Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
 
   9 */
  10#ifndef _ASM_UACCESS_H
  11#define _ASM_UACCESS_H
  12
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/thread_info.h>
 
  16
  17/*
  18 * The fs value determines whether argument validity checking should be
  19 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  20 * get_fs() == KERNEL_DS, checking is bypassed.
  21 *
  22 * For historical reasons, these macros are grossly misnamed.
  23 */
  24#ifdef CONFIG_32BIT
  25
  26#define __UA_LIMIT	0x80000000UL
 
 
 
 
  27
  28#define __UA_ADDR	".word"
  29#define __UA_LA		"la"
  30#define __UA_ADDU	"addu"
  31#define __UA_t0		"$8"
  32#define __UA_t1		"$9"
  33
  34#endif /* CONFIG_32BIT */
  35
  36#ifdef CONFIG_64BIT
  37
  38extern u64 __ua_limit;
  39
  40#define __UA_LIMIT	__ua_limit
  41
  42#define __UA_ADDR	".dword"
  43#define __UA_LA		"dla"
  44#define __UA_ADDU	"daddu"
  45#define __UA_t0		"$12"
  46#define __UA_t1		"$13"
  47
  48#endif /* CONFIG_64BIT */
  49
  50/*
  51 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  52 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  53 * the arithmetic we're doing only works if the limit is a power of two, so
  54 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  55 * address in this range it's the process's problem, not ours :-)
  56 */
  57
 
 
 
 
  58#define KERNEL_DS	((mm_segment_t) { 0UL })
  59#define USER_DS		((mm_segment_t) { __UA_LIMIT })
 
  60
  61#define VERIFY_READ    0
  62#define VERIFY_WRITE   1
  63
  64#define get_ds()	(KERNEL_DS)
  65#define get_fs()	(current_thread_info()->addr_limit)
  66#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  67
  68#define segment_eq(a, b)	((a).seg == (b).seg)
  69
  70
  71/*
  72 * Is a address valid? This does a straighforward calculation rather
  73 * than tests.
  74 *
  75 * Address valid if:
  76 *  - "addr" doesn't have any high-bits set
  77 *  - AND "size" doesn't have any high-bits set
  78 *  - AND "addr+size" doesn't have any high-bits set
  79 *  - OR we are in kernel mode.
  80 *
  81 * __ua_size() is a trick to avoid runtime checking of positive constant
  82 * sizes; for those we already know at compile time that the size is ok.
  83 */
  84#define __ua_size(size)							\
  85	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  86
  87/*
  88 * access_ok: - Checks if a user space pointer is valid
  89 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
  90 *        %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
  91 *        to write to a block, it is always safe to read from it.
  92 * @addr: User space pointer to start of block to check
  93 * @size: Size of block to check
  94 *
  95 * Context: User context only.  This function may sleep.
  96 *
  97 * Checks if a pointer to a block of memory in user space is valid.
  98 *
  99 * Returns true (nonzero) if the memory block may be valid, false (zero)
 100 * if it is definitely invalid.
 101 *
 102 * Note that, depending on architecture, this function probably just
 103 * checks that the pointer is in the user space range - after calling
 104 * this function, memory access functions may still return -EFAULT.
 105 */
 106
 107#define __access_mask get_fs().seg
 108
 109#define __access_ok(addr, size, mask)					\
 110({									\
 111	unsigned long __addr = (unsigned long) (addr);			\
 112	unsigned long __size = size;					\
 113	unsigned long __mask = mask;					\
 114	unsigned long __ok;						\
 115									\
 116	__chk_user_ptr(addr);						\
 117	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 118		__ua_size(__size)));					\
 119	__ok == 0;							\
 120})
 121
 122#define access_ok(type, addr, size)					\
 123	likely(__access_ok((addr), (size), __access_mask))
 124
 125/*
 126 * put_user: - Write a simple value into user space.
 127 * @x:   Value to copy to user space.
 128 * @ptr: Destination address, in user space.
 129 *
 130 * Context: User context only.  This function may sleep.
 131 *
 132 * This macro copies a single simple value from kernel space to user
 133 * space.  It supports simple types like char and int, but not larger
 134 * data types like structures or arrays.
 135 *
 136 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 137 * to the result of dereferencing @ptr.
 138 *
 139 * Returns zero on success, or -EFAULT on error.
 140 */
 141#define put_user(x,ptr)	\
 142	__put_user_check((x), (ptr), sizeof(*(ptr)))
 143
 144/*
 145 * get_user: - Get a simple variable from user space.
 146 * @x:   Variable to store result.
 147 * @ptr: Source address, in user space.
 148 *
 149 * Context: User context only.  This function may sleep.
 150 *
 151 * This macro copies a single simple variable from user space to kernel
 152 * space.  It supports simple types like char and int, but not larger
 153 * data types like structures or arrays.
 154 *
 155 * @ptr must have pointer-to-simple-variable type, and the result of
 156 * dereferencing @ptr must be assignable to @x without a cast.
 157 *
 158 * Returns zero on success, or -EFAULT on error.
 159 * On error, the variable @x is set to zero.
 160 */
 161#define get_user(x,ptr) \
 162	__get_user_check((x), (ptr), sizeof(*(ptr)))
 163
 164/*
 165 * __put_user: - Write a simple value into user space, with less checking.
 166 * @x:   Value to copy to user space.
 167 * @ptr: Destination address, in user space.
 168 *
 169 * Context: User context only.  This function may sleep.
 170 *
 171 * This macro copies a single simple value from kernel space to user
 172 * space.  It supports simple types like char and int, but not larger
 173 * data types like structures or arrays.
 174 *
 175 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 176 * to the result of dereferencing @ptr.
 177 *
 178 * Caller must check the pointer with access_ok() before calling this
 179 * function.
 180 *
 181 * Returns zero on success, or -EFAULT on error.
 182 */
 183#define __put_user(x,ptr) \
 184	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 185
 186/*
 187 * __get_user: - Get a simple variable from user space, with less checking.
 188 * @x:   Variable to store result.
 189 * @ptr: Source address, in user space.
 190 *
 191 * Context: User context only.  This function may sleep.
 192 *
 193 * This macro copies a single simple variable from user space to kernel
 194 * space.  It supports simple types like char and int, but not larger
 195 * data types like structures or arrays.
 196 *
 197 * @ptr must have pointer-to-simple-variable type, and the result of
 198 * dereferencing @ptr must be assignable to @x without a cast.
 199 *
 200 * Caller must check the pointer with access_ok() before calling this
 201 * function.
 202 *
 203 * Returns zero on success, or -EFAULT on error.
 204 * On error, the variable @x is set to zero.
 205 */
 206#define __get_user(x,ptr) \
 207	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 208
 209struct __large_struct { unsigned long buf[100]; };
 210#define __m(x) (*(struct __large_struct __user *)(x))
 211
 212/*
 213 * Yuck.  We need two variants, one for 64bit operation and one
 214 * for 32 bit mode and old iron.
 215 */
 
 
 
 
 
 
 
 
 
 
 
 
 216#ifdef CONFIG_32BIT
 217#define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218#endif
 219#ifdef CONFIG_64BIT
 220#define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
 221#endif
 222
 223extern void __get_user_unknown(void);
 224
 225#define __get_user_common(val, size, ptr)				\
 226do {									\
 227	switch (size) {							\
 228	case 1: __get_user_asm(val, "lb", ptr); break;			\
 229	case 2: __get_user_asm(val, "lh", ptr); break;			\
 230	case 4: __get_user_asm(val, "lw", ptr); break;			\
 231	case 8: __GET_USER_DW(val, ptr); break;				\
 232	default: __get_user_unknown(); break;				\
 233	}								\
 234} while (0)
 235
 236#define __get_user_nocheck(x, ptr, size)				\
 237({									\
 238	int __gu_err;							\
 239									\
 240	__chk_user_ptr(ptr);						\
 241	__get_user_common((x), size, ptr);				\
 
 
 
 
 242	__gu_err;							\
 243})
 244
 245#define __get_user_check(x, ptr, size)					\
 246({									\
 247	int __gu_err = -EFAULT;						\
 248	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 249									\
 250	might_fault();							\
 251	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 252		__get_user_common((x), size, __gu_ptr);			\
 
 
 
 
 253									\
 254	__gu_err;							\
 255})
 256
 257#define __get_user_asm(val, insn, addr)					\
 258{									\
 259	long __gu_tmp;							\
 260									\
 261	__asm__ __volatile__(						\
 262	"1:	" insn "	%1, %3				\n"	\
 263	"2:							\n"	\
 
 264	"	.section .fixup,\"ax\"				\n"	\
 265	"3:	li	%0, %4					\n"	\
 266	"	j	2b					\n"	\
 267	"	.previous					\n"	\
 268	"	.section __ex_table,\"a\"			\n"	\
 269	"	"__UA_ADDR "\t1b, 3b				\n"	\
 270	"	.previous					\n"	\
 271	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 272	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 273									\
 274	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 275}
 276
 277/*
 278 * Get a long long 64 using 32 bit registers.
 279 */
 280#define __get_user_asm_ll32(val, addr)					\
 281{									\
 282	union {								\
 283		unsigned long long	l;				\
 284		__typeof__(*(addr))	t;				\
 285	} __gu_tmp;							\
 286									\
 287	__asm__ __volatile__(						\
 288	"1:	lw	%1, (%3)				\n"	\
 289	"2:	lw	%D1, 4(%3)				\n"	\
 290	"3:	.section	.fixup,\"ax\"			\n"	\
 
 
 291	"4:	li	%0, %4					\n"	\
 292	"	move	%1, $0					\n"	\
 293	"	move	%D1, $0					\n"	\
 294	"	j	3b					\n"	\
 295	"	.previous					\n"	\
 296	"	.section	__ex_table,\"a\"		\n"	\
 297	"	" __UA_ADDR "	1b, 4b				\n"	\
 298	"	" __UA_ADDR "	2b, 4b				\n"	\
 299	"	.previous					\n"	\
 300	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 301	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 302									\
 303	(val) = __gu_tmp.t;						\
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306/*
 307 * Yuck.  We need two variants, one for 64bit operation and one
 308 * for 32 bit mode and old iron.
 309 */
 310#ifdef CONFIG_32BIT
 311#define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
 312#endif
 313#ifdef CONFIG_64BIT
 314#define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
 315#endif
 316
 
 
 
 
 
 
 
 
 
 
 
 317#define __put_user_nocheck(x, ptr, size)				\
 318({									\
 319	__typeof__(*(ptr)) __pu_val;					\
 320	int __pu_err = 0;						\
 321									\
 322	__chk_user_ptr(ptr);						\
 323	__pu_val = (x);							\
 324	switch (size) {							\
 325	case 1: __put_user_asm("sb", ptr); break;			\
 326	case 2: __put_user_asm("sh", ptr); break;			\
 327	case 4: __put_user_asm("sw", ptr); break;			\
 328	case 8: __PUT_USER_DW(ptr); break;				\
 329	default: __put_user_unknown(); break;				\
 330	}								\
 331	__pu_err;							\
 332})
 333
 334#define __put_user_check(x, ptr, size)					\
 335({									\
 336	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 337	__typeof__(*(ptr)) __pu_val = (x);				\
 338	int __pu_err = -EFAULT;						\
 339									\
 340	might_fault();							\
 341	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 342		switch (size) {						\
 343		case 1: __put_user_asm("sb", __pu_addr); break;		\
 344		case 2: __put_user_asm("sh", __pu_addr); break;		\
 345		case 4: __put_user_asm("sw", __pu_addr); break;		\
 346		case 8: __PUT_USER_DW(__pu_addr); break;		\
 347		default: __put_user_unknown(); break;			\
 348		}							\
 349	}								\
 
 350	__pu_err;							\
 351})
 352
 353#define __put_user_asm(insn, ptr)					\
 354{									\
 355	__asm__ __volatile__(						\
 356	"1:	" insn "	%z2, %3		# __put_user_asm\n"	\
 357	"2:							\n"	\
 
 358	"	.section	.fixup,\"ax\"			\n"	\
 359	"3:	li	%0, %4					\n"	\
 360	"	j	2b					\n"	\
 361	"	.previous					\n"	\
 362	"	.section	__ex_table,\"a\"		\n"	\
 363	"	" __UA_ADDR "	1b, 3b				\n"	\
 364	"	.previous					\n"	\
 365	: "=r" (__pu_err)						\
 366	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 367	  "i" (-EFAULT));						\
 368}
 369
 370#define __put_user_asm_ll32(ptr)					\
 371{									\
 372	__asm__ __volatile__(						\
 373	"1:	sw	%2, (%3)	# __put_user_asm_ll32	\n"	\
 374	"2:	sw	%D2, 4(%3)				\n"	\
 375	"3:							\n"	\
 
 376	"	.section	.fixup,\"ax\"			\n"	\
 377	"4:	li	%0, %4					\n"	\
 378	"	j	3b					\n"	\
 379	"	.previous					\n"	\
 380	"	.section	__ex_table,\"a\"		\n"	\
 381	"	" __UA_ADDR "	1b, 4b				\n"	\
 382	"	" __UA_ADDR "	2b, 4b				\n"	\
 383	"	.previous"						\
 384	: "=r" (__pu_err)						\
 385	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 386	  "i" (-EFAULT));						\
 387}
 388
 389extern void __put_user_unknown(void);
 390
 391/*
 
 
 
 
 
 392 * put_user_unaligned: - Write a simple value into user space.
 393 * @x:   Value to copy to user space.
 394 * @ptr: Destination address, in user space.
 395 *
 396 * Context: User context only.  This function may sleep.
 397 *
 398 * This macro copies a single simple value from kernel space to user
 399 * space.  It supports simple types like char and int, but not larger
 400 * data types like structures or arrays.
 401 *
 402 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 403 * to the result of dereferencing @ptr.
 404 *
 405 * Returns zero on success, or -EFAULT on error.
 406 */
 407#define put_user_unaligned(x,ptr)	\
 408	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 409
 410/*
 411 * get_user_unaligned: - Get a simple variable from user space.
 412 * @x:   Variable to store result.
 413 * @ptr: Source address, in user space.
 414 *
 415 * Context: User context only.  This function may sleep.
 416 *
 417 * This macro copies a single simple variable from user space to kernel
 418 * space.  It supports simple types like char and int, but not larger
 419 * data types like structures or arrays.
 420 *
 421 * @ptr must have pointer-to-simple-variable type, and the result of
 422 * dereferencing @ptr must be assignable to @x without a cast.
 423 *
 424 * Returns zero on success, or -EFAULT on error.
 425 * On error, the variable @x is set to zero.
 426 */
 427#define get_user_unaligned(x,ptr) \
 428	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 429
 430/*
 431 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 432 * @x:   Value to copy to user space.
 433 * @ptr: Destination address, in user space.
 434 *
 435 * Context: User context only.  This function may sleep.
 436 *
 437 * This macro copies a single simple value from kernel space to user
 438 * space.  It supports simple types like char and int, but not larger
 439 * data types like structures or arrays.
 440 *
 441 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 442 * to the result of dereferencing @ptr.
 443 *
 444 * Caller must check the pointer with access_ok() before calling this
 445 * function.
 446 *
 447 * Returns zero on success, or -EFAULT on error.
 448 */
 449#define __put_user_unaligned(x,ptr) \
 450	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 451
 452/*
 453 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 454 * @x:   Variable to store result.
 455 * @ptr: Source address, in user space.
 456 *
 457 * Context: User context only.  This function may sleep.
 458 *
 459 * This macro copies a single simple variable from user space to kernel
 460 * space.  It supports simple types like char and int, but not larger
 461 * data types like structures or arrays.
 462 *
 463 * @ptr must have pointer-to-simple-variable type, and the result of
 464 * dereferencing @ptr must be assignable to @x without a cast.
 465 *
 466 * Caller must check the pointer with access_ok() before calling this
 467 * function.
 468 *
 469 * Returns zero on success, or -EFAULT on error.
 470 * On error, the variable @x is set to zero.
 471 */
 472#define __get_user_unaligned(x,ptr) \
 473	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 474
 475/*
 476 * Yuck.  We need two variants, one for 64bit operation and one
 477 * for 32 bit mode and old iron.
 478 */
 479#ifdef CONFIG_32BIT
 480#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 481	__get_user_unaligned_asm_ll32(val, ptr)
 482#endif
 483#ifdef CONFIG_64BIT
 484#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 485	__get_user_unaligned_asm(val, "uld", ptr)
 486#endif
 487
 488extern void __get_user_unaligned_unknown(void);
 489
 490#define __get_user_unaligned_common(val, size, ptr)			\
 491do {									\
 492	switch (size) {							\
 493	case 1: __get_user_asm(val, "lb", ptr); break;			\
 494	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 495	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 496	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 497	default: __get_user_unaligned_unknown(); break;			\
 498	}								\
 499} while (0)
 500
 501#define __get_user_unaligned_nocheck(x,ptr,size)			\
 502({									\
 503	int __gu_err;							\
 504									\
 505	__get_user_unaligned_common((x), size, ptr);			\
 506	__gu_err;							\
 507})
 508
 509#define __get_user_unaligned_check(x,ptr,size)				\
 510({									\
 511	int __gu_err = -EFAULT;						\
 512	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 513									\
 514	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 515		__get_user_unaligned_common((x), size, __gu_ptr);	\
 516									\
 517	__gu_err;							\
 518})
 519
 520#define __get_user_unaligned_asm(val, insn, addr)			\
 521{									\
 522	long __gu_tmp;							\
 523									\
 524	__asm__ __volatile__(						\
 525	"1:	" insn "	%1, %3				\n"	\
 526	"2:							\n"	\
 
 527	"	.section .fixup,\"ax\"				\n"	\
 528	"3:	li	%0, %4					\n"	\
 529	"	j	2b					\n"	\
 530	"	.previous					\n"	\
 531	"	.section __ex_table,\"a\"			\n"	\
 532	"	"__UA_ADDR "\t1b, 3b				\n"	\
 533	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 534	"	.previous					\n"	\
 535	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 536	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 537									\
 538	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 539}
 540
 541/*
 542 * Get a long long 64 using 32 bit registers.
 543 */
 544#define __get_user_unaligned_asm_ll32(val, addr)			\
 545{									\
 546        unsigned long long __gu_tmp;					\
 547									\
 548	__asm__ __volatile__(						\
 549	"1:	ulw	%1, (%3)				\n"	\
 550	"2:	ulw	%D1, 4(%3)				\n"	\
 551	"	move	%0, $0					\n"	\
 552	"3:	.section	.fixup,\"ax\"			\n"	\
 
 
 553	"4:	li	%0, %4					\n"	\
 554	"	move	%1, $0					\n"	\
 555	"	move	%D1, $0					\n"	\
 556	"	j	3b					\n"	\
 557	"	.previous					\n"	\
 558	"	.section	__ex_table,\"a\"		\n"	\
 559	"	" __UA_ADDR "	1b, 4b				\n"	\
 560	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 561	"	" __UA_ADDR "	2b, 4b				\n"	\
 562	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 563	"	.previous					\n"	\
 564	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 565	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 566	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 567}
 568
 569/*
 570 * Yuck.  We need two variants, one for 64bit operation and one
 571 * for 32 bit mode and old iron.
 572 */
 573#ifdef CONFIG_32BIT
 574#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 575#endif
 576#ifdef CONFIG_64BIT
 577#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 578#endif
 579
 
 
 
 
 
 
 
 
 
 
 580#define __put_user_unaligned_nocheck(x,ptr,size)			\
 581({									\
 582	__typeof__(*(ptr)) __pu_val;					\
 583	int __pu_err = 0;						\
 584									\
 585	__pu_val = (x);							\
 586	switch (size) {							\
 587	case 1: __put_user_asm("sb", ptr); break;			\
 588	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 589	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 590	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 591	default: __put_user_unaligned_unknown(); break;			\
 592	}								\
 593	__pu_err;							\
 594})
 595
 596#define __put_user_unaligned_check(x,ptr,size)				\
 597({									\
 598	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 599	__typeof__(*(ptr)) __pu_val = (x);				\
 600	int __pu_err = -EFAULT;						\
 601									\
 602	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 603		switch (size) {						\
 604		case 1: __put_user_asm("sb", __pu_addr); break;		\
 605		case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
 606		case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
 607		case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break;	\
 608		default: __put_user_unaligned_unknown(); break;		\
 609		}							\
 610	}								\
 611	__pu_err;							\
 612})
 613
 614#define __put_user_unaligned_asm(insn, ptr)				\
 615{									\
 616	__asm__ __volatile__(						\
 617	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 618	"2:							\n"	\
 
 619	"	.section	.fixup,\"ax\"			\n"	\
 620	"3:	li	%0, %4					\n"	\
 621	"	j	2b					\n"	\
 622	"	.previous					\n"	\
 623	"	.section	__ex_table,\"a\"		\n"	\
 624	"	" __UA_ADDR "	1b, 3b				\n"	\
 625	"	.previous					\n"	\
 626	: "=r" (__pu_err)						\
 627	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 628	  "i" (-EFAULT));						\
 629}
 630
 631#define __put_user_unaligned_asm_ll32(ptr)				\
 632{									\
 633	__asm__ __volatile__(						\
 634	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32	\n" \
 635	"2:	sw	%D2, 4(%3)				\n"	\
 636	"3:							\n"	\
 
 637	"	.section	.fixup,\"ax\"			\n"	\
 638	"4:	li	%0, %4					\n"	\
 639	"	j	3b					\n"	\
 640	"	.previous					\n"	\
 641	"	.section	__ex_table,\"a\"		\n"	\
 642	"	" __UA_ADDR "	1b, 4b				\n"	\
 643	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 644	"	" __UA_ADDR "	2b, 4b				\n"	\
 645	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 646	"	.previous"						\
 647	: "=r" (__pu_err)						\
 648	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 649	  "i" (-EFAULT));						\
 650}
 651
 652extern void __put_user_unaligned_unknown(void);
 
 653
 654/*
 655 * We're generating jump to subroutines which will be outside the range of
 656 * jump instructions
 657 */
 658#ifdef MODULE
 659#define __MODULE_JAL(destination)					\
 660	".set\tnoat\n\t"						\
 661	__UA_LA "\t$1, " #destination "\n\t" 				\
 662	"jalr\t$1\n\t"							\
 663	".set\tat\n\t"
 664#else
 665#define __MODULE_JAL(destination)					\
 666	"jal\t" #destination "\n\t"
 667#endif
 668
 669#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 670#define DADDI_SCRATCH "$0"
 671#else
 672#define DADDI_SCRATCH "$3"
 673#endif
 674
 675extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 676
 
 677#define __invoke_copy_to_user(to, from, n)				\
 678({									\
 679	register void __user *__cu_to_r __asm__("$4");			\
 680	register const void *__cu_from_r __asm__("$5");			\
 681	register long __cu_len_r __asm__("$6");				\
 682									\
 683	__cu_to_r = (to);						\
 684	__cu_from_r = (from);						\
 685	__cu_len_r = (n);						\
 686	__asm__ __volatile__(						\
 687	__MODULE_JAL(__copy_user)					\
 688	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 689	:								\
 690	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 691	  DADDI_SCRATCH, "memory");					\
 692	__cu_len_r;							\
 693})
 694
 
 
 
 
 
 695/*
 696 * __copy_to_user: - Copy a block of data into user space, with less checking.
 697 * @to:   Destination address, in user space.
 698 * @from: Source address, in kernel space.
 699 * @n:    Number of bytes to copy.
 700 *
 701 * Context: User context only.  This function may sleep.
 702 *
 703 * Copy data from kernel space to user space.  Caller must check
 704 * the specified block with access_ok() before calling this function.
 705 *
 706 * Returns number of bytes that could not be copied.
 707 * On success, this will be zero.
 708 */
 709#define __copy_to_user(to, from, n)					\
 710({									\
 711	void __user *__cu_to;						\
 712	const void *__cu_from;						\
 713	long __cu_len;							\
 714									\
 715	__cu_to = (to);							\
 716	__cu_from = (from);						\
 717	__cu_len = (n);							\
 718	might_fault();							\
 719	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 
 
 
 
 
 720	__cu_len;							\
 721})
 722
 723extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 724
 725#define __copy_to_user_inatomic(to, from, n)				\
 726({									\
 727	void __user *__cu_to;						\
 728	const void *__cu_from;						\
 729	long __cu_len;							\
 730									\
 731	__cu_to = (to);							\
 732	__cu_from = (from);						\
 733	__cu_len = (n);							\
 734	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 
 
 
 
 
 735	__cu_len;							\
 736})
 737
 738#define __copy_from_user_inatomic(to, from, n)				\
 739({									\
 740	void *__cu_to;							\
 741	const void __user *__cu_from;					\
 742	long __cu_len;							\
 743									\
 744	__cu_to = (to);							\
 745	__cu_from = (from);						\
 746	__cu_len = (n);							\
 747	__cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from,	\
 748	                                            __cu_len);		\
 
 
 
 
 
 
 749	__cu_len;							\
 750})
 751
 752/*
 753 * copy_to_user: - Copy a block of data into user space.
 754 * @to:   Destination address, in user space.
 755 * @from: Source address, in kernel space.
 756 * @n:    Number of bytes to copy.
 757 *
 758 * Context: User context only.  This function may sleep.
 759 *
 760 * Copy data from kernel space to user space.
 761 *
 762 * Returns number of bytes that could not be copied.
 763 * On success, this will be zero.
 764 */
 765#define copy_to_user(to, from, n)					\
 766({									\
 767	void __user *__cu_to;						\
 768	const void *__cu_from;						\
 769	long __cu_len;							\
 770									\
 771	__cu_to = (to);							\
 772	__cu_from = (from);						\
 773	__cu_len = (n);							\
 774	if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {		\
 775		might_fault();						\
 776		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 777		                                 __cu_len);		\
 
 
 
 
 
 
 
 778	}								\
 779	__cu_len;							\
 780})
 781
 
 
 782#define __invoke_copy_from_user(to, from, n)				\
 783({									\
 784	register void *__cu_to_r __asm__("$4");				\
 785	register const void __user *__cu_from_r __asm__("$5");		\
 786	register long __cu_len_r __asm__("$6");				\
 787									\
 788	__cu_to_r = (to);						\
 789	__cu_from_r = (from);						\
 790	__cu_len_r = (n);						\
 791	__asm__ __volatile__(						\
 792	".set\tnoreorder\n\t"						\
 793	__MODULE_JAL(__copy_user)					\
 794	".set\tnoat\n\t"						\
 795	__UA_ADDU "\t$1, %1, %2\n\t"					\
 796	".set\tat\n\t"							\
 797	".set\treorder"							\
 798	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 799	:								\
 800	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 801	  DADDI_SCRATCH, "memory");					\
 802	__cu_len_r;							\
 803})
 804
 
 
 
 
 
 
 
 
 
 
 
 805#define __invoke_copy_from_user_inatomic(to, from, n)			\
 806({									\
 807	register void *__cu_to_r __asm__("$4");				\
 808	register const void __user *__cu_from_r __asm__("$5");		\
 809	register long __cu_len_r __asm__("$6");				\
 810									\
 811	__cu_to_r = (to);						\
 812	__cu_from_r = (from);						\
 813	__cu_len_r = (n);						\
 814	__asm__ __volatile__(						\
 815	".set\tnoreorder\n\t"						\
 816	__MODULE_JAL(__copy_user_inatomic)				\
 817	".set\tnoat\n\t"						\
 818	__UA_ADDU "\t$1, %1, %2\n\t"					\
 819	".set\tat\n\t"							\
 820	".set\treorder"							\
 821	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 822	:								\
 823	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824	  DADDI_SCRATCH, "memory");					\
 825	__cu_len_r;							\
 826})
 827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828/*
 829 * __copy_from_user: - Copy a block of data from user space, with less checking.
 830 * @to:   Destination address, in kernel space.
 831 * @from: Source address, in user space.
 832 * @n:    Number of bytes to copy.
 833 *
 834 * Context: User context only.  This function may sleep.
 835 *
 836 * Copy data from user space to kernel space.  Caller must check
 837 * the specified block with access_ok() before calling this function.
 838 *
 839 * Returns number of bytes that could not be copied.
 840 * On success, this will be zero.
 841 *
 842 * If some data could not be copied, this function will pad the copied
 843 * data to the requested size using zero bytes.
 844 */
 845#define __copy_from_user(to, from, n)					\
 846({									\
 847	void *__cu_to;							\
 848	const void __user *__cu_from;					\
 849	long __cu_len;							\
 850									\
 851	__cu_to = (to);							\
 852	__cu_from = (from);						\
 853	__cu_len = (n);							\
 854	might_fault();							\
 855	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 856	                                   __cu_len);			\
 857	__cu_len;							\
 858})
 859
 860/*
 861 * copy_from_user: - Copy a block of data from user space.
 862 * @to:   Destination address, in kernel space.
 863 * @from: Source address, in user space.
 864 * @n:    Number of bytes to copy.
 865 *
 866 * Context: User context only.  This function may sleep.
 867 *
 868 * Copy data from user space to kernel space.
 869 *
 870 * Returns number of bytes that could not be copied.
 871 * On success, this will be zero.
 872 *
 873 * If some data could not be copied, this function will pad the copied
 874 * data to the requested size using zero bytes.
 875 */
 876#define copy_from_user(to, from, n)					\
 877({									\
 878	void *__cu_to;							\
 879	const void __user *__cu_from;					\
 880	long __cu_len;							\
 881									\
 882	__cu_to = (to);							\
 883	__cu_from = (from);						\
 884	__cu_len = (n);							\
 885	if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {		\
 886		might_fault();						\
 887		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 888		                                   __cu_len);		\
 
 
 
 
 
 
 
 889	}								\
 890	__cu_len;							\
 891})
 892
 893#define __copy_in_user(to, from, n)					\
 894({									\
 895	void __user *__cu_to;						\
 896	const void __user *__cu_from;					\
 897	long __cu_len;							\
 898									\
 899	__cu_to = (to);							\
 900	__cu_from = (from);						\
 901	__cu_len = (n);							\
 902	might_fault();							\
 903	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 904	                                   __cu_len);			\
 
 
 
 
 
 905	__cu_len;							\
 906})
 907
 908#define copy_in_user(to, from, n)					\
 909({									\
 910	void __user *__cu_to;						\
 911	const void __user *__cu_from;					\
 912	long __cu_len;							\
 913									\
 914	__cu_to = (to);							\
 915	__cu_from = (from);						\
 916	__cu_len = (n);							\
 917	if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&	\
 918	           access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {	\
 919		might_fault();						\
 920		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 921		                                   __cu_len);		\
 
 
 
 
 
 
 922	}								\
 923	__cu_len;							\
 924})
 925
 926/*
 927 * __clear_user: - Zero a block of memory in user space, with less checking.
 928 * @to:   Destination address, in user space.
 929 * @n:    Number of bytes to zero.
 930 *
 931 * Zero a block of memory in user space.  Caller must check
 932 * the specified block with access_ok() before calling this function.
 933 *
 934 * Returns number of bytes that could not be cleared.
 935 * On success, this will be zero.
 936 */
 937static inline __kernel_size_t
 938__clear_user(void __user *addr, __kernel_size_t size)
 939{
 940	__kernel_size_t res;
 941
 942	might_fault();
 943	__asm__ __volatile__(
 944		"move\t$4, %1\n\t"
 945		"move\t$5, $0\n\t"
 946		"move\t$6, %2\n\t"
 947		__MODULE_JAL(__bzero)
 948		"move\t%0, $6"
 949		: "=r" (res)
 950		: "r" (addr), "r" (size)
 951		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
 952
 953	return res;
 954}
 955
 956#define clear_user(addr,n)						\
 957({									\
 958	void __user * __cl_addr = (addr);				\
 959	unsigned long __cl_size = (n);					\
 960	if (__cl_size && access_ok(VERIFY_WRITE,			\
 961					__cl_addr, __cl_size))		\
 962		__cl_size = __clear_user(__cl_addr, __cl_size);		\
 963	__cl_size;							\
 964})
 965
 966/*
 967 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
 968 * @dst:   Destination address, in kernel space.  This buffer must be at
 969 *         least @count bytes long.
 970 * @src:   Source address, in user space.
 971 * @count: Maximum number of bytes to copy, including the trailing NUL.
 972 *
 973 * Copies a NUL-terminated string from userspace to kernel space.
 974 * Caller must check the specified block with access_ok() before calling
 975 * this function.
 976 *
 977 * On success, returns the length of the string (not including the trailing
 978 * NUL).
 979 *
 980 * If access to userspace fails, returns -EFAULT (some data may have been
 981 * copied).
 982 *
 983 * If @count is smaller than the length of the string, copies @count bytes
 984 * and returns @count.
 985 */
 986static inline long
 987__strncpy_from_user(char *__to, const char __user *__from, long __len)
 988{
 989	long res;
 990
 991	might_fault();
 992	__asm__ __volatile__(
 993		"move\t$4, %1\n\t"
 994		"move\t$5, %2\n\t"
 995		"move\t$6, %3\n\t"
 996		__MODULE_JAL(__strncpy_from_user_nocheck_asm)
 997		"move\t%0, $2"
 998		: "=r" (res)
 999		: "r" (__to), "r" (__from), "r" (__len)
1000		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	return res;
1003}
1004
1005/*
1006 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1007 * @dst:   Destination address, in kernel space.  This buffer must be at
1008 *         least @count bytes long.
1009 * @src:   Source address, in user space.
1010 * @count: Maximum number of bytes to copy, including the trailing NUL.
1011 *
1012 * Copies a NUL-terminated string from userspace to kernel space.
1013 *
1014 * On success, returns the length of the string (not including the trailing
1015 * NUL).
1016 *
1017 * If access to userspace fails, returns -EFAULT (some data may have been
1018 * copied).
1019 *
1020 * If @count is smaller than the length of the string, copies @count bytes
1021 * and returns @count.
1022 */
1023static inline long
1024strncpy_from_user(char *__to, const char __user *__from, long __len)
1025{
1026	long res;
1027
1028	might_fault();
1029	__asm__ __volatile__(
1030		"move\t$4, %1\n\t"
1031		"move\t$5, %2\n\t"
1032		"move\t$6, %3\n\t"
1033		__MODULE_JAL(__strncpy_from_user_asm)
1034		"move\t%0, $2"
1035		: "=r" (res)
1036		: "r" (__to), "r" (__from), "r" (__len)
1037		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
 
 
 
 
 
 
 
 
 
 
 
 
1038
1039	return res;
1040}
1041
1042/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1043static inline long __strlen_user(const char __user *s)
1044{
1045	long res;
1046
1047	might_fault();
1048	__asm__ __volatile__(
1049		"move\t$4, %1\n\t"
1050		__MODULE_JAL(__strlen_user_nocheck_asm)
1051		"move\t%0, $2"
1052		: "=r" (res)
1053		: "r" (s)
1054		: "$2", "$4", __UA_t0, "$31");
 
 
 
 
 
 
 
 
 
 
1055
1056	return res;
1057}
1058
1059/*
1060 * strlen_user: - Get the size of a string in user space.
1061 * @str: The string to measure.
1062 *
1063 * Context: User context only.  This function may sleep.
1064 *
1065 * Get the size of a NUL-terminated string in user space.
1066 *
1067 * Returns the size of the string INCLUDING the terminating NUL.
1068 * On exception, returns 0.
1069 *
1070 * If there is a limit on the length of a valid string, you may wish to
1071 * consider using strnlen_user() instead.
1072 */
1073static inline long strlen_user(const char __user *s)
1074{
1075	long res;
1076
1077	might_fault();
1078	__asm__ __volatile__(
1079		"move\t$4, %1\n\t"
1080		__MODULE_JAL(__strlen_user_asm)
1081		"move\t%0, $2"
1082		: "=r" (res)
1083		: "r" (s)
1084		: "$2", "$4", __UA_t0, "$31");
 
 
 
 
 
 
 
 
 
 
1085
1086	return res;
1087}
1088
1089/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1090static inline long __strnlen_user(const char __user *s, long n)
1091{
1092	long res;
1093
1094	might_fault();
1095	__asm__ __volatile__(
1096		"move\t$4, %1\n\t"
1097		"move\t$5, %2\n\t"
1098		__MODULE_JAL(__strnlen_user_nocheck_asm)
1099		"move\t%0, $2"
1100		: "=r" (res)
1101		: "r" (s), "r" (n)
1102		: "$2", "$4", "$5", __UA_t0, "$31");
 
 
 
 
 
 
 
 
 
 
 
1103
1104	return res;
1105}
1106
1107/*
1108 * strlen_user: - Get the size of a string in user space.
1109 * @str: The string to measure.
1110 *
1111 * Context: User context only.  This function may sleep.
1112 *
1113 * Get the size of a NUL-terminated string in user space.
1114 *
1115 * Returns the size of the string INCLUDING the terminating NUL.
1116 * On exception, returns 0.
1117 *
1118 * If there is a limit on the length of a valid string, you may wish to
1119 * consider using strnlen_user() instead.
1120 */
1121static inline long strnlen_user(const char __user *s, long n)
1122{
1123	long res;
1124
1125	might_fault();
1126	__asm__ __volatile__(
1127		"move\t$4, %1\n\t"
1128		"move\t$5, %2\n\t"
1129		__MODULE_JAL(__strnlen_user_asm)
1130		"move\t%0, $2"
1131		: "=r" (res)
1132		: "r" (s), "r" (n)
1133		: "$2", "$4", "$5", __UA_t0, "$31");
 
 
 
 
 
 
 
 
 
 
 
1134
1135	return res;
1136}
1137
1138struct exception_table_entry
1139{
1140	unsigned long insn;
1141	unsigned long nextinsn;
1142};
1143
1144extern int fixup_exception(struct pt_regs *regs);
1145
1146#endif /* _ASM_UACCESS_H */
v3.15
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <asm/asm-eva.h>
  18
  19/*
  20 * The fs value determines whether argument validity checking should be
  21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  22 * get_fs() == KERNEL_DS, checking is bypassed.
  23 *
  24 * For historical reasons, these macros are grossly misnamed.
  25 */
  26#ifdef CONFIG_32BIT
  27
  28#ifdef CONFIG_KVM_GUEST
  29#define __UA_LIMIT 0x40000000UL
  30#else
  31#define __UA_LIMIT 0x80000000UL
  32#endif
  33
  34#define __UA_ADDR	".word"
  35#define __UA_LA		"la"
  36#define __UA_ADDU	"addu"
  37#define __UA_t0		"$8"
  38#define __UA_t1		"$9"
  39
  40#endif /* CONFIG_32BIT */
  41
  42#ifdef CONFIG_64BIT
  43
  44extern u64 __ua_limit;
  45
  46#define __UA_LIMIT	__ua_limit
  47
  48#define __UA_ADDR	".dword"
  49#define __UA_LA		"dla"
  50#define __UA_ADDU	"daddu"
  51#define __UA_t0		"$12"
  52#define __UA_t1		"$13"
  53
  54#endif /* CONFIG_64BIT */
  55
  56/*
  57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  59 * the arithmetic we're doing only works if the limit is a power of two, so
  60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  61 * address in this range it's the process's problem, not ours :-)
  62 */
  63
  64#ifdef CONFIG_KVM_GUEST
  65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  67#else
  68#define KERNEL_DS	((mm_segment_t) { 0UL })
  69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  70#endif
  71
  72#define VERIFY_READ    0
  73#define VERIFY_WRITE   1
  74
  75#define get_ds()	(KERNEL_DS)
  76#define get_fs()	(current_thread_info()->addr_limit)
  77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  78
  79#define segment_eq(a, b)	((a).seg == (b).seg)
  80
  81
  82/*
  83 * Is a address valid? This does a straighforward calculation rather
  84 * than tests.
  85 *
  86 * Address valid if:
  87 *  - "addr" doesn't have any high-bits set
  88 *  - AND "size" doesn't have any high-bits set
  89 *  - AND "addr+size" doesn't have any high-bits set
  90 *  - OR we are in kernel mode.
  91 *
  92 * __ua_size() is a trick to avoid runtime checking of positive constant
  93 * sizes; for those we already know at compile time that the size is ok.
  94 */
  95#define __ua_size(size)							\
  96	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  97
  98/*
  99 * access_ok: - Checks if a user space pointer is valid
 100 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 101 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 102 *	  to write to a block, it is always safe to read from it.
 103 * @addr: User space pointer to start of block to check
 104 * @size: Size of block to check
 105 *
 106 * Context: User context only.	This function may sleep.
 107 *
 108 * Checks if a pointer to a block of memory in user space is valid.
 109 *
 110 * Returns true (nonzero) if the memory block may be valid, false (zero)
 111 * if it is definitely invalid.
 112 *
 113 * Note that, depending on architecture, this function probably just
 114 * checks that the pointer is in the user space range - after calling
 115 * this function, memory access functions may still return -EFAULT.
 116 */
 117
 118#define __access_mask get_fs().seg
 119
 120#define __access_ok(addr, size, mask)					\
 121({									\
 122	unsigned long __addr = (unsigned long) (addr);			\
 123	unsigned long __size = size;					\
 124	unsigned long __mask = mask;					\
 125	unsigned long __ok;						\
 126									\
 127	__chk_user_ptr(addr);						\
 128	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 129		__ua_size(__size)));					\
 130	__ok == 0;							\
 131})
 132
 133#define access_ok(type, addr, size)					\
 134	likely(__access_ok((addr), (size), __access_mask))
 135
 136/*
 137 * put_user: - Write a simple value into user space.
 138 * @x:	 Value to copy to user space.
 139 * @ptr: Destination address, in user space.
 140 *
 141 * Context: User context only.	This function may sleep.
 142 *
 143 * This macro copies a single simple value from kernel space to user
 144 * space.  It supports simple types like char and int, but not larger
 145 * data types like structures or arrays.
 146 *
 147 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 148 * to the result of dereferencing @ptr.
 149 *
 150 * Returns zero on success, or -EFAULT on error.
 151 */
 152#define put_user(x,ptr) \
 153	__put_user_check((x), (ptr), sizeof(*(ptr)))
 154
 155/*
 156 * get_user: - Get a simple variable from user space.
 157 * @x:	 Variable to store result.
 158 * @ptr: Source address, in user space.
 159 *
 160 * Context: User context only.	This function may sleep.
 161 *
 162 * This macro copies a single simple variable from user space to kernel
 163 * space.  It supports simple types like char and int, but not larger
 164 * data types like structures or arrays.
 165 *
 166 * @ptr must have pointer-to-simple-variable type, and the result of
 167 * dereferencing @ptr must be assignable to @x without a cast.
 168 *
 169 * Returns zero on success, or -EFAULT on error.
 170 * On error, the variable @x is set to zero.
 171 */
 172#define get_user(x,ptr) \
 173	__get_user_check((x), (ptr), sizeof(*(ptr)))
 174
 175/*
 176 * __put_user: - Write a simple value into user space, with less checking.
 177 * @x:	 Value to copy to user space.
 178 * @ptr: Destination address, in user space.
 179 *
 180 * Context: User context only.	This function may sleep.
 181 *
 182 * This macro copies a single simple value from kernel space to user
 183 * space.  It supports simple types like char and int, but not larger
 184 * data types like structures or arrays.
 185 *
 186 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 187 * to the result of dereferencing @ptr.
 188 *
 189 * Caller must check the pointer with access_ok() before calling this
 190 * function.
 191 *
 192 * Returns zero on success, or -EFAULT on error.
 193 */
 194#define __put_user(x,ptr) \
 195	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 196
 197/*
 198 * __get_user: - Get a simple variable from user space, with less checking.
 199 * @x:	 Variable to store result.
 200 * @ptr: Source address, in user space.
 201 *
 202 * Context: User context only.	This function may sleep.
 203 *
 204 * This macro copies a single simple variable from user space to kernel
 205 * space.  It supports simple types like char and int, but not larger
 206 * data types like structures or arrays.
 207 *
 208 * @ptr must have pointer-to-simple-variable type, and the result of
 209 * dereferencing @ptr must be assignable to @x without a cast.
 210 *
 211 * Caller must check the pointer with access_ok() before calling this
 212 * function.
 213 *
 214 * Returns zero on success, or -EFAULT on error.
 215 * On error, the variable @x is set to zero.
 216 */
 217#define __get_user(x,ptr) \
 218	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 219
 220struct __large_struct { unsigned long buf[100]; };
 221#define __m(x) (*(struct __large_struct __user *)(x))
 222
 223/*
 224 * Yuck.  We need two variants, one for 64bit operation and one
 225 * for 32 bit mode and old iron.
 226 */
 227#ifndef CONFIG_EVA
 228#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 229#else
 230/*
 231 * Kernel specific functions for EVA. We need to use normal load instructions
 232 * to read data from kernel when operating in EVA mode. We use these macros to
 233 * avoid redefining __get_user_asm for EVA.
 234 */
 235#undef _loadd
 236#undef _loadw
 237#undef _loadh
 238#undef _loadb
 239#ifdef CONFIG_32BIT
 240#define _loadd			_loadw
 241#else
 242#define _loadd(reg, addr)	"ld " reg ", " addr
 243#endif
 244#define _loadw(reg, addr)	"lw " reg ", " addr
 245#define _loadh(reg, addr)	"lh " reg ", " addr
 246#define _loadb(reg, addr)	"lb " reg ", " addr
 247
 248#define __get_kernel_common(val, size, ptr)				\
 249do {									\
 250	switch (size) {							\
 251	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 252	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 253	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 254	case 8: __GET_DW(val, _loadd, ptr); break;			\
 255	default: __get_user_unknown(); break;				\
 256	}								\
 257} while (0)
 258#endif
 259
 260#ifdef CONFIG_32BIT
 261#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 262#endif
 263#ifdef CONFIG_64BIT
 264#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 265#endif
 266
 267extern void __get_user_unknown(void);
 268
 269#define __get_user_common(val, size, ptr)				\
 270do {									\
 271	switch (size) {							\
 272	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 273	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 274	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 275	case 8: __GET_DW(val, user_ld, ptr); break;			\
 276	default: __get_user_unknown(); break;				\
 277	}								\
 278} while (0)
 279
 280#define __get_user_nocheck(x, ptr, size)				\
 281({									\
 282	int __gu_err;							\
 283									\
 284	if (segment_eq(get_fs(), get_ds())) {				\
 285		__get_kernel_common((x), size, ptr);			\
 286	} else {							\
 287		__chk_user_ptr(ptr);					\
 288		__get_user_common((x), size, ptr);			\
 289	}								\
 290	__gu_err;							\
 291})
 292
 293#define __get_user_check(x, ptr, size)					\
 294({									\
 295	int __gu_err = -EFAULT;						\
 296	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 297									\
 298	might_fault();							\
 299	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 300		if (segment_eq(get_fs(), get_ds()))			\
 301			__get_kernel_common((x), size, __gu_ptr);	\
 302		else							\
 303			__get_user_common((x), size, __gu_ptr);		\
 304	}								\
 305									\
 306	__gu_err;							\
 307})
 308
 309#define __get_data_asm(val, insn, addr)					\
 310{									\
 311	long __gu_tmp;							\
 312									\
 313	__asm__ __volatile__(						\
 314	"1:	"insn("%1", "%3")"				\n"	\
 315	"2:							\n"	\
 316	"	.insn						\n"	\
 317	"	.section .fixup,\"ax\"				\n"	\
 318	"3:	li	%0, %4					\n"	\
 319	"	j	2b					\n"	\
 320	"	.previous					\n"	\
 321	"	.section __ex_table,\"a\"			\n"	\
 322	"	"__UA_ADDR "\t1b, 3b				\n"	\
 323	"	.previous					\n"	\
 324	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 325	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 326									\
 327	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 328}
 329
 330/*
 331 * Get a long long 64 using 32 bit registers.
 332 */
 333#define __get_data_asm_ll32(val, insn, addr)				\
 334{									\
 335	union {								\
 336		unsigned long long	l;				\
 337		__typeof__(*(addr))	t;				\
 338	} __gu_tmp;							\
 339									\
 340	__asm__ __volatile__(						\
 341	"1:	" insn("%1", "(%3)")"				\n"	\
 342	"2:	" insn("%D1", "4(%3)")"				\n"	\
 343	"3:							\n"	\
 344	"	.insn						\n"	\
 345	"	.section	.fixup,\"ax\"			\n"	\
 346	"4:	li	%0, %4					\n"	\
 347	"	move	%1, $0					\n"	\
 348	"	move	%D1, $0					\n"	\
 349	"	j	3b					\n"	\
 350	"	.previous					\n"	\
 351	"	.section	__ex_table,\"a\"		\n"	\
 352	"	" __UA_ADDR "	1b, 4b				\n"	\
 353	"	" __UA_ADDR "	2b, 4b				\n"	\
 354	"	.previous					\n"	\
 355	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 356	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 357									\
 358	(val) = __gu_tmp.t;						\
 359}
 360
 361#ifndef CONFIG_EVA
 362#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 363#else
 364/*
 365 * Kernel specific functions for EVA. We need to use normal load instructions
 366 * to read data from kernel when operating in EVA mode. We use these macros to
 367 * avoid redefining __get_data_asm for EVA.
 368 */
 369#undef _stored
 370#undef _storew
 371#undef _storeh
 372#undef _storeb
 373#ifdef CONFIG_32BIT
 374#define _stored			_storew
 375#else
 376#define _stored(reg, addr)	"ld " reg ", " addr
 377#endif
 378
 379#define _storew(reg, addr)	"sw " reg ", " addr
 380#define _storeh(reg, addr)	"sh " reg ", " addr
 381#define _storeb(reg, addr)	"sb " reg ", " addr
 382
 383#define __put_kernel_common(ptr, size)					\
 384do {									\
 385	switch (size) {							\
 386	case 1: __put_data_asm(_storeb, ptr); break;			\
 387	case 2: __put_data_asm(_storeh, ptr); break;			\
 388	case 4: __put_data_asm(_storew, ptr); break;			\
 389	case 8: __PUT_DW(_stored, ptr); break;				\
 390	default: __put_user_unknown(); break;				\
 391	}								\
 392} while(0)
 393#endif
 394
 395/*
 396 * Yuck.  We need two variants, one for 64bit operation and one
 397 * for 32 bit mode and old iron.
 398 */
 399#ifdef CONFIG_32BIT
 400#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 401#endif
 402#ifdef CONFIG_64BIT
 403#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 404#endif
 405
 406#define __put_user_common(ptr, size)					\
 407do {									\
 408	switch (size) {							\
 409	case 1: __put_data_asm(user_sb, ptr); break;			\
 410	case 2: __put_data_asm(user_sh, ptr); break;			\
 411	case 4: __put_data_asm(user_sw, ptr); break;			\
 412	case 8: __PUT_DW(user_sd, ptr); break;				\
 413	default: __put_user_unknown(); break;				\
 414	}								\
 415} while (0)
 416
 417#define __put_user_nocheck(x, ptr, size)				\
 418({									\
 419	__typeof__(*(ptr)) __pu_val;					\
 420	int __pu_err = 0;						\
 421									\
 
 422	__pu_val = (x);							\
 423	if (segment_eq(get_fs(), get_ds())) {				\
 424		__put_kernel_common(ptr, size);				\
 425	} else {							\
 426		__chk_user_ptr(ptr);					\
 427		__put_user_common(ptr, size);				\
 
 428	}								\
 429	__pu_err;							\
 430})
 431
 432#define __put_user_check(x, ptr, size)					\
 433({									\
 434	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 435	__typeof__(*(ptr)) __pu_val = (x);				\
 436	int __pu_err = -EFAULT;						\
 437									\
 438	might_fault();							\
 439	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 440		if (segment_eq(get_fs(), get_ds()))			\
 441			__put_kernel_common(__pu_addr, size);		\
 442		else							\
 443			__put_user_common(__pu_addr, size);		\
 
 
 
 444	}								\
 445									\
 446	__pu_err;							\
 447})
 448
 449#define __put_data_asm(insn, ptr)					\
 450{									\
 451	__asm__ __volatile__(						\
 452	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 453	"2:							\n"	\
 454	"	.insn						\n"	\
 455	"	.section	.fixup,\"ax\"			\n"	\
 456	"3:	li	%0, %4					\n"	\
 457	"	j	2b					\n"	\
 458	"	.previous					\n"	\
 459	"	.section	__ex_table,\"a\"		\n"	\
 460	"	" __UA_ADDR "	1b, 3b				\n"	\
 461	"	.previous					\n"	\
 462	: "=r" (__pu_err)						\
 463	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 464	  "i" (-EFAULT));						\
 465}
 466
 467#define __put_data_asm_ll32(insn, ptr)					\
 468{									\
 469	__asm__ __volatile__(						\
 470	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 471	"2:	"insn("%D2", "4(%3)")"				\n"	\
 472	"3:							\n"	\
 473	"	.insn						\n"	\
 474	"	.section	.fixup,\"ax\"			\n"	\
 475	"4:	li	%0, %4					\n"	\
 476	"	j	3b					\n"	\
 477	"	.previous					\n"	\
 478	"	.section	__ex_table,\"a\"		\n"	\
 479	"	" __UA_ADDR "	1b, 4b				\n"	\
 480	"	" __UA_ADDR "	2b, 4b				\n"	\
 481	"	.previous"						\
 482	: "=r" (__pu_err)						\
 483	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 484	  "i" (-EFAULT));						\
 485}
 486
 487extern void __put_user_unknown(void);
 488
 489/*
 490 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 491 * EVA unaligned access is handled in the ADE exception handler.
 492 */
 493#ifndef CONFIG_EVA
 494/*
 495 * put_user_unaligned: - Write a simple value into user space.
 496 * @x:	 Value to copy to user space.
 497 * @ptr: Destination address, in user space.
 498 *
 499 * Context: User context only.	This function may sleep.
 500 *
 501 * This macro copies a single simple value from kernel space to user
 502 * space.  It supports simple types like char and int, but not larger
 503 * data types like structures or arrays.
 504 *
 505 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 506 * to the result of dereferencing @ptr.
 507 *
 508 * Returns zero on success, or -EFAULT on error.
 509 */
 510#define put_user_unaligned(x,ptr)	\
 511	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 512
 513/*
 514 * get_user_unaligned: - Get a simple variable from user space.
 515 * @x:	 Variable to store result.
 516 * @ptr: Source address, in user space.
 517 *
 518 * Context: User context only.	This function may sleep.
 519 *
 520 * This macro copies a single simple variable from user space to kernel
 521 * space.  It supports simple types like char and int, but not larger
 522 * data types like structures or arrays.
 523 *
 524 * @ptr must have pointer-to-simple-variable type, and the result of
 525 * dereferencing @ptr must be assignable to @x without a cast.
 526 *
 527 * Returns zero on success, or -EFAULT on error.
 528 * On error, the variable @x is set to zero.
 529 */
 530#define get_user_unaligned(x,ptr) \
 531	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 532
 533/*
 534 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 535 * @x:	 Value to copy to user space.
 536 * @ptr: Destination address, in user space.
 537 *
 538 * Context: User context only.	This function may sleep.
 539 *
 540 * This macro copies a single simple value from kernel space to user
 541 * space.  It supports simple types like char and int, but not larger
 542 * data types like structures or arrays.
 543 *
 544 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 545 * to the result of dereferencing @ptr.
 546 *
 547 * Caller must check the pointer with access_ok() before calling this
 548 * function.
 549 *
 550 * Returns zero on success, or -EFAULT on error.
 551 */
 552#define __put_user_unaligned(x,ptr) \
 553	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 554
 555/*
 556 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 557 * @x:	 Variable to store result.
 558 * @ptr: Source address, in user space.
 559 *
 560 * Context: User context only.	This function may sleep.
 561 *
 562 * This macro copies a single simple variable from user space to kernel
 563 * space.  It supports simple types like char and int, but not larger
 564 * data types like structures or arrays.
 565 *
 566 * @ptr must have pointer-to-simple-variable type, and the result of
 567 * dereferencing @ptr must be assignable to @x without a cast.
 568 *
 569 * Caller must check the pointer with access_ok() before calling this
 570 * function.
 571 *
 572 * Returns zero on success, or -EFAULT on error.
 573 * On error, the variable @x is set to zero.
 574 */
 575#define __get_user_unaligned(x,ptr) \
 576	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 577
 578/*
 579 * Yuck.  We need two variants, one for 64bit operation and one
 580 * for 32 bit mode and old iron.
 581 */
 582#ifdef CONFIG_32BIT
 583#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 584	__get_user_unaligned_asm_ll32(val, ptr)
 585#endif
 586#ifdef CONFIG_64BIT
 587#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 588	__get_user_unaligned_asm(val, "uld", ptr)
 589#endif
 590
 591extern void __get_user_unaligned_unknown(void);
 592
 593#define __get_user_unaligned_common(val, size, ptr)			\
 594do {									\
 595	switch (size) {							\
 596	case 1: __get_data_asm(val, "lb", ptr); break;			\
 597	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 598	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 599	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 600	default: __get_user_unaligned_unknown(); break;			\
 601	}								\
 602} while (0)
 603
 604#define __get_user_unaligned_nocheck(x,ptr,size)			\
 605({									\
 606	int __gu_err;							\
 607									\
 608	__get_user_unaligned_common((x), size, ptr);			\
 609	__gu_err;							\
 610})
 611
 612#define __get_user_unaligned_check(x,ptr,size)				\
 613({									\
 614	int __gu_err = -EFAULT;						\
 615	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 616									\
 617	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 618		__get_user_unaligned_common((x), size, __gu_ptr);	\
 619									\
 620	__gu_err;							\
 621})
 622
 623#define __get_data_unaligned_asm(val, insn, addr)			\
 624{									\
 625	long __gu_tmp;							\
 626									\
 627	__asm__ __volatile__(						\
 628	"1:	" insn "	%1, %3				\n"	\
 629	"2:							\n"	\
 630	"	.insn						\n"	\
 631	"	.section .fixup,\"ax\"				\n"	\
 632	"3:	li	%0, %4					\n"	\
 633	"	j	2b					\n"	\
 634	"	.previous					\n"	\
 635	"	.section __ex_table,\"a\"			\n"	\
 636	"	"__UA_ADDR "\t1b, 3b				\n"	\
 637	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 638	"	.previous					\n"	\
 639	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 640	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 641									\
 642	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 643}
 644
 645/*
 646 * Get a long long 64 using 32 bit registers.
 647 */
 648#define __get_user_unaligned_asm_ll32(val, addr)			\
 649{									\
 650	unsigned long long __gu_tmp;					\
 651									\
 652	__asm__ __volatile__(						\
 653	"1:	ulw	%1, (%3)				\n"	\
 654	"2:	ulw	%D1, 4(%3)				\n"	\
 655	"	move	%0, $0					\n"	\
 656	"3:							\n"	\
 657	"	.insn						\n"	\
 658	"	.section	.fixup,\"ax\"			\n"	\
 659	"4:	li	%0, %4					\n"	\
 660	"	move	%1, $0					\n"	\
 661	"	move	%D1, $0					\n"	\
 662	"	j	3b					\n"	\
 663	"	.previous					\n"	\
 664	"	.section	__ex_table,\"a\"		\n"	\
 665	"	" __UA_ADDR "	1b, 4b				\n"	\
 666	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 667	"	" __UA_ADDR "	2b, 4b				\n"	\
 668	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 669	"	.previous					\n"	\
 670	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 671	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 672	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 673}
 674
 675/*
 676 * Yuck.  We need two variants, one for 64bit operation and one
 677 * for 32 bit mode and old iron.
 678 */
 679#ifdef CONFIG_32BIT
 680#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 681#endif
 682#ifdef CONFIG_64BIT
 683#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 684#endif
 685
 686#define __put_user_unaligned_common(ptr, size)				\
 687do {									\
 688	switch (size) {							\
 689	case 1: __put_data_asm("sb", ptr); break;			\
 690	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 691	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 692	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 693	default: __put_user_unaligned_unknown(); break;			\
 694} while (0)
 695
 696#define __put_user_unaligned_nocheck(x,ptr,size)			\
 697({									\
 698	__typeof__(*(ptr)) __pu_val;					\
 699	int __pu_err = 0;						\
 700									\
 701	__pu_val = (x);							\
 702	__put_user_unaligned_common(ptr, size);				\
 
 
 
 
 
 
 703	__pu_err;							\
 704})
 705
 706#define __put_user_unaligned_check(x,ptr,size)				\
 707({									\
 708	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 709	__typeof__(*(ptr)) __pu_val = (x);				\
 710	int __pu_err = -EFAULT;						\
 711									\
 712	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 713		__put_user_unaligned_common(__pu_addr, size);		\
 714									\
 
 
 
 
 
 
 715	__pu_err;							\
 716})
 717
 718#define __put_user_unaligned_asm(insn, ptr)				\
 719{									\
 720	__asm__ __volatile__(						\
 721	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 722	"2:							\n"	\
 723	"	.insn						\n"	\
 724	"	.section	.fixup,\"ax\"			\n"	\
 725	"3:	li	%0, %4					\n"	\
 726	"	j	2b					\n"	\
 727	"	.previous					\n"	\
 728	"	.section	__ex_table,\"a\"		\n"	\
 729	"	" __UA_ADDR "	1b, 3b				\n"	\
 730	"	.previous					\n"	\
 731	: "=r" (__pu_err)						\
 732	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 733	  "i" (-EFAULT));						\
 734}
 735
 736#define __put_user_unaligned_asm_ll32(ptr)				\
 737{									\
 738	__asm__ __volatile__(						\
 739	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 740	"2:	sw	%D2, 4(%3)				\n"	\
 741	"3:							\n"	\
 742	"	.insn						\n"	\
 743	"	.section	.fixup,\"ax\"			\n"	\
 744	"4:	li	%0, %4					\n"	\
 745	"	j	3b					\n"	\
 746	"	.previous					\n"	\
 747	"	.section	__ex_table,\"a\"		\n"	\
 748	"	" __UA_ADDR "	1b, 4b				\n"	\
 749	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 750	"	" __UA_ADDR "	2b, 4b				\n"	\
 751	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 752	"	.previous"						\
 753	: "=r" (__pu_err)						\
 754	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 755	  "i" (-EFAULT));						\
 756}
 757
 758extern void __put_user_unaligned_unknown(void);
 759#endif
 760
 761/*
 762 * We're generating jump to subroutines which will be outside the range of
 763 * jump instructions
 764 */
 765#ifdef MODULE
 766#define __MODULE_JAL(destination)					\
 767	".set\tnoat\n\t"						\
 768	__UA_LA "\t$1, " #destination "\n\t"				\
 769	"jalr\t$1\n\t"							\
 770	".set\tat\n\t"
 771#else
 772#define __MODULE_JAL(destination)					\
 773	"jal\t" #destination "\n\t"
 774#endif
 775
 776#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 777#define DADDI_SCRATCH "$0"
 778#else
 779#define DADDI_SCRATCH "$3"
 780#endif
 781
 782extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 783
 784#ifndef CONFIG_EVA
 785#define __invoke_copy_to_user(to, from, n)				\
 786({									\
 787	register void __user *__cu_to_r __asm__("$4");			\
 788	register const void *__cu_from_r __asm__("$5");			\
 789	register long __cu_len_r __asm__("$6");				\
 790									\
 791	__cu_to_r = (to);						\
 792	__cu_from_r = (from);						\
 793	__cu_len_r = (n);						\
 794	__asm__ __volatile__(						\
 795	__MODULE_JAL(__copy_user)					\
 796	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 797	:								\
 798	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 799	  DADDI_SCRATCH, "memory");					\
 800	__cu_len_r;							\
 801})
 802
 803#define __invoke_copy_to_kernel(to, from, n)				\
 804	__invoke_copy_to_user(to, from, n)
 805
 806#endif
 807
 808/*
 809 * __copy_to_user: - Copy a block of data into user space, with less checking.
 810 * @to:	  Destination address, in user space.
 811 * @from: Source address, in kernel space.
 812 * @n:	  Number of bytes to copy.
 813 *
 814 * Context: User context only.	This function may sleep.
 815 *
 816 * Copy data from kernel space to user space.  Caller must check
 817 * the specified block with access_ok() before calling this function.
 818 *
 819 * Returns number of bytes that could not be copied.
 820 * On success, this will be zero.
 821 */
 822#define __copy_to_user(to, from, n)					\
 823({									\
 824	void __user *__cu_to;						\
 825	const void *__cu_from;						\
 826	long __cu_len;							\
 827									\
 828	__cu_to = (to);							\
 829	__cu_from = (from);						\
 830	__cu_len = (n);							\
 831	might_fault();							\
 832	if (segment_eq(get_fs(), get_ds()))				\
 833		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 834						   __cu_len);		\
 835	else								\
 836		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 837						 __cu_len);		\
 838	__cu_len;							\
 839})
 840
 841extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 842
 843#define __copy_to_user_inatomic(to, from, n)				\
 844({									\
 845	void __user *__cu_to;						\
 846	const void *__cu_from;						\
 847	long __cu_len;							\
 848									\
 849	__cu_to = (to);							\
 850	__cu_from = (from);						\
 851	__cu_len = (n);							\
 852	if (segment_eq(get_fs(), get_ds()))				\
 853		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 854						   __cu_len);		\
 855	else								\
 856		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 857						 __cu_len);		\
 858	__cu_len;							\
 859})
 860
 861#define __copy_from_user_inatomic(to, from, n)				\
 862({									\
 863	void *__cu_to;							\
 864	const void __user *__cu_from;					\
 865	long __cu_len;							\
 866									\
 867	__cu_to = (to);							\
 868	__cu_from = (from);						\
 869	__cu_len = (n);							\
 870	if (segment_eq(get_fs(), get_ds()))				\
 871		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 872							      __cu_from,\
 873							      __cu_len);\
 874	else								\
 875		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 876							    __cu_from,	\
 877							    __cu_len);	\
 878	__cu_len;							\
 879})
 880
 881/*
 882 * copy_to_user: - Copy a block of data into user space.
 883 * @to:	  Destination address, in user space.
 884 * @from: Source address, in kernel space.
 885 * @n:	  Number of bytes to copy.
 886 *
 887 * Context: User context only.	This function may sleep.
 888 *
 889 * Copy data from kernel space to user space.
 890 *
 891 * Returns number of bytes that could not be copied.
 892 * On success, this will be zero.
 893 */
 894#define copy_to_user(to, from, n)					\
 895({									\
 896	void __user *__cu_to;						\
 897	const void *__cu_from;						\
 898	long __cu_len;							\
 899									\
 900	__cu_to = (to);							\
 901	__cu_from = (from);						\
 902	__cu_len = (n);							\
 903	if (segment_eq(get_fs(), get_ds())) {				\
 904		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 905						   __cu_from,		\
 906						   __cu_len);		\
 907	} else {							\
 908		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 909			might_fault();                                  \
 910			__cu_len = __invoke_copy_to_user(__cu_to,	\
 911							 __cu_from,	\
 912							 __cu_len);     \
 913		}							\
 914	}								\
 915	__cu_len;							\
 916})
 917
 918#ifndef CONFIG_EVA
 919
 920#define __invoke_copy_from_user(to, from, n)				\
 921({									\
 922	register void *__cu_to_r __asm__("$4");				\
 923	register const void __user *__cu_from_r __asm__("$5");		\
 924	register long __cu_len_r __asm__("$6");				\
 925									\
 926	__cu_to_r = (to);						\
 927	__cu_from_r = (from);						\
 928	__cu_len_r = (n);						\
 929	__asm__ __volatile__(						\
 930	".set\tnoreorder\n\t"						\
 931	__MODULE_JAL(__copy_user)					\
 932	".set\tnoat\n\t"						\
 933	__UA_ADDU "\t$1, %1, %2\n\t"					\
 934	".set\tat\n\t"							\
 935	".set\treorder"							\
 936	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 937	:								\
 938	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 939	  DADDI_SCRATCH, "memory");					\
 940	__cu_len_r;							\
 941})
 942
 943#define __invoke_copy_from_kernel(to, from, n)				\
 944	__invoke_copy_from_user(to, from, n)
 945
 946/* For userland <-> userland operations */
 947#define ___invoke_copy_in_user(to, from, n)				\
 948	__invoke_copy_from_user(to, from, n)
 949
 950/* For kernel <-> kernel operations */
 951#define ___invoke_copy_in_kernel(to, from, n)				\
 952	__invoke_copy_from_user(to, from, n)
 953
 954#define __invoke_copy_from_user_inatomic(to, from, n)			\
 955({									\
 956	register void *__cu_to_r __asm__("$4");				\
 957	register const void __user *__cu_from_r __asm__("$5");		\
 958	register long __cu_len_r __asm__("$6");				\
 959									\
 960	__cu_to_r = (to);						\
 961	__cu_from_r = (from);						\
 962	__cu_len_r = (n);						\
 963	__asm__ __volatile__(						\
 964	".set\tnoreorder\n\t"						\
 965	__MODULE_JAL(__copy_user_inatomic)				\
 966	".set\tnoat\n\t"						\
 967	__UA_ADDU "\t$1, %1, %2\n\t"					\
 968	".set\tat\n\t"							\
 969	".set\treorder"							\
 970	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 971	:								\
 972	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 973	  DADDI_SCRATCH, "memory");					\
 974	__cu_len_r;							\
 975})
 976
 977#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
 978	__invoke_copy_from_user_inatomic(to, from, n)			\
 979
 980#else
 981
 982/* EVA specific functions */
 983
 984extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
 985				       size_t __n);
 986extern size_t __copy_from_user_eva(void *__to, const void *__from,
 987				   size_t __n);
 988extern size_t __copy_to_user_eva(void *__to, const void *__from,
 989				 size_t __n);
 990extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
 991
 992#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
 993({									\
 994	register void *__cu_to_r __asm__("$4");				\
 995	register const void __user *__cu_from_r __asm__("$5");		\
 996	register long __cu_len_r __asm__("$6");				\
 997									\
 998	__cu_to_r = (to);						\
 999	__cu_from_r = (from);						\
1000	__cu_len_r = (n);						\
1001	__asm__ __volatile__(						\
1002	".set\tnoreorder\n\t"						\
1003	__MODULE_JAL(func_ptr)						\
1004	".set\tnoat\n\t"						\
1005	__UA_ADDU "\t$1, %1, %2\n\t"					\
1006	".set\tat\n\t"							\
1007	".set\treorder"							\
1008	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1009	:								\
1010	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1011	  DADDI_SCRATCH, "memory");					\
1012	__cu_len_r;							\
1013})
1014
1015#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1016({									\
1017	register void *__cu_to_r __asm__("$4");				\
1018	register const void __user *__cu_from_r __asm__("$5");		\
1019	register long __cu_len_r __asm__("$6");				\
1020									\
1021	__cu_to_r = (to);						\
1022	__cu_from_r = (from);						\
1023	__cu_len_r = (n);						\
1024	__asm__ __volatile__(						\
1025	__MODULE_JAL(func_ptr)						\
1026	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1027	:								\
1028	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1029	  DADDI_SCRATCH, "memory");					\
1030	__cu_len_r;							\
1031})
1032
1033/*
1034 * Source or destination address is in userland. We need to go through
1035 * the TLB
1036 */
1037#define __invoke_copy_from_user(to, from, n)				\
1038	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1039
1040#define __invoke_copy_from_user_inatomic(to, from, n)			\
1041	__invoke_copy_from_user_eva_generic(to, from, n,		\
1042					    __copy_user_inatomic_eva)
1043
1044#define __invoke_copy_to_user(to, from, n)				\
1045	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1046
1047#define ___invoke_copy_in_user(to, from, n)				\
1048	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1049
1050/*
1051 * Source or destination address in the kernel. We are not going through
1052 * the TLB
1053 */
1054#define __invoke_copy_from_kernel(to, from, n)				\
1055	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1056
1057#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1058	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1059
1060#define __invoke_copy_to_kernel(to, from, n)				\
1061	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1062
1063#define ___invoke_copy_in_kernel(to, from, n)				\
1064	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1065
1066#endif /* CONFIG_EVA */
1067
1068/*
1069 * __copy_from_user: - Copy a block of data from user space, with less checking.
1070 * @to:	  Destination address, in kernel space.
1071 * @from: Source address, in user space.
1072 * @n:	  Number of bytes to copy.
1073 *
1074 * Context: User context only.	This function may sleep.
1075 *
1076 * Copy data from user space to kernel space.  Caller must check
1077 * the specified block with access_ok() before calling this function.
1078 *
1079 * Returns number of bytes that could not be copied.
1080 * On success, this will be zero.
1081 *
1082 * If some data could not be copied, this function will pad the copied
1083 * data to the requested size using zero bytes.
1084 */
1085#define __copy_from_user(to, from, n)					\
1086({									\
1087	void *__cu_to;							\
1088	const void __user *__cu_from;					\
1089	long __cu_len;							\
1090									\
1091	__cu_to = (to);							\
1092	__cu_from = (from);						\
1093	__cu_len = (n);							\
1094	might_fault();							\
1095	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
1096					   __cu_len);			\
1097	__cu_len;							\
1098})
1099
1100/*
1101 * copy_from_user: - Copy a block of data from user space.
1102 * @to:	  Destination address, in kernel space.
1103 * @from: Source address, in user space.
1104 * @n:	  Number of bytes to copy.
1105 *
1106 * Context: User context only.	This function may sleep.
1107 *
1108 * Copy data from user space to kernel space.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (segment_eq(get_fs(), get_ds())) {				\
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1131			might_fault();                                  \
1132			__cu_len = __invoke_copy_from_user(__cu_to,	\
1133							   __cu_from,	\
1134							   __cu_len);   \
1135		}							\
1136	}								\
1137	__cu_len;							\
1138})
1139
1140#define __copy_in_user(to, from, n)					\
1141({									\
1142	void __user *__cu_to;						\
1143	const void __user *__cu_from;					\
1144	long __cu_len;							\
1145									\
1146	__cu_to = (to);							\
1147	__cu_from = (from);						\
1148	__cu_len = (n);							\
1149	if (segment_eq(get_fs(), get_ds())) {				\
1150		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1151						    __cu_len);		\
1152	} else {							\
1153		might_fault();						\
1154		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1155						  __cu_len);		\
1156	}								\
1157	__cu_len;							\
1158})
1159
1160#define copy_in_user(to, from, n)					\
1161({									\
1162	void __user *__cu_to;						\
1163	const void __user *__cu_from;					\
1164	long __cu_len;							\
1165									\
1166	__cu_to = (to);							\
1167	__cu_from = (from);						\
1168	__cu_len = (n);							\
1169	if (segment_eq(get_fs(), get_ds())) {				\
1170		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1171						    __cu_len);		\
1172	} else {							\
1173		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1174			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1175			might_fault();					\
1176			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1177							  __cu_from,	\
1178							  __cu_len);	\
1179		}							\
1180	}								\
1181	__cu_len;							\
1182})
1183
1184/*
1185 * __clear_user: - Zero a block of memory in user space, with less checking.
1186 * @to:	  Destination address, in user space.
1187 * @n:	  Number of bytes to zero.
1188 *
1189 * Zero a block of memory in user space.  Caller must check
1190 * the specified block with access_ok() before calling this function.
1191 *
1192 * Returns number of bytes that could not be cleared.
1193 * On success, this will be zero.
1194 */
1195static inline __kernel_size_t
1196__clear_user(void __user *addr, __kernel_size_t size)
1197{
1198	__kernel_size_t res;
1199
1200	might_fault();
1201	__asm__ __volatile__(
1202		"move\t$4, %1\n\t"
1203		"move\t$5, $0\n\t"
1204		"move\t$6, %2\n\t"
1205		__MODULE_JAL(__bzero)
1206		"move\t%0, $6"
1207		: "=r" (res)
1208		: "r" (addr), "r" (size)
1209		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1210
1211	return res;
1212}
1213
1214#define clear_user(addr,n)						\
1215({									\
1216	void __user * __cl_addr = (addr);				\
1217	unsigned long __cl_size = (n);					\
1218	if (__cl_size && access_ok(VERIFY_WRITE,			\
1219					__cl_addr, __cl_size))		\
1220		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1221	__cl_size;							\
1222})
1223
1224/*
1225 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1226 * @dst:   Destination address, in kernel space.  This buffer must be at
1227 *	   least @count bytes long.
1228 * @src:   Source address, in user space.
1229 * @count: Maximum number of bytes to copy, including the trailing NUL.
1230 *
1231 * Copies a NUL-terminated string from userspace to kernel space.
1232 * Caller must check the specified block with access_ok() before calling
1233 * this function.
1234 *
1235 * On success, returns the length of the string (not including the trailing
1236 * NUL).
1237 *
1238 * If access to userspace fails, returns -EFAULT (some data may have been
1239 * copied).
1240 *
1241 * If @count is smaller than the length of the string, copies @count bytes
1242 * and returns @count.
1243 */
1244static inline long
1245__strncpy_from_user(char *__to, const char __user *__from, long __len)
1246{
1247	long res;
1248
1249	if (segment_eq(get_fs(), get_ds())) {
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, %2\n\t"
1253			"move\t$6, %3\n\t"
1254			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1255			"move\t%0, $2"
1256			: "=r" (res)
1257			: "r" (__to), "r" (__from), "r" (__len)
1258			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1259	} else {
1260		might_fault();
1261		__asm__ __volatile__(
1262			"move\t$4, %1\n\t"
1263			"move\t$5, %2\n\t"
1264			"move\t$6, %3\n\t"
1265			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1266			"move\t%0, $2"
1267			: "=r" (res)
1268			: "r" (__to), "r" (__from), "r" (__len)
1269			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1270	}
1271
1272	return res;
1273}
1274
1275/*
1276 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1277 * @dst:   Destination address, in kernel space.  This buffer must be at
1278 *	   least @count bytes long.
1279 * @src:   Source address, in user space.
1280 * @count: Maximum number of bytes to copy, including the trailing NUL.
1281 *
1282 * Copies a NUL-terminated string from userspace to kernel space.
1283 *
1284 * On success, returns the length of the string (not including the trailing
1285 * NUL).
1286 *
1287 * If access to userspace fails, returns -EFAULT (some data may have been
1288 * copied).
1289 *
1290 * If @count is smaller than the length of the string, copies @count bytes
1291 * and returns @count.
1292 */
1293static inline long
1294strncpy_from_user(char *__to, const char __user *__from, long __len)
1295{
1296	long res;
1297
1298	if (segment_eq(get_fs(), get_ds())) {
1299		__asm__ __volatile__(
1300			"move\t$4, %1\n\t"
1301			"move\t$5, %2\n\t"
1302			"move\t$6, %3\n\t"
1303			__MODULE_JAL(__strncpy_from_kernel_asm)
1304			"move\t%0, $2"
1305			: "=r" (res)
1306			: "r" (__to), "r" (__from), "r" (__len)
1307			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1308	} else {
1309		might_fault();
1310		__asm__ __volatile__(
1311			"move\t$4, %1\n\t"
1312			"move\t$5, %2\n\t"
1313			"move\t$6, %3\n\t"
1314			__MODULE_JAL(__strncpy_from_user_asm)
1315			"move\t%0, $2"
1316			: "=r" (res)
1317			: "r" (__to), "r" (__from), "r" (__len)
1318			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1319	}
1320
1321	return res;
1322}
1323
1324/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1325static inline long __strlen_user(const char __user *s)
1326{
1327	long res;
1328
1329	if (segment_eq(get_fs(), get_ds())) {
1330		__asm__ __volatile__(
1331			"move\t$4, %1\n\t"
1332			__MODULE_JAL(__strlen_kernel_nocheck_asm)
1333			"move\t%0, $2"
1334			: "=r" (res)
1335			: "r" (s)
1336			: "$2", "$4", __UA_t0, "$31");
1337	} else {
1338		might_fault();
1339		__asm__ __volatile__(
1340			"move\t$4, %1\n\t"
1341			__MODULE_JAL(__strlen_user_nocheck_asm)
1342			"move\t%0, $2"
1343			: "=r" (res)
1344			: "r" (s)
1345			: "$2", "$4", __UA_t0, "$31");
1346	}
1347
1348	return res;
1349}
1350
1351/*
1352 * strlen_user: - Get the size of a string in user space.
1353 * @str: The string to measure.
1354 *
1355 * Context: User context only.	This function may sleep.
1356 *
1357 * Get the size of a NUL-terminated string in user space.
1358 *
1359 * Returns the size of the string INCLUDING the terminating NUL.
1360 * On exception, returns 0.
1361 *
1362 * If there is a limit on the length of a valid string, you may wish to
1363 * consider using strnlen_user() instead.
1364 */
1365static inline long strlen_user(const char __user *s)
1366{
1367	long res;
1368
1369	if (segment_eq(get_fs(), get_ds())) {
1370		__asm__ __volatile__(
1371			"move\t$4, %1\n\t"
1372			__MODULE_JAL(__strlen_kernel_asm)
1373			"move\t%0, $2"
1374			: "=r" (res)
1375			: "r" (s)
1376			: "$2", "$4", __UA_t0, "$31");
1377	} else {
1378		might_fault();
1379		__asm__ __volatile__(
1380			"move\t$4, %1\n\t"
1381			__MODULE_JAL(__strlen_kernel_asm)
1382			"move\t%0, $2"
1383			: "=r" (res)
1384			: "r" (s)
1385			: "$2", "$4", __UA_t0, "$31");
1386	}
1387
1388	return res;
1389}
1390
1391/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1392static inline long __strnlen_user(const char __user *s, long n)
1393{
1394	long res;
1395
1396	if (segment_eq(get_fs(), get_ds())) {
1397		__asm__ __volatile__(
1398			"move\t$4, %1\n\t"
1399			"move\t$5, %2\n\t"
1400			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1401			"move\t%0, $2"
1402			: "=r" (res)
1403			: "r" (s), "r" (n)
1404			: "$2", "$4", "$5", __UA_t0, "$31");
1405	} else {
1406		might_fault();
1407		__asm__ __volatile__(
1408			"move\t$4, %1\n\t"
1409			"move\t$5, %2\n\t"
1410			__MODULE_JAL(__strnlen_user_nocheck_asm)
1411			"move\t%0, $2"
1412			: "=r" (res)
1413			: "r" (s), "r" (n)
1414			: "$2", "$4", "$5", __UA_t0, "$31");
1415	}
1416
1417	return res;
1418}
1419
1420/*
1421 * strlen_user: - Get the size of a string in user space.
1422 * @str: The string to measure.
1423 *
1424 * Context: User context only.	This function may sleep.
1425 *
1426 * Get the size of a NUL-terminated string in user space.
1427 *
1428 * Returns the size of the string INCLUDING the terminating NUL.
1429 * On exception, returns 0.
1430 *
1431 * If there is a limit on the length of a valid string, you may wish to
1432 * consider using strnlen_user() instead.
1433 */
1434static inline long strnlen_user(const char __user *s, long n)
1435{
1436	long res;
1437
1438	might_fault();
1439	if (segment_eq(get_fs(), get_ds())) {
1440		__asm__ __volatile__(
1441			"move\t$4, %1\n\t"
1442			"move\t$5, %2\n\t"
1443			__MODULE_JAL(__strnlen_kernel_asm)
1444			"move\t%0, $2"
1445			: "=r" (res)
1446			: "r" (s), "r" (n)
1447			: "$2", "$4", "$5", __UA_t0, "$31");
1448	} else {
1449		__asm__ __volatile__(
1450			"move\t$4, %1\n\t"
1451			"move\t$5, %2\n\t"
1452			__MODULE_JAL(__strnlen_user_asm)
1453			"move\t%0, $2"
1454			: "=r" (res)
1455			: "r" (s), "r" (n)
1456			: "$2", "$4", "$5", __UA_t0, "$31");
1457	}
1458
1459	return res;
1460}
1461
1462struct exception_table_entry
1463{
1464	unsigned long insn;
1465	unsigned long nextinsn;
1466};
1467
1468extern int fixup_exception(struct pt_regs *regs);
1469
1470#endif /* _ASM_UACCESS_H */