Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include "util/evsel.h"
23#include <linux/rbtree.h>
24#include "util/symbol.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36
37#define SUPPORT_OLD_POWER_EVENTS 1
38#define PWR_EVENT_EXIT -1
39
40
41static const char *input_name;
42static const char *output_name = "output.svg";
43
44static unsigned int numcpus;
45static u64 min_freq; /* Lowest CPU frequency seen */
46static u64 max_freq; /* Highest CPU frequency seen */
47static u64 turbo_frequency;
48
49static u64 first_time, last_time;
50
51static bool power_only;
52
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74 struct per_pid *next;
75
76 int pid;
77 int ppid;
78
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
83
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct process_filter;
153struct process_filter {
154 char *name;
155 int pid;
156 struct process_filter *next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164 struct per_pid *cursor = all_data;
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
215
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
220 }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
248 }
249
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
259
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
263 }
264
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
269}
270
271#define MAX_CPUS 4096
272
273static u64 cpus_cstate_start_times[MAX_CPUS];
274static int cpus_cstate_state[MAX_CPUS];
275static u64 cpus_pstate_start_times[MAX_CPUS];
276static u64 cpus_pstate_state[MAX_CPUS];
277
278static int process_comm_event(struct perf_tool *tool __used,
279 union perf_event *event,
280 struct perf_sample *sample __used,
281 struct machine *machine __used)
282{
283 pid_set_comm(event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool __used,
288 union perf_event *event,
289 struct perf_sample *sample __used,
290 struct machine *machine __used)
291{
292 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 return 0;
294}
295
296static int process_exit_event(struct perf_tool *tool __used,
297 union perf_event *event,
298 struct perf_sample *sample __used,
299 struct machine *machine __used)
300{
301 pid_exit(event->fork.pid, event->fork.time);
302 return 0;
303}
304
305struct trace_entry {
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int lock_depth;
311};
312
313#ifdef SUPPORT_OLD_POWER_EVENTS
314static int use_old_power_events;
315struct power_entry_old {
316 struct trace_entry te;
317 u64 type;
318 u64 value;
319 u64 cpu_id;
320};
321#endif
322
323struct power_processor_entry {
324 struct trace_entry te;
325 u32 state;
326 u32 cpu_id;
327};
328
329#define TASK_COMM_LEN 16
330struct wakeup_entry {
331 struct trace_entry te;
332 char comm[TASK_COMM_LEN];
333 int pid;
334 int prio;
335 int success;
336};
337
338/*
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
346 */
347enum trace_flag_type {
348 TRACE_FLAG_IRQS_OFF = 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
350 TRACE_FLAG_NEED_RESCHED = 0x04,
351 TRACE_FLAG_HARDIRQ = 0x08,
352 TRACE_FLAG_SOFTIRQ = 0x10,
353};
354
355
356
357struct sched_switch {
358 struct trace_entry te;
359 char prev_comm[TASK_COMM_LEN];
360 int prev_pid;
361 int prev_prio;
362 long prev_state; /* Arjan weeps. */
363 char next_comm[TASK_COMM_LEN];
364 int next_pid;
365 int next_prio;
366};
367
368static void c_state_start(int cpu, u64 timestamp, int state)
369{
370 cpus_cstate_start_times[cpu] = timestamp;
371 cpus_cstate_state[cpu] = state;
372}
373
374static void c_state_end(int cpu, u64 timestamp)
375{
376 struct power_event *pwr;
377 pwr = malloc(sizeof(struct power_event));
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
381
382 pwr->state = cpus_cstate_state[cpu];
383 pwr->start_time = cpus_cstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = CSTATE;
387 pwr->next = power_events;
388
389 power_events = pwr;
390}
391
392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
393{
394 struct power_event *pwr;
395 pwr = malloc(sizeof(struct power_event));
396
397 if (new_freq > 8000000) /* detect invalid data */
398 return;
399
400 if (!pwr)
401 return;
402 memset(pwr, 0, sizeof(struct power_event));
403
404 pwr->state = cpus_pstate_state[cpu];
405 pwr->start_time = cpus_pstate_start_times[cpu];
406 pwr->end_time = timestamp;
407 pwr->cpu = cpu;
408 pwr->type = PSTATE;
409 pwr->next = power_events;
410
411 if (!pwr->start_time)
412 pwr->start_time = first_time;
413
414 power_events = pwr;
415
416 cpus_pstate_state[cpu] = new_freq;
417 cpus_pstate_start_times[cpu] = timestamp;
418
419 if ((u64)new_freq > max_freq)
420 max_freq = new_freq;
421
422 if (new_freq < min_freq || min_freq == 0)
423 min_freq = new_freq;
424
425 if (new_freq == max_freq - 1000)
426 turbo_frequency = max_freq;
427}
428
429static void
430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
431{
432 struct wake_event *we;
433 struct per_pid *p;
434 struct wakeup_entry *wake = (void *)te;
435
436 we = malloc(sizeof(struct wake_event));
437 if (!we)
438 return;
439
440 memset(we, 0, sizeof(struct wake_event));
441 we->time = timestamp;
442 we->waker = pid;
443
444 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 we->waker = -1;
446
447 we->wakee = wake->pid;
448 we->next = wake_events;
449 wake_events = we;
450 p = find_create_pid(we->wakee);
451
452 if (p && p->current && p->current->state == TYPE_NONE) {
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456 if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_WAITING;
460 }
461}
462
463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
464{
465 struct per_pid *p = NULL, *prev_p;
466 struct sched_switch *sw = (void *)te;
467
468
469 prev_p = find_create_pid(sw->prev_pid);
470
471 p = find_create_pid(sw->next_pid);
472
473 if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 if (p && p->current) {
476 if (p->current->state != TYPE_NONE)
477 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
478
479 p->current->state_since = timestamp;
480 p->current->state = TYPE_RUNNING;
481 }
482
483 if (prev_p->current) {
484 prev_p->current->state = TYPE_NONE;
485 prev_p->current->state_since = timestamp;
486 if (sw->prev_state & 2)
487 prev_p->current->state = TYPE_BLOCKED;
488 if (sw->prev_state == 0)
489 prev_p->current->state = TYPE_WAITING;
490 }
491}
492
493
494static int process_sample_event(struct perf_tool *tool __used,
495 union perf_event *event __used,
496 struct perf_sample *sample,
497 struct perf_evsel *evsel,
498 struct machine *machine __used)
499{
500 struct trace_entry *te;
501
502 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 if (!first_time || first_time > sample->time)
504 first_time = sample->time;
505 if (last_time < sample->time)
506 last_time = sample->time;
507 }
508
509 te = (void *)sample->raw_data;
510 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 char *event_str;
512#ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old *peo;
514 peo = (void *)te;
515#endif
516 /*
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
521 *
522 * e.g.:
523 *
524 * if (evsel->attr.config == power_cpu_idle_id)
525 */
526 event_str = perf_header__find_event(te->type);
527
528 if (!event_str)
529 return 0;
530
531 if (sample->cpu > numcpus)
532 numcpus = sample->cpu;
533
534 if (strcmp(event_str, "power:cpu_idle") == 0) {
535 struct power_processor_entry *ppe = (void *)te;
536 if (ppe->state == (u32)PWR_EVENT_EXIT)
537 c_state_end(ppe->cpu_id, sample->time);
538 else
539 c_state_start(ppe->cpu_id, sample->time,
540 ppe->state);
541 }
542 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 struct power_processor_entry *ppe = (void *)te;
544 p_state_change(ppe->cpu_id, sample->time, ppe->state);
545 }
546
547 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
549
550 else if (strcmp(event_str, "sched:sched_switch") == 0)
551 sched_switch(sample->cpu, sample->time, te);
552
553#ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events) {
555 if (strcmp(event_str, "power:power_start") == 0)
556 c_state_start(peo->cpu_id, sample->time,
557 peo->value);
558
559 else if (strcmp(event_str, "power:power_end") == 0)
560 c_state_end(sample->cpu, sample->time);
561
562 else if (strcmp(event_str,
563 "power:power_frequency") == 0)
564 p_state_change(peo->cpu_id, sample->time,
565 peo->value);
566 }
567#endif
568 }
569 return 0;
570}
571
572/*
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
575 */
576static void end_sample_processing(void)
577{
578 u64 cpu;
579 struct power_event *pwr;
580
581 for (cpu = 0; cpu <= numcpus; cpu++) {
582 pwr = malloc(sizeof(struct power_event));
583 if (!pwr)
584 return;
585 memset(pwr, 0, sizeof(struct power_event));
586
587 /* C state */
588#if 0
589 pwr->state = cpus_cstate_state[cpu];
590 pwr->start_time = cpus_cstate_start_times[cpu];
591 pwr->end_time = last_time;
592 pwr->cpu = cpu;
593 pwr->type = CSTATE;
594 pwr->next = power_events;
595
596 power_events = pwr;
597#endif
598 /* P state */
599
600 pwr = malloc(sizeof(struct power_event));
601 if (!pwr)
602 return;
603 memset(pwr, 0, sizeof(struct power_event));
604
605 pwr->state = cpus_pstate_state[cpu];
606 pwr->start_time = cpus_pstate_start_times[cpu];
607 pwr->end_time = last_time;
608 pwr->cpu = cpu;
609 pwr->type = PSTATE;
610 pwr->next = power_events;
611
612 if (!pwr->start_time)
613 pwr->start_time = first_time;
614 if (!pwr->state)
615 pwr->state = min_freq;
616 power_events = pwr;
617 }
618}
619
620/*
621 * Sort the pid datastructure
622 */
623static void sort_pids(void)
624{
625 struct per_pid *new_list, *p, *cursor, *prev;
626 /* sort by ppid first, then by pid, lowest to highest */
627
628 new_list = NULL;
629
630 while (all_data) {
631 p = all_data;
632 all_data = p->next;
633 p->next = NULL;
634
635 if (new_list == NULL) {
636 new_list = p;
637 p->next = NULL;
638 continue;
639 }
640 prev = NULL;
641 cursor = new_list;
642 while (cursor) {
643 if (cursor->ppid > p->ppid ||
644 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 /* must insert before */
646 if (prev) {
647 p->next = prev->next;
648 prev->next = p;
649 cursor = NULL;
650 continue;
651 } else {
652 p->next = new_list;
653 new_list = p;
654 cursor = NULL;
655 continue;
656 }
657 }
658
659 prev = cursor;
660 cursor = cursor->next;
661 if (!cursor)
662 prev->next = p;
663 }
664 }
665 all_data = new_list;
666}
667
668
669static void draw_c_p_states(void)
670{
671 struct power_event *pwr;
672 pwr = power_events;
673
674 /*
675 * two pass drawing so that the P state bars are on top of the C state blocks
676 */
677 while (pwr) {
678 if (pwr->type == CSTATE)
679 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 pwr = pwr->next;
681 }
682
683 pwr = power_events;
684 while (pwr) {
685 if (pwr->type == PSTATE) {
686 if (!pwr->state)
687 pwr->state = min_freq;
688 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
689 }
690 pwr = pwr->next;
691 }
692}
693
694static void draw_wakeups(void)
695{
696 struct wake_event *we;
697 struct per_pid *p;
698 struct per_pidcomm *c;
699
700 we = wake_events;
701 while (we) {
702 int from = 0, to = 0;
703 char *task_from = NULL, *task_to = NULL;
704
705 /* locate the column of the waker and wakee */
706 p = all_data;
707 while (p) {
708 if (p->pid == we->waker || p->pid == we->wakee) {
709 c = p->all;
710 while (c) {
711 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 if (p->pid == we->waker && !from) {
713 from = c->Y;
714 task_from = strdup(c->comm);
715 }
716 if (p->pid == we->wakee && !to) {
717 to = c->Y;
718 task_to = strdup(c->comm);
719 }
720 }
721 c = c->next;
722 }
723 c = p->all;
724 while (c) {
725 if (p->pid == we->waker && !from) {
726 from = c->Y;
727 task_from = strdup(c->comm);
728 }
729 if (p->pid == we->wakee && !to) {
730 to = c->Y;
731 task_to = strdup(c->comm);
732 }
733 c = c->next;
734 }
735 }
736 p = p->next;
737 }
738
739 if (!task_from) {
740 task_from = malloc(40);
741 sprintf(task_from, "[%i]", we->waker);
742 }
743 if (!task_to) {
744 task_to = malloc(40);
745 sprintf(task_to, "[%i]", we->wakee);
746 }
747
748 if (we->waker == -1)
749 svg_interrupt(we->time, to);
750 else if (from && to && abs(from - to) == 1)
751 svg_wakeline(we->time, from, to);
752 else
753 svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 we = we->next;
755
756 free(task_from);
757 free(task_to);
758 }
759}
760
761static void draw_cpu_usage(void)
762{
763 struct per_pid *p;
764 struct per_pidcomm *c;
765 struct cpu_sample *sample;
766 p = all_data;
767 while (p) {
768 c = p->all;
769 while (c) {
770 sample = c->samples;
771 while (sample) {
772 if (sample->type == TYPE_RUNNING)
773 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
774
775 sample = sample->next;
776 }
777 c = c->next;
778 }
779 p = p->next;
780 }
781}
782
783static void draw_process_bars(void)
784{
785 struct per_pid *p;
786 struct per_pidcomm *c;
787 struct cpu_sample *sample;
788 int Y = 0;
789
790 Y = 2 * numcpus + 2;
791
792 p = all_data;
793 while (p) {
794 c = p->all;
795 while (c) {
796 if (!c->display) {
797 c->Y = 0;
798 c = c->next;
799 continue;
800 }
801
802 svg_box(Y, c->start_time, c->end_time, "process");
803 sample = c->samples;
804 while (sample) {
805 if (sample->type == TYPE_RUNNING)
806 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 if (sample->type == TYPE_BLOCKED)
808 svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 if (sample->type == TYPE_WAITING)
810 svg_waiting(Y, sample->start_time, sample->end_time);
811 sample = sample->next;
812 }
813
814 if (c->comm) {
815 char comm[256];
816 if (c->total_time > 5000000000) /* 5 seconds */
817 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 else
819 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
820
821 svg_text(Y, c->start_time, comm);
822 }
823 c->Y = Y;
824 Y++;
825 c = c->next;
826 }
827 p = p->next;
828 }
829}
830
831static void add_process_filter(const char *string)
832{
833 struct process_filter *filt;
834 int pid;
835
836 pid = strtoull(string, NULL, 10);
837 filt = malloc(sizeof(struct process_filter));
838 if (!filt)
839 return;
840
841 filt->name = strdup(string);
842 filt->pid = pid;
843 filt->next = process_filter;
844
845 process_filter = filt;
846}
847
848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
849{
850 struct process_filter *filt;
851 if (!process_filter)
852 return 1;
853
854 filt = process_filter;
855 while (filt) {
856 if (filt->pid && p->pid == filt->pid)
857 return 1;
858 if (strcmp(filt->name, c->comm) == 0)
859 return 1;
860 filt = filt->next;
861 }
862 return 0;
863}
864
865static int determine_display_tasks_filtered(void)
866{
867 struct per_pid *p;
868 struct per_pidcomm *c;
869 int count = 0;
870
871 p = all_data;
872 while (p) {
873 p->display = 0;
874 if (p->start_time == 1)
875 p->start_time = first_time;
876
877 /* no exit marker, task kept running to the end */
878 if (p->end_time == 0)
879 p->end_time = last_time;
880
881 c = p->all;
882
883 while (c) {
884 c->display = 0;
885
886 if (c->start_time == 1)
887 c->start_time = first_time;
888
889 if (passes_filter(p, c)) {
890 c->display = 1;
891 p->display = 1;
892 count++;
893 }
894
895 if (c->end_time == 0)
896 c->end_time = last_time;
897
898 c = c->next;
899 }
900 p = p->next;
901 }
902 return count;
903}
904
905static int determine_display_tasks(u64 threshold)
906{
907 struct per_pid *p;
908 struct per_pidcomm *c;
909 int count = 0;
910
911 if (process_filter)
912 return determine_display_tasks_filtered();
913
914 p = all_data;
915 while (p) {
916 p->display = 0;
917 if (p->start_time == 1)
918 p->start_time = first_time;
919
920 /* no exit marker, task kept running to the end */
921 if (p->end_time == 0)
922 p->end_time = last_time;
923 if (p->total_time >= threshold && !power_only)
924 p->display = 1;
925
926 c = p->all;
927
928 while (c) {
929 c->display = 0;
930
931 if (c->start_time == 1)
932 c->start_time = first_time;
933
934 if (c->total_time >= threshold && !power_only) {
935 c->display = 1;
936 count++;
937 }
938
939 if (c->end_time == 0)
940 c->end_time = last_time;
941
942 c = c->next;
943 }
944 p = p->next;
945 }
946 return count;
947}
948
949
950
951#define TIME_THRESH 10000000
952
953static void write_svg_file(const char *filename)
954{
955 u64 i;
956 int count;
957
958 numcpus++;
959
960
961 count = determine_display_tasks(TIME_THRESH);
962
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 if (count < 15)
965 count = determine_display_tasks(TIME_THRESH / 10);
966
967 open_svg(filename, numcpus, count, first_time, last_time);
968
969 svg_time_grid();
970 svg_legenda();
971
972 for (i = 0; i < numcpus; i++)
973 svg_cpu_box(i, max_freq, turbo_frequency);
974
975 draw_cpu_usage();
976 draw_process_bars();
977 draw_c_p_states();
978 draw_wakeups();
979
980 svg_close();
981}
982
983static struct perf_tool perf_timechart = {
984 .comm = process_comm_event,
985 .fork = process_fork_event,
986 .exit = process_exit_event,
987 .sample = process_sample_event,
988 .ordered_samples = true,
989};
990
991static int __cmd_timechart(void)
992{
993 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 0, false, &perf_timechart);
995 int ret = -EINVAL;
996
997 if (session == NULL)
998 return -ENOMEM;
999
1000 if (!perf_session__has_traces(session, "timechart record"))
1001 goto out_delete;
1002
1003 ret = perf_session__process_events(session, &perf_timechart);
1004 if (ret)
1005 goto out_delete;
1006
1007 end_sample_processing();
1008
1009 sort_pids();
1010
1011 write_svg_file(output_name);
1012
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016 perf_session__delete(session);
1017 return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021 "perf timechart [<options>] {record}",
1022 NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027 "record",
1028 "-a",
1029 "-R",
1030 "-f",
1031 "-c", "1",
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041 "record",
1042 "-a",
1043 "-R",
1044 "-f",
1045 "-c", "1",
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054 unsigned int rec_argc, i, j;
1055 const char **rec_argv;
1056 const char * const *record_args = record_new_args;
1057 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events = 1;
1063 record_args = record_old_args;
1064 record_elems = ARRAY_SIZE(record_old_args);
1065 }
1066#endif
1067
1068 rec_argc = record_elems + argc - 1;
1069 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071 if (rec_argv == NULL)
1072 return -ENOMEM;
1073
1074 for (i = 0; i < record_elems; i++)
1075 rec_argv[i] = strdup(record_args[i]);
1076
1077 for (j = 1; j < (unsigned int)argc; j++, i++)
1078 rec_argv[i] = argv[j];
1079
1080 return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086 if (arg)
1087 add_process_filter(arg);
1088 return 0;
1089}
1090
1091static const struct option options[] = {
1092 OPT_STRING('i', "input", &input_name, "file",
1093 "input file name"),
1094 OPT_STRING('o', "output", &output_name, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width,
1097 "page width"),
1098 OPT_BOOLEAN('P', "power-only", &power_only,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL, "process",
1101 "process selector. Pass a pid or process name.",
1102 parse_process),
1103 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 "Look for files with symbols relative to this directory"),
1105 OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111 argc = parse_options(argc, argv, options, timechart_usage,
1112 PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114 symbol__init();
1115
1116 if (argc && !strncmp(argv[0], "rec", 3))
1117 return __cmd_record(argc, argv);
1118 else if (argc)
1119 usage_with_options(timechart_usage, options);
1120
1121 setup_pager();
1122
1123 return __cmd_timechart();
1124}
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/callchain.h"
25#include "util/strlist.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include "util/parse-options.h"
30#include "util/parse-events.h"
31#include "util/event.h"
32#include "util/session.h"
33#include "util/svghelper.h"
34
35#define SUPPORT_OLD_POWER_EVENTS 1
36#define PWR_EVENT_EXIT -1
37
38
39static char const *input_name = "perf.data";
40static char const *output_name = "output.svg";
41
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
49static bool power_only;
50
51
52struct per_pid;
53struct per_pidcomm;
54
55struct cpu_sample;
56struct power_event;
57struct wake_event;
58
59struct sample_wrapper;
60
61/*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71struct per_pid {
72 struct per_pid *next;
73
74 int pid;
75 int ppid;
76
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
81
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
84};
85
86
87struct per_pidcomm {
88 struct per_pidcomm *next;
89
90 u64 start_time;
91 u64 end_time;
92 u64 total_time;
93
94 int Y;
95 int display;
96
97 long state;
98 u64 state_since;
99
100 char *comm;
101
102 struct cpu_sample *samples;
103};
104
105struct sample_wrapper {
106 struct sample_wrapper *next;
107
108 u64 timestamp;
109 unsigned char data[0];
110};
111
112#define TYPE_NONE 0
113#define TYPE_RUNNING 1
114#define TYPE_WAITING 2
115#define TYPE_BLOCKED 3
116
117struct cpu_sample {
118 struct cpu_sample *next;
119
120 u64 start_time;
121 u64 end_time;
122 int type;
123 int cpu;
124};
125
126static struct per_pid *all_data;
127
128#define CSTATE 1
129#define PSTATE 2
130
131struct power_event {
132 struct power_event *next;
133 int type;
134 int state;
135 u64 start_time;
136 u64 end_time;
137 int cpu;
138};
139
140struct wake_event {
141 struct wake_event *next;
142 int waker;
143 int wakee;
144 u64 time;
145};
146
147static struct power_event *power_events;
148static struct wake_event *wake_events;
149
150struct process_filter;
151struct process_filter {
152 char *name;
153 int pid;
154 struct process_filter *next;
155};
156
157static struct process_filter *process_filter;
158
159
160static struct per_pid *find_create_pid(int pid)
161{
162 struct per_pid *cursor = all_data;
163
164 while (cursor) {
165 if (cursor->pid == pid)
166 return cursor;
167 cursor = cursor->next;
168 }
169 cursor = malloc(sizeof(struct per_pid));
170 assert(cursor != NULL);
171 memset(cursor, 0, sizeof(struct per_pid));
172 cursor->pid = pid;
173 cursor->next = all_data;
174 all_data = cursor;
175 return cursor;
176}
177
178static void pid_set_comm(int pid, char *comm)
179{
180 struct per_pid *p;
181 struct per_pidcomm *c;
182 p = find_create_pid(pid);
183 c = p->all;
184 while (c) {
185 if (c->comm && strcmp(c->comm, comm) == 0) {
186 p->current = c;
187 return;
188 }
189 if (!c->comm) {
190 c->comm = strdup(comm);
191 p->current = c;
192 return;
193 }
194 c = c->next;
195 }
196 c = malloc(sizeof(struct per_pidcomm));
197 assert(c != NULL);
198 memset(c, 0, sizeof(struct per_pidcomm));
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
203}
204
205static void pid_fork(int pid, int ppid, u64 timestamp)
206{
207 struct per_pid *p, *pp;
208 p = find_create_pid(pid);
209 pp = find_create_pid(ppid);
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
212 pid_set_comm(pid, pp->current->comm);
213
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
218 }
219}
220
221static void pid_exit(int pid, u64 timestamp)
222{
223 struct per_pid *p;
224 p = find_create_pid(pid);
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
228}
229
230static void
231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232{
233 struct per_pid *p;
234 struct per_pidcomm *c;
235 struct cpu_sample *sample;
236
237 p = find_create_pid(pid);
238 c = p->current;
239 if (!c) {
240 c = malloc(sizeof(struct per_pidcomm));
241 assert(c != NULL);
242 memset(c, 0, sizeof(struct per_pidcomm));
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
248 sample = malloc(sizeof(struct cpu_sample));
249 assert(sample != NULL);
250 memset(sample, 0, sizeof(struct cpu_sample));
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 c->samples = sample;
257
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
261 }
262
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
267}
268
269#define MAX_CPUS 4096
270
271static u64 cpus_cstate_start_times[MAX_CPUS];
272static int cpus_cstate_state[MAX_CPUS];
273static u64 cpus_pstate_start_times[MAX_CPUS];
274static u64 cpus_pstate_state[MAX_CPUS];
275
276static int process_comm_event(union perf_event *event,
277 struct perf_sample *sample __used,
278 struct perf_session *session __used)
279{
280 pid_set_comm(event->comm.tid, event->comm.comm);
281 return 0;
282}
283
284static int process_fork_event(union perf_event *event,
285 struct perf_sample *sample __used,
286 struct perf_session *session __used)
287{
288 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289 return 0;
290}
291
292static int process_exit_event(union perf_event *event,
293 struct perf_sample *sample __used,
294 struct perf_session *session __used)
295{
296 pid_exit(event->fork.pid, event->fork.time);
297 return 0;
298}
299
300struct trace_entry {
301 unsigned short type;
302 unsigned char flags;
303 unsigned char preempt_count;
304 int pid;
305 int lock_depth;
306};
307
308#ifdef SUPPORT_OLD_POWER_EVENTS
309static int use_old_power_events;
310struct power_entry_old {
311 struct trace_entry te;
312 u64 type;
313 u64 value;
314 u64 cpu_id;
315};
316#endif
317
318struct power_processor_entry {
319 struct trace_entry te;
320 u32 state;
321 u32 cpu_id;
322};
323
324#define TASK_COMM_LEN 16
325struct wakeup_entry {
326 struct trace_entry te;
327 char comm[TASK_COMM_LEN];
328 int pid;
329 int prio;
330 int success;
331};
332
333/*
334 * trace_flag_type is an enumeration that holds different
335 * states when a trace occurs. These are:
336 * IRQS_OFF - interrupts were disabled
337 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
338 * NEED_RESCED - reschedule is requested
339 * HARDIRQ - inside an interrupt handler
340 * SOFTIRQ - inside a softirq handler
341 */
342enum trace_flag_type {
343 TRACE_FLAG_IRQS_OFF = 0x01,
344 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
345 TRACE_FLAG_NEED_RESCHED = 0x04,
346 TRACE_FLAG_HARDIRQ = 0x08,
347 TRACE_FLAG_SOFTIRQ = 0x10,
348};
349
350
351
352struct sched_switch {
353 struct trace_entry te;
354 char prev_comm[TASK_COMM_LEN];
355 int prev_pid;
356 int prev_prio;
357 long prev_state; /* Arjan weeps. */
358 char next_comm[TASK_COMM_LEN];
359 int next_pid;
360 int next_prio;
361};
362
363static void c_state_start(int cpu, u64 timestamp, int state)
364{
365 cpus_cstate_start_times[cpu] = timestamp;
366 cpus_cstate_state[cpu] = state;
367}
368
369static void c_state_end(int cpu, u64 timestamp)
370{
371 struct power_event *pwr;
372 pwr = malloc(sizeof(struct power_event));
373 if (!pwr)
374 return;
375 memset(pwr, 0, sizeof(struct power_event));
376
377 pwr->state = cpus_cstate_state[cpu];
378 pwr->start_time = cpus_cstate_start_times[cpu];
379 pwr->end_time = timestamp;
380 pwr->cpu = cpu;
381 pwr->type = CSTATE;
382 pwr->next = power_events;
383
384 power_events = pwr;
385}
386
387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388{
389 struct power_event *pwr;
390 pwr = malloc(sizeof(struct power_event));
391
392 if (new_freq > 8000000) /* detect invalid data */
393 return;
394
395 if (!pwr)
396 return;
397 memset(pwr, 0, sizeof(struct power_event));
398
399 pwr->state = cpus_pstate_state[cpu];
400 pwr->start_time = cpus_pstate_start_times[cpu];
401 pwr->end_time = timestamp;
402 pwr->cpu = cpu;
403 pwr->type = PSTATE;
404 pwr->next = power_events;
405
406 if (!pwr->start_time)
407 pwr->start_time = first_time;
408
409 power_events = pwr;
410
411 cpus_pstate_state[cpu] = new_freq;
412 cpus_pstate_start_times[cpu] = timestamp;
413
414 if ((u64)new_freq > max_freq)
415 max_freq = new_freq;
416
417 if (new_freq < min_freq || min_freq == 0)
418 min_freq = new_freq;
419
420 if (new_freq == max_freq - 1000)
421 turbo_frequency = max_freq;
422}
423
424static void
425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426{
427 struct wake_event *we;
428 struct per_pid *p;
429 struct wakeup_entry *wake = (void *)te;
430
431 we = malloc(sizeof(struct wake_event));
432 if (!we)
433 return;
434
435 memset(we, 0, sizeof(struct wake_event));
436 we->time = timestamp;
437 we->waker = pid;
438
439 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440 we->waker = -1;
441
442 we->wakee = wake->pid;
443 we->next = wake_events;
444 wake_events = we;
445 p = find_create_pid(we->wakee);
446
447 if (p && p->current && p->current->state == TYPE_NONE) {
448 p->current->state_since = timestamp;
449 p->current->state = TYPE_WAITING;
450 }
451 if (p && p->current && p->current->state == TYPE_BLOCKED) {
452 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456}
457
458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459{
460 struct per_pid *p = NULL, *prev_p;
461 struct sched_switch *sw = (void *)te;
462
463
464 prev_p = find_create_pid(sw->prev_pid);
465
466 p = find_create_pid(sw->next_pid);
467
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470 if (p && p->current) {
471 if (p->current->state != TYPE_NONE)
472 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474 p->current->state_since = timestamp;
475 p->current->state = TYPE_RUNNING;
476 }
477
478 if (prev_p->current) {
479 prev_p->current->state = TYPE_NONE;
480 prev_p->current->state_since = timestamp;
481 if (sw->prev_state & 2)
482 prev_p->current->state = TYPE_BLOCKED;
483 if (sw->prev_state == 0)
484 prev_p->current->state = TYPE_WAITING;
485 }
486}
487
488
489static int process_sample_event(union perf_event *event __used,
490 struct perf_sample *sample,
491 struct perf_evsel *evsel __used,
492 struct perf_session *session)
493{
494 struct trace_entry *te;
495
496 if (session->sample_type & PERF_SAMPLE_TIME) {
497 if (!first_time || first_time > sample->time)
498 first_time = sample->time;
499 if (last_time < sample->time)
500 last_time = sample->time;
501 }
502
503 te = (void *)sample->raw_data;
504 if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
505 char *event_str;
506#ifdef SUPPORT_OLD_POWER_EVENTS
507 struct power_entry_old *peo;
508 peo = (void *)te;
509#endif
510 /*
511 * FIXME: use evsel, its already mapped from id to perf_evsel,
512 * remove perf_header__find_event infrastructure bits.
513 * Mapping all these "power:cpu_idle" strings to the tracepoint
514 * ID and then just comparing against evsel->attr.config.
515 *
516 * e.g.:
517 *
518 * if (evsel->attr.config == power_cpu_idle_id)
519 */
520 event_str = perf_header__find_event(te->type);
521
522 if (!event_str)
523 return 0;
524
525 if (sample->cpu > numcpus)
526 numcpus = sample->cpu;
527
528 if (strcmp(event_str, "power:cpu_idle") == 0) {
529 struct power_processor_entry *ppe = (void *)te;
530 if (ppe->state == (u32)PWR_EVENT_EXIT)
531 c_state_end(ppe->cpu_id, sample->time);
532 else
533 c_state_start(ppe->cpu_id, sample->time,
534 ppe->state);
535 }
536 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
537 struct power_processor_entry *ppe = (void *)te;
538 p_state_change(ppe->cpu_id, sample->time, ppe->state);
539 }
540
541 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
542 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
543
544 else if (strcmp(event_str, "sched:sched_switch") == 0)
545 sched_switch(sample->cpu, sample->time, te);
546
547#ifdef SUPPORT_OLD_POWER_EVENTS
548 if (use_old_power_events) {
549 if (strcmp(event_str, "power:power_start") == 0)
550 c_state_start(peo->cpu_id, sample->time,
551 peo->value);
552
553 else if (strcmp(event_str, "power:power_end") == 0)
554 c_state_end(sample->cpu, sample->time);
555
556 else if (strcmp(event_str,
557 "power:power_frequency") == 0)
558 p_state_change(peo->cpu_id, sample->time,
559 peo->value);
560 }
561#endif
562 }
563 return 0;
564}
565
566/*
567 * After the last sample we need to wrap up the current C/P state
568 * and close out each CPU for these.
569 */
570static void end_sample_processing(void)
571{
572 u64 cpu;
573 struct power_event *pwr;
574
575 for (cpu = 0; cpu <= numcpus; cpu++) {
576 pwr = malloc(sizeof(struct power_event));
577 if (!pwr)
578 return;
579 memset(pwr, 0, sizeof(struct power_event));
580
581 /* C state */
582#if 0
583 pwr->state = cpus_cstate_state[cpu];
584 pwr->start_time = cpus_cstate_start_times[cpu];
585 pwr->end_time = last_time;
586 pwr->cpu = cpu;
587 pwr->type = CSTATE;
588 pwr->next = power_events;
589
590 power_events = pwr;
591#endif
592 /* P state */
593
594 pwr = malloc(sizeof(struct power_event));
595 if (!pwr)
596 return;
597 memset(pwr, 0, sizeof(struct power_event));
598
599 pwr->state = cpus_pstate_state[cpu];
600 pwr->start_time = cpus_pstate_start_times[cpu];
601 pwr->end_time = last_time;
602 pwr->cpu = cpu;
603 pwr->type = PSTATE;
604 pwr->next = power_events;
605
606 if (!pwr->start_time)
607 pwr->start_time = first_time;
608 if (!pwr->state)
609 pwr->state = min_freq;
610 power_events = pwr;
611 }
612}
613
614/*
615 * Sort the pid datastructure
616 */
617static void sort_pids(void)
618{
619 struct per_pid *new_list, *p, *cursor, *prev;
620 /* sort by ppid first, then by pid, lowest to highest */
621
622 new_list = NULL;
623
624 while (all_data) {
625 p = all_data;
626 all_data = p->next;
627 p->next = NULL;
628
629 if (new_list == NULL) {
630 new_list = p;
631 p->next = NULL;
632 continue;
633 }
634 prev = NULL;
635 cursor = new_list;
636 while (cursor) {
637 if (cursor->ppid > p->ppid ||
638 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
639 /* must insert before */
640 if (prev) {
641 p->next = prev->next;
642 prev->next = p;
643 cursor = NULL;
644 continue;
645 } else {
646 p->next = new_list;
647 new_list = p;
648 cursor = NULL;
649 continue;
650 }
651 }
652
653 prev = cursor;
654 cursor = cursor->next;
655 if (!cursor)
656 prev->next = p;
657 }
658 }
659 all_data = new_list;
660}
661
662
663static void draw_c_p_states(void)
664{
665 struct power_event *pwr;
666 pwr = power_events;
667
668 /*
669 * two pass drawing so that the P state bars are on top of the C state blocks
670 */
671 while (pwr) {
672 if (pwr->type == CSTATE)
673 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
674 pwr = pwr->next;
675 }
676
677 pwr = power_events;
678 while (pwr) {
679 if (pwr->type == PSTATE) {
680 if (!pwr->state)
681 pwr->state = min_freq;
682 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
683 }
684 pwr = pwr->next;
685 }
686}
687
688static void draw_wakeups(void)
689{
690 struct wake_event *we;
691 struct per_pid *p;
692 struct per_pidcomm *c;
693
694 we = wake_events;
695 while (we) {
696 int from = 0, to = 0;
697 char *task_from = NULL, *task_to = NULL;
698
699 /* locate the column of the waker and wakee */
700 p = all_data;
701 while (p) {
702 if (p->pid == we->waker || p->pid == we->wakee) {
703 c = p->all;
704 while (c) {
705 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
706 if (p->pid == we->waker && !from) {
707 from = c->Y;
708 task_from = strdup(c->comm);
709 }
710 if (p->pid == we->wakee && !to) {
711 to = c->Y;
712 task_to = strdup(c->comm);
713 }
714 }
715 c = c->next;
716 }
717 c = p->all;
718 while (c) {
719 if (p->pid == we->waker && !from) {
720 from = c->Y;
721 task_from = strdup(c->comm);
722 }
723 if (p->pid == we->wakee && !to) {
724 to = c->Y;
725 task_to = strdup(c->comm);
726 }
727 c = c->next;
728 }
729 }
730 p = p->next;
731 }
732
733 if (!task_from) {
734 task_from = malloc(40);
735 sprintf(task_from, "[%i]", we->waker);
736 }
737 if (!task_to) {
738 task_to = malloc(40);
739 sprintf(task_to, "[%i]", we->wakee);
740 }
741
742 if (we->waker == -1)
743 svg_interrupt(we->time, to);
744 else if (from && to && abs(from - to) == 1)
745 svg_wakeline(we->time, from, to);
746 else
747 svg_partial_wakeline(we->time, from, task_from, to, task_to);
748 we = we->next;
749
750 free(task_from);
751 free(task_to);
752 }
753}
754
755static void draw_cpu_usage(void)
756{
757 struct per_pid *p;
758 struct per_pidcomm *c;
759 struct cpu_sample *sample;
760 p = all_data;
761 while (p) {
762 c = p->all;
763 while (c) {
764 sample = c->samples;
765 while (sample) {
766 if (sample->type == TYPE_RUNNING)
767 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
768
769 sample = sample->next;
770 }
771 c = c->next;
772 }
773 p = p->next;
774 }
775}
776
777static void draw_process_bars(void)
778{
779 struct per_pid *p;
780 struct per_pidcomm *c;
781 struct cpu_sample *sample;
782 int Y = 0;
783
784 Y = 2 * numcpus + 2;
785
786 p = all_data;
787 while (p) {
788 c = p->all;
789 while (c) {
790 if (!c->display) {
791 c->Y = 0;
792 c = c->next;
793 continue;
794 }
795
796 svg_box(Y, c->start_time, c->end_time, "process");
797 sample = c->samples;
798 while (sample) {
799 if (sample->type == TYPE_RUNNING)
800 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
801 if (sample->type == TYPE_BLOCKED)
802 svg_box(Y, sample->start_time, sample->end_time, "blocked");
803 if (sample->type == TYPE_WAITING)
804 svg_waiting(Y, sample->start_time, sample->end_time);
805 sample = sample->next;
806 }
807
808 if (c->comm) {
809 char comm[256];
810 if (c->total_time > 5000000000) /* 5 seconds */
811 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
812 else
813 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
814
815 svg_text(Y, c->start_time, comm);
816 }
817 c->Y = Y;
818 Y++;
819 c = c->next;
820 }
821 p = p->next;
822 }
823}
824
825static void add_process_filter(const char *string)
826{
827 struct process_filter *filt;
828 int pid;
829
830 pid = strtoull(string, NULL, 10);
831 filt = malloc(sizeof(struct process_filter));
832 if (!filt)
833 return;
834
835 filt->name = strdup(string);
836 filt->pid = pid;
837 filt->next = process_filter;
838
839 process_filter = filt;
840}
841
842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
843{
844 struct process_filter *filt;
845 if (!process_filter)
846 return 1;
847
848 filt = process_filter;
849 while (filt) {
850 if (filt->pid && p->pid == filt->pid)
851 return 1;
852 if (strcmp(filt->name, c->comm) == 0)
853 return 1;
854 filt = filt->next;
855 }
856 return 0;
857}
858
859static int determine_display_tasks_filtered(void)
860{
861 struct per_pid *p;
862 struct per_pidcomm *c;
863 int count = 0;
864
865 p = all_data;
866 while (p) {
867 p->display = 0;
868 if (p->start_time == 1)
869 p->start_time = first_time;
870
871 /* no exit marker, task kept running to the end */
872 if (p->end_time == 0)
873 p->end_time = last_time;
874
875 c = p->all;
876
877 while (c) {
878 c->display = 0;
879
880 if (c->start_time == 1)
881 c->start_time = first_time;
882
883 if (passes_filter(p, c)) {
884 c->display = 1;
885 p->display = 1;
886 count++;
887 }
888
889 if (c->end_time == 0)
890 c->end_time = last_time;
891
892 c = c->next;
893 }
894 p = p->next;
895 }
896 return count;
897}
898
899static int determine_display_tasks(u64 threshold)
900{
901 struct per_pid *p;
902 struct per_pidcomm *c;
903 int count = 0;
904
905 if (process_filter)
906 return determine_display_tasks_filtered();
907
908 p = all_data;
909 while (p) {
910 p->display = 0;
911 if (p->start_time == 1)
912 p->start_time = first_time;
913
914 /* no exit marker, task kept running to the end */
915 if (p->end_time == 0)
916 p->end_time = last_time;
917 if (p->total_time >= threshold && !power_only)
918 p->display = 1;
919
920 c = p->all;
921
922 while (c) {
923 c->display = 0;
924
925 if (c->start_time == 1)
926 c->start_time = first_time;
927
928 if (c->total_time >= threshold && !power_only) {
929 c->display = 1;
930 count++;
931 }
932
933 if (c->end_time == 0)
934 c->end_time = last_time;
935
936 c = c->next;
937 }
938 p = p->next;
939 }
940 return count;
941}
942
943
944
945#define TIME_THRESH 10000000
946
947static void write_svg_file(const char *filename)
948{
949 u64 i;
950 int count;
951
952 numcpus++;
953
954
955 count = determine_display_tasks(TIME_THRESH);
956
957 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
958 if (count < 15)
959 count = determine_display_tasks(TIME_THRESH / 10);
960
961 open_svg(filename, numcpus, count, first_time, last_time);
962
963 svg_time_grid();
964 svg_legenda();
965
966 for (i = 0; i < numcpus; i++)
967 svg_cpu_box(i, max_freq, turbo_frequency);
968
969 draw_cpu_usage();
970 draw_process_bars();
971 draw_c_p_states();
972 draw_wakeups();
973
974 svg_close();
975}
976
977static struct perf_event_ops event_ops = {
978 .comm = process_comm_event,
979 .fork = process_fork_event,
980 .exit = process_exit_event,
981 .sample = process_sample_event,
982 .ordered_samples = true,
983};
984
985static int __cmd_timechart(void)
986{
987 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
988 0, false, &event_ops);
989 int ret = -EINVAL;
990
991 if (session == NULL)
992 return -ENOMEM;
993
994 if (!perf_session__has_traces(session, "timechart record"))
995 goto out_delete;
996
997 ret = perf_session__process_events(session, &event_ops);
998 if (ret)
999 goto out_delete;
1000
1001 end_sample_processing();
1002
1003 sort_pids();
1004
1005 write_svg_file(output_name);
1006
1007 pr_info("Written %2.1f seconds of trace to %s.\n",
1008 (last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010 perf_session__delete(session);
1011 return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015 "perf timechart [<options>] {record}",
1016 NULL
1017};
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021 "record",
1022 "-a",
1023 "-R",
1024 "-f",
1025 "-c", "1",
1026 "-e", "power:power_start",
1027 "-e", "power:power_end",
1028 "-e", "power:power_frequency",
1029 "-e", "sched:sched_wakeup",
1030 "-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035 "record",
1036 "-a",
1037 "-R",
1038 "-f",
1039 "-c", "1",
1040 "-e", "power:cpu_frequency",
1041 "-e", "power:cpu_idle",
1042 "-e", "sched:sched_wakeup",
1043 "-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048 unsigned int rec_argc, i, j;
1049 const char **rec_argv;
1050 const char * const *record_args = record_new_args;
1051 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054 if (!is_valid_tracepoint("power:cpu_idle") &&
1055 is_valid_tracepoint("power:power_start")) {
1056 use_old_power_events = 1;
1057 record_args = record_old_args;
1058 record_elems = ARRAY_SIZE(record_old_args);
1059 }
1060#endif
1061
1062 rec_argc = record_elems + argc - 1;
1063 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065 if (rec_argv == NULL)
1066 return -ENOMEM;
1067
1068 for (i = 0; i < record_elems; i++)
1069 rec_argv[i] = strdup(record_args[i]);
1070
1071 for (j = 1; j < (unsigned int)argc; j++, i++)
1072 rec_argv[i] = argv[j];
1073
1074 return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079{
1080 if (arg)
1081 add_process_filter(arg);
1082 return 0;
1083}
1084
1085static const struct option options[] = {
1086 OPT_STRING('i', "input", &input_name, "file",
1087 "input file name"),
1088 OPT_STRING('o', "output", &output_name, "file",
1089 "output file name"),
1090 OPT_INTEGER('w', "width", &svg_page_width,
1091 "page width"),
1092 OPT_BOOLEAN('P', "power-only", &power_only,
1093 "output power data only"),
1094 OPT_CALLBACK('p', "process", NULL, "process",
1095 "process selector. Pass a pid or process name.",
1096 parse_process),
1097 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098 "Look for files with symbols relative to this directory"),
1099 OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
1105 argc = parse_options(argc, argv, options, timechart_usage,
1106 PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108 symbol__init();
1109
1110 if (argc && !strncmp(argv[0], "rec", 3))
1111 return __cmd_record(argc, argv);
1112 else if (argc)
1113 usage_with_options(timechart_usage, options);
1114
1115 setup_pager();
1116
1117 return __cmd_timechart();
1118}