Loading...
1#include <linux/init.h>
2#include <linux/kernel.h>
3
4#include <linux/string.h>
5#include <linux/bitops.h>
6#include <linux/smp.h>
7#include <linux/sched.h>
8#include <linux/thread_info.h>
9#include <linux/module.h>
10#include <linux/uaccess.h>
11
12#include <asm/processor.h>
13#include <asm/pgtable.h>
14#include <asm/msr.h>
15#include <asm/bugs.h>
16#include <asm/cpu.h>
17
18#ifdef CONFIG_X86_64
19#include <linux/topology.h>
20#include <asm/numa_64.h>
21#endif
22
23#include "cpu.h"
24
25#ifdef CONFIG_X86_LOCAL_APIC
26#include <asm/mpspec.h>
27#include <asm/apic.h>
28#endif
29
30static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
31{
32 u64 misc_enable;
33
34 /* Unmask CPUID levels if masked: */
35 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
36 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
37
38 if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
39 misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
40 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
41 c->cpuid_level = cpuid_eax(0);
42 get_cpu_cap(c);
43 }
44 }
45
46 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
47 (c->x86 == 0x6 && c->x86_model >= 0x0e))
48 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
49
50 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
51 unsigned lower_word;
52
53 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
54 /* Required by the SDM */
55 sync_core();
56 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
57 }
58
59 /*
60 * Atom erratum AAE44/AAF40/AAG38/AAH41:
61 *
62 * A race condition between speculative fetches and invalidating
63 * a large page. This is worked around in microcode, but we
64 * need the microcode to have already been loaded... so if it is
65 * not, recommend a BIOS update and disable large pages.
66 */
67 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
68 c->microcode < 0x20e) {
69 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
70 clear_cpu_cap(c, X86_FEATURE_PSE);
71 }
72
73#ifdef CONFIG_X86_64
74 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
75#else
76 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
77 if (c->x86 == 15 && c->x86_cache_alignment == 64)
78 c->x86_cache_alignment = 128;
79#endif
80
81 /* CPUID workaround for 0F33/0F34 CPU */
82 if (c->x86 == 0xF && c->x86_model == 0x3
83 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
84 c->x86_phys_bits = 36;
85
86 /*
87 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
88 * with P/T states and does not stop in deep C-states.
89 *
90 * It is also reliable across cores and sockets. (but not across
91 * cabinets - we turn it off in that case explicitly.)
92 */
93 if (c->x86_power & (1 << 8)) {
94 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
95 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
96 if (!check_tsc_unstable())
97 sched_clock_stable = 1;
98 }
99
100 /*
101 * There is a known erratum on Pentium III and Core Solo
102 * and Core Duo CPUs.
103 * " Page with PAT set to WC while associated MTRR is UC
104 * may consolidate to UC "
105 * Because of this erratum, it is better to stick with
106 * setting WC in MTRR rather than using PAT on these CPUs.
107 *
108 * Enable PAT WC only on P4, Core 2 or later CPUs.
109 */
110 if (c->x86 == 6 && c->x86_model < 15)
111 clear_cpu_cap(c, X86_FEATURE_PAT);
112
113#ifdef CONFIG_KMEMCHECK
114 /*
115 * P4s have a "fast strings" feature which causes single-
116 * stepping REP instructions to only generate a #DB on
117 * cache-line boundaries.
118 *
119 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
120 * (model 2) with the same problem.
121 */
122 if (c->x86 == 15) {
123 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
124
125 if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
126 printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
127
128 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
129 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
130 }
131 }
132#endif
133
134 /*
135 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
136 * clear the fast string and enhanced fast string CPU capabilities.
137 */
138 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
139 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
140 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
141 printk(KERN_INFO "Disabled fast string operations\n");
142 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
143 setup_clear_cpu_cap(X86_FEATURE_ERMS);
144 }
145 }
146}
147
148#ifdef CONFIG_X86_32
149/*
150 * Early probe support logic for ppro memory erratum #50
151 *
152 * This is called before we do cpu ident work
153 */
154
155int __cpuinit ppro_with_ram_bug(void)
156{
157 /* Uses data from early_cpu_detect now */
158 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
159 boot_cpu_data.x86 == 6 &&
160 boot_cpu_data.x86_model == 1 &&
161 boot_cpu_data.x86_mask < 8) {
162 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
163 return 1;
164 }
165 return 0;
166}
167
168#ifdef CONFIG_X86_F00F_BUG
169static void __cpuinit trap_init_f00f_bug(void)
170{
171 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
172
173 /*
174 * Update the IDT descriptor and reload the IDT so that
175 * it uses the read-only mapped virtual address.
176 */
177 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
178 load_idt(&idt_descr);
179}
180#endif
181
182static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
183{
184 /* calling is from identify_secondary_cpu() ? */
185 if (!c->cpu_index)
186 return;
187
188 /*
189 * Mask B, Pentium, but not Pentium MMX
190 */
191 if (c->x86 == 5 &&
192 c->x86_mask >= 1 && c->x86_mask <= 4 &&
193 c->x86_model <= 3) {
194 /*
195 * Remember we have B step Pentia with bugs
196 */
197 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
198 "with B stepping processors.\n");
199 }
200}
201
202static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
203{
204 unsigned long lo, hi;
205
206#ifdef CONFIG_X86_F00F_BUG
207 /*
208 * All current models of Pentium and Pentium with MMX technology CPUs
209 * have the F0 0F bug, which lets nonprivileged users lock up the
210 * system.
211 * Note that the workaround only should be initialized once...
212 */
213 c->f00f_bug = 0;
214 if (!paravirt_enabled() && c->x86 == 5) {
215 static int f00f_workaround_enabled;
216
217 c->f00f_bug = 1;
218 if (!f00f_workaround_enabled) {
219 trap_init_f00f_bug();
220 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
221 f00f_workaround_enabled = 1;
222 }
223 }
224#endif
225
226 /*
227 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
228 * model 3 mask 3
229 */
230 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
231 clear_cpu_cap(c, X86_FEATURE_SEP);
232
233 /*
234 * P4 Xeon errata 037 workaround.
235 * Hardware prefetcher may cause stale data to be loaded into the cache.
236 */
237 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
238 rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
239 if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
240 printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
241 printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
242 lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
243 wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
244 }
245 }
246
247 /*
248 * See if we have a good local APIC by checking for buggy Pentia,
249 * i.e. all B steppings and the C2 stepping of P54C when using their
250 * integrated APIC (see 11AP erratum in "Pentium Processor
251 * Specification Update").
252 */
253 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
254 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
255 set_cpu_cap(c, X86_FEATURE_11AP);
256
257
258#ifdef CONFIG_X86_INTEL_USERCOPY
259 /*
260 * Set up the preferred alignment for movsl bulk memory moves
261 */
262 switch (c->x86) {
263 case 4: /* 486: untested */
264 break;
265 case 5: /* Old Pentia: untested */
266 break;
267 case 6: /* PII/PIII only like movsl with 8-byte alignment */
268 movsl_mask.mask = 7;
269 break;
270 case 15: /* P4 is OK down to 8-byte alignment */
271 movsl_mask.mask = 7;
272 break;
273 }
274#endif
275
276#ifdef CONFIG_X86_NUMAQ
277 numaq_tsc_disable();
278#endif
279
280 intel_smp_check(c);
281}
282#else
283static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
284{
285}
286#endif
287
288static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
289{
290#ifdef CONFIG_NUMA
291 unsigned node;
292 int cpu = smp_processor_id();
293
294 /* Don't do the funky fallback heuristics the AMD version employs
295 for now. */
296 node = numa_cpu_node(cpu);
297 if (node == NUMA_NO_NODE || !node_online(node)) {
298 /* reuse the value from init_cpu_to_node() */
299 node = cpu_to_node(cpu);
300 }
301 numa_set_node(cpu, node);
302#endif
303}
304
305/*
306 * find out the number of processor cores on the die
307 */
308static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
309{
310 unsigned int eax, ebx, ecx, edx;
311
312 if (c->cpuid_level < 4)
313 return 1;
314
315 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
316 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
317 if (eax & 0x1f)
318 return (eax >> 26) + 1;
319 else
320 return 1;
321}
322
323static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
324{
325 /* Intel VMX MSR indicated features */
326#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
327#define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
328#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
329#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
330#define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
331#define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
332
333 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
334
335 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
336 clear_cpu_cap(c, X86_FEATURE_VNMI);
337 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
338 clear_cpu_cap(c, X86_FEATURE_EPT);
339 clear_cpu_cap(c, X86_FEATURE_VPID);
340
341 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
342 msr_ctl = vmx_msr_high | vmx_msr_low;
343 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
344 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
345 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
346 set_cpu_cap(c, X86_FEATURE_VNMI);
347 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
348 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
349 vmx_msr_low, vmx_msr_high);
350 msr_ctl2 = vmx_msr_high | vmx_msr_low;
351 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
352 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
353 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
354 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
355 set_cpu_cap(c, X86_FEATURE_EPT);
356 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
357 set_cpu_cap(c, X86_FEATURE_VPID);
358 }
359}
360
361static void __cpuinit init_intel(struct cpuinfo_x86 *c)
362{
363 unsigned int l2 = 0;
364
365 early_init_intel(c);
366
367 intel_workarounds(c);
368
369 /*
370 * Detect the extended topology information if available. This
371 * will reinitialise the initial_apicid which will be used
372 * in init_intel_cacheinfo()
373 */
374 detect_extended_topology(c);
375
376 l2 = init_intel_cacheinfo(c);
377 if (c->cpuid_level > 9) {
378 unsigned eax = cpuid_eax(10);
379 /* Check for version and the number of counters */
380 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
381 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
382 }
383
384 if (cpu_has_xmm2)
385 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
386 if (cpu_has_ds) {
387 unsigned int l1;
388 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
389 if (!(l1 & (1<<11)))
390 set_cpu_cap(c, X86_FEATURE_BTS);
391 if (!(l1 & (1<<12)))
392 set_cpu_cap(c, X86_FEATURE_PEBS);
393 }
394
395 if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
396 set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
397
398#ifdef CONFIG_X86_64
399 if (c->x86 == 15)
400 c->x86_cache_alignment = c->x86_clflush_size * 2;
401 if (c->x86 == 6)
402 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
403#else
404 /*
405 * Names for the Pentium II/Celeron processors
406 * detectable only by also checking the cache size.
407 * Dixon is NOT a Celeron.
408 */
409 if (c->x86 == 6) {
410 char *p = NULL;
411
412 switch (c->x86_model) {
413 case 5:
414 if (l2 == 0)
415 p = "Celeron (Covington)";
416 else if (l2 == 256)
417 p = "Mobile Pentium II (Dixon)";
418 break;
419
420 case 6:
421 if (l2 == 128)
422 p = "Celeron (Mendocino)";
423 else if (c->x86_mask == 0 || c->x86_mask == 5)
424 p = "Celeron-A";
425 break;
426
427 case 8:
428 if (l2 == 128)
429 p = "Celeron (Coppermine)";
430 break;
431 }
432
433 if (p)
434 strcpy(c->x86_model_id, p);
435 }
436
437 if (c->x86 == 15)
438 set_cpu_cap(c, X86_FEATURE_P4);
439 if (c->x86 == 6)
440 set_cpu_cap(c, X86_FEATURE_P3);
441#endif
442
443 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
444 /*
445 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
446 * detection.
447 */
448 c->x86_max_cores = intel_num_cpu_cores(c);
449#ifdef CONFIG_X86_32
450 detect_ht(c);
451#endif
452 }
453
454 /* Work around errata */
455 srat_detect_node(c);
456
457 if (cpu_has(c, X86_FEATURE_VMX))
458 detect_vmx_virtcap(c);
459
460 /*
461 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
462 * x86_energy_perf_policy(8) is available to change it at run-time
463 */
464 if (cpu_has(c, X86_FEATURE_EPB)) {
465 u64 epb;
466
467 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
468 if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
469 printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
470 " Set to 'normal', was 'performance'\n"
471 "ENERGY_PERF_BIAS: View and update with"
472 " x86_energy_perf_policy(8)\n");
473 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
474 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
475 }
476 }
477}
478
479#ifdef CONFIG_X86_32
480static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
481{
482 /*
483 * Intel PIII Tualatin. This comes in two flavours.
484 * One has 256kb of cache, the other 512. We have no way
485 * to determine which, so we use a boottime override
486 * for the 512kb model, and assume 256 otherwise.
487 */
488 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
489 size = 256;
490 return size;
491}
492#endif
493
494static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
495 .c_vendor = "Intel",
496 .c_ident = { "GenuineIntel" },
497#ifdef CONFIG_X86_32
498 .c_models = {
499 { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
500 {
501 [0] = "486 DX-25/33",
502 [1] = "486 DX-50",
503 [2] = "486 SX",
504 [3] = "486 DX/2",
505 [4] = "486 SL",
506 [5] = "486 SX/2",
507 [7] = "486 DX/2-WB",
508 [8] = "486 DX/4",
509 [9] = "486 DX/4-WB"
510 }
511 },
512 { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
513 {
514 [0] = "Pentium 60/66 A-step",
515 [1] = "Pentium 60/66",
516 [2] = "Pentium 75 - 200",
517 [3] = "OverDrive PODP5V83",
518 [4] = "Pentium MMX",
519 [7] = "Mobile Pentium 75 - 200",
520 [8] = "Mobile Pentium MMX"
521 }
522 },
523 { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
524 {
525 [0] = "Pentium Pro A-step",
526 [1] = "Pentium Pro",
527 [3] = "Pentium II (Klamath)",
528 [4] = "Pentium II (Deschutes)",
529 [5] = "Pentium II (Deschutes)",
530 [6] = "Mobile Pentium II",
531 [7] = "Pentium III (Katmai)",
532 [8] = "Pentium III (Coppermine)",
533 [10] = "Pentium III (Cascades)",
534 [11] = "Pentium III (Tualatin)",
535 }
536 },
537 { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
538 {
539 [0] = "Pentium 4 (Unknown)",
540 [1] = "Pentium 4 (Willamette)",
541 [2] = "Pentium 4 (Northwood)",
542 [4] = "Pentium 4 (Foster)",
543 [5] = "Pentium 4 (Foster)",
544 }
545 },
546 },
547 .c_size_cache = intel_size_cache,
548#endif
549 .c_early_init = early_init_intel,
550 .c_init = init_intel,
551 .c_x86_vendor = X86_VENDOR_INTEL,
552};
553
554cpu_dev_register(intel_cpu_dev);
555
1#include <linux/kernel.h>
2
3#include <linux/string.h>
4#include <linux/bitops.h>
5#include <linux/smp.h>
6#include <linux/sched.h>
7#include <linux/thread_info.h>
8#include <linux/module.h>
9#include <linux/uaccess.h>
10
11#include <asm/processor.h>
12#include <asm/pgtable.h>
13#include <asm/msr.h>
14#include <asm/bugs.h>
15#include <asm/cpu.h>
16
17#ifdef CONFIG_X86_64
18#include <linux/topology.h>
19#endif
20
21#include "cpu.h"
22
23#ifdef CONFIG_X86_LOCAL_APIC
24#include <asm/mpspec.h>
25#include <asm/apic.h>
26#endif
27
28static void early_init_intel(struct cpuinfo_x86 *c)
29{
30 u64 misc_enable;
31
32 /* Unmask CPUID levels if masked: */
33 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 c->cpuid_level = cpuid_eax(0);
37 get_cpu_cap(c);
38 }
39 }
40
41 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 (c->x86 == 0x6 && c->x86_model >= 0x0e))
43 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44
45 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 unsigned lower_word;
47
48 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 /* Required by the SDM */
50 sync_core();
51 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52 }
53
54 /*
55 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56 *
57 * A race condition between speculative fetches and invalidating
58 * a large page. This is worked around in microcode, but we
59 * need the microcode to have already been loaded... so if it is
60 * not, recommend a BIOS update and disable large pages.
61 */
62 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 c->microcode < 0x20e) {
64 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65 clear_cpu_cap(c, X86_FEATURE_PSE);
66 }
67
68#ifdef CONFIG_X86_64
69 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70#else
71 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 c->x86_cache_alignment = 128;
74#endif
75
76 /* CPUID workaround for 0F33/0F34 CPU */
77 if (c->x86 == 0xF && c->x86_model == 0x3
78 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 c->x86_phys_bits = 36;
80
81 /*
82 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 * with P/T states and does not stop in deep C-states.
84 *
85 * It is also reliable across cores and sockets. (but not across
86 * cabinets - we turn it off in that case explicitly.)
87 */
88 if (c->x86_power & (1 << 8)) {
89 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 if (!check_tsc_unstable())
92 set_sched_clock_stable();
93 }
94
95 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 if (c->x86 == 6) {
97 switch (c->x86_model) {
98 case 0x27: /* Penwell */
99 case 0x35: /* Cloverview */
100 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
101 break;
102 default:
103 break;
104 }
105 }
106
107 /*
108 * There is a known erratum on Pentium III and Core Solo
109 * and Core Duo CPUs.
110 * " Page with PAT set to WC while associated MTRR is UC
111 * may consolidate to UC "
112 * Because of this erratum, it is better to stick with
113 * setting WC in MTRR rather than using PAT on these CPUs.
114 *
115 * Enable PAT WC only on P4, Core 2 or later CPUs.
116 */
117 if (c->x86 == 6 && c->x86_model < 15)
118 clear_cpu_cap(c, X86_FEATURE_PAT);
119
120#ifdef CONFIG_KMEMCHECK
121 /*
122 * P4s have a "fast strings" feature which causes single-
123 * stepping REP instructions to only generate a #DB on
124 * cache-line boundaries.
125 *
126 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127 * (model 2) with the same problem.
128 */
129 if (c->x86 == 15)
130 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
131 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
132 pr_info("kmemcheck: Disabling fast string operations\n");
133#endif
134
135 /*
136 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137 * clear the fast string and enhanced fast string CPU capabilities.
138 */
139 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
140 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
141 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
142 printk(KERN_INFO "Disabled fast string operations\n");
143 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
144 setup_clear_cpu_cap(X86_FEATURE_ERMS);
145 }
146 }
147}
148
149#ifdef CONFIG_X86_32
150/*
151 * Early probe support logic for ppro memory erratum #50
152 *
153 * This is called before we do cpu ident work
154 */
155
156int ppro_with_ram_bug(void)
157{
158 /* Uses data from early_cpu_detect now */
159 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
160 boot_cpu_data.x86 == 6 &&
161 boot_cpu_data.x86_model == 1 &&
162 boot_cpu_data.x86_mask < 8) {
163 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
164 return 1;
165 }
166 return 0;
167}
168
169static void intel_smp_check(struct cpuinfo_x86 *c)
170{
171 /* calling is from identify_secondary_cpu() ? */
172 if (!c->cpu_index)
173 return;
174
175 /*
176 * Mask B, Pentium, but not Pentium MMX
177 */
178 if (c->x86 == 5 &&
179 c->x86_mask >= 1 && c->x86_mask <= 4 &&
180 c->x86_model <= 3) {
181 /*
182 * Remember we have B step Pentia with bugs
183 */
184 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
185 "with B stepping processors.\n");
186 }
187}
188
189static int forcepae;
190static int __init forcepae_setup(char *__unused)
191{
192 forcepae = 1;
193 return 1;
194}
195__setup("forcepae", forcepae_setup);
196
197static void intel_workarounds(struct cpuinfo_x86 *c)
198{
199#ifdef CONFIG_X86_F00F_BUG
200 /*
201 * All current models of Pentium and Pentium with MMX technology CPUs
202 * have the F0 0F bug, which lets nonprivileged users lock up the
203 * system. Announce that the fault handler will be checking for it.
204 */
205 clear_cpu_bug(c, X86_BUG_F00F);
206 if (!paravirt_enabled() && c->x86 == 5) {
207 static int f00f_workaround_enabled;
208
209 set_cpu_bug(c, X86_BUG_F00F);
210 if (!f00f_workaround_enabled) {
211 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
212 f00f_workaround_enabled = 1;
213 }
214 }
215#endif
216
217 /*
218 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
219 * model 3 mask 3
220 */
221 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
222 clear_cpu_cap(c, X86_FEATURE_SEP);
223
224 /*
225 * PAE CPUID issue: many Pentium M report no PAE but may have a
226 * functionally usable PAE implementation.
227 * Forcefully enable PAE if kernel parameter "forcepae" is present.
228 */
229 if (forcepae) {
230 printk(KERN_WARNING "PAE forced!\n");
231 set_cpu_cap(c, X86_FEATURE_PAE);
232 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
233 }
234
235 /*
236 * P4 Xeon errata 037 workaround.
237 * Hardware prefetcher may cause stale data to be loaded into the cache.
238 */
239 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
240 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
241 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
242 > 0) {
243 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
244 pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
245 }
246 }
247
248 /*
249 * See if we have a good local APIC by checking for buggy Pentia,
250 * i.e. all B steppings and the C2 stepping of P54C when using their
251 * integrated APIC (see 11AP erratum in "Pentium Processor
252 * Specification Update").
253 */
254 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
255 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
256 set_cpu_cap(c, X86_FEATURE_11AP);
257
258
259#ifdef CONFIG_X86_INTEL_USERCOPY
260 /*
261 * Set up the preferred alignment for movsl bulk memory moves
262 */
263 switch (c->x86) {
264 case 4: /* 486: untested */
265 break;
266 case 5: /* Old Pentia: untested */
267 break;
268 case 6: /* PII/PIII only like movsl with 8-byte alignment */
269 movsl_mask.mask = 7;
270 break;
271 case 15: /* P4 is OK down to 8-byte alignment */
272 movsl_mask.mask = 7;
273 break;
274 }
275#endif
276
277 intel_smp_check(c);
278}
279#else
280static void intel_workarounds(struct cpuinfo_x86 *c)
281{
282}
283#endif
284
285static void srat_detect_node(struct cpuinfo_x86 *c)
286{
287#ifdef CONFIG_NUMA
288 unsigned node;
289 int cpu = smp_processor_id();
290
291 /* Don't do the funky fallback heuristics the AMD version employs
292 for now. */
293 node = numa_cpu_node(cpu);
294 if (node == NUMA_NO_NODE || !node_online(node)) {
295 /* reuse the value from init_cpu_to_node() */
296 node = cpu_to_node(cpu);
297 }
298 numa_set_node(cpu, node);
299#endif
300}
301
302/*
303 * find out the number of processor cores on the die
304 */
305static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
306{
307 unsigned int eax, ebx, ecx, edx;
308
309 if (c->cpuid_level < 4)
310 return 1;
311
312 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
313 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
314 if (eax & 0x1f)
315 return (eax >> 26) + 1;
316 else
317 return 1;
318}
319
320static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
321{
322 /* Intel VMX MSR indicated features */
323#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
324#define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
325#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
326#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
327#define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
328#define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
329
330 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
331
332 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
333 clear_cpu_cap(c, X86_FEATURE_VNMI);
334 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
335 clear_cpu_cap(c, X86_FEATURE_EPT);
336 clear_cpu_cap(c, X86_FEATURE_VPID);
337
338 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
339 msr_ctl = vmx_msr_high | vmx_msr_low;
340 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
341 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
342 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
343 set_cpu_cap(c, X86_FEATURE_VNMI);
344 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
345 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
346 vmx_msr_low, vmx_msr_high);
347 msr_ctl2 = vmx_msr_high | vmx_msr_low;
348 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
349 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
350 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
351 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
352 set_cpu_cap(c, X86_FEATURE_EPT);
353 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
354 set_cpu_cap(c, X86_FEATURE_VPID);
355 }
356}
357
358static void init_intel(struct cpuinfo_x86 *c)
359{
360 unsigned int l2 = 0;
361
362 early_init_intel(c);
363
364 intel_workarounds(c);
365
366 /*
367 * Detect the extended topology information if available. This
368 * will reinitialise the initial_apicid which will be used
369 * in init_intel_cacheinfo()
370 */
371 detect_extended_topology(c);
372
373 l2 = init_intel_cacheinfo(c);
374 if (c->cpuid_level > 9) {
375 unsigned eax = cpuid_eax(10);
376 /* Check for version and the number of counters */
377 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
378 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
379 }
380
381 if (cpu_has_xmm2)
382 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
383 if (cpu_has_ds) {
384 unsigned int l1;
385 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
386 if (!(l1 & (1<<11)))
387 set_cpu_cap(c, X86_FEATURE_BTS);
388 if (!(l1 & (1<<12)))
389 set_cpu_cap(c, X86_FEATURE_PEBS);
390 }
391
392 if (c->x86 == 6 && cpu_has_clflush &&
393 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
394 set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
395
396#ifdef CONFIG_X86_64
397 if (c->x86 == 15)
398 c->x86_cache_alignment = c->x86_clflush_size * 2;
399 if (c->x86 == 6)
400 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
401#else
402 /*
403 * Names for the Pentium II/Celeron processors
404 * detectable only by also checking the cache size.
405 * Dixon is NOT a Celeron.
406 */
407 if (c->x86 == 6) {
408 char *p = NULL;
409
410 switch (c->x86_model) {
411 case 5:
412 if (l2 == 0)
413 p = "Celeron (Covington)";
414 else if (l2 == 256)
415 p = "Mobile Pentium II (Dixon)";
416 break;
417
418 case 6:
419 if (l2 == 128)
420 p = "Celeron (Mendocino)";
421 else if (c->x86_mask == 0 || c->x86_mask == 5)
422 p = "Celeron-A";
423 break;
424
425 case 8:
426 if (l2 == 128)
427 p = "Celeron (Coppermine)";
428 break;
429 }
430
431 if (p)
432 strcpy(c->x86_model_id, p);
433 }
434
435 if (c->x86 == 15)
436 set_cpu_cap(c, X86_FEATURE_P4);
437 if (c->x86 == 6)
438 set_cpu_cap(c, X86_FEATURE_P3);
439#endif
440
441 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
442 /*
443 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
444 * detection.
445 */
446 c->x86_max_cores = intel_num_cpu_cores(c);
447#ifdef CONFIG_X86_32
448 detect_ht(c);
449#endif
450 }
451
452 /* Work around errata */
453 srat_detect_node(c);
454
455 if (cpu_has(c, X86_FEATURE_VMX))
456 detect_vmx_virtcap(c);
457
458 /*
459 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
460 * x86_energy_perf_policy(8) is available to change it at run-time
461 */
462 if (cpu_has(c, X86_FEATURE_EPB)) {
463 u64 epb;
464
465 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
466 if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
467 printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
468 " Set to 'normal', was 'performance'\n"
469 "ENERGY_PERF_BIAS: View and update with"
470 " x86_energy_perf_policy(8)\n");
471 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
472 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
473 }
474 }
475}
476
477#ifdef CONFIG_X86_32
478static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
479{
480 /*
481 * Intel PIII Tualatin. This comes in two flavours.
482 * One has 256kb of cache, the other 512. We have no way
483 * to determine which, so we use a boottime override
484 * for the 512kb model, and assume 256 otherwise.
485 */
486 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
487 size = 256;
488 return size;
489}
490#endif
491
492#define TLB_INST_4K 0x01
493#define TLB_INST_4M 0x02
494#define TLB_INST_2M_4M 0x03
495
496#define TLB_INST_ALL 0x05
497#define TLB_INST_1G 0x06
498
499#define TLB_DATA_4K 0x11
500#define TLB_DATA_4M 0x12
501#define TLB_DATA_2M_4M 0x13
502#define TLB_DATA_4K_4M 0x14
503
504#define TLB_DATA_1G 0x16
505
506#define TLB_DATA0_4K 0x21
507#define TLB_DATA0_4M 0x22
508#define TLB_DATA0_2M_4M 0x23
509
510#define STLB_4K 0x41
511#define STLB_4K_2M 0x42
512
513static const struct _tlb_table intel_tlb_table[] = {
514 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
515 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
516 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
517 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
518 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
519 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
520 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
521 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
522 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
523 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
524 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
525 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
526 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
527 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
528 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
529 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
530 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
531 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
532 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
533 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
534 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
535 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
536 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
537 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
538 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
539 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
540 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set ssociative" },
541 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set ssociative" },
542 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
543 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
544 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
545 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
546 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
547 { 0x00, 0, 0 }
548};
549
550static void intel_tlb_lookup(const unsigned char desc)
551{
552 unsigned char k;
553 if (desc == 0)
554 return;
555
556 /* look up this descriptor in the table */
557 for (k = 0; intel_tlb_table[k].descriptor != desc && \
558 intel_tlb_table[k].descriptor != 0; k++)
559 ;
560
561 if (intel_tlb_table[k].tlb_type == 0)
562 return;
563
564 switch (intel_tlb_table[k].tlb_type) {
565 case STLB_4K:
566 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
567 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
568 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
569 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
570 break;
571 case STLB_4K_2M:
572 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
573 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
574 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
575 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
576 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
577 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
578 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
579 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
580 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
581 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
582 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
583 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
584 break;
585 case TLB_INST_ALL:
586 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
587 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
588 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
589 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
590 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
591 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
592 break;
593 case TLB_INST_4K:
594 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
595 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
596 break;
597 case TLB_INST_4M:
598 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
599 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
600 break;
601 case TLB_INST_2M_4M:
602 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
603 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
604 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
605 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
606 break;
607 case TLB_DATA_4K:
608 case TLB_DATA0_4K:
609 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
610 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
611 break;
612 case TLB_DATA_4M:
613 case TLB_DATA0_4M:
614 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
615 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
616 break;
617 case TLB_DATA_2M_4M:
618 case TLB_DATA0_2M_4M:
619 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
620 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
621 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
622 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
623 break;
624 case TLB_DATA_4K_4M:
625 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
626 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
627 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
628 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
629 break;
630 case TLB_DATA_1G:
631 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
632 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
633 break;
634 }
635}
636
637static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
638{
639 switch ((c->x86 << 8) + c->x86_model) {
640 case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
641 case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
642 case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
643 case 0x61d: /* six-core 45 nm xeon "Dunnington" */
644 tlb_flushall_shift = -1;
645 break;
646 case 0x63a: /* Ivybridge */
647 tlb_flushall_shift = 2;
648 break;
649 case 0x61a: /* 45 nm nehalem, "Bloomfield" */
650 case 0x61e: /* 45 nm nehalem, "Lynnfield" */
651 case 0x625: /* 32 nm nehalem, "Clarkdale" */
652 case 0x62c: /* 32 nm nehalem, "Gulftown" */
653 case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
654 case 0x62f: /* 32 nm Xeon E7 */
655 case 0x62a: /* SandyBridge */
656 case 0x62d: /* SandyBridge, "Romely-EP" */
657 default:
658 tlb_flushall_shift = 6;
659 }
660}
661
662static void intel_detect_tlb(struct cpuinfo_x86 *c)
663{
664 int i, j, n;
665 unsigned int regs[4];
666 unsigned char *desc = (unsigned char *)regs;
667
668 if (c->cpuid_level < 2)
669 return;
670
671 /* Number of times to iterate */
672 n = cpuid_eax(2) & 0xFF;
673
674 for (i = 0 ; i < n ; i++) {
675 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
676
677 /* If bit 31 is set, this is an unknown format */
678 for (j = 0 ; j < 3 ; j++)
679 if (regs[j] & (1 << 31))
680 regs[j] = 0;
681
682 /* Byte 0 is level count, not a descriptor */
683 for (j = 1 ; j < 16 ; j++)
684 intel_tlb_lookup(desc[j]);
685 }
686 intel_tlb_flushall_shift_set(c);
687}
688
689static const struct cpu_dev intel_cpu_dev = {
690 .c_vendor = "Intel",
691 .c_ident = { "GenuineIntel" },
692#ifdef CONFIG_X86_32
693 .legacy_models = {
694 { .family = 4, .model_names =
695 {
696 [0] = "486 DX-25/33",
697 [1] = "486 DX-50",
698 [2] = "486 SX",
699 [3] = "486 DX/2",
700 [4] = "486 SL",
701 [5] = "486 SX/2",
702 [7] = "486 DX/2-WB",
703 [8] = "486 DX/4",
704 [9] = "486 DX/4-WB"
705 }
706 },
707 { .family = 5, .model_names =
708 {
709 [0] = "Pentium 60/66 A-step",
710 [1] = "Pentium 60/66",
711 [2] = "Pentium 75 - 200",
712 [3] = "OverDrive PODP5V83",
713 [4] = "Pentium MMX",
714 [7] = "Mobile Pentium 75 - 200",
715 [8] = "Mobile Pentium MMX"
716 }
717 },
718 { .family = 6, .model_names =
719 {
720 [0] = "Pentium Pro A-step",
721 [1] = "Pentium Pro",
722 [3] = "Pentium II (Klamath)",
723 [4] = "Pentium II (Deschutes)",
724 [5] = "Pentium II (Deschutes)",
725 [6] = "Mobile Pentium II",
726 [7] = "Pentium III (Katmai)",
727 [8] = "Pentium III (Coppermine)",
728 [10] = "Pentium III (Cascades)",
729 [11] = "Pentium III (Tualatin)",
730 }
731 },
732 { .family = 15, .model_names =
733 {
734 [0] = "Pentium 4 (Unknown)",
735 [1] = "Pentium 4 (Willamette)",
736 [2] = "Pentium 4 (Northwood)",
737 [4] = "Pentium 4 (Foster)",
738 [5] = "Pentium 4 (Foster)",
739 }
740 },
741 },
742 .legacy_cache_size = intel_size_cache,
743#endif
744 .c_detect_tlb = intel_detect_tlb,
745 .c_early_init = early_init_intel,
746 .c_init = init_intel,
747 .c_x86_vendor = X86_VENDOR_INTEL,
748};
749
750cpu_dev_register(intel_cpu_dev);
751