Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Handle unaligned accesses by emulation.
  3 *
  4 * This file is subject to the terms and conditions of the GNU General Public
  5 * License.  See the file "COPYING" in the main directory of this archive
  6 * for more details.
  7 *
  8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
  9 * Copyright (C) 1999 Silicon Graphics, Inc.
 
 10 *
 11 * This file contains exception handler for address error exception with the
 12 * special capability to execute faulting instructions in software.  The
 13 * handler does not try to handle the case when the program counter points
 14 * to an address not aligned to a word boundary.
 15 *
 16 * Putting data to unaligned addresses is a bad practice even on Intel where
 17 * only the performance is affected.  Much worse is that such code is non-
 18 * portable.  Due to several programs that die on MIPS due to alignment
 19 * problems I decided to implement this handler anyway though I originally
 20 * didn't intend to do this at all for user code.
 21 *
 22 * For now I enable fixing of address errors by default to make life easier.
 23 * I however intend to disable this somewhen in the future when the alignment
 24 * problems with user programs have been fixed.  For programmers this is the
 25 * right way to go.
 26 *
 27 * Fixing address errors is a per process option.  The option is inherited
 28 * across fork(2) and execve(2) calls.  If you really want to use the
 29 * option in your user programs - I discourage the use of the software
 30 * emulation strongly - use the following code in your userland stuff:
 31 *
 32 * #include <sys/sysmips.h>
 33 *
 34 * ...
 35 * sysmips(MIPS_FIXADE, x);
 36 * ...
 37 *
 38 * The argument x is 0 for disabling software emulation, enabled otherwise.
 39 *
 40 * Below a little program to play around with this feature.
 41 *
 42 * #include <stdio.h>
 43 * #include <sys/sysmips.h>
 44 *
 45 * struct foo {
 46 *         unsigned char bar[8];
 47 * };
 48 *
 49 * main(int argc, char *argv[])
 50 * {
 51 *         struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
 52 *         unsigned int *p = (unsigned int *) (x.bar + 3);
 53 *         int i;
 54 *
 55 *         if (argc > 1)
 56 *                 sysmips(MIPS_FIXADE, atoi(argv[1]));
 57 *
 58 *         printf("*p = %08lx\n", *p);
 59 *
 60 *         *p = 0xdeadface;
 61 *
 62 *         for(i = 0; i <= 7; i++)
 63 *         printf("%02x ", x.bar[i]);
 64 *         printf("\n");
 65 * }
 66 *
 67 * Coprocessor loads are not supported; I think this case is unimportant
 68 * in the practice.
 69 *
 70 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
 71 *       exception for the R6000.
 72 *       A store crossing a page boundary might be executed only partially.
 73 *       Undo the partial store in this case.
 74 */
 
 75#include <linux/mm.h>
 76#include <linux/signal.h>
 77#include <linux/smp.h>
 78#include <linux/sched.h>
 79#include <linux/debugfs.h>
 80#include <linux/perf_event.h>
 81
 82#include <asm/asm.h>
 83#include <asm/branch.h>
 84#include <asm/byteorder.h>
 85#include <asm/cop2.h>
 
 
 86#include <asm/inst.h>
 87#include <asm/uaccess.h>
 
 
 88
 89#define STR(x)  __STR(x)
 90#define __STR(x)  #x
 91
 92enum {
 93	UNALIGNED_ACTION_QUIET,
 94	UNALIGNED_ACTION_SIGNAL,
 95	UNALIGNED_ACTION_SHOW,
 96};
 97#ifdef CONFIG_DEBUG_FS
 98static u32 unaligned_instructions;
 99static u32 unaligned_action;
100#else
101#define unaligned_action UNALIGNED_ACTION_QUIET
102#endif
103extern void show_registers(struct pt_regs *regs);
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105static void emulate_load_store_insn(struct pt_regs *regs,
106	void __user *addr, unsigned int __user *pc)
107{
108	union mips_instruction insn;
109	unsigned long value;
110	unsigned int res;
 
 
 
 
 
 
 
 
111
112	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
113
114	/*
115	 * This load never faults.
116	 */
117	__get_user(insn.word, pc);
118
119	switch (insn.i_format.opcode) {
120	/*
121	 * These are instructions that a compiler doesn't generate.  We
122	 * can assume therefore that the code is MIPS-aware and
123	 * really buggy.  Emulating these instructions would break the
124	 * semantics anyway.
125	 */
126	case ll_op:
127	case lld_op:
128	case sc_op:
129	case scd_op:
130
131	/*
132	 * For these instructions the only way to create an address
133	 * error is an attempted access to kernel/supervisor address
134	 * space.
135	 */
136	case ldl_op:
137	case ldr_op:
138	case lwl_op:
139	case lwr_op:
140	case sdl_op:
141	case sdr_op:
142	case swl_op:
143	case swr_op:
144	case lb_op:
145	case lbu_op:
146	case sb_op:
147		goto sigbus;
148
149	/*
150	 * The remaining opcodes are the ones that are really of interest.
151	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152	case lh_op:
153		if (!access_ok(VERIFY_READ, addr, 2))
154			goto sigbus;
155
156		__asm__ __volatile__ (".set\tnoat\n"
157#ifdef __BIG_ENDIAN
158			"1:\tlb\t%0, 0(%2)\n"
159			"2:\tlbu\t$1, 1(%2)\n\t"
160#endif
161#ifdef __LITTLE_ENDIAN
162			"1:\tlb\t%0, 1(%2)\n"
163			"2:\tlbu\t$1, 0(%2)\n\t"
164#endif
165			"sll\t%0, 0x8\n\t"
166			"or\t%0, $1\n\t"
167			"li\t%1, 0\n"
168			"3:\t.set\tat\n\t"
169			".section\t.fixup,\"ax\"\n\t"
170			"4:\tli\t%1, %3\n\t"
171			"j\t3b\n\t"
172			".previous\n\t"
173			".section\t__ex_table,\"a\"\n\t"
174			STR(PTR)"\t1b, 4b\n\t"
175			STR(PTR)"\t2b, 4b\n\t"
176			".previous"
177			: "=&r" (value), "=r" (res)
178			: "r" (addr), "i" (-EFAULT));
179		if (res)
180			goto fault;
181		compute_return_epc(regs);
182		regs->regs[insn.i_format.rt] = value;
183		break;
184
185	case lw_op:
186		if (!access_ok(VERIFY_READ, addr, 4))
187			goto sigbus;
188
189		__asm__ __volatile__ (
190#ifdef __BIG_ENDIAN
191			"1:\tlwl\t%0, (%2)\n"
192			"2:\tlwr\t%0, 3(%2)\n\t"
193#endif
194#ifdef __LITTLE_ENDIAN
195			"1:\tlwl\t%0, 3(%2)\n"
196			"2:\tlwr\t%0, (%2)\n\t"
197#endif
198			"li\t%1, 0\n"
199			"3:\t.section\t.fixup,\"ax\"\n\t"
200			"4:\tli\t%1, %3\n\t"
201			"j\t3b\n\t"
202			".previous\n\t"
203			".section\t__ex_table,\"a\"\n\t"
204			STR(PTR)"\t1b, 4b\n\t"
205			STR(PTR)"\t2b, 4b\n\t"
206			".previous"
207			: "=&r" (value), "=r" (res)
208			: "r" (addr), "i" (-EFAULT));
209		if (res)
210			goto fault;
211		compute_return_epc(regs);
212		regs->regs[insn.i_format.rt] = value;
213		break;
214
215	case lhu_op:
216		if (!access_ok(VERIFY_READ, addr, 2))
217			goto sigbus;
218
219		__asm__ __volatile__ (
220			".set\tnoat\n"
221#ifdef __BIG_ENDIAN
222			"1:\tlbu\t%0, 0(%2)\n"
223			"2:\tlbu\t$1, 1(%2)\n\t"
224#endif
225#ifdef __LITTLE_ENDIAN
226			"1:\tlbu\t%0, 1(%2)\n"
227			"2:\tlbu\t$1, 0(%2)\n\t"
228#endif
229			"sll\t%0, 0x8\n\t"
230			"or\t%0, $1\n\t"
231			"li\t%1, 0\n"
232			"3:\t.set\tat\n\t"
233			".section\t.fixup,\"ax\"\n\t"
234			"4:\tli\t%1, %3\n\t"
235			"j\t3b\n\t"
236			".previous\n\t"
237			".section\t__ex_table,\"a\"\n\t"
238			STR(PTR)"\t1b, 4b\n\t"
239			STR(PTR)"\t2b, 4b\n\t"
240			".previous"
241			: "=&r" (value), "=r" (res)
242			: "r" (addr), "i" (-EFAULT));
243		if (res)
244			goto fault;
245		compute_return_epc(regs);
246		regs->regs[insn.i_format.rt] = value;
247		break;
248
249	case lwu_op:
250#ifdef CONFIG_64BIT
251		/*
252		 * A 32-bit kernel might be running on a 64-bit processor.  But
253		 * if we're on a 32-bit processor and an i-cache incoherency
254		 * or race makes us see a 64-bit instruction here the sdl/sdr
255		 * would blow up, so for now we don't handle unaligned 64-bit
256		 * instructions on 32-bit kernels.
257		 */
258		if (!access_ok(VERIFY_READ, addr, 4))
259			goto sigbus;
260
261		__asm__ __volatile__ (
262#ifdef __BIG_ENDIAN
263			"1:\tlwl\t%0, (%2)\n"
264			"2:\tlwr\t%0, 3(%2)\n\t"
265#endif
266#ifdef __LITTLE_ENDIAN
267			"1:\tlwl\t%0, 3(%2)\n"
268			"2:\tlwr\t%0, (%2)\n\t"
269#endif
270			"dsll\t%0, %0, 32\n\t"
271			"dsrl\t%0, %0, 32\n\t"
272			"li\t%1, 0\n"
273			"3:\t.section\t.fixup,\"ax\"\n\t"
274			"4:\tli\t%1, %3\n\t"
275			"j\t3b\n\t"
276			".previous\n\t"
277			".section\t__ex_table,\"a\"\n\t"
278			STR(PTR)"\t1b, 4b\n\t"
279			STR(PTR)"\t2b, 4b\n\t"
280			".previous"
281			: "=&r" (value), "=r" (res)
282			: "r" (addr), "i" (-EFAULT));
283		if (res)
284			goto fault;
285		compute_return_epc(regs);
286		regs->regs[insn.i_format.rt] = value;
287		break;
288#endif /* CONFIG_64BIT */
289
290		/* Cannot handle 64-bit instructions in 32-bit kernel */
291		goto sigill;
292
293	case ld_op:
294#ifdef CONFIG_64BIT
295		/*
296		 * A 32-bit kernel might be running on a 64-bit processor.  But
297		 * if we're on a 32-bit processor and an i-cache incoherency
298		 * or race makes us see a 64-bit instruction here the sdl/sdr
299		 * would blow up, so for now we don't handle unaligned 64-bit
300		 * instructions on 32-bit kernels.
301		 */
302		if (!access_ok(VERIFY_READ, addr, 8))
303			goto sigbus;
304
305		__asm__ __volatile__ (
306#ifdef __BIG_ENDIAN
307			"1:\tldl\t%0, (%2)\n"
308			"2:\tldr\t%0, 7(%2)\n\t"
309#endif
310#ifdef __LITTLE_ENDIAN
311			"1:\tldl\t%0, 7(%2)\n"
312			"2:\tldr\t%0, (%2)\n\t"
313#endif
314			"li\t%1, 0\n"
315			"3:\t.section\t.fixup,\"ax\"\n\t"
316			"4:\tli\t%1, %3\n\t"
317			"j\t3b\n\t"
318			".previous\n\t"
319			".section\t__ex_table,\"a\"\n\t"
320			STR(PTR)"\t1b, 4b\n\t"
321			STR(PTR)"\t2b, 4b\n\t"
322			".previous"
323			: "=&r" (value), "=r" (res)
324			: "r" (addr), "i" (-EFAULT));
325		if (res)
326			goto fault;
327		compute_return_epc(regs);
328		regs->regs[insn.i_format.rt] = value;
329		break;
330#endif /* CONFIG_64BIT */
331
332		/* Cannot handle 64-bit instructions in 32-bit kernel */
333		goto sigill;
334
335	case sh_op:
336		if (!access_ok(VERIFY_WRITE, addr, 2))
337			goto sigbus;
338
 
339		value = regs->regs[insn.i_format.rt];
340		__asm__ __volatile__ (
341#ifdef __BIG_ENDIAN
342			".set\tnoat\n"
343			"1:\tsb\t%1, 1(%2)\n\t"
344			"srl\t$1, %1, 0x8\n"
345			"2:\tsb\t$1, 0(%2)\n\t"
346			".set\tat\n\t"
347#endif
348#ifdef __LITTLE_ENDIAN
349			".set\tnoat\n"
350			"1:\tsb\t%1, 0(%2)\n\t"
351			"srl\t$1,%1, 0x8\n"
352			"2:\tsb\t$1, 1(%2)\n\t"
353			".set\tat\n\t"
354#endif
355			"li\t%0, 0\n"
356			"3:\n\t"
357			".section\t.fixup,\"ax\"\n\t"
358			"4:\tli\t%0, %3\n\t"
359			"j\t3b\n\t"
360			".previous\n\t"
361			".section\t__ex_table,\"a\"\n\t"
362			STR(PTR)"\t1b, 4b\n\t"
363			STR(PTR)"\t2b, 4b\n\t"
364			".previous"
365			: "=r" (res)
366			: "r" (value), "r" (addr), "i" (-EFAULT));
367		if (res)
368			goto fault;
369		compute_return_epc(regs);
370		break;
371
372	case sw_op:
373		if (!access_ok(VERIFY_WRITE, addr, 4))
374			goto sigbus;
375
 
376		value = regs->regs[insn.i_format.rt];
377		__asm__ __volatile__ (
378#ifdef __BIG_ENDIAN
379			"1:\tswl\t%1,(%2)\n"
380			"2:\tswr\t%1, 3(%2)\n\t"
381#endif
382#ifdef __LITTLE_ENDIAN
383			"1:\tswl\t%1, 3(%2)\n"
384			"2:\tswr\t%1, (%2)\n\t"
385#endif
386			"li\t%0, 0\n"
387			"3:\n\t"
388			".section\t.fixup,\"ax\"\n\t"
389			"4:\tli\t%0, %3\n\t"
390			"j\t3b\n\t"
391			".previous\n\t"
392			".section\t__ex_table,\"a\"\n\t"
393			STR(PTR)"\t1b, 4b\n\t"
394			STR(PTR)"\t2b, 4b\n\t"
395			".previous"
396		: "=r" (res)
397		: "r" (value), "r" (addr), "i" (-EFAULT));
398		if (res)
399			goto fault;
400		compute_return_epc(regs);
401		break;
402
403	case sd_op:
404#ifdef CONFIG_64BIT
405		/*
406		 * A 32-bit kernel might be running on a 64-bit processor.  But
407		 * if we're on a 32-bit processor and an i-cache incoherency
408		 * or race makes us see a 64-bit instruction here the sdl/sdr
409		 * would blow up, so for now we don't handle unaligned 64-bit
410		 * instructions on 32-bit kernels.
411		 */
412		if (!access_ok(VERIFY_WRITE, addr, 8))
413			goto sigbus;
414
 
415		value = regs->regs[insn.i_format.rt];
416		__asm__ __volatile__ (
417#ifdef __BIG_ENDIAN
418			"1:\tsdl\t%1,(%2)\n"
419			"2:\tsdr\t%1, 7(%2)\n\t"
420#endif
421#ifdef __LITTLE_ENDIAN
422			"1:\tsdl\t%1, 7(%2)\n"
423			"2:\tsdr\t%1, (%2)\n\t"
424#endif
425			"li\t%0, 0\n"
426			"3:\n\t"
427			".section\t.fixup,\"ax\"\n\t"
428			"4:\tli\t%0, %3\n\t"
429			"j\t3b\n\t"
430			".previous\n\t"
431			".section\t__ex_table,\"a\"\n\t"
432			STR(PTR)"\t1b, 4b\n\t"
433			STR(PTR)"\t2b, 4b\n\t"
434			".previous"
435		: "=r" (res)
436		: "r" (value), "r" (addr), "i" (-EFAULT));
437		if (res)
438			goto fault;
439		compute_return_epc(regs);
440		break;
441#endif /* CONFIG_64BIT */
442
443		/* Cannot handle 64-bit instructions in 32-bit kernel */
444		goto sigill;
445
446	case lwc1_op:
447	case ldc1_op:
448	case swc1_op:
449	case sdc1_op:
450		/*
451		 * I herewith declare: this does not happen.  So send SIGBUS.
452		 */
453		goto sigbus;
 
 
 
 
 
 
 
 
 
 
 
454
455	/*
456	 * COP2 is available to implementor for application specific use.
457	 * It's up to applications to register a notifier chain and do
458	 * whatever they have to do, including possible sending of signals.
459	 */
460	case lwc2_op:
461		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
462		break;
463
464	case ldc2_op:
465		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
466		break;
467
468	case swc2_op:
469		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
470		break;
471
472	case sdc2_op:
473		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
474		break;
475
476	default:
477		/*
478		 * Pheeee...  We encountered an yet unknown instruction or
479		 * cache coherence problem.  Die sucker, die ...
480		 */
481		goto sigill;
482	}
483
484#ifdef CONFIG_DEBUG_FS
485	unaligned_instructions++;
486#endif
487
488	return;
489
490fault:
 
 
 
491	/* Did we have an exception handler installed? */
492	if (fixup_exception(regs))
493		return;
494
495	die_if_kernel("Unhandled kernel unaligned access", regs);
496	force_sig(SIGSEGV, current);
497
498	return;
499
500sigbus:
501	die_if_kernel("Unhandled kernel unaligned access", regs);
502	force_sig(SIGBUS, current);
503
504	return;
505
506sigill:
507	die_if_kernel("Unhandled kernel unaligned access or invalid instruction", regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508	force_sig(SIGILL, current);
509}
510
511asmlinkage void do_ade(struct pt_regs *regs)
512{
 
513	unsigned int __user *pc;
514	mm_segment_t seg;
515
 
516	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
517			1, regs, regs->cp0_badvaddr);
518	/*
519	 * Did we catch a fault trying to load an instruction?
520	 * Or are we running in MIPS16 mode?
521	 */
522	if ((regs->cp0_badvaddr == regs->cp0_epc) || (regs->cp0_epc & 0x1))
523		goto sigbus;
524
525	pc = (unsigned int __user *) exception_epc(regs);
526	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
527		goto sigbus;
528	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
529		goto sigbus;
530	else if (unaligned_action == UNALIGNED_ACTION_SHOW)
531		show_registers(regs);
532
533	/*
534	 * Do branch emulation only if we didn't forward the exception.
535	 * This is all so but ugly ...
536	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537	seg = get_fs();
538	if (!user_mode(regs))
539		set_fs(KERNEL_DS);
540	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
541	set_fs(seg);
542
543	return;
544
545sigbus:
546	die_if_kernel("Kernel unaligned instruction access", regs);
547	force_sig(SIGBUS, current);
548
549	/*
550	 * XXX On return from the signal handler we should advance the epc
551	 */
 
552}
553
554#ifdef CONFIG_DEBUG_FS
555extern struct dentry *mips_debugfs_dir;
556static int __init debugfs_unaligned(void)
557{
558	struct dentry *d;
559
560	if (!mips_debugfs_dir)
561		return -ENODEV;
562	d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
563			       mips_debugfs_dir, &unaligned_instructions);
564	if (!d)
565		return -ENOMEM;
566	d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
567			       mips_debugfs_dir, &unaligned_action);
568	if (!d)
569		return -ENOMEM;
570	return 0;
571}
572__initcall(debugfs_unaligned);
573#endif
v3.15
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/fpu.h>
  89#include <asm/fpu_emulator.h>
  90#include <asm/inst.h>
  91#include <asm/uaccess.h>
  92#include <asm/fpu.h>
  93#include <asm/fpu_emulator.h>
  94
  95#define STR(x)	__STR(x)
  96#define __STR(x)  #x
  97
  98enum {
  99	UNALIGNED_ACTION_QUIET,
 100	UNALIGNED_ACTION_SIGNAL,
 101	UNALIGNED_ACTION_SHOW,
 102};
 103#ifdef CONFIG_DEBUG_FS
 104static u32 unaligned_instructions;
 105static u32 unaligned_action;
 106#else
 107#define unaligned_action UNALIGNED_ACTION_QUIET
 108#endif
 109extern void show_registers(struct pt_regs *regs);
 110
 111#ifdef __BIG_ENDIAN
 112#define     LoadHW(addr, value, res)  \
 113		__asm__ __volatile__ (".set\tnoat\n"        \
 114			"1:\t"user_lb("%0", "0(%2)")"\n"    \
 115			"2:\t"user_lbu("$1", "1(%2)")"\n\t" \
 116			"sll\t%0, 0x8\n\t"                  \
 117			"or\t%0, $1\n\t"                    \
 118			"li\t%1, 0\n"                       \
 119			"3:\t.set\tat\n\t"                  \
 120			".insn\n\t"                         \
 121			".section\t.fixup,\"ax\"\n\t"       \
 122			"4:\tli\t%1, %3\n\t"                \
 123			"j\t3b\n\t"                         \
 124			".previous\n\t"                     \
 125			".section\t__ex_table,\"a\"\n\t"    \
 126			STR(PTR)"\t1b, 4b\n\t"              \
 127			STR(PTR)"\t2b, 4b\n\t"              \
 128			".previous"                         \
 129			: "=&r" (value), "=r" (res)         \
 130			: "r" (addr), "i" (-EFAULT));
 131
 132#define     LoadW(addr, value, res)   \
 133		__asm__ __volatile__ (                      \
 134			"1:\t"user_lwl("%0", "(%2)")"\n"    \
 135			"2:\t"user_lwr("%0", "3(%2)")"\n\t" \
 136			"li\t%1, 0\n"                       \
 137			"3:\n\t"                            \
 138			".insn\n\t"                         \
 139			".section\t.fixup,\"ax\"\n\t"       \
 140			"4:\tli\t%1, %3\n\t"                \
 141			"j\t3b\n\t"                         \
 142			".previous\n\t"                     \
 143			".section\t__ex_table,\"a\"\n\t"    \
 144			STR(PTR)"\t1b, 4b\n\t"              \
 145			STR(PTR)"\t2b, 4b\n\t"              \
 146			".previous"                         \
 147			: "=&r" (value), "=r" (res)         \
 148			: "r" (addr), "i" (-EFAULT));
 149
 150#define     LoadHWU(addr, value, res) \
 151		__asm__ __volatile__ (                      \
 152			".set\tnoat\n"                      \
 153			"1:\t"user_lbu("%0", "0(%2)")"\n"   \
 154			"2:\t"user_lbu("$1", "1(%2)")"\n\t" \
 155			"sll\t%0, 0x8\n\t"                  \
 156			"or\t%0, $1\n\t"                    \
 157			"li\t%1, 0\n"                       \
 158			"3:\n\t"                            \
 159			".insn\n\t"                         \
 160			".set\tat\n\t"                      \
 161			".section\t.fixup,\"ax\"\n\t"       \
 162			"4:\tli\t%1, %3\n\t"                \
 163			"j\t3b\n\t"                         \
 164			".previous\n\t"                     \
 165			".section\t__ex_table,\"a\"\n\t"    \
 166			STR(PTR)"\t1b, 4b\n\t"              \
 167			STR(PTR)"\t2b, 4b\n\t"              \
 168			".previous"                         \
 169			: "=&r" (value), "=r" (res)         \
 170			: "r" (addr), "i" (-EFAULT));
 171
 172#define     LoadWU(addr, value, res)  \
 173		__asm__ __volatile__ (                      \
 174			"1:\t"user_lwl("%0", "(%2)")"\n"    \
 175			"2:\t"user_lwr("%0", "3(%2)")"\n\t" \
 176			"dsll\t%0, %0, 32\n\t"              \
 177			"dsrl\t%0, %0, 32\n\t"              \
 178			"li\t%1, 0\n"                       \
 179			"3:\n\t"                            \
 180			".insn\n\t"                         \
 181			"\t.section\t.fixup,\"ax\"\n\t"     \
 182			"4:\tli\t%1, %3\n\t"                \
 183			"j\t3b\n\t"                         \
 184			".previous\n\t"                     \
 185			".section\t__ex_table,\"a\"\n\t"    \
 186			STR(PTR)"\t1b, 4b\n\t"              \
 187			STR(PTR)"\t2b, 4b\n\t"              \
 188			".previous"                         \
 189			: "=&r" (value), "=r" (res)         \
 190			: "r" (addr), "i" (-EFAULT));
 191
 192#define     LoadDW(addr, value, res)  \
 193		__asm__ __volatile__ (                      \
 194			"1:\tldl\t%0, (%2)\n"               \
 195			"2:\tldr\t%0, 7(%2)\n\t"            \
 196			"li\t%1, 0\n"                       \
 197			"3:\n\t"                            \
 198			".insn\n\t"                         \
 199			"\t.section\t.fixup,\"ax\"\n\t"     \
 200			"4:\tli\t%1, %3\n\t"                \
 201			"j\t3b\n\t"                         \
 202			".previous\n\t"                     \
 203			".section\t__ex_table,\"a\"\n\t"    \
 204			STR(PTR)"\t1b, 4b\n\t"              \
 205			STR(PTR)"\t2b, 4b\n\t"              \
 206			".previous"                         \
 207			: "=&r" (value), "=r" (res)         \
 208			: "r" (addr), "i" (-EFAULT));
 209
 210#define     StoreHW(addr, value, res) \
 211		__asm__ __volatile__ (                      \
 212			".set\tnoat\n"                      \
 213			"1:\t"user_sb("%1", "1(%2)")"\n"    \
 214			"srl\t$1, %1, 0x8\n"                \
 215			"2:\t"user_sb("$1", "0(%2)")"\n"    \
 216			".set\tat\n\t"                      \
 217			"li\t%0, 0\n"                       \
 218			"3:\n\t"                            \
 219			".insn\n\t"                         \
 220			".section\t.fixup,\"ax\"\n\t"       \
 221			"4:\tli\t%0, %3\n\t"                \
 222			"j\t3b\n\t"                         \
 223			".previous\n\t"                     \
 224			".section\t__ex_table,\"a\"\n\t"    \
 225			STR(PTR)"\t1b, 4b\n\t"              \
 226			STR(PTR)"\t2b, 4b\n\t"              \
 227			".previous"                         \
 228			: "=r" (res)                        \
 229			: "r" (value), "r" (addr), "i" (-EFAULT));
 230
 231#define     StoreW(addr, value, res)  \
 232		__asm__ __volatile__ (                      \
 233			"1:\t"user_swl("%1", "(%2)")"\n"    \
 234			"2:\t"user_swr("%1", "3(%2)")"\n\t" \
 235			"li\t%0, 0\n"                       \
 236			"3:\n\t"                            \
 237			".insn\n\t"                         \
 238			".section\t.fixup,\"ax\"\n\t"       \
 239			"4:\tli\t%0, %3\n\t"                \
 240			"j\t3b\n\t"                         \
 241			".previous\n\t"                     \
 242			".section\t__ex_table,\"a\"\n\t"    \
 243			STR(PTR)"\t1b, 4b\n\t"              \
 244			STR(PTR)"\t2b, 4b\n\t"              \
 245			".previous"                         \
 246		: "=r" (res)                                \
 247		: "r" (value), "r" (addr), "i" (-EFAULT));
 248
 249#define     StoreDW(addr, value, res) \
 250		__asm__ __volatile__ (                      \
 251			"1:\tsdl\t%1,(%2)\n"                \
 252			"2:\tsdr\t%1, 7(%2)\n\t"            \
 253			"li\t%0, 0\n"                       \
 254			"3:\n\t"                            \
 255			".insn\n\t"                         \
 256			".section\t.fixup,\"ax\"\n\t"       \
 257			"4:\tli\t%0, %3\n\t"                \
 258			"j\t3b\n\t"                         \
 259			".previous\n\t"                     \
 260			".section\t__ex_table,\"a\"\n\t"    \
 261			STR(PTR)"\t1b, 4b\n\t"              \
 262			STR(PTR)"\t2b, 4b\n\t"              \
 263			".previous"                         \
 264		: "=r" (res)                                \
 265		: "r" (value), "r" (addr), "i" (-EFAULT));
 266#endif
 267
 268#ifdef __LITTLE_ENDIAN
 269#define     LoadHW(addr, value, res)  \
 270		__asm__ __volatile__ (".set\tnoat\n"        \
 271			"1:\t"user_lb("%0", "1(%2)")"\n"    \
 272			"2:\t"user_lbu("$1", "0(%2)")"\n\t" \
 273			"sll\t%0, 0x8\n\t"                  \
 274			"or\t%0, $1\n\t"                    \
 275			"li\t%1, 0\n"                       \
 276			"3:\t.set\tat\n\t"                  \
 277			".insn\n\t"                         \
 278			".section\t.fixup,\"ax\"\n\t"       \
 279			"4:\tli\t%1, %3\n\t"                \
 280			"j\t3b\n\t"                         \
 281			".previous\n\t"                     \
 282			".section\t__ex_table,\"a\"\n\t"    \
 283			STR(PTR)"\t1b, 4b\n\t"              \
 284			STR(PTR)"\t2b, 4b\n\t"              \
 285			".previous"                         \
 286			: "=&r" (value), "=r" (res)         \
 287			: "r" (addr), "i" (-EFAULT));
 288
 289#define     LoadW(addr, value, res)   \
 290		__asm__ __volatile__ (                      \
 291			"1:\t"user_lwl("%0", "3(%2)")"\n"   \
 292			"2:\t"user_lwr("%0", "(%2)")"\n\t"  \
 293			"li\t%1, 0\n"                       \
 294			"3:\n\t"                            \
 295			".insn\n\t"                         \
 296			".section\t.fixup,\"ax\"\n\t"       \
 297			"4:\tli\t%1, %3\n\t"                \
 298			"j\t3b\n\t"                         \
 299			".previous\n\t"                     \
 300			".section\t__ex_table,\"a\"\n\t"    \
 301			STR(PTR)"\t1b, 4b\n\t"              \
 302			STR(PTR)"\t2b, 4b\n\t"              \
 303			".previous"                         \
 304			: "=&r" (value), "=r" (res)         \
 305			: "r" (addr), "i" (-EFAULT));
 306
 307#define     LoadHWU(addr, value, res) \
 308		__asm__ __volatile__ (                      \
 309			".set\tnoat\n"                      \
 310			"1:\t"user_lbu("%0", "1(%2)")"\n"   \
 311			"2:\t"user_lbu("$1", "0(%2)")"\n\t" \
 312			"sll\t%0, 0x8\n\t"                  \
 313			"or\t%0, $1\n\t"                    \
 314			"li\t%1, 0\n"                       \
 315			"3:\n\t"                            \
 316			".insn\n\t"                         \
 317			".set\tat\n\t"                      \
 318			".section\t.fixup,\"ax\"\n\t"       \
 319			"4:\tli\t%1, %3\n\t"                \
 320			"j\t3b\n\t"                         \
 321			".previous\n\t"                     \
 322			".section\t__ex_table,\"a\"\n\t"    \
 323			STR(PTR)"\t1b, 4b\n\t"              \
 324			STR(PTR)"\t2b, 4b\n\t"              \
 325			".previous"                         \
 326			: "=&r" (value), "=r" (res)         \
 327			: "r" (addr), "i" (-EFAULT));
 328
 329#define     LoadWU(addr, value, res)  \
 330		__asm__ __volatile__ (                      \
 331			"1:\t"user_lwl("%0", "3(%2)")"\n"   \
 332			"2:\t"user_lwr("%0", "(%2)")"\n\t"  \
 333			"dsll\t%0, %0, 32\n\t"              \
 334			"dsrl\t%0, %0, 32\n\t"              \
 335			"li\t%1, 0\n"                       \
 336			"3:\n\t"                            \
 337			".insn\n\t"                         \
 338			"\t.section\t.fixup,\"ax\"\n\t"     \
 339			"4:\tli\t%1, %3\n\t"                \
 340			"j\t3b\n\t"                         \
 341			".previous\n\t"                     \
 342			".section\t__ex_table,\"a\"\n\t"    \
 343			STR(PTR)"\t1b, 4b\n\t"              \
 344			STR(PTR)"\t2b, 4b\n\t"              \
 345			".previous"                         \
 346			: "=&r" (value), "=r" (res)         \
 347			: "r" (addr), "i" (-EFAULT));
 348
 349#define     LoadDW(addr, value, res)  \
 350		__asm__ __volatile__ (                      \
 351			"1:\tldl\t%0, 7(%2)\n"              \
 352			"2:\tldr\t%0, (%2)\n\t"             \
 353			"li\t%1, 0\n"                       \
 354			"3:\n\t"                            \
 355			".insn\n\t"                         \
 356			"\t.section\t.fixup,\"ax\"\n\t"     \
 357			"4:\tli\t%1, %3\n\t"                \
 358			"j\t3b\n\t"                         \
 359			".previous\n\t"                     \
 360			".section\t__ex_table,\"a\"\n\t"    \
 361			STR(PTR)"\t1b, 4b\n\t"              \
 362			STR(PTR)"\t2b, 4b\n\t"              \
 363			".previous"                         \
 364			: "=&r" (value), "=r" (res)         \
 365			: "r" (addr), "i" (-EFAULT));
 366
 367#define     StoreHW(addr, value, res) \
 368		__asm__ __volatile__ (                      \
 369			".set\tnoat\n"                      \
 370			"1:\t"user_sb("%1", "0(%2)")"\n"    \
 371			"srl\t$1,%1, 0x8\n"                 \
 372			"2:\t"user_sb("$1", "1(%2)")"\n"    \
 373			".set\tat\n\t"                      \
 374			"li\t%0, 0\n"                       \
 375			"3:\n\t"                            \
 376			".insn\n\t"                         \
 377			".section\t.fixup,\"ax\"\n\t"       \
 378			"4:\tli\t%0, %3\n\t"                \
 379			"j\t3b\n\t"                         \
 380			".previous\n\t"                     \
 381			".section\t__ex_table,\"a\"\n\t"    \
 382			STR(PTR)"\t1b, 4b\n\t"              \
 383			STR(PTR)"\t2b, 4b\n\t"              \
 384			".previous"                         \
 385			: "=r" (res)                        \
 386			: "r" (value), "r" (addr), "i" (-EFAULT));
 387
 388#define     StoreW(addr, value, res)  \
 389		__asm__ __volatile__ (                      \
 390			"1:\t"user_swl("%1", "3(%2)")"\n"   \
 391			"2:\t"user_swr("%1", "(%2)")"\n\t"  \
 392			"li\t%0, 0\n"                       \
 393			"3:\n\t"                            \
 394			".insn\n\t"                         \
 395			".section\t.fixup,\"ax\"\n\t"       \
 396			"4:\tli\t%0, %3\n\t"                \
 397			"j\t3b\n\t"                         \
 398			".previous\n\t"                     \
 399			".section\t__ex_table,\"a\"\n\t"    \
 400			STR(PTR)"\t1b, 4b\n\t"              \
 401			STR(PTR)"\t2b, 4b\n\t"              \
 402			".previous"                         \
 403		: "=r" (res)                                \
 404		: "r" (value), "r" (addr), "i" (-EFAULT));
 405
 406#define     StoreDW(addr, value, res) \
 407		__asm__ __volatile__ (                      \
 408			"1:\tsdl\t%1, 7(%2)\n"              \
 409			"2:\tsdr\t%1, (%2)\n\t"             \
 410			"li\t%0, 0\n"                       \
 411			"3:\n\t"                            \
 412			".insn\n\t"                         \
 413			".section\t.fixup,\"ax\"\n\t"       \
 414			"4:\tli\t%0, %3\n\t"                \
 415			"j\t3b\n\t"                         \
 416			".previous\n\t"                     \
 417			".section\t__ex_table,\"a\"\n\t"    \
 418			STR(PTR)"\t1b, 4b\n\t"              \
 419			STR(PTR)"\t2b, 4b\n\t"              \
 420			".previous"                         \
 421		: "=r" (res)                                \
 422		: "r" (value), "r" (addr), "i" (-EFAULT));
 423#endif
 424
 425static void emulate_load_store_insn(struct pt_regs *regs,
 426	void __user *addr, unsigned int __user *pc)
 427{
 428	union mips_instruction insn;
 429	unsigned long value;
 430	unsigned int res;
 431	unsigned long origpc;
 432	unsigned long orig31;
 433	void __user *fault_addr = NULL;
 434#ifdef	CONFIG_EVA
 435	mm_segment_t seg;
 436#endif
 437	origpc = (unsigned long)pc;
 438	orig31 = regs->regs[31];
 439
 440	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 441
 442	/*
 443	 * This load never faults.
 444	 */
 445	__get_user(insn.word, pc);
 446
 447	switch (insn.i_format.opcode) {
 448		/*
 449		 * These are instructions that a compiler doesn't generate.  We
 450		 * can assume therefore that the code is MIPS-aware and
 451		 * really buggy.  Emulating these instructions would break the
 452		 * semantics anyway.
 453		 */
 454	case ll_op:
 455	case lld_op:
 456	case sc_op:
 457	case scd_op:
 458
 459		/*
 460		 * For these instructions the only way to create an address
 461		 * error is an attempted access to kernel/supervisor address
 462		 * space.
 463		 */
 464	case ldl_op:
 465	case ldr_op:
 466	case lwl_op:
 467	case lwr_op:
 468	case sdl_op:
 469	case sdr_op:
 470	case swl_op:
 471	case swr_op:
 472	case lb_op:
 473	case lbu_op:
 474	case sb_op:
 475		goto sigbus;
 476
 477		/*
 478		 * The remaining opcodes are the ones that are really of
 479		 * interest.
 480		 */
 481#ifdef CONFIG_EVA
 482	case spec3_op:
 483		/*
 484		 * we can land here only from kernel accessing user memory,
 485		 * so we need to "switch" the address limit to user space, so
 486		 * address check can work properly.
 487		 */
 488		seg = get_fs();
 489		set_fs(USER_DS);
 490		switch (insn.spec3_format.func) {
 491		case lhe_op:
 492			if (!access_ok(VERIFY_READ, addr, 2)) {
 493				set_fs(seg);
 494				goto sigbus;
 495			}
 496			LoadHW(addr, value, res);
 497			if (res) {
 498				set_fs(seg);
 499				goto fault;
 500			}
 501			compute_return_epc(regs);
 502			regs->regs[insn.spec3_format.rt] = value;
 503			break;
 504		case lwe_op:
 505			if (!access_ok(VERIFY_READ, addr, 4)) {
 506				set_fs(seg);
 507				goto sigbus;
 508			}
 509				LoadW(addr, value, res);
 510			if (res) {
 511				set_fs(seg);
 512				goto fault;
 513			}
 514			compute_return_epc(regs);
 515			regs->regs[insn.spec3_format.rt] = value;
 516			break;
 517		case lhue_op:
 518			if (!access_ok(VERIFY_READ, addr, 2)) {
 519				set_fs(seg);
 520				goto sigbus;
 521			}
 522			LoadHWU(addr, value, res);
 523			if (res) {
 524				set_fs(seg);
 525				goto fault;
 526			}
 527			compute_return_epc(regs);
 528			regs->regs[insn.spec3_format.rt] = value;
 529			break;
 530		case she_op:
 531			if (!access_ok(VERIFY_WRITE, addr, 2)) {
 532				set_fs(seg);
 533				goto sigbus;
 534			}
 535			compute_return_epc(regs);
 536			value = regs->regs[insn.spec3_format.rt];
 537			StoreHW(addr, value, res);
 538			if (res) {
 539				set_fs(seg);
 540				goto fault;
 541			}
 542			break;
 543		case swe_op:
 544			if (!access_ok(VERIFY_WRITE, addr, 4)) {
 545				set_fs(seg);
 546				goto sigbus;
 547			}
 548			compute_return_epc(regs);
 549			value = regs->regs[insn.spec3_format.rt];
 550			StoreW(addr, value, res);
 551			if (res) {
 552				set_fs(seg);
 553				goto fault;
 554			}
 555			break;
 556		default:
 557			set_fs(seg);
 558			goto sigill;
 559		}
 560		set_fs(seg);
 561		break;
 562#endif
 563	case lh_op:
 564		if (!access_ok(VERIFY_READ, addr, 2))
 565			goto sigbus;
 566
 567		LoadHW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568		if (res)
 569			goto fault;
 570		compute_return_epc(regs);
 571		regs->regs[insn.i_format.rt] = value;
 572		break;
 573
 574	case lw_op:
 575		if (!access_ok(VERIFY_READ, addr, 4))
 576			goto sigbus;
 577
 578		LoadW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579		if (res)
 580			goto fault;
 581		compute_return_epc(regs);
 582		regs->regs[insn.i_format.rt] = value;
 583		break;
 584
 585	case lhu_op:
 586		if (!access_ok(VERIFY_READ, addr, 2))
 587			goto sigbus;
 588
 589		LoadHWU(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590		if (res)
 591			goto fault;
 592		compute_return_epc(regs);
 593		regs->regs[insn.i_format.rt] = value;
 594		break;
 595
 596	case lwu_op:
 597#ifdef CONFIG_64BIT
 598		/*
 599		 * A 32-bit kernel might be running on a 64-bit processor.  But
 600		 * if we're on a 32-bit processor and an i-cache incoherency
 601		 * or race makes us see a 64-bit instruction here the sdl/sdr
 602		 * would blow up, so for now we don't handle unaligned 64-bit
 603		 * instructions on 32-bit kernels.
 604		 */
 605		if (!access_ok(VERIFY_READ, addr, 4))
 606			goto sigbus;
 607
 608		LoadWU(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609		if (res)
 610			goto fault;
 611		compute_return_epc(regs);
 612		regs->regs[insn.i_format.rt] = value;
 613		break;
 614#endif /* CONFIG_64BIT */
 615
 616		/* Cannot handle 64-bit instructions in 32-bit kernel */
 617		goto sigill;
 618
 619	case ld_op:
 620#ifdef CONFIG_64BIT
 621		/*
 622		 * A 32-bit kernel might be running on a 64-bit processor.  But
 623		 * if we're on a 32-bit processor and an i-cache incoherency
 624		 * or race makes us see a 64-bit instruction here the sdl/sdr
 625		 * would blow up, so for now we don't handle unaligned 64-bit
 626		 * instructions on 32-bit kernels.
 627		 */
 628		if (!access_ok(VERIFY_READ, addr, 8))
 629			goto sigbus;
 630
 631		LoadDW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		if (res)
 633			goto fault;
 634		compute_return_epc(regs);
 635		regs->regs[insn.i_format.rt] = value;
 636		break;
 637#endif /* CONFIG_64BIT */
 638
 639		/* Cannot handle 64-bit instructions in 32-bit kernel */
 640		goto sigill;
 641
 642	case sh_op:
 643		if (!access_ok(VERIFY_WRITE, addr, 2))
 644			goto sigbus;
 645
 646		compute_return_epc(regs);
 647		value = regs->regs[insn.i_format.rt];
 648		StoreHW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649		if (res)
 650			goto fault;
 
 651		break;
 652
 653	case sw_op:
 654		if (!access_ok(VERIFY_WRITE, addr, 4))
 655			goto sigbus;
 656
 657		compute_return_epc(regs);
 658		value = regs->regs[insn.i_format.rt];
 659		StoreW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660		if (res)
 661			goto fault;
 
 662		break;
 663
 664	case sd_op:
 665#ifdef CONFIG_64BIT
 666		/*
 667		 * A 32-bit kernel might be running on a 64-bit processor.  But
 668		 * if we're on a 32-bit processor and an i-cache incoherency
 669		 * or race makes us see a 64-bit instruction here the sdl/sdr
 670		 * would blow up, so for now we don't handle unaligned 64-bit
 671		 * instructions on 32-bit kernels.
 672		 */
 673		if (!access_ok(VERIFY_WRITE, addr, 8))
 674			goto sigbus;
 675
 676		compute_return_epc(regs);
 677		value = regs->regs[insn.i_format.rt];
 678		StoreDW(addr, value, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679		if (res)
 680			goto fault;
 
 681		break;
 682#endif /* CONFIG_64BIT */
 683
 684		/* Cannot handle 64-bit instructions in 32-bit kernel */
 685		goto sigill;
 686
 687	case lwc1_op:
 688	case ldc1_op:
 689	case swc1_op:
 690	case sdc1_op:
 691		die_if_kernel("Unaligned FP access in kernel code", regs);
 692		BUG_ON(!used_math());
 693		BUG_ON(!is_fpu_owner());
 694
 695		lose_fpu(1);	/* Save FPU state for the emulator. */
 696		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 697					       &fault_addr);
 698		own_fpu(1);	/* Restore FPU state. */
 699
 700		/* Signal if something went wrong. */
 701		process_fpemu_return(res, fault_addr);
 702
 703		if (res == 0)
 704			break;
 705		return;
 706
 707	/*
 708	 * COP2 is available to implementor for application specific use.
 709	 * It's up to applications to register a notifier chain and do
 710	 * whatever they have to do, including possible sending of signals.
 711	 */
 712	case lwc2_op:
 713		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 714		break;
 715
 716	case ldc2_op:
 717		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 718		break;
 719
 720	case swc2_op:
 721		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 722		break;
 723
 724	case sdc2_op:
 725		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 726		break;
 727
 728	default:
 729		/*
 730		 * Pheeee...  We encountered an yet unknown instruction or
 731		 * cache coherence problem.  Die sucker, die ...
 732		 */
 733		goto sigill;
 734	}
 735
 736#ifdef CONFIG_DEBUG_FS
 737	unaligned_instructions++;
 738#endif
 739
 740	return;
 741
 742fault:
 743	/* roll back jump/branch */
 744	regs->cp0_epc = origpc;
 745	regs->regs[31] = orig31;
 746	/* Did we have an exception handler installed? */
 747	if (fixup_exception(regs))
 748		return;
 749
 750	die_if_kernel("Unhandled kernel unaligned access", regs);
 751	force_sig(SIGSEGV, current);
 752
 753	return;
 754
 755sigbus:
 756	die_if_kernel("Unhandled kernel unaligned access", regs);
 757	force_sig(SIGBUS, current);
 758
 759	return;
 760
 761sigill:
 762	die_if_kernel
 763	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 764	force_sig(SIGILL, current);
 765}
 766
 767/* Recode table from 16-bit register notation to 32-bit GPR. */
 768const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 769
 770/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 771const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 772
 773static void emulate_load_store_microMIPS(struct pt_regs *regs,
 774					 void __user *addr)
 775{
 776	unsigned long value;
 777	unsigned int res;
 778	int i;
 779	unsigned int reg = 0, rvar;
 780	unsigned long orig31;
 781	u16 __user *pc16;
 782	u16 halfword;
 783	unsigned int word;
 784	unsigned long origpc, contpc;
 785	union mips_instruction insn;
 786	struct mm_decoded_insn mminsn;
 787	void __user *fault_addr = NULL;
 788
 789	origpc = regs->cp0_epc;
 790	orig31 = regs->regs[31];
 791
 792	mminsn.micro_mips_mode = 1;
 793
 794	/*
 795	 * This load never faults.
 796	 */
 797	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 798	__get_user(halfword, pc16);
 799	pc16++;
 800	contpc = regs->cp0_epc + 2;
 801	word = ((unsigned int)halfword << 16);
 802	mminsn.pc_inc = 2;
 803
 804	if (!mm_insn_16bit(halfword)) {
 805		__get_user(halfword, pc16);
 806		pc16++;
 807		contpc = regs->cp0_epc + 4;
 808		mminsn.pc_inc = 4;
 809		word |= halfword;
 810	}
 811	mminsn.insn = word;
 812
 813	if (get_user(halfword, pc16))
 814		goto fault;
 815	mminsn.next_pc_inc = 2;
 816	word = ((unsigned int)halfword << 16);
 817
 818	if (!mm_insn_16bit(halfword)) {
 819		pc16++;
 820		if (get_user(halfword, pc16))
 821			goto fault;
 822		mminsn.next_pc_inc = 4;
 823		word |= halfword;
 824	}
 825	mminsn.next_insn = word;
 826
 827	insn = (union mips_instruction)(mminsn.insn);
 828	if (mm_isBranchInstr(regs, mminsn, &contpc))
 829		insn = (union mips_instruction)(mminsn.next_insn);
 830
 831	/*  Parse instruction to find what to do */
 832
 833	switch (insn.mm_i_format.opcode) {
 834
 835	case mm_pool32a_op:
 836		switch (insn.mm_x_format.func) {
 837		case mm_lwxs_op:
 838			reg = insn.mm_x_format.rd;
 839			goto loadW;
 840		}
 841
 842		goto sigbus;
 843
 844	case mm_pool32b_op:
 845		switch (insn.mm_m_format.func) {
 846		case mm_lwp_func:
 847			reg = insn.mm_m_format.rd;
 848			if (reg == 31)
 849				goto sigbus;
 850
 851			if (!access_ok(VERIFY_READ, addr, 8))
 852				goto sigbus;
 853
 854			LoadW(addr, value, res);
 855			if (res)
 856				goto fault;
 857			regs->regs[reg] = value;
 858			addr += 4;
 859			LoadW(addr, value, res);
 860			if (res)
 861				goto fault;
 862			regs->regs[reg + 1] = value;
 863			goto success;
 864
 865		case mm_swp_func:
 866			reg = insn.mm_m_format.rd;
 867			if (reg == 31)
 868				goto sigbus;
 869
 870			if (!access_ok(VERIFY_WRITE, addr, 8))
 871				goto sigbus;
 872
 873			value = regs->regs[reg];
 874			StoreW(addr, value, res);
 875			if (res)
 876				goto fault;
 877			addr += 4;
 878			value = regs->regs[reg + 1];
 879			StoreW(addr, value, res);
 880			if (res)
 881				goto fault;
 882			goto success;
 883
 884		case mm_ldp_func:
 885#ifdef CONFIG_64BIT
 886			reg = insn.mm_m_format.rd;
 887			if (reg == 31)
 888				goto sigbus;
 889
 890			if (!access_ok(VERIFY_READ, addr, 16))
 891				goto sigbus;
 892
 893			LoadDW(addr, value, res);
 894			if (res)
 895				goto fault;
 896			regs->regs[reg] = value;
 897			addr += 8;
 898			LoadDW(addr, value, res);
 899			if (res)
 900				goto fault;
 901			regs->regs[reg + 1] = value;
 902			goto success;
 903#endif /* CONFIG_64BIT */
 904
 905			goto sigill;
 906
 907		case mm_sdp_func:
 908#ifdef CONFIG_64BIT
 909			reg = insn.mm_m_format.rd;
 910			if (reg == 31)
 911				goto sigbus;
 912
 913			if (!access_ok(VERIFY_WRITE, addr, 16))
 914				goto sigbus;
 915
 916			value = regs->regs[reg];
 917			StoreDW(addr, value, res);
 918			if (res)
 919				goto fault;
 920			addr += 8;
 921			value = regs->regs[reg + 1];
 922			StoreDW(addr, value, res);
 923			if (res)
 924				goto fault;
 925			goto success;
 926#endif /* CONFIG_64BIT */
 927
 928			goto sigill;
 929
 930		case mm_lwm32_func:
 931			reg = insn.mm_m_format.rd;
 932			rvar = reg & 0xf;
 933			if ((rvar > 9) || !reg)
 934				goto sigill;
 935			if (reg & 0x10) {
 936				if (!access_ok
 937				    (VERIFY_READ, addr, 4 * (rvar + 1)))
 938					goto sigbus;
 939			} else {
 940				if (!access_ok(VERIFY_READ, addr, 4 * rvar))
 941					goto sigbus;
 942			}
 943			if (rvar == 9)
 944				rvar = 8;
 945			for (i = 16; rvar; rvar--, i++) {
 946				LoadW(addr, value, res);
 947				if (res)
 948					goto fault;
 949				addr += 4;
 950				regs->regs[i] = value;
 951			}
 952			if ((reg & 0xf) == 9) {
 953				LoadW(addr, value, res);
 954				if (res)
 955					goto fault;
 956				addr += 4;
 957				regs->regs[30] = value;
 958			}
 959			if (reg & 0x10) {
 960				LoadW(addr, value, res);
 961				if (res)
 962					goto fault;
 963				regs->regs[31] = value;
 964			}
 965			goto success;
 966
 967		case mm_swm32_func:
 968			reg = insn.mm_m_format.rd;
 969			rvar = reg & 0xf;
 970			if ((rvar > 9) || !reg)
 971				goto sigill;
 972			if (reg & 0x10) {
 973				if (!access_ok
 974				    (VERIFY_WRITE, addr, 4 * (rvar + 1)))
 975					goto sigbus;
 976			} else {
 977				if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
 978					goto sigbus;
 979			}
 980			if (rvar == 9)
 981				rvar = 8;
 982			for (i = 16; rvar; rvar--, i++) {
 983				value = regs->regs[i];
 984				StoreW(addr, value, res);
 985				if (res)
 986					goto fault;
 987				addr += 4;
 988			}
 989			if ((reg & 0xf) == 9) {
 990				value = regs->regs[30];
 991				StoreW(addr, value, res);
 992				if (res)
 993					goto fault;
 994				addr += 4;
 995			}
 996			if (reg & 0x10) {
 997				value = regs->regs[31];
 998				StoreW(addr, value, res);
 999				if (res)
1000					goto fault;
1001			}
1002			goto success;
1003
1004		case mm_ldm_func:
1005#ifdef CONFIG_64BIT
1006			reg = insn.mm_m_format.rd;
1007			rvar = reg & 0xf;
1008			if ((rvar > 9) || !reg)
1009				goto sigill;
1010			if (reg & 0x10) {
1011				if (!access_ok
1012				    (VERIFY_READ, addr, 8 * (rvar + 1)))
1013					goto sigbus;
1014			} else {
1015				if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1016					goto sigbus;
1017			}
1018			if (rvar == 9)
1019				rvar = 8;
1020
1021			for (i = 16; rvar; rvar--, i++) {
1022				LoadDW(addr, value, res);
1023				if (res)
1024					goto fault;
1025				addr += 4;
1026				regs->regs[i] = value;
1027			}
1028			if ((reg & 0xf) == 9) {
1029				LoadDW(addr, value, res);
1030				if (res)
1031					goto fault;
1032				addr += 8;
1033				regs->regs[30] = value;
1034			}
1035			if (reg & 0x10) {
1036				LoadDW(addr, value, res);
1037				if (res)
1038					goto fault;
1039				regs->regs[31] = value;
1040			}
1041			goto success;
1042#endif /* CONFIG_64BIT */
1043
1044			goto sigill;
1045
1046		case mm_sdm_func:
1047#ifdef CONFIG_64BIT
1048			reg = insn.mm_m_format.rd;
1049			rvar = reg & 0xf;
1050			if ((rvar > 9) || !reg)
1051				goto sigill;
1052			if (reg & 0x10) {
1053				if (!access_ok
1054				    (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1055					goto sigbus;
1056			} else {
1057				if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1058					goto sigbus;
1059			}
1060			if (rvar == 9)
1061				rvar = 8;
1062
1063			for (i = 16; rvar; rvar--, i++) {
1064				value = regs->regs[i];
1065				StoreDW(addr, value, res);
1066				if (res)
1067					goto fault;
1068				addr += 8;
1069			}
1070			if ((reg & 0xf) == 9) {
1071				value = regs->regs[30];
1072				StoreDW(addr, value, res);
1073				if (res)
1074					goto fault;
1075				addr += 8;
1076			}
1077			if (reg & 0x10) {
1078				value = regs->regs[31];
1079				StoreDW(addr, value, res);
1080				if (res)
1081					goto fault;
1082			}
1083			goto success;
1084#endif /* CONFIG_64BIT */
1085
1086			goto sigill;
1087
1088			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
1089		}
1090
1091		goto sigbus;
1092
1093	case mm_pool32c_op:
1094		switch (insn.mm_m_format.func) {
1095		case mm_lwu_func:
1096			reg = insn.mm_m_format.rd;
1097			goto loadWU;
1098		}
1099
1100		/*  LL,SC,LLD,SCD are not serviced */
1101		goto sigbus;
1102
1103	case mm_pool32f_op:
1104		switch (insn.mm_x_format.func) {
1105		case mm_lwxc1_func:
1106		case mm_swxc1_func:
1107		case mm_ldxc1_func:
1108		case mm_sdxc1_func:
1109			goto fpu_emul;
1110		}
1111
1112		goto sigbus;
1113
1114	case mm_ldc132_op:
1115	case mm_sdc132_op:
1116	case mm_lwc132_op:
1117	case mm_swc132_op:
1118fpu_emul:
1119		/* roll back jump/branch */
1120		regs->cp0_epc = origpc;
1121		regs->regs[31] = orig31;
1122
1123		die_if_kernel("Unaligned FP access in kernel code", regs);
1124		BUG_ON(!used_math());
1125		BUG_ON(!is_fpu_owner());
1126
1127		lose_fpu(1);	/* save the FPU state for the emulator */
1128		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1129					       &fault_addr);
1130		own_fpu(1);	/* restore FPU state */
1131
1132		/* If something went wrong, signal */
1133		process_fpemu_return(res, fault_addr);
1134
1135		if (res == 0)
1136			goto success;
1137		return;
1138
1139	case mm_lh32_op:
1140		reg = insn.mm_i_format.rt;
1141		goto loadHW;
1142
1143	case mm_lhu32_op:
1144		reg = insn.mm_i_format.rt;
1145		goto loadHWU;
1146
1147	case mm_lw32_op:
1148		reg = insn.mm_i_format.rt;
1149		goto loadW;
1150
1151	case mm_sh32_op:
1152		reg = insn.mm_i_format.rt;
1153		goto storeHW;
1154
1155	case mm_sw32_op:
1156		reg = insn.mm_i_format.rt;
1157		goto storeW;
1158
1159	case mm_ld32_op:
1160		reg = insn.mm_i_format.rt;
1161		goto loadDW;
1162
1163	case mm_sd32_op:
1164		reg = insn.mm_i_format.rt;
1165		goto storeDW;
1166
1167	case mm_pool16c_op:
1168		switch (insn.mm16_m_format.func) {
1169		case mm_lwm16_op:
1170			reg = insn.mm16_m_format.rlist;
1171			rvar = reg + 1;
1172			if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1173				goto sigbus;
1174
1175			for (i = 16; rvar; rvar--, i++) {
1176				LoadW(addr, value, res);
1177				if (res)
1178					goto fault;
1179				addr += 4;
1180				regs->regs[i] = value;
1181			}
1182			LoadW(addr, value, res);
1183			if (res)
1184				goto fault;
1185			regs->regs[31] = value;
1186
1187			goto success;
1188
1189		case mm_swm16_op:
1190			reg = insn.mm16_m_format.rlist;
1191			rvar = reg + 1;
1192			if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1193				goto sigbus;
1194
1195			for (i = 16; rvar; rvar--, i++) {
1196				value = regs->regs[i];
1197				StoreW(addr, value, res);
1198				if (res)
1199					goto fault;
1200				addr += 4;
1201			}
1202			value = regs->regs[31];
1203			StoreW(addr, value, res);
1204			if (res)
1205				goto fault;
1206
1207			goto success;
1208
1209		}
1210
1211		goto sigbus;
1212
1213	case mm_lhu16_op:
1214		reg = reg16to32[insn.mm16_rb_format.rt];
1215		goto loadHWU;
1216
1217	case mm_lw16_op:
1218		reg = reg16to32[insn.mm16_rb_format.rt];
1219		goto loadW;
1220
1221	case mm_sh16_op:
1222		reg = reg16to32st[insn.mm16_rb_format.rt];
1223		goto storeHW;
1224
1225	case mm_sw16_op:
1226		reg = reg16to32st[insn.mm16_rb_format.rt];
1227		goto storeW;
1228
1229	case mm_lwsp16_op:
1230		reg = insn.mm16_r5_format.rt;
1231		goto loadW;
1232
1233	case mm_swsp16_op:
1234		reg = insn.mm16_r5_format.rt;
1235		goto storeW;
1236
1237	case mm_lwgp16_op:
1238		reg = reg16to32[insn.mm16_r3_format.rt];
1239		goto loadW;
1240
1241	default:
1242		goto sigill;
1243	}
1244
1245loadHW:
1246	if (!access_ok(VERIFY_READ, addr, 2))
1247		goto sigbus;
1248
1249	LoadHW(addr, value, res);
1250	if (res)
1251		goto fault;
1252	regs->regs[reg] = value;
1253	goto success;
1254
1255loadHWU:
1256	if (!access_ok(VERIFY_READ, addr, 2))
1257		goto sigbus;
1258
1259	LoadHWU(addr, value, res);
1260	if (res)
1261		goto fault;
1262	regs->regs[reg] = value;
1263	goto success;
1264
1265loadW:
1266	if (!access_ok(VERIFY_READ, addr, 4))
1267		goto sigbus;
1268
1269	LoadW(addr, value, res);
1270	if (res)
1271		goto fault;
1272	regs->regs[reg] = value;
1273	goto success;
1274
1275loadWU:
1276#ifdef CONFIG_64BIT
1277	/*
1278	 * A 32-bit kernel might be running on a 64-bit processor.  But
1279	 * if we're on a 32-bit processor and an i-cache incoherency
1280	 * or race makes us see a 64-bit instruction here the sdl/sdr
1281	 * would blow up, so for now we don't handle unaligned 64-bit
1282	 * instructions on 32-bit kernels.
1283	 */
1284	if (!access_ok(VERIFY_READ, addr, 4))
1285		goto sigbus;
1286
1287	LoadWU(addr, value, res);
1288	if (res)
1289		goto fault;
1290	regs->regs[reg] = value;
1291	goto success;
1292#endif /* CONFIG_64BIT */
1293
1294	/* Cannot handle 64-bit instructions in 32-bit kernel */
1295	goto sigill;
1296
1297loadDW:
1298#ifdef CONFIG_64BIT
1299	/*
1300	 * A 32-bit kernel might be running on a 64-bit processor.  But
1301	 * if we're on a 32-bit processor and an i-cache incoherency
1302	 * or race makes us see a 64-bit instruction here the sdl/sdr
1303	 * would blow up, so for now we don't handle unaligned 64-bit
1304	 * instructions on 32-bit kernels.
1305	 */
1306	if (!access_ok(VERIFY_READ, addr, 8))
1307		goto sigbus;
1308
1309	LoadDW(addr, value, res);
1310	if (res)
1311		goto fault;
1312	regs->regs[reg] = value;
1313	goto success;
1314#endif /* CONFIG_64BIT */
1315
1316	/* Cannot handle 64-bit instructions in 32-bit kernel */
1317	goto sigill;
1318
1319storeHW:
1320	if (!access_ok(VERIFY_WRITE, addr, 2))
1321		goto sigbus;
1322
1323	value = regs->regs[reg];
1324	StoreHW(addr, value, res);
1325	if (res)
1326		goto fault;
1327	goto success;
1328
1329storeW:
1330	if (!access_ok(VERIFY_WRITE, addr, 4))
1331		goto sigbus;
1332
1333	value = regs->regs[reg];
1334	StoreW(addr, value, res);
1335	if (res)
1336		goto fault;
1337	goto success;
1338
1339storeDW:
1340#ifdef CONFIG_64BIT
1341	/*
1342	 * A 32-bit kernel might be running on a 64-bit processor.  But
1343	 * if we're on a 32-bit processor and an i-cache incoherency
1344	 * or race makes us see a 64-bit instruction here the sdl/sdr
1345	 * would blow up, so for now we don't handle unaligned 64-bit
1346	 * instructions on 32-bit kernels.
1347	 */
1348	if (!access_ok(VERIFY_WRITE, addr, 8))
1349		goto sigbus;
1350
1351	value = regs->regs[reg];
1352	StoreDW(addr, value, res);
1353	if (res)
1354		goto fault;
1355	goto success;
1356#endif /* CONFIG_64BIT */
1357
1358	/* Cannot handle 64-bit instructions in 32-bit kernel */
1359	goto sigill;
1360
1361success:
1362	regs->cp0_epc = contpc;	/* advance or branch */
1363
1364#ifdef CONFIG_DEBUG_FS
1365	unaligned_instructions++;
1366#endif
1367	return;
1368
1369fault:
1370	/* roll back jump/branch */
1371	regs->cp0_epc = origpc;
1372	regs->regs[31] = orig31;
1373	/* Did we have an exception handler installed? */
1374	if (fixup_exception(regs))
1375		return;
1376
1377	die_if_kernel("Unhandled kernel unaligned access", regs);
1378	force_sig(SIGSEGV, current);
1379
1380	return;
1381
1382sigbus:
1383	die_if_kernel("Unhandled kernel unaligned access", regs);
1384	force_sig(SIGBUS, current);
1385
1386	return;
1387
1388sigill:
1389	die_if_kernel
1390	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1391	force_sig(SIGILL, current);
1392}
1393
1394static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1395{
1396	unsigned long value;
1397	unsigned int res;
1398	int reg;
1399	unsigned long orig31;
1400	u16 __user *pc16;
1401	unsigned long origpc;
1402	union mips16e_instruction mips16inst, oldinst;
1403
1404	origpc = regs->cp0_epc;
1405	orig31 = regs->regs[31];
1406	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1407	/*
1408	 * This load never faults.
1409	 */
1410	__get_user(mips16inst.full, pc16);
1411	oldinst = mips16inst;
1412
1413	/* skip EXTEND instruction */
1414	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1415		pc16++;
1416		__get_user(mips16inst.full, pc16);
1417	} else if (delay_slot(regs)) {
1418		/*  skip jump instructions */
1419		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1420		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1421			pc16++;
1422		pc16++;
1423		if (get_user(mips16inst.full, pc16))
1424			goto sigbus;
1425	}
1426
1427	switch (mips16inst.ri.opcode) {
1428	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1429		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1430		case MIPS16e_ldpc_func:
1431		case MIPS16e_ldsp_func:
1432			reg = reg16to32[mips16inst.ri64.ry];
1433			goto loadDW;
1434
1435		case MIPS16e_sdsp_func:
1436			reg = reg16to32[mips16inst.ri64.ry];
1437			goto writeDW;
1438
1439		case MIPS16e_sdrasp_func:
1440			reg = 29;	/* GPRSP */
1441			goto writeDW;
1442		}
1443
1444		goto sigbus;
1445
1446	case MIPS16e_swsp_op:
1447	case MIPS16e_lwpc_op:
1448	case MIPS16e_lwsp_op:
1449		reg = reg16to32[mips16inst.ri.rx];
1450		break;
1451
1452	case MIPS16e_i8_op:
1453		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1454			goto sigbus;
1455		reg = 29;	/* GPRSP */
1456		break;
1457
1458	default:
1459		reg = reg16to32[mips16inst.rri.ry];
1460		break;
1461	}
1462
1463	switch (mips16inst.ri.opcode) {
1464
1465	case MIPS16e_lb_op:
1466	case MIPS16e_lbu_op:
1467	case MIPS16e_sb_op:
1468		goto sigbus;
1469
1470	case MIPS16e_lh_op:
1471		if (!access_ok(VERIFY_READ, addr, 2))
1472			goto sigbus;
1473
1474		LoadHW(addr, value, res);
1475		if (res)
1476			goto fault;
1477		MIPS16e_compute_return_epc(regs, &oldinst);
1478		regs->regs[reg] = value;
1479		break;
1480
1481	case MIPS16e_lhu_op:
1482		if (!access_ok(VERIFY_READ, addr, 2))
1483			goto sigbus;
1484
1485		LoadHWU(addr, value, res);
1486		if (res)
1487			goto fault;
1488		MIPS16e_compute_return_epc(regs, &oldinst);
1489		regs->regs[reg] = value;
1490		break;
1491
1492	case MIPS16e_lw_op:
1493	case MIPS16e_lwpc_op:
1494	case MIPS16e_lwsp_op:
1495		if (!access_ok(VERIFY_READ, addr, 4))
1496			goto sigbus;
1497
1498		LoadW(addr, value, res);
1499		if (res)
1500			goto fault;
1501		MIPS16e_compute_return_epc(regs, &oldinst);
1502		regs->regs[reg] = value;
1503		break;
1504
1505	case MIPS16e_lwu_op:
1506#ifdef CONFIG_64BIT
1507		/*
1508		 * A 32-bit kernel might be running on a 64-bit processor.  But
1509		 * if we're on a 32-bit processor and an i-cache incoherency
1510		 * or race makes us see a 64-bit instruction here the sdl/sdr
1511		 * would blow up, so for now we don't handle unaligned 64-bit
1512		 * instructions on 32-bit kernels.
1513		 */
1514		if (!access_ok(VERIFY_READ, addr, 4))
1515			goto sigbus;
1516
1517		LoadWU(addr, value, res);
1518		if (res)
1519			goto fault;
1520		MIPS16e_compute_return_epc(regs, &oldinst);
1521		regs->regs[reg] = value;
1522		break;
1523#endif /* CONFIG_64BIT */
1524
1525		/* Cannot handle 64-bit instructions in 32-bit kernel */
1526		goto sigill;
1527
1528	case MIPS16e_ld_op:
1529loadDW:
1530#ifdef CONFIG_64BIT
1531		/*
1532		 * A 32-bit kernel might be running on a 64-bit processor.  But
1533		 * if we're on a 32-bit processor and an i-cache incoherency
1534		 * or race makes us see a 64-bit instruction here the sdl/sdr
1535		 * would blow up, so for now we don't handle unaligned 64-bit
1536		 * instructions on 32-bit kernels.
1537		 */
1538		if (!access_ok(VERIFY_READ, addr, 8))
1539			goto sigbus;
1540
1541		LoadDW(addr, value, res);
1542		if (res)
1543			goto fault;
1544		MIPS16e_compute_return_epc(regs, &oldinst);
1545		regs->regs[reg] = value;
1546		break;
1547#endif /* CONFIG_64BIT */
1548
1549		/* Cannot handle 64-bit instructions in 32-bit kernel */
1550		goto sigill;
1551
1552	case MIPS16e_sh_op:
1553		if (!access_ok(VERIFY_WRITE, addr, 2))
1554			goto sigbus;
1555
1556		MIPS16e_compute_return_epc(regs, &oldinst);
1557		value = regs->regs[reg];
1558		StoreHW(addr, value, res);
1559		if (res)
1560			goto fault;
1561		break;
1562
1563	case MIPS16e_sw_op:
1564	case MIPS16e_swsp_op:
1565	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1566		if (!access_ok(VERIFY_WRITE, addr, 4))
1567			goto sigbus;
1568
1569		MIPS16e_compute_return_epc(regs, &oldinst);
1570		value = regs->regs[reg];
1571		StoreW(addr, value, res);
1572		if (res)
1573			goto fault;
1574		break;
1575
1576	case MIPS16e_sd_op:
1577writeDW:
1578#ifdef CONFIG_64BIT
1579		/*
1580		 * A 32-bit kernel might be running on a 64-bit processor.  But
1581		 * if we're on a 32-bit processor and an i-cache incoherency
1582		 * or race makes us see a 64-bit instruction here the sdl/sdr
1583		 * would blow up, so for now we don't handle unaligned 64-bit
1584		 * instructions on 32-bit kernels.
1585		 */
1586		if (!access_ok(VERIFY_WRITE, addr, 8))
1587			goto sigbus;
1588
1589		MIPS16e_compute_return_epc(regs, &oldinst);
1590		value = regs->regs[reg];
1591		StoreDW(addr, value, res);
1592		if (res)
1593			goto fault;
1594		break;
1595#endif /* CONFIG_64BIT */
1596
1597		/* Cannot handle 64-bit instructions in 32-bit kernel */
1598		goto sigill;
1599
1600	default:
1601		/*
1602		 * Pheeee...  We encountered an yet unknown instruction or
1603		 * cache coherence problem.  Die sucker, die ...
1604		 */
1605		goto sigill;
1606	}
1607
1608#ifdef CONFIG_DEBUG_FS
1609	unaligned_instructions++;
1610#endif
1611
1612	return;
1613
1614fault:
1615	/* roll back jump/branch */
1616	regs->cp0_epc = origpc;
1617	regs->regs[31] = orig31;
1618	/* Did we have an exception handler installed? */
1619	if (fixup_exception(regs))
1620		return;
1621
1622	die_if_kernel("Unhandled kernel unaligned access", regs);
1623	force_sig(SIGSEGV, current);
1624
1625	return;
1626
1627sigbus:
1628	die_if_kernel("Unhandled kernel unaligned access", regs);
1629	force_sig(SIGBUS, current);
1630
1631	return;
1632
1633sigill:
1634	die_if_kernel
1635	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1636	force_sig(SIGILL, current);
1637}
1638
1639asmlinkage void do_ade(struct pt_regs *regs)
1640{
1641	enum ctx_state prev_state;
1642	unsigned int __user *pc;
1643	mm_segment_t seg;
1644
1645	prev_state = exception_enter();
1646	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1647			1, regs, regs->cp0_badvaddr);
1648	/*
1649	 * Did we catch a fault trying to load an instruction?
 
1650	 */
1651	if (regs->cp0_badvaddr == regs->cp0_epc)
1652		goto sigbus;
1653
 
1654	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1655		goto sigbus;
1656	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1657		goto sigbus;
 
 
1658
1659	/*
1660	 * Do branch emulation only if we didn't forward the exception.
1661	 * This is all so but ugly ...
1662	 */
1663
1664	/*
1665	 * Are we running in microMIPS mode?
1666	 */
1667	if (get_isa16_mode(regs->cp0_epc)) {
1668		/*
1669		 * Did we catch a fault trying to load an instruction in
1670		 * 16-bit mode?
1671		 */
1672		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1673			goto sigbus;
1674		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1675			show_registers(regs);
1676
1677		if (cpu_has_mmips) {
1678			seg = get_fs();
1679			if (!user_mode(regs))
1680				set_fs(KERNEL_DS);
1681			emulate_load_store_microMIPS(regs,
1682				(void __user *)regs->cp0_badvaddr);
1683			set_fs(seg);
1684
1685			return;
1686		}
1687
1688		if (cpu_has_mips16) {
1689			seg = get_fs();
1690			if (!user_mode(regs))
1691				set_fs(KERNEL_DS);
1692			emulate_load_store_MIPS16e(regs,
1693				(void __user *)regs->cp0_badvaddr);
1694			set_fs(seg);
1695
1696			return;
1697	}
1698
1699		goto sigbus;
1700	}
1701
1702	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1703		show_registers(regs);
1704	pc = (unsigned int __user *)exception_epc(regs);
1705
1706	seg = get_fs();
1707	if (!user_mode(regs))
1708		set_fs(KERNEL_DS);
1709	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1710	set_fs(seg);
1711
1712	return;
1713
1714sigbus:
1715	die_if_kernel("Kernel unaligned instruction access", regs);
1716	force_sig(SIGBUS, current);
1717
1718	/*
1719	 * XXX On return from the signal handler we should advance the epc
1720	 */
1721	exception_exit(prev_state);
1722}
1723
1724#ifdef CONFIG_DEBUG_FS
1725extern struct dentry *mips_debugfs_dir;
1726static int __init debugfs_unaligned(void)
1727{
1728	struct dentry *d;
1729
1730	if (!mips_debugfs_dir)
1731		return -ENODEV;
1732	d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
1733			       mips_debugfs_dir, &unaligned_instructions);
1734	if (!d)
1735		return -ENOMEM;
1736	d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1737			       mips_debugfs_dir, &unaligned_action);
1738	if (!d)
1739		return -ENOMEM;
1740	return 0;
1741}
1742__initcall(debugfs_unaligned);
1743#endif