Loading...
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 *
11 * This file contains exception handler for address error exception with the
12 * special capability to execute faulting instructions in software. The
13 * handler does not try to handle the case when the program counter points
14 * to an address not aligned to a word boundary.
15 *
16 * Putting data to unaligned addresses is a bad practice even on Intel where
17 * only the performance is affected. Much worse is that such code is non-
18 * portable. Due to several programs that die on MIPS due to alignment
19 * problems I decided to implement this handler anyway though I originally
20 * didn't intend to do this at all for user code.
21 *
22 * For now I enable fixing of address errors by default to make life easier.
23 * I however intend to disable this somewhen in the future when the alignment
24 * problems with user programs have been fixed. For programmers this is the
25 * right way to go.
26 *
27 * Fixing address errors is a per process option. The option is inherited
28 * across fork(2) and execve(2) calls. If you really want to use the
29 * option in your user programs - I discourage the use of the software
30 * emulation strongly - use the following code in your userland stuff:
31 *
32 * #include <sys/sysmips.h>
33 *
34 * ...
35 * sysmips(MIPS_FIXADE, x);
36 * ...
37 *
38 * The argument x is 0 for disabling software emulation, enabled otherwise.
39 *
40 * Below a little program to play around with this feature.
41 *
42 * #include <stdio.h>
43 * #include <sys/sysmips.h>
44 *
45 * struct foo {
46 * unsigned char bar[8];
47 * };
48 *
49 * main(int argc, char *argv[])
50 * {
51 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
52 * unsigned int *p = (unsigned int *) (x.bar + 3);
53 * int i;
54 *
55 * if (argc > 1)
56 * sysmips(MIPS_FIXADE, atoi(argv[1]));
57 *
58 * printf("*p = %08lx\n", *p);
59 *
60 * *p = 0xdeadface;
61 *
62 * for(i = 0; i <= 7; i++)
63 * printf("%02x ", x.bar[i]);
64 * printf("\n");
65 * }
66 *
67 * Coprocessor loads are not supported; I think this case is unimportant
68 * in the practice.
69 *
70 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
71 * exception for the R6000.
72 * A store crossing a page boundary might be executed only partially.
73 * Undo the partial store in this case.
74 */
75#include <linux/mm.h>
76#include <linux/signal.h>
77#include <linux/smp.h>
78#include <linux/sched.h>
79#include <linux/debugfs.h>
80#include <linux/perf_event.h>
81
82#include <asm/asm.h>
83#include <asm/branch.h>
84#include <asm/byteorder.h>
85#include <asm/cop2.h>
86#include <asm/inst.h>
87#include <asm/uaccess.h>
88
89#define STR(x) __STR(x)
90#define __STR(x) #x
91
92enum {
93 UNALIGNED_ACTION_QUIET,
94 UNALIGNED_ACTION_SIGNAL,
95 UNALIGNED_ACTION_SHOW,
96};
97#ifdef CONFIG_DEBUG_FS
98static u32 unaligned_instructions;
99static u32 unaligned_action;
100#else
101#define unaligned_action UNALIGNED_ACTION_QUIET
102#endif
103extern void show_registers(struct pt_regs *regs);
104
105static void emulate_load_store_insn(struct pt_regs *regs,
106 void __user *addr, unsigned int __user *pc)
107{
108 union mips_instruction insn;
109 unsigned long value;
110 unsigned int res;
111
112 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
113
114 /*
115 * This load never faults.
116 */
117 __get_user(insn.word, pc);
118
119 switch (insn.i_format.opcode) {
120 /*
121 * These are instructions that a compiler doesn't generate. We
122 * can assume therefore that the code is MIPS-aware and
123 * really buggy. Emulating these instructions would break the
124 * semantics anyway.
125 */
126 case ll_op:
127 case lld_op:
128 case sc_op:
129 case scd_op:
130
131 /*
132 * For these instructions the only way to create an address
133 * error is an attempted access to kernel/supervisor address
134 * space.
135 */
136 case ldl_op:
137 case ldr_op:
138 case lwl_op:
139 case lwr_op:
140 case sdl_op:
141 case sdr_op:
142 case swl_op:
143 case swr_op:
144 case lb_op:
145 case lbu_op:
146 case sb_op:
147 goto sigbus;
148
149 /*
150 * The remaining opcodes are the ones that are really of interest.
151 */
152 case lh_op:
153 if (!access_ok(VERIFY_READ, addr, 2))
154 goto sigbus;
155
156 __asm__ __volatile__ (".set\tnoat\n"
157#ifdef __BIG_ENDIAN
158 "1:\tlb\t%0, 0(%2)\n"
159 "2:\tlbu\t$1, 1(%2)\n\t"
160#endif
161#ifdef __LITTLE_ENDIAN
162 "1:\tlb\t%0, 1(%2)\n"
163 "2:\tlbu\t$1, 0(%2)\n\t"
164#endif
165 "sll\t%0, 0x8\n\t"
166 "or\t%0, $1\n\t"
167 "li\t%1, 0\n"
168 "3:\t.set\tat\n\t"
169 ".section\t.fixup,\"ax\"\n\t"
170 "4:\tli\t%1, %3\n\t"
171 "j\t3b\n\t"
172 ".previous\n\t"
173 ".section\t__ex_table,\"a\"\n\t"
174 STR(PTR)"\t1b, 4b\n\t"
175 STR(PTR)"\t2b, 4b\n\t"
176 ".previous"
177 : "=&r" (value), "=r" (res)
178 : "r" (addr), "i" (-EFAULT));
179 if (res)
180 goto fault;
181 compute_return_epc(regs);
182 regs->regs[insn.i_format.rt] = value;
183 break;
184
185 case lw_op:
186 if (!access_ok(VERIFY_READ, addr, 4))
187 goto sigbus;
188
189 __asm__ __volatile__ (
190#ifdef __BIG_ENDIAN
191 "1:\tlwl\t%0, (%2)\n"
192 "2:\tlwr\t%0, 3(%2)\n\t"
193#endif
194#ifdef __LITTLE_ENDIAN
195 "1:\tlwl\t%0, 3(%2)\n"
196 "2:\tlwr\t%0, (%2)\n\t"
197#endif
198 "li\t%1, 0\n"
199 "3:\t.section\t.fixup,\"ax\"\n\t"
200 "4:\tli\t%1, %3\n\t"
201 "j\t3b\n\t"
202 ".previous\n\t"
203 ".section\t__ex_table,\"a\"\n\t"
204 STR(PTR)"\t1b, 4b\n\t"
205 STR(PTR)"\t2b, 4b\n\t"
206 ".previous"
207 : "=&r" (value), "=r" (res)
208 : "r" (addr), "i" (-EFAULT));
209 if (res)
210 goto fault;
211 compute_return_epc(regs);
212 regs->regs[insn.i_format.rt] = value;
213 break;
214
215 case lhu_op:
216 if (!access_ok(VERIFY_READ, addr, 2))
217 goto sigbus;
218
219 __asm__ __volatile__ (
220 ".set\tnoat\n"
221#ifdef __BIG_ENDIAN
222 "1:\tlbu\t%0, 0(%2)\n"
223 "2:\tlbu\t$1, 1(%2)\n\t"
224#endif
225#ifdef __LITTLE_ENDIAN
226 "1:\tlbu\t%0, 1(%2)\n"
227 "2:\tlbu\t$1, 0(%2)\n\t"
228#endif
229 "sll\t%0, 0x8\n\t"
230 "or\t%0, $1\n\t"
231 "li\t%1, 0\n"
232 "3:\t.set\tat\n\t"
233 ".section\t.fixup,\"ax\"\n\t"
234 "4:\tli\t%1, %3\n\t"
235 "j\t3b\n\t"
236 ".previous\n\t"
237 ".section\t__ex_table,\"a\"\n\t"
238 STR(PTR)"\t1b, 4b\n\t"
239 STR(PTR)"\t2b, 4b\n\t"
240 ".previous"
241 : "=&r" (value), "=r" (res)
242 : "r" (addr), "i" (-EFAULT));
243 if (res)
244 goto fault;
245 compute_return_epc(regs);
246 regs->regs[insn.i_format.rt] = value;
247 break;
248
249 case lwu_op:
250#ifdef CONFIG_64BIT
251 /*
252 * A 32-bit kernel might be running on a 64-bit processor. But
253 * if we're on a 32-bit processor and an i-cache incoherency
254 * or race makes us see a 64-bit instruction here the sdl/sdr
255 * would blow up, so for now we don't handle unaligned 64-bit
256 * instructions on 32-bit kernels.
257 */
258 if (!access_ok(VERIFY_READ, addr, 4))
259 goto sigbus;
260
261 __asm__ __volatile__ (
262#ifdef __BIG_ENDIAN
263 "1:\tlwl\t%0, (%2)\n"
264 "2:\tlwr\t%0, 3(%2)\n\t"
265#endif
266#ifdef __LITTLE_ENDIAN
267 "1:\tlwl\t%0, 3(%2)\n"
268 "2:\tlwr\t%0, (%2)\n\t"
269#endif
270 "dsll\t%0, %0, 32\n\t"
271 "dsrl\t%0, %0, 32\n\t"
272 "li\t%1, 0\n"
273 "3:\t.section\t.fixup,\"ax\"\n\t"
274 "4:\tli\t%1, %3\n\t"
275 "j\t3b\n\t"
276 ".previous\n\t"
277 ".section\t__ex_table,\"a\"\n\t"
278 STR(PTR)"\t1b, 4b\n\t"
279 STR(PTR)"\t2b, 4b\n\t"
280 ".previous"
281 : "=&r" (value), "=r" (res)
282 : "r" (addr), "i" (-EFAULT));
283 if (res)
284 goto fault;
285 compute_return_epc(regs);
286 regs->regs[insn.i_format.rt] = value;
287 break;
288#endif /* CONFIG_64BIT */
289
290 /* Cannot handle 64-bit instructions in 32-bit kernel */
291 goto sigill;
292
293 case ld_op:
294#ifdef CONFIG_64BIT
295 /*
296 * A 32-bit kernel might be running on a 64-bit processor. But
297 * if we're on a 32-bit processor and an i-cache incoherency
298 * or race makes us see a 64-bit instruction here the sdl/sdr
299 * would blow up, so for now we don't handle unaligned 64-bit
300 * instructions on 32-bit kernels.
301 */
302 if (!access_ok(VERIFY_READ, addr, 8))
303 goto sigbus;
304
305 __asm__ __volatile__ (
306#ifdef __BIG_ENDIAN
307 "1:\tldl\t%0, (%2)\n"
308 "2:\tldr\t%0, 7(%2)\n\t"
309#endif
310#ifdef __LITTLE_ENDIAN
311 "1:\tldl\t%0, 7(%2)\n"
312 "2:\tldr\t%0, (%2)\n\t"
313#endif
314 "li\t%1, 0\n"
315 "3:\t.section\t.fixup,\"ax\"\n\t"
316 "4:\tli\t%1, %3\n\t"
317 "j\t3b\n\t"
318 ".previous\n\t"
319 ".section\t__ex_table,\"a\"\n\t"
320 STR(PTR)"\t1b, 4b\n\t"
321 STR(PTR)"\t2b, 4b\n\t"
322 ".previous"
323 : "=&r" (value), "=r" (res)
324 : "r" (addr), "i" (-EFAULT));
325 if (res)
326 goto fault;
327 compute_return_epc(regs);
328 regs->regs[insn.i_format.rt] = value;
329 break;
330#endif /* CONFIG_64BIT */
331
332 /* Cannot handle 64-bit instructions in 32-bit kernel */
333 goto sigill;
334
335 case sh_op:
336 if (!access_ok(VERIFY_WRITE, addr, 2))
337 goto sigbus;
338
339 value = regs->regs[insn.i_format.rt];
340 __asm__ __volatile__ (
341#ifdef __BIG_ENDIAN
342 ".set\tnoat\n"
343 "1:\tsb\t%1, 1(%2)\n\t"
344 "srl\t$1, %1, 0x8\n"
345 "2:\tsb\t$1, 0(%2)\n\t"
346 ".set\tat\n\t"
347#endif
348#ifdef __LITTLE_ENDIAN
349 ".set\tnoat\n"
350 "1:\tsb\t%1, 0(%2)\n\t"
351 "srl\t$1,%1, 0x8\n"
352 "2:\tsb\t$1, 1(%2)\n\t"
353 ".set\tat\n\t"
354#endif
355 "li\t%0, 0\n"
356 "3:\n\t"
357 ".section\t.fixup,\"ax\"\n\t"
358 "4:\tli\t%0, %3\n\t"
359 "j\t3b\n\t"
360 ".previous\n\t"
361 ".section\t__ex_table,\"a\"\n\t"
362 STR(PTR)"\t1b, 4b\n\t"
363 STR(PTR)"\t2b, 4b\n\t"
364 ".previous"
365 : "=r" (res)
366 : "r" (value), "r" (addr), "i" (-EFAULT));
367 if (res)
368 goto fault;
369 compute_return_epc(regs);
370 break;
371
372 case sw_op:
373 if (!access_ok(VERIFY_WRITE, addr, 4))
374 goto sigbus;
375
376 value = regs->regs[insn.i_format.rt];
377 __asm__ __volatile__ (
378#ifdef __BIG_ENDIAN
379 "1:\tswl\t%1,(%2)\n"
380 "2:\tswr\t%1, 3(%2)\n\t"
381#endif
382#ifdef __LITTLE_ENDIAN
383 "1:\tswl\t%1, 3(%2)\n"
384 "2:\tswr\t%1, (%2)\n\t"
385#endif
386 "li\t%0, 0\n"
387 "3:\n\t"
388 ".section\t.fixup,\"ax\"\n\t"
389 "4:\tli\t%0, %3\n\t"
390 "j\t3b\n\t"
391 ".previous\n\t"
392 ".section\t__ex_table,\"a\"\n\t"
393 STR(PTR)"\t1b, 4b\n\t"
394 STR(PTR)"\t2b, 4b\n\t"
395 ".previous"
396 : "=r" (res)
397 : "r" (value), "r" (addr), "i" (-EFAULT));
398 if (res)
399 goto fault;
400 compute_return_epc(regs);
401 break;
402
403 case sd_op:
404#ifdef CONFIG_64BIT
405 /*
406 * A 32-bit kernel might be running on a 64-bit processor. But
407 * if we're on a 32-bit processor and an i-cache incoherency
408 * or race makes us see a 64-bit instruction here the sdl/sdr
409 * would blow up, so for now we don't handle unaligned 64-bit
410 * instructions on 32-bit kernels.
411 */
412 if (!access_ok(VERIFY_WRITE, addr, 8))
413 goto sigbus;
414
415 value = regs->regs[insn.i_format.rt];
416 __asm__ __volatile__ (
417#ifdef __BIG_ENDIAN
418 "1:\tsdl\t%1,(%2)\n"
419 "2:\tsdr\t%1, 7(%2)\n\t"
420#endif
421#ifdef __LITTLE_ENDIAN
422 "1:\tsdl\t%1, 7(%2)\n"
423 "2:\tsdr\t%1, (%2)\n\t"
424#endif
425 "li\t%0, 0\n"
426 "3:\n\t"
427 ".section\t.fixup,\"ax\"\n\t"
428 "4:\tli\t%0, %3\n\t"
429 "j\t3b\n\t"
430 ".previous\n\t"
431 ".section\t__ex_table,\"a\"\n\t"
432 STR(PTR)"\t1b, 4b\n\t"
433 STR(PTR)"\t2b, 4b\n\t"
434 ".previous"
435 : "=r" (res)
436 : "r" (value), "r" (addr), "i" (-EFAULT));
437 if (res)
438 goto fault;
439 compute_return_epc(regs);
440 break;
441#endif /* CONFIG_64BIT */
442
443 /* Cannot handle 64-bit instructions in 32-bit kernel */
444 goto sigill;
445
446 case lwc1_op:
447 case ldc1_op:
448 case swc1_op:
449 case sdc1_op:
450 /*
451 * I herewith declare: this does not happen. So send SIGBUS.
452 */
453 goto sigbus;
454
455 /*
456 * COP2 is available to implementor for application specific use.
457 * It's up to applications to register a notifier chain and do
458 * whatever they have to do, including possible sending of signals.
459 */
460 case lwc2_op:
461 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
462 break;
463
464 case ldc2_op:
465 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
466 break;
467
468 case swc2_op:
469 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
470 break;
471
472 case sdc2_op:
473 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
474 break;
475
476 default:
477 /*
478 * Pheeee... We encountered an yet unknown instruction or
479 * cache coherence problem. Die sucker, die ...
480 */
481 goto sigill;
482 }
483
484#ifdef CONFIG_DEBUG_FS
485 unaligned_instructions++;
486#endif
487
488 return;
489
490fault:
491 /* Did we have an exception handler installed? */
492 if (fixup_exception(regs))
493 return;
494
495 die_if_kernel("Unhandled kernel unaligned access", regs);
496 force_sig(SIGSEGV, current);
497
498 return;
499
500sigbus:
501 die_if_kernel("Unhandled kernel unaligned access", regs);
502 force_sig(SIGBUS, current);
503
504 return;
505
506sigill:
507 die_if_kernel("Unhandled kernel unaligned access or invalid instruction", regs);
508 force_sig(SIGILL, current);
509}
510
511asmlinkage void do_ade(struct pt_regs *regs)
512{
513 unsigned int __user *pc;
514 mm_segment_t seg;
515
516 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
517 1, regs, regs->cp0_badvaddr);
518 /*
519 * Did we catch a fault trying to load an instruction?
520 * Or are we running in MIPS16 mode?
521 */
522 if ((regs->cp0_badvaddr == regs->cp0_epc) || (regs->cp0_epc & 0x1))
523 goto sigbus;
524
525 pc = (unsigned int __user *) exception_epc(regs);
526 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
527 goto sigbus;
528 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
529 goto sigbus;
530 else if (unaligned_action == UNALIGNED_ACTION_SHOW)
531 show_registers(regs);
532
533 /*
534 * Do branch emulation only if we didn't forward the exception.
535 * This is all so but ugly ...
536 */
537 seg = get_fs();
538 if (!user_mode(regs))
539 set_fs(KERNEL_DS);
540 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
541 set_fs(seg);
542
543 return;
544
545sigbus:
546 die_if_kernel("Kernel unaligned instruction access", regs);
547 force_sig(SIGBUS, current);
548
549 /*
550 * XXX On return from the signal handler we should advance the epc
551 */
552}
553
554#ifdef CONFIG_DEBUG_FS
555extern struct dentry *mips_debugfs_dir;
556static int __init debugfs_unaligned(void)
557{
558 struct dentry *d;
559
560 if (!mips_debugfs_dir)
561 return -ENODEV;
562 d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
563 mips_debugfs_dir, &unaligned_instructions);
564 if (!d)
565 return -ENOMEM;
566 d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
567 mips_debugfs_dir, &unaligned_action);
568 if (!d)
569 return -ENOMEM;
570 return 0;
571}
572__initcall(debugfs_unaligned);
573#endif
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/fpu.h>
89#include <asm/fpu_emulator.h>
90#include <asm/inst.h>
91#include <asm/uaccess.h>
92#include <asm/fpu.h>
93#include <asm/fpu_emulator.h>
94
95#define STR(x) __STR(x)
96#define __STR(x) #x
97
98enum {
99 UNALIGNED_ACTION_QUIET,
100 UNALIGNED_ACTION_SIGNAL,
101 UNALIGNED_ACTION_SHOW,
102};
103#ifdef CONFIG_DEBUG_FS
104static u32 unaligned_instructions;
105static u32 unaligned_action;
106#else
107#define unaligned_action UNALIGNED_ACTION_QUIET
108#endif
109extern void show_registers(struct pt_regs *regs);
110
111#ifdef __BIG_ENDIAN
112#define LoadHW(addr, value, res) \
113 __asm__ __volatile__ (".set\tnoat\n" \
114 "1:\t"user_lb("%0", "0(%2)")"\n" \
115 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
116 "sll\t%0, 0x8\n\t" \
117 "or\t%0, $1\n\t" \
118 "li\t%1, 0\n" \
119 "3:\t.set\tat\n\t" \
120 ".insn\n\t" \
121 ".section\t.fixup,\"ax\"\n\t" \
122 "4:\tli\t%1, %3\n\t" \
123 "j\t3b\n\t" \
124 ".previous\n\t" \
125 ".section\t__ex_table,\"a\"\n\t" \
126 STR(PTR)"\t1b, 4b\n\t" \
127 STR(PTR)"\t2b, 4b\n\t" \
128 ".previous" \
129 : "=&r" (value), "=r" (res) \
130 : "r" (addr), "i" (-EFAULT));
131
132#define LoadW(addr, value, res) \
133 __asm__ __volatile__ ( \
134 "1:\t"user_lwl("%0", "(%2)")"\n" \
135 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
136 "li\t%1, 0\n" \
137 "3:\n\t" \
138 ".insn\n\t" \
139 ".section\t.fixup,\"ax\"\n\t" \
140 "4:\tli\t%1, %3\n\t" \
141 "j\t3b\n\t" \
142 ".previous\n\t" \
143 ".section\t__ex_table,\"a\"\n\t" \
144 STR(PTR)"\t1b, 4b\n\t" \
145 STR(PTR)"\t2b, 4b\n\t" \
146 ".previous" \
147 : "=&r" (value), "=r" (res) \
148 : "r" (addr), "i" (-EFAULT));
149
150#define LoadHWU(addr, value, res) \
151 __asm__ __volatile__ ( \
152 ".set\tnoat\n" \
153 "1:\t"user_lbu("%0", "0(%2)")"\n" \
154 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
155 "sll\t%0, 0x8\n\t" \
156 "or\t%0, $1\n\t" \
157 "li\t%1, 0\n" \
158 "3:\n\t" \
159 ".insn\n\t" \
160 ".set\tat\n\t" \
161 ".section\t.fixup,\"ax\"\n\t" \
162 "4:\tli\t%1, %3\n\t" \
163 "j\t3b\n\t" \
164 ".previous\n\t" \
165 ".section\t__ex_table,\"a\"\n\t" \
166 STR(PTR)"\t1b, 4b\n\t" \
167 STR(PTR)"\t2b, 4b\n\t" \
168 ".previous" \
169 : "=&r" (value), "=r" (res) \
170 : "r" (addr), "i" (-EFAULT));
171
172#define LoadWU(addr, value, res) \
173 __asm__ __volatile__ ( \
174 "1:\t"user_lwl("%0", "(%2)")"\n" \
175 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
176 "dsll\t%0, %0, 32\n\t" \
177 "dsrl\t%0, %0, 32\n\t" \
178 "li\t%1, 0\n" \
179 "3:\n\t" \
180 ".insn\n\t" \
181 "\t.section\t.fixup,\"ax\"\n\t" \
182 "4:\tli\t%1, %3\n\t" \
183 "j\t3b\n\t" \
184 ".previous\n\t" \
185 ".section\t__ex_table,\"a\"\n\t" \
186 STR(PTR)"\t1b, 4b\n\t" \
187 STR(PTR)"\t2b, 4b\n\t" \
188 ".previous" \
189 : "=&r" (value), "=r" (res) \
190 : "r" (addr), "i" (-EFAULT));
191
192#define LoadDW(addr, value, res) \
193 __asm__ __volatile__ ( \
194 "1:\tldl\t%0, (%2)\n" \
195 "2:\tldr\t%0, 7(%2)\n\t" \
196 "li\t%1, 0\n" \
197 "3:\n\t" \
198 ".insn\n\t" \
199 "\t.section\t.fixup,\"ax\"\n\t" \
200 "4:\tli\t%1, %3\n\t" \
201 "j\t3b\n\t" \
202 ".previous\n\t" \
203 ".section\t__ex_table,\"a\"\n\t" \
204 STR(PTR)"\t1b, 4b\n\t" \
205 STR(PTR)"\t2b, 4b\n\t" \
206 ".previous" \
207 : "=&r" (value), "=r" (res) \
208 : "r" (addr), "i" (-EFAULT));
209
210#define StoreHW(addr, value, res) \
211 __asm__ __volatile__ ( \
212 ".set\tnoat\n" \
213 "1:\t"user_sb("%1", "1(%2)")"\n" \
214 "srl\t$1, %1, 0x8\n" \
215 "2:\t"user_sb("$1", "0(%2)")"\n" \
216 ".set\tat\n\t" \
217 "li\t%0, 0\n" \
218 "3:\n\t" \
219 ".insn\n\t" \
220 ".section\t.fixup,\"ax\"\n\t" \
221 "4:\tli\t%0, %3\n\t" \
222 "j\t3b\n\t" \
223 ".previous\n\t" \
224 ".section\t__ex_table,\"a\"\n\t" \
225 STR(PTR)"\t1b, 4b\n\t" \
226 STR(PTR)"\t2b, 4b\n\t" \
227 ".previous" \
228 : "=r" (res) \
229 : "r" (value), "r" (addr), "i" (-EFAULT));
230
231#define StoreW(addr, value, res) \
232 __asm__ __volatile__ ( \
233 "1:\t"user_swl("%1", "(%2)")"\n" \
234 "2:\t"user_swr("%1", "3(%2)")"\n\t" \
235 "li\t%0, 0\n" \
236 "3:\n\t" \
237 ".insn\n\t" \
238 ".section\t.fixup,\"ax\"\n\t" \
239 "4:\tli\t%0, %3\n\t" \
240 "j\t3b\n\t" \
241 ".previous\n\t" \
242 ".section\t__ex_table,\"a\"\n\t" \
243 STR(PTR)"\t1b, 4b\n\t" \
244 STR(PTR)"\t2b, 4b\n\t" \
245 ".previous" \
246 : "=r" (res) \
247 : "r" (value), "r" (addr), "i" (-EFAULT));
248
249#define StoreDW(addr, value, res) \
250 __asm__ __volatile__ ( \
251 "1:\tsdl\t%1,(%2)\n" \
252 "2:\tsdr\t%1, 7(%2)\n\t" \
253 "li\t%0, 0\n" \
254 "3:\n\t" \
255 ".insn\n\t" \
256 ".section\t.fixup,\"ax\"\n\t" \
257 "4:\tli\t%0, %3\n\t" \
258 "j\t3b\n\t" \
259 ".previous\n\t" \
260 ".section\t__ex_table,\"a\"\n\t" \
261 STR(PTR)"\t1b, 4b\n\t" \
262 STR(PTR)"\t2b, 4b\n\t" \
263 ".previous" \
264 : "=r" (res) \
265 : "r" (value), "r" (addr), "i" (-EFAULT));
266#endif
267
268#ifdef __LITTLE_ENDIAN
269#define LoadHW(addr, value, res) \
270 __asm__ __volatile__ (".set\tnoat\n" \
271 "1:\t"user_lb("%0", "1(%2)")"\n" \
272 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
273 "sll\t%0, 0x8\n\t" \
274 "or\t%0, $1\n\t" \
275 "li\t%1, 0\n" \
276 "3:\t.set\tat\n\t" \
277 ".insn\n\t" \
278 ".section\t.fixup,\"ax\"\n\t" \
279 "4:\tli\t%1, %3\n\t" \
280 "j\t3b\n\t" \
281 ".previous\n\t" \
282 ".section\t__ex_table,\"a\"\n\t" \
283 STR(PTR)"\t1b, 4b\n\t" \
284 STR(PTR)"\t2b, 4b\n\t" \
285 ".previous" \
286 : "=&r" (value), "=r" (res) \
287 : "r" (addr), "i" (-EFAULT));
288
289#define LoadW(addr, value, res) \
290 __asm__ __volatile__ ( \
291 "1:\t"user_lwl("%0", "3(%2)")"\n" \
292 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
293 "li\t%1, 0\n" \
294 "3:\n\t" \
295 ".insn\n\t" \
296 ".section\t.fixup,\"ax\"\n\t" \
297 "4:\tli\t%1, %3\n\t" \
298 "j\t3b\n\t" \
299 ".previous\n\t" \
300 ".section\t__ex_table,\"a\"\n\t" \
301 STR(PTR)"\t1b, 4b\n\t" \
302 STR(PTR)"\t2b, 4b\n\t" \
303 ".previous" \
304 : "=&r" (value), "=r" (res) \
305 : "r" (addr), "i" (-EFAULT));
306
307#define LoadHWU(addr, value, res) \
308 __asm__ __volatile__ ( \
309 ".set\tnoat\n" \
310 "1:\t"user_lbu("%0", "1(%2)")"\n" \
311 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
312 "sll\t%0, 0x8\n\t" \
313 "or\t%0, $1\n\t" \
314 "li\t%1, 0\n" \
315 "3:\n\t" \
316 ".insn\n\t" \
317 ".set\tat\n\t" \
318 ".section\t.fixup,\"ax\"\n\t" \
319 "4:\tli\t%1, %3\n\t" \
320 "j\t3b\n\t" \
321 ".previous\n\t" \
322 ".section\t__ex_table,\"a\"\n\t" \
323 STR(PTR)"\t1b, 4b\n\t" \
324 STR(PTR)"\t2b, 4b\n\t" \
325 ".previous" \
326 : "=&r" (value), "=r" (res) \
327 : "r" (addr), "i" (-EFAULT));
328
329#define LoadWU(addr, value, res) \
330 __asm__ __volatile__ ( \
331 "1:\t"user_lwl("%0", "3(%2)")"\n" \
332 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
333 "dsll\t%0, %0, 32\n\t" \
334 "dsrl\t%0, %0, 32\n\t" \
335 "li\t%1, 0\n" \
336 "3:\n\t" \
337 ".insn\n\t" \
338 "\t.section\t.fixup,\"ax\"\n\t" \
339 "4:\tli\t%1, %3\n\t" \
340 "j\t3b\n\t" \
341 ".previous\n\t" \
342 ".section\t__ex_table,\"a\"\n\t" \
343 STR(PTR)"\t1b, 4b\n\t" \
344 STR(PTR)"\t2b, 4b\n\t" \
345 ".previous" \
346 : "=&r" (value), "=r" (res) \
347 : "r" (addr), "i" (-EFAULT));
348
349#define LoadDW(addr, value, res) \
350 __asm__ __volatile__ ( \
351 "1:\tldl\t%0, 7(%2)\n" \
352 "2:\tldr\t%0, (%2)\n\t" \
353 "li\t%1, 0\n" \
354 "3:\n\t" \
355 ".insn\n\t" \
356 "\t.section\t.fixup,\"ax\"\n\t" \
357 "4:\tli\t%1, %3\n\t" \
358 "j\t3b\n\t" \
359 ".previous\n\t" \
360 ".section\t__ex_table,\"a\"\n\t" \
361 STR(PTR)"\t1b, 4b\n\t" \
362 STR(PTR)"\t2b, 4b\n\t" \
363 ".previous" \
364 : "=&r" (value), "=r" (res) \
365 : "r" (addr), "i" (-EFAULT));
366
367#define StoreHW(addr, value, res) \
368 __asm__ __volatile__ ( \
369 ".set\tnoat\n" \
370 "1:\t"user_sb("%1", "0(%2)")"\n" \
371 "srl\t$1,%1, 0x8\n" \
372 "2:\t"user_sb("$1", "1(%2)")"\n" \
373 ".set\tat\n\t" \
374 "li\t%0, 0\n" \
375 "3:\n\t" \
376 ".insn\n\t" \
377 ".section\t.fixup,\"ax\"\n\t" \
378 "4:\tli\t%0, %3\n\t" \
379 "j\t3b\n\t" \
380 ".previous\n\t" \
381 ".section\t__ex_table,\"a\"\n\t" \
382 STR(PTR)"\t1b, 4b\n\t" \
383 STR(PTR)"\t2b, 4b\n\t" \
384 ".previous" \
385 : "=r" (res) \
386 : "r" (value), "r" (addr), "i" (-EFAULT));
387
388#define StoreW(addr, value, res) \
389 __asm__ __volatile__ ( \
390 "1:\t"user_swl("%1", "3(%2)")"\n" \
391 "2:\t"user_swr("%1", "(%2)")"\n\t" \
392 "li\t%0, 0\n" \
393 "3:\n\t" \
394 ".insn\n\t" \
395 ".section\t.fixup,\"ax\"\n\t" \
396 "4:\tli\t%0, %3\n\t" \
397 "j\t3b\n\t" \
398 ".previous\n\t" \
399 ".section\t__ex_table,\"a\"\n\t" \
400 STR(PTR)"\t1b, 4b\n\t" \
401 STR(PTR)"\t2b, 4b\n\t" \
402 ".previous" \
403 : "=r" (res) \
404 : "r" (value), "r" (addr), "i" (-EFAULT));
405
406#define StoreDW(addr, value, res) \
407 __asm__ __volatile__ ( \
408 "1:\tsdl\t%1, 7(%2)\n" \
409 "2:\tsdr\t%1, (%2)\n\t" \
410 "li\t%0, 0\n" \
411 "3:\n\t" \
412 ".insn\n\t" \
413 ".section\t.fixup,\"ax\"\n\t" \
414 "4:\tli\t%0, %3\n\t" \
415 "j\t3b\n\t" \
416 ".previous\n\t" \
417 ".section\t__ex_table,\"a\"\n\t" \
418 STR(PTR)"\t1b, 4b\n\t" \
419 STR(PTR)"\t2b, 4b\n\t" \
420 ".previous" \
421 : "=r" (res) \
422 : "r" (value), "r" (addr), "i" (-EFAULT));
423#endif
424
425static void emulate_load_store_insn(struct pt_regs *regs,
426 void __user *addr, unsigned int __user *pc)
427{
428 union mips_instruction insn;
429 unsigned long value;
430 unsigned int res;
431 unsigned long origpc;
432 unsigned long orig31;
433 void __user *fault_addr = NULL;
434#ifdef CONFIG_EVA
435 mm_segment_t seg;
436#endif
437 origpc = (unsigned long)pc;
438 orig31 = regs->regs[31];
439
440 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
441
442 /*
443 * This load never faults.
444 */
445 __get_user(insn.word, pc);
446
447 switch (insn.i_format.opcode) {
448 /*
449 * These are instructions that a compiler doesn't generate. We
450 * can assume therefore that the code is MIPS-aware and
451 * really buggy. Emulating these instructions would break the
452 * semantics anyway.
453 */
454 case ll_op:
455 case lld_op:
456 case sc_op:
457 case scd_op:
458
459 /*
460 * For these instructions the only way to create an address
461 * error is an attempted access to kernel/supervisor address
462 * space.
463 */
464 case ldl_op:
465 case ldr_op:
466 case lwl_op:
467 case lwr_op:
468 case sdl_op:
469 case sdr_op:
470 case swl_op:
471 case swr_op:
472 case lb_op:
473 case lbu_op:
474 case sb_op:
475 goto sigbus;
476
477 /*
478 * The remaining opcodes are the ones that are really of
479 * interest.
480 */
481#ifdef CONFIG_EVA
482 case spec3_op:
483 /*
484 * we can land here only from kernel accessing user memory,
485 * so we need to "switch" the address limit to user space, so
486 * address check can work properly.
487 */
488 seg = get_fs();
489 set_fs(USER_DS);
490 switch (insn.spec3_format.func) {
491 case lhe_op:
492 if (!access_ok(VERIFY_READ, addr, 2)) {
493 set_fs(seg);
494 goto sigbus;
495 }
496 LoadHW(addr, value, res);
497 if (res) {
498 set_fs(seg);
499 goto fault;
500 }
501 compute_return_epc(regs);
502 regs->regs[insn.spec3_format.rt] = value;
503 break;
504 case lwe_op:
505 if (!access_ok(VERIFY_READ, addr, 4)) {
506 set_fs(seg);
507 goto sigbus;
508 }
509 LoadW(addr, value, res);
510 if (res) {
511 set_fs(seg);
512 goto fault;
513 }
514 compute_return_epc(regs);
515 regs->regs[insn.spec3_format.rt] = value;
516 break;
517 case lhue_op:
518 if (!access_ok(VERIFY_READ, addr, 2)) {
519 set_fs(seg);
520 goto sigbus;
521 }
522 LoadHWU(addr, value, res);
523 if (res) {
524 set_fs(seg);
525 goto fault;
526 }
527 compute_return_epc(regs);
528 regs->regs[insn.spec3_format.rt] = value;
529 break;
530 case she_op:
531 if (!access_ok(VERIFY_WRITE, addr, 2)) {
532 set_fs(seg);
533 goto sigbus;
534 }
535 compute_return_epc(regs);
536 value = regs->regs[insn.spec3_format.rt];
537 StoreHW(addr, value, res);
538 if (res) {
539 set_fs(seg);
540 goto fault;
541 }
542 break;
543 case swe_op:
544 if (!access_ok(VERIFY_WRITE, addr, 4)) {
545 set_fs(seg);
546 goto sigbus;
547 }
548 compute_return_epc(regs);
549 value = regs->regs[insn.spec3_format.rt];
550 StoreW(addr, value, res);
551 if (res) {
552 set_fs(seg);
553 goto fault;
554 }
555 break;
556 default:
557 set_fs(seg);
558 goto sigill;
559 }
560 set_fs(seg);
561 break;
562#endif
563 case lh_op:
564 if (!access_ok(VERIFY_READ, addr, 2))
565 goto sigbus;
566
567 LoadHW(addr, value, res);
568 if (res)
569 goto fault;
570 compute_return_epc(regs);
571 regs->regs[insn.i_format.rt] = value;
572 break;
573
574 case lw_op:
575 if (!access_ok(VERIFY_READ, addr, 4))
576 goto sigbus;
577
578 LoadW(addr, value, res);
579 if (res)
580 goto fault;
581 compute_return_epc(regs);
582 regs->regs[insn.i_format.rt] = value;
583 break;
584
585 case lhu_op:
586 if (!access_ok(VERIFY_READ, addr, 2))
587 goto sigbus;
588
589 LoadHWU(addr, value, res);
590 if (res)
591 goto fault;
592 compute_return_epc(regs);
593 regs->regs[insn.i_format.rt] = value;
594 break;
595
596 case lwu_op:
597#ifdef CONFIG_64BIT
598 /*
599 * A 32-bit kernel might be running on a 64-bit processor. But
600 * if we're on a 32-bit processor and an i-cache incoherency
601 * or race makes us see a 64-bit instruction here the sdl/sdr
602 * would blow up, so for now we don't handle unaligned 64-bit
603 * instructions on 32-bit kernels.
604 */
605 if (!access_ok(VERIFY_READ, addr, 4))
606 goto sigbus;
607
608 LoadWU(addr, value, res);
609 if (res)
610 goto fault;
611 compute_return_epc(regs);
612 regs->regs[insn.i_format.rt] = value;
613 break;
614#endif /* CONFIG_64BIT */
615
616 /* Cannot handle 64-bit instructions in 32-bit kernel */
617 goto sigill;
618
619 case ld_op:
620#ifdef CONFIG_64BIT
621 /*
622 * A 32-bit kernel might be running on a 64-bit processor. But
623 * if we're on a 32-bit processor and an i-cache incoherency
624 * or race makes us see a 64-bit instruction here the sdl/sdr
625 * would blow up, so for now we don't handle unaligned 64-bit
626 * instructions on 32-bit kernels.
627 */
628 if (!access_ok(VERIFY_READ, addr, 8))
629 goto sigbus;
630
631 LoadDW(addr, value, res);
632 if (res)
633 goto fault;
634 compute_return_epc(regs);
635 regs->regs[insn.i_format.rt] = value;
636 break;
637#endif /* CONFIG_64BIT */
638
639 /* Cannot handle 64-bit instructions in 32-bit kernel */
640 goto sigill;
641
642 case sh_op:
643 if (!access_ok(VERIFY_WRITE, addr, 2))
644 goto sigbus;
645
646 compute_return_epc(regs);
647 value = regs->regs[insn.i_format.rt];
648 StoreHW(addr, value, res);
649 if (res)
650 goto fault;
651 break;
652
653 case sw_op:
654 if (!access_ok(VERIFY_WRITE, addr, 4))
655 goto sigbus;
656
657 compute_return_epc(regs);
658 value = regs->regs[insn.i_format.rt];
659 StoreW(addr, value, res);
660 if (res)
661 goto fault;
662 break;
663
664 case sd_op:
665#ifdef CONFIG_64BIT
666 /*
667 * A 32-bit kernel might be running on a 64-bit processor. But
668 * if we're on a 32-bit processor and an i-cache incoherency
669 * or race makes us see a 64-bit instruction here the sdl/sdr
670 * would blow up, so for now we don't handle unaligned 64-bit
671 * instructions on 32-bit kernels.
672 */
673 if (!access_ok(VERIFY_WRITE, addr, 8))
674 goto sigbus;
675
676 compute_return_epc(regs);
677 value = regs->regs[insn.i_format.rt];
678 StoreDW(addr, value, res);
679 if (res)
680 goto fault;
681 break;
682#endif /* CONFIG_64BIT */
683
684 /* Cannot handle 64-bit instructions in 32-bit kernel */
685 goto sigill;
686
687 case lwc1_op:
688 case ldc1_op:
689 case swc1_op:
690 case sdc1_op:
691 die_if_kernel("Unaligned FP access in kernel code", regs);
692 BUG_ON(!used_math());
693 BUG_ON(!is_fpu_owner());
694
695 lose_fpu(1); /* Save FPU state for the emulator. */
696 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
697 &fault_addr);
698 own_fpu(1); /* Restore FPU state. */
699
700 /* Signal if something went wrong. */
701 process_fpemu_return(res, fault_addr);
702
703 if (res == 0)
704 break;
705 return;
706
707 /*
708 * COP2 is available to implementor for application specific use.
709 * It's up to applications to register a notifier chain and do
710 * whatever they have to do, including possible sending of signals.
711 */
712 case lwc2_op:
713 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
714 break;
715
716 case ldc2_op:
717 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
718 break;
719
720 case swc2_op:
721 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
722 break;
723
724 case sdc2_op:
725 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
726 break;
727
728 default:
729 /*
730 * Pheeee... We encountered an yet unknown instruction or
731 * cache coherence problem. Die sucker, die ...
732 */
733 goto sigill;
734 }
735
736#ifdef CONFIG_DEBUG_FS
737 unaligned_instructions++;
738#endif
739
740 return;
741
742fault:
743 /* roll back jump/branch */
744 regs->cp0_epc = origpc;
745 regs->regs[31] = orig31;
746 /* Did we have an exception handler installed? */
747 if (fixup_exception(regs))
748 return;
749
750 die_if_kernel("Unhandled kernel unaligned access", regs);
751 force_sig(SIGSEGV, current);
752
753 return;
754
755sigbus:
756 die_if_kernel("Unhandled kernel unaligned access", regs);
757 force_sig(SIGBUS, current);
758
759 return;
760
761sigill:
762 die_if_kernel
763 ("Unhandled kernel unaligned access or invalid instruction", regs);
764 force_sig(SIGILL, current);
765}
766
767/* Recode table from 16-bit register notation to 32-bit GPR. */
768const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
769
770/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
771const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
772
773static void emulate_load_store_microMIPS(struct pt_regs *regs,
774 void __user *addr)
775{
776 unsigned long value;
777 unsigned int res;
778 int i;
779 unsigned int reg = 0, rvar;
780 unsigned long orig31;
781 u16 __user *pc16;
782 u16 halfword;
783 unsigned int word;
784 unsigned long origpc, contpc;
785 union mips_instruction insn;
786 struct mm_decoded_insn mminsn;
787 void __user *fault_addr = NULL;
788
789 origpc = regs->cp0_epc;
790 orig31 = regs->regs[31];
791
792 mminsn.micro_mips_mode = 1;
793
794 /*
795 * This load never faults.
796 */
797 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
798 __get_user(halfword, pc16);
799 pc16++;
800 contpc = regs->cp0_epc + 2;
801 word = ((unsigned int)halfword << 16);
802 mminsn.pc_inc = 2;
803
804 if (!mm_insn_16bit(halfword)) {
805 __get_user(halfword, pc16);
806 pc16++;
807 contpc = regs->cp0_epc + 4;
808 mminsn.pc_inc = 4;
809 word |= halfword;
810 }
811 mminsn.insn = word;
812
813 if (get_user(halfword, pc16))
814 goto fault;
815 mminsn.next_pc_inc = 2;
816 word = ((unsigned int)halfword << 16);
817
818 if (!mm_insn_16bit(halfword)) {
819 pc16++;
820 if (get_user(halfword, pc16))
821 goto fault;
822 mminsn.next_pc_inc = 4;
823 word |= halfword;
824 }
825 mminsn.next_insn = word;
826
827 insn = (union mips_instruction)(mminsn.insn);
828 if (mm_isBranchInstr(regs, mminsn, &contpc))
829 insn = (union mips_instruction)(mminsn.next_insn);
830
831 /* Parse instruction to find what to do */
832
833 switch (insn.mm_i_format.opcode) {
834
835 case mm_pool32a_op:
836 switch (insn.mm_x_format.func) {
837 case mm_lwxs_op:
838 reg = insn.mm_x_format.rd;
839 goto loadW;
840 }
841
842 goto sigbus;
843
844 case mm_pool32b_op:
845 switch (insn.mm_m_format.func) {
846 case mm_lwp_func:
847 reg = insn.mm_m_format.rd;
848 if (reg == 31)
849 goto sigbus;
850
851 if (!access_ok(VERIFY_READ, addr, 8))
852 goto sigbus;
853
854 LoadW(addr, value, res);
855 if (res)
856 goto fault;
857 regs->regs[reg] = value;
858 addr += 4;
859 LoadW(addr, value, res);
860 if (res)
861 goto fault;
862 regs->regs[reg + 1] = value;
863 goto success;
864
865 case mm_swp_func:
866 reg = insn.mm_m_format.rd;
867 if (reg == 31)
868 goto sigbus;
869
870 if (!access_ok(VERIFY_WRITE, addr, 8))
871 goto sigbus;
872
873 value = regs->regs[reg];
874 StoreW(addr, value, res);
875 if (res)
876 goto fault;
877 addr += 4;
878 value = regs->regs[reg + 1];
879 StoreW(addr, value, res);
880 if (res)
881 goto fault;
882 goto success;
883
884 case mm_ldp_func:
885#ifdef CONFIG_64BIT
886 reg = insn.mm_m_format.rd;
887 if (reg == 31)
888 goto sigbus;
889
890 if (!access_ok(VERIFY_READ, addr, 16))
891 goto sigbus;
892
893 LoadDW(addr, value, res);
894 if (res)
895 goto fault;
896 regs->regs[reg] = value;
897 addr += 8;
898 LoadDW(addr, value, res);
899 if (res)
900 goto fault;
901 regs->regs[reg + 1] = value;
902 goto success;
903#endif /* CONFIG_64BIT */
904
905 goto sigill;
906
907 case mm_sdp_func:
908#ifdef CONFIG_64BIT
909 reg = insn.mm_m_format.rd;
910 if (reg == 31)
911 goto sigbus;
912
913 if (!access_ok(VERIFY_WRITE, addr, 16))
914 goto sigbus;
915
916 value = regs->regs[reg];
917 StoreDW(addr, value, res);
918 if (res)
919 goto fault;
920 addr += 8;
921 value = regs->regs[reg + 1];
922 StoreDW(addr, value, res);
923 if (res)
924 goto fault;
925 goto success;
926#endif /* CONFIG_64BIT */
927
928 goto sigill;
929
930 case mm_lwm32_func:
931 reg = insn.mm_m_format.rd;
932 rvar = reg & 0xf;
933 if ((rvar > 9) || !reg)
934 goto sigill;
935 if (reg & 0x10) {
936 if (!access_ok
937 (VERIFY_READ, addr, 4 * (rvar + 1)))
938 goto sigbus;
939 } else {
940 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
941 goto sigbus;
942 }
943 if (rvar == 9)
944 rvar = 8;
945 for (i = 16; rvar; rvar--, i++) {
946 LoadW(addr, value, res);
947 if (res)
948 goto fault;
949 addr += 4;
950 regs->regs[i] = value;
951 }
952 if ((reg & 0xf) == 9) {
953 LoadW(addr, value, res);
954 if (res)
955 goto fault;
956 addr += 4;
957 regs->regs[30] = value;
958 }
959 if (reg & 0x10) {
960 LoadW(addr, value, res);
961 if (res)
962 goto fault;
963 regs->regs[31] = value;
964 }
965 goto success;
966
967 case mm_swm32_func:
968 reg = insn.mm_m_format.rd;
969 rvar = reg & 0xf;
970 if ((rvar > 9) || !reg)
971 goto sigill;
972 if (reg & 0x10) {
973 if (!access_ok
974 (VERIFY_WRITE, addr, 4 * (rvar + 1)))
975 goto sigbus;
976 } else {
977 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
978 goto sigbus;
979 }
980 if (rvar == 9)
981 rvar = 8;
982 for (i = 16; rvar; rvar--, i++) {
983 value = regs->regs[i];
984 StoreW(addr, value, res);
985 if (res)
986 goto fault;
987 addr += 4;
988 }
989 if ((reg & 0xf) == 9) {
990 value = regs->regs[30];
991 StoreW(addr, value, res);
992 if (res)
993 goto fault;
994 addr += 4;
995 }
996 if (reg & 0x10) {
997 value = regs->regs[31];
998 StoreW(addr, value, res);
999 if (res)
1000 goto fault;
1001 }
1002 goto success;
1003
1004 case mm_ldm_func:
1005#ifdef CONFIG_64BIT
1006 reg = insn.mm_m_format.rd;
1007 rvar = reg & 0xf;
1008 if ((rvar > 9) || !reg)
1009 goto sigill;
1010 if (reg & 0x10) {
1011 if (!access_ok
1012 (VERIFY_READ, addr, 8 * (rvar + 1)))
1013 goto sigbus;
1014 } else {
1015 if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1016 goto sigbus;
1017 }
1018 if (rvar == 9)
1019 rvar = 8;
1020
1021 for (i = 16; rvar; rvar--, i++) {
1022 LoadDW(addr, value, res);
1023 if (res)
1024 goto fault;
1025 addr += 4;
1026 regs->regs[i] = value;
1027 }
1028 if ((reg & 0xf) == 9) {
1029 LoadDW(addr, value, res);
1030 if (res)
1031 goto fault;
1032 addr += 8;
1033 regs->regs[30] = value;
1034 }
1035 if (reg & 0x10) {
1036 LoadDW(addr, value, res);
1037 if (res)
1038 goto fault;
1039 regs->regs[31] = value;
1040 }
1041 goto success;
1042#endif /* CONFIG_64BIT */
1043
1044 goto sigill;
1045
1046 case mm_sdm_func:
1047#ifdef CONFIG_64BIT
1048 reg = insn.mm_m_format.rd;
1049 rvar = reg & 0xf;
1050 if ((rvar > 9) || !reg)
1051 goto sigill;
1052 if (reg & 0x10) {
1053 if (!access_ok
1054 (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1055 goto sigbus;
1056 } else {
1057 if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1058 goto sigbus;
1059 }
1060 if (rvar == 9)
1061 rvar = 8;
1062
1063 for (i = 16; rvar; rvar--, i++) {
1064 value = regs->regs[i];
1065 StoreDW(addr, value, res);
1066 if (res)
1067 goto fault;
1068 addr += 8;
1069 }
1070 if ((reg & 0xf) == 9) {
1071 value = regs->regs[30];
1072 StoreDW(addr, value, res);
1073 if (res)
1074 goto fault;
1075 addr += 8;
1076 }
1077 if (reg & 0x10) {
1078 value = regs->regs[31];
1079 StoreDW(addr, value, res);
1080 if (res)
1081 goto fault;
1082 }
1083 goto success;
1084#endif /* CONFIG_64BIT */
1085
1086 goto sigill;
1087
1088 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1089 }
1090
1091 goto sigbus;
1092
1093 case mm_pool32c_op:
1094 switch (insn.mm_m_format.func) {
1095 case mm_lwu_func:
1096 reg = insn.mm_m_format.rd;
1097 goto loadWU;
1098 }
1099
1100 /* LL,SC,LLD,SCD are not serviced */
1101 goto sigbus;
1102
1103 case mm_pool32f_op:
1104 switch (insn.mm_x_format.func) {
1105 case mm_lwxc1_func:
1106 case mm_swxc1_func:
1107 case mm_ldxc1_func:
1108 case mm_sdxc1_func:
1109 goto fpu_emul;
1110 }
1111
1112 goto sigbus;
1113
1114 case mm_ldc132_op:
1115 case mm_sdc132_op:
1116 case mm_lwc132_op:
1117 case mm_swc132_op:
1118fpu_emul:
1119 /* roll back jump/branch */
1120 regs->cp0_epc = origpc;
1121 regs->regs[31] = orig31;
1122
1123 die_if_kernel("Unaligned FP access in kernel code", regs);
1124 BUG_ON(!used_math());
1125 BUG_ON(!is_fpu_owner());
1126
1127 lose_fpu(1); /* save the FPU state for the emulator */
1128 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
1129 &fault_addr);
1130 own_fpu(1); /* restore FPU state */
1131
1132 /* If something went wrong, signal */
1133 process_fpemu_return(res, fault_addr);
1134
1135 if (res == 0)
1136 goto success;
1137 return;
1138
1139 case mm_lh32_op:
1140 reg = insn.mm_i_format.rt;
1141 goto loadHW;
1142
1143 case mm_lhu32_op:
1144 reg = insn.mm_i_format.rt;
1145 goto loadHWU;
1146
1147 case mm_lw32_op:
1148 reg = insn.mm_i_format.rt;
1149 goto loadW;
1150
1151 case mm_sh32_op:
1152 reg = insn.mm_i_format.rt;
1153 goto storeHW;
1154
1155 case mm_sw32_op:
1156 reg = insn.mm_i_format.rt;
1157 goto storeW;
1158
1159 case mm_ld32_op:
1160 reg = insn.mm_i_format.rt;
1161 goto loadDW;
1162
1163 case mm_sd32_op:
1164 reg = insn.mm_i_format.rt;
1165 goto storeDW;
1166
1167 case mm_pool16c_op:
1168 switch (insn.mm16_m_format.func) {
1169 case mm_lwm16_op:
1170 reg = insn.mm16_m_format.rlist;
1171 rvar = reg + 1;
1172 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1173 goto sigbus;
1174
1175 for (i = 16; rvar; rvar--, i++) {
1176 LoadW(addr, value, res);
1177 if (res)
1178 goto fault;
1179 addr += 4;
1180 regs->regs[i] = value;
1181 }
1182 LoadW(addr, value, res);
1183 if (res)
1184 goto fault;
1185 regs->regs[31] = value;
1186
1187 goto success;
1188
1189 case mm_swm16_op:
1190 reg = insn.mm16_m_format.rlist;
1191 rvar = reg + 1;
1192 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1193 goto sigbus;
1194
1195 for (i = 16; rvar; rvar--, i++) {
1196 value = regs->regs[i];
1197 StoreW(addr, value, res);
1198 if (res)
1199 goto fault;
1200 addr += 4;
1201 }
1202 value = regs->regs[31];
1203 StoreW(addr, value, res);
1204 if (res)
1205 goto fault;
1206
1207 goto success;
1208
1209 }
1210
1211 goto sigbus;
1212
1213 case mm_lhu16_op:
1214 reg = reg16to32[insn.mm16_rb_format.rt];
1215 goto loadHWU;
1216
1217 case mm_lw16_op:
1218 reg = reg16to32[insn.mm16_rb_format.rt];
1219 goto loadW;
1220
1221 case mm_sh16_op:
1222 reg = reg16to32st[insn.mm16_rb_format.rt];
1223 goto storeHW;
1224
1225 case mm_sw16_op:
1226 reg = reg16to32st[insn.mm16_rb_format.rt];
1227 goto storeW;
1228
1229 case mm_lwsp16_op:
1230 reg = insn.mm16_r5_format.rt;
1231 goto loadW;
1232
1233 case mm_swsp16_op:
1234 reg = insn.mm16_r5_format.rt;
1235 goto storeW;
1236
1237 case mm_lwgp16_op:
1238 reg = reg16to32[insn.mm16_r3_format.rt];
1239 goto loadW;
1240
1241 default:
1242 goto sigill;
1243 }
1244
1245loadHW:
1246 if (!access_ok(VERIFY_READ, addr, 2))
1247 goto sigbus;
1248
1249 LoadHW(addr, value, res);
1250 if (res)
1251 goto fault;
1252 regs->regs[reg] = value;
1253 goto success;
1254
1255loadHWU:
1256 if (!access_ok(VERIFY_READ, addr, 2))
1257 goto sigbus;
1258
1259 LoadHWU(addr, value, res);
1260 if (res)
1261 goto fault;
1262 regs->regs[reg] = value;
1263 goto success;
1264
1265loadW:
1266 if (!access_ok(VERIFY_READ, addr, 4))
1267 goto sigbus;
1268
1269 LoadW(addr, value, res);
1270 if (res)
1271 goto fault;
1272 regs->regs[reg] = value;
1273 goto success;
1274
1275loadWU:
1276#ifdef CONFIG_64BIT
1277 /*
1278 * A 32-bit kernel might be running on a 64-bit processor. But
1279 * if we're on a 32-bit processor and an i-cache incoherency
1280 * or race makes us see a 64-bit instruction here the sdl/sdr
1281 * would blow up, so for now we don't handle unaligned 64-bit
1282 * instructions on 32-bit kernels.
1283 */
1284 if (!access_ok(VERIFY_READ, addr, 4))
1285 goto sigbus;
1286
1287 LoadWU(addr, value, res);
1288 if (res)
1289 goto fault;
1290 regs->regs[reg] = value;
1291 goto success;
1292#endif /* CONFIG_64BIT */
1293
1294 /* Cannot handle 64-bit instructions in 32-bit kernel */
1295 goto sigill;
1296
1297loadDW:
1298#ifdef CONFIG_64BIT
1299 /*
1300 * A 32-bit kernel might be running on a 64-bit processor. But
1301 * if we're on a 32-bit processor and an i-cache incoherency
1302 * or race makes us see a 64-bit instruction here the sdl/sdr
1303 * would blow up, so for now we don't handle unaligned 64-bit
1304 * instructions on 32-bit kernels.
1305 */
1306 if (!access_ok(VERIFY_READ, addr, 8))
1307 goto sigbus;
1308
1309 LoadDW(addr, value, res);
1310 if (res)
1311 goto fault;
1312 regs->regs[reg] = value;
1313 goto success;
1314#endif /* CONFIG_64BIT */
1315
1316 /* Cannot handle 64-bit instructions in 32-bit kernel */
1317 goto sigill;
1318
1319storeHW:
1320 if (!access_ok(VERIFY_WRITE, addr, 2))
1321 goto sigbus;
1322
1323 value = regs->regs[reg];
1324 StoreHW(addr, value, res);
1325 if (res)
1326 goto fault;
1327 goto success;
1328
1329storeW:
1330 if (!access_ok(VERIFY_WRITE, addr, 4))
1331 goto sigbus;
1332
1333 value = regs->regs[reg];
1334 StoreW(addr, value, res);
1335 if (res)
1336 goto fault;
1337 goto success;
1338
1339storeDW:
1340#ifdef CONFIG_64BIT
1341 /*
1342 * A 32-bit kernel might be running on a 64-bit processor. But
1343 * if we're on a 32-bit processor and an i-cache incoherency
1344 * or race makes us see a 64-bit instruction here the sdl/sdr
1345 * would blow up, so for now we don't handle unaligned 64-bit
1346 * instructions on 32-bit kernels.
1347 */
1348 if (!access_ok(VERIFY_WRITE, addr, 8))
1349 goto sigbus;
1350
1351 value = regs->regs[reg];
1352 StoreDW(addr, value, res);
1353 if (res)
1354 goto fault;
1355 goto success;
1356#endif /* CONFIG_64BIT */
1357
1358 /* Cannot handle 64-bit instructions in 32-bit kernel */
1359 goto sigill;
1360
1361success:
1362 regs->cp0_epc = contpc; /* advance or branch */
1363
1364#ifdef CONFIG_DEBUG_FS
1365 unaligned_instructions++;
1366#endif
1367 return;
1368
1369fault:
1370 /* roll back jump/branch */
1371 regs->cp0_epc = origpc;
1372 regs->regs[31] = orig31;
1373 /* Did we have an exception handler installed? */
1374 if (fixup_exception(regs))
1375 return;
1376
1377 die_if_kernel("Unhandled kernel unaligned access", regs);
1378 force_sig(SIGSEGV, current);
1379
1380 return;
1381
1382sigbus:
1383 die_if_kernel("Unhandled kernel unaligned access", regs);
1384 force_sig(SIGBUS, current);
1385
1386 return;
1387
1388sigill:
1389 die_if_kernel
1390 ("Unhandled kernel unaligned access or invalid instruction", regs);
1391 force_sig(SIGILL, current);
1392}
1393
1394static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1395{
1396 unsigned long value;
1397 unsigned int res;
1398 int reg;
1399 unsigned long orig31;
1400 u16 __user *pc16;
1401 unsigned long origpc;
1402 union mips16e_instruction mips16inst, oldinst;
1403
1404 origpc = regs->cp0_epc;
1405 orig31 = regs->regs[31];
1406 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1407 /*
1408 * This load never faults.
1409 */
1410 __get_user(mips16inst.full, pc16);
1411 oldinst = mips16inst;
1412
1413 /* skip EXTEND instruction */
1414 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1415 pc16++;
1416 __get_user(mips16inst.full, pc16);
1417 } else if (delay_slot(regs)) {
1418 /* skip jump instructions */
1419 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1420 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1421 pc16++;
1422 pc16++;
1423 if (get_user(mips16inst.full, pc16))
1424 goto sigbus;
1425 }
1426
1427 switch (mips16inst.ri.opcode) {
1428 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1429 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1430 case MIPS16e_ldpc_func:
1431 case MIPS16e_ldsp_func:
1432 reg = reg16to32[mips16inst.ri64.ry];
1433 goto loadDW;
1434
1435 case MIPS16e_sdsp_func:
1436 reg = reg16to32[mips16inst.ri64.ry];
1437 goto writeDW;
1438
1439 case MIPS16e_sdrasp_func:
1440 reg = 29; /* GPRSP */
1441 goto writeDW;
1442 }
1443
1444 goto sigbus;
1445
1446 case MIPS16e_swsp_op:
1447 case MIPS16e_lwpc_op:
1448 case MIPS16e_lwsp_op:
1449 reg = reg16to32[mips16inst.ri.rx];
1450 break;
1451
1452 case MIPS16e_i8_op:
1453 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1454 goto sigbus;
1455 reg = 29; /* GPRSP */
1456 break;
1457
1458 default:
1459 reg = reg16to32[mips16inst.rri.ry];
1460 break;
1461 }
1462
1463 switch (mips16inst.ri.opcode) {
1464
1465 case MIPS16e_lb_op:
1466 case MIPS16e_lbu_op:
1467 case MIPS16e_sb_op:
1468 goto sigbus;
1469
1470 case MIPS16e_lh_op:
1471 if (!access_ok(VERIFY_READ, addr, 2))
1472 goto sigbus;
1473
1474 LoadHW(addr, value, res);
1475 if (res)
1476 goto fault;
1477 MIPS16e_compute_return_epc(regs, &oldinst);
1478 regs->regs[reg] = value;
1479 break;
1480
1481 case MIPS16e_lhu_op:
1482 if (!access_ok(VERIFY_READ, addr, 2))
1483 goto sigbus;
1484
1485 LoadHWU(addr, value, res);
1486 if (res)
1487 goto fault;
1488 MIPS16e_compute_return_epc(regs, &oldinst);
1489 regs->regs[reg] = value;
1490 break;
1491
1492 case MIPS16e_lw_op:
1493 case MIPS16e_lwpc_op:
1494 case MIPS16e_lwsp_op:
1495 if (!access_ok(VERIFY_READ, addr, 4))
1496 goto sigbus;
1497
1498 LoadW(addr, value, res);
1499 if (res)
1500 goto fault;
1501 MIPS16e_compute_return_epc(regs, &oldinst);
1502 regs->regs[reg] = value;
1503 break;
1504
1505 case MIPS16e_lwu_op:
1506#ifdef CONFIG_64BIT
1507 /*
1508 * A 32-bit kernel might be running on a 64-bit processor. But
1509 * if we're on a 32-bit processor and an i-cache incoherency
1510 * or race makes us see a 64-bit instruction here the sdl/sdr
1511 * would blow up, so for now we don't handle unaligned 64-bit
1512 * instructions on 32-bit kernels.
1513 */
1514 if (!access_ok(VERIFY_READ, addr, 4))
1515 goto sigbus;
1516
1517 LoadWU(addr, value, res);
1518 if (res)
1519 goto fault;
1520 MIPS16e_compute_return_epc(regs, &oldinst);
1521 regs->regs[reg] = value;
1522 break;
1523#endif /* CONFIG_64BIT */
1524
1525 /* Cannot handle 64-bit instructions in 32-bit kernel */
1526 goto sigill;
1527
1528 case MIPS16e_ld_op:
1529loadDW:
1530#ifdef CONFIG_64BIT
1531 /*
1532 * A 32-bit kernel might be running on a 64-bit processor. But
1533 * if we're on a 32-bit processor and an i-cache incoherency
1534 * or race makes us see a 64-bit instruction here the sdl/sdr
1535 * would blow up, so for now we don't handle unaligned 64-bit
1536 * instructions on 32-bit kernels.
1537 */
1538 if (!access_ok(VERIFY_READ, addr, 8))
1539 goto sigbus;
1540
1541 LoadDW(addr, value, res);
1542 if (res)
1543 goto fault;
1544 MIPS16e_compute_return_epc(regs, &oldinst);
1545 regs->regs[reg] = value;
1546 break;
1547#endif /* CONFIG_64BIT */
1548
1549 /* Cannot handle 64-bit instructions in 32-bit kernel */
1550 goto sigill;
1551
1552 case MIPS16e_sh_op:
1553 if (!access_ok(VERIFY_WRITE, addr, 2))
1554 goto sigbus;
1555
1556 MIPS16e_compute_return_epc(regs, &oldinst);
1557 value = regs->regs[reg];
1558 StoreHW(addr, value, res);
1559 if (res)
1560 goto fault;
1561 break;
1562
1563 case MIPS16e_sw_op:
1564 case MIPS16e_swsp_op:
1565 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1566 if (!access_ok(VERIFY_WRITE, addr, 4))
1567 goto sigbus;
1568
1569 MIPS16e_compute_return_epc(regs, &oldinst);
1570 value = regs->regs[reg];
1571 StoreW(addr, value, res);
1572 if (res)
1573 goto fault;
1574 break;
1575
1576 case MIPS16e_sd_op:
1577writeDW:
1578#ifdef CONFIG_64BIT
1579 /*
1580 * A 32-bit kernel might be running on a 64-bit processor. But
1581 * if we're on a 32-bit processor and an i-cache incoherency
1582 * or race makes us see a 64-bit instruction here the sdl/sdr
1583 * would blow up, so for now we don't handle unaligned 64-bit
1584 * instructions on 32-bit kernels.
1585 */
1586 if (!access_ok(VERIFY_WRITE, addr, 8))
1587 goto sigbus;
1588
1589 MIPS16e_compute_return_epc(regs, &oldinst);
1590 value = regs->regs[reg];
1591 StoreDW(addr, value, res);
1592 if (res)
1593 goto fault;
1594 break;
1595#endif /* CONFIG_64BIT */
1596
1597 /* Cannot handle 64-bit instructions in 32-bit kernel */
1598 goto sigill;
1599
1600 default:
1601 /*
1602 * Pheeee... We encountered an yet unknown instruction or
1603 * cache coherence problem. Die sucker, die ...
1604 */
1605 goto sigill;
1606 }
1607
1608#ifdef CONFIG_DEBUG_FS
1609 unaligned_instructions++;
1610#endif
1611
1612 return;
1613
1614fault:
1615 /* roll back jump/branch */
1616 regs->cp0_epc = origpc;
1617 regs->regs[31] = orig31;
1618 /* Did we have an exception handler installed? */
1619 if (fixup_exception(regs))
1620 return;
1621
1622 die_if_kernel("Unhandled kernel unaligned access", regs);
1623 force_sig(SIGSEGV, current);
1624
1625 return;
1626
1627sigbus:
1628 die_if_kernel("Unhandled kernel unaligned access", regs);
1629 force_sig(SIGBUS, current);
1630
1631 return;
1632
1633sigill:
1634 die_if_kernel
1635 ("Unhandled kernel unaligned access or invalid instruction", regs);
1636 force_sig(SIGILL, current);
1637}
1638
1639asmlinkage void do_ade(struct pt_regs *regs)
1640{
1641 enum ctx_state prev_state;
1642 unsigned int __user *pc;
1643 mm_segment_t seg;
1644
1645 prev_state = exception_enter();
1646 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1647 1, regs, regs->cp0_badvaddr);
1648 /*
1649 * Did we catch a fault trying to load an instruction?
1650 */
1651 if (regs->cp0_badvaddr == regs->cp0_epc)
1652 goto sigbus;
1653
1654 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1655 goto sigbus;
1656 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1657 goto sigbus;
1658
1659 /*
1660 * Do branch emulation only if we didn't forward the exception.
1661 * This is all so but ugly ...
1662 */
1663
1664 /*
1665 * Are we running in microMIPS mode?
1666 */
1667 if (get_isa16_mode(regs->cp0_epc)) {
1668 /*
1669 * Did we catch a fault trying to load an instruction in
1670 * 16-bit mode?
1671 */
1672 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1673 goto sigbus;
1674 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1675 show_registers(regs);
1676
1677 if (cpu_has_mmips) {
1678 seg = get_fs();
1679 if (!user_mode(regs))
1680 set_fs(KERNEL_DS);
1681 emulate_load_store_microMIPS(regs,
1682 (void __user *)regs->cp0_badvaddr);
1683 set_fs(seg);
1684
1685 return;
1686 }
1687
1688 if (cpu_has_mips16) {
1689 seg = get_fs();
1690 if (!user_mode(regs))
1691 set_fs(KERNEL_DS);
1692 emulate_load_store_MIPS16e(regs,
1693 (void __user *)regs->cp0_badvaddr);
1694 set_fs(seg);
1695
1696 return;
1697 }
1698
1699 goto sigbus;
1700 }
1701
1702 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1703 show_registers(regs);
1704 pc = (unsigned int __user *)exception_epc(regs);
1705
1706 seg = get_fs();
1707 if (!user_mode(regs))
1708 set_fs(KERNEL_DS);
1709 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1710 set_fs(seg);
1711
1712 return;
1713
1714sigbus:
1715 die_if_kernel("Kernel unaligned instruction access", regs);
1716 force_sig(SIGBUS, current);
1717
1718 /*
1719 * XXX On return from the signal handler we should advance the epc
1720 */
1721 exception_exit(prev_state);
1722}
1723
1724#ifdef CONFIG_DEBUG_FS
1725extern struct dentry *mips_debugfs_dir;
1726static int __init debugfs_unaligned(void)
1727{
1728 struct dentry *d;
1729
1730 if (!mips_debugfs_dir)
1731 return -ENODEV;
1732 d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
1733 mips_debugfs_dir, &unaligned_instructions);
1734 if (!d)
1735 return -ENOMEM;
1736 d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1737 mips_debugfs_dir, &unaligned_action);
1738 if (!d)
1739 return -ENOMEM;
1740 return 0;
1741}
1742__initcall(debugfs_unaligned);
1743#endif