Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
  22#include "util/evsel.h"
  23#include <linux/rbtree.h>
  24#include "util/symbol.h"
  25#include "util/callchain.h"
  26#include "util/strlist.h"
  27
  28#include "perf.h"
  29#include "util/header.h"
  30#include "util/parse-options.h"
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36
  37#define SUPPORT_OLD_POWER_EVENTS 1
  38#define PWR_EVENT_EXIT -1
  39
  40
  41static const char	*input_name;
  42static const char	*output_name = "output.svg";
  43
  44static unsigned int	numcpus;
  45static u64		min_freq;	/* Lowest CPU frequency seen */
  46static u64		max_freq;	/* Highest CPU frequency seen */
  47static u64		turbo_frequency;
  48
  49static u64		first_time, last_time;
  50
  51static bool		power_only;
  52
  53
  54struct per_pid;
  55struct per_pidcomm;
  56
  57struct cpu_sample;
  58struct power_event;
  59struct wake_event;
  60
  61struct sample_wrapper;
  62
  63/*
  64 * Datastructure layout:
  65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  66 * Each "pid" entry, has a list of "comm"s.
  67 *	this is because we want to track different programs different, while
  68 *	exec will reuse the original pid (by design).
  69 * Each comm has a list of samples that will be used to draw
  70 * final graph.
  71 */
  72
  73struct per_pid {
  74	struct per_pid *next;
  75
  76	int		pid;
  77	int		ppid;
  78
  79	u64		start_time;
  80	u64		end_time;
  81	u64		total_time;
  82	int		display;
  83
  84	struct per_pidcomm *all;
  85	struct per_pidcomm *current;
  86};
  87
  88
  89struct per_pidcomm {
  90	struct per_pidcomm *next;
  91
  92	u64		start_time;
  93	u64		end_time;
  94	u64		total_time;
  95
  96	int		Y;
  97	int		display;
  98
  99	long		state;
 100	u64		state_since;
 101
 102	char		*comm;
 103
 104	struct cpu_sample *samples;
 105};
 106
 107struct sample_wrapper {
 108	struct sample_wrapper *next;
 109
 110	u64		timestamp;
 111	unsigned char	data[0];
 112};
 113
 114#define TYPE_NONE	0
 115#define TYPE_RUNNING	1
 116#define TYPE_WAITING	2
 117#define TYPE_BLOCKED	3
 118
 119struct cpu_sample {
 120	struct cpu_sample *next;
 121
 122	u64 start_time;
 123	u64 end_time;
 124	int type;
 125	int cpu;
 126};
 127
 128static struct per_pid *all_data;
 129
 130#define CSTATE 1
 131#define PSTATE 2
 132
 133struct power_event {
 134	struct power_event *next;
 135	int type;
 136	int state;
 137	u64 start_time;
 138	u64 end_time;
 139	int cpu;
 140};
 141
 142struct wake_event {
 143	struct wake_event *next;
 144	int waker;
 145	int wakee;
 146	u64 time;
 147};
 148
 149static struct power_event    *power_events;
 150static struct wake_event     *wake_events;
 151
 152struct process_filter;
 153struct process_filter {
 154	char			*name;
 155	int			pid;
 156	struct process_filter	*next;
 157};
 158
 159static struct process_filter *process_filter;
 160
 161
 162static struct per_pid *find_create_pid(int pid)
 163{
 164	struct per_pid *cursor = all_data;
 165
 166	while (cursor) {
 167		if (cursor->pid == pid)
 168			return cursor;
 169		cursor = cursor->next;
 170	}
 171	cursor = malloc(sizeof(struct per_pid));
 172	assert(cursor != NULL);
 173	memset(cursor, 0, sizeof(struct per_pid));
 174	cursor->pid = pid;
 175	cursor->next = all_data;
 176	all_data = cursor;
 177	return cursor;
 178}
 179
 180static void pid_set_comm(int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = malloc(sizeof(struct per_pidcomm));
 199	assert(c != NULL);
 200	memset(c, 0, sizeof(struct per_pidcomm));
 201	c->comm = strdup(comm);
 202	p->current = c;
 203	c->next = p->all;
 204	p->all = c;
 205}
 206
 207static void pid_fork(int pid, int ppid, u64 timestamp)
 208{
 209	struct per_pid *p, *pp;
 210	p = find_create_pid(pid);
 211	pp = find_create_pid(ppid);
 212	p->ppid = ppid;
 213	if (pp->current && pp->current->comm && !p->current)
 214		pid_set_comm(pid, pp->current->comm);
 215
 216	p->start_time = timestamp;
 217	if (p->current) {
 218		p->current->start_time = timestamp;
 219		p->current->state_since = timestamp;
 220	}
 221}
 222
 223static void pid_exit(int pid, u64 timestamp)
 224{
 225	struct per_pid *p;
 226	p = find_create_pid(pid);
 227	p->end_time = timestamp;
 228	if (p->current)
 229		p->current->end_time = timestamp;
 230}
 231
 232static void
 233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(pid);
 240	c = p->current;
 241	if (!c) {
 242		c = malloc(sizeof(struct per_pidcomm));
 243		assert(c != NULL);
 244		memset(c, 0, sizeof(struct per_pidcomm));
 245		p->current = c;
 246		c->next = p->all;
 247		p->all = c;
 248	}
 249
 250	sample = malloc(sizeof(struct cpu_sample));
 251	assert(sample != NULL);
 252	memset(sample, 0, sizeof(struct cpu_sample));
 253	sample->start_time = start;
 254	sample->end_time = end;
 255	sample->type = type;
 256	sample->next = c->samples;
 257	sample->cpu = cpu;
 258	c->samples = sample;
 259
 260	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 261		c->total_time += (end-start);
 262		p->total_time += (end-start);
 263	}
 264
 265	if (c->start_time == 0 || c->start_time > start)
 266		c->start_time = start;
 267	if (p->start_time == 0 || p->start_time > start)
 268		p->start_time = start;
 269}
 270
 271#define MAX_CPUS 4096
 272
 273static u64 cpus_cstate_start_times[MAX_CPUS];
 274static int cpus_cstate_state[MAX_CPUS];
 275static u64 cpus_pstate_start_times[MAX_CPUS];
 276static u64 cpus_pstate_state[MAX_CPUS];
 277
 278static int process_comm_event(struct perf_tool *tool __used,
 279			      union perf_event *event,
 280			      struct perf_sample *sample __used,
 281			      struct machine *machine __used)
 282{
 283	pid_set_comm(event->comm.tid, event->comm.comm);
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool __used,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __used,
 290			      struct machine *machine __used)
 291{
 292	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 293	return 0;
 294}
 295
 296static int process_exit_event(struct perf_tool *tool __used,
 297			      union perf_event *event,
 298			      struct perf_sample *sample __used,
 299			      struct machine *machine __used)
 300{
 301	pid_exit(event->fork.pid, event->fork.time);
 302	return 0;
 303}
 304
 305struct trace_entry {
 306	unsigned short		type;
 307	unsigned char		flags;
 308	unsigned char		preempt_count;
 309	int			pid;
 310	int			lock_depth;
 311};
 312
 313#ifdef SUPPORT_OLD_POWER_EVENTS
 314static int use_old_power_events;
 315struct power_entry_old {
 316	struct trace_entry te;
 317	u64	type;
 318	u64	value;
 319	u64	cpu_id;
 320};
 321#endif
 322
 323struct power_processor_entry {
 324	struct trace_entry te;
 325	u32	state;
 326	u32	cpu_id;
 327};
 328
 329#define TASK_COMM_LEN 16
 330struct wakeup_entry {
 331	struct trace_entry te;
 332	char comm[TASK_COMM_LEN];
 333	int   pid;
 334	int   prio;
 335	int   success;
 336};
 337
 338/*
 339 * trace_flag_type is an enumeration that holds different
 340 * states when a trace occurs. These are:
 341 *  IRQS_OFF            - interrupts were disabled
 342 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 343 *  NEED_RESCED         - reschedule is requested
 344 *  HARDIRQ             - inside an interrupt handler
 345 *  SOFTIRQ             - inside a softirq handler
 346 */
 347enum trace_flag_type {
 348	TRACE_FLAG_IRQS_OFF		= 0x01,
 349	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 350	TRACE_FLAG_NEED_RESCHED		= 0x04,
 351	TRACE_FLAG_HARDIRQ		= 0x08,
 352	TRACE_FLAG_SOFTIRQ		= 0x10,
 353};
 354
 355
 356
 357struct sched_switch {
 358	struct trace_entry te;
 359	char prev_comm[TASK_COMM_LEN];
 360	int  prev_pid;
 361	int  prev_prio;
 362	long prev_state; /* Arjan weeps. */
 363	char next_comm[TASK_COMM_LEN];
 364	int  next_pid;
 365	int  next_prio;
 366};
 367
 368static void c_state_start(int cpu, u64 timestamp, int state)
 369{
 370	cpus_cstate_start_times[cpu] = timestamp;
 371	cpus_cstate_state[cpu] = state;
 372}
 373
 374static void c_state_end(int cpu, u64 timestamp)
 375{
 376	struct power_event *pwr;
 377	pwr = malloc(sizeof(struct power_event));
 378	if (!pwr)
 379		return;
 380	memset(pwr, 0, sizeof(struct power_event));
 381
 382	pwr->state = cpus_cstate_state[cpu];
 383	pwr->start_time = cpus_cstate_start_times[cpu];
 384	pwr->end_time = timestamp;
 385	pwr->cpu = cpu;
 386	pwr->type = CSTATE;
 387	pwr->next = power_events;
 388
 389	power_events = pwr;
 390}
 391
 392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 393{
 394	struct power_event *pwr;
 395	pwr = malloc(sizeof(struct power_event));
 396
 397	if (new_freq > 8000000) /* detect invalid data */
 398		return;
 399
 400	if (!pwr)
 401		return;
 402	memset(pwr, 0, sizeof(struct power_event));
 403
 404	pwr->state = cpus_pstate_state[cpu];
 405	pwr->start_time = cpus_pstate_start_times[cpu];
 406	pwr->end_time = timestamp;
 407	pwr->cpu = cpu;
 408	pwr->type = PSTATE;
 409	pwr->next = power_events;
 410
 411	if (!pwr->start_time)
 412		pwr->start_time = first_time;
 413
 414	power_events = pwr;
 415
 416	cpus_pstate_state[cpu] = new_freq;
 417	cpus_pstate_start_times[cpu] = timestamp;
 418
 419	if ((u64)new_freq > max_freq)
 420		max_freq = new_freq;
 421
 422	if (new_freq < min_freq || min_freq == 0)
 423		min_freq = new_freq;
 424
 425	if (new_freq == max_freq - 1000)
 426			turbo_frequency = max_freq;
 427}
 428
 429static void
 430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 431{
 432	struct wake_event *we;
 433	struct per_pid *p;
 434	struct wakeup_entry *wake = (void *)te;
 435
 436	we = malloc(sizeof(struct wake_event));
 437	if (!we)
 438		return;
 439
 440	memset(we, 0, sizeof(struct wake_event));
 441	we->time = timestamp;
 442	we->waker = pid;
 443
 444	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 445		we->waker = -1;
 446
 447	we->wakee = wake->pid;
 448	we->next = wake_events;
 449	wake_events = we;
 450	p = find_create_pid(we->wakee);
 451
 452	if (p && p->current && p->current->state == TYPE_NONE) {
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 457		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 458		p->current->state_since = timestamp;
 459		p->current->state = TYPE_WAITING;
 460	}
 461}
 462
 463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 464{
 465	struct per_pid *p = NULL, *prev_p;
 466	struct sched_switch *sw = (void *)te;
 467
 468
 469	prev_p = find_create_pid(sw->prev_pid);
 470
 471	p = find_create_pid(sw->next_pid);
 472
 473	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 474		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 475	if (p && p->current) {
 476		if (p->current->state != TYPE_NONE)
 477			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 478
 479		p->current->state_since = timestamp;
 480		p->current->state = TYPE_RUNNING;
 481	}
 482
 483	if (prev_p->current) {
 484		prev_p->current->state = TYPE_NONE;
 485		prev_p->current->state_since = timestamp;
 486		if (sw->prev_state & 2)
 487			prev_p->current->state = TYPE_BLOCKED;
 488		if (sw->prev_state == 0)
 489			prev_p->current->state = TYPE_WAITING;
 490	}
 491}
 492
 493
 494static int process_sample_event(struct perf_tool *tool __used,
 495				union perf_event *event __used,
 496				struct perf_sample *sample,
 497				struct perf_evsel *evsel,
 498				struct machine *machine __used)
 499{
 500	struct trace_entry *te;
 501
 502	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 503		if (!first_time || first_time > sample->time)
 504			first_time = sample->time;
 505		if (last_time < sample->time)
 506			last_time = sample->time;
 507	}
 508
 509	te = (void *)sample->raw_data;
 510	if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
 511		char *event_str;
 512#ifdef SUPPORT_OLD_POWER_EVENTS
 513		struct power_entry_old *peo;
 514		peo = (void *)te;
 515#endif
 516		/*
 517		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 518		 * remove perf_header__find_event infrastructure bits.
 519		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 520		 * ID and then just comparing against evsel->attr.config.
 521		 *
 522		 * e.g.:
 523		 *
 524		 * if (evsel->attr.config == power_cpu_idle_id)
 525		 */
 526		event_str = perf_header__find_event(te->type);
 527
 528		if (!event_str)
 529			return 0;
 530
 531		if (sample->cpu > numcpus)
 532			numcpus = sample->cpu;
 533
 534		if (strcmp(event_str, "power:cpu_idle") == 0) {
 535			struct power_processor_entry *ppe = (void *)te;
 536			if (ppe->state == (u32)PWR_EVENT_EXIT)
 537				c_state_end(ppe->cpu_id, sample->time);
 538			else
 539				c_state_start(ppe->cpu_id, sample->time,
 540					      ppe->state);
 541		}
 542		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 543			struct power_processor_entry *ppe = (void *)te;
 544			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 545		}
 546
 547		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 548			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 549
 550		else if (strcmp(event_str, "sched:sched_switch") == 0)
 551			sched_switch(sample->cpu, sample->time, te);
 552
 553#ifdef SUPPORT_OLD_POWER_EVENTS
 554		if (use_old_power_events) {
 555			if (strcmp(event_str, "power:power_start") == 0)
 556				c_state_start(peo->cpu_id, sample->time,
 557					      peo->value);
 558
 559			else if (strcmp(event_str, "power:power_end") == 0)
 560				c_state_end(sample->cpu, sample->time);
 561
 562			else if (strcmp(event_str,
 563					"power:power_frequency") == 0)
 564				p_state_change(peo->cpu_id, sample->time,
 565					       peo->value);
 566		}
 567#endif
 568	}
 569	return 0;
 570}
 571
 572/*
 573 * After the last sample we need to wrap up the current C/P state
 574 * and close out each CPU for these.
 575 */
 576static void end_sample_processing(void)
 577{
 578	u64 cpu;
 579	struct power_event *pwr;
 580
 581	for (cpu = 0; cpu <= numcpus; cpu++) {
 582		pwr = malloc(sizeof(struct power_event));
 583		if (!pwr)
 584			return;
 585		memset(pwr, 0, sizeof(struct power_event));
 586
 587		/* C state */
 588#if 0
 589		pwr->state = cpus_cstate_state[cpu];
 590		pwr->start_time = cpus_cstate_start_times[cpu];
 591		pwr->end_time = last_time;
 592		pwr->cpu = cpu;
 593		pwr->type = CSTATE;
 594		pwr->next = power_events;
 595
 596		power_events = pwr;
 597#endif
 598		/* P state */
 599
 600		pwr = malloc(sizeof(struct power_event));
 601		if (!pwr)
 602			return;
 603		memset(pwr, 0, sizeof(struct power_event));
 604
 605		pwr->state = cpus_pstate_state[cpu];
 606		pwr->start_time = cpus_pstate_start_times[cpu];
 607		pwr->end_time = last_time;
 608		pwr->cpu = cpu;
 609		pwr->type = PSTATE;
 610		pwr->next = power_events;
 611
 612		if (!pwr->start_time)
 613			pwr->start_time = first_time;
 614		if (!pwr->state)
 615			pwr->state = min_freq;
 616		power_events = pwr;
 617	}
 618}
 619
 620/*
 621 * Sort the pid datastructure
 622 */
 623static void sort_pids(void)
 624{
 625	struct per_pid *new_list, *p, *cursor, *prev;
 626	/* sort by ppid first, then by pid, lowest to highest */
 627
 628	new_list = NULL;
 629
 630	while (all_data) {
 631		p = all_data;
 632		all_data = p->next;
 633		p->next = NULL;
 634
 635		if (new_list == NULL) {
 636			new_list = p;
 637			p->next = NULL;
 638			continue;
 639		}
 640		prev = NULL;
 641		cursor = new_list;
 642		while (cursor) {
 643			if (cursor->ppid > p->ppid ||
 644				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 645				/* must insert before */
 646				if (prev) {
 647					p->next = prev->next;
 648					prev->next = p;
 649					cursor = NULL;
 650					continue;
 651				} else {
 652					p->next = new_list;
 653					new_list = p;
 654					cursor = NULL;
 655					continue;
 656				}
 657			}
 658
 659			prev = cursor;
 660			cursor = cursor->next;
 661			if (!cursor)
 662				prev->next = p;
 663		}
 664	}
 665	all_data = new_list;
 666}
 667
 668
 669static void draw_c_p_states(void)
 670{
 671	struct power_event *pwr;
 672	pwr = power_events;
 673
 674	/*
 675	 * two pass drawing so that the P state bars are on top of the C state blocks
 676	 */
 677	while (pwr) {
 678		if (pwr->type == CSTATE)
 679			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 680		pwr = pwr->next;
 681	}
 682
 683	pwr = power_events;
 684	while (pwr) {
 685		if (pwr->type == PSTATE) {
 686			if (!pwr->state)
 687				pwr->state = min_freq;
 688			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 689		}
 690		pwr = pwr->next;
 691	}
 692}
 693
 694static void draw_wakeups(void)
 695{
 696	struct wake_event *we;
 697	struct per_pid *p;
 698	struct per_pidcomm *c;
 699
 700	we = wake_events;
 701	while (we) {
 702		int from = 0, to = 0;
 703		char *task_from = NULL, *task_to = NULL;
 704
 705		/* locate the column of the waker and wakee */
 706		p = all_data;
 707		while (p) {
 708			if (p->pid == we->waker || p->pid == we->wakee) {
 709				c = p->all;
 710				while (c) {
 711					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 712						if (p->pid == we->waker && !from) {
 713							from = c->Y;
 714							task_from = strdup(c->comm);
 715						}
 716						if (p->pid == we->wakee && !to) {
 717							to = c->Y;
 718							task_to = strdup(c->comm);
 719						}
 720					}
 721					c = c->next;
 722				}
 723				c = p->all;
 724				while (c) {
 725					if (p->pid == we->waker && !from) {
 726						from = c->Y;
 727						task_from = strdup(c->comm);
 728					}
 729					if (p->pid == we->wakee && !to) {
 730						to = c->Y;
 731						task_to = strdup(c->comm);
 732					}
 733					c = c->next;
 734				}
 735			}
 736			p = p->next;
 737		}
 738
 739		if (!task_from) {
 740			task_from = malloc(40);
 741			sprintf(task_from, "[%i]", we->waker);
 742		}
 743		if (!task_to) {
 744			task_to = malloc(40);
 745			sprintf(task_to, "[%i]", we->wakee);
 746		}
 747
 748		if (we->waker == -1)
 749			svg_interrupt(we->time, to);
 750		else if (from && to && abs(from - to) == 1)
 751			svg_wakeline(we->time, from, to);
 752		else
 753			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 754		we = we->next;
 755
 756		free(task_from);
 757		free(task_to);
 758	}
 759}
 760
 761static void draw_cpu_usage(void)
 762{
 763	struct per_pid *p;
 764	struct per_pidcomm *c;
 765	struct cpu_sample *sample;
 766	p = all_data;
 767	while (p) {
 768		c = p->all;
 769		while (c) {
 770			sample = c->samples;
 771			while (sample) {
 772				if (sample->type == TYPE_RUNNING)
 773					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 774
 775				sample = sample->next;
 776			}
 777			c = c->next;
 778		}
 779		p = p->next;
 780	}
 781}
 782
 783static void draw_process_bars(void)
 784{
 785	struct per_pid *p;
 786	struct per_pidcomm *c;
 787	struct cpu_sample *sample;
 788	int Y = 0;
 789
 790	Y = 2 * numcpus + 2;
 791
 792	p = all_data;
 793	while (p) {
 794		c = p->all;
 795		while (c) {
 796			if (!c->display) {
 797				c->Y = 0;
 798				c = c->next;
 799				continue;
 800			}
 801
 802			svg_box(Y, c->start_time, c->end_time, "process");
 803			sample = c->samples;
 804			while (sample) {
 805				if (sample->type == TYPE_RUNNING)
 806					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 807				if (sample->type == TYPE_BLOCKED)
 808					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 809				if (sample->type == TYPE_WAITING)
 810					svg_waiting(Y, sample->start_time, sample->end_time);
 811				sample = sample->next;
 812			}
 813
 814			if (c->comm) {
 815				char comm[256];
 816				if (c->total_time > 5000000000) /* 5 seconds */
 817					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 818				else
 819					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 820
 821				svg_text(Y, c->start_time, comm);
 822			}
 823			c->Y = Y;
 824			Y++;
 825			c = c->next;
 826		}
 827		p = p->next;
 828	}
 829}
 830
 831static void add_process_filter(const char *string)
 832{
 833	struct process_filter *filt;
 834	int pid;
 835
 836	pid = strtoull(string, NULL, 10);
 837	filt = malloc(sizeof(struct process_filter));
 838	if (!filt)
 839		return;
 840
 841	filt->name = strdup(string);
 842	filt->pid  = pid;
 843	filt->next = process_filter;
 844
 845	process_filter = filt;
 846}
 847
 848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 849{
 850	struct process_filter *filt;
 851	if (!process_filter)
 852		return 1;
 853
 854	filt = process_filter;
 855	while (filt) {
 856		if (filt->pid && p->pid == filt->pid)
 857			return 1;
 858		if (strcmp(filt->name, c->comm) == 0)
 859			return 1;
 860		filt = filt->next;
 861	}
 862	return 0;
 863}
 864
 865static int determine_display_tasks_filtered(void)
 866{
 867	struct per_pid *p;
 868	struct per_pidcomm *c;
 869	int count = 0;
 870
 871	p = all_data;
 872	while (p) {
 873		p->display = 0;
 874		if (p->start_time == 1)
 875			p->start_time = first_time;
 876
 877		/* no exit marker, task kept running to the end */
 878		if (p->end_time == 0)
 879			p->end_time = last_time;
 880
 881		c = p->all;
 882
 883		while (c) {
 884			c->display = 0;
 885
 886			if (c->start_time == 1)
 887				c->start_time = first_time;
 888
 889			if (passes_filter(p, c)) {
 890				c->display = 1;
 891				p->display = 1;
 892				count++;
 893			}
 894
 895			if (c->end_time == 0)
 896				c->end_time = last_time;
 897
 898			c = c->next;
 899		}
 900		p = p->next;
 901	}
 902	return count;
 903}
 904
 905static int determine_display_tasks(u64 threshold)
 906{
 907	struct per_pid *p;
 908	struct per_pidcomm *c;
 909	int count = 0;
 910
 911	if (process_filter)
 912		return determine_display_tasks_filtered();
 913
 914	p = all_data;
 915	while (p) {
 916		p->display = 0;
 917		if (p->start_time == 1)
 918			p->start_time = first_time;
 919
 920		/* no exit marker, task kept running to the end */
 921		if (p->end_time == 0)
 922			p->end_time = last_time;
 923		if (p->total_time >= threshold && !power_only)
 924			p->display = 1;
 925
 926		c = p->all;
 927
 928		while (c) {
 929			c->display = 0;
 930
 931			if (c->start_time == 1)
 932				c->start_time = first_time;
 933
 934			if (c->total_time >= threshold && !power_only) {
 935				c->display = 1;
 936				count++;
 937			}
 938
 939			if (c->end_time == 0)
 940				c->end_time = last_time;
 941
 942			c = c->next;
 943		}
 944		p = p->next;
 945	}
 946	return count;
 947}
 948
 949
 950
 951#define TIME_THRESH 10000000
 952
 953static void write_svg_file(const char *filename)
 954{
 955	u64 i;
 956	int count;
 957
 958	numcpus++;
 959
 960
 961	count = determine_display_tasks(TIME_THRESH);
 962
 963	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 964	if (count < 15)
 965		count = determine_display_tasks(TIME_THRESH / 10);
 966
 967	open_svg(filename, numcpus, count, first_time, last_time);
 968
 969	svg_time_grid();
 970	svg_legenda();
 971
 972	for (i = 0; i < numcpus; i++)
 973		svg_cpu_box(i, max_freq, turbo_frequency);
 974
 975	draw_cpu_usage();
 976	draw_process_bars();
 977	draw_c_p_states();
 978	draw_wakeups();
 979
 980	svg_close();
 981}
 982
 983static struct perf_tool perf_timechart = {
 984	.comm			= process_comm_event,
 985	.fork			= process_fork_event,
 986	.exit			= process_exit_event,
 987	.sample			= process_sample_event,
 988	.ordered_samples	= true,
 989};
 990
 991static int __cmd_timechart(void)
 992{
 993	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 994							 0, false, &perf_timechart);
 995	int ret = -EINVAL;
 996
 997	if (session == NULL)
 998		return -ENOMEM;
 999
1000	if (!perf_session__has_traces(session, "timechart record"))
1001		goto out_delete;
1002
1003	ret = perf_session__process_events(session, &perf_timechart);
1004	if (ret)
1005		goto out_delete;
1006
1007	end_sample_processing();
1008
1009	sort_pids();
1010
1011	write_svg_file(output_name);
1012
1013	pr_info("Written %2.1f seconds of trace to %s.\n",
1014		(last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016	perf_session__delete(session);
1017	return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021	"perf timechart [<options>] {record}",
1022	NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027	"record",
1028	"-a",
1029	"-R",
1030	"-f",
1031	"-c", "1",
1032	"-e", "power:power_start",
1033	"-e", "power:power_end",
1034	"-e", "power:power_frequency",
1035	"-e", "sched:sched_wakeup",
1036	"-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041	"record",
1042	"-a",
1043	"-R",
1044	"-f",
1045	"-c", "1",
1046	"-e", "power:cpu_frequency",
1047	"-e", "power:cpu_idle",
1048	"-e", "sched:sched_wakeup",
1049	"-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054	unsigned int rec_argc, i, j;
1055	const char **rec_argv;
1056	const char * const *record_args = record_new_args;
1057	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060	if (!is_valid_tracepoint("power:cpu_idle") &&
1061	    is_valid_tracepoint("power:power_start")) {
1062		use_old_power_events = 1;
1063		record_args = record_old_args;
1064		record_elems = ARRAY_SIZE(record_old_args);
1065	}
1066#endif
1067
1068	rec_argc = record_elems + argc - 1;
1069	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071	if (rec_argv == NULL)
1072		return -ENOMEM;
1073
1074	for (i = 0; i < record_elems; i++)
1075		rec_argv[i] = strdup(record_args[i]);
1076
1077	for (j = 1; j < (unsigned int)argc; j++, i++)
1078		rec_argv[i] = argv[j];
1079
1080	return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086	if (arg)
1087		add_process_filter(arg);
1088	return 0;
1089}
1090
1091static const struct option options[] = {
1092	OPT_STRING('i', "input", &input_name, "file",
1093		    "input file name"),
1094	OPT_STRING('o', "output", &output_name, "file",
1095		    "output file name"),
1096	OPT_INTEGER('w', "width", &svg_page_width,
1097		    "page width"),
1098	OPT_BOOLEAN('P', "power-only", &power_only,
1099		    "output power data only"),
1100	OPT_CALLBACK('p', "process", NULL, "process",
1101		      "process selector. Pass a pid or process name.",
1102		       parse_process),
1103	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104		    "Look for files with symbols relative to this directory"),
1105	OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111	argc = parse_options(argc, argv, options, timechart_usage,
1112			PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114	symbol__init();
1115
1116	if (argc && !strncmp(argv[0], "rec", 3))
1117		return __cmd_record(argc, argv);
1118	else if (argc)
1119		usage_with_options(timechart_usage, options);
1120
1121	setup_pager();
1122
1123	return __cmd_timechart();
1124}
v3.1
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
  22#include <linux/rbtree.h>
  23#include "util/symbol.h"
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
 
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
  38
  39static char		const *input_name = "perf.data";
  40static char		const *output_name = "output.svg";
  41
  42static unsigned int	numcpus;
  43static u64		min_freq;	/* Lowest CPU frequency seen */
  44static u64		max_freq;	/* Highest CPU frequency seen */
  45static u64		turbo_frequency;
  46
  47static u64		first_time, last_time;
  48
  49static bool		power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *	this is because we want to track different programs different, while
  66 *	exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72	struct per_pid *next;
  73
  74	int		pid;
  75	int		ppid;
  76
  77	u64		start_time;
  78	u64		end_time;
  79	u64		total_time;
  80	int		display;
  81
  82	struct per_pidcomm *all;
  83	struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88	struct per_pidcomm *next;
  89
  90	u64		start_time;
  91	u64		end_time;
  92	u64		total_time;
  93
  94	int		Y;
  95	int		display;
  96
  97	long		state;
  98	u64		state_since;
  99
 100	char		*comm;
 101
 102	struct cpu_sample *samples;
 103};
 104
 105struct sample_wrapper {
 106	struct sample_wrapper *next;
 107
 108	u64		timestamp;
 109	unsigned char	data[0];
 110};
 111
 112#define TYPE_NONE	0
 113#define TYPE_RUNNING	1
 114#define TYPE_WAITING	2
 115#define TYPE_BLOCKED	3
 116
 117struct cpu_sample {
 118	struct cpu_sample *next;
 119
 120	u64 start_time;
 121	u64 end_time;
 122	int type;
 123	int cpu;
 124};
 125
 126static struct per_pid *all_data;
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132	struct power_event *next;
 133	int type;
 134	int state;
 135	u64 start_time;
 136	u64 end_time;
 137	int cpu;
 138};
 139
 140struct wake_event {
 141	struct wake_event *next;
 142	int waker;
 143	int wakee;
 144	u64 time;
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152	char			*name;
 153	int			pid;
 154	struct process_filter	*next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162	struct per_pid *cursor = all_data;
 163
 164	while (cursor) {
 165		if (cursor->pid == pid)
 166			return cursor;
 167		cursor = cursor->next;
 168	}
 169	cursor = malloc(sizeof(struct per_pid));
 170	assert(cursor != NULL);
 171	memset(cursor, 0, sizeof(struct per_pid));
 172	cursor->pid = pid;
 173	cursor->next = all_data;
 174	all_data = cursor;
 175	return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180	struct per_pid *p;
 181	struct per_pidcomm *c;
 182	p = find_create_pid(pid);
 183	c = p->all;
 184	while (c) {
 185		if (c->comm && strcmp(c->comm, comm) == 0) {
 186			p->current = c;
 187			return;
 188		}
 189		if (!c->comm) {
 190			c->comm = strdup(comm);
 191			p->current = c;
 192			return;
 193		}
 194		c = c->next;
 195	}
 196	c = malloc(sizeof(struct per_pidcomm));
 197	assert(c != NULL);
 198	memset(c, 0, sizeof(struct per_pidcomm));
 199	c->comm = strdup(comm);
 200	p->current = c;
 201	c->next = p->all;
 202	p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207	struct per_pid *p, *pp;
 208	p = find_create_pid(pid);
 209	pp = find_create_pid(ppid);
 210	p->ppid = ppid;
 211	if (pp->current && pp->current->comm && !p->current)
 212		pid_set_comm(pid, pp->current->comm);
 213
 214	p->start_time = timestamp;
 215	if (p->current) {
 216		p->current->start_time = timestamp;
 217		p->current->state_since = timestamp;
 218	}
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223	struct per_pid *p;
 224	p = find_create_pid(pid);
 225	p->end_time = timestamp;
 226	if (p->current)
 227		p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 232{
 233	struct per_pid *p;
 234	struct per_pidcomm *c;
 235	struct cpu_sample *sample;
 236
 237	p = find_create_pid(pid);
 238	c = p->current;
 239	if (!c) {
 240		c = malloc(sizeof(struct per_pidcomm));
 241		assert(c != NULL);
 242		memset(c, 0, sizeof(struct per_pidcomm));
 243		p->current = c;
 244		c->next = p->all;
 245		p->all = c;
 246	}
 247
 248	sample = malloc(sizeof(struct cpu_sample));
 249	assert(sample != NULL);
 250	memset(sample, 0, sizeof(struct cpu_sample));
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 256	c->samples = sample;
 257
 258	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259		c->total_time += (end-start);
 260		p->total_time += (end-start);
 261	}
 262
 263	if (c->start_time == 0 || c->start_time > start)
 264		c->start_time = start;
 265	if (p->start_time == 0 || p->start_time > start)
 266		p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 
 277			      struct perf_sample *sample __used,
 278			      struct perf_session *session __used)
 279{
 280	pid_set_comm(event->comm.tid, event->comm.comm);
 281	return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 
 285			      struct perf_sample *sample __used,
 286			      struct perf_session *session __used)
 287{
 288	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 289	return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 
 293			      struct perf_sample *sample __used,
 294			      struct perf_session *session __used)
 295{
 296	pid_exit(event->fork.pid, event->fork.time);
 297	return 0;
 298}
 299
 300struct trace_entry {
 301	unsigned short		type;
 302	unsigned char		flags;
 303	unsigned char		preempt_count;
 304	int			pid;
 305	int			lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311	struct trace_entry te;
 312	u64	type;
 313	u64	value;
 314	u64	cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319	struct trace_entry te;
 320	u32	state;
 321	u32	cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326	struct trace_entry te;
 327	char comm[TASK_COMM_LEN];
 328	int   pid;
 329	int   prio;
 330	int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343	TRACE_FLAG_IRQS_OFF		= 0x01,
 344	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 345	TRACE_FLAG_NEED_RESCHED		= 0x04,
 346	TRACE_FLAG_HARDIRQ		= 0x08,
 347	TRACE_FLAG_SOFTIRQ		= 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353	struct trace_entry te;
 354	char prev_comm[TASK_COMM_LEN];
 355	int  prev_pid;
 356	int  prev_prio;
 357	long prev_state; /* Arjan weeps. */
 358	char next_comm[TASK_COMM_LEN];
 359	int  next_pid;
 360	int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365	cpus_cstate_start_times[cpu] = timestamp;
 366	cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371	struct power_event *pwr;
 372	pwr = malloc(sizeof(struct power_event));
 373	if (!pwr)
 374		return;
 375	memset(pwr, 0, sizeof(struct power_event));
 376
 377	pwr->state = cpus_cstate_state[cpu];
 378	pwr->start_time = cpus_cstate_start_times[cpu];
 379	pwr->end_time = timestamp;
 380	pwr->cpu = cpu;
 381	pwr->type = CSTATE;
 382	pwr->next = power_events;
 383
 384	power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 388{
 389	struct power_event *pwr;
 390	pwr = malloc(sizeof(struct power_event));
 391
 392	if (new_freq > 8000000) /* detect invalid data */
 393		return;
 394
 395	if (!pwr)
 396		return;
 397	memset(pwr, 0, sizeof(struct power_event));
 398
 399	pwr->state = cpus_pstate_state[cpu];
 400	pwr->start_time = cpus_pstate_start_times[cpu];
 401	pwr->end_time = timestamp;
 402	pwr->cpu = cpu;
 403	pwr->type = PSTATE;
 404	pwr->next = power_events;
 405
 406	if (!pwr->start_time)
 407		pwr->start_time = first_time;
 408
 409	power_events = pwr;
 410
 411	cpus_pstate_state[cpu] = new_freq;
 412	cpus_pstate_start_times[cpu] = timestamp;
 413
 414	if ((u64)new_freq > max_freq)
 415		max_freq = new_freq;
 416
 417	if (new_freq < min_freq || min_freq == 0)
 418		min_freq = new_freq;
 419
 420	if (new_freq == max_freq - 1000)
 421			turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427	struct wake_event *we;
 428	struct per_pid *p;
 429	struct wakeup_entry *wake = (void *)te;
 430
 431	we = malloc(sizeof(struct wake_event));
 432	if (!we)
 433		return;
 434
 435	memset(we, 0, sizeof(struct wake_event));
 436	we->time = timestamp;
 437	we->waker = pid;
 438
 439	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440		we->waker = -1;
 441
 442	we->wakee = wake->pid;
 443	we->next = wake_events;
 444	wake_events = we;
 445	p = find_create_pid(we->wakee);
 446
 447	if (p && p->current && p->current->state == TYPE_NONE) {
 448		p->current->state_since = timestamp;
 449		p->current->state = TYPE_WAITING;
 450	}
 451	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 459{
 460	struct per_pid *p = NULL, *prev_p;
 461	struct sched_switch *sw = (void *)te;
 462
 463
 464	prev_p = find_create_pid(sw->prev_pid);
 465
 466	p = find_create_pid(sw->next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 470	if (p && p->current) {
 471		if (p->current->state != TYPE_NONE)
 472			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 473
 474		p->current->state_since = timestamp;
 475		p->current->state = TYPE_RUNNING;
 476	}
 477
 478	if (prev_p->current) {
 479		prev_p->current->state = TYPE_NONE;
 480		prev_p->current->state_since = timestamp;
 481		if (sw->prev_state & 2)
 482			prev_p->current->state = TYPE_BLOCKED;
 483		if (sw->prev_state == 0)
 484			prev_p->current->state = TYPE_WAITING;
 485	}
 486}
 487
 488
 489static int process_sample_event(union perf_event *event __used,
 
 490				struct perf_sample *sample,
 491				struct perf_evsel *evsel __used,
 492				struct perf_session *session)
 493{
 494	struct trace_entry *te;
 495
 496	if (session->sample_type & PERF_SAMPLE_TIME) {
 497		if (!first_time || first_time > sample->time)
 498			first_time = sample->time;
 499		if (last_time < sample->time)
 500			last_time = sample->time;
 501	}
 502
 503	te = (void *)sample->raw_data;
 504	if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505		char *event_str;
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507		struct power_entry_old *peo;
 508		peo = (void *)te;
 509#endif
 510		/*
 511		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512		 * remove perf_header__find_event infrastructure bits.
 513		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514		 * ID and then just comparing against evsel->attr.config.
 515		 *
 516		 * e.g.:
 517		 *
 518		 * if (evsel->attr.config == power_cpu_idle_id)
 519		 */
 520		event_str = perf_header__find_event(te->type);
 521
 522		if (!event_str)
 523			return 0;
 524
 525		if (sample->cpu > numcpus)
 526			numcpus = sample->cpu;
 527
 528		if (strcmp(event_str, "power:cpu_idle") == 0) {
 529			struct power_processor_entry *ppe = (void *)te;
 530			if (ppe->state == (u32)PWR_EVENT_EXIT)
 531				c_state_end(ppe->cpu_id, sample->time);
 532			else
 533				c_state_start(ppe->cpu_id, sample->time,
 534					      ppe->state);
 535		}
 536		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537			struct power_processor_entry *ppe = (void *)te;
 538			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539		}
 540
 541		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 543
 544		else if (strcmp(event_str, "sched:sched_switch") == 0)
 545			sched_switch(sample->cpu, sample->time, te);
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548		if (use_old_power_events) {
 549			if (strcmp(event_str, "power:power_start") == 0)
 550				c_state_start(peo->cpu_id, sample->time,
 551					      peo->value);
 552
 553			else if (strcmp(event_str, "power:power_end") == 0)
 554				c_state_end(sample->cpu, sample->time);
 555
 556			else if (strcmp(event_str,
 557					"power:power_frequency") == 0)
 558				p_state_change(peo->cpu_id, sample->time,
 559					       peo->value);
 560		}
 561#endif
 562	}
 563	return 0;
 564}
 565
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572	u64 cpu;
 573	struct power_event *pwr;
 574
 575	for (cpu = 0; cpu <= numcpus; cpu++) {
 576		pwr = malloc(sizeof(struct power_event));
 577		if (!pwr)
 578			return;
 579		memset(pwr, 0, sizeof(struct power_event));
 580
 581		/* C state */
 582#if 0
 583		pwr->state = cpus_cstate_state[cpu];
 584		pwr->start_time = cpus_cstate_start_times[cpu];
 585		pwr->end_time = last_time;
 586		pwr->cpu = cpu;
 587		pwr->type = CSTATE;
 588		pwr->next = power_events;
 589
 590		power_events = pwr;
 591#endif
 592		/* P state */
 593
 594		pwr = malloc(sizeof(struct power_event));
 595		if (!pwr)
 596			return;
 597		memset(pwr, 0, sizeof(struct power_event));
 598
 599		pwr->state = cpus_pstate_state[cpu];
 600		pwr->start_time = cpus_pstate_start_times[cpu];
 601		pwr->end_time = last_time;
 602		pwr->cpu = cpu;
 603		pwr->type = PSTATE;
 604		pwr->next = power_events;
 605
 606		if (!pwr->start_time)
 607			pwr->start_time = first_time;
 608		if (!pwr->state)
 609			pwr->state = min_freq;
 610		power_events = pwr;
 611	}
 612}
 613
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619	struct per_pid *new_list, *p, *cursor, *prev;
 620	/* sort by ppid first, then by pid, lowest to highest */
 621
 622	new_list = NULL;
 623
 624	while (all_data) {
 625		p = all_data;
 626		all_data = p->next;
 627		p->next = NULL;
 628
 629		if (new_list == NULL) {
 630			new_list = p;
 631			p->next = NULL;
 632			continue;
 633		}
 634		prev = NULL;
 635		cursor = new_list;
 636		while (cursor) {
 637			if (cursor->ppid > p->ppid ||
 638				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639				/* must insert before */
 640				if (prev) {
 641					p->next = prev->next;
 642					prev->next = p;
 643					cursor = NULL;
 644					continue;
 645				} else {
 646					p->next = new_list;
 647					new_list = p;
 648					cursor = NULL;
 649					continue;
 650				}
 651			}
 652
 653			prev = cursor;
 654			cursor = cursor->next;
 655			if (!cursor)
 656				prev->next = p;
 657		}
 658	}
 659	all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665	struct power_event *pwr;
 666	pwr = power_events;
 667
 668	/*
 669	 * two pass drawing so that the P state bars are on top of the C state blocks
 670	 */
 671	while (pwr) {
 672		if (pwr->type == CSTATE)
 673			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674		pwr = pwr->next;
 675	}
 676
 677	pwr = power_events;
 678	while (pwr) {
 679		if (pwr->type == PSTATE) {
 680			if (!pwr->state)
 681				pwr->state = min_freq;
 682			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683		}
 684		pwr = pwr->next;
 685	}
 686}
 687
 688static void draw_wakeups(void)
 689{
 690	struct wake_event *we;
 691	struct per_pid *p;
 692	struct per_pidcomm *c;
 693
 694	we = wake_events;
 695	while (we) {
 696		int from = 0, to = 0;
 697		char *task_from = NULL, *task_to = NULL;
 698
 699		/* locate the column of the waker and wakee */
 700		p = all_data;
 701		while (p) {
 702			if (p->pid == we->waker || p->pid == we->wakee) {
 703				c = p->all;
 704				while (c) {
 705					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706						if (p->pid == we->waker && !from) {
 707							from = c->Y;
 708							task_from = strdup(c->comm);
 709						}
 710						if (p->pid == we->wakee && !to) {
 711							to = c->Y;
 712							task_to = strdup(c->comm);
 713						}
 714					}
 715					c = c->next;
 716				}
 717				c = p->all;
 718				while (c) {
 719					if (p->pid == we->waker && !from) {
 720						from = c->Y;
 721						task_from = strdup(c->comm);
 722					}
 723					if (p->pid == we->wakee && !to) {
 724						to = c->Y;
 725						task_to = strdup(c->comm);
 726					}
 727					c = c->next;
 728				}
 729			}
 730			p = p->next;
 731		}
 732
 733		if (!task_from) {
 734			task_from = malloc(40);
 735			sprintf(task_from, "[%i]", we->waker);
 736		}
 737		if (!task_to) {
 738			task_to = malloc(40);
 739			sprintf(task_to, "[%i]", we->wakee);
 740		}
 741
 742		if (we->waker == -1)
 743			svg_interrupt(we->time, to);
 744		else if (from && to && abs(from - to) == 1)
 745			svg_wakeline(we->time, from, to);
 746		else
 747			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 748		we = we->next;
 749
 750		free(task_from);
 751		free(task_to);
 752	}
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757	struct per_pid *p;
 758	struct per_pidcomm *c;
 759	struct cpu_sample *sample;
 760	p = all_data;
 761	while (p) {
 762		c = p->all;
 763		while (c) {
 764			sample = c->samples;
 765			while (sample) {
 766				if (sample->type == TYPE_RUNNING)
 767					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 768
 769				sample = sample->next;
 770			}
 771			c = c->next;
 772		}
 773		p = p->next;
 774	}
 775}
 776
 777static void draw_process_bars(void)
 778{
 779	struct per_pid *p;
 780	struct per_pidcomm *c;
 781	struct cpu_sample *sample;
 782	int Y = 0;
 783
 784	Y = 2 * numcpus + 2;
 785
 786	p = all_data;
 787	while (p) {
 788		c = p->all;
 789		while (c) {
 790			if (!c->display) {
 791				c->Y = 0;
 792				c = c->next;
 793				continue;
 794			}
 795
 796			svg_box(Y, c->start_time, c->end_time, "process");
 797			sample = c->samples;
 798			while (sample) {
 799				if (sample->type == TYPE_RUNNING)
 800					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 801				if (sample->type == TYPE_BLOCKED)
 802					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 803				if (sample->type == TYPE_WAITING)
 804					svg_waiting(Y, sample->start_time, sample->end_time);
 805				sample = sample->next;
 806			}
 807
 808			if (c->comm) {
 809				char comm[256];
 810				if (c->total_time > 5000000000) /* 5 seconds */
 811					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812				else
 813					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815				svg_text(Y, c->start_time, comm);
 816			}
 817			c->Y = Y;
 818			Y++;
 819			c = c->next;
 820		}
 821		p = p->next;
 822	}
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827	struct process_filter *filt;
 828	int pid;
 829
 830	pid = strtoull(string, NULL, 10);
 831	filt = malloc(sizeof(struct process_filter));
 832	if (!filt)
 833		return;
 834
 835	filt->name = strdup(string);
 836	filt->pid  = pid;
 837	filt->next = process_filter;
 838
 839	process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844	struct process_filter *filt;
 845	if (!process_filter)
 846		return 1;
 847
 848	filt = process_filter;
 849	while (filt) {
 850		if (filt->pid && p->pid == filt->pid)
 851			return 1;
 852		if (strcmp(filt->name, c->comm) == 0)
 853			return 1;
 854		filt = filt->next;
 855	}
 856	return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861	struct per_pid *p;
 862	struct per_pidcomm *c;
 863	int count = 0;
 864
 865	p = all_data;
 866	while (p) {
 867		p->display = 0;
 868		if (p->start_time == 1)
 869			p->start_time = first_time;
 870
 871		/* no exit marker, task kept running to the end */
 872		if (p->end_time == 0)
 873			p->end_time = last_time;
 874
 875		c = p->all;
 876
 877		while (c) {
 878			c->display = 0;
 879
 880			if (c->start_time == 1)
 881				c->start_time = first_time;
 882
 883			if (passes_filter(p, c)) {
 884				c->display = 1;
 885				p->display = 1;
 886				count++;
 887			}
 888
 889			if (c->end_time == 0)
 890				c->end_time = last_time;
 891
 892			c = c->next;
 893		}
 894		p = p->next;
 895	}
 896	return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901	struct per_pid *p;
 902	struct per_pidcomm *c;
 903	int count = 0;
 904
 905	if (process_filter)
 906		return determine_display_tasks_filtered();
 907
 908	p = all_data;
 909	while (p) {
 910		p->display = 0;
 911		if (p->start_time == 1)
 912			p->start_time = first_time;
 913
 914		/* no exit marker, task kept running to the end */
 915		if (p->end_time == 0)
 916			p->end_time = last_time;
 917		if (p->total_time >= threshold && !power_only)
 918			p->display = 1;
 919
 920		c = p->all;
 921
 922		while (c) {
 923			c->display = 0;
 924
 925			if (c->start_time == 1)
 926				c->start_time = first_time;
 927
 928			if (c->total_time >= threshold && !power_only) {
 929				c->display = 1;
 930				count++;
 931			}
 932
 933			if (c->end_time == 0)
 934				c->end_time = last_time;
 935
 936			c = c->next;
 937		}
 938		p = p->next;
 939	}
 940	return count;
 941}
 942
 943
 944
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949	u64 i;
 950	int count;
 951
 952	numcpus++;
 953
 954
 955	count = determine_display_tasks(TIME_THRESH);
 956
 957	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958	if (count < 15)
 959		count = determine_display_tasks(TIME_THRESH / 10);
 960
 961	open_svg(filename, numcpus, count, first_time, last_time);
 962
 963	svg_time_grid();
 964	svg_legenda();
 965
 966	for (i = 0; i < numcpus; i++)
 967		svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969	draw_cpu_usage();
 970	draw_process_bars();
 971	draw_c_p_states();
 972	draw_wakeups();
 973
 974	svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978	.comm			= process_comm_event,
 979	.fork			= process_fork_event,
 980	.exit			= process_exit_event,
 981	.sample			= process_sample_event,
 982	.ordered_samples	= true,
 983};
 984
 985static int __cmd_timechart(void)
 986{
 987	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988							 0, false, &event_ops);
 989	int ret = -EINVAL;
 990
 991	if (session == NULL)
 992		return -ENOMEM;
 993
 994	if (!perf_session__has_traces(session, "timechart record"))
 995		goto out_delete;
 996
 997	ret = perf_session__process_events(session, &event_ops);
 998	if (ret)
 999		goto out_delete;
1000
1001	end_sample_processing();
1002
1003	sort_pids();
1004
1005	write_svg_file(output_name);
1006
1007	pr_info("Written %2.1f seconds of trace to %s.\n",
1008		(last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010	perf_session__delete(session);
1011	return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015	"perf timechart [<options>] {record}",
1016	NULL
1017};
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021	"record",
1022	"-a",
1023	"-R",
1024	"-f",
1025	"-c", "1",
1026	"-e", "power:power_start",
1027	"-e", "power:power_end",
1028	"-e", "power:power_frequency",
1029	"-e", "sched:sched_wakeup",
1030	"-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035	"record",
1036	"-a",
1037	"-R",
1038	"-f",
1039	"-c", "1",
1040	"-e", "power:cpu_frequency",
1041	"-e", "power:cpu_idle",
1042	"-e", "sched:sched_wakeup",
1043	"-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048	unsigned int rec_argc, i, j;
1049	const char **rec_argv;
1050	const char * const *record_args = record_new_args;
1051	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054	if (!is_valid_tracepoint("power:cpu_idle") &&
1055	    is_valid_tracepoint("power:power_start")) {
1056		use_old_power_events = 1;
1057		record_args = record_old_args;
1058		record_elems = ARRAY_SIZE(record_old_args);
1059	}
1060#endif
1061
1062	rec_argc = record_elems + argc - 1;
1063	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065	if (rec_argv == NULL)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < record_elems; i++)
1069		rec_argv[i] = strdup(record_args[i]);
1070
1071	for (j = 1; j < (unsigned int)argc; j++, i++)
1072		rec_argv[i] = argv[j];
1073
1074	return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079{
1080	if (arg)
1081		add_process_filter(arg);
1082	return 0;
1083}
1084
1085static const struct option options[] = {
1086	OPT_STRING('i', "input", &input_name, "file",
1087		    "input file name"),
1088	OPT_STRING('o', "output", &output_name, "file",
1089		    "output file name"),
1090	OPT_INTEGER('w', "width", &svg_page_width,
1091		    "page width"),
1092	OPT_BOOLEAN('P', "power-only", &power_only,
1093		    "output power data only"),
1094	OPT_CALLBACK('p', "process", NULL, "process",
1095		      "process selector. Pass a pid or process name.",
1096		       parse_process),
1097	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098		    "Look for files with symbols relative to this directory"),
1099	OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
1105	argc = parse_options(argc, argv, options, timechart_usage,
1106			PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108	symbol__init();
1109
1110	if (argc && !strncmp(argv[0], "rec", 3))
1111		return __cmd_record(argc, argv);
1112	else if (argc)
1113		usage_with_options(timechart_usage, options);
1114
1115	setup_pager();
1116
1117	return __cmd_timechart();
1118}