == CPUIDLE_STATE_MAX)
1158			break;
1159	}
1160
1161	drv->state_count = count;
1162
1163	if (!count)
1164		return -EINVAL;
1165
1166	return 0;
1167}
1168
1169int acpi_processor_hotplug(struct acpi_processor *pr)
1170{
1171	int ret = 0;
 
1172
1173	if (disabled_by_idle_boot_param())
1174		return 0;
1175
1176	if (!pr)
1177		return -EINVAL;
1178
1179	if (nocst) {
1180		return -ENODEV;
1181	}
1182
1183	if (!pr->flags.power_setup_done)
1184		return -ENODEV;
1185
 
1186	cpuidle_pause_and_lock();
1187	cpuidle_disable_device(&pr->power.dev);
1188	acpi_processor_get_power_info(pr);
1189	if (pr->flags.power) {
1190		acpi_processor_setup_cpuidle_cx(pr);
1191		ret = cpuidle_enable_device(&pr->power.dev);
1192	}
1193	cpuidle_resume_and_unlock();
1194
1195	return ret;
1196}
1197
1198int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1199{
1200	int cpu;
1201	struct acpi_processor *_pr;
 
1202
1203	if (disabled_by_idle_boot_param())
1204		return 0;
1205
1206	if (!pr)
1207		return -EINVAL;
1208
1209	if (nocst)
1210		return -ENODEV;
1211
1212	if (!pr->flags.power_setup_done)
1213		return -ENODEV;
1214
1215	/*
1216	 * FIXME:  Design the ACPI notification to make it once per
1217	 * system instead of once per-cpu.  This condition is a hack
1218	 * to make the code that updates C-States be called once.
1219	 */
1220
1221	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1222
1223		cpuidle_pause_and_lock();
1224		/* Protect against cpu-hotplug */
1225		get_online_cpus();
1226
1227		/* Disable all cpuidle devices */
1228		for_each_online_cpu(cpu) {
1229			_pr = per_cpu(processors, cpu);
1230			if (!_pr || !_pr->flags.power_setup_done)
1231				continue;
1232			cpuidle_disable_device(&_pr->power.dev);
 
1233		}
1234
1235		/* Populate Updated C-state information */
 
1236		acpi_processor_setup_cpuidle_states(pr);
1237
1238		/* Enable all cpuidle devices */
1239		for_each_online_cpu(cpu) {
1240			_pr = per_cpu(processors, cpu);
1241			if (!_pr || !_pr->flags.power_setup_done)
1242				continue;
1243			acpi_processor_get_power_info(_pr);
1244			if (_pr->flags.power) {
1245				acpi_processor_setup_cpuidle_cx(_pr);
1246				cpuidle_enable_device(&_pr->power.dev);
 
1247			}
1248		}
1249		put_online_cpus();
1250		cpuidle_resume_and_unlock();
1251	}
1252
1253	return 0;
1254}
1255
1256static int acpi_processor_registered;
1257
1258int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1259			      struct acpi_device *device)
1260{
1261	acpi_status status = 0;
1262	int retval;
 
1263	static int first_run;
1264
1265	if (disabled_by_idle_boot_param())
1266		return 0;
1267
1268	if (!first_run) {
1269		dmi_check_system(processor_power_dmi_table);
1270		max_cstate = acpi_processor_cstate_check(max_cstate);
1271		if (max_cstate < ACPI_C_STATES_MAX)
1272			printk(KERN_NOTICE
1273			       "ACPI: processor limited to max C-state %d\n",
1274			       max_cstate);
1275		first_run++;
1276	}
1277
1278	if (!pr)
1279		return -EINVAL;
1280
1281	if (acpi_gbl_FADT.cst_control && !nocst) {
1282		status =
1283		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1284		if (ACPI_FAILURE(status)) {
1285			ACPI_EXCEPTION((AE_INFO, status,
1286					"Notifying BIOS of _CST ability failed"));
1287		}
1288	}
1289
1290	acpi_processor_get_power_info(pr);
1291	pr->flags.power_setup_done = 1;
1292
1293	/*
1294	 * Install the idle handler if processor power management is supported.
1295	 * Note that we use previously set idle handler will be used on
1296	 * platforms that only support C1.
1297	 */
1298	if (pr->flags.power) {
1299		/* Register acpi_idle_driver if not already registered */
1300		if (!acpi_processor_registered) {
1301			acpi_processor_setup_cpuidle_states(pr);
1302			retval = cpuidle_register_driver(&acpi_idle_driver);
1303			if (retval)
1304				return retval;
1305			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1306					acpi_idle_driver.name);
1307		}
 
 
 
 
 
 
 
 
1308		/* Register per-cpu cpuidle_device. Cpuidle driver
1309		 * must already be registered before registering device
1310		 */
1311		acpi_processor_setup_cpuidle_cx(pr);
1312		retval = cpuidle_register_device(&pr->power.dev);
1313		if (retval) {
1314			if (acpi_processor_registered == 0)
1315				cpuidle_unregister_driver(&acpi_idle_driver);
1316			return retval;
1317		}
1318		acpi_processor_registered++;
1319	}
1320	return 0;
1321}
1322
1323int acpi_processor_power_exit(struct acpi_processor *pr,
1324			      struct acpi_device *device)
1325{
 
 
1326	if (disabled_by_idle_boot_param())
1327		return 0;
1328
1329	if (pr->flags.power) {
1330		cpuidle_unregister_device(&pr->power.dev);
1331		acpi_processor_registered--;
1332		if (acpi_processor_registered == 0)
1333			cpuidle_unregister_driver(&acpi_idle_driver);
1334	}
1335
1336	pr->flags.power_setup_done = 0;
1337	return 0;
1338}
v3.15
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 *  You should have received a copy of the GNU General Public License along
  25 *  with this program; if not, write to the Free Software Foundation, Inc.,
  26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27 *
  28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29 */
  30
 
  31#include <linux/module.h>
 
 
 
  32#include <linux/acpi.h>
  33#include <linux/dmi.h>
  34#include <linux/sched.h>       /* need_resched() */
 
 
  35#include <linux/clockchips.h>
  36#include <linux/cpuidle.h>
  37#include <linux/syscore_ops.h>
  38#include <acpi/processor.h>
  39
  40/*
  41 * Include the apic definitions for x86 to have the APIC timer related defines
  42 * available also for UP (on SMP it gets magically included via linux/smp.h).
  43 * asm/acpi.h is not an option, as it would require more include magic. Also
  44 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  45 */
  46#ifdef CONFIG_X86
  47#include <asm/apic.h>
  48#endif
  49
 
 
 
 
 
 
 
  50#define PREFIX "ACPI: "
  51
  52#define ACPI_PROCESSOR_CLASS            "processor"
  53#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  54ACPI_MODULE_NAME("processor_idle");
 
 
 
 
  55
  56static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  57module_param(max_cstate, uint, 0000);
  58static unsigned int nocst __read_mostly;
  59module_param(nocst, uint, 0000);
  60static int bm_check_disable __read_mostly;
  61module_param(bm_check_disable, uint, 0000);
  62
  63static unsigned int latency_factor __read_mostly = 2;
  64module_param(latency_factor, uint, 0644);
  65
  66static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  67
  68static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
  69								acpi_cstate);
  70
  71static int disabled_by_idle_boot_param(void)
  72{
  73	return boot_option_idle_override == IDLE_POLL ||
 
  74		boot_option_idle_override == IDLE_HALT;
  75}
  76
  77/*
  78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  79 * For now disable this. Probably a bug somewhere else.
  80 *
  81 * To skip this limit, boot/load with a large max_cstate limit.
  82 */
  83static int set_max_cstate(const struct dmi_system_id *id)
  84{
  85	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  86		return 0;
  87
  88	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  89	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
  90	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  91
  92	max_cstate = (long)id->driver_data;
  93
  94	return 0;
  95}
  96
  97static struct dmi_system_id processor_power_dmi_table[] = {
 
 
  98	{ set_max_cstate, "Clevo 5600D", {
  99	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 100	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 101	 (void *)2},
 102	{ set_max_cstate, "Pavilion zv5000", {
 103	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 104	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 105	 (void *)1},
 106	{ set_max_cstate, "Asus L8400B", {
 107	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 108	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 109	 (void *)1},
 110	{},
 111};
 112
 113
 114/*
 115 * Callers should disable interrupts before the call and enable
 116 * interrupts after return.
 117 */
 118static void acpi_safe_halt(void)
 119{
 120	if (!tif_need_resched()) {
 
 
 
 
 
 
 121		safe_halt();
 122		local_irq_disable();
 123	}
 
 124}
 125
 126#ifdef ARCH_APICTIMER_STOPS_ON_C3
 127
 128/*
 129 * Some BIOS implementations switch to C3 in the published C2 state.
 130 * This seems to be a common problem on AMD boxen, but other vendors
 131 * are affected too. We pick the most conservative approach: we assume
 132 * that the local APIC stops in both C2 and C3.
 133 */
 134static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 135				   struct acpi_processor_cx *cx)
 136{
 137	struct acpi_processor_power *pwr = &pr->power;
 138	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 139
 140	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 141		return;
 142
 143	if (amd_e400_c1e_detected)
 144		type = ACPI_STATE_C1;
 145
 146	/*
 147	 * Check, if one of the previous states already marked the lapic
 148	 * unstable
 149	 */
 150	if (pwr->timer_broadcast_on_state < state)
 151		return;
 152
 153	if (cx->type >= type)
 154		pr->power.timer_broadcast_on_state = state;
 155}
 156
 157static void __lapic_timer_propagate_broadcast(void *arg)
 158{
 159	struct acpi_processor *pr = (struct acpi_processor *) arg;
 160	unsigned long reason;
 161
 162	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 163		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 164
 165	clockevents_notify(reason, &pr->id);
 166}
 167
 168static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 169{
 170	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 171				 (void *)pr, 1);
 172}
 173
 174/* Power(C) State timer broadcast control */
 175static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 176				       struct acpi_processor_cx *cx,
 177				       int broadcast)
 178{
 179	int state = cx - pr->power.states;
 180
 181	if (state >= pr->power.timer_broadcast_on_state) {
 182		unsigned long reason;
 183
 184		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 185			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 186		clockevents_notify(reason, &pr->id);
 187	}
 188}
 189
 190#else
 191
 192static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 193				   struct acpi_processor_cx *cstate) { }
 194static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 195static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 196				       struct acpi_processor_cx *cx,
 197				       int broadcast)
 198{
 199}
 200
 201#endif
 202
 203#ifdef CONFIG_PM_SLEEP
 
 
 
 204static u32 saved_bm_rld;
 205
 206static int acpi_processor_suspend(void)
 207{
 208	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
 209	return 0;
 210}
 211
 212static void acpi_processor_resume(void)
 213{
 214	u32 resumed_bm_rld = 0;
 215
 216	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
 217	if (resumed_bm_rld == saved_bm_rld)
 218		return;
 219
 220	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
 
 221}
 222
 223static struct syscore_ops acpi_processor_syscore_ops = {
 224	.suspend = acpi_processor_suspend,
 225	.resume = acpi_processor_resume,
 226};
 227
 228void acpi_processor_syscore_init(void)
 229{
 230	register_syscore_ops(&acpi_processor_syscore_ops);
 231}
 232
 233void acpi_processor_syscore_exit(void)
 234{
 235	unregister_syscore_ops(&acpi_processor_syscore_ops);
 
 
 
 
 
 236}
 237#endif /* CONFIG_PM_SLEEP */
 238
 239#if defined(CONFIG_X86)
 240static void tsc_check_state(int state)
 241{
 242	switch (boot_cpu_data.x86_vendor) {
 243	case X86_VENDOR_AMD:
 244	case X86_VENDOR_INTEL:
 245		/*
 246		 * AMD Fam10h TSC will tick in all
 247		 * C/P/S0/S1 states when this bit is set.
 248		 */
 249		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 250			return;
 251
 252		/*FALL THROUGH*/
 253	default:
 254		/* TSC could halt in idle, so notify users */
 255		if (state > ACPI_STATE_C1)
 256			mark_tsc_unstable("TSC halts in idle");
 257	}
 258}
 259#else
 260static void tsc_check_state(int state) { return; }
 261#endif
 262
 263static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 264{
 265
 
 
 
 266	if (!pr->pblk)
 267		return -ENODEV;
 268
 269	/* if info is obtained from pblk/fadt, type equals state */
 270	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 271	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 272
 273#ifndef CONFIG_HOTPLUG_CPU
 274	/*
 275	 * Check for P_LVL2_UP flag before entering C2 and above on
 276	 * an SMP system.
 277	 */
 278	if ((num_online_cpus() > 1) &&
 279	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 280		return -ENODEV;
 281#endif
 282
 283	/* determine C2 and C3 address from pblk */
 284	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 285	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 286
 287	/* determine latencies from FADT */
 288	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 289	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 290
 291	/*
 292	 * FADT specified C2 latency must be less than or equal to
 293	 * 100 microseconds.
 294	 */
 295	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 296		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 297			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 298		/* invalidate C2 */
 299		pr->power.states[ACPI_STATE_C2].address = 0;
 300	}
 301
 302	/*
 303	 * FADT supplied C3 latency must be less than or equal to
 304	 * 1000 microseconds.
 305	 */
 306	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 307		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 308			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 309		/* invalidate C3 */
 310		pr->power.states[ACPI_STATE_C3].address = 0;
 311	}
 312
 313	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 314			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 315			  pr->power.states[ACPI_STATE_C2].address,
 316			  pr->power.states[ACPI_STATE_C3].address));
 317
 318	return 0;
 319}
 320
 321static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 322{
 323	if (!pr->power.states[ACPI_STATE_C1].valid) {
 324		/* set the first C-State to C1 */
 325		/* all processors need to support C1 */
 326		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 327		pr->power.states[ACPI_STATE_C1].valid = 1;
 328		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 329	}
 330	/* the C0 state only exists as a filler in our array */
 331	pr->power.states[ACPI_STATE_C0].valid = 1;
 332	return 0;
 333}
 334
 335static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 336{
 337	acpi_status status = 0;
 338	u64 count;
 339	int current_count;
 340	int i;
 341	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 342	union acpi_object *cst;
 343
 344
 345	if (nocst)
 346		return -ENODEV;
 347
 348	current_count = 0;
 349
 350	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 351	if (ACPI_FAILURE(status)) {
 352		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 353		return -ENODEV;
 354	}
 355
 356	cst = buffer.pointer;
 357
 358	/* There must be at least 2 elements */
 359	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 360		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 361		status = -EFAULT;
 362		goto end;
 363	}
 364
 365	count = cst->package.elements[0].integer.value;
 366
 367	/* Validate number of power states. */
 368	if (count < 1 || count != cst->package.count - 1) {
 369		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 370		status = -EFAULT;
 371		goto end;
 372	}
 373
 374	/* Tell driver that at least _CST is supported. */
 375	pr->flags.has_cst = 1;
 376
 377	for (i = 1; i <= count; i++) {
 378		union acpi_object *element;
 379		union acpi_object *obj;
 380		struct acpi_power_register *reg;
 381		struct acpi_processor_cx cx;
 382
 383		memset(&cx, 0, sizeof(cx));
 384
 385		element = &(cst->package.elements[i]);
 386		if (element->type != ACPI_TYPE_PACKAGE)
 387			continue;
 388
 389		if (element->package.count != 4)
 390			continue;
 391
 392		obj = &(element->package.elements[0]);
 393
 394		if (obj->type != ACPI_TYPE_BUFFER)
 395			continue;
 396
 397		reg = (struct acpi_power_register *)obj->buffer.pointer;
 398
 399		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 400		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 401			continue;
 402
 403		/* There should be an easy way to extract an integer... */
 404		obj = &(element->package.elements[1]);
 405		if (obj->type != ACPI_TYPE_INTEGER)
 406			continue;
 407
 408		cx.type = obj->integer.value;
 409		/*
 410		 * Some buggy BIOSes won't list C1 in _CST -
 411		 * Let acpi_processor_get_power_info_default() handle them later
 412		 */
 413		if (i == 1 && cx.type != ACPI_STATE_C1)
 414			current_count++;
 415
 416		cx.address = reg->address;
 417		cx.index = current_count + 1;
 418
 419		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 420		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 421			if (acpi_processor_ffh_cstate_probe
 422					(pr->id, &cx, reg) == 0) {
 423				cx.entry_method = ACPI_CSTATE_FFH;
 424			} else if (cx.type == ACPI_STATE_C1) {
 425				/*
 426				 * C1 is a special case where FIXED_HARDWARE
 427				 * can be handled in non-MWAIT way as well.
 428				 * In that case, save this _CST entry info.
 429				 * Otherwise, ignore this info and continue.
 430				 */
 431				cx.entry_method = ACPI_CSTATE_HALT;
 432				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 433			} else {
 434				continue;
 435			}
 436			if (cx.type == ACPI_STATE_C1 &&
 437			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 438				/*
 439				 * In most cases the C1 space_id obtained from
 440				 * _CST object is FIXED_HARDWARE access mode.
 441				 * But when the option of idle=halt is added,
 442				 * the entry_method type should be changed from
 443				 * CSTATE_FFH to CSTATE_HALT.
 444				 * When the option of idle=nomwait is added,
 445				 * the C1 entry_method type should be
 446				 * CSTATE_HALT.
 447				 */
 448				cx.entry_method = ACPI_CSTATE_HALT;
 449				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 450			}
 451		} else {
 452			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 453				 cx.address);
 454		}
 455
 456		if (cx.type == ACPI_STATE_C1) {
 457			cx.valid = 1;
 458		}
 459
 460		obj = &(element->package.elements[2]);
 461		if (obj->type != ACPI_TYPE_INTEGER)
 462			continue;
 463
 464		cx.latency = obj->integer.value;
 465
 466		obj = &(element->package.elements[3]);
 467		if (obj->type != ACPI_TYPE_INTEGER)
 468			continue;
 469
 
 
 470		current_count++;
 471		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 472
 473		/*
 474		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 475		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 476		 */
 477		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 478			printk(KERN_WARNING
 479			       "Limiting number of power states to max (%d)\n",
 480			       ACPI_PROCESSOR_MAX_POWER);
 481			printk(KERN_WARNING
 482			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 483			break;
 484		}
 485	}
 486
 487	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 488			  current_count));
 489
 490	/* Validate number of power states discovered */
 491	if (current_count < 2)
 492		status = -EFAULT;
 493
 494      end:
 495	kfree(buffer.pointer);
 496
 497	return status;
 498}
 499
 500static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 501					   struct acpi_processor_cx *cx)
 502{
 503	static int bm_check_flag = -1;
 504	static int bm_control_flag = -1;
 505
 506
 507	if (!cx->address)
 508		return;
 509
 510	/*
 511	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 512	 * DMA transfers are used by any ISA device to avoid livelock.
 513	 * Note that we could disable Type-F DMA (as recommended by
 514	 * the erratum), but this is known to disrupt certain ISA
 515	 * devices thus we take the conservative approach.
 516	 */
 517	else if (errata.piix4.fdma) {
 518		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 519				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 520		return;
 521	}
 522
 523	/* All the logic here assumes flags.bm_check is same across all CPUs */
 524	if (bm_check_flag == -1) {
 525		/* Determine whether bm_check is needed based on CPU  */
 526		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 527		bm_check_flag = pr->flags.bm_check;
 528		bm_control_flag = pr->flags.bm_control;
 529	} else {
 530		pr->flags.bm_check = bm_check_flag;
 531		pr->flags.bm_control = bm_control_flag;
 532	}
 533
 534	if (pr->flags.bm_check) {
 535		if (!pr->flags.bm_control) {
 536			if (pr->flags.has_cst != 1) {
 537				/* bus mastering control is necessary */
 538				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 539					"C3 support requires BM control\n"));
 540				return;
 541			} else {
 542				/* Here we enter C3 without bus mastering */
 543				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 544					"C3 support without BM control\n"));
 545			}
 546		}
 547	} else {
 548		/*
 549		 * WBINVD should be set in fadt, for C3 state to be
 550		 * supported on when bm_check is not required.
 551		 */
 552		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 553			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 554					  "Cache invalidation should work properly"
 555					  " for C3 to be enabled on SMP systems\n"));
 556			return;
 557		}
 558	}
 559
 560	/*
 561	 * Otherwise we've met all of our C3 requirements.
 562	 * Normalize the C3 latency to expidite policy.  Enable
 563	 * checking of bus mastering status (bm_check) so we can
 564	 * use this in our C3 policy
 565	 */
 566	cx->valid = 1;
 567
 
 568	/*
 569	 * On older chipsets, BM_RLD needs to be set
 570	 * in order for Bus Master activity to wake the
 571	 * system from C3.  Newer chipsets handle DMA
 572	 * during C3 automatically and BM_RLD is a NOP.
 573	 * In either case, the proper way to
 574	 * handle BM_RLD is to set it and leave it set.
 575	 */
 576	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 577
 578	return;
 579}
 580
 581static int acpi_processor_power_verify(struct acpi_processor *pr)
 582{
 583	unsigned int i;
 584	unsigned int working = 0;
 585
 586	pr->power.timer_broadcast_on_state = INT_MAX;
 587
 588	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 589		struct acpi_processor_cx *cx = &pr->power.states[i];
 590
 591		switch (cx->type) {
 592		case ACPI_STATE_C1:
 593			cx->valid = 1;
 594			break;
 595
 596		case ACPI_STATE_C2:
 597			if (!cx->address)
 598				break;
 599			cx->valid = 1;
 
 600			break;
 601
 602		case ACPI_STATE_C3:
 603			acpi_processor_power_verify_c3(pr, cx);
 604			break;
 605		}
 606		if (!cx->valid)
 607			continue;
 608
 609		lapic_timer_check_state(i, pr, cx);
 610		tsc_check_state(cx->type);
 611		working++;
 612	}
 613
 614	lapic_timer_propagate_broadcast(pr);
 615
 616	return (working);
 617}
 618
 619static int acpi_processor_get_power_info(struct acpi_processor *pr)
 620{
 621	unsigned int i;
 622	int result;
 623
 624
 625	/* NOTE: the idle thread may not be running while calling
 626	 * this function */
 627
 628	/* Zero initialize all the C-states info. */
 629	memset(pr->power.states, 0, sizeof(pr->power.states));
 630
 631	result = acpi_processor_get_power_info_cst(pr);
 632	if (result == -ENODEV)
 633		result = acpi_processor_get_power_info_fadt(pr);
 634
 635	if (result)
 636		return result;
 637
 638	acpi_processor_get_power_info_default(pr);
 639
 640	pr->power.count = acpi_processor_power_verify(pr);
 641
 642	/*
 643	 * if one state of type C2 or C3 is available, mark this
 644	 * CPU as being "idle manageable"
 645	 */
 646	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 647		if (pr->power.states[i].valid) {
 648			pr->power.count = i;
 649			if (pr->power.states[i].type >= ACPI_STATE_C2)
 650				pr->flags.power = 1;
 651		}
 652	}
 653
 654	return 0;
 655}
 656
 657/**
 658 * acpi_idle_bm_check - checks if bus master activity was detected
 659 */
 660static int acpi_idle_bm_check(void)
 661{
 662	u32 bm_status = 0;
 663
 664	if (bm_check_disable)
 665		return 0;
 666
 667	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 668	if (bm_status)
 669		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 670	/*
 671	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 672	 * the true state of bus mastering activity; forcing us to
 673	 * manually check the BMIDEA bit of each IDE channel.
 674	 */
 675	else if (errata.piix4.bmisx) {
 676		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 677		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 678			bm_status = 1;
 679	}
 680	return bm_status;
 681}
 682
 683/**
 684 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 685 * @cx: cstate data
 686 *
 687 * Caller disables interrupt before call and enables interrupt after return.
 688 */
 689static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 690{
 691	/* Don't trace irqs off for idle */
 692	stop_critical_timings();
 693	if (cx->entry_method == ACPI_CSTATE_FFH) {
 694		/* Call into architectural FFH based C-state */
 695		acpi_processor_ffh_cstate_enter(cx);
 696	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 697		acpi_safe_halt();
 698	} else {
 699		/* IO port based C-state */
 700		inb(cx->address);
 701		/* Dummy wait op - must do something useless after P_LVL2 read
 702		   because chipsets cannot guarantee that STPCLK# signal
 703		   gets asserted in time to freeze execution properly. */
 704		inl(acpi_gbl_FADT.xpm_timer_block.address);
 705	}
 706	start_critical_timings();
 707}
 708
 709/**
 710 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 711 * @dev: the target CPU
 712 * @drv: cpuidle driver containing cpuidle state info
 713 * @index: index of target state
 714 *
 715 * This is equivalent to the HALT instruction.
 716 */
 717static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 718		struct cpuidle_driver *drv, int index)
 719{
 
 
 720	struct acpi_processor *pr;
 721	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 722
 723	pr = __this_cpu_read(processors);
 
 724
 725	if (unlikely(!pr))
 726		return -EINVAL;
 727
 
 
 
 
 
 
 
 
 728	lapic_timer_state_broadcast(pr, cx, 1);
 
 729	acpi_idle_do_entry(cx);
 
 
 730
 
 
 
 
 
 731	lapic_timer_state_broadcast(pr, cx, 0);
 732
 733	return index;
 734}
 735
 736
 737/**
 738 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 739 * @dev: the target CPU
 740 * @index: the index of suggested state
 741 */
 742static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 743{
 744	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 745
 746	ACPI_FLUSH_CPU_CACHE();
 747
 748	while (1) {
 749
 750		if (cx->entry_method == ACPI_CSTATE_HALT)
 751			safe_halt();
 752		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 753			inb(cx->address);
 754			/* See comment in acpi_idle_do_entry() */
 755			inl(acpi_gbl_FADT.xpm_timer_block.address);
 756		} else
 757			return -ENODEV;
 758	}
 759
 760	/* Never reached */
 761	return 0;
 762}
 763
 764/**
 765 * acpi_idle_enter_simple - enters an ACPI state without BM handling
 766 * @dev: the target CPU
 767 * @drv: cpuidle driver with cpuidle state information
 768 * @index: the index of suggested state
 769 */
 770static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 771		struct cpuidle_driver *drv, int index)
 772{
 773	struct acpi_processor *pr;
 774	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 775
 776	pr = __this_cpu_read(processors);
 
 777
 778	if (unlikely(!pr))
 779		return -EINVAL;
 780
 781#ifdef CONFIG_HOTPLUG_CPU
 782	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
 783	    !pr->flags.has_cst &&
 784	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 785		return acpi_idle_enter_c1(dev, drv, CPUIDLE_DRIVER_STATE_START);
 786#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787
 788	/*
 789	 * Must be done before busmaster disable as we might need to
 790	 * access HPET !
 791	 */
 792	lapic_timer_state_broadcast(pr, cx, 1);
 793
 794	if (cx->type == ACPI_STATE_C3)
 795		ACPI_FLUSH_CPU_CACHE();
 796
 
 797	/* Tell the scheduler that we are going deep-idle: */
 798	sched_clock_idle_sleep_event();
 799	acpi_idle_do_entry(cx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	sched_clock_idle_wakeup_event(0);
 802
 803	lapic_timer_state_broadcast(pr, cx, 0);
 
 804	return index;
 805}
 806
 807static int c3_cpu_count;
 808static DEFINE_RAW_SPINLOCK(c3_lock);
 809
 810/**
 811 * acpi_idle_enter_bm - enters C3 with proper BM handling
 812 * @dev: the target CPU
 813 * @drv: cpuidle driver containing state data
 814 * @index: the index of suggested state
 815 *
 816 * If BM is detected, the deepest non-C3 idle state is entered instead.
 817 */
 818static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 819		struct cpuidle_driver *drv, int index)
 820{
 821	struct acpi_processor *pr;
 822	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 
 
 
 
 
 823
 824	pr = __this_cpu_read(processors);
 
 825
 826	if (unlikely(!pr))
 827		return -EINVAL;
 828
 829#ifdef CONFIG_HOTPLUG_CPU
 830	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
 831	    !pr->flags.has_cst &&
 832	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 833		return acpi_idle_enter_c1(dev, drv, CPUIDLE_DRIVER_STATE_START);
 834#endif
 835
 836	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 837		if (drv->safe_state_index >= 0) {
 838			return drv->states[drv->safe_state_index].enter(dev,
 839						drv, drv->safe_state_index);
 840		} else {
 841			acpi_safe_halt();
 
 
 
 842			return -EBUSY;
 843		}
 844	}
 845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846	acpi_unlazy_tlb(smp_processor_id());
 847
 848	/* Tell the scheduler that we are going deep-idle: */
 849	sched_clock_idle_sleep_event();
 850	/*
 851	 * Must be done before busmaster disable as we might need to
 852	 * access HPET !
 853	 */
 854	lapic_timer_state_broadcast(pr, cx, 1);
 855
 
 856	/*
 857	 * disable bus master
 858	 * bm_check implies we need ARB_DIS
 859	 * !bm_check implies we need cache flush
 860	 * bm_control implies whether we can do ARB_DIS
 861	 *
 862	 * That leaves a case where bm_check is set and bm_control is
 863	 * not set. In that case we cannot do much, we enter C3
 864	 * without doing anything.
 865	 */
 866	if (pr->flags.bm_check && pr->flags.bm_control) {
 867		raw_spin_lock(&c3_lock);
 868		c3_cpu_count++;
 869		/* Disable bus master arbitration when all CPUs are in C3 */
 870		if (c3_cpu_count == num_online_cpus())
 871			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 872		raw_spin_unlock(&c3_lock);
 873	} else if (!pr->flags.bm_check) {
 874		ACPI_FLUSH_CPU_CACHE();
 875	}
 876
 877	acpi_idle_do_entry(cx);
 878
 879	/* Re-enable bus master arbitration */
 880	if (pr->flags.bm_check && pr->flags.bm_control) {
 881		raw_spin_lock(&c3_lock);
 882		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 883		c3_cpu_count--;
 884		raw_spin_unlock(&c3_lock);
 885	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	sched_clock_idle_wakeup_event(0);
 888
 889	lapic_timer_state_broadcast(pr, cx, 0);
 
 890	return index;
 891}
 892
 893struct cpuidle_driver acpi_idle_driver = {
 894	.name =		"acpi_idle",
 895	.owner =	THIS_MODULE,
 896};
 897
 898/**
 899 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
 900 * device i.e. per-cpu data
 901 *
 902 * @pr: the ACPI processor
 903 * @dev : the cpuidle device
 904 */
 905static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 906					   struct cpuidle_device *dev)
 907{
 908	int i, count = CPUIDLE_DRIVER_STATE_START;
 909	struct acpi_processor_cx *cx;
 
 
 910
 911	if (!pr->flags.power_setup_done)
 912		return -EINVAL;
 913
 914	if (pr->flags.power == 0) {
 915		return -EINVAL;
 916	}
 917
 918	if (!dev)
 919		return -EINVAL;
 920
 921	dev->cpu = pr->id;
 922
 923	if (max_cstate == 0)
 924		max_cstate = 1;
 925
 926	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 927		cx = &pr->power.states[i];
 
 928
 929		if (!cx->valid)
 930			continue;
 931
 932		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 
 
 
 
 
 
 
 933
 934		count++;
 935		if (count == CPUIDLE_STATE_MAX)
 936			break;
 937	}
 938
 
 
 939	if (!count)
 940		return -EINVAL;
 941
 942	return 0;
 943}
 944
 945/**
 946 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
 947 * global state data i.e. idle routines
 948 *
 949 * @pr: the ACPI processor
 950 */
 951static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
 952{
 953	int i, count = CPUIDLE_DRIVER_STATE_START;
 954	struct acpi_processor_cx *cx;
 955	struct cpuidle_state *state;
 956	struct cpuidle_driver *drv = &acpi_idle_driver;
 957
 958	if (!pr->flags.power_setup_done)
 959		return -EINVAL;
 960
 961	if (pr->flags.power == 0)
 962		return -EINVAL;
 963
 964	drv->safe_state_index = -1;
 965	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
 966		drv->states[i].name[0] = '\0';
 967		drv->states[i].desc[0] = '\0';
 968	}
 969
 970	if (max_cstate == 0)
 971		max_cstate = 1;
 972
 973	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 974		cx = &pr->power.states[i];
 975
 976		if (!cx->valid)
 977			continue;
 978
 
 
 
 
 
 
 
 979		state = &drv->states[count];
 980		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 981		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 982		state->exit_latency = cx->latency;
 983		state->target_residency = cx->latency * latency_factor;
 984
 985		state->flags = 0;
 986		switch (cx->type) {
 987			case ACPI_STATE_C1:
 988			if (cx->entry_method == ACPI_CSTATE_FFH)
 989				state->flags |= CPUIDLE_FLAG_TIME_VALID;
 990
 991			state->enter = acpi_idle_enter_c1;
 992			state->enter_dead = acpi_idle_play_dead;
 993			drv->safe_state_index = count;
 994			break;
 995
 996			case ACPI_STATE_C2:
 997			state->flags |= CPUIDLE_FLAG_TIME_VALID;
 998			state->enter = acpi_idle_enter_simple;
 999			state->enter_dead = acpi_idle_play_dead;
1000			drv->safe_state_index = count;
1001			break;
1002
1003			case ACPI_STATE_C3:
1004			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1005			state->enter = pr->flags.bm_check ?
1006					acpi_idle_enter_bm :
1007					acpi_idle_enter_simple;
1008			break;
1009		}
1010
1011		count++;
1012		if (count == CPUIDLE_STATE_MAX)
1013			break;
1014	}
1015
1016	drv->state_count = count;
1017
1018	if (!count)
1019		return -EINVAL;
1020
1021	return 0;
1022}
1023
1024int acpi_processor_hotplug(struct acpi_processor *pr)
1025{
1026	int ret = 0;
1027	struct cpuidle_device *dev;
1028
1029	if (disabled_by_idle_boot_param())
1030		return 0;
1031
1032	if (nocst)
 
 
 
1033		return -ENODEV;
 
1034
1035	if (!pr->flags.power_setup_done)
1036		return -ENODEV;
1037
1038	dev = per_cpu(acpi_cpuidle_device, pr->id);
1039	cpuidle_pause_and_lock();
1040	cpuidle_disable_device(dev);
1041	acpi_processor_get_power_info(pr);
1042	if (pr->flags.power) {
1043		acpi_processor_setup_cpuidle_cx(pr, dev);
1044		ret = cpuidle_enable_device(dev);
1045	}
1046	cpuidle_resume_and_unlock();
1047
1048	return ret;
1049}
1050
1051int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1052{
1053	int cpu;
1054	struct acpi_processor *_pr;
1055	struct cpuidle_device *dev;
1056
1057	if (disabled_by_idle_boot_param())
1058		return 0;
1059
 
 
 
1060	if (nocst)
1061		return -ENODEV;
1062
1063	if (!pr->flags.power_setup_done)
1064		return -ENODEV;
1065
1066	/*
1067	 * FIXME:  Design the ACPI notification to make it once per
1068	 * system instead of once per-cpu.  This condition is a hack
1069	 * to make the code that updates C-States be called once.
1070	 */
1071
1072	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1073
1074		cpuidle_pause_and_lock();
1075		/* Protect against cpu-hotplug */
1076		get_online_cpus();
1077
1078		/* Disable all cpuidle devices */
1079		for_each_online_cpu(cpu) {
1080			_pr = per_cpu(processors, cpu);
1081			if (!_pr || !_pr->flags.power_setup_done)
1082				continue;
1083			dev = per_cpu(acpi_cpuidle_device, cpu);
1084			cpuidle_disable_device(dev);
1085		}
1086
1087		/* Populate Updated C-state information */
1088		acpi_processor_get_power_info(pr);
1089		acpi_processor_setup_cpuidle_states(pr);
1090
1091		/* Enable all cpuidle devices */
1092		for_each_online_cpu(cpu) {
1093			_pr = per_cpu(processors, cpu);
1094			if (!_pr || !_pr->flags.power_setup_done)
1095				continue;
1096			acpi_processor_get_power_info(_pr);
1097			if (_pr->flags.power) {
1098				dev = per_cpu(acpi_cpuidle_device, cpu);
1099				acpi_processor_setup_cpuidle_cx(_pr, dev);
1100				cpuidle_enable_device(dev);
1101			}
1102		}
1103		put_online_cpus();
1104		cpuidle_resume_and_unlock();
1105	}
1106
1107	return 0;
1108}
1109
1110static int acpi_processor_registered;
1111
1112int acpi_processor_power_init(struct acpi_processor *pr)
 
1113{
1114	acpi_status status = 0;
1115	int retval;
1116	struct cpuidle_device *dev;
1117	static int first_run;
1118
1119	if (disabled_by_idle_boot_param())
1120		return 0;
1121
1122	if (!first_run) {
1123		dmi_check_system(processor_power_dmi_table);
1124		max_cstate = acpi_processor_cstate_check(max_cstate);
1125		if (max_cstate < ACPI_C_STATES_MAX)
1126			printk(KERN_NOTICE
1127			       "ACPI: processor limited to max C-state %d\n",
1128			       max_cstate);
1129		first_run++;
1130	}
1131
 
 
 
1132	if (acpi_gbl_FADT.cst_control && !nocst) {
1133		status =
1134		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1135		if (ACPI_FAILURE(status)) {
1136			ACPI_EXCEPTION((AE_INFO, status,
1137					"Notifying BIOS of _CST ability failed"));
1138		}
1139	}
1140
1141	acpi_processor_get_power_info(pr);
1142	pr->flags.power_setup_done = 1;
1143
1144	/*
1145	 * Install the idle handler if processor power management is supported.
1146	 * Note that we use previously set idle handler will be used on
1147	 * platforms that only support C1.
1148	 */
1149	if (pr->flags.power) {
1150		/* Register acpi_idle_driver if not already registered */
1151		if (!acpi_processor_registered) {
1152			acpi_processor_setup_cpuidle_states(pr);
1153			retval = cpuidle_register_driver(&acpi_idle_driver);
1154			if (retval)
1155				return retval;
1156			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1157					acpi_idle_driver.name);
1158		}
1159
1160		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1161		if (!dev)
1162			return -ENOMEM;
1163		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1164
1165		acpi_processor_setup_cpuidle_cx(pr, dev);
1166
1167		/* Register per-cpu cpuidle_device. Cpuidle driver
1168		 * must already be registered before registering device
1169		 */
1170		retval = cpuidle_register_device(dev);
 
1171		if (retval) {
1172			if (acpi_processor_registered == 0)
1173				cpuidle_unregister_driver(&acpi_idle_driver);
1174			return retval;
1175		}
1176		acpi_processor_registered++;
1177	}
1178	return 0;
1179}
1180
1181int acpi_processor_power_exit(struct acpi_processor *pr)
 
1182{
1183	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1184
1185	if (disabled_by_idle_boot_param())
1186		return 0;
1187
1188	if (pr->flags.power) {
1189		cpuidle_unregister_device(dev);
1190		acpi_processor_registered--;
1191		if (acpi_processor_registered == 0)
1192			cpuidle_unregister_driver(&acpi_idle_driver);
1193	}
1194
1195	pr->flags.power_setup_done = 0;
1196	return 0;
1197}