Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 */
10#ifndef _ASM_UACCESS_H
11#define _ASM_UACCESS_H
12
13#include <linux/kernel.h>
14#include <linux/errno.h>
15#include <linux/thread_info.h>
16
17/*
18 * The fs value determines whether argument validity checking should be
19 * performed or not. If get_fs() == USER_DS, checking is performed, with
20 * get_fs() == KERNEL_DS, checking is bypassed.
21 *
22 * For historical reasons, these macros are grossly misnamed.
23 */
24#ifdef CONFIG_32BIT
25
26#define __UA_LIMIT 0x80000000UL
27
28#define __UA_ADDR ".word"
29#define __UA_LA "la"
30#define __UA_ADDU "addu"
31#define __UA_t0 "$8"
32#define __UA_t1 "$9"
33
34#endif /* CONFIG_32BIT */
35
36#ifdef CONFIG_64BIT
37
38extern u64 __ua_limit;
39
40#define __UA_LIMIT __ua_limit
41
42#define __UA_ADDR ".dword"
43#define __UA_LA "dla"
44#define __UA_ADDU "daddu"
45#define __UA_t0 "$12"
46#define __UA_t1 "$13"
47
48#endif /* CONFIG_64BIT */
49
50/*
51 * USER_DS is a bitmask that has the bits set that may not be set in a valid
52 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
53 * the arithmetic we're doing only works if the limit is a power of two, so
54 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
55 * address in this range it's the process's problem, not ours :-)
56 */
57
58#define KERNEL_DS ((mm_segment_t) { 0UL })
59#define USER_DS ((mm_segment_t) { __UA_LIMIT })
60
61#define VERIFY_READ 0
62#define VERIFY_WRITE 1
63
64#define get_ds() (KERNEL_DS)
65#define get_fs() (current_thread_info()->addr_limit)
66#define set_fs(x) (current_thread_info()->addr_limit = (x))
67
68#define segment_eq(a, b) ((a).seg == (b).seg)
69
70
71/*
72 * Is a address valid? This does a straighforward calculation rather
73 * than tests.
74 *
75 * Address valid if:
76 * - "addr" doesn't have any high-bits set
77 * - AND "size" doesn't have any high-bits set
78 * - AND "addr+size" doesn't have any high-bits set
79 * - OR we are in kernel mode.
80 *
81 * __ua_size() is a trick to avoid runtime checking of positive constant
82 * sizes; for those we already know at compile time that the size is ok.
83 */
84#define __ua_size(size) \
85 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
86
87/*
88 * access_ok: - Checks if a user space pointer is valid
89 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
90 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
91 * to write to a block, it is always safe to read from it.
92 * @addr: User space pointer to start of block to check
93 * @size: Size of block to check
94 *
95 * Context: User context only. This function may sleep.
96 *
97 * Checks if a pointer to a block of memory in user space is valid.
98 *
99 * Returns true (nonzero) if the memory block may be valid, false (zero)
100 * if it is definitely invalid.
101 *
102 * Note that, depending on architecture, this function probably just
103 * checks that the pointer is in the user space range - after calling
104 * this function, memory access functions may still return -EFAULT.
105 */
106
107#define __access_mask get_fs().seg
108
109#define __access_ok(addr, size, mask) \
110({ \
111 unsigned long __addr = (unsigned long) (addr); \
112 unsigned long __size = size; \
113 unsigned long __mask = mask; \
114 unsigned long __ok; \
115 \
116 __chk_user_ptr(addr); \
117 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
118 __ua_size(__size))); \
119 __ok == 0; \
120})
121
122#define access_ok(type, addr, size) \
123 likely(__access_ok((addr), (size), __access_mask))
124
125/*
126 * put_user: - Write a simple value into user space.
127 * @x: Value to copy to user space.
128 * @ptr: Destination address, in user space.
129 *
130 * Context: User context only. This function may sleep.
131 *
132 * This macro copies a single simple value from kernel space to user
133 * space. It supports simple types like char and int, but not larger
134 * data types like structures or arrays.
135 *
136 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
137 * to the result of dereferencing @ptr.
138 *
139 * Returns zero on success, or -EFAULT on error.
140 */
141#define put_user(x,ptr) \
142 __put_user_check((x), (ptr), sizeof(*(ptr)))
143
144/*
145 * get_user: - Get a simple variable from user space.
146 * @x: Variable to store result.
147 * @ptr: Source address, in user space.
148 *
149 * Context: User context only. This function may sleep.
150 *
151 * This macro copies a single simple variable from user space to kernel
152 * space. It supports simple types like char and int, but not larger
153 * data types like structures or arrays.
154 *
155 * @ptr must have pointer-to-simple-variable type, and the result of
156 * dereferencing @ptr must be assignable to @x without a cast.
157 *
158 * Returns zero on success, or -EFAULT on error.
159 * On error, the variable @x is set to zero.
160 */
161#define get_user(x,ptr) \
162 __get_user_check((x), (ptr), sizeof(*(ptr)))
163
164/*
165 * __put_user: - Write a simple value into user space, with less checking.
166 * @x: Value to copy to user space.
167 * @ptr: Destination address, in user space.
168 *
169 * Context: User context only. This function may sleep.
170 *
171 * This macro copies a single simple value from kernel space to user
172 * space. It supports simple types like char and int, but not larger
173 * data types like structures or arrays.
174 *
175 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
176 * to the result of dereferencing @ptr.
177 *
178 * Caller must check the pointer with access_ok() before calling this
179 * function.
180 *
181 * Returns zero on success, or -EFAULT on error.
182 */
183#define __put_user(x,ptr) \
184 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
185
186/*
187 * __get_user: - Get a simple variable from user space, with less checking.
188 * @x: Variable to store result.
189 * @ptr: Source address, in user space.
190 *
191 * Context: User context only. This function may sleep.
192 *
193 * This macro copies a single simple variable from user space to kernel
194 * space. It supports simple types like char and int, but not larger
195 * data types like structures or arrays.
196 *
197 * @ptr must have pointer-to-simple-variable type, and the result of
198 * dereferencing @ptr must be assignable to @x without a cast.
199 *
200 * Caller must check the pointer with access_ok() before calling this
201 * function.
202 *
203 * Returns zero on success, or -EFAULT on error.
204 * On error, the variable @x is set to zero.
205 */
206#define __get_user(x,ptr) \
207 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
208
209struct __large_struct { unsigned long buf[100]; };
210#define __m(x) (*(struct __large_struct __user *)(x))
211
212/*
213 * Yuck. We need two variants, one for 64bit operation and one
214 * for 32 bit mode and old iron.
215 */
216#ifdef CONFIG_32BIT
217#define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
218#endif
219#ifdef CONFIG_64BIT
220#define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
221#endif
222
223extern void __get_user_unknown(void);
224
225#define __get_user_common(val, size, ptr) \
226do { \
227 switch (size) { \
228 case 1: __get_user_asm(val, "lb", ptr); break; \
229 case 2: __get_user_asm(val, "lh", ptr); break; \
230 case 4: __get_user_asm(val, "lw", ptr); break; \
231 case 8: __GET_USER_DW(val, ptr); break; \
232 default: __get_user_unknown(); break; \
233 } \
234} while (0)
235
236#define __get_user_nocheck(x, ptr, size) \
237({ \
238 int __gu_err; \
239 \
240 __chk_user_ptr(ptr); \
241 __get_user_common((x), size, ptr); \
242 __gu_err; \
243})
244
245#define __get_user_check(x, ptr, size) \
246({ \
247 int __gu_err = -EFAULT; \
248 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
249 \
250 might_fault(); \
251 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
252 __get_user_common((x), size, __gu_ptr); \
253 \
254 __gu_err; \
255})
256
257#define __get_user_asm(val, insn, addr) \
258{ \
259 long __gu_tmp; \
260 \
261 __asm__ __volatile__( \
262 "1: " insn " %1, %3 \n" \
263 "2: \n" \
264 " .section .fixup,\"ax\" \n" \
265 "3: li %0, %4 \n" \
266 " j 2b \n" \
267 " .previous \n" \
268 " .section __ex_table,\"a\" \n" \
269 " "__UA_ADDR "\t1b, 3b \n" \
270 " .previous \n" \
271 : "=r" (__gu_err), "=r" (__gu_tmp) \
272 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
273 \
274 (val) = (__typeof__(*(addr))) __gu_tmp; \
275}
276
277/*
278 * Get a long long 64 using 32 bit registers.
279 */
280#define __get_user_asm_ll32(val, addr) \
281{ \
282 union { \
283 unsigned long long l; \
284 __typeof__(*(addr)) t; \
285 } __gu_tmp; \
286 \
287 __asm__ __volatile__( \
288 "1: lw %1, (%3) \n" \
289 "2: lw %D1, 4(%3) \n" \
290 "3: .section .fixup,\"ax\" \n" \
291 "4: li %0, %4 \n" \
292 " move %1, $0 \n" \
293 " move %D1, $0 \n" \
294 " j 3b \n" \
295 " .previous \n" \
296 " .section __ex_table,\"a\" \n" \
297 " " __UA_ADDR " 1b, 4b \n" \
298 " " __UA_ADDR " 2b, 4b \n" \
299 " .previous \n" \
300 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
301 : "0" (0), "r" (addr), "i" (-EFAULT)); \
302 \
303 (val) = __gu_tmp.t; \
304}
305
306/*
307 * Yuck. We need two variants, one for 64bit operation and one
308 * for 32 bit mode and old iron.
309 */
310#ifdef CONFIG_32BIT
311#define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
312#endif
313#ifdef CONFIG_64BIT
314#define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
315#endif
316
317#define __put_user_nocheck(x, ptr, size) \
318({ \
319 __typeof__(*(ptr)) __pu_val; \
320 int __pu_err = 0; \
321 \
322 __chk_user_ptr(ptr); \
323 __pu_val = (x); \
324 switch (size) { \
325 case 1: __put_user_asm("sb", ptr); break; \
326 case 2: __put_user_asm("sh", ptr); break; \
327 case 4: __put_user_asm("sw", ptr); break; \
328 case 8: __PUT_USER_DW(ptr); break; \
329 default: __put_user_unknown(); break; \
330 } \
331 __pu_err; \
332})
333
334#define __put_user_check(x, ptr, size) \
335({ \
336 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
337 __typeof__(*(ptr)) __pu_val = (x); \
338 int __pu_err = -EFAULT; \
339 \
340 might_fault(); \
341 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
342 switch (size) { \
343 case 1: __put_user_asm("sb", __pu_addr); break; \
344 case 2: __put_user_asm("sh", __pu_addr); break; \
345 case 4: __put_user_asm("sw", __pu_addr); break; \
346 case 8: __PUT_USER_DW(__pu_addr); break; \
347 default: __put_user_unknown(); break; \
348 } \
349 } \
350 __pu_err; \
351})
352
353#define __put_user_asm(insn, ptr) \
354{ \
355 __asm__ __volatile__( \
356 "1: " insn " %z2, %3 # __put_user_asm\n" \
357 "2: \n" \
358 " .section .fixup,\"ax\" \n" \
359 "3: li %0, %4 \n" \
360 " j 2b \n" \
361 " .previous \n" \
362 " .section __ex_table,\"a\" \n" \
363 " " __UA_ADDR " 1b, 3b \n" \
364 " .previous \n" \
365 : "=r" (__pu_err) \
366 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
367 "i" (-EFAULT)); \
368}
369
370#define __put_user_asm_ll32(ptr) \
371{ \
372 __asm__ __volatile__( \
373 "1: sw %2, (%3) # __put_user_asm_ll32 \n" \
374 "2: sw %D2, 4(%3) \n" \
375 "3: \n" \
376 " .section .fixup,\"ax\" \n" \
377 "4: li %0, %4 \n" \
378 " j 3b \n" \
379 " .previous \n" \
380 " .section __ex_table,\"a\" \n" \
381 " " __UA_ADDR " 1b, 4b \n" \
382 " " __UA_ADDR " 2b, 4b \n" \
383 " .previous" \
384 : "=r" (__pu_err) \
385 : "0" (0), "r" (__pu_val), "r" (ptr), \
386 "i" (-EFAULT)); \
387}
388
389extern void __put_user_unknown(void);
390
391/*
392 * put_user_unaligned: - Write a simple value into user space.
393 * @x: Value to copy to user space.
394 * @ptr: Destination address, in user space.
395 *
396 * Context: User context only. This function may sleep.
397 *
398 * This macro copies a single simple value from kernel space to user
399 * space. It supports simple types like char and int, but not larger
400 * data types like structures or arrays.
401 *
402 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
403 * to the result of dereferencing @ptr.
404 *
405 * Returns zero on success, or -EFAULT on error.
406 */
407#define put_user_unaligned(x,ptr) \
408 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
409
410/*
411 * get_user_unaligned: - Get a simple variable from user space.
412 * @x: Variable to store result.
413 * @ptr: Source address, in user space.
414 *
415 * Context: User context only. This function may sleep.
416 *
417 * This macro copies a single simple variable from user space to kernel
418 * space. It supports simple types like char and int, but not larger
419 * data types like structures or arrays.
420 *
421 * @ptr must have pointer-to-simple-variable type, and the result of
422 * dereferencing @ptr must be assignable to @x without a cast.
423 *
424 * Returns zero on success, or -EFAULT on error.
425 * On error, the variable @x is set to zero.
426 */
427#define get_user_unaligned(x,ptr) \
428 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
429
430/*
431 * __put_user_unaligned: - Write a simple value into user space, with less checking.
432 * @x: Value to copy to user space.
433 * @ptr: Destination address, in user space.
434 *
435 * Context: User context only. This function may sleep.
436 *
437 * This macro copies a single simple value from kernel space to user
438 * space. It supports simple types like char and int, but not larger
439 * data types like structures or arrays.
440 *
441 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
442 * to the result of dereferencing @ptr.
443 *
444 * Caller must check the pointer with access_ok() before calling this
445 * function.
446 *
447 * Returns zero on success, or -EFAULT on error.
448 */
449#define __put_user_unaligned(x,ptr) \
450 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
451
452/*
453 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
454 * @x: Variable to store result.
455 * @ptr: Source address, in user space.
456 *
457 * Context: User context only. This function may sleep.
458 *
459 * This macro copies a single simple variable from user space to kernel
460 * space. It supports simple types like char and int, but not larger
461 * data types like structures or arrays.
462 *
463 * @ptr must have pointer-to-simple-variable type, and the result of
464 * dereferencing @ptr must be assignable to @x without a cast.
465 *
466 * Caller must check the pointer with access_ok() before calling this
467 * function.
468 *
469 * Returns zero on success, or -EFAULT on error.
470 * On error, the variable @x is set to zero.
471 */
472#define __get_user_unaligned(x,ptr) \
473 __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
474
475/*
476 * Yuck. We need two variants, one for 64bit operation and one
477 * for 32 bit mode and old iron.
478 */
479#ifdef CONFIG_32BIT
480#define __GET_USER_UNALIGNED_DW(val, ptr) \
481 __get_user_unaligned_asm_ll32(val, ptr)
482#endif
483#ifdef CONFIG_64BIT
484#define __GET_USER_UNALIGNED_DW(val, ptr) \
485 __get_user_unaligned_asm(val, "uld", ptr)
486#endif
487
488extern void __get_user_unaligned_unknown(void);
489
490#define __get_user_unaligned_common(val, size, ptr) \
491do { \
492 switch (size) { \
493 case 1: __get_user_asm(val, "lb", ptr); break; \
494 case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \
495 case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \
496 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
497 default: __get_user_unaligned_unknown(); break; \
498 } \
499} while (0)
500
501#define __get_user_unaligned_nocheck(x,ptr,size) \
502({ \
503 int __gu_err; \
504 \
505 __get_user_unaligned_common((x), size, ptr); \
506 __gu_err; \
507})
508
509#define __get_user_unaligned_check(x,ptr,size) \
510({ \
511 int __gu_err = -EFAULT; \
512 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
513 \
514 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
515 __get_user_unaligned_common((x), size, __gu_ptr); \
516 \
517 __gu_err; \
518})
519
520#define __get_user_unaligned_asm(val, insn, addr) \
521{ \
522 long __gu_tmp; \
523 \
524 __asm__ __volatile__( \
525 "1: " insn " %1, %3 \n" \
526 "2: \n" \
527 " .section .fixup,\"ax\" \n" \
528 "3: li %0, %4 \n" \
529 " j 2b \n" \
530 " .previous \n" \
531 " .section __ex_table,\"a\" \n" \
532 " "__UA_ADDR "\t1b, 3b \n" \
533 " "__UA_ADDR "\t1b + 4, 3b \n" \
534 " .previous \n" \
535 : "=r" (__gu_err), "=r" (__gu_tmp) \
536 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
537 \
538 (val) = (__typeof__(*(addr))) __gu_tmp; \
539}
540
541/*
542 * Get a long long 64 using 32 bit registers.
543 */
544#define __get_user_unaligned_asm_ll32(val, addr) \
545{ \
546 unsigned long long __gu_tmp; \
547 \
548 __asm__ __volatile__( \
549 "1: ulw %1, (%3) \n" \
550 "2: ulw %D1, 4(%3) \n" \
551 " move %0, $0 \n" \
552 "3: .section .fixup,\"ax\" \n" \
553 "4: li %0, %4 \n" \
554 " move %1, $0 \n" \
555 " move %D1, $0 \n" \
556 " j 3b \n" \
557 " .previous \n" \
558 " .section __ex_table,\"a\" \n" \
559 " " __UA_ADDR " 1b, 4b \n" \
560 " " __UA_ADDR " 1b + 4, 4b \n" \
561 " " __UA_ADDR " 2b, 4b \n" \
562 " " __UA_ADDR " 2b + 4, 4b \n" \
563 " .previous \n" \
564 : "=r" (__gu_err), "=&r" (__gu_tmp) \
565 : "0" (0), "r" (addr), "i" (-EFAULT)); \
566 (val) = (__typeof__(*(addr))) __gu_tmp; \
567}
568
569/*
570 * Yuck. We need two variants, one for 64bit operation and one
571 * for 32 bit mode and old iron.
572 */
573#ifdef CONFIG_32BIT
574#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
575#endif
576#ifdef CONFIG_64BIT
577#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
578#endif
579
580#define __put_user_unaligned_nocheck(x,ptr,size) \
581({ \
582 __typeof__(*(ptr)) __pu_val; \
583 int __pu_err = 0; \
584 \
585 __pu_val = (x); \
586 switch (size) { \
587 case 1: __put_user_asm("sb", ptr); break; \
588 case 2: __put_user_unaligned_asm("ush", ptr); break; \
589 case 4: __put_user_unaligned_asm("usw", ptr); break; \
590 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
591 default: __put_user_unaligned_unknown(); break; \
592 } \
593 __pu_err; \
594})
595
596#define __put_user_unaligned_check(x,ptr,size) \
597({ \
598 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
599 __typeof__(*(ptr)) __pu_val = (x); \
600 int __pu_err = -EFAULT; \
601 \
602 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
603 switch (size) { \
604 case 1: __put_user_asm("sb", __pu_addr); break; \
605 case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
606 case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
607 case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break; \
608 default: __put_user_unaligned_unknown(); break; \
609 } \
610 } \
611 __pu_err; \
612})
613
614#define __put_user_unaligned_asm(insn, ptr) \
615{ \
616 __asm__ __volatile__( \
617 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
618 "2: \n" \
619 " .section .fixup,\"ax\" \n" \
620 "3: li %0, %4 \n" \
621 " j 2b \n" \
622 " .previous \n" \
623 " .section __ex_table,\"a\" \n" \
624 " " __UA_ADDR " 1b, 3b \n" \
625 " .previous \n" \
626 : "=r" (__pu_err) \
627 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
628 "i" (-EFAULT)); \
629}
630
631#define __put_user_unaligned_asm_ll32(ptr) \
632{ \
633 __asm__ __volatile__( \
634 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
635 "2: sw %D2, 4(%3) \n" \
636 "3: \n" \
637 " .section .fixup,\"ax\" \n" \
638 "4: li %0, %4 \n" \
639 " j 3b \n" \
640 " .previous \n" \
641 " .section __ex_table,\"a\" \n" \
642 " " __UA_ADDR " 1b, 4b \n" \
643 " " __UA_ADDR " 1b + 4, 4b \n" \
644 " " __UA_ADDR " 2b, 4b \n" \
645 " " __UA_ADDR " 2b + 4, 4b \n" \
646 " .previous" \
647 : "=r" (__pu_err) \
648 : "0" (0), "r" (__pu_val), "r" (ptr), \
649 "i" (-EFAULT)); \
650}
651
652extern void __put_user_unaligned_unknown(void);
653
654/*
655 * We're generating jump to subroutines which will be outside the range of
656 * jump instructions
657 */
658#ifdef MODULE
659#define __MODULE_JAL(destination) \
660 ".set\tnoat\n\t" \
661 __UA_LA "\t$1, " #destination "\n\t" \
662 "jalr\t$1\n\t" \
663 ".set\tat\n\t"
664#else
665#define __MODULE_JAL(destination) \
666 "jal\t" #destination "\n\t"
667#endif
668
669#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
670#define DADDI_SCRATCH "$0"
671#else
672#define DADDI_SCRATCH "$3"
673#endif
674
675extern size_t __copy_user(void *__to, const void *__from, size_t __n);
676
677#define __invoke_copy_to_user(to, from, n) \
678({ \
679 register void __user *__cu_to_r __asm__("$4"); \
680 register const void *__cu_from_r __asm__("$5"); \
681 register long __cu_len_r __asm__("$6"); \
682 \
683 __cu_to_r = (to); \
684 __cu_from_r = (from); \
685 __cu_len_r = (n); \
686 __asm__ __volatile__( \
687 __MODULE_JAL(__copy_user) \
688 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
689 : \
690 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
691 DADDI_SCRATCH, "memory"); \
692 __cu_len_r; \
693})
694
695/*
696 * __copy_to_user: - Copy a block of data into user space, with less checking.
697 * @to: Destination address, in user space.
698 * @from: Source address, in kernel space.
699 * @n: Number of bytes to copy.
700 *
701 * Context: User context only. This function may sleep.
702 *
703 * Copy data from kernel space to user space. Caller must check
704 * the specified block with access_ok() before calling this function.
705 *
706 * Returns number of bytes that could not be copied.
707 * On success, this will be zero.
708 */
709#define __copy_to_user(to, from, n) \
710({ \
711 void __user *__cu_to; \
712 const void *__cu_from; \
713 long __cu_len; \
714 \
715 __cu_to = (to); \
716 __cu_from = (from); \
717 __cu_len = (n); \
718 might_fault(); \
719 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
720 __cu_len; \
721})
722
723extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
724
725#define __copy_to_user_inatomic(to, from, n) \
726({ \
727 void __user *__cu_to; \
728 const void *__cu_from; \
729 long __cu_len; \
730 \
731 __cu_to = (to); \
732 __cu_from = (from); \
733 __cu_len = (n); \
734 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len); \
735 __cu_len; \
736})
737
738#define __copy_from_user_inatomic(to, from, n) \
739({ \
740 void *__cu_to; \
741 const void __user *__cu_from; \
742 long __cu_len; \
743 \
744 __cu_to = (to); \
745 __cu_from = (from); \
746 __cu_len = (n); \
747 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from, \
748 __cu_len); \
749 __cu_len; \
750})
751
752/*
753 * copy_to_user: - Copy a block of data into user space.
754 * @to: Destination address, in user space.
755 * @from: Source address, in kernel space.
756 * @n: Number of bytes to copy.
757 *
758 * Context: User context only. This function may sleep.
759 *
760 * Copy data from kernel space to user space.
761 *
762 * Returns number of bytes that could not be copied.
763 * On success, this will be zero.
764 */
765#define copy_to_user(to, from, n) \
766({ \
767 void __user *__cu_to; \
768 const void *__cu_from; \
769 long __cu_len; \
770 \
771 __cu_to = (to); \
772 __cu_from = (from); \
773 __cu_len = (n); \
774 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
775 might_fault(); \
776 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
777 __cu_len); \
778 } \
779 __cu_len; \
780})
781
782#define __invoke_copy_from_user(to, from, n) \
783({ \
784 register void *__cu_to_r __asm__("$4"); \
785 register const void __user *__cu_from_r __asm__("$5"); \
786 register long __cu_len_r __asm__("$6"); \
787 \
788 __cu_to_r = (to); \
789 __cu_from_r = (from); \
790 __cu_len_r = (n); \
791 __asm__ __volatile__( \
792 ".set\tnoreorder\n\t" \
793 __MODULE_JAL(__copy_user) \
794 ".set\tnoat\n\t" \
795 __UA_ADDU "\t$1, %1, %2\n\t" \
796 ".set\tat\n\t" \
797 ".set\treorder" \
798 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
799 : \
800 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
801 DADDI_SCRATCH, "memory"); \
802 __cu_len_r; \
803})
804
805#define __invoke_copy_from_user_inatomic(to, from, n) \
806({ \
807 register void *__cu_to_r __asm__("$4"); \
808 register const void __user *__cu_from_r __asm__("$5"); \
809 register long __cu_len_r __asm__("$6"); \
810 \
811 __cu_to_r = (to); \
812 __cu_from_r = (from); \
813 __cu_len_r = (n); \
814 __asm__ __volatile__( \
815 ".set\tnoreorder\n\t" \
816 __MODULE_JAL(__copy_user_inatomic) \
817 ".set\tnoat\n\t" \
818 __UA_ADDU "\t$1, %1, %2\n\t" \
819 ".set\tat\n\t" \
820 ".set\treorder" \
821 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
822 : \
823 : "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31", \
824 DADDI_SCRATCH, "memory"); \
825 __cu_len_r; \
826})
827
828/*
829 * __copy_from_user: - Copy a block of data from user space, with less checking.
830 * @to: Destination address, in kernel space.
831 * @from: Source address, in user space.
832 * @n: Number of bytes to copy.
833 *
834 * Context: User context only. This function may sleep.
835 *
836 * Copy data from user space to kernel space. Caller must check
837 * the specified block with access_ok() before calling this function.
838 *
839 * Returns number of bytes that could not be copied.
840 * On success, this will be zero.
841 *
842 * If some data could not be copied, this function will pad the copied
843 * data to the requested size using zero bytes.
844 */
845#define __copy_from_user(to, from, n) \
846({ \
847 void *__cu_to; \
848 const void __user *__cu_from; \
849 long __cu_len; \
850 \
851 __cu_to = (to); \
852 __cu_from = (from); \
853 __cu_len = (n); \
854 might_fault(); \
855 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
856 __cu_len); \
857 __cu_len; \
858})
859
860/*
861 * copy_from_user: - Copy a block of data from user space.
862 * @to: Destination address, in kernel space.
863 * @from: Source address, in user space.
864 * @n: Number of bytes to copy.
865 *
866 * Context: User context only. This function may sleep.
867 *
868 * Copy data from user space to kernel space.
869 *
870 * Returns number of bytes that could not be copied.
871 * On success, this will be zero.
872 *
873 * If some data could not be copied, this function will pad the copied
874 * data to the requested size using zero bytes.
875 */
876#define copy_from_user(to, from, n) \
877({ \
878 void *__cu_to; \
879 const void __user *__cu_from; \
880 long __cu_len; \
881 \
882 __cu_to = (to); \
883 __cu_from = (from); \
884 __cu_len = (n); \
885 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
886 might_fault(); \
887 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
888 __cu_len); \
889 } \
890 __cu_len; \
891})
892
893#define __copy_in_user(to, from, n) \
894({ \
895 void __user *__cu_to; \
896 const void __user *__cu_from; \
897 long __cu_len; \
898 \
899 __cu_to = (to); \
900 __cu_from = (from); \
901 __cu_len = (n); \
902 might_fault(); \
903 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
904 __cu_len); \
905 __cu_len; \
906})
907
908#define copy_in_user(to, from, n) \
909({ \
910 void __user *__cu_to; \
911 const void __user *__cu_from; \
912 long __cu_len; \
913 \
914 __cu_to = (to); \
915 __cu_from = (from); \
916 __cu_len = (n); \
917 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) && \
918 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) { \
919 might_fault(); \
920 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
921 __cu_len); \
922 } \
923 __cu_len; \
924})
925
926/*
927 * __clear_user: - Zero a block of memory in user space, with less checking.
928 * @to: Destination address, in user space.
929 * @n: Number of bytes to zero.
930 *
931 * Zero a block of memory in user space. Caller must check
932 * the specified block with access_ok() before calling this function.
933 *
934 * Returns number of bytes that could not be cleared.
935 * On success, this will be zero.
936 */
937static inline __kernel_size_t
938__clear_user(void __user *addr, __kernel_size_t size)
939{
940 __kernel_size_t res;
941
942 might_fault();
943 __asm__ __volatile__(
944 "move\t$4, %1\n\t"
945 "move\t$5, $0\n\t"
946 "move\t$6, %2\n\t"
947 __MODULE_JAL(__bzero)
948 "move\t%0, $6"
949 : "=r" (res)
950 : "r" (addr), "r" (size)
951 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
952
953 return res;
954}
955
956#define clear_user(addr,n) \
957({ \
958 void __user * __cl_addr = (addr); \
959 unsigned long __cl_size = (n); \
960 if (__cl_size && access_ok(VERIFY_WRITE, \
961 __cl_addr, __cl_size)) \
962 __cl_size = __clear_user(__cl_addr, __cl_size); \
963 __cl_size; \
964})
965
966/*
967 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
968 * @dst: Destination address, in kernel space. This buffer must be at
969 * least @count bytes long.
970 * @src: Source address, in user space.
971 * @count: Maximum number of bytes to copy, including the trailing NUL.
972 *
973 * Copies a NUL-terminated string from userspace to kernel space.
974 * Caller must check the specified block with access_ok() before calling
975 * this function.
976 *
977 * On success, returns the length of the string (not including the trailing
978 * NUL).
979 *
980 * If access to userspace fails, returns -EFAULT (some data may have been
981 * copied).
982 *
983 * If @count is smaller than the length of the string, copies @count bytes
984 * and returns @count.
985 */
986static inline long
987__strncpy_from_user(char *__to, const char __user *__from, long __len)
988{
989 long res;
990
991 might_fault();
992 __asm__ __volatile__(
993 "move\t$4, %1\n\t"
994 "move\t$5, %2\n\t"
995 "move\t$6, %3\n\t"
996 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
997 "move\t%0, $2"
998 : "=r" (res)
999 : "r" (__to), "r" (__from), "r" (__len)
1000 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1001
1002 return res;
1003}
1004
1005/*
1006 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1007 * @dst: Destination address, in kernel space. This buffer must be at
1008 * least @count bytes long.
1009 * @src: Source address, in user space.
1010 * @count: Maximum number of bytes to copy, including the trailing NUL.
1011 *
1012 * Copies a NUL-terminated string from userspace to kernel space.
1013 *
1014 * On success, returns the length of the string (not including the trailing
1015 * NUL).
1016 *
1017 * If access to userspace fails, returns -EFAULT (some data may have been
1018 * copied).
1019 *
1020 * If @count is smaller than the length of the string, copies @count bytes
1021 * and returns @count.
1022 */
1023static inline long
1024strncpy_from_user(char *__to, const char __user *__from, long __len)
1025{
1026 long res;
1027
1028 might_fault();
1029 __asm__ __volatile__(
1030 "move\t$4, %1\n\t"
1031 "move\t$5, %2\n\t"
1032 "move\t$6, %3\n\t"
1033 __MODULE_JAL(__strncpy_from_user_asm)
1034 "move\t%0, $2"
1035 : "=r" (res)
1036 : "r" (__to), "r" (__from), "r" (__len)
1037 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1038
1039 return res;
1040}
1041
1042/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1043static inline long __strlen_user(const char __user *s)
1044{
1045 long res;
1046
1047 might_fault();
1048 __asm__ __volatile__(
1049 "move\t$4, %1\n\t"
1050 __MODULE_JAL(__strlen_user_nocheck_asm)
1051 "move\t%0, $2"
1052 : "=r" (res)
1053 : "r" (s)
1054 : "$2", "$4", __UA_t0, "$31");
1055
1056 return res;
1057}
1058
1059/*
1060 * strlen_user: - Get the size of a string in user space.
1061 * @str: The string to measure.
1062 *
1063 * Context: User context only. This function may sleep.
1064 *
1065 * Get the size of a NUL-terminated string in user space.
1066 *
1067 * Returns the size of the string INCLUDING the terminating NUL.
1068 * On exception, returns 0.
1069 *
1070 * If there is a limit on the length of a valid string, you may wish to
1071 * consider using strnlen_user() instead.
1072 */
1073static inline long strlen_user(const char __user *s)
1074{
1075 long res;
1076
1077 might_fault();
1078 __asm__ __volatile__(
1079 "move\t$4, %1\n\t"
1080 __MODULE_JAL(__strlen_user_asm)
1081 "move\t%0, $2"
1082 : "=r" (res)
1083 : "r" (s)
1084 : "$2", "$4", __UA_t0, "$31");
1085
1086 return res;
1087}
1088
1089/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1090static inline long __strnlen_user(const char __user *s, long n)
1091{
1092 long res;
1093
1094 might_fault();
1095 __asm__ __volatile__(
1096 "move\t$4, %1\n\t"
1097 "move\t$5, %2\n\t"
1098 __MODULE_JAL(__strnlen_user_nocheck_asm)
1099 "move\t%0, $2"
1100 : "=r" (res)
1101 : "r" (s), "r" (n)
1102 : "$2", "$4", "$5", __UA_t0, "$31");
1103
1104 return res;
1105}
1106
1107/*
1108 * strlen_user: - Get the size of a string in user space.
1109 * @str: The string to measure.
1110 *
1111 * Context: User context only. This function may sleep.
1112 *
1113 * Get the size of a NUL-terminated string in user space.
1114 *
1115 * Returns the size of the string INCLUDING the terminating NUL.
1116 * On exception, returns 0.
1117 *
1118 * If there is a limit on the length of a valid string, you may wish to
1119 * consider using strnlen_user() instead.
1120 */
1121static inline long strnlen_user(const char __user *s, long n)
1122{
1123 long res;
1124
1125 might_fault();
1126 __asm__ __volatile__(
1127 "move\t$4, %1\n\t"
1128 "move\t$5, %2\n\t"
1129 __MODULE_JAL(__strnlen_user_asm)
1130 "move\t%0, $2"
1131 : "=r" (res)
1132 : "r" (s), "r" (n)
1133 : "$2", "$4", "$5", __UA_t0, "$31");
1134
1135 return res;
1136}
1137
1138struct exception_table_entry
1139{
1140 unsigned long insn;
1141 unsigned long nextinsn;
1142};
1143
1144extern int fixup_exception(struct pt_regs *regs);
1145
1146#endif /* _ASM_UACCESS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/thread_info.h>
17#include <asm/asm-eva.h>
18
19/*
20 * The fs value determines whether argument validity checking should be
21 * performed or not. If get_fs() == USER_DS, checking is performed, with
22 * get_fs() == KERNEL_DS, checking is bypassed.
23 *
24 * For historical reasons, these macros are grossly misnamed.
25 */
26#ifdef CONFIG_32BIT
27
28#ifdef CONFIG_KVM_GUEST
29#define __UA_LIMIT 0x40000000UL
30#else
31#define __UA_LIMIT 0x80000000UL
32#endif
33
34#define __UA_ADDR ".word"
35#define __UA_LA "la"
36#define __UA_ADDU "addu"
37#define __UA_t0 "$8"
38#define __UA_t1 "$9"
39
40#endif /* CONFIG_32BIT */
41
42#ifdef CONFIG_64BIT
43
44extern u64 __ua_limit;
45
46#define __UA_LIMIT __ua_limit
47
48#define __UA_ADDR ".dword"
49#define __UA_LA "dla"
50#define __UA_ADDU "daddu"
51#define __UA_t0 "$12"
52#define __UA_t1 "$13"
53
54#endif /* CONFIG_64BIT */
55
56/*
57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
58 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
59 * the arithmetic we're doing only works if the limit is a power of two, so
60 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
61 * address in this range it's the process's problem, not ours :-)
62 */
63
64#ifdef CONFIG_KVM_GUEST
65#define KERNEL_DS ((mm_segment_t) { 0x80000000UL })
66#define USER_DS ((mm_segment_t) { 0xC0000000UL })
67#else
68#define KERNEL_DS ((mm_segment_t) { 0UL })
69#define USER_DS ((mm_segment_t) { __UA_LIMIT })
70#endif
71
72#define VERIFY_READ 0
73#define VERIFY_WRITE 1
74
75#define get_ds() (KERNEL_DS)
76#define get_fs() (current_thread_info()->addr_limit)
77#define set_fs(x) (current_thread_info()->addr_limit = (x))
78
79#define segment_eq(a, b) ((a).seg == (b).seg)
80
81
82/*
83 * Is a address valid? This does a straighforward calculation rather
84 * than tests.
85 *
86 * Address valid if:
87 * - "addr" doesn't have any high-bits set
88 * - AND "size" doesn't have any high-bits set
89 * - AND "addr+size" doesn't have any high-bits set
90 * - OR we are in kernel mode.
91 *
92 * __ua_size() is a trick to avoid runtime checking of positive constant
93 * sizes; for those we already know at compile time that the size is ok.
94 */
95#define __ua_size(size) \
96 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
97
98/*
99 * access_ok: - Checks if a user space pointer is valid
100 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
101 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
102 * to write to a block, it is always safe to read from it.
103 * @addr: User space pointer to start of block to check
104 * @size: Size of block to check
105 *
106 * Context: User context only. This function may sleep.
107 *
108 * Checks if a pointer to a block of memory in user space is valid.
109 *
110 * Returns true (nonzero) if the memory block may be valid, false (zero)
111 * if it is definitely invalid.
112 *
113 * Note that, depending on architecture, this function probably just
114 * checks that the pointer is in the user space range - after calling
115 * this function, memory access functions may still return -EFAULT.
116 */
117
118#define __access_mask get_fs().seg
119
120#define __access_ok(addr, size, mask) \
121({ \
122 unsigned long __addr = (unsigned long) (addr); \
123 unsigned long __size = size; \
124 unsigned long __mask = mask; \
125 unsigned long __ok; \
126 \
127 __chk_user_ptr(addr); \
128 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
129 __ua_size(__size))); \
130 __ok == 0; \
131})
132
133#define access_ok(type, addr, size) \
134 likely(__access_ok((addr), (size), __access_mask))
135
136/*
137 * put_user: - Write a simple value into user space.
138 * @x: Value to copy to user space.
139 * @ptr: Destination address, in user space.
140 *
141 * Context: User context only. This function may sleep.
142 *
143 * This macro copies a single simple value from kernel space to user
144 * space. It supports simple types like char and int, but not larger
145 * data types like structures or arrays.
146 *
147 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
148 * to the result of dereferencing @ptr.
149 *
150 * Returns zero on success, or -EFAULT on error.
151 */
152#define put_user(x,ptr) \
153 __put_user_check((x), (ptr), sizeof(*(ptr)))
154
155/*
156 * get_user: - Get a simple variable from user space.
157 * @x: Variable to store result.
158 * @ptr: Source address, in user space.
159 *
160 * Context: User context only. This function may sleep.
161 *
162 * This macro copies a single simple variable from user space to kernel
163 * space. It supports simple types like char and int, but not larger
164 * data types like structures or arrays.
165 *
166 * @ptr must have pointer-to-simple-variable type, and the result of
167 * dereferencing @ptr must be assignable to @x without a cast.
168 *
169 * Returns zero on success, or -EFAULT on error.
170 * On error, the variable @x is set to zero.
171 */
172#define get_user(x,ptr) \
173 __get_user_check((x), (ptr), sizeof(*(ptr)))
174
175/*
176 * __put_user: - Write a simple value into user space, with less checking.
177 * @x: Value to copy to user space.
178 * @ptr: Destination address, in user space.
179 *
180 * Context: User context only. This function may sleep.
181 *
182 * This macro copies a single simple value from kernel space to user
183 * space. It supports simple types like char and int, but not larger
184 * data types like structures or arrays.
185 *
186 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
187 * to the result of dereferencing @ptr.
188 *
189 * Caller must check the pointer with access_ok() before calling this
190 * function.
191 *
192 * Returns zero on success, or -EFAULT on error.
193 */
194#define __put_user(x,ptr) \
195 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
196
197/*
198 * __get_user: - Get a simple variable from user space, with less checking.
199 * @x: Variable to store result.
200 * @ptr: Source address, in user space.
201 *
202 * Context: User context only. This function may sleep.
203 *
204 * This macro copies a single simple variable from user space to kernel
205 * space. It supports simple types like char and int, but not larger
206 * data types like structures or arrays.
207 *
208 * @ptr must have pointer-to-simple-variable type, and the result of
209 * dereferencing @ptr must be assignable to @x without a cast.
210 *
211 * Caller must check the pointer with access_ok() before calling this
212 * function.
213 *
214 * Returns zero on success, or -EFAULT on error.
215 * On error, the variable @x is set to zero.
216 */
217#define __get_user(x,ptr) \
218 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
219
220struct __large_struct { unsigned long buf[100]; };
221#define __m(x) (*(struct __large_struct __user *)(x))
222
223/*
224 * Yuck. We need two variants, one for 64bit operation and one
225 * for 32 bit mode and old iron.
226 */
227#ifndef CONFIG_EVA
228#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
229#else
230/*
231 * Kernel specific functions for EVA. We need to use normal load instructions
232 * to read data from kernel when operating in EVA mode. We use these macros to
233 * avoid redefining __get_user_asm for EVA.
234 */
235#undef _loadd
236#undef _loadw
237#undef _loadh
238#undef _loadb
239#ifdef CONFIG_32BIT
240#define _loadd _loadw
241#else
242#define _loadd(reg, addr) "ld " reg ", " addr
243#endif
244#define _loadw(reg, addr) "lw " reg ", " addr
245#define _loadh(reg, addr) "lh " reg ", " addr
246#define _loadb(reg, addr) "lb " reg ", " addr
247
248#define __get_kernel_common(val, size, ptr) \
249do { \
250 switch (size) { \
251 case 1: __get_data_asm(val, _loadb, ptr); break; \
252 case 2: __get_data_asm(val, _loadh, ptr); break; \
253 case 4: __get_data_asm(val, _loadw, ptr); break; \
254 case 8: __GET_DW(val, _loadd, ptr); break; \
255 default: __get_user_unknown(); break; \
256 } \
257} while (0)
258#endif
259
260#ifdef CONFIG_32BIT
261#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
262#endif
263#ifdef CONFIG_64BIT
264#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
265#endif
266
267extern void __get_user_unknown(void);
268
269#define __get_user_common(val, size, ptr) \
270do { \
271 switch (size) { \
272 case 1: __get_data_asm(val, user_lb, ptr); break; \
273 case 2: __get_data_asm(val, user_lh, ptr); break; \
274 case 4: __get_data_asm(val, user_lw, ptr); break; \
275 case 8: __GET_DW(val, user_ld, ptr); break; \
276 default: __get_user_unknown(); break; \
277 } \
278} while (0)
279
280#define __get_user_nocheck(x, ptr, size) \
281({ \
282 int __gu_err; \
283 \
284 if (segment_eq(get_fs(), get_ds())) { \
285 __get_kernel_common((x), size, ptr); \
286 } else { \
287 __chk_user_ptr(ptr); \
288 __get_user_common((x), size, ptr); \
289 } \
290 __gu_err; \
291})
292
293#define __get_user_check(x, ptr, size) \
294({ \
295 int __gu_err = -EFAULT; \
296 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
297 \
298 might_fault(); \
299 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \
300 if (segment_eq(get_fs(), get_ds())) \
301 __get_kernel_common((x), size, __gu_ptr); \
302 else \
303 __get_user_common((x), size, __gu_ptr); \
304 } \
305 \
306 __gu_err; \
307})
308
309#define __get_data_asm(val, insn, addr) \
310{ \
311 long __gu_tmp; \
312 \
313 __asm__ __volatile__( \
314 "1: "insn("%1", "%3")" \n" \
315 "2: \n" \
316 " .insn \n" \
317 " .section .fixup,\"ax\" \n" \
318 "3: li %0, %4 \n" \
319 " j 2b \n" \
320 " .previous \n" \
321 " .section __ex_table,\"a\" \n" \
322 " "__UA_ADDR "\t1b, 3b \n" \
323 " .previous \n" \
324 : "=r" (__gu_err), "=r" (__gu_tmp) \
325 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
326 \
327 (val) = (__typeof__(*(addr))) __gu_tmp; \
328}
329
330/*
331 * Get a long long 64 using 32 bit registers.
332 */
333#define __get_data_asm_ll32(val, insn, addr) \
334{ \
335 union { \
336 unsigned long long l; \
337 __typeof__(*(addr)) t; \
338 } __gu_tmp; \
339 \
340 __asm__ __volatile__( \
341 "1: " insn("%1", "(%3)")" \n" \
342 "2: " insn("%D1", "4(%3)")" \n" \
343 "3: \n" \
344 " .insn \n" \
345 " .section .fixup,\"ax\" \n" \
346 "4: li %0, %4 \n" \
347 " move %1, $0 \n" \
348 " move %D1, $0 \n" \
349 " j 3b \n" \
350 " .previous \n" \
351 " .section __ex_table,\"a\" \n" \
352 " " __UA_ADDR " 1b, 4b \n" \
353 " " __UA_ADDR " 2b, 4b \n" \
354 " .previous \n" \
355 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
356 : "0" (0), "r" (addr), "i" (-EFAULT)); \
357 \
358 (val) = __gu_tmp.t; \
359}
360
361#ifndef CONFIG_EVA
362#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
363#else
364/*
365 * Kernel specific functions for EVA. We need to use normal load instructions
366 * to read data from kernel when operating in EVA mode. We use these macros to
367 * avoid redefining __get_data_asm for EVA.
368 */
369#undef _stored
370#undef _storew
371#undef _storeh
372#undef _storeb
373#ifdef CONFIG_32BIT
374#define _stored _storew
375#else
376#define _stored(reg, addr) "ld " reg ", " addr
377#endif
378
379#define _storew(reg, addr) "sw " reg ", " addr
380#define _storeh(reg, addr) "sh " reg ", " addr
381#define _storeb(reg, addr) "sb " reg ", " addr
382
383#define __put_kernel_common(ptr, size) \
384do { \
385 switch (size) { \
386 case 1: __put_data_asm(_storeb, ptr); break; \
387 case 2: __put_data_asm(_storeh, ptr); break; \
388 case 4: __put_data_asm(_storew, ptr); break; \
389 case 8: __PUT_DW(_stored, ptr); break; \
390 default: __put_user_unknown(); break; \
391 } \
392} while(0)
393#endif
394
395/*
396 * Yuck. We need two variants, one for 64bit operation and one
397 * for 32 bit mode and old iron.
398 */
399#ifdef CONFIG_32BIT
400#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
401#endif
402#ifdef CONFIG_64BIT
403#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
404#endif
405
406#define __put_user_common(ptr, size) \
407do { \
408 switch (size) { \
409 case 1: __put_data_asm(user_sb, ptr); break; \
410 case 2: __put_data_asm(user_sh, ptr); break; \
411 case 4: __put_data_asm(user_sw, ptr); break; \
412 case 8: __PUT_DW(user_sd, ptr); break; \
413 default: __put_user_unknown(); break; \
414 } \
415} while (0)
416
417#define __put_user_nocheck(x, ptr, size) \
418({ \
419 __typeof__(*(ptr)) __pu_val; \
420 int __pu_err = 0; \
421 \
422 __pu_val = (x); \
423 if (segment_eq(get_fs(), get_ds())) { \
424 __put_kernel_common(ptr, size); \
425 } else { \
426 __chk_user_ptr(ptr); \
427 __put_user_common(ptr, size); \
428 } \
429 __pu_err; \
430})
431
432#define __put_user_check(x, ptr, size) \
433({ \
434 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
435 __typeof__(*(ptr)) __pu_val = (x); \
436 int __pu_err = -EFAULT; \
437 \
438 might_fault(); \
439 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
440 if (segment_eq(get_fs(), get_ds())) \
441 __put_kernel_common(__pu_addr, size); \
442 else \
443 __put_user_common(__pu_addr, size); \
444 } \
445 \
446 __pu_err; \
447})
448
449#define __put_data_asm(insn, ptr) \
450{ \
451 __asm__ __volatile__( \
452 "1: "insn("%z2", "%3")" # __put_data_asm \n" \
453 "2: \n" \
454 " .insn \n" \
455 " .section .fixup,\"ax\" \n" \
456 "3: li %0, %4 \n" \
457 " j 2b \n" \
458 " .previous \n" \
459 " .section __ex_table,\"a\" \n" \
460 " " __UA_ADDR " 1b, 3b \n" \
461 " .previous \n" \
462 : "=r" (__pu_err) \
463 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
464 "i" (-EFAULT)); \
465}
466
467#define __put_data_asm_ll32(insn, ptr) \
468{ \
469 __asm__ __volatile__( \
470 "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \
471 "2: "insn("%D2", "4(%3)")" \n" \
472 "3: \n" \
473 " .insn \n" \
474 " .section .fixup,\"ax\" \n" \
475 "4: li %0, %4 \n" \
476 " j 3b \n" \
477 " .previous \n" \
478 " .section __ex_table,\"a\" \n" \
479 " " __UA_ADDR " 1b, 4b \n" \
480 " " __UA_ADDR " 2b, 4b \n" \
481 " .previous" \
482 : "=r" (__pu_err) \
483 : "0" (0), "r" (__pu_val), "r" (ptr), \
484 "i" (-EFAULT)); \
485}
486
487extern void __put_user_unknown(void);
488
489/*
490 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
491 * EVA unaligned access is handled in the ADE exception handler.
492 */
493#ifndef CONFIG_EVA
494/*
495 * put_user_unaligned: - Write a simple value into user space.
496 * @x: Value to copy to user space.
497 * @ptr: Destination address, in user space.
498 *
499 * Context: User context only. This function may sleep.
500 *
501 * This macro copies a single simple value from kernel space to user
502 * space. It supports simple types like char and int, but not larger
503 * data types like structures or arrays.
504 *
505 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
506 * to the result of dereferencing @ptr.
507 *
508 * Returns zero on success, or -EFAULT on error.
509 */
510#define put_user_unaligned(x,ptr) \
511 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
512
513/*
514 * get_user_unaligned: - Get a simple variable from user space.
515 * @x: Variable to store result.
516 * @ptr: Source address, in user space.
517 *
518 * Context: User context only. This function may sleep.
519 *
520 * This macro copies a single simple variable from user space to kernel
521 * space. It supports simple types like char and int, but not larger
522 * data types like structures or arrays.
523 *
524 * @ptr must have pointer-to-simple-variable type, and the result of
525 * dereferencing @ptr must be assignable to @x without a cast.
526 *
527 * Returns zero on success, or -EFAULT on error.
528 * On error, the variable @x is set to zero.
529 */
530#define get_user_unaligned(x,ptr) \
531 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
532
533/*
534 * __put_user_unaligned: - Write a simple value into user space, with less checking.
535 * @x: Value to copy to user space.
536 * @ptr: Destination address, in user space.
537 *
538 * Context: User context only. This function may sleep.
539 *
540 * This macro copies a single simple value from kernel space to user
541 * space. It supports simple types like char and int, but not larger
542 * data types like structures or arrays.
543 *
544 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
545 * to the result of dereferencing @ptr.
546 *
547 * Caller must check the pointer with access_ok() before calling this
548 * function.
549 *
550 * Returns zero on success, or -EFAULT on error.
551 */
552#define __put_user_unaligned(x,ptr) \
553 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
554
555/*
556 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
557 * @x: Variable to store result.
558 * @ptr: Source address, in user space.
559 *
560 * Context: User context only. This function may sleep.
561 *
562 * This macro copies a single simple variable from user space to kernel
563 * space. It supports simple types like char and int, but not larger
564 * data types like structures or arrays.
565 *
566 * @ptr must have pointer-to-simple-variable type, and the result of
567 * dereferencing @ptr must be assignable to @x without a cast.
568 *
569 * Caller must check the pointer with access_ok() before calling this
570 * function.
571 *
572 * Returns zero on success, or -EFAULT on error.
573 * On error, the variable @x is set to zero.
574 */
575#define __get_user_unaligned(x,ptr) \
576 __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
577
578/*
579 * Yuck. We need two variants, one for 64bit operation and one
580 * for 32 bit mode and old iron.
581 */
582#ifdef CONFIG_32BIT
583#define __GET_USER_UNALIGNED_DW(val, ptr) \
584 __get_user_unaligned_asm_ll32(val, ptr)
585#endif
586#ifdef CONFIG_64BIT
587#define __GET_USER_UNALIGNED_DW(val, ptr) \
588 __get_user_unaligned_asm(val, "uld", ptr)
589#endif
590
591extern void __get_user_unaligned_unknown(void);
592
593#define __get_user_unaligned_common(val, size, ptr) \
594do { \
595 switch (size) { \
596 case 1: __get_data_asm(val, "lb", ptr); break; \
597 case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \
598 case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \
599 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
600 default: __get_user_unaligned_unknown(); break; \
601 } \
602} while (0)
603
604#define __get_user_unaligned_nocheck(x,ptr,size) \
605({ \
606 int __gu_err; \
607 \
608 __get_user_unaligned_common((x), size, ptr); \
609 __gu_err; \
610})
611
612#define __get_user_unaligned_check(x,ptr,size) \
613({ \
614 int __gu_err = -EFAULT; \
615 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
616 \
617 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
618 __get_user_unaligned_common((x), size, __gu_ptr); \
619 \
620 __gu_err; \
621})
622
623#define __get_data_unaligned_asm(val, insn, addr) \
624{ \
625 long __gu_tmp; \
626 \
627 __asm__ __volatile__( \
628 "1: " insn " %1, %3 \n" \
629 "2: \n" \
630 " .insn \n" \
631 " .section .fixup,\"ax\" \n" \
632 "3: li %0, %4 \n" \
633 " j 2b \n" \
634 " .previous \n" \
635 " .section __ex_table,\"a\" \n" \
636 " "__UA_ADDR "\t1b, 3b \n" \
637 " "__UA_ADDR "\t1b + 4, 3b \n" \
638 " .previous \n" \
639 : "=r" (__gu_err), "=r" (__gu_tmp) \
640 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
641 \
642 (val) = (__typeof__(*(addr))) __gu_tmp; \
643}
644
645/*
646 * Get a long long 64 using 32 bit registers.
647 */
648#define __get_user_unaligned_asm_ll32(val, addr) \
649{ \
650 unsigned long long __gu_tmp; \
651 \
652 __asm__ __volatile__( \
653 "1: ulw %1, (%3) \n" \
654 "2: ulw %D1, 4(%3) \n" \
655 " move %0, $0 \n" \
656 "3: \n" \
657 " .insn \n" \
658 " .section .fixup,\"ax\" \n" \
659 "4: li %0, %4 \n" \
660 " move %1, $0 \n" \
661 " move %D1, $0 \n" \
662 " j 3b \n" \
663 " .previous \n" \
664 " .section __ex_table,\"a\" \n" \
665 " " __UA_ADDR " 1b, 4b \n" \
666 " " __UA_ADDR " 1b + 4, 4b \n" \
667 " " __UA_ADDR " 2b, 4b \n" \
668 " " __UA_ADDR " 2b + 4, 4b \n" \
669 " .previous \n" \
670 : "=r" (__gu_err), "=&r" (__gu_tmp) \
671 : "0" (0), "r" (addr), "i" (-EFAULT)); \
672 (val) = (__typeof__(*(addr))) __gu_tmp; \
673}
674
675/*
676 * Yuck. We need two variants, one for 64bit operation and one
677 * for 32 bit mode and old iron.
678 */
679#ifdef CONFIG_32BIT
680#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
681#endif
682#ifdef CONFIG_64BIT
683#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
684#endif
685
686#define __put_user_unaligned_common(ptr, size) \
687do { \
688 switch (size) { \
689 case 1: __put_data_asm("sb", ptr); break; \
690 case 2: __put_user_unaligned_asm("ush", ptr); break; \
691 case 4: __put_user_unaligned_asm("usw", ptr); break; \
692 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
693 default: __put_user_unaligned_unknown(); break; \
694} while (0)
695
696#define __put_user_unaligned_nocheck(x,ptr,size) \
697({ \
698 __typeof__(*(ptr)) __pu_val; \
699 int __pu_err = 0; \
700 \
701 __pu_val = (x); \
702 __put_user_unaligned_common(ptr, size); \
703 __pu_err; \
704})
705
706#define __put_user_unaligned_check(x,ptr,size) \
707({ \
708 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
709 __typeof__(*(ptr)) __pu_val = (x); \
710 int __pu_err = -EFAULT; \
711 \
712 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \
713 __put_user_unaligned_common(__pu_addr, size); \
714 \
715 __pu_err; \
716})
717
718#define __put_user_unaligned_asm(insn, ptr) \
719{ \
720 __asm__ __volatile__( \
721 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
722 "2: \n" \
723 " .insn \n" \
724 " .section .fixup,\"ax\" \n" \
725 "3: li %0, %4 \n" \
726 " j 2b \n" \
727 " .previous \n" \
728 " .section __ex_table,\"a\" \n" \
729 " " __UA_ADDR " 1b, 3b \n" \
730 " .previous \n" \
731 : "=r" (__pu_err) \
732 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
733 "i" (-EFAULT)); \
734}
735
736#define __put_user_unaligned_asm_ll32(ptr) \
737{ \
738 __asm__ __volatile__( \
739 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
740 "2: sw %D2, 4(%3) \n" \
741 "3: \n" \
742 " .insn \n" \
743 " .section .fixup,\"ax\" \n" \
744 "4: li %0, %4 \n" \
745 " j 3b \n" \
746 " .previous \n" \
747 " .section __ex_table,\"a\" \n" \
748 " " __UA_ADDR " 1b, 4b \n" \
749 " " __UA_ADDR " 1b + 4, 4b \n" \
750 " " __UA_ADDR " 2b, 4b \n" \
751 " " __UA_ADDR " 2b + 4, 4b \n" \
752 " .previous" \
753 : "=r" (__pu_err) \
754 : "0" (0), "r" (__pu_val), "r" (ptr), \
755 "i" (-EFAULT)); \
756}
757
758extern void __put_user_unaligned_unknown(void);
759#endif
760
761/*
762 * We're generating jump to subroutines which will be outside the range of
763 * jump instructions
764 */
765#ifdef MODULE
766#define __MODULE_JAL(destination) \
767 ".set\tnoat\n\t" \
768 __UA_LA "\t$1, " #destination "\n\t" \
769 "jalr\t$1\n\t" \
770 ".set\tat\n\t"
771#else
772#define __MODULE_JAL(destination) \
773 "jal\t" #destination "\n\t"
774#endif
775
776#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
777#define DADDI_SCRATCH "$0"
778#else
779#define DADDI_SCRATCH "$3"
780#endif
781
782extern size_t __copy_user(void *__to, const void *__from, size_t __n);
783
784#ifndef CONFIG_EVA
785#define __invoke_copy_to_user(to, from, n) \
786({ \
787 register void __user *__cu_to_r __asm__("$4"); \
788 register const void *__cu_from_r __asm__("$5"); \
789 register long __cu_len_r __asm__("$6"); \
790 \
791 __cu_to_r = (to); \
792 __cu_from_r = (from); \
793 __cu_len_r = (n); \
794 __asm__ __volatile__( \
795 __MODULE_JAL(__copy_user) \
796 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
797 : \
798 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
799 DADDI_SCRATCH, "memory"); \
800 __cu_len_r; \
801})
802
803#define __invoke_copy_to_kernel(to, from, n) \
804 __invoke_copy_to_user(to, from, n)
805
806#endif
807
808/*
809 * __copy_to_user: - Copy a block of data into user space, with less checking.
810 * @to: Destination address, in user space.
811 * @from: Source address, in kernel space.
812 * @n: Number of bytes to copy.
813 *
814 * Context: User context only. This function may sleep.
815 *
816 * Copy data from kernel space to user space. Caller must check
817 * the specified block with access_ok() before calling this function.
818 *
819 * Returns number of bytes that could not be copied.
820 * On success, this will be zero.
821 */
822#define __copy_to_user(to, from, n) \
823({ \
824 void __user *__cu_to; \
825 const void *__cu_from; \
826 long __cu_len; \
827 \
828 __cu_to = (to); \
829 __cu_from = (from); \
830 __cu_len = (n); \
831 might_fault(); \
832 if (segment_eq(get_fs(), get_ds())) \
833 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
834 __cu_len); \
835 else \
836 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
837 __cu_len); \
838 __cu_len; \
839})
840
841extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
842
843#define __copy_to_user_inatomic(to, from, n) \
844({ \
845 void __user *__cu_to; \
846 const void *__cu_from; \
847 long __cu_len; \
848 \
849 __cu_to = (to); \
850 __cu_from = (from); \
851 __cu_len = (n); \
852 if (segment_eq(get_fs(), get_ds())) \
853 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
854 __cu_len); \
855 else \
856 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
857 __cu_len); \
858 __cu_len; \
859})
860
861#define __copy_from_user_inatomic(to, from, n) \
862({ \
863 void *__cu_to; \
864 const void __user *__cu_from; \
865 long __cu_len; \
866 \
867 __cu_to = (to); \
868 __cu_from = (from); \
869 __cu_len = (n); \
870 if (segment_eq(get_fs(), get_ds())) \
871 __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \
872 __cu_from,\
873 __cu_len);\
874 else \
875 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \
876 __cu_from, \
877 __cu_len); \
878 __cu_len; \
879})
880
881/*
882 * copy_to_user: - Copy a block of data into user space.
883 * @to: Destination address, in user space.
884 * @from: Source address, in kernel space.
885 * @n: Number of bytes to copy.
886 *
887 * Context: User context only. This function may sleep.
888 *
889 * Copy data from kernel space to user space.
890 *
891 * Returns number of bytes that could not be copied.
892 * On success, this will be zero.
893 */
894#define copy_to_user(to, from, n) \
895({ \
896 void __user *__cu_to; \
897 const void *__cu_from; \
898 long __cu_len; \
899 \
900 __cu_to = (to); \
901 __cu_from = (from); \
902 __cu_len = (n); \
903 if (segment_eq(get_fs(), get_ds())) { \
904 __cu_len = __invoke_copy_to_kernel(__cu_to, \
905 __cu_from, \
906 __cu_len); \
907 } else { \
908 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
909 might_fault(); \
910 __cu_len = __invoke_copy_to_user(__cu_to, \
911 __cu_from, \
912 __cu_len); \
913 } \
914 } \
915 __cu_len; \
916})
917
918#ifndef CONFIG_EVA
919
920#define __invoke_copy_from_user(to, from, n) \
921({ \
922 register void *__cu_to_r __asm__("$4"); \
923 register const void __user *__cu_from_r __asm__("$5"); \
924 register long __cu_len_r __asm__("$6"); \
925 \
926 __cu_to_r = (to); \
927 __cu_from_r = (from); \
928 __cu_len_r = (n); \
929 __asm__ __volatile__( \
930 ".set\tnoreorder\n\t" \
931 __MODULE_JAL(__copy_user) \
932 ".set\tnoat\n\t" \
933 __UA_ADDU "\t$1, %1, %2\n\t" \
934 ".set\tat\n\t" \
935 ".set\treorder" \
936 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
937 : \
938 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
939 DADDI_SCRATCH, "memory"); \
940 __cu_len_r; \
941})
942
943#define __invoke_copy_from_kernel(to, from, n) \
944 __invoke_copy_from_user(to, from, n)
945
946/* For userland <-> userland operations */
947#define ___invoke_copy_in_user(to, from, n) \
948 __invoke_copy_from_user(to, from, n)
949
950/* For kernel <-> kernel operations */
951#define ___invoke_copy_in_kernel(to, from, n) \
952 __invoke_copy_from_user(to, from, n)
953
954#define __invoke_copy_from_user_inatomic(to, from, n) \
955({ \
956 register void *__cu_to_r __asm__("$4"); \
957 register const void __user *__cu_from_r __asm__("$5"); \
958 register long __cu_len_r __asm__("$6"); \
959 \
960 __cu_to_r = (to); \
961 __cu_from_r = (from); \
962 __cu_len_r = (n); \
963 __asm__ __volatile__( \
964 ".set\tnoreorder\n\t" \
965 __MODULE_JAL(__copy_user_inatomic) \
966 ".set\tnoat\n\t" \
967 __UA_ADDU "\t$1, %1, %2\n\t" \
968 ".set\tat\n\t" \
969 ".set\treorder" \
970 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
971 : \
972 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
973 DADDI_SCRATCH, "memory"); \
974 __cu_len_r; \
975})
976
977#define __invoke_copy_from_kernel_inatomic(to, from, n) \
978 __invoke_copy_from_user_inatomic(to, from, n) \
979
980#else
981
982/* EVA specific functions */
983
984extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
985 size_t __n);
986extern size_t __copy_from_user_eva(void *__to, const void *__from,
987 size_t __n);
988extern size_t __copy_to_user_eva(void *__to, const void *__from,
989 size_t __n);
990extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
991
992#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \
993({ \
994 register void *__cu_to_r __asm__("$4"); \
995 register const void __user *__cu_from_r __asm__("$5"); \
996 register long __cu_len_r __asm__("$6"); \
997 \
998 __cu_to_r = (to); \
999 __cu_from_r = (from); \
1000 __cu_len_r = (n); \
1001 __asm__ __volatile__( \
1002 ".set\tnoreorder\n\t" \
1003 __MODULE_JAL(func_ptr) \
1004 ".set\tnoat\n\t" \
1005 __UA_ADDU "\t$1, %1, %2\n\t" \
1006 ".set\tat\n\t" \
1007 ".set\treorder" \
1008 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1009 : \
1010 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1011 DADDI_SCRATCH, "memory"); \
1012 __cu_len_r; \
1013})
1014
1015#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \
1016({ \
1017 register void *__cu_to_r __asm__("$4"); \
1018 register const void __user *__cu_from_r __asm__("$5"); \
1019 register long __cu_len_r __asm__("$6"); \
1020 \
1021 __cu_to_r = (to); \
1022 __cu_from_r = (from); \
1023 __cu_len_r = (n); \
1024 __asm__ __volatile__( \
1025 __MODULE_JAL(func_ptr) \
1026 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1027 : \
1028 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1029 DADDI_SCRATCH, "memory"); \
1030 __cu_len_r; \
1031})
1032
1033/*
1034 * Source or destination address is in userland. We need to go through
1035 * the TLB
1036 */
1037#define __invoke_copy_from_user(to, from, n) \
1038 __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1039
1040#define __invoke_copy_from_user_inatomic(to, from, n) \
1041 __invoke_copy_from_user_eva_generic(to, from, n, \
1042 __copy_user_inatomic_eva)
1043
1044#define __invoke_copy_to_user(to, from, n) \
1045 __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1046
1047#define ___invoke_copy_in_user(to, from, n) \
1048 __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1049
1050/*
1051 * Source or destination address in the kernel. We are not going through
1052 * the TLB
1053 */
1054#define __invoke_copy_from_kernel(to, from, n) \
1055 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1056
1057#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1058 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1059
1060#define __invoke_copy_to_kernel(to, from, n) \
1061 __invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1062
1063#define ___invoke_copy_in_kernel(to, from, n) \
1064 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1065
1066#endif /* CONFIG_EVA */
1067
1068/*
1069 * __copy_from_user: - Copy a block of data from user space, with less checking.
1070 * @to: Destination address, in kernel space.
1071 * @from: Source address, in user space.
1072 * @n: Number of bytes to copy.
1073 *
1074 * Context: User context only. This function may sleep.
1075 *
1076 * Copy data from user space to kernel space. Caller must check
1077 * the specified block with access_ok() before calling this function.
1078 *
1079 * Returns number of bytes that could not be copied.
1080 * On success, this will be zero.
1081 *
1082 * If some data could not be copied, this function will pad the copied
1083 * data to the requested size using zero bytes.
1084 */
1085#define __copy_from_user(to, from, n) \
1086({ \
1087 void *__cu_to; \
1088 const void __user *__cu_from; \
1089 long __cu_len; \
1090 \
1091 __cu_to = (to); \
1092 __cu_from = (from); \
1093 __cu_len = (n); \
1094 might_fault(); \
1095 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
1096 __cu_len); \
1097 __cu_len; \
1098})
1099
1100/*
1101 * copy_from_user: - Copy a block of data from user space.
1102 * @to: Destination address, in kernel space.
1103 * @from: Source address, in user space.
1104 * @n: Number of bytes to copy.
1105 *
1106 * Context: User context only. This function may sleep.
1107 *
1108 * Copy data from user space to kernel space.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define copy_from_user(to, from, n) \
1117({ \
1118 void *__cu_to; \
1119 const void __user *__cu_from; \
1120 long __cu_len; \
1121 \
1122 __cu_to = (to); \
1123 __cu_from = (from); \
1124 __cu_len = (n); \
1125 if (segment_eq(get_fs(), get_ds())) { \
1126 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1127 __cu_from, \
1128 __cu_len); \
1129 } else { \
1130 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
1131 might_fault(); \
1132 __cu_len = __invoke_copy_from_user(__cu_to, \
1133 __cu_from, \
1134 __cu_len); \
1135 } \
1136 } \
1137 __cu_len; \
1138})
1139
1140#define __copy_in_user(to, from, n) \
1141({ \
1142 void __user *__cu_to; \
1143 const void __user *__cu_from; \
1144 long __cu_len; \
1145 \
1146 __cu_to = (to); \
1147 __cu_from = (from); \
1148 __cu_len = (n); \
1149 if (segment_eq(get_fs(), get_ds())) { \
1150 __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \
1151 __cu_len); \
1152 } else { \
1153 might_fault(); \
1154 __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \
1155 __cu_len); \
1156 } \
1157 __cu_len; \
1158})
1159
1160#define copy_in_user(to, from, n) \
1161({ \
1162 void __user *__cu_to; \
1163 const void __user *__cu_from; \
1164 long __cu_len; \
1165 \
1166 __cu_to = (to); \
1167 __cu_from = (from); \
1168 __cu_len = (n); \
1169 if (segment_eq(get_fs(), get_ds())) { \
1170 __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \
1171 __cu_len); \
1172 } else { \
1173 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1174 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1175 might_fault(); \
1176 __cu_len = ___invoke_copy_in_user(__cu_to, \
1177 __cu_from, \
1178 __cu_len); \
1179 } \
1180 } \
1181 __cu_len; \
1182})
1183
1184/*
1185 * __clear_user: - Zero a block of memory in user space, with less checking.
1186 * @to: Destination address, in user space.
1187 * @n: Number of bytes to zero.
1188 *
1189 * Zero a block of memory in user space. Caller must check
1190 * the specified block with access_ok() before calling this function.
1191 *
1192 * Returns number of bytes that could not be cleared.
1193 * On success, this will be zero.
1194 */
1195static inline __kernel_size_t
1196__clear_user(void __user *addr, __kernel_size_t size)
1197{
1198 __kernel_size_t res;
1199
1200 might_fault();
1201 __asm__ __volatile__(
1202 "move\t$4, %1\n\t"
1203 "move\t$5, $0\n\t"
1204 "move\t$6, %2\n\t"
1205 __MODULE_JAL(__bzero)
1206 "move\t%0, $6"
1207 : "=r" (res)
1208 : "r" (addr), "r" (size)
1209 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1210
1211 return res;
1212}
1213
1214#define clear_user(addr,n) \
1215({ \
1216 void __user * __cl_addr = (addr); \
1217 unsigned long __cl_size = (n); \
1218 if (__cl_size && access_ok(VERIFY_WRITE, \
1219 __cl_addr, __cl_size)) \
1220 __cl_size = __clear_user(__cl_addr, __cl_size); \
1221 __cl_size; \
1222})
1223
1224/*
1225 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1226 * @dst: Destination address, in kernel space. This buffer must be at
1227 * least @count bytes long.
1228 * @src: Source address, in user space.
1229 * @count: Maximum number of bytes to copy, including the trailing NUL.
1230 *
1231 * Copies a NUL-terminated string from userspace to kernel space.
1232 * Caller must check the specified block with access_ok() before calling
1233 * this function.
1234 *
1235 * On success, returns the length of the string (not including the trailing
1236 * NUL).
1237 *
1238 * If access to userspace fails, returns -EFAULT (some data may have been
1239 * copied).
1240 *
1241 * If @count is smaller than the length of the string, copies @count bytes
1242 * and returns @count.
1243 */
1244static inline long
1245__strncpy_from_user(char *__to, const char __user *__from, long __len)
1246{
1247 long res;
1248
1249 if (segment_eq(get_fs(), get_ds())) {
1250 __asm__ __volatile__(
1251 "move\t$4, %1\n\t"
1252 "move\t$5, %2\n\t"
1253 "move\t$6, %3\n\t"
1254 __MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1255 "move\t%0, $2"
1256 : "=r" (res)
1257 : "r" (__to), "r" (__from), "r" (__len)
1258 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1259 } else {
1260 might_fault();
1261 __asm__ __volatile__(
1262 "move\t$4, %1\n\t"
1263 "move\t$5, %2\n\t"
1264 "move\t$6, %3\n\t"
1265 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
1266 "move\t%0, $2"
1267 : "=r" (res)
1268 : "r" (__to), "r" (__from), "r" (__len)
1269 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1270 }
1271
1272 return res;
1273}
1274
1275/*
1276 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1277 * @dst: Destination address, in kernel space. This buffer must be at
1278 * least @count bytes long.
1279 * @src: Source address, in user space.
1280 * @count: Maximum number of bytes to copy, including the trailing NUL.
1281 *
1282 * Copies a NUL-terminated string from userspace to kernel space.
1283 *
1284 * On success, returns the length of the string (not including the trailing
1285 * NUL).
1286 *
1287 * If access to userspace fails, returns -EFAULT (some data may have been
1288 * copied).
1289 *
1290 * If @count is smaller than the length of the string, copies @count bytes
1291 * and returns @count.
1292 */
1293static inline long
1294strncpy_from_user(char *__to, const char __user *__from, long __len)
1295{
1296 long res;
1297
1298 if (segment_eq(get_fs(), get_ds())) {
1299 __asm__ __volatile__(
1300 "move\t$4, %1\n\t"
1301 "move\t$5, %2\n\t"
1302 "move\t$6, %3\n\t"
1303 __MODULE_JAL(__strncpy_from_kernel_asm)
1304 "move\t%0, $2"
1305 : "=r" (res)
1306 : "r" (__to), "r" (__from), "r" (__len)
1307 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1308 } else {
1309 might_fault();
1310 __asm__ __volatile__(
1311 "move\t$4, %1\n\t"
1312 "move\t$5, %2\n\t"
1313 "move\t$6, %3\n\t"
1314 __MODULE_JAL(__strncpy_from_user_asm)
1315 "move\t%0, $2"
1316 : "=r" (res)
1317 : "r" (__to), "r" (__from), "r" (__len)
1318 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1319 }
1320
1321 return res;
1322}
1323
1324/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1325static inline long __strlen_user(const char __user *s)
1326{
1327 long res;
1328
1329 if (segment_eq(get_fs(), get_ds())) {
1330 __asm__ __volatile__(
1331 "move\t$4, %1\n\t"
1332 __MODULE_JAL(__strlen_kernel_nocheck_asm)
1333 "move\t%0, $2"
1334 : "=r" (res)
1335 : "r" (s)
1336 : "$2", "$4", __UA_t0, "$31");
1337 } else {
1338 might_fault();
1339 __asm__ __volatile__(
1340 "move\t$4, %1\n\t"
1341 __MODULE_JAL(__strlen_user_nocheck_asm)
1342 "move\t%0, $2"
1343 : "=r" (res)
1344 : "r" (s)
1345 : "$2", "$4", __UA_t0, "$31");
1346 }
1347
1348 return res;
1349}
1350
1351/*
1352 * strlen_user: - Get the size of a string in user space.
1353 * @str: The string to measure.
1354 *
1355 * Context: User context only. This function may sleep.
1356 *
1357 * Get the size of a NUL-terminated string in user space.
1358 *
1359 * Returns the size of the string INCLUDING the terminating NUL.
1360 * On exception, returns 0.
1361 *
1362 * If there is a limit on the length of a valid string, you may wish to
1363 * consider using strnlen_user() instead.
1364 */
1365static inline long strlen_user(const char __user *s)
1366{
1367 long res;
1368
1369 if (segment_eq(get_fs(), get_ds())) {
1370 __asm__ __volatile__(
1371 "move\t$4, %1\n\t"
1372 __MODULE_JAL(__strlen_kernel_asm)
1373 "move\t%0, $2"
1374 : "=r" (res)
1375 : "r" (s)
1376 : "$2", "$4", __UA_t0, "$31");
1377 } else {
1378 might_fault();
1379 __asm__ __volatile__(
1380 "move\t$4, %1\n\t"
1381 __MODULE_JAL(__strlen_kernel_asm)
1382 "move\t%0, $2"
1383 : "=r" (res)
1384 : "r" (s)
1385 : "$2", "$4", __UA_t0, "$31");
1386 }
1387
1388 return res;
1389}
1390
1391/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1392static inline long __strnlen_user(const char __user *s, long n)
1393{
1394 long res;
1395
1396 if (segment_eq(get_fs(), get_ds())) {
1397 __asm__ __volatile__(
1398 "move\t$4, %1\n\t"
1399 "move\t$5, %2\n\t"
1400 __MODULE_JAL(__strnlen_kernel_nocheck_asm)
1401 "move\t%0, $2"
1402 : "=r" (res)
1403 : "r" (s), "r" (n)
1404 : "$2", "$4", "$5", __UA_t0, "$31");
1405 } else {
1406 might_fault();
1407 __asm__ __volatile__(
1408 "move\t$4, %1\n\t"
1409 "move\t$5, %2\n\t"
1410 __MODULE_JAL(__strnlen_user_nocheck_asm)
1411 "move\t%0, $2"
1412 : "=r" (res)
1413 : "r" (s), "r" (n)
1414 : "$2", "$4", "$5", __UA_t0, "$31");
1415 }
1416
1417 return res;
1418}
1419
1420/*
1421 * strlen_user: - Get the size of a string in user space.
1422 * @str: The string to measure.
1423 *
1424 * Context: User context only. This function may sleep.
1425 *
1426 * Get the size of a NUL-terminated string in user space.
1427 *
1428 * Returns the size of the string INCLUDING the terminating NUL.
1429 * On exception, returns 0.
1430 *
1431 * If there is a limit on the length of a valid string, you may wish to
1432 * consider using strnlen_user() instead.
1433 */
1434static inline long strnlen_user(const char __user *s, long n)
1435{
1436 long res;
1437
1438 might_fault();
1439 if (segment_eq(get_fs(), get_ds())) {
1440 __asm__ __volatile__(
1441 "move\t$4, %1\n\t"
1442 "move\t$5, %2\n\t"
1443 __MODULE_JAL(__strnlen_kernel_asm)
1444 "move\t%0, $2"
1445 : "=r" (res)
1446 : "r" (s), "r" (n)
1447 : "$2", "$4", "$5", __UA_t0, "$31");
1448 } else {
1449 __asm__ __volatile__(
1450 "move\t$4, %1\n\t"
1451 "move\t$5, %2\n\t"
1452 __MODULE_JAL(__strnlen_user_asm)
1453 "move\t%0, $2"
1454 : "=r" (res)
1455 : "r" (s), "r" (n)
1456 : "$2", "$4", "$5", __UA_t0, "$31");
1457 }
1458
1459 return res;
1460}
1461
1462struct exception_table_entry
1463{
1464 unsigned long insn;
1465 unsigned long nextinsn;
1466};
1467
1468extern int fixup_exception(struct pt_regs *regs);
1469
1470#endif /* _ASM_UACCESS_H */