Linux Audio

Check our new training course

Loading...
v3.5.6
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 Intel Corp.
   6 * Copyright (c) 2001-2002 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions interface with the sockets layer to implement the
  12 * SCTP Extensions for the Sockets API.
  13 *
  14 * Note that the descriptions from the specification are USER level
  15 * functions--this file is the functions which populate the struct proto
  16 * for SCTP which is the BOTTOM of the sockets interface.
  17 *
  18 * This SCTP implementation is free software;
  19 * you can redistribute it and/or modify it under the terms of
  20 * the GNU General Public License as published by
  21 * the Free Software Foundation; either version 2, or (at your option)
  22 * any later version.
  23 *
  24 * This SCTP implementation is distributed in the hope that it
  25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  26 *                 ************************
  27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  28 * See the GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with GNU CC; see the file COPYING.  If not, write to
  32 * the Free Software Foundation, 59 Temple Place - Suite 330,
  33 * Boston, MA 02111-1307, USA.
  34 *
  35 * Please send any bug reports or fixes you make to the
  36 * email address(es):
  37 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  38 *
  39 * Or submit a bug report through the following website:
  40 *    http://www.sf.net/projects/lksctp
  41 *
  42 * Written or modified by:
  43 *    La Monte H.P. Yarroll <piggy@acm.org>
  44 *    Narasimha Budihal     <narsi@refcode.org>
  45 *    Karl Knutson          <karl@athena.chicago.il.us>
  46 *    Jon Grimm             <jgrimm@us.ibm.com>
  47 *    Xingang Guo           <xingang.guo@intel.com>
  48 *    Daisy Chang           <daisyc@us.ibm.com>
  49 *    Sridhar Samudrala     <samudrala@us.ibm.com>
  50 *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
  51 *    Ardelle Fan	    <ardelle.fan@intel.com>
  52 *    Ryan Layer	    <rmlayer@us.ibm.com>
  53 *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
  54 *    Kevin Gao             <kevin.gao@intel.com>
  55 *
  56 * Any bugs reported given to us we will try to fix... any fixes shared will
  57 * be incorporated into the next SCTP release.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/types.h>
  63#include <linux/kernel.h>
  64#include <linux/wait.h>
  65#include <linux/time.h>
  66#include <linux/ip.h>
  67#include <linux/capability.h>
  68#include <linux/fcntl.h>
  69#include <linux/poll.h>
  70#include <linux/init.h>
  71#include <linux/crypto.h>
  72#include <linux/slab.h>
  73
  74#include <net/ip.h>
  75#include <net/icmp.h>
  76#include <net/route.h>
  77#include <net/ipv6.h>
  78#include <net/inet_common.h>
  79
  80#include <linux/socket.h> /* for sa_family_t */
  81#include <linux/export.h>
  82#include <net/sock.h>
  83#include <net/sctp/sctp.h>
  84#include <net/sctp/sm.h>
  85
  86/* WARNING:  Please do not remove the SCTP_STATIC attribute to
  87 * any of the functions below as they are used to export functions
  88 * used by a project regression testsuite.
  89 */
  90
  91/* Forward declarations for internal helper functions. */
  92static int sctp_writeable(struct sock *sk);
  93static void sctp_wfree(struct sk_buff *skb);
  94static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
  95				size_t msg_len);
  96static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
  97static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
  98static int sctp_wait_for_accept(struct sock *sk, long timeo);
  99static void sctp_wait_for_close(struct sock *sk, long timeo);
 100static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 101					union sctp_addr *addr, int len);
 102static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
 103static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
 104static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
 105static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
 106static int sctp_send_asconf(struct sctp_association *asoc,
 107			    struct sctp_chunk *chunk);
 108static int sctp_do_bind(struct sock *, union sctp_addr *, int);
 109static int sctp_autobind(struct sock *sk);
 110static void sctp_sock_migrate(struct sock *, struct sock *,
 111			      struct sctp_association *, sctp_socket_type_t);
 112static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
 113
 114extern struct kmem_cache *sctp_bucket_cachep;
 115extern long sysctl_sctp_mem[3];
 116extern int sysctl_sctp_rmem[3];
 117extern int sysctl_sctp_wmem[3];
 118
 119static int sctp_memory_pressure;
 120static atomic_long_t sctp_memory_allocated;
 121struct percpu_counter sctp_sockets_allocated;
 122
 123static void sctp_enter_memory_pressure(struct sock *sk)
 124{
 125	sctp_memory_pressure = 1;
 126}
 127
 128
 129/* Get the sndbuf space available at the time on the association.  */
 130static inline int sctp_wspace(struct sctp_association *asoc)
 131{
 132	int amt;
 133
 134	if (asoc->ep->sndbuf_policy)
 135		amt = asoc->sndbuf_used;
 136	else
 137		amt = sk_wmem_alloc_get(asoc->base.sk);
 138
 139	if (amt >= asoc->base.sk->sk_sndbuf) {
 140		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
 141			amt = 0;
 142		else {
 143			amt = sk_stream_wspace(asoc->base.sk);
 144			if (amt < 0)
 145				amt = 0;
 146		}
 147	} else {
 148		amt = asoc->base.sk->sk_sndbuf - amt;
 149	}
 150	return amt;
 151}
 152
 153/* Increment the used sndbuf space count of the corresponding association by
 154 * the size of the outgoing data chunk.
 155 * Also, set the skb destructor for sndbuf accounting later.
 156 *
 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always
 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
 159 * destructor in the data chunk skb for the purpose of the sndbuf space
 160 * tracking.
 161 */
 162static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
 163{
 164	struct sctp_association *asoc = chunk->asoc;
 165	struct sock *sk = asoc->base.sk;
 166
 167	/* The sndbuf space is tracked per association.  */
 168	sctp_association_hold(asoc);
 169
 170	skb_set_owner_w(chunk->skb, sk);
 171
 172	chunk->skb->destructor = sctp_wfree;
 173	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
 174	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
 175
 176	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
 177				sizeof(struct sk_buff) +
 178				sizeof(struct sctp_chunk);
 179
 180	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
 181	sk->sk_wmem_queued += chunk->skb->truesize;
 182	sk_mem_charge(sk, chunk->skb->truesize);
 183}
 184
 185/* Verify that this is a valid address. */
 186static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
 187				   int len)
 188{
 189	struct sctp_af *af;
 190
 191	/* Verify basic sockaddr. */
 192	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
 193	if (!af)
 194		return -EINVAL;
 195
 196	/* Is this a valid SCTP address?  */
 197	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
 198		return -EINVAL;
 199
 200	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
 201		return -EINVAL;
 202
 203	return 0;
 204}
 205
 206/* Look up the association by its id.  If this is not a UDP-style
 207 * socket, the ID field is always ignored.
 208 */
 209struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
 210{
 211	struct sctp_association *asoc = NULL;
 212
 213	/* If this is not a UDP-style socket, assoc id should be ignored. */
 214	if (!sctp_style(sk, UDP)) {
 215		/* Return NULL if the socket state is not ESTABLISHED. It
 216		 * could be a TCP-style listening socket or a socket which
 217		 * hasn't yet called connect() to establish an association.
 218		 */
 219		if (!sctp_sstate(sk, ESTABLISHED))
 220			return NULL;
 221
 222		/* Get the first and the only association from the list. */
 223		if (!list_empty(&sctp_sk(sk)->ep->asocs))
 224			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
 225					  struct sctp_association, asocs);
 226		return asoc;
 227	}
 228
 229	/* Otherwise this is a UDP-style socket. */
 230	if (!id || (id == (sctp_assoc_t)-1))
 231		return NULL;
 232
 233	spin_lock_bh(&sctp_assocs_id_lock);
 234	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
 235	spin_unlock_bh(&sctp_assocs_id_lock);
 236
 237	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
 238		return NULL;
 239
 240	return asoc;
 241}
 242
 243/* Look up the transport from an address and an assoc id. If both address and
 244 * id are specified, the associations matching the address and the id should be
 245 * the same.
 246 */
 247static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
 248					      struct sockaddr_storage *addr,
 249					      sctp_assoc_t id)
 250{
 251	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
 252	struct sctp_transport *transport;
 253	union sctp_addr *laddr = (union sctp_addr *)addr;
 254
 255	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
 256					       laddr,
 257					       &transport);
 258
 259	if (!addr_asoc)
 260		return NULL;
 261
 262	id_asoc = sctp_id2assoc(sk, id);
 263	if (id_asoc && (id_asoc != addr_asoc))
 264		return NULL;
 265
 266	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
 267						(union sctp_addr *)addr);
 268
 269	return transport;
 270}
 271
 272/* API 3.1.2 bind() - UDP Style Syntax
 273 * The syntax of bind() is,
 274 *
 275 *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
 276 *
 277 *   sd      - the socket descriptor returned by socket().
 278 *   addr    - the address structure (struct sockaddr_in or struct
 279 *             sockaddr_in6 [RFC 2553]),
 280 *   addr_len - the size of the address structure.
 281 */
 282SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
 283{
 284	int retval = 0;
 285
 286	sctp_lock_sock(sk);
 287
 288	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
 289			  sk, addr, addr_len);
 290
 291	/* Disallow binding twice. */
 292	if (!sctp_sk(sk)->ep->base.bind_addr.port)
 293		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
 294				      addr_len);
 295	else
 296		retval = -EINVAL;
 297
 298	sctp_release_sock(sk);
 299
 300	return retval;
 301}
 302
 303static long sctp_get_port_local(struct sock *, union sctp_addr *);
 304
 305/* Verify this is a valid sockaddr. */
 306static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 307					union sctp_addr *addr, int len)
 308{
 309	struct sctp_af *af;
 310
 311	/* Check minimum size.  */
 312	if (len < sizeof (struct sockaddr))
 313		return NULL;
 314
 315	/* V4 mapped address are really of AF_INET family */
 316	if (addr->sa.sa_family == AF_INET6 &&
 317	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
 318		if (!opt->pf->af_supported(AF_INET, opt))
 319			return NULL;
 320	} else {
 321		/* Does this PF support this AF? */
 322		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
 323			return NULL;
 324	}
 325
 326	/* If we get this far, af is valid. */
 327	af = sctp_get_af_specific(addr->sa.sa_family);
 328
 329	if (len < af->sockaddr_len)
 330		return NULL;
 331
 332	return af;
 333}
 334
 335/* Bind a local address either to an endpoint or to an association.  */
 336SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
 337{
 338	struct sctp_sock *sp = sctp_sk(sk);
 339	struct sctp_endpoint *ep = sp->ep;
 340	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 341	struct sctp_af *af;
 342	unsigned short snum;
 343	int ret = 0;
 344
 345	/* Common sockaddr verification. */
 346	af = sctp_sockaddr_af(sp, addr, len);
 347	if (!af) {
 348		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
 349				  sk, addr, len);
 350		return -EINVAL;
 351	}
 352
 353	snum = ntohs(addr->v4.sin_port);
 354
 355	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
 356				 ", port: %d, new port: %d, len: %d)\n",
 357				 sk,
 358				 addr,
 359				 bp->port, snum,
 360				 len);
 361
 362	/* PF specific bind() address verification. */
 363	if (!sp->pf->bind_verify(sp, addr))
 364		return -EADDRNOTAVAIL;
 365
 366	/* We must either be unbound, or bind to the same port.
 367	 * It's OK to allow 0 ports if we are already bound.
 368	 * We'll just inhert an already bound port in this case
 369	 */
 370	if (bp->port) {
 371		if (!snum)
 372			snum = bp->port;
 373		else if (snum != bp->port) {
 374			SCTP_DEBUG_PRINTK("sctp_do_bind:"
 375				  " New port %d does not match existing port "
 376				  "%d.\n", snum, bp->port);
 377			return -EINVAL;
 378		}
 379	}
 380
 381	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
 382		return -EACCES;
 383
 384	/* See if the address matches any of the addresses we may have
 385	 * already bound before checking against other endpoints.
 386	 */
 387	if (sctp_bind_addr_match(bp, addr, sp))
 388		return -EINVAL;
 389
 390	/* Make sure we are allowed to bind here.
 391	 * The function sctp_get_port_local() does duplicate address
 392	 * detection.
 393	 */
 394	addr->v4.sin_port = htons(snum);
 395	if ((ret = sctp_get_port_local(sk, addr))) {
 396		return -EADDRINUSE;
 397	}
 398
 399	/* Refresh ephemeral port.  */
 400	if (!bp->port)
 401		bp->port = inet_sk(sk)->inet_num;
 402
 403	/* Add the address to the bind address list.
 404	 * Use GFP_ATOMIC since BHs will be disabled.
 405	 */
 406	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
 407
 408	/* Copy back into socket for getsockname() use. */
 409	if (!ret) {
 410		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
 411		af->to_sk_saddr(addr, sk);
 412	}
 413
 414	return ret;
 415}
 416
 417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
 418 *
 419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
 420 * at any one time.  If a sender, after sending an ASCONF chunk, decides
 421 * it needs to transfer another ASCONF Chunk, it MUST wait until the
 422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
 423 * subsequent ASCONF. Note this restriction binds each side, so at any
 424 * time two ASCONF may be in-transit on any given association (one sent
 425 * from each endpoint).
 426 */
 427static int sctp_send_asconf(struct sctp_association *asoc,
 428			    struct sctp_chunk *chunk)
 429{
 430	int		retval = 0;
 431
 432	/* If there is an outstanding ASCONF chunk, queue it for later
 433	 * transmission.
 434	 */
 435	if (asoc->addip_last_asconf) {
 436		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
 437		goto out;
 438	}
 439
 440	/* Hold the chunk until an ASCONF_ACK is received. */
 441	sctp_chunk_hold(chunk);
 442	retval = sctp_primitive_ASCONF(asoc, chunk);
 443	if (retval)
 444		sctp_chunk_free(chunk);
 445	else
 446		asoc->addip_last_asconf = chunk;
 447
 448out:
 449	return retval;
 450}
 451
 452/* Add a list of addresses as bind addresses to local endpoint or
 453 * association.
 454 *
 455 * Basically run through each address specified in the addrs/addrcnt
 456 * array/length pair, determine if it is IPv6 or IPv4 and call
 457 * sctp_do_bind() on it.
 458 *
 459 * If any of them fails, then the operation will be reversed and the
 460 * ones that were added will be removed.
 461 *
 462 * Only sctp_setsockopt_bindx() is supposed to call this function.
 463 */
 464static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 465{
 466	int cnt;
 467	int retval = 0;
 468	void *addr_buf;
 469	struct sockaddr *sa_addr;
 470	struct sctp_af *af;
 471
 472	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
 473			  sk, addrs, addrcnt);
 474
 475	addr_buf = addrs;
 476	for (cnt = 0; cnt < addrcnt; cnt++) {
 477		/* The list may contain either IPv4 or IPv6 address;
 478		 * determine the address length for walking thru the list.
 479		 */
 480		sa_addr = addr_buf;
 481		af = sctp_get_af_specific(sa_addr->sa_family);
 482		if (!af) {
 483			retval = -EINVAL;
 484			goto err_bindx_add;
 485		}
 486
 487		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
 488				      af->sockaddr_len);
 489
 490		addr_buf += af->sockaddr_len;
 491
 492err_bindx_add:
 493		if (retval < 0) {
 494			/* Failed. Cleanup the ones that have been added */
 495			if (cnt > 0)
 496				sctp_bindx_rem(sk, addrs, cnt);
 497			return retval;
 498		}
 499	}
 500
 501	return retval;
 502}
 503
 504/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
 505 * associations that are part of the endpoint indicating that a list of local
 506 * addresses are added to the endpoint.
 507 *
 508 * If any of the addresses is already in the bind address list of the
 509 * association, we do not send the chunk for that association.  But it will not
 510 * affect other associations.
 511 *
 512 * Only sctp_setsockopt_bindx() is supposed to call this function.
 513 */
 514static int sctp_send_asconf_add_ip(struct sock		*sk,
 515				   struct sockaddr	*addrs,
 516				   int 			addrcnt)
 517{
 518	struct sctp_sock		*sp;
 519	struct sctp_endpoint		*ep;
 520	struct sctp_association		*asoc;
 521	struct sctp_bind_addr		*bp;
 522	struct sctp_chunk		*chunk;
 523	struct sctp_sockaddr_entry	*laddr;
 524	union sctp_addr			*addr;
 525	union sctp_addr			saveaddr;
 526	void				*addr_buf;
 527	struct sctp_af			*af;
 528	struct list_head		*p;
 529	int 				i;
 530	int 				retval = 0;
 531
 532	if (!sctp_addip_enable)
 533		return retval;
 534
 535	sp = sctp_sk(sk);
 536	ep = sp->ep;
 537
 538	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 539			  __func__, sk, addrs, addrcnt);
 540
 541	list_for_each_entry(asoc, &ep->asocs, asocs) {
 542
 543		if (!asoc->peer.asconf_capable)
 544			continue;
 545
 546		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
 547			continue;
 548
 549		if (!sctp_state(asoc, ESTABLISHED))
 550			continue;
 551
 552		/* Check if any address in the packed array of addresses is
 553		 * in the bind address list of the association. If so,
 554		 * do not send the asconf chunk to its peer, but continue with
 555		 * other associations.
 556		 */
 557		addr_buf = addrs;
 558		for (i = 0; i < addrcnt; i++) {
 559			addr = addr_buf;
 560			af = sctp_get_af_specific(addr->v4.sin_family);
 561			if (!af) {
 562				retval = -EINVAL;
 563				goto out;
 564			}
 565
 566			if (sctp_assoc_lookup_laddr(asoc, addr))
 567				break;
 568
 569			addr_buf += af->sockaddr_len;
 570		}
 571		if (i < addrcnt)
 572			continue;
 573
 574		/* Use the first valid address in bind addr list of
 575		 * association as Address Parameter of ASCONF CHUNK.
 576		 */
 577		bp = &asoc->base.bind_addr;
 578		p = bp->address_list.next;
 579		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
 580		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
 581						   addrcnt, SCTP_PARAM_ADD_IP);
 582		if (!chunk) {
 583			retval = -ENOMEM;
 584			goto out;
 585		}
 586
 587		/* Add the new addresses to the bind address list with
 588		 * use_as_src set to 0.
 589		 */
 590		addr_buf = addrs;
 591		for (i = 0; i < addrcnt; i++) {
 592			addr = addr_buf;
 593			af = sctp_get_af_specific(addr->v4.sin_family);
 594			memcpy(&saveaddr, addr, af->sockaddr_len);
 595			retval = sctp_add_bind_addr(bp, &saveaddr,
 596						    SCTP_ADDR_NEW, GFP_ATOMIC);
 597			addr_buf += af->sockaddr_len;
 598		}
 599		if (asoc->src_out_of_asoc_ok) {
 600			struct sctp_transport *trans;
 601
 602			list_for_each_entry(trans,
 603			    &asoc->peer.transport_addr_list, transports) {
 604				/* Clear the source and route cache */
 605				dst_release(trans->dst);
 606				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
 607				    2*asoc->pathmtu, 4380));
 608				trans->ssthresh = asoc->peer.i.a_rwnd;
 609				trans->rto = asoc->rto_initial;
 610				trans->rtt = trans->srtt = trans->rttvar = 0;
 611				sctp_transport_route(trans, NULL,
 612				    sctp_sk(asoc->base.sk));
 613			}
 614		}
 615		retval = sctp_send_asconf(asoc, chunk);
 616	}
 617
 618out:
 619	return retval;
 620}
 621
 622/* Remove a list of addresses from bind addresses list.  Do not remove the
 623 * last address.
 624 *
 625 * Basically run through each address specified in the addrs/addrcnt
 626 * array/length pair, determine if it is IPv6 or IPv4 and call
 627 * sctp_del_bind() on it.
 628 *
 629 * If any of them fails, then the operation will be reversed and the
 630 * ones that were removed will be added back.
 631 *
 632 * At least one address has to be left; if only one address is
 633 * available, the operation will return -EBUSY.
 634 *
 635 * Only sctp_setsockopt_bindx() is supposed to call this function.
 636 */
 637static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 638{
 639	struct sctp_sock *sp = sctp_sk(sk);
 640	struct sctp_endpoint *ep = sp->ep;
 641	int cnt;
 642	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 643	int retval = 0;
 644	void *addr_buf;
 645	union sctp_addr *sa_addr;
 646	struct sctp_af *af;
 647
 648	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
 649			  sk, addrs, addrcnt);
 650
 651	addr_buf = addrs;
 652	for (cnt = 0; cnt < addrcnt; cnt++) {
 653		/* If the bind address list is empty or if there is only one
 654		 * bind address, there is nothing more to be removed (we need
 655		 * at least one address here).
 656		 */
 657		if (list_empty(&bp->address_list) ||
 658		    (sctp_list_single_entry(&bp->address_list))) {
 659			retval = -EBUSY;
 660			goto err_bindx_rem;
 661		}
 662
 663		sa_addr = addr_buf;
 664		af = sctp_get_af_specific(sa_addr->sa.sa_family);
 665		if (!af) {
 666			retval = -EINVAL;
 667			goto err_bindx_rem;
 668		}
 669
 670		if (!af->addr_valid(sa_addr, sp, NULL)) {
 671			retval = -EADDRNOTAVAIL;
 672			goto err_bindx_rem;
 673		}
 674
 675		if (sa_addr->v4.sin_port &&
 676		    sa_addr->v4.sin_port != htons(bp->port)) {
 677			retval = -EINVAL;
 678			goto err_bindx_rem;
 679		}
 680
 681		if (!sa_addr->v4.sin_port)
 682			sa_addr->v4.sin_port = htons(bp->port);
 683
 684		/* FIXME - There is probably a need to check if sk->sk_saddr and
 685		 * sk->sk_rcv_addr are currently set to one of the addresses to
 686		 * be removed. This is something which needs to be looked into
 687		 * when we are fixing the outstanding issues with multi-homing
 688		 * socket routing and failover schemes. Refer to comments in
 689		 * sctp_do_bind(). -daisy
 690		 */
 691		retval = sctp_del_bind_addr(bp, sa_addr);
 692
 693		addr_buf += af->sockaddr_len;
 694err_bindx_rem:
 695		if (retval < 0) {
 696			/* Failed. Add the ones that has been removed back */
 697			if (cnt > 0)
 698				sctp_bindx_add(sk, addrs, cnt);
 699			return retval;
 700		}
 701	}
 702
 703	return retval;
 704}
 705
 706/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
 707 * the associations that are part of the endpoint indicating that a list of
 708 * local addresses are removed from the endpoint.
 709 *
 710 * If any of the addresses is already in the bind address list of the
 711 * association, we do not send the chunk for that association.  But it will not
 712 * affect other associations.
 713 *
 714 * Only sctp_setsockopt_bindx() is supposed to call this function.
 715 */
 716static int sctp_send_asconf_del_ip(struct sock		*sk,
 717				   struct sockaddr	*addrs,
 718				   int			addrcnt)
 719{
 720	struct sctp_sock	*sp;
 721	struct sctp_endpoint	*ep;
 722	struct sctp_association	*asoc;
 723	struct sctp_transport	*transport;
 724	struct sctp_bind_addr	*bp;
 725	struct sctp_chunk	*chunk;
 726	union sctp_addr		*laddr;
 727	void			*addr_buf;
 728	struct sctp_af		*af;
 729	struct sctp_sockaddr_entry *saddr;
 730	int 			i;
 731	int 			retval = 0;
 732	int			stored = 0;
 733
 734	chunk = NULL;
 735	if (!sctp_addip_enable)
 736		return retval;
 737
 738	sp = sctp_sk(sk);
 739	ep = sp->ep;
 740
 741	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 742			  __func__, sk, addrs, addrcnt);
 743
 744	list_for_each_entry(asoc, &ep->asocs, asocs) {
 745
 746		if (!asoc->peer.asconf_capable)
 747			continue;
 748
 749		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
 750			continue;
 751
 752		if (!sctp_state(asoc, ESTABLISHED))
 753			continue;
 754
 755		/* Check if any address in the packed array of addresses is
 756		 * not present in the bind address list of the association.
 757		 * If so, do not send the asconf chunk to its peer, but
 758		 * continue with other associations.
 759		 */
 760		addr_buf = addrs;
 761		for (i = 0; i < addrcnt; i++) {
 762			laddr = addr_buf;
 763			af = sctp_get_af_specific(laddr->v4.sin_family);
 764			if (!af) {
 765				retval = -EINVAL;
 766				goto out;
 767			}
 768
 769			if (!sctp_assoc_lookup_laddr(asoc, laddr))
 770				break;
 771
 772			addr_buf += af->sockaddr_len;
 773		}
 774		if (i < addrcnt)
 775			continue;
 776
 777		/* Find one address in the association's bind address list
 778		 * that is not in the packed array of addresses. This is to
 779		 * make sure that we do not delete all the addresses in the
 780		 * association.
 781		 */
 782		bp = &asoc->base.bind_addr;
 783		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
 784					       addrcnt, sp);
 785		if ((laddr == NULL) && (addrcnt == 1)) {
 786			if (asoc->asconf_addr_del_pending)
 787				continue;
 788			asoc->asconf_addr_del_pending =
 789			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
 790			if (asoc->asconf_addr_del_pending == NULL) {
 791				retval = -ENOMEM;
 792				goto out;
 793			}
 794			asoc->asconf_addr_del_pending->sa.sa_family =
 795				    addrs->sa_family;
 796			asoc->asconf_addr_del_pending->v4.sin_port =
 797				    htons(bp->port);
 798			if (addrs->sa_family == AF_INET) {
 799				struct sockaddr_in *sin;
 800
 801				sin = (struct sockaddr_in *)addrs;
 802				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
 803			} else if (addrs->sa_family == AF_INET6) {
 804				struct sockaddr_in6 *sin6;
 805
 806				sin6 = (struct sockaddr_in6 *)addrs;
 807				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
 808			}
 809			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
 810			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
 811			    asoc->asconf_addr_del_pending);
 812			asoc->src_out_of_asoc_ok = 1;
 813			stored = 1;
 814			goto skip_mkasconf;
 815		}
 816
 817		/* We do not need RCU protection throughout this loop
 818		 * because this is done under a socket lock from the
 819		 * setsockopt call.
 820		 */
 821		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
 822						   SCTP_PARAM_DEL_IP);
 823		if (!chunk) {
 824			retval = -ENOMEM;
 825			goto out;
 826		}
 827
 828skip_mkasconf:
 829		/* Reset use_as_src flag for the addresses in the bind address
 830		 * list that are to be deleted.
 831		 */
 832		addr_buf = addrs;
 833		for (i = 0; i < addrcnt; i++) {
 834			laddr = addr_buf;
 835			af = sctp_get_af_specific(laddr->v4.sin_family);
 836			list_for_each_entry(saddr, &bp->address_list, list) {
 837				if (sctp_cmp_addr_exact(&saddr->a, laddr))
 838					saddr->state = SCTP_ADDR_DEL;
 839			}
 840			addr_buf += af->sockaddr_len;
 841		}
 842
 843		/* Update the route and saddr entries for all the transports
 844		 * as some of the addresses in the bind address list are
 845		 * about to be deleted and cannot be used as source addresses.
 846		 */
 847		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 848					transports) {
 849			dst_release(transport->dst);
 850			sctp_transport_route(transport, NULL,
 851					     sctp_sk(asoc->base.sk));
 852		}
 853
 854		if (stored)
 855			/* We don't need to transmit ASCONF */
 856			continue;
 857		retval = sctp_send_asconf(asoc, chunk);
 858	}
 859out:
 860	return retval;
 861}
 862
 863/* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
 864int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
 865{
 866	struct sock *sk = sctp_opt2sk(sp);
 867	union sctp_addr *addr;
 868	struct sctp_af *af;
 869
 870	/* It is safe to write port space in caller. */
 871	addr = &addrw->a;
 872	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
 873	af = sctp_get_af_specific(addr->sa.sa_family);
 874	if (!af)
 875		return -EINVAL;
 876	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
 877		return -EINVAL;
 878
 879	if (addrw->state == SCTP_ADDR_NEW)
 880		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
 881	else
 882		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
 883}
 884
 885/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
 886 *
 887 * API 8.1
 888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
 889 *                int flags);
 890 *
 891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
 893 * or IPv6 addresses.
 894 *
 895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
 896 * Section 3.1.2 for this usage.
 897 *
 898 * addrs is a pointer to an array of one or more socket addresses. Each
 899 * address is contained in its appropriate structure (i.e. struct
 900 * sockaddr_in or struct sockaddr_in6) the family of the address type
 901 * must be used to distinguish the address length (note that this
 902 * representation is termed a "packed array" of addresses). The caller
 903 * specifies the number of addresses in the array with addrcnt.
 904 *
 905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 906 * -1, and sets errno to the appropriate error code.
 907 *
 908 * For SCTP, the port given in each socket address must be the same, or
 909 * sctp_bindx() will fail, setting errno to EINVAL.
 910 *
 911 * The flags parameter is formed from the bitwise OR of zero or more of
 912 * the following currently defined flags:
 913 *
 914 * SCTP_BINDX_ADD_ADDR
 915 *
 916 * SCTP_BINDX_REM_ADDR
 917 *
 918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
 920 * addresses from the association. The two flags are mutually exclusive;
 921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
 922 * not remove all addresses from an association; sctp_bindx() will
 923 * reject such an attempt with EINVAL.
 924 *
 925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 926 * additional addresses with an endpoint after calling bind().  Or use
 927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 928 * socket is associated with so that no new association accepted will be
 929 * associated with those addresses. If the endpoint supports dynamic
 930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
 931 * endpoint to send the appropriate message to the peer to change the
 932 * peers address lists.
 933 *
 934 * Adding and removing addresses from a connected association is
 935 * optional functionality. Implementations that do not support this
 936 * functionality should return EOPNOTSUPP.
 937 *
 938 * Basically do nothing but copying the addresses from user to kernel
 939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
 940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
 941 * from userspace.
 942 *
 943 * We don't use copy_from_user() for optimization: we first do the
 944 * sanity checks (buffer size -fast- and access check-healthy
 945 * pointer); if all of those succeed, then we can alloc the memory
 946 * (expensive operation) needed to copy the data to kernel. Then we do
 947 * the copying without checking the user space area
 948 * (__copy_from_user()).
 949 *
 950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
 951 * it.
 952 *
 953 * sk        The sk of the socket
 954 * addrs     The pointer to the addresses in user land
 955 * addrssize Size of the addrs buffer
 956 * op        Operation to perform (add or remove, see the flags of
 957 *           sctp_bindx)
 958 *
 959 * Returns 0 if ok, <0 errno code on error.
 960 */
 961SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
 962				      struct sockaddr __user *addrs,
 963				      int addrs_size, int op)
 964{
 965	struct sockaddr *kaddrs;
 966	int err;
 967	int addrcnt = 0;
 968	int walk_size = 0;
 969	struct sockaddr *sa_addr;
 970	void *addr_buf;
 971	struct sctp_af *af;
 972
 973	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
 974			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
 975
 976	if (unlikely(addrs_size <= 0))
 977		return -EINVAL;
 978
 979	/* Check the user passed a healthy pointer.  */
 980	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
 981		return -EFAULT;
 982
 983	/* Alloc space for the address array in kernel memory.  */
 984	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
 985	if (unlikely(!kaddrs))
 986		return -ENOMEM;
 987
 988	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
 989		kfree(kaddrs);
 990		return -EFAULT;
 991	}
 992
 993	/* Walk through the addrs buffer and count the number of addresses. */
 994	addr_buf = kaddrs;
 995	while (walk_size < addrs_size) {
 996		if (walk_size + sizeof(sa_family_t) > addrs_size) {
 997			kfree(kaddrs);
 998			return -EINVAL;
 999		}
1000
1001		sa_addr = addr_buf;
1002		af = sctp_get_af_specific(sa_addr->sa_family);
1003
1004		/* If the address family is not supported or if this address
1005		 * causes the address buffer to overflow return EINVAL.
1006		 */
1007		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008			kfree(kaddrs);
1009			return -EINVAL;
1010		}
1011		addrcnt++;
1012		addr_buf += af->sockaddr_len;
1013		walk_size += af->sockaddr_len;
1014	}
1015
1016	/* Do the work. */
1017	switch (op) {
1018	case SCTP_BINDX_ADD_ADDR:
1019		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1020		if (err)
1021			goto out;
1022		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1023		break;
1024
1025	case SCTP_BINDX_REM_ADDR:
1026		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1027		if (err)
1028			goto out;
1029		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1030		break;
1031
1032	default:
1033		err = -EINVAL;
1034		break;
1035	}
1036
1037out:
1038	kfree(kaddrs);
1039
1040	return err;
1041}
1042
1043/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1044 *
1045 * Common routine for handling connect() and sctp_connectx().
1046 * Connect will come in with just a single address.
1047 */
1048static int __sctp_connect(struct sock* sk,
1049			  struct sockaddr *kaddrs,
1050			  int addrs_size,
1051			  sctp_assoc_t *assoc_id)
1052{
1053	struct sctp_sock *sp;
1054	struct sctp_endpoint *ep;
1055	struct sctp_association *asoc = NULL;
1056	struct sctp_association *asoc2;
1057	struct sctp_transport *transport;
1058	union sctp_addr to;
1059	struct sctp_af *af;
1060	sctp_scope_t scope;
1061	long timeo;
1062	int err = 0;
1063	int addrcnt = 0;
1064	int walk_size = 0;
1065	union sctp_addr *sa_addr = NULL;
1066	void *addr_buf;
1067	unsigned short port;
1068	unsigned int f_flags = 0;
1069
1070	sp = sctp_sk(sk);
1071	ep = sp->ep;
1072
1073	/* connect() cannot be done on a socket that is already in ESTABLISHED
1074	 * state - UDP-style peeled off socket or a TCP-style socket that
1075	 * is already connected.
1076	 * It cannot be done even on a TCP-style listening socket.
1077	 */
1078	if (sctp_sstate(sk, ESTABLISHED) ||
1079	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1080		err = -EISCONN;
1081		goto out_free;
1082	}
1083
1084	/* Walk through the addrs buffer and count the number of addresses. */
1085	addr_buf = kaddrs;
1086	while (walk_size < addrs_size) {
1087		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088			err = -EINVAL;
1089			goto out_free;
1090		}
1091
1092		sa_addr = addr_buf;
1093		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094
1095		/* If the address family is not supported or if this address
1096		 * causes the address buffer to overflow return EINVAL.
1097		 */
1098		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099			err = -EINVAL;
1100			goto out_free;
1101		}
1102
1103		port = ntohs(sa_addr->v4.sin_port);
1104
1105		/* Save current address so we can work with it */
1106		memcpy(&to, sa_addr, af->sockaddr_len);
1107
1108		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109		if (err)
1110			goto out_free;
1111
1112		/* Make sure the destination port is correctly set
1113		 * in all addresses.
1114		 */
1115		if (asoc && asoc->peer.port && asoc->peer.port != port)
1116			goto out_free;
1117
1118
1119		/* Check if there already is a matching association on the
1120		 * endpoint (other than the one created here).
1121		 */
1122		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123		if (asoc2 && asoc2 != asoc) {
1124			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125				err = -EISCONN;
1126			else
1127				err = -EALREADY;
1128			goto out_free;
1129		}
1130
1131		/* If we could not find a matching association on the endpoint,
1132		 * make sure that there is no peeled-off association matching
1133		 * the peer address even on another socket.
1134		 */
1135		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136			err = -EADDRNOTAVAIL;
1137			goto out_free;
1138		}
1139
1140		if (!asoc) {
1141			/* If a bind() or sctp_bindx() is not called prior to
1142			 * an sctp_connectx() call, the system picks an
1143			 * ephemeral port and will choose an address set
1144			 * equivalent to binding with a wildcard address.
1145			 */
1146			if (!ep->base.bind_addr.port) {
1147				if (sctp_autobind(sk)) {
1148					err = -EAGAIN;
1149					goto out_free;
1150				}
1151			} else {
1152				/*
1153				 * If an unprivileged user inherits a 1-many
1154				 * style socket with open associations on a
1155				 * privileged port, it MAY be permitted to
1156				 * accept new associations, but it SHOULD NOT
1157				 * be permitted to open new associations.
1158				 */
1159				if (ep->base.bind_addr.port < PROT_SOCK &&
1160				    !capable(CAP_NET_BIND_SERVICE)) {
1161					err = -EACCES;
1162					goto out_free;
1163				}
1164			}
1165
1166			scope = sctp_scope(&to);
1167			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168			if (!asoc) {
1169				err = -ENOMEM;
1170				goto out_free;
1171			}
1172
1173			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174							      GFP_KERNEL);
1175			if (err < 0) {
1176				goto out_free;
1177			}
1178
1179		}
1180
1181		/* Prime the peer's transport structures.  */
1182		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183						SCTP_UNKNOWN);
1184		if (!transport) {
1185			err = -ENOMEM;
1186			goto out_free;
1187		}
1188
1189		addrcnt++;
1190		addr_buf += af->sockaddr_len;
1191		walk_size += af->sockaddr_len;
1192	}
1193
1194	/* In case the user of sctp_connectx() wants an association
1195	 * id back, assign one now.
1196	 */
1197	if (assoc_id) {
1198		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199		if (err < 0)
1200			goto out_free;
1201	}
1202
1203	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1204	if (err < 0) {
1205		goto out_free;
1206	}
1207
1208	/* Initialize sk's dport and daddr for getpeername() */
1209	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211	af->to_sk_daddr(sa_addr, sk);
1212	sk->sk_err = 0;
1213
1214	/* in-kernel sockets don't generally have a file allocated to them
1215	 * if all they do is call sock_create_kern().
1216	 */
1217	if (sk->sk_socket->file)
1218		f_flags = sk->sk_socket->file->f_flags;
1219
1220	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221
1222	err = sctp_wait_for_connect(asoc, &timeo);
1223	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224		*assoc_id = asoc->assoc_id;
1225
1226	/* Don't free association on exit. */
1227	asoc = NULL;
1228
1229out_free:
1230
1231	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1232			  " kaddrs: %p err: %d\n",
1233			  asoc, kaddrs, err);
1234	if (asoc) {
1235		/* sctp_primitive_ASSOCIATE may have added this association
1236		 * To the hash table, try to unhash it, just in case, its a noop
1237		 * if it wasn't hashed so we're safe
1238		 */
1239		sctp_unhash_established(asoc);
1240		sctp_association_free(asoc);
1241	}
1242	return err;
1243}
1244
1245/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * 			sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association.  On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code.  The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached.  The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent.  This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association.  It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association.  If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk        The sk of the socket
1302 * addrs     The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1308				      struct sockaddr __user *addrs,
1309				      int addrs_size,
1310				      sctp_assoc_t *assoc_id)
1311{
1312	int err = 0;
1313	struct sockaddr *kaddrs;
1314
1315	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1316			  __func__, sk, addrs, addrs_size);
1317
1318	if (unlikely(addrs_size <= 0))
1319		return -EINVAL;
1320
1321	/* Check the user passed a healthy pointer.  */
1322	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1323		return -EFAULT;
1324
1325	/* Alloc space for the address array in kernel memory.  */
1326	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1327	if (unlikely(!kaddrs))
1328		return -ENOMEM;
1329
1330	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1331		err = -EFAULT;
1332	} else {
1333		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1334	}
1335
1336	kfree(kaddrs);
1337
1338	return err;
1339}
1340
1341/*
1342 * This is an older interface.  It's kept for backward compatibility
1343 * to the option that doesn't provide association id.
1344 */
1345SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1346				      struct sockaddr __user *addrs,
1347				      int addrs_size)
1348{
1349	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1350}
1351
1352/*
1353 * New interface for the API.  The since the API is done with a socket
1354 * option, to make it simple we feed back the association id is as a return
1355 * indication to the call.  Error is always negative and association id is
1356 * always positive.
1357 */
1358SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1359				      struct sockaddr __user *addrs,
1360				      int addrs_size)
1361{
1362	sctp_assoc_t assoc_id = 0;
1363	int err = 0;
1364
1365	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1366
1367	if (err)
1368		return err;
1369	else
1370		return assoc_id;
1371}
1372
1373/*
1374 * New (hopefully final) interface for the API.
1375 * We use the sctp_getaddrs_old structure so that use-space library
1376 * can avoid any unnecessary allocations.   The only defferent part
1377 * is that we store the actual length of the address buffer into the
1378 * addrs_num structure member.  That way we can re-use the existing
1379 * code.
1380 */
1381SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1382					char __user *optval,
1383					int __user *optlen)
1384{
1385	struct sctp_getaddrs_old param;
1386	sctp_assoc_t assoc_id = 0;
1387	int err = 0;
1388
1389	if (len < sizeof(param))
1390		return -EINVAL;
1391
1392	if (copy_from_user(&param, optval, sizeof(param)))
1393		return -EFAULT;
1394
1395	err = __sctp_setsockopt_connectx(sk,
1396			(struct sockaddr __user *)param.addrs,
1397			param.addr_num, &assoc_id);
1398
1399	if (err == 0 || err == -EINPROGRESS) {
1400		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1401			return -EFAULT;
1402		if (put_user(sizeof(assoc_id), optlen))
1403			return -EFAULT;
1404	}
1405
1406	return err;
1407}
1408
1409/* API 3.1.4 close() - UDP Style Syntax
1410 * Applications use close() to perform graceful shutdown (as described in
1411 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1412 * by a UDP-style socket.
1413 *
1414 * The syntax is
1415 *
1416 *   ret = close(int sd);
1417 *
1418 *   sd      - the socket descriptor of the associations to be closed.
1419 *
1420 * To gracefully shutdown a specific association represented by the
1421 * UDP-style socket, an application should use the sendmsg() call,
1422 * passing no user data, but including the appropriate flag in the
1423 * ancillary data (see Section xxxx).
1424 *
1425 * If sd in the close() call is a branched-off socket representing only
1426 * one association, the shutdown is performed on that association only.
1427 *
1428 * 4.1.6 close() - TCP Style Syntax
1429 *
1430 * Applications use close() to gracefully close down an association.
1431 *
1432 * The syntax is:
1433 *
1434 *    int close(int sd);
1435 *
1436 *      sd      - the socket descriptor of the association to be closed.
1437 *
1438 * After an application calls close() on a socket descriptor, no further
1439 * socket operations will succeed on that descriptor.
1440 *
1441 * API 7.1.4 SO_LINGER
1442 *
1443 * An application using the TCP-style socket can use this option to
1444 * perform the SCTP ABORT primitive.  The linger option structure is:
1445 *
1446 *  struct  linger {
1447 *     int     l_onoff;                // option on/off
1448 *     int     l_linger;               // linger time
1449 * };
1450 *
1451 * To enable the option, set l_onoff to 1.  If the l_linger value is set
1452 * to 0, calling close() is the same as the ABORT primitive.  If the
1453 * value is set to a negative value, the setsockopt() call will return
1454 * an error.  If the value is set to a positive value linger_time, the
1455 * close() can be blocked for at most linger_time ms.  If the graceful
1456 * shutdown phase does not finish during this period, close() will
1457 * return but the graceful shutdown phase continues in the system.
1458 */
1459SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1460{
1461	struct sctp_endpoint *ep;
1462	struct sctp_association *asoc;
1463	struct list_head *pos, *temp;
1464	unsigned int data_was_unread;
1465
1466	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1467
1468	sctp_lock_sock(sk);
1469	sk->sk_shutdown = SHUTDOWN_MASK;
1470	sk->sk_state = SCTP_SS_CLOSING;
1471
1472	ep = sctp_sk(sk)->ep;
1473
1474	/* Clean up any skbs sitting on the receive queue.  */
1475	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1476	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1477
1478	/* Walk all associations on an endpoint.  */
1479	list_for_each_safe(pos, temp, &ep->asocs) {
1480		asoc = list_entry(pos, struct sctp_association, asocs);
1481
1482		if (sctp_style(sk, TCP)) {
1483			/* A closed association can still be in the list if
1484			 * it belongs to a TCP-style listening socket that is
1485			 * not yet accepted. If so, free it. If not, send an
1486			 * ABORT or SHUTDOWN based on the linger options.
1487			 */
1488			if (sctp_state(asoc, CLOSED)) {
1489				sctp_unhash_established(asoc);
1490				sctp_association_free(asoc);
1491				continue;
1492			}
1493		}
1494
1495		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1496		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1497		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1498			struct sctp_chunk *chunk;
1499
1500			chunk = sctp_make_abort_user(asoc, NULL, 0);
1501			if (chunk)
1502				sctp_primitive_ABORT(asoc, chunk);
1503		} else
1504			sctp_primitive_SHUTDOWN(asoc, NULL);
1505	}
1506
1507	/* On a TCP-style socket, block for at most linger_time if set. */
1508	if (sctp_style(sk, TCP) && timeout)
1509		sctp_wait_for_close(sk, timeout);
1510
1511	/* This will run the backlog queue.  */
1512	sctp_release_sock(sk);
1513
1514	/* Supposedly, no process has access to the socket, but
1515	 * the net layers still may.
1516	 */
1517	sctp_local_bh_disable();
1518	sctp_bh_lock_sock(sk);
1519
1520	/* Hold the sock, since sk_common_release() will put sock_put()
1521	 * and we have just a little more cleanup.
1522	 */
1523	sock_hold(sk);
1524	sk_common_release(sk);
1525
1526	sctp_bh_unlock_sock(sk);
1527	sctp_local_bh_enable();
1528
1529	sock_put(sk);
1530
1531	SCTP_DBG_OBJCNT_DEC(sock);
1532}
1533
1534/* Handle EPIPE error. */
1535static int sctp_error(struct sock *sk, int flags, int err)
1536{
1537	if (err == -EPIPE)
1538		err = sock_error(sk) ? : -EPIPE;
1539	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1540		send_sig(SIGPIPE, current, 0);
1541	return err;
1542}
1543
1544/* API 3.1.3 sendmsg() - UDP Style Syntax
1545 *
1546 * An application uses sendmsg() and recvmsg() calls to transmit data to
1547 * and receive data from its peer.
1548 *
1549 *  ssize_t sendmsg(int socket, const struct msghdr *message,
1550 *                  int flags);
1551 *
1552 *  socket  - the socket descriptor of the endpoint.
1553 *  message - pointer to the msghdr structure which contains a single
1554 *            user message and possibly some ancillary data.
1555 *
1556 *            See Section 5 for complete description of the data
1557 *            structures.
1558 *
1559 *  flags   - flags sent or received with the user message, see Section
1560 *            5 for complete description of the flags.
1561 *
1562 * Note:  This function could use a rewrite especially when explicit
1563 * connect support comes in.
1564 */
1565/* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1566
1567SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1568
1569SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1570			     struct msghdr *msg, size_t msg_len)
1571{
1572	struct sctp_sock *sp;
1573	struct sctp_endpoint *ep;
1574	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1575	struct sctp_transport *transport, *chunk_tp;
1576	struct sctp_chunk *chunk;
1577	union sctp_addr to;
1578	struct sockaddr *msg_name = NULL;
1579	struct sctp_sndrcvinfo default_sinfo;
1580	struct sctp_sndrcvinfo *sinfo;
1581	struct sctp_initmsg *sinit;
1582	sctp_assoc_t associd = 0;
1583	sctp_cmsgs_t cmsgs = { NULL };
1584	int err;
1585	sctp_scope_t scope;
1586	long timeo;
1587	__u16 sinfo_flags = 0;
1588	struct sctp_datamsg *datamsg;
1589	int msg_flags = msg->msg_flags;
1590
1591	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1592			  sk, msg, msg_len);
1593
1594	err = 0;
1595	sp = sctp_sk(sk);
1596	ep = sp->ep;
1597
1598	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1599
1600	/* We cannot send a message over a TCP-style listening socket. */
1601	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1602		err = -EPIPE;
1603		goto out_nounlock;
1604	}
1605
1606	/* Parse out the SCTP CMSGs.  */
1607	err = sctp_msghdr_parse(msg, &cmsgs);
1608
1609	if (err) {
1610		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1611		goto out_nounlock;
1612	}
1613
1614	/* Fetch the destination address for this packet.  This
1615	 * address only selects the association--it is not necessarily
1616	 * the address we will send to.
1617	 * For a peeled-off socket, msg_name is ignored.
1618	 */
1619	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1620		int msg_namelen = msg->msg_namelen;
1621
1622		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1623				       msg_namelen);
1624		if (err)
1625			return err;
1626
1627		if (msg_namelen > sizeof(to))
1628			msg_namelen = sizeof(to);
1629		memcpy(&to, msg->msg_name, msg_namelen);
1630		msg_name = msg->msg_name;
1631	}
1632
1633	sinfo = cmsgs.info;
1634	sinit = cmsgs.init;
1635
1636	/* Did the user specify SNDRCVINFO?  */
1637	if (sinfo) {
1638		sinfo_flags = sinfo->sinfo_flags;
1639		associd = sinfo->sinfo_assoc_id;
1640	}
1641
1642	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1643			  msg_len, sinfo_flags);
1644
1645	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1646	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1647		err = -EINVAL;
1648		goto out_nounlock;
1649	}
1650
1651	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1652	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1653	 * If SCTP_ABORT is set, the message length could be non zero with
1654	 * the msg_iov set to the user abort reason.
1655	 */
1656	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1657	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1658		err = -EINVAL;
1659		goto out_nounlock;
1660	}
1661
1662	/* If SCTP_ADDR_OVER is set, there must be an address
1663	 * specified in msg_name.
1664	 */
1665	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1666		err = -EINVAL;
1667		goto out_nounlock;
1668	}
1669
1670	transport = NULL;
1671
1672	SCTP_DEBUG_PRINTK("About to look up association.\n");
1673
1674	sctp_lock_sock(sk);
1675
1676	/* If a msg_name has been specified, assume this is to be used.  */
1677	if (msg_name) {
1678		/* Look for a matching association on the endpoint. */
1679		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1680		if (!asoc) {
1681			/* If we could not find a matching association on the
1682			 * endpoint, make sure that it is not a TCP-style
1683			 * socket that already has an association or there is
1684			 * no peeled-off association on another socket.
1685			 */
1686			if ((sctp_style(sk, TCP) &&
1687			     sctp_sstate(sk, ESTABLISHED)) ||
1688			    sctp_endpoint_is_peeled_off(ep, &to)) {
1689				err = -EADDRNOTAVAIL;
1690				goto out_unlock;
1691			}
1692		}
1693	} else {
1694		asoc = sctp_id2assoc(sk, associd);
1695		if (!asoc) {
1696			err = -EPIPE;
1697			goto out_unlock;
1698		}
1699	}
1700
1701	if (asoc) {
1702		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1703
1704		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1705		 * socket that has an association in CLOSED state. This can
1706		 * happen when an accepted socket has an association that is
1707		 * already CLOSED.
1708		 */
1709		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1710			err = -EPIPE;
1711			goto out_unlock;
1712		}
1713
1714		if (sinfo_flags & SCTP_EOF) {
1715			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1716					  asoc);
1717			sctp_primitive_SHUTDOWN(asoc, NULL);
1718			err = 0;
1719			goto out_unlock;
1720		}
1721		if (sinfo_flags & SCTP_ABORT) {
1722
1723			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1724			if (!chunk) {
1725				err = -ENOMEM;
1726				goto out_unlock;
1727			}
1728
1729			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1730			sctp_primitive_ABORT(asoc, chunk);
1731			err = 0;
1732			goto out_unlock;
1733		}
1734	}
1735
1736	/* Do we need to create the association?  */
1737	if (!asoc) {
1738		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1739
1740		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1741			err = -EINVAL;
1742			goto out_unlock;
1743		}
1744
1745		/* Check for invalid stream against the stream counts,
1746		 * either the default or the user specified stream counts.
1747		 */
1748		if (sinfo) {
1749			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1750				/* Check against the defaults. */
1751				if (sinfo->sinfo_stream >=
1752				    sp->initmsg.sinit_num_ostreams) {
1753					err = -EINVAL;
1754					goto out_unlock;
1755				}
1756			} else {
1757				/* Check against the requested.  */
1758				if (sinfo->sinfo_stream >=
1759				    sinit->sinit_num_ostreams) {
1760					err = -EINVAL;
1761					goto out_unlock;
1762				}
1763			}
1764		}
1765
1766		/*
1767		 * API 3.1.2 bind() - UDP Style Syntax
1768		 * If a bind() or sctp_bindx() is not called prior to a
1769		 * sendmsg() call that initiates a new association, the
1770		 * system picks an ephemeral port and will choose an address
1771		 * set equivalent to binding with a wildcard address.
1772		 */
1773		if (!ep->base.bind_addr.port) {
1774			if (sctp_autobind(sk)) {
1775				err = -EAGAIN;
1776				goto out_unlock;
1777			}
1778		} else {
1779			/*
1780			 * If an unprivileged user inherits a one-to-many
1781			 * style socket with open associations on a privileged
1782			 * port, it MAY be permitted to accept new associations,
1783			 * but it SHOULD NOT be permitted to open new
1784			 * associations.
1785			 */
1786			if (ep->base.bind_addr.port < PROT_SOCK &&
1787			    !capable(CAP_NET_BIND_SERVICE)) {
1788				err = -EACCES;
1789				goto out_unlock;
1790			}
1791		}
1792
1793		scope = sctp_scope(&to);
1794		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1795		if (!new_asoc) {
1796			err = -ENOMEM;
1797			goto out_unlock;
1798		}
1799		asoc = new_asoc;
1800		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1801		if (err < 0) {
1802			err = -ENOMEM;
1803			goto out_free;
1804		}
1805
1806		/* If the SCTP_INIT ancillary data is specified, set all
1807		 * the association init values accordingly.
1808		 */
1809		if (sinit) {
1810			if (sinit->sinit_num_ostreams) {
1811				asoc->c.sinit_num_ostreams =
1812					sinit->sinit_num_ostreams;
1813			}
1814			if (sinit->sinit_max_instreams) {
1815				asoc->c.sinit_max_instreams =
1816					sinit->sinit_max_instreams;
1817			}
1818			if (sinit->sinit_max_attempts) {
1819				asoc->max_init_attempts
1820					= sinit->sinit_max_attempts;
1821			}
1822			if (sinit->sinit_max_init_timeo) {
1823				asoc->max_init_timeo =
1824				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1825			}
1826		}
1827
1828		/* Prime the peer's transport structures.  */
1829		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1830		if (!transport) {
1831			err = -ENOMEM;
1832			goto out_free;
1833		}
1834	}
1835
1836	/* ASSERT: we have a valid association at this point.  */
1837	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1838
1839	if (!sinfo) {
1840		/* If the user didn't specify SNDRCVINFO, make up one with
1841		 * some defaults.
1842		 */
1843		memset(&default_sinfo, 0, sizeof(default_sinfo));
1844		default_sinfo.sinfo_stream = asoc->default_stream;
1845		default_sinfo.sinfo_flags = asoc->default_flags;
1846		default_sinfo.sinfo_ppid = asoc->default_ppid;
1847		default_sinfo.sinfo_context = asoc->default_context;
1848		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1849		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1850		sinfo = &default_sinfo;
1851	}
1852
1853	/* API 7.1.7, the sndbuf size per association bounds the
1854	 * maximum size of data that can be sent in a single send call.
1855	 */
1856	if (msg_len > sk->sk_sndbuf) {
1857		err = -EMSGSIZE;
1858		goto out_free;
1859	}
1860
1861	if (asoc->pmtu_pending)
1862		sctp_assoc_pending_pmtu(asoc);
1863
1864	/* If fragmentation is disabled and the message length exceeds the
1865	 * association fragmentation point, return EMSGSIZE.  The I-D
1866	 * does not specify what this error is, but this looks like
1867	 * a great fit.
1868	 */
1869	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1870		err = -EMSGSIZE;
1871		goto out_free;
1872	}
1873
1874	/* Check for invalid stream. */
1875	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1876		err = -EINVAL;
1877		goto out_free;
1878	}
1879
1880	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881	if (!sctp_wspace(asoc)) {
1882		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1883		if (err)
1884			goto out_free;
1885	}
1886
1887	/* If an address is passed with the sendto/sendmsg call, it is used
1888	 * to override the primary destination address in the TCP model, or
1889	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1890	 */
1891	if ((sctp_style(sk, TCP) && msg_name) ||
1892	    (sinfo_flags & SCTP_ADDR_OVER)) {
1893		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1894		if (!chunk_tp) {
1895			err = -EINVAL;
1896			goto out_free;
1897		}
1898	} else
1899		chunk_tp = NULL;
1900
1901	/* Auto-connect, if we aren't connected already. */
1902	if (sctp_state(asoc, CLOSED)) {
1903		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1904		if (err < 0)
1905			goto out_free;
1906		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1907	}
1908
1909	/* Break the message into multiple chunks of maximum size. */
1910	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1911	if (!datamsg) {
1912		err = -ENOMEM;
1913		goto out_free;
1914	}
1915
1916	/* Now send the (possibly) fragmented message. */
1917	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1918		sctp_chunk_hold(chunk);
1919
1920		/* Do accounting for the write space.  */
1921		sctp_set_owner_w(chunk);
1922
1923		chunk->transport = chunk_tp;
1924	}
1925
1926	/* Send it to the lower layers.  Note:  all chunks
1927	 * must either fail or succeed.   The lower layer
1928	 * works that way today.  Keep it that way or this
1929	 * breaks.
1930	 */
1931	err = sctp_primitive_SEND(asoc, datamsg);
1932	/* Did the lower layer accept the chunk? */
1933	if (err)
1934		sctp_datamsg_free(datamsg);
1935	else
1936		sctp_datamsg_put(datamsg);
1937
1938	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1939
1940	if (err)
1941		goto out_free;
1942	else
1943		err = msg_len;
1944
1945	/* If we are already past ASSOCIATE, the lower
1946	 * layers are responsible for association cleanup.
1947	 */
1948	goto out_unlock;
1949
1950out_free:
1951	if (new_asoc) {
1952		sctp_unhash_established(asoc);
1953		sctp_association_free(asoc);
1954	}
1955out_unlock:
1956	sctp_release_sock(sk);
1957
1958out_nounlock:
1959	return sctp_error(sk, msg_flags, err);
1960
1961#if 0
1962do_sock_err:
1963	if (msg_len)
1964		err = msg_len;
1965	else
1966		err = sock_error(sk);
1967	goto out;
1968
1969do_interrupted:
1970	if (msg_len)
1971		err = msg_len;
1972	goto out;
1973#endif /* 0 */
1974}
1975
1976/* This is an extended version of skb_pull() that removes the data from the
1977 * start of a skb even when data is spread across the list of skb's in the
1978 * frag_list. len specifies the total amount of data that needs to be removed.
1979 * when 'len' bytes could be removed from the skb, it returns 0.
1980 * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1981 * could not be removed.
1982 */
1983static int sctp_skb_pull(struct sk_buff *skb, int len)
1984{
1985	struct sk_buff *list;
1986	int skb_len = skb_headlen(skb);
1987	int rlen;
1988
1989	if (len <= skb_len) {
1990		__skb_pull(skb, len);
1991		return 0;
1992	}
1993	len -= skb_len;
1994	__skb_pull(skb, skb_len);
1995
1996	skb_walk_frags(skb, list) {
1997		rlen = sctp_skb_pull(list, len);
1998		skb->len -= (len-rlen);
1999		skb->data_len -= (len-rlen);
2000
2001		if (!rlen)
2002			return 0;
2003
2004		len = rlen;
2005	}
2006
2007	return len;
2008}
2009
2010/* API 3.1.3  recvmsg() - UDP Style Syntax
2011 *
2012 *  ssize_t recvmsg(int socket, struct msghdr *message,
2013 *                    int flags);
2014 *
2015 *  socket  - the socket descriptor of the endpoint.
2016 *  message - pointer to the msghdr structure which contains a single
2017 *            user message and possibly some ancillary data.
2018 *
2019 *            See Section 5 for complete description of the data
2020 *            structures.
2021 *
2022 *  flags   - flags sent or received with the user message, see Section
2023 *            5 for complete description of the flags.
2024 */
2025static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2026
2027SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2028			     struct msghdr *msg, size_t len, int noblock,
2029			     int flags, int *addr_len)
2030{
2031	struct sctp_ulpevent *event = NULL;
2032	struct sctp_sock *sp = sctp_sk(sk);
2033	struct sk_buff *skb;
2034	int copied;
2035	int err = 0;
2036	int skb_len;
2037
2038	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2039			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2040			  "len", len, "knoblauch", noblock,
2041			  "flags", flags, "addr_len", addr_len);
2042
2043	sctp_lock_sock(sk);
2044
2045	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2046		err = -ENOTCONN;
2047		goto out;
2048	}
2049
2050	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2051	if (!skb)
2052		goto out;
2053
2054	/* Get the total length of the skb including any skb's in the
2055	 * frag_list.
2056	 */
2057	skb_len = skb->len;
2058
2059	copied = skb_len;
2060	if (copied > len)
2061		copied = len;
2062
2063	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2064
2065	event = sctp_skb2event(skb);
2066
2067	if (err)
2068		goto out_free;
2069
2070	sock_recv_ts_and_drops(msg, sk, skb);
2071	if (sctp_ulpevent_is_notification(event)) {
2072		msg->msg_flags |= MSG_NOTIFICATION;
2073		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2074	} else {
2075		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2076	}
2077
2078	/* Check if we allow SCTP_SNDRCVINFO. */
2079	if (sp->subscribe.sctp_data_io_event)
2080		sctp_ulpevent_read_sndrcvinfo(event, msg);
2081#if 0
2082	/* FIXME: we should be calling IP/IPv6 layers.  */
2083	if (sk->sk_protinfo.af_inet.cmsg_flags)
2084		ip_cmsg_recv(msg, skb);
2085#endif
2086
2087	err = copied;
2088
2089	/* If skb's length exceeds the user's buffer, update the skb and
2090	 * push it back to the receive_queue so that the next call to
2091	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2092	 */
2093	if (skb_len > copied) {
2094		msg->msg_flags &= ~MSG_EOR;
2095		if (flags & MSG_PEEK)
2096			goto out_free;
2097		sctp_skb_pull(skb, copied);
2098		skb_queue_head(&sk->sk_receive_queue, skb);
2099
2100		/* When only partial message is copied to the user, increase
2101		 * rwnd by that amount. If all the data in the skb is read,
2102		 * rwnd is updated when the event is freed.
2103		 */
2104		if (!sctp_ulpevent_is_notification(event))
2105			sctp_assoc_rwnd_increase(event->asoc, copied);
2106		goto out;
2107	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2108		   (event->msg_flags & MSG_EOR))
2109		msg->msg_flags |= MSG_EOR;
2110	else
2111		msg->msg_flags &= ~MSG_EOR;
2112
2113out_free:
2114	if (flags & MSG_PEEK) {
2115		/* Release the skb reference acquired after peeking the skb in
2116		 * sctp_skb_recv_datagram().
2117		 */
2118		kfree_skb(skb);
2119	} else {
2120		/* Free the event which includes releasing the reference to
2121		 * the owner of the skb, freeing the skb and updating the
2122		 * rwnd.
2123		 */
2124		sctp_ulpevent_free(event);
2125	}
2126out:
2127	sctp_release_sock(sk);
2128	return err;
2129}
2130
2131/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2132 *
2133 * This option is a on/off flag.  If enabled no SCTP message
2134 * fragmentation will be performed.  Instead if a message being sent
2135 * exceeds the current PMTU size, the message will NOT be sent and
2136 * instead a error will be indicated to the user.
2137 */
2138static int sctp_setsockopt_disable_fragments(struct sock *sk,
2139					     char __user *optval,
2140					     unsigned int optlen)
2141{
2142	int val;
2143
2144	if (optlen < sizeof(int))
2145		return -EINVAL;
2146
2147	if (get_user(val, (int __user *)optval))
2148		return -EFAULT;
2149
2150	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2151
2152	return 0;
2153}
2154
2155static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2156				  unsigned int optlen)
2157{
2158	struct sctp_association *asoc;
2159	struct sctp_ulpevent *event;
2160
2161	if (optlen > sizeof(struct sctp_event_subscribe))
2162		return -EINVAL;
2163	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2164		return -EFAULT;
2165
2166	/*
2167	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2168	 * if there is no data to be sent or retransmit, the stack will
2169	 * immediately send up this notification.
2170	 */
2171	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2172				       &sctp_sk(sk)->subscribe)) {
2173		asoc = sctp_id2assoc(sk, 0);
2174
2175		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2176			event = sctp_ulpevent_make_sender_dry_event(asoc,
2177					GFP_ATOMIC);
2178			if (!event)
2179				return -ENOMEM;
2180
2181			sctp_ulpq_tail_event(&asoc->ulpq, event);
2182		}
2183	}
2184
2185	return 0;
2186}
2187
2188/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2189 *
2190 * This socket option is applicable to the UDP-style socket only.  When
2191 * set it will cause associations that are idle for more than the
2192 * specified number of seconds to automatically close.  An association
2193 * being idle is defined an association that has NOT sent or received
2194 * user data.  The special value of '0' indicates that no automatic
2195 * close of any associations should be performed.  The option expects an
2196 * integer defining the number of seconds of idle time before an
2197 * association is closed.
2198 */
2199static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2200				     unsigned int optlen)
2201{
2202	struct sctp_sock *sp = sctp_sk(sk);
2203
2204	/* Applicable to UDP-style socket only */
2205	if (sctp_style(sk, TCP))
2206		return -EOPNOTSUPP;
2207	if (optlen != sizeof(int))
2208		return -EINVAL;
2209	if (copy_from_user(&sp->autoclose, optval, optlen))
2210		return -EFAULT;
 
 
2211
2212	return 0;
2213}
2214
2215/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2216 *
2217 * Applications can enable or disable heartbeats for any peer address of
2218 * an association, modify an address's heartbeat interval, force a
2219 * heartbeat to be sent immediately, and adjust the address's maximum
2220 * number of retransmissions sent before an address is considered
2221 * unreachable.  The following structure is used to access and modify an
2222 * address's parameters:
2223 *
2224 *  struct sctp_paddrparams {
2225 *     sctp_assoc_t            spp_assoc_id;
2226 *     struct sockaddr_storage spp_address;
2227 *     uint32_t                spp_hbinterval;
2228 *     uint16_t                spp_pathmaxrxt;
2229 *     uint32_t                spp_pathmtu;
2230 *     uint32_t                spp_sackdelay;
2231 *     uint32_t                spp_flags;
2232 * };
2233 *
2234 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2235 *                     application, and identifies the association for
2236 *                     this query.
2237 *   spp_address     - This specifies which address is of interest.
2238 *   spp_hbinterval  - This contains the value of the heartbeat interval,
2239 *                     in milliseconds.  If a  value of zero
2240 *                     is present in this field then no changes are to
2241 *                     be made to this parameter.
2242 *   spp_pathmaxrxt  - This contains the maximum number of
2243 *                     retransmissions before this address shall be
2244 *                     considered unreachable. If a  value of zero
2245 *                     is present in this field then no changes are to
2246 *                     be made to this parameter.
2247 *   spp_pathmtu     - When Path MTU discovery is disabled the value
2248 *                     specified here will be the "fixed" path mtu.
2249 *                     Note that if the spp_address field is empty
2250 *                     then all associations on this address will
2251 *                     have this fixed path mtu set upon them.
2252 *
2253 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2254 *                     the number of milliseconds that sacks will be delayed
2255 *                     for. This value will apply to all addresses of an
2256 *                     association if the spp_address field is empty. Note
2257 *                     also, that if delayed sack is enabled and this
2258 *                     value is set to 0, no change is made to the last
2259 *                     recorded delayed sack timer value.
2260 *
2261 *   spp_flags       - These flags are used to control various features
2262 *                     on an association. The flag field may contain
2263 *                     zero or more of the following options.
2264 *
2265 *                     SPP_HB_ENABLE  - Enable heartbeats on the
2266 *                     specified address. Note that if the address
2267 *                     field is empty all addresses for the association
2268 *                     have heartbeats enabled upon them.
2269 *
2270 *                     SPP_HB_DISABLE - Disable heartbeats on the
2271 *                     speicifed address. Note that if the address
2272 *                     field is empty all addresses for the association
2273 *                     will have their heartbeats disabled. Note also
2274 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2275 *                     mutually exclusive, only one of these two should
2276 *                     be specified. Enabling both fields will have
2277 *                     undetermined results.
2278 *
2279 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2280 *                     to be made immediately.
2281 *
2282 *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2283 *                     heartbeat delayis to be set to the value of 0
2284 *                     milliseconds.
2285 *
2286 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2287 *                     discovery upon the specified address. Note that
2288 *                     if the address feild is empty then all addresses
2289 *                     on the association are effected.
2290 *
2291 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2292 *                     discovery upon the specified address. Note that
2293 *                     if the address feild is empty then all addresses
2294 *                     on the association are effected. Not also that
2295 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2296 *                     exclusive. Enabling both will have undetermined
2297 *                     results.
2298 *
2299 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2300 *                     on delayed sack. The time specified in spp_sackdelay
2301 *                     is used to specify the sack delay for this address. Note
2302 *                     that if spp_address is empty then all addresses will
2303 *                     enable delayed sack and take on the sack delay
2304 *                     value specified in spp_sackdelay.
2305 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2306 *                     off delayed sack. If the spp_address field is blank then
2307 *                     delayed sack is disabled for the entire association. Note
2308 *                     also that this field is mutually exclusive to
2309 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2310 *                     results.
2311 */
2312static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2313				       struct sctp_transport   *trans,
2314				       struct sctp_association *asoc,
2315				       struct sctp_sock        *sp,
2316				       int                      hb_change,
2317				       int                      pmtud_change,
2318				       int                      sackdelay_change)
2319{
2320	int error;
2321
2322	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2323		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2324		if (error)
2325			return error;
2326	}
2327
2328	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2329	 * this field is ignored.  Note also that a value of zero indicates
2330	 * the current setting should be left unchanged.
2331	 */
2332	if (params->spp_flags & SPP_HB_ENABLE) {
2333
2334		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2335		 * set.  This lets us use 0 value when this flag
2336		 * is set.
2337		 */
2338		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2339			params->spp_hbinterval = 0;
2340
2341		if (params->spp_hbinterval ||
2342		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2343			if (trans) {
2344				trans->hbinterval =
2345				    msecs_to_jiffies(params->spp_hbinterval);
2346			} else if (asoc) {
2347				asoc->hbinterval =
2348				    msecs_to_jiffies(params->spp_hbinterval);
2349			} else {
2350				sp->hbinterval = params->spp_hbinterval;
2351			}
2352		}
2353	}
2354
2355	if (hb_change) {
2356		if (trans) {
2357			trans->param_flags =
2358				(trans->param_flags & ~SPP_HB) | hb_change;
2359		} else if (asoc) {
2360			asoc->param_flags =
2361				(asoc->param_flags & ~SPP_HB) | hb_change;
2362		} else {
2363			sp->param_flags =
2364				(sp->param_flags & ~SPP_HB) | hb_change;
2365		}
2366	}
2367
2368	/* When Path MTU discovery is disabled the value specified here will
2369	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2370	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2371	 * effect).
2372	 */
2373	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2374		if (trans) {
2375			trans->pathmtu = params->spp_pathmtu;
2376			sctp_assoc_sync_pmtu(asoc);
2377		} else if (asoc) {
2378			asoc->pathmtu = params->spp_pathmtu;
2379			sctp_frag_point(asoc, params->spp_pathmtu);
2380		} else {
2381			sp->pathmtu = params->spp_pathmtu;
2382		}
2383	}
2384
2385	if (pmtud_change) {
2386		if (trans) {
2387			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2388				(params->spp_flags & SPP_PMTUD_ENABLE);
2389			trans->param_flags =
2390				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2391			if (update) {
2392				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2393				sctp_assoc_sync_pmtu(asoc);
2394			}
2395		} else if (asoc) {
2396			asoc->param_flags =
2397				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2398		} else {
2399			sp->param_flags =
2400				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2401		}
2402	}
2403
2404	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2405	 * value of this field is ignored.  Note also that a value of zero
2406	 * indicates the current setting should be left unchanged.
2407	 */
2408	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2409		if (trans) {
2410			trans->sackdelay =
2411				msecs_to_jiffies(params->spp_sackdelay);
2412		} else if (asoc) {
2413			asoc->sackdelay =
2414				msecs_to_jiffies(params->spp_sackdelay);
2415		} else {
2416			sp->sackdelay = params->spp_sackdelay;
2417		}
2418	}
2419
2420	if (sackdelay_change) {
2421		if (trans) {
2422			trans->param_flags =
2423				(trans->param_flags & ~SPP_SACKDELAY) |
2424				sackdelay_change;
2425		} else if (asoc) {
2426			asoc->param_flags =
2427				(asoc->param_flags & ~SPP_SACKDELAY) |
2428				sackdelay_change;
2429		} else {
2430			sp->param_flags =
2431				(sp->param_flags & ~SPP_SACKDELAY) |
2432				sackdelay_change;
2433		}
2434	}
2435
2436	/* Note that a value of zero indicates the current setting should be
2437	   left unchanged.
2438	 */
2439	if (params->spp_pathmaxrxt) {
2440		if (trans) {
2441			trans->pathmaxrxt = params->spp_pathmaxrxt;
2442		} else if (asoc) {
2443			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2444		} else {
2445			sp->pathmaxrxt = params->spp_pathmaxrxt;
2446		}
2447	}
2448
2449	return 0;
2450}
2451
2452static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2453					    char __user *optval,
2454					    unsigned int optlen)
2455{
2456	struct sctp_paddrparams  params;
2457	struct sctp_transport   *trans = NULL;
2458	struct sctp_association *asoc = NULL;
2459	struct sctp_sock        *sp = sctp_sk(sk);
2460	int error;
2461	int hb_change, pmtud_change, sackdelay_change;
2462
2463	if (optlen != sizeof(struct sctp_paddrparams))
2464		return - EINVAL;
2465
2466	if (copy_from_user(&params, optval, optlen))
2467		return -EFAULT;
2468
2469	/* Validate flags and value parameters. */
2470	hb_change        = params.spp_flags & SPP_HB;
2471	pmtud_change     = params.spp_flags & SPP_PMTUD;
2472	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2473
2474	if (hb_change        == SPP_HB ||
2475	    pmtud_change     == SPP_PMTUD ||
2476	    sackdelay_change == SPP_SACKDELAY ||
2477	    params.spp_sackdelay > 500 ||
2478	    (params.spp_pathmtu &&
2479	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2480		return -EINVAL;
2481
2482	/* If an address other than INADDR_ANY is specified, and
2483	 * no transport is found, then the request is invalid.
2484	 */
2485	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2486		trans = sctp_addr_id2transport(sk, &params.spp_address,
2487					       params.spp_assoc_id);
2488		if (!trans)
2489			return -EINVAL;
2490	}
2491
2492	/* Get association, if assoc_id != 0 and the socket is a one
2493	 * to many style socket, and an association was not found, then
2494	 * the id was invalid.
2495	 */
2496	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2497	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2498		return -EINVAL;
2499
2500	/* Heartbeat demand can only be sent on a transport or
2501	 * association, but not a socket.
2502	 */
2503	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2504		return -EINVAL;
2505
2506	/* Process parameters. */
2507	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2508					    hb_change, pmtud_change,
2509					    sackdelay_change);
2510
2511	if (error)
2512		return error;
2513
2514	/* If changes are for association, also apply parameters to each
2515	 * transport.
2516	 */
2517	if (!trans && asoc) {
2518		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2519				transports) {
2520			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2521						    hb_change, pmtud_change,
2522						    sackdelay_change);
2523		}
2524	}
2525
2526	return 0;
2527}
2528
2529/*
2530 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2531 *
2532 * This option will effect the way delayed acks are performed.  This
2533 * option allows you to get or set the delayed ack time, in
2534 * milliseconds.  It also allows changing the delayed ack frequency.
2535 * Changing the frequency to 1 disables the delayed sack algorithm.  If
2536 * the assoc_id is 0, then this sets or gets the endpoints default
2537 * values.  If the assoc_id field is non-zero, then the set or get
2538 * effects the specified association for the one to many model (the
2539 * assoc_id field is ignored by the one to one model).  Note that if
2540 * sack_delay or sack_freq are 0 when setting this option, then the
2541 * current values will remain unchanged.
2542 *
2543 * struct sctp_sack_info {
2544 *     sctp_assoc_t            sack_assoc_id;
2545 *     uint32_t                sack_delay;
2546 *     uint32_t                sack_freq;
2547 * };
2548 *
2549 * sack_assoc_id -  This parameter, indicates which association the user
2550 *    is performing an action upon.  Note that if this field's value is
2551 *    zero then the endpoints default value is changed (effecting future
2552 *    associations only).
2553 *
2554 * sack_delay -  This parameter contains the number of milliseconds that
2555 *    the user is requesting the delayed ACK timer be set to.  Note that
2556 *    this value is defined in the standard to be between 200 and 500
2557 *    milliseconds.
2558 *
2559 * sack_freq -  This parameter contains the number of packets that must
2560 *    be received before a sack is sent without waiting for the delay
2561 *    timer to expire.  The default value for this is 2, setting this
2562 *    value to 1 will disable the delayed sack algorithm.
2563 */
2564
2565static int sctp_setsockopt_delayed_ack(struct sock *sk,
2566				       char __user *optval, unsigned int optlen)
2567{
2568	struct sctp_sack_info    params;
2569	struct sctp_transport   *trans = NULL;
2570	struct sctp_association *asoc = NULL;
2571	struct sctp_sock        *sp = sctp_sk(sk);
2572
2573	if (optlen == sizeof(struct sctp_sack_info)) {
2574		if (copy_from_user(&params, optval, optlen))
2575			return -EFAULT;
2576
2577		if (params.sack_delay == 0 && params.sack_freq == 0)
2578			return 0;
2579	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2580		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2581		pr_warn("Use struct sctp_sack_info instead\n");
2582		if (copy_from_user(&params, optval, optlen))
2583			return -EFAULT;
2584
2585		if (params.sack_delay == 0)
2586			params.sack_freq = 1;
2587		else
2588			params.sack_freq = 0;
2589	} else
2590		return - EINVAL;
2591
2592	/* Validate value parameter. */
2593	if (params.sack_delay > 500)
2594		return -EINVAL;
2595
2596	/* Get association, if sack_assoc_id != 0 and the socket is a one
2597	 * to many style socket, and an association was not found, then
2598	 * the id was invalid.
2599	 */
2600	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2601	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2602		return -EINVAL;
2603
2604	if (params.sack_delay) {
2605		if (asoc) {
2606			asoc->sackdelay =
2607				msecs_to_jiffies(params.sack_delay);
2608			asoc->param_flags =
2609				(asoc->param_flags & ~SPP_SACKDELAY) |
2610				SPP_SACKDELAY_ENABLE;
2611		} else {
2612			sp->sackdelay = params.sack_delay;
2613			sp->param_flags =
2614				(sp->param_flags & ~SPP_SACKDELAY) |
2615				SPP_SACKDELAY_ENABLE;
2616		}
2617	}
2618
2619	if (params.sack_freq == 1) {
2620		if (asoc) {
2621			asoc->param_flags =
2622				(asoc->param_flags & ~SPP_SACKDELAY) |
2623				SPP_SACKDELAY_DISABLE;
2624		} else {
2625			sp->param_flags =
2626				(sp->param_flags & ~SPP_SACKDELAY) |
2627				SPP_SACKDELAY_DISABLE;
2628		}
2629	} else if (params.sack_freq > 1) {
2630		if (asoc) {
2631			asoc->sackfreq = params.sack_freq;
2632			asoc->param_flags =
2633				(asoc->param_flags & ~SPP_SACKDELAY) |
2634				SPP_SACKDELAY_ENABLE;
2635		} else {
2636			sp->sackfreq = params.sack_freq;
2637			sp->param_flags =
2638				(sp->param_flags & ~SPP_SACKDELAY) |
2639				SPP_SACKDELAY_ENABLE;
2640		}
2641	}
2642
2643	/* If change is for association, also apply to each transport. */
2644	if (asoc) {
2645		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2646				transports) {
2647			if (params.sack_delay) {
2648				trans->sackdelay =
2649					msecs_to_jiffies(params.sack_delay);
2650				trans->param_flags =
2651					(trans->param_flags & ~SPP_SACKDELAY) |
2652					SPP_SACKDELAY_ENABLE;
2653			}
2654			if (params.sack_freq == 1) {
2655				trans->param_flags =
2656					(trans->param_flags & ~SPP_SACKDELAY) |
2657					SPP_SACKDELAY_DISABLE;
2658			} else if (params.sack_freq > 1) {
2659				trans->sackfreq = params.sack_freq;
2660				trans->param_flags =
2661					(trans->param_flags & ~SPP_SACKDELAY) |
2662					SPP_SACKDELAY_ENABLE;
2663			}
2664		}
2665	}
2666
2667	return 0;
2668}
2669
2670/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2671 *
2672 * Applications can specify protocol parameters for the default association
2673 * initialization.  The option name argument to setsockopt() and getsockopt()
2674 * is SCTP_INITMSG.
2675 *
2676 * Setting initialization parameters is effective only on an unconnected
2677 * socket (for UDP-style sockets only future associations are effected
2678 * by the change).  With TCP-style sockets, this option is inherited by
2679 * sockets derived from a listener socket.
2680 */
2681static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2682{
2683	struct sctp_initmsg sinit;
2684	struct sctp_sock *sp = sctp_sk(sk);
2685
2686	if (optlen != sizeof(struct sctp_initmsg))
2687		return -EINVAL;
2688	if (copy_from_user(&sinit, optval, optlen))
2689		return -EFAULT;
2690
2691	if (sinit.sinit_num_ostreams)
2692		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2693	if (sinit.sinit_max_instreams)
2694		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2695	if (sinit.sinit_max_attempts)
2696		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2697	if (sinit.sinit_max_init_timeo)
2698		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2699
2700	return 0;
2701}
2702
2703/*
2704 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2705 *
2706 *   Applications that wish to use the sendto() system call may wish to
2707 *   specify a default set of parameters that would normally be supplied
2708 *   through the inclusion of ancillary data.  This socket option allows
2709 *   such an application to set the default sctp_sndrcvinfo structure.
2710 *   The application that wishes to use this socket option simply passes
2711 *   in to this call the sctp_sndrcvinfo structure defined in Section
2712 *   5.2.2) The input parameters accepted by this call include
2713 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2714 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2715 *   to this call if the caller is using the UDP model.
2716 */
2717static int sctp_setsockopt_default_send_param(struct sock *sk,
2718					      char __user *optval,
2719					      unsigned int optlen)
2720{
2721	struct sctp_sndrcvinfo info;
2722	struct sctp_association *asoc;
2723	struct sctp_sock *sp = sctp_sk(sk);
2724
2725	if (optlen != sizeof(struct sctp_sndrcvinfo))
2726		return -EINVAL;
2727	if (copy_from_user(&info, optval, optlen))
2728		return -EFAULT;
2729
2730	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2731	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2732		return -EINVAL;
2733
2734	if (asoc) {
2735		asoc->default_stream = info.sinfo_stream;
2736		asoc->default_flags = info.sinfo_flags;
2737		asoc->default_ppid = info.sinfo_ppid;
2738		asoc->default_context = info.sinfo_context;
2739		asoc->default_timetolive = info.sinfo_timetolive;
2740	} else {
2741		sp->default_stream = info.sinfo_stream;
2742		sp->default_flags = info.sinfo_flags;
2743		sp->default_ppid = info.sinfo_ppid;
2744		sp->default_context = info.sinfo_context;
2745		sp->default_timetolive = info.sinfo_timetolive;
2746	}
2747
2748	return 0;
2749}
2750
2751/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2752 *
2753 * Requests that the local SCTP stack use the enclosed peer address as
2754 * the association primary.  The enclosed address must be one of the
2755 * association peer's addresses.
2756 */
2757static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2758					unsigned int optlen)
2759{
2760	struct sctp_prim prim;
2761	struct sctp_transport *trans;
2762
2763	if (optlen != sizeof(struct sctp_prim))
2764		return -EINVAL;
2765
2766	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2767		return -EFAULT;
2768
2769	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2770	if (!trans)
2771		return -EINVAL;
2772
2773	sctp_assoc_set_primary(trans->asoc, trans);
2774
2775	return 0;
2776}
2777
2778/*
2779 * 7.1.5 SCTP_NODELAY
2780 *
2781 * Turn on/off any Nagle-like algorithm.  This means that packets are
2782 * generally sent as soon as possible and no unnecessary delays are
2783 * introduced, at the cost of more packets in the network.  Expects an
2784 *  integer boolean flag.
2785 */
2786static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2787				   unsigned int optlen)
2788{
2789	int val;
2790
2791	if (optlen < sizeof(int))
2792		return -EINVAL;
2793	if (get_user(val, (int __user *)optval))
2794		return -EFAULT;
2795
2796	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2797	return 0;
2798}
2799
2800/*
2801 *
2802 * 7.1.1 SCTP_RTOINFO
2803 *
2804 * The protocol parameters used to initialize and bound retransmission
2805 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2806 * and modify these parameters.
2807 * All parameters are time values, in milliseconds.  A value of 0, when
2808 * modifying the parameters, indicates that the current value should not
2809 * be changed.
2810 *
2811 */
2812static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2813{
2814	struct sctp_rtoinfo rtoinfo;
2815	struct sctp_association *asoc;
2816
2817	if (optlen != sizeof (struct sctp_rtoinfo))
2818		return -EINVAL;
2819
2820	if (copy_from_user(&rtoinfo, optval, optlen))
2821		return -EFAULT;
2822
2823	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2824
2825	/* Set the values to the specific association */
2826	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2827		return -EINVAL;
2828
2829	if (asoc) {
2830		if (rtoinfo.srto_initial != 0)
2831			asoc->rto_initial =
2832				msecs_to_jiffies(rtoinfo.srto_initial);
2833		if (rtoinfo.srto_max != 0)
2834			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2835		if (rtoinfo.srto_min != 0)
2836			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2837	} else {
2838		/* If there is no association or the association-id = 0
2839		 * set the values to the endpoint.
2840		 */
2841		struct sctp_sock *sp = sctp_sk(sk);
2842
2843		if (rtoinfo.srto_initial != 0)
2844			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2845		if (rtoinfo.srto_max != 0)
2846			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2847		if (rtoinfo.srto_min != 0)
2848			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2849	}
2850
2851	return 0;
2852}
2853
2854/*
2855 *
2856 * 7.1.2 SCTP_ASSOCINFO
2857 *
2858 * This option is used to tune the maximum retransmission attempts
2859 * of the association.
2860 * Returns an error if the new association retransmission value is
2861 * greater than the sum of the retransmission value  of the peer.
2862 * See [SCTP] for more information.
2863 *
2864 */
2865static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2866{
2867
2868	struct sctp_assocparams assocparams;
2869	struct sctp_association *asoc;
2870
2871	if (optlen != sizeof(struct sctp_assocparams))
2872		return -EINVAL;
2873	if (copy_from_user(&assocparams, optval, optlen))
2874		return -EFAULT;
2875
2876	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2877
2878	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2879		return -EINVAL;
2880
2881	/* Set the values to the specific association */
2882	if (asoc) {
2883		if (assocparams.sasoc_asocmaxrxt != 0) {
2884			__u32 path_sum = 0;
2885			int   paths = 0;
2886			struct sctp_transport *peer_addr;
2887
2888			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2889					transports) {
2890				path_sum += peer_addr->pathmaxrxt;
2891				paths++;
2892			}
2893
2894			/* Only validate asocmaxrxt if we have more than
2895			 * one path/transport.  We do this because path
2896			 * retransmissions are only counted when we have more
2897			 * then one path.
2898			 */
2899			if (paths > 1 &&
2900			    assocparams.sasoc_asocmaxrxt > path_sum)
2901				return -EINVAL;
2902
2903			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2904		}
2905
2906		if (assocparams.sasoc_cookie_life != 0) {
2907			asoc->cookie_life.tv_sec =
2908					assocparams.sasoc_cookie_life / 1000;
2909			asoc->cookie_life.tv_usec =
2910					(assocparams.sasoc_cookie_life % 1000)
2911					* 1000;
2912		}
2913	} else {
2914		/* Set the values to the endpoint */
2915		struct sctp_sock *sp = sctp_sk(sk);
2916
2917		if (assocparams.sasoc_asocmaxrxt != 0)
2918			sp->assocparams.sasoc_asocmaxrxt =
2919						assocparams.sasoc_asocmaxrxt;
2920		if (assocparams.sasoc_cookie_life != 0)
2921			sp->assocparams.sasoc_cookie_life =
2922						assocparams.sasoc_cookie_life;
2923	}
2924	return 0;
2925}
2926
2927/*
2928 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2929 *
2930 * This socket option is a boolean flag which turns on or off mapped V4
2931 * addresses.  If this option is turned on and the socket is type
2932 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2933 * If this option is turned off, then no mapping will be done of V4
2934 * addresses and a user will receive both PF_INET6 and PF_INET type
2935 * addresses on the socket.
2936 */
2937static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2938{
2939	int val;
2940	struct sctp_sock *sp = sctp_sk(sk);
2941
2942	if (optlen < sizeof(int))
2943		return -EINVAL;
2944	if (get_user(val, (int __user *)optval))
2945		return -EFAULT;
2946	if (val)
2947		sp->v4mapped = 1;
2948	else
2949		sp->v4mapped = 0;
2950
2951	return 0;
2952}
2953
2954/*
2955 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2956 * This option will get or set the maximum size to put in any outgoing
2957 * SCTP DATA chunk.  If a message is larger than this size it will be
2958 * fragmented by SCTP into the specified size.  Note that the underlying
2959 * SCTP implementation may fragment into smaller sized chunks when the
2960 * PMTU of the underlying association is smaller than the value set by
2961 * the user.  The default value for this option is '0' which indicates
2962 * the user is NOT limiting fragmentation and only the PMTU will effect
2963 * SCTP's choice of DATA chunk size.  Note also that values set larger
2964 * than the maximum size of an IP datagram will effectively let SCTP
2965 * control fragmentation (i.e. the same as setting this option to 0).
2966 *
2967 * The following structure is used to access and modify this parameter:
2968 *
2969 * struct sctp_assoc_value {
2970 *   sctp_assoc_t assoc_id;
2971 *   uint32_t assoc_value;
2972 * };
2973 *
2974 * assoc_id:  This parameter is ignored for one-to-one style sockets.
2975 *    For one-to-many style sockets this parameter indicates which
2976 *    association the user is performing an action upon.  Note that if
2977 *    this field's value is zero then the endpoints default value is
2978 *    changed (effecting future associations only).
2979 * assoc_value:  This parameter specifies the maximum size in bytes.
2980 */
2981static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2982{
2983	struct sctp_assoc_value params;
2984	struct sctp_association *asoc;
2985	struct sctp_sock *sp = sctp_sk(sk);
2986	int val;
2987
2988	if (optlen == sizeof(int)) {
2989		pr_warn("Use of int in maxseg socket option deprecated\n");
2990		pr_warn("Use struct sctp_assoc_value instead\n");
2991		if (copy_from_user(&val, optval, optlen))
2992			return -EFAULT;
2993		params.assoc_id = 0;
2994	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2995		if (copy_from_user(&params, optval, optlen))
2996			return -EFAULT;
2997		val = params.assoc_value;
2998	} else
2999		return -EINVAL;
3000
3001	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3002		return -EINVAL;
3003
3004	asoc = sctp_id2assoc(sk, params.assoc_id);
3005	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3006		return -EINVAL;
3007
3008	if (asoc) {
3009		if (val == 0) {
3010			val = asoc->pathmtu;
3011			val -= sp->pf->af->net_header_len;
3012			val -= sizeof(struct sctphdr) +
3013					sizeof(struct sctp_data_chunk);
3014		}
3015		asoc->user_frag = val;
3016		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3017	} else {
3018		sp->user_frag = val;
3019	}
3020
3021	return 0;
3022}
3023
3024
3025/*
3026 *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3027 *
3028 *   Requests that the peer mark the enclosed address as the association
3029 *   primary. The enclosed address must be one of the association's
3030 *   locally bound addresses. The following structure is used to make a
3031 *   set primary request:
3032 */
3033static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3034					     unsigned int optlen)
3035{
3036	struct sctp_sock	*sp;
3037	struct sctp_association	*asoc = NULL;
3038	struct sctp_setpeerprim	prim;
3039	struct sctp_chunk	*chunk;
3040	struct sctp_af		*af;
3041	int 			err;
3042
3043	sp = sctp_sk(sk);
3044
3045	if (!sctp_addip_enable)
3046		return -EPERM;
3047
3048	if (optlen != sizeof(struct sctp_setpeerprim))
3049		return -EINVAL;
3050
3051	if (copy_from_user(&prim, optval, optlen))
3052		return -EFAULT;
3053
3054	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3055	if (!asoc)
3056		return -EINVAL;
3057
3058	if (!asoc->peer.asconf_capable)
3059		return -EPERM;
3060
3061	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3062		return -EPERM;
3063
3064	if (!sctp_state(asoc, ESTABLISHED))
3065		return -ENOTCONN;
3066
3067	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3068	if (!af)
3069		return -EINVAL;
3070
3071	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3072		return -EADDRNOTAVAIL;
3073
3074	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3075		return -EADDRNOTAVAIL;
3076
3077	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3078	chunk = sctp_make_asconf_set_prim(asoc,
3079					  (union sctp_addr *)&prim.sspp_addr);
3080	if (!chunk)
3081		return -ENOMEM;
3082
3083	err = sctp_send_asconf(asoc, chunk);
3084
3085	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3086
3087	return err;
3088}
3089
3090static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3091					    unsigned int optlen)
3092{
3093	struct sctp_setadaptation adaptation;
3094
3095	if (optlen != sizeof(struct sctp_setadaptation))
3096		return -EINVAL;
3097	if (copy_from_user(&adaptation, optval, optlen))
3098		return -EFAULT;
3099
3100	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3101
3102	return 0;
3103}
3104
3105/*
3106 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3107 *
3108 * The context field in the sctp_sndrcvinfo structure is normally only
3109 * used when a failed message is retrieved holding the value that was
3110 * sent down on the actual send call.  This option allows the setting of
3111 * a default context on an association basis that will be received on
3112 * reading messages from the peer.  This is especially helpful in the
3113 * one-2-many model for an application to keep some reference to an
3114 * internal state machine that is processing messages on the
3115 * association.  Note that the setting of this value only effects
3116 * received messages from the peer and does not effect the value that is
3117 * saved with outbound messages.
3118 */
3119static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3120				   unsigned int optlen)
3121{
3122	struct sctp_assoc_value params;
3123	struct sctp_sock *sp;
3124	struct sctp_association *asoc;
3125
3126	if (optlen != sizeof(struct sctp_assoc_value))
3127		return -EINVAL;
3128	if (copy_from_user(&params, optval, optlen))
3129		return -EFAULT;
3130
3131	sp = sctp_sk(sk);
3132
3133	if (params.assoc_id != 0) {
3134		asoc = sctp_id2assoc(sk, params.assoc_id);
3135		if (!asoc)
3136			return -EINVAL;
3137		asoc->default_rcv_context = params.assoc_value;
3138	} else {
3139		sp->default_rcv_context = params.assoc_value;
3140	}
3141
3142	return 0;
3143}
3144
3145/*
3146 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3147 *
3148 * This options will at a minimum specify if the implementation is doing
3149 * fragmented interleave.  Fragmented interleave, for a one to many
3150 * socket, is when subsequent calls to receive a message may return
3151 * parts of messages from different associations.  Some implementations
3152 * may allow you to turn this value on or off.  If so, when turned off,
3153 * no fragment interleave will occur (which will cause a head of line
3154 * blocking amongst multiple associations sharing the same one to many
3155 * socket).  When this option is turned on, then each receive call may
3156 * come from a different association (thus the user must receive data
3157 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3158 * association each receive belongs to.
3159 *
3160 * This option takes a boolean value.  A non-zero value indicates that
3161 * fragmented interleave is on.  A value of zero indicates that
3162 * fragmented interleave is off.
3163 *
3164 * Note that it is important that an implementation that allows this
3165 * option to be turned on, have it off by default.  Otherwise an unaware
3166 * application using the one to many model may become confused and act
3167 * incorrectly.
3168 */
3169static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3170					       char __user *optval,
3171					       unsigned int optlen)
3172{
3173	int val;
3174
3175	if (optlen != sizeof(int))
3176		return -EINVAL;
3177	if (get_user(val, (int __user *)optval))
3178		return -EFAULT;
3179
3180	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3181
3182	return 0;
3183}
3184
3185/*
3186 * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3187 *       (SCTP_PARTIAL_DELIVERY_POINT)
3188 *
3189 * This option will set or get the SCTP partial delivery point.  This
3190 * point is the size of a message where the partial delivery API will be
3191 * invoked to help free up rwnd space for the peer.  Setting this to a
3192 * lower value will cause partial deliveries to happen more often.  The
3193 * calls argument is an integer that sets or gets the partial delivery
3194 * point.  Note also that the call will fail if the user attempts to set
3195 * this value larger than the socket receive buffer size.
3196 *
3197 * Note that any single message having a length smaller than or equal to
3198 * the SCTP partial delivery point will be delivered in one single read
3199 * call as long as the user provided buffer is large enough to hold the
3200 * message.
3201 */
3202static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3203						  char __user *optval,
3204						  unsigned int optlen)
3205{
3206	u32 val;
3207
3208	if (optlen != sizeof(u32))
3209		return -EINVAL;
3210	if (get_user(val, (int __user *)optval))
3211		return -EFAULT;
3212
3213	/* Note: We double the receive buffer from what the user sets
3214	 * it to be, also initial rwnd is based on rcvbuf/2.
3215	 */
3216	if (val > (sk->sk_rcvbuf >> 1))
3217		return -EINVAL;
3218
3219	sctp_sk(sk)->pd_point = val;
3220
3221	return 0; /* is this the right error code? */
3222}
3223
3224/*
3225 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3226 *
3227 * This option will allow a user to change the maximum burst of packets
3228 * that can be emitted by this association.  Note that the default value
3229 * is 4, and some implementations may restrict this setting so that it
3230 * can only be lowered.
3231 *
3232 * NOTE: This text doesn't seem right.  Do this on a socket basis with
3233 * future associations inheriting the socket value.
3234 */
3235static int sctp_setsockopt_maxburst(struct sock *sk,
3236				    char __user *optval,
3237				    unsigned int optlen)
3238{
3239	struct sctp_assoc_value params;
3240	struct sctp_sock *sp;
3241	struct sctp_association *asoc;
3242	int val;
3243	int assoc_id = 0;
3244
3245	if (optlen == sizeof(int)) {
3246		pr_warn("Use of int in max_burst socket option deprecated\n");
3247		pr_warn("Use struct sctp_assoc_value instead\n");
3248		if (copy_from_user(&val, optval, optlen))
3249			return -EFAULT;
3250	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3251		if (copy_from_user(&params, optval, optlen))
3252			return -EFAULT;
3253		val = params.assoc_value;
3254		assoc_id = params.assoc_id;
3255	} else
3256		return -EINVAL;
3257
3258	sp = sctp_sk(sk);
3259
3260	if (assoc_id != 0) {
3261		asoc = sctp_id2assoc(sk, assoc_id);
3262		if (!asoc)
3263			return -EINVAL;
3264		asoc->max_burst = val;
3265	} else
3266		sp->max_burst = val;
3267
3268	return 0;
3269}
3270
3271/*
3272 * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3273 *
3274 * This set option adds a chunk type that the user is requesting to be
3275 * received only in an authenticated way.  Changes to the list of chunks
3276 * will only effect future associations on the socket.
3277 */
3278static int sctp_setsockopt_auth_chunk(struct sock *sk,
3279				      char __user *optval,
3280				      unsigned int optlen)
3281{
3282	struct sctp_authchunk val;
3283
3284	if (!sctp_auth_enable)
3285		return -EACCES;
3286
3287	if (optlen != sizeof(struct sctp_authchunk))
3288		return -EINVAL;
3289	if (copy_from_user(&val, optval, optlen))
3290		return -EFAULT;
3291
3292	switch (val.sauth_chunk) {
3293	case SCTP_CID_INIT:
3294	case SCTP_CID_INIT_ACK:
3295	case SCTP_CID_SHUTDOWN_COMPLETE:
3296	case SCTP_CID_AUTH:
3297		return -EINVAL;
3298	}
3299
3300	/* add this chunk id to the endpoint */
3301	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3302}
3303
3304/*
3305 * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3306 *
3307 * This option gets or sets the list of HMAC algorithms that the local
3308 * endpoint requires the peer to use.
3309 */
3310static int sctp_setsockopt_hmac_ident(struct sock *sk,
3311				      char __user *optval,
3312				      unsigned int optlen)
3313{
3314	struct sctp_hmacalgo *hmacs;
3315	u32 idents;
3316	int err;
3317
3318	if (!sctp_auth_enable)
3319		return -EACCES;
3320
3321	if (optlen < sizeof(struct sctp_hmacalgo))
3322		return -EINVAL;
3323
3324	hmacs= memdup_user(optval, optlen);
3325	if (IS_ERR(hmacs))
3326		return PTR_ERR(hmacs);
3327
3328	idents = hmacs->shmac_num_idents;
3329	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3330	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3331		err = -EINVAL;
3332		goto out;
3333	}
3334
3335	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3336out:
3337	kfree(hmacs);
3338	return err;
3339}
3340
3341/*
3342 * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3343 *
3344 * This option will set a shared secret key which is used to build an
3345 * association shared key.
3346 */
3347static int sctp_setsockopt_auth_key(struct sock *sk,
3348				    char __user *optval,
3349				    unsigned int optlen)
3350{
3351	struct sctp_authkey *authkey;
3352	struct sctp_association *asoc;
3353	int ret;
3354
3355	if (!sctp_auth_enable)
3356		return -EACCES;
3357
3358	if (optlen <= sizeof(struct sctp_authkey))
3359		return -EINVAL;
3360
3361	authkey= memdup_user(optval, optlen);
3362	if (IS_ERR(authkey))
3363		return PTR_ERR(authkey);
3364
3365	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3366		ret = -EINVAL;
3367		goto out;
3368	}
3369
3370	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3371	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3372		ret = -EINVAL;
3373		goto out;
3374	}
3375
3376	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3377out:
3378	kfree(authkey);
3379	return ret;
3380}
3381
3382/*
3383 * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3384 *
3385 * This option will get or set the active shared key to be used to build
3386 * the association shared key.
3387 */
3388static int sctp_setsockopt_active_key(struct sock *sk,
3389				      char __user *optval,
3390				      unsigned int optlen)
3391{
3392	struct sctp_authkeyid val;
3393	struct sctp_association *asoc;
3394
3395	if (!sctp_auth_enable)
3396		return -EACCES;
3397
3398	if (optlen != sizeof(struct sctp_authkeyid))
3399		return -EINVAL;
3400	if (copy_from_user(&val, optval, optlen))
3401		return -EFAULT;
3402
3403	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3404	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3405		return -EINVAL;
3406
3407	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3408					val.scact_keynumber);
3409}
3410
3411/*
3412 * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3413 *
3414 * This set option will delete a shared secret key from use.
3415 */
3416static int sctp_setsockopt_del_key(struct sock *sk,
3417				   char __user *optval,
3418				   unsigned int optlen)
3419{
3420	struct sctp_authkeyid val;
3421	struct sctp_association *asoc;
3422
3423	if (!sctp_auth_enable)
3424		return -EACCES;
3425
3426	if (optlen != sizeof(struct sctp_authkeyid))
3427		return -EINVAL;
3428	if (copy_from_user(&val, optval, optlen))
3429		return -EFAULT;
3430
3431	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3432	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3433		return -EINVAL;
3434
3435	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3436				    val.scact_keynumber);
3437
3438}
3439
3440/*
3441 * 8.1.23 SCTP_AUTO_ASCONF
3442 *
3443 * This option will enable or disable the use of the automatic generation of
3444 * ASCONF chunks to add and delete addresses to an existing association.  Note
3445 * that this option has two caveats namely: a) it only affects sockets that
3446 * are bound to all addresses available to the SCTP stack, and b) the system
3447 * administrator may have an overriding control that turns the ASCONF feature
3448 * off no matter what setting the socket option may have.
3449 * This option expects an integer boolean flag, where a non-zero value turns on
3450 * the option, and a zero value turns off the option.
3451 * Note. In this implementation, socket operation overrides default parameter
3452 * being set by sysctl as well as FreeBSD implementation
3453 */
3454static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3455					unsigned int optlen)
3456{
3457	int val;
3458	struct sctp_sock *sp = sctp_sk(sk);
3459
3460	if (optlen < sizeof(int))
3461		return -EINVAL;
3462	if (get_user(val, (int __user *)optval))
3463		return -EFAULT;
3464	if (!sctp_is_ep_boundall(sk) && val)
3465		return -EINVAL;
3466	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3467		return 0;
3468
3469	if (val == 0 && sp->do_auto_asconf) {
3470		list_del(&sp->auto_asconf_list);
3471		sp->do_auto_asconf = 0;
3472	} else if (val && !sp->do_auto_asconf) {
3473		list_add_tail(&sp->auto_asconf_list,
3474		    &sctp_auto_asconf_splist);
3475		sp->do_auto_asconf = 1;
3476	}
3477	return 0;
3478}
3479
3480
3481/* API 6.2 setsockopt(), getsockopt()
3482 *
3483 * Applications use setsockopt() and getsockopt() to set or retrieve
3484 * socket options.  Socket options are used to change the default
3485 * behavior of sockets calls.  They are described in Section 7.
3486 *
3487 * The syntax is:
3488 *
3489 *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3490 *                    int __user *optlen);
3491 *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3492 *                    int optlen);
3493 *
3494 *   sd      - the socket descript.
3495 *   level   - set to IPPROTO_SCTP for all SCTP options.
3496 *   optname - the option name.
3497 *   optval  - the buffer to store the value of the option.
3498 *   optlen  - the size of the buffer.
3499 */
3500SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3501				char __user *optval, unsigned int optlen)
3502{
3503	int retval = 0;
3504
3505	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3506			  sk, optname);
3507
3508	/* I can hardly begin to describe how wrong this is.  This is
3509	 * so broken as to be worse than useless.  The API draft
3510	 * REALLY is NOT helpful here...  I am not convinced that the
3511	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3512	 * are at all well-founded.
3513	 */
3514	if (level != SOL_SCTP) {
3515		struct sctp_af *af = sctp_sk(sk)->pf->af;
3516		retval = af->setsockopt(sk, level, optname, optval, optlen);
3517		goto out_nounlock;
3518	}
3519
3520	sctp_lock_sock(sk);
3521
3522	switch (optname) {
3523	case SCTP_SOCKOPT_BINDX_ADD:
3524		/* 'optlen' is the size of the addresses buffer. */
3525		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3526					       optlen, SCTP_BINDX_ADD_ADDR);
3527		break;
3528
3529	case SCTP_SOCKOPT_BINDX_REM:
3530		/* 'optlen' is the size of the addresses buffer. */
3531		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3532					       optlen, SCTP_BINDX_REM_ADDR);
3533		break;
3534
3535	case SCTP_SOCKOPT_CONNECTX_OLD:
3536		/* 'optlen' is the size of the addresses buffer. */
3537		retval = sctp_setsockopt_connectx_old(sk,
3538					    (struct sockaddr __user *)optval,
3539					    optlen);
3540		break;
3541
3542	case SCTP_SOCKOPT_CONNECTX:
3543		/* 'optlen' is the size of the addresses buffer. */
3544		retval = sctp_setsockopt_connectx(sk,
3545					    (struct sockaddr __user *)optval,
3546					    optlen);
3547		break;
3548
3549	case SCTP_DISABLE_FRAGMENTS:
3550		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3551		break;
3552
3553	case SCTP_EVENTS:
3554		retval = sctp_setsockopt_events(sk, optval, optlen);
3555		break;
3556
3557	case SCTP_AUTOCLOSE:
3558		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3559		break;
3560
3561	case SCTP_PEER_ADDR_PARAMS:
3562		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3563		break;
3564
3565	case SCTP_DELAYED_SACK:
3566		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3567		break;
3568	case SCTP_PARTIAL_DELIVERY_POINT:
3569		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3570		break;
3571
3572	case SCTP_INITMSG:
3573		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3574		break;
3575	case SCTP_DEFAULT_SEND_PARAM:
3576		retval = sctp_setsockopt_default_send_param(sk, optval,
3577							    optlen);
3578		break;
3579	case SCTP_PRIMARY_ADDR:
3580		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3581		break;
3582	case SCTP_SET_PEER_PRIMARY_ADDR:
3583		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3584		break;
3585	case SCTP_NODELAY:
3586		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3587		break;
3588	case SCTP_RTOINFO:
3589		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3590		break;
3591	case SCTP_ASSOCINFO:
3592		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3593		break;
3594	case SCTP_I_WANT_MAPPED_V4_ADDR:
3595		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3596		break;
3597	case SCTP_MAXSEG:
3598		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3599		break;
3600	case SCTP_ADAPTATION_LAYER:
3601		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3602		break;
3603	case SCTP_CONTEXT:
3604		retval = sctp_setsockopt_context(sk, optval, optlen);
3605		break;
3606	case SCTP_FRAGMENT_INTERLEAVE:
3607		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3608		break;
3609	case SCTP_MAX_BURST:
3610		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3611		break;
3612	case SCTP_AUTH_CHUNK:
3613		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3614		break;
3615	case SCTP_HMAC_IDENT:
3616		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3617		break;
3618	case SCTP_AUTH_KEY:
3619		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3620		break;
3621	case SCTP_AUTH_ACTIVE_KEY:
3622		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3623		break;
3624	case SCTP_AUTH_DELETE_KEY:
3625		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3626		break;
3627	case SCTP_AUTO_ASCONF:
3628		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3629		break;
3630	default:
3631		retval = -ENOPROTOOPT;
3632		break;
3633	}
3634
3635	sctp_release_sock(sk);
3636
3637out_nounlock:
3638	return retval;
3639}
3640
3641/* API 3.1.6 connect() - UDP Style Syntax
3642 *
3643 * An application may use the connect() call in the UDP model to initiate an
3644 * association without sending data.
3645 *
3646 * The syntax is:
3647 *
3648 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3649 *
3650 * sd: the socket descriptor to have a new association added to.
3651 *
3652 * nam: the address structure (either struct sockaddr_in or struct
3653 *    sockaddr_in6 defined in RFC2553 [7]).
3654 *
3655 * len: the size of the address.
3656 */
3657SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3658			     int addr_len)
3659{
3660	int err = 0;
3661	struct sctp_af *af;
3662
3663	sctp_lock_sock(sk);
3664
3665	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3666			  __func__, sk, addr, addr_len);
3667
3668	/* Validate addr_len before calling common connect/connectx routine. */
3669	af = sctp_get_af_specific(addr->sa_family);
3670	if (!af || addr_len < af->sockaddr_len) {
3671		err = -EINVAL;
3672	} else {
3673		/* Pass correct addr len to common routine (so it knows there
3674		 * is only one address being passed.
3675		 */
3676		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3677	}
3678
3679	sctp_release_sock(sk);
3680	return err;
3681}
3682
3683/* FIXME: Write comments. */
3684SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3685{
3686	return -EOPNOTSUPP; /* STUB */
3687}
3688
3689/* 4.1.4 accept() - TCP Style Syntax
3690 *
3691 * Applications use accept() call to remove an established SCTP
3692 * association from the accept queue of the endpoint.  A new socket
3693 * descriptor will be returned from accept() to represent the newly
3694 * formed association.
3695 */
3696SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3697{
3698	struct sctp_sock *sp;
3699	struct sctp_endpoint *ep;
3700	struct sock *newsk = NULL;
3701	struct sctp_association *asoc;
3702	long timeo;
3703	int error = 0;
3704
3705	sctp_lock_sock(sk);
3706
3707	sp = sctp_sk(sk);
3708	ep = sp->ep;
3709
3710	if (!sctp_style(sk, TCP)) {
3711		error = -EOPNOTSUPP;
3712		goto out;
3713	}
3714
3715	if (!sctp_sstate(sk, LISTENING)) {
3716		error = -EINVAL;
3717		goto out;
3718	}
3719
3720	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3721
3722	error = sctp_wait_for_accept(sk, timeo);
3723	if (error)
3724		goto out;
3725
3726	/* We treat the list of associations on the endpoint as the accept
3727	 * queue and pick the first association on the list.
3728	 */
3729	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3730
3731	newsk = sp->pf->create_accept_sk(sk, asoc);
3732	if (!newsk) {
3733		error = -ENOMEM;
3734		goto out;
3735	}
3736
3737	/* Populate the fields of the newsk from the oldsk and migrate the
3738	 * asoc to the newsk.
3739	 */
3740	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3741
3742out:
3743	sctp_release_sock(sk);
3744	*err = error;
3745	return newsk;
3746}
3747
3748/* The SCTP ioctl handler. */
3749SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3750{
3751	int rc = -ENOTCONN;
3752
3753	sctp_lock_sock(sk);
3754
3755	/*
3756	 * SEQPACKET-style sockets in LISTENING state are valid, for
3757	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3758	 */
3759	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3760		goto out;
3761
3762	switch (cmd) {
3763	case SIOCINQ: {
3764		struct sk_buff *skb;
3765		unsigned int amount = 0;
3766
3767		skb = skb_peek(&sk->sk_receive_queue);
3768		if (skb != NULL) {
3769			/*
3770			 * We will only return the amount of this packet since
3771			 * that is all that will be read.
3772			 */
3773			amount = skb->len;
3774		}
3775		rc = put_user(amount, (int __user *)arg);
3776		break;
3777	}
3778	default:
3779		rc = -ENOIOCTLCMD;
3780		break;
3781	}
3782out:
3783	sctp_release_sock(sk);
3784	return rc;
3785}
3786
3787/* This is the function which gets called during socket creation to
3788 * initialized the SCTP-specific portion of the sock.
3789 * The sock structure should already be zero-filled memory.
3790 */
3791SCTP_STATIC int sctp_init_sock(struct sock *sk)
3792{
3793	struct sctp_endpoint *ep;
3794	struct sctp_sock *sp;
3795
3796	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3797
3798	sp = sctp_sk(sk);
3799
3800	/* Initialize the SCTP per socket area.  */
3801	switch (sk->sk_type) {
3802	case SOCK_SEQPACKET:
3803		sp->type = SCTP_SOCKET_UDP;
3804		break;
3805	case SOCK_STREAM:
3806		sp->type = SCTP_SOCKET_TCP;
3807		break;
3808	default:
3809		return -ESOCKTNOSUPPORT;
3810	}
3811
3812	/* Initialize default send parameters. These parameters can be
3813	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3814	 */
3815	sp->default_stream = 0;
3816	sp->default_ppid = 0;
3817	sp->default_flags = 0;
3818	sp->default_context = 0;
3819	sp->default_timetolive = 0;
3820
3821	sp->default_rcv_context = 0;
3822	sp->max_burst = sctp_max_burst;
3823
3824	/* Initialize default setup parameters. These parameters
3825	 * can be modified with the SCTP_INITMSG socket option or
3826	 * overridden by the SCTP_INIT CMSG.
3827	 */
3828	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3829	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3830	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3831	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3832
3833	/* Initialize default RTO related parameters.  These parameters can
3834	 * be modified for with the SCTP_RTOINFO socket option.
3835	 */
3836	sp->rtoinfo.srto_initial = sctp_rto_initial;
3837	sp->rtoinfo.srto_max     = sctp_rto_max;
3838	sp->rtoinfo.srto_min     = sctp_rto_min;
3839
3840	/* Initialize default association related parameters. These parameters
3841	 * can be modified with the SCTP_ASSOCINFO socket option.
3842	 */
3843	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3844	sp->assocparams.sasoc_number_peer_destinations = 0;
3845	sp->assocparams.sasoc_peer_rwnd = 0;
3846	sp->assocparams.sasoc_local_rwnd = 0;
3847	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3848
3849	/* Initialize default event subscriptions. By default, all the
3850	 * options are off.
3851	 */
3852	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3853
3854	/* Default Peer Address Parameters.  These defaults can
3855	 * be modified via SCTP_PEER_ADDR_PARAMS
3856	 */
3857	sp->hbinterval  = sctp_hb_interval;
3858	sp->pathmaxrxt  = sctp_max_retrans_path;
3859	sp->pathmtu     = 0; // allow default discovery
3860	sp->sackdelay   = sctp_sack_timeout;
3861	sp->sackfreq	= 2;
3862	sp->param_flags = SPP_HB_ENABLE |
3863			  SPP_PMTUD_ENABLE |
3864			  SPP_SACKDELAY_ENABLE;
3865
3866	/* If enabled no SCTP message fragmentation will be performed.
3867	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3868	 */
3869	sp->disable_fragments = 0;
3870
3871	/* Enable Nagle algorithm by default.  */
3872	sp->nodelay           = 0;
3873
3874	/* Enable by default. */
3875	sp->v4mapped          = 1;
3876
3877	/* Auto-close idle associations after the configured
3878	 * number of seconds.  A value of 0 disables this
3879	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3880	 * for UDP-style sockets only.
3881	 */
3882	sp->autoclose         = 0;
3883
3884	/* User specified fragmentation limit. */
3885	sp->user_frag         = 0;
3886
3887	sp->adaptation_ind = 0;
3888
3889	sp->pf = sctp_get_pf_specific(sk->sk_family);
3890
3891	/* Control variables for partial data delivery. */
3892	atomic_set(&sp->pd_mode, 0);
3893	skb_queue_head_init(&sp->pd_lobby);
3894	sp->frag_interleave = 0;
3895
3896	/* Create a per socket endpoint structure.  Even if we
3897	 * change the data structure relationships, this may still
3898	 * be useful for storing pre-connect address information.
3899	 */
3900	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3901	if (!ep)
3902		return -ENOMEM;
3903
3904	sp->ep = ep;
3905	sp->hmac = NULL;
3906
3907	SCTP_DBG_OBJCNT_INC(sock);
3908
3909	local_bh_disable();
3910	percpu_counter_inc(&sctp_sockets_allocated);
3911	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3912	if (sctp_default_auto_asconf) {
3913		list_add_tail(&sp->auto_asconf_list,
3914		    &sctp_auto_asconf_splist);
3915		sp->do_auto_asconf = 1;
3916	} else
3917		sp->do_auto_asconf = 0;
3918	local_bh_enable();
3919
3920	return 0;
3921}
3922
3923/* Cleanup any SCTP per socket resources.  */
3924SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3925{
3926	struct sctp_sock *sp;
3927
3928	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3929
3930	/* Release our hold on the endpoint. */
3931	sp = sctp_sk(sk);
3932	if (sp->do_auto_asconf) {
3933		sp->do_auto_asconf = 0;
3934		list_del(&sp->auto_asconf_list);
3935	}
3936	sctp_endpoint_free(sp->ep);
3937	local_bh_disable();
3938	percpu_counter_dec(&sctp_sockets_allocated);
3939	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3940	local_bh_enable();
3941}
3942
3943/* API 4.1.7 shutdown() - TCP Style Syntax
3944 *     int shutdown(int socket, int how);
3945 *
3946 *     sd      - the socket descriptor of the association to be closed.
3947 *     how     - Specifies the type of shutdown.  The  values  are
3948 *               as follows:
3949 *               SHUT_RD
3950 *                     Disables further receive operations. No SCTP
3951 *                     protocol action is taken.
3952 *               SHUT_WR
3953 *                     Disables further send operations, and initiates
3954 *                     the SCTP shutdown sequence.
3955 *               SHUT_RDWR
3956 *                     Disables further send  and  receive  operations
3957 *                     and initiates the SCTP shutdown sequence.
3958 */
3959SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3960{
3961	struct sctp_endpoint *ep;
3962	struct sctp_association *asoc;
3963
3964	if (!sctp_style(sk, TCP))
3965		return;
3966
3967	if (how & SEND_SHUTDOWN) {
3968		ep = sctp_sk(sk)->ep;
3969		if (!list_empty(&ep->asocs)) {
3970			asoc = list_entry(ep->asocs.next,
3971					  struct sctp_association, asocs);
3972			sctp_primitive_SHUTDOWN(asoc, NULL);
3973		}
3974	}
3975}
3976
3977/* 7.2.1 Association Status (SCTP_STATUS)
3978
3979 * Applications can retrieve current status information about an
3980 * association, including association state, peer receiver window size,
3981 * number of unacked data chunks, and number of data chunks pending
3982 * receipt.  This information is read-only.
3983 */
3984static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3985				       char __user *optval,
3986				       int __user *optlen)
3987{
3988	struct sctp_status status;
3989	struct sctp_association *asoc = NULL;
3990	struct sctp_transport *transport;
3991	sctp_assoc_t associd;
3992	int retval = 0;
3993
3994	if (len < sizeof(status)) {
3995		retval = -EINVAL;
3996		goto out;
3997	}
3998
3999	len = sizeof(status);
4000	if (copy_from_user(&status, optval, len)) {
4001		retval = -EFAULT;
4002		goto out;
4003	}
4004
4005	associd = status.sstat_assoc_id;
4006	asoc = sctp_id2assoc(sk, associd);
4007	if (!asoc) {
4008		retval = -EINVAL;
4009		goto out;
4010	}
4011
4012	transport = asoc->peer.primary_path;
4013
4014	status.sstat_assoc_id = sctp_assoc2id(asoc);
4015	status.sstat_state = asoc->state;
4016	status.sstat_rwnd =  asoc->peer.rwnd;
4017	status.sstat_unackdata = asoc->unack_data;
4018
4019	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4020	status.sstat_instrms = asoc->c.sinit_max_instreams;
4021	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4022	status.sstat_fragmentation_point = asoc->frag_point;
4023	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4024	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4025			transport->af_specific->sockaddr_len);
4026	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4027	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4028		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4029	status.sstat_primary.spinfo_state = transport->state;
4030	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4031	status.sstat_primary.spinfo_srtt = transport->srtt;
4032	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4033	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4034
4035	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4036		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4037
4038	if (put_user(len, optlen)) {
4039		retval = -EFAULT;
4040		goto out;
4041	}
4042
4043	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4044			  len, status.sstat_state, status.sstat_rwnd,
4045			  status.sstat_assoc_id);
4046
4047	if (copy_to_user(optval, &status, len)) {
4048		retval = -EFAULT;
4049		goto out;
4050	}
4051
4052out:
4053	return retval;
4054}
4055
4056
4057/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4058 *
4059 * Applications can retrieve information about a specific peer address
4060 * of an association, including its reachability state, congestion
4061 * window, and retransmission timer values.  This information is
4062 * read-only.
4063 */
4064static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4065					  char __user *optval,
4066					  int __user *optlen)
4067{
4068	struct sctp_paddrinfo pinfo;
4069	struct sctp_transport *transport;
4070	int retval = 0;
4071
4072	if (len < sizeof(pinfo)) {
4073		retval = -EINVAL;
4074		goto out;
4075	}
4076
4077	len = sizeof(pinfo);
4078	if (copy_from_user(&pinfo, optval, len)) {
4079		retval = -EFAULT;
4080		goto out;
4081	}
4082
4083	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4084					   pinfo.spinfo_assoc_id);
4085	if (!transport)
4086		return -EINVAL;
4087
4088	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4089	pinfo.spinfo_state = transport->state;
4090	pinfo.spinfo_cwnd = transport->cwnd;
4091	pinfo.spinfo_srtt = transport->srtt;
4092	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4093	pinfo.spinfo_mtu = transport->pathmtu;
4094
4095	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4096		pinfo.spinfo_state = SCTP_ACTIVE;
4097
4098	if (put_user(len, optlen)) {
4099		retval = -EFAULT;
4100		goto out;
4101	}
4102
4103	if (copy_to_user(optval, &pinfo, len)) {
4104		retval = -EFAULT;
4105		goto out;
4106	}
4107
4108out:
4109	return retval;
4110}
4111
4112/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4113 *
4114 * This option is a on/off flag.  If enabled no SCTP message
4115 * fragmentation will be performed.  Instead if a message being sent
4116 * exceeds the current PMTU size, the message will NOT be sent and
4117 * instead a error will be indicated to the user.
4118 */
4119static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4120					char __user *optval, int __user *optlen)
4121{
4122	int val;
4123
4124	if (len < sizeof(int))
4125		return -EINVAL;
4126
4127	len = sizeof(int);
4128	val = (sctp_sk(sk)->disable_fragments == 1);
4129	if (put_user(len, optlen))
4130		return -EFAULT;
4131	if (copy_to_user(optval, &val, len))
4132		return -EFAULT;
4133	return 0;
4134}
4135
4136/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4137 *
4138 * This socket option is used to specify various notifications and
4139 * ancillary data the user wishes to receive.
4140 */
4141static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4142				  int __user *optlen)
4143{
4144	if (len <= 0)
4145		return -EINVAL;
4146	if (len > sizeof(struct sctp_event_subscribe))
4147		len = sizeof(struct sctp_event_subscribe);
4148	if (put_user(len, optlen))
4149		return -EFAULT;
4150	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4151		return -EFAULT;
4152	return 0;
4153}
4154
4155/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4156 *
4157 * This socket option is applicable to the UDP-style socket only.  When
4158 * set it will cause associations that are idle for more than the
4159 * specified number of seconds to automatically close.  An association
4160 * being idle is defined an association that has NOT sent or received
4161 * user data.  The special value of '0' indicates that no automatic
4162 * close of any associations should be performed.  The option expects an
4163 * integer defining the number of seconds of idle time before an
4164 * association is closed.
4165 */
4166static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4167{
4168	/* Applicable to UDP-style socket only */
4169	if (sctp_style(sk, TCP))
4170		return -EOPNOTSUPP;
4171	if (len < sizeof(int))
4172		return -EINVAL;
4173	len = sizeof(int);
4174	if (put_user(len, optlen))
4175		return -EFAULT;
4176	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4177		return -EFAULT;
4178	return 0;
4179}
4180
4181/* Helper routine to branch off an association to a new socket.  */
4182int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
 
4183{
4184	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4185	struct socket *sock;
4186	struct sctp_af *af;
4187	int err = 0;
4188
4189	if (!asoc)
4190		return -EINVAL;
4191
4192	/* An association cannot be branched off from an already peeled-off
4193	 * socket, nor is this supported for tcp style sockets.
4194	 */
4195	if (!sctp_style(sk, UDP))
4196		return -EINVAL;
4197
4198	/* Create a new socket.  */
4199	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4200	if (err < 0)
4201		return err;
4202
4203	sctp_copy_sock(sock->sk, sk, asoc);
4204
4205	/* Make peeled-off sockets more like 1-1 accepted sockets.
4206	 * Set the daddr and initialize id to something more random
4207	 */
4208	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4209	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4210
4211	/* Populate the fields of the newsk from the oldsk and migrate the
4212	 * asoc to the newsk.
4213	 */
4214	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4215
4216	*sockp = sock;
4217
4218	return err;
4219}
4220EXPORT_SYMBOL(sctp_do_peeloff);
4221
4222static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4223{
4224	sctp_peeloff_arg_t peeloff;
4225	struct socket *newsock;
4226	int retval = 0;
 
4227
4228	if (len < sizeof(sctp_peeloff_arg_t))
4229		return -EINVAL;
4230	len = sizeof(sctp_peeloff_arg_t);
4231	if (copy_from_user(&peeloff, optval, len))
4232		return -EFAULT;
4233
4234	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
 
 
 
 
 
 
 
 
4235	if (retval < 0)
4236		goto out;
4237
4238	/* Map the socket to an unused fd that can be returned to the user.  */
4239	retval = sock_map_fd(newsock, 0);
4240	if (retval < 0) {
4241		sock_release(newsock);
4242		goto out;
4243	}
4244
4245	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4246			  __func__, sk, newsock->sk, retval);
4247
4248	/* Return the fd mapped to the new socket.  */
4249	peeloff.sd = retval;
4250	if (put_user(len, optlen))
4251		return -EFAULT;
4252	if (copy_to_user(optval, &peeloff, len))
4253		retval = -EFAULT;
4254
4255out:
4256	return retval;
4257}
4258
4259/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4260 *
4261 * Applications can enable or disable heartbeats for any peer address of
4262 * an association, modify an address's heartbeat interval, force a
4263 * heartbeat to be sent immediately, and adjust the address's maximum
4264 * number of retransmissions sent before an address is considered
4265 * unreachable.  The following structure is used to access and modify an
4266 * address's parameters:
4267 *
4268 *  struct sctp_paddrparams {
4269 *     sctp_assoc_t            spp_assoc_id;
4270 *     struct sockaddr_storage spp_address;
4271 *     uint32_t                spp_hbinterval;
4272 *     uint16_t                spp_pathmaxrxt;
4273 *     uint32_t                spp_pathmtu;
4274 *     uint32_t                spp_sackdelay;
4275 *     uint32_t                spp_flags;
4276 * };
4277 *
4278 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4279 *                     application, and identifies the association for
4280 *                     this query.
4281 *   spp_address     - This specifies which address is of interest.
4282 *   spp_hbinterval  - This contains the value of the heartbeat interval,
4283 *                     in milliseconds.  If a  value of zero
4284 *                     is present in this field then no changes are to
4285 *                     be made to this parameter.
4286 *   spp_pathmaxrxt  - This contains the maximum number of
4287 *                     retransmissions before this address shall be
4288 *                     considered unreachable. If a  value of zero
4289 *                     is present in this field then no changes are to
4290 *                     be made to this parameter.
4291 *   spp_pathmtu     - When Path MTU discovery is disabled the value
4292 *                     specified here will be the "fixed" path mtu.
4293 *                     Note that if the spp_address field is empty
4294 *                     then all associations on this address will
4295 *                     have this fixed path mtu set upon them.
4296 *
4297 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4298 *                     the number of milliseconds that sacks will be delayed
4299 *                     for. This value will apply to all addresses of an
4300 *                     association if the spp_address field is empty. Note
4301 *                     also, that if delayed sack is enabled and this
4302 *                     value is set to 0, no change is made to the last
4303 *                     recorded delayed sack timer value.
4304 *
4305 *   spp_flags       - These flags are used to control various features
4306 *                     on an association. The flag field may contain
4307 *                     zero or more of the following options.
4308 *
4309 *                     SPP_HB_ENABLE  - Enable heartbeats on the
4310 *                     specified address. Note that if the address
4311 *                     field is empty all addresses for the association
4312 *                     have heartbeats enabled upon them.
4313 *
4314 *                     SPP_HB_DISABLE - Disable heartbeats on the
4315 *                     speicifed address. Note that if the address
4316 *                     field is empty all addresses for the association
4317 *                     will have their heartbeats disabled. Note also
4318 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4319 *                     mutually exclusive, only one of these two should
4320 *                     be specified. Enabling both fields will have
4321 *                     undetermined results.
4322 *
4323 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4324 *                     to be made immediately.
4325 *
4326 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4327 *                     discovery upon the specified address. Note that
4328 *                     if the address feild is empty then all addresses
4329 *                     on the association are effected.
4330 *
4331 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4332 *                     discovery upon the specified address. Note that
4333 *                     if the address feild is empty then all addresses
4334 *                     on the association are effected. Not also that
4335 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4336 *                     exclusive. Enabling both will have undetermined
4337 *                     results.
4338 *
4339 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4340 *                     on delayed sack. The time specified in spp_sackdelay
4341 *                     is used to specify the sack delay for this address. Note
4342 *                     that if spp_address is empty then all addresses will
4343 *                     enable delayed sack and take on the sack delay
4344 *                     value specified in spp_sackdelay.
4345 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4346 *                     off delayed sack. If the spp_address field is blank then
4347 *                     delayed sack is disabled for the entire association. Note
4348 *                     also that this field is mutually exclusive to
4349 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4350 *                     results.
4351 */
4352static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4353					    char __user *optval, int __user *optlen)
4354{
4355	struct sctp_paddrparams  params;
4356	struct sctp_transport   *trans = NULL;
4357	struct sctp_association *asoc = NULL;
4358	struct sctp_sock        *sp = sctp_sk(sk);
4359
4360	if (len < sizeof(struct sctp_paddrparams))
4361		return -EINVAL;
4362	len = sizeof(struct sctp_paddrparams);
4363	if (copy_from_user(&params, optval, len))
4364		return -EFAULT;
4365
4366	/* If an address other than INADDR_ANY is specified, and
4367	 * no transport is found, then the request is invalid.
4368	 */
4369	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4370		trans = sctp_addr_id2transport(sk, &params.spp_address,
4371					       params.spp_assoc_id);
4372		if (!trans) {
4373			SCTP_DEBUG_PRINTK("Failed no transport\n");
4374			return -EINVAL;
4375		}
4376	}
4377
4378	/* Get association, if assoc_id != 0 and the socket is a one
4379	 * to many style socket, and an association was not found, then
4380	 * the id was invalid.
4381	 */
4382	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4383	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4384		SCTP_DEBUG_PRINTK("Failed no association\n");
4385		return -EINVAL;
4386	}
4387
4388	if (trans) {
4389		/* Fetch transport values. */
4390		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4391		params.spp_pathmtu    = trans->pathmtu;
4392		params.spp_pathmaxrxt = trans->pathmaxrxt;
4393		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4394
4395		/*draft-11 doesn't say what to return in spp_flags*/
4396		params.spp_flags      = trans->param_flags;
4397	} else if (asoc) {
4398		/* Fetch association values. */
4399		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4400		params.spp_pathmtu    = asoc->pathmtu;
4401		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4402		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4403
4404		/*draft-11 doesn't say what to return in spp_flags*/
4405		params.spp_flags      = asoc->param_flags;
4406	} else {
4407		/* Fetch socket values. */
4408		params.spp_hbinterval = sp->hbinterval;
4409		params.spp_pathmtu    = sp->pathmtu;
4410		params.spp_sackdelay  = sp->sackdelay;
4411		params.spp_pathmaxrxt = sp->pathmaxrxt;
4412
4413		/*draft-11 doesn't say what to return in spp_flags*/
4414		params.spp_flags      = sp->param_flags;
4415	}
4416
4417	if (copy_to_user(optval, &params, len))
4418		return -EFAULT;
4419
4420	if (put_user(len, optlen))
4421		return -EFAULT;
4422
4423	return 0;
4424}
4425
4426/*
4427 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4428 *
4429 * This option will effect the way delayed acks are performed.  This
4430 * option allows you to get or set the delayed ack time, in
4431 * milliseconds.  It also allows changing the delayed ack frequency.
4432 * Changing the frequency to 1 disables the delayed sack algorithm.  If
4433 * the assoc_id is 0, then this sets or gets the endpoints default
4434 * values.  If the assoc_id field is non-zero, then the set or get
4435 * effects the specified association for the one to many model (the
4436 * assoc_id field is ignored by the one to one model).  Note that if
4437 * sack_delay or sack_freq are 0 when setting this option, then the
4438 * current values will remain unchanged.
4439 *
4440 * struct sctp_sack_info {
4441 *     sctp_assoc_t            sack_assoc_id;
4442 *     uint32_t                sack_delay;
4443 *     uint32_t                sack_freq;
4444 * };
4445 *
4446 * sack_assoc_id -  This parameter, indicates which association the user
4447 *    is performing an action upon.  Note that if this field's value is
4448 *    zero then the endpoints default value is changed (effecting future
4449 *    associations only).
4450 *
4451 * sack_delay -  This parameter contains the number of milliseconds that
4452 *    the user is requesting the delayed ACK timer be set to.  Note that
4453 *    this value is defined in the standard to be between 200 and 500
4454 *    milliseconds.
4455 *
4456 * sack_freq -  This parameter contains the number of packets that must
4457 *    be received before a sack is sent without waiting for the delay
4458 *    timer to expire.  The default value for this is 2, setting this
4459 *    value to 1 will disable the delayed sack algorithm.
4460 */
4461static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4462					    char __user *optval,
4463					    int __user *optlen)
4464{
4465	struct sctp_sack_info    params;
4466	struct sctp_association *asoc = NULL;
4467	struct sctp_sock        *sp = sctp_sk(sk);
4468
4469	if (len >= sizeof(struct sctp_sack_info)) {
4470		len = sizeof(struct sctp_sack_info);
4471
4472		if (copy_from_user(&params, optval, len))
4473			return -EFAULT;
4474	} else if (len == sizeof(struct sctp_assoc_value)) {
4475		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4476		pr_warn("Use struct sctp_sack_info instead\n");
4477		if (copy_from_user(&params, optval, len))
4478			return -EFAULT;
4479	} else
4480		return - EINVAL;
4481
4482	/* Get association, if sack_assoc_id != 0 and the socket is a one
4483	 * to many style socket, and an association was not found, then
4484	 * the id was invalid.
4485	 */
4486	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4487	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4488		return -EINVAL;
4489
4490	if (asoc) {
4491		/* Fetch association values. */
4492		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4493			params.sack_delay = jiffies_to_msecs(
4494				asoc->sackdelay);
4495			params.sack_freq = asoc->sackfreq;
4496
4497		} else {
4498			params.sack_delay = 0;
4499			params.sack_freq = 1;
4500		}
4501	} else {
4502		/* Fetch socket values. */
4503		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4504			params.sack_delay  = sp->sackdelay;
4505			params.sack_freq = sp->sackfreq;
4506		} else {
4507			params.sack_delay  = 0;
4508			params.sack_freq = 1;
4509		}
4510	}
4511
4512	if (copy_to_user(optval, &params, len))
4513		return -EFAULT;
4514
4515	if (put_user(len, optlen))
4516		return -EFAULT;
4517
4518	return 0;
4519}
4520
4521/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4522 *
4523 * Applications can specify protocol parameters for the default association
4524 * initialization.  The option name argument to setsockopt() and getsockopt()
4525 * is SCTP_INITMSG.
4526 *
4527 * Setting initialization parameters is effective only on an unconnected
4528 * socket (for UDP-style sockets only future associations are effected
4529 * by the change).  With TCP-style sockets, this option is inherited by
4530 * sockets derived from a listener socket.
4531 */
4532static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4533{
4534	if (len < sizeof(struct sctp_initmsg))
4535		return -EINVAL;
4536	len = sizeof(struct sctp_initmsg);
4537	if (put_user(len, optlen))
4538		return -EFAULT;
4539	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4540		return -EFAULT;
4541	return 0;
4542}
4543
4544
4545static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4546				      char __user *optval, int __user *optlen)
4547{
4548	struct sctp_association *asoc;
4549	int cnt = 0;
4550	struct sctp_getaddrs getaddrs;
4551	struct sctp_transport *from;
4552	void __user *to;
4553	union sctp_addr temp;
4554	struct sctp_sock *sp = sctp_sk(sk);
4555	int addrlen;
4556	size_t space_left;
4557	int bytes_copied;
4558
4559	if (len < sizeof(struct sctp_getaddrs))
4560		return -EINVAL;
4561
4562	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4563		return -EFAULT;
4564
4565	/* For UDP-style sockets, id specifies the association to query.  */
4566	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4567	if (!asoc)
4568		return -EINVAL;
4569
4570	to = optval + offsetof(struct sctp_getaddrs,addrs);
4571	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4572
4573	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4574				transports) {
4575		memcpy(&temp, &from->ipaddr, sizeof(temp));
4576		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4577		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4578		if (space_left < addrlen)
4579			return -ENOMEM;
4580		if (copy_to_user(to, &temp, addrlen))
4581			return -EFAULT;
4582		to += addrlen;
4583		cnt++;
4584		space_left -= addrlen;
4585	}
4586
4587	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4588		return -EFAULT;
4589	bytes_copied = ((char __user *)to) - optval;
4590	if (put_user(bytes_copied, optlen))
4591		return -EFAULT;
4592
4593	return 0;
4594}
4595
4596static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4597			    size_t space_left, int *bytes_copied)
4598{
4599	struct sctp_sockaddr_entry *addr;
4600	union sctp_addr temp;
4601	int cnt = 0;
4602	int addrlen;
4603
4604	rcu_read_lock();
4605	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4606		if (!addr->valid)
4607			continue;
4608
4609		if ((PF_INET == sk->sk_family) &&
4610		    (AF_INET6 == addr->a.sa.sa_family))
4611			continue;
4612		if ((PF_INET6 == sk->sk_family) &&
4613		    inet_v6_ipv6only(sk) &&
4614		    (AF_INET == addr->a.sa.sa_family))
4615			continue;
4616		memcpy(&temp, &addr->a, sizeof(temp));
4617		if (!temp.v4.sin_port)
4618			temp.v4.sin_port = htons(port);
4619
4620		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4621								&temp);
4622		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4623		if (space_left < addrlen) {
4624			cnt =  -ENOMEM;
4625			break;
4626		}
4627		memcpy(to, &temp, addrlen);
4628
4629		to += addrlen;
4630		cnt ++;
4631		space_left -= addrlen;
4632		*bytes_copied += addrlen;
4633	}
4634	rcu_read_unlock();
4635
4636	return cnt;
4637}
4638
4639
4640static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4641				       char __user *optval, int __user *optlen)
4642{
4643	struct sctp_bind_addr *bp;
4644	struct sctp_association *asoc;
4645	int cnt = 0;
4646	struct sctp_getaddrs getaddrs;
4647	struct sctp_sockaddr_entry *addr;
4648	void __user *to;
4649	union sctp_addr temp;
4650	struct sctp_sock *sp = sctp_sk(sk);
4651	int addrlen;
4652	int err = 0;
4653	size_t space_left;
4654	int bytes_copied = 0;
4655	void *addrs;
4656	void *buf;
4657
4658	if (len < sizeof(struct sctp_getaddrs))
4659		return -EINVAL;
4660
4661	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4662		return -EFAULT;
4663
4664	/*
4665	 *  For UDP-style sockets, id specifies the association to query.
4666	 *  If the id field is set to the value '0' then the locally bound
4667	 *  addresses are returned without regard to any particular
4668	 *  association.
4669	 */
4670	if (0 == getaddrs.assoc_id) {
4671		bp = &sctp_sk(sk)->ep->base.bind_addr;
4672	} else {
4673		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4674		if (!asoc)
4675			return -EINVAL;
4676		bp = &asoc->base.bind_addr;
4677	}
4678
4679	to = optval + offsetof(struct sctp_getaddrs,addrs);
4680	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4681
4682	addrs = kmalloc(space_left, GFP_KERNEL);
4683	if (!addrs)
4684		return -ENOMEM;
4685
4686	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4687	 * addresses from the global local address list.
4688	 */
4689	if (sctp_list_single_entry(&bp->address_list)) {
4690		addr = list_entry(bp->address_list.next,
4691				  struct sctp_sockaddr_entry, list);
4692		if (sctp_is_any(sk, &addr->a)) {
4693			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4694						space_left, &bytes_copied);
4695			if (cnt < 0) {
4696				err = cnt;
4697				goto out;
4698			}
4699			goto copy_getaddrs;
4700		}
4701	}
4702
4703	buf = addrs;
4704	/* Protection on the bound address list is not needed since
4705	 * in the socket option context we hold a socket lock and
4706	 * thus the bound address list can't change.
4707	 */
4708	list_for_each_entry(addr, &bp->address_list, list) {
4709		memcpy(&temp, &addr->a, sizeof(temp));
4710		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4711		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4712		if (space_left < addrlen) {
4713			err =  -ENOMEM; /*fixme: right error?*/
4714			goto out;
4715		}
4716		memcpy(buf, &temp, addrlen);
4717		buf += addrlen;
4718		bytes_copied += addrlen;
4719		cnt ++;
4720		space_left -= addrlen;
4721	}
4722
4723copy_getaddrs:
4724	if (copy_to_user(to, addrs, bytes_copied)) {
4725		err = -EFAULT;
4726		goto out;
4727	}
4728	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4729		err = -EFAULT;
4730		goto out;
4731	}
4732	if (put_user(bytes_copied, optlen))
4733		err = -EFAULT;
4734out:
4735	kfree(addrs);
4736	return err;
4737}
4738
4739/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4740 *
4741 * Requests that the local SCTP stack use the enclosed peer address as
4742 * the association primary.  The enclosed address must be one of the
4743 * association peer's addresses.
4744 */
4745static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4746					char __user *optval, int __user *optlen)
4747{
4748	struct sctp_prim prim;
4749	struct sctp_association *asoc;
4750	struct sctp_sock *sp = sctp_sk(sk);
4751
4752	if (len < sizeof(struct sctp_prim))
4753		return -EINVAL;
4754
4755	len = sizeof(struct sctp_prim);
4756
4757	if (copy_from_user(&prim, optval, len))
4758		return -EFAULT;
4759
4760	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4761	if (!asoc)
4762		return -EINVAL;
4763
4764	if (!asoc->peer.primary_path)
4765		return -ENOTCONN;
4766
4767	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4768		asoc->peer.primary_path->af_specific->sockaddr_len);
4769
4770	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4771			(union sctp_addr *)&prim.ssp_addr);
4772
4773	if (put_user(len, optlen))
4774		return -EFAULT;
4775	if (copy_to_user(optval, &prim, len))
4776		return -EFAULT;
4777
4778	return 0;
4779}
4780
4781/*
4782 * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4783 *
4784 * Requests that the local endpoint set the specified Adaptation Layer
4785 * Indication parameter for all future INIT and INIT-ACK exchanges.
4786 */
4787static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4788				  char __user *optval, int __user *optlen)
4789{
4790	struct sctp_setadaptation adaptation;
4791
4792	if (len < sizeof(struct sctp_setadaptation))
4793		return -EINVAL;
4794
4795	len = sizeof(struct sctp_setadaptation);
4796
4797	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4798
4799	if (put_user(len, optlen))
4800		return -EFAULT;
4801	if (copy_to_user(optval, &adaptation, len))
4802		return -EFAULT;
4803
4804	return 0;
4805}
4806
4807/*
4808 *
4809 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4810 *
4811 *   Applications that wish to use the sendto() system call may wish to
4812 *   specify a default set of parameters that would normally be supplied
4813 *   through the inclusion of ancillary data.  This socket option allows
4814 *   such an application to set the default sctp_sndrcvinfo structure.
4815
4816
4817 *   The application that wishes to use this socket option simply passes
4818 *   in to this call the sctp_sndrcvinfo structure defined in Section
4819 *   5.2.2) The input parameters accepted by this call include
4820 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4821 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4822 *   to this call if the caller is using the UDP model.
4823 *
4824 *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4825 */
4826static int sctp_getsockopt_default_send_param(struct sock *sk,
4827					int len, char __user *optval,
4828					int __user *optlen)
4829{
4830	struct sctp_sndrcvinfo info;
4831	struct sctp_association *asoc;
4832	struct sctp_sock *sp = sctp_sk(sk);
4833
4834	if (len < sizeof(struct sctp_sndrcvinfo))
4835		return -EINVAL;
4836
4837	len = sizeof(struct sctp_sndrcvinfo);
4838
4839	if (copy_from_user(&info, optval, len))
4840		return -EFAULT;
4841
4842	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4843	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4844		return -EINVAL;
4845
4846	if (asoc) {
4847		info.sinfo_stream = asoc->default_stream;
4848		info.sinfo_flags = asoc->default_flags;
4849		info.sinfo_ppid = asoc->default_ppid;
4850		info.sinfo_context = asoc->default_context;
4851		info.sinfo_timetolive = asoc->default_timetolive;
4852	} else {
4853		info.sinfo_stream = sp->default_stream;
4854		info.sinfo_flags = sp->default_flags;
4855		info.sinfo_ppid = sp->default_ppid;
4856		info.sinfo_context = sp->default_context;
4857		info.sinfo_timetolive = sp->default_timetolive;
4858	}
4859
4860	if (put_user(len, optlen))
4861		return -EFAULT;
4862	if (copy_to_user(optval, &info, len))
4863		return -EFAULT;
4864
4865	return 0;
4866}
4867
4868/*
4869 *
4870 * 7.1.5 SCTP_NODELAY
4871 *
4872 * Turn on/off any Nagle-like algorithm.  This means that packets are
4873 * generally sent as soon as possible and no unnecessary delays are
4874 * introduced, at the cost of more packets in the network.  Expects an
4875 * integer boolean flag.
4876 */
4877
4878static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4879				   char __user *optval, int __user *optlen)
4880{
4881	int val;
4882
4883	if (len < sizeof(int))
4884		return -EINVAL;
4885
4886	len = sizeof(int);
4887	val = (sctp_sk(sk)->nodelay == 1);
4888	if (put_user(len, optlen))
4889		return -EFAULT;
4890	if (copy_to_user(optval, &val, len))
4891		return -EFAULT;
4892	return 0;
4893}
4894
4895/*
4896 *
4897 * 7.1.1 SCTP_RTOINFO
4898 *
4899 * The protocol parameters used to initialize and bound retransmission
4900 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4901 * and modify these parameters.
4902 * All parameters are time values, in milliseconds.  A value of 0, when
4903 * modifying the parameters, indicates that the current value should not
4904 * be changed.
4905 *
4906 */
4907static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4908				char __user *optval,
4909				int __user *optlen) {
4910	struct sctp_rtoinfo rtoinfo;
4911	struct sctp_association *asoc;
4912
4913	if (len < sizeof (struct sctp_rtoinfo))
4914		return -EINVAL;
4915
4916	len = sizeof(struct sctp_rtoinfo);
4917
4918	if (copy_from_user(&rtoinfo, optval, len))
4919		return -EFAULT;
4920
4921	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4922
4923	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4924		return -EINVAL;
4925
4926	/* Values corresponding to the specific association. */
4927	if (asoc) {
4928		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4929		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4930		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4931	} else {
4932		/* Values corresponding to the endpoint. */
4933		struct sctp_sock *sp = sctp_sk(sk);
4934
4935		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4936		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4937		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4938	}
4939
4940	if (put_user(len, optlen))
4941		return -EFAULT;
4942
4943	if (copy_to_user(optval, &rtoinfo, len))
4944		return -EFAULT;
4945
4946	return 0;
4947}
4948
4949/*
4950 *
4951 * 7.1.2 SCTP_ASSOCINFO
4952 *
4953 * This option is used to tune the maximum retransmission attempts
4954 * of the association.
4955 * Returns an error if the new association retransmission value is
4956 * greater than the sum of the retransmission value  of the peer.
4957 * See [SCTP] for more information.
4958 *
4959 */
4960static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4961				     char __user *optval,
4962				     int __user *optlen)
4963{
4964
4965	struct sctp_assocparams assocparams;
4966	struct sctp_association *asoc;
4967	struct list_head *pos;
4968	int cnt = 0;
4969
4970	if (len < sizeof (struct sctp_assocparams))
4971		return -EINVAL;
4972
4973	len = sizeof(struct sctp_assocparams);
4974
4975	if (copy_from_user(&assocparams, optval, len))
4976		return -EFAULT;
4977
4978	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4979
4980	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4981		return -EINVAL;
4982
4983	/* Values correspoinding to the specific association */
4984	if (asoc) {
4985		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4986		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4987		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4988		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4989						* 1000) +
4990						(asoc->cookie_life.tv_usec
4991						/ 1000);
4992
4993		list_for_each(pos, &asoc->peer.transport_addr_list) {
4994			cnt ++;
4995		}
4996
4997		assocparams.sasoc_number_peer_destinations = cnt;
4998	} else {
4999		/* Values corresponding to the endpoint */
5000		struct sctp_sock *sp = sctp_sk(sk);
5001
5002		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5003		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5004		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5005		assocparams.sasoc_cookie_life =
5006					sp->assocparams.sasoc_cookie_life;
5007		assocparams.sasoc_number_peer_destinations =
5008					sp->assocparams.
5009					sasoc_number_peer_destinations;
5010	}
5011
5012	if (put_user(len, optlen))
5013		return -EFAULT;
5014
5015	if (copy_to_user(optval, &assocparams, len))
5016		return -EFAULT;
5017
5018	return 0;
5019}
5020
5021/*
5022 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5023 *
5024 * This socket option is a boolean flag which turns on or off mapped V4
5025 * addresses.  If this option is turned on and the socket is type
5026 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5027 * If this option is turned off, then no mapping will be done of V4
5028 * addresses and a user will receive both PF_INET6 and PF_INET type
5029 * addresses on the socket.
5030 */
5031static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5032				    char __user *optval, int __user *optlen)
5033{
5034	int val;
5035	struct sctp_sock *sp = sctp_sk(sk);
5036
5037	if (len < sizeof(int))
5038		return -EINVAL;
5039
5040	len = sizeof(int);
5041	val = sp->v4mapped;
5042	if (put_user(len, optlen))
5043		return -EFAULT;
5044	if (copy_to_user(optval, &val, len))
5045		return -EFAULT;
5046
5047	return 0;
5048}
5049
5050/*
5051 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5052 * (chapter and verse is quoted at sctp_setsockopt_context())
5053 */
5054static int sctp_getsockopt_context(struct sock *sk, int len,
5055				   char __user *optval, int __user *optlen)
5056{
5057	struct sctp_assoc_value params;
5058	struct sctp_sock *sp;
5059	struct sctp_association *asoc;
5060
5061	if (len < sizeof(struct sctp_assoc_value))
5062		return -EINVAL;
5063
5064	len = sizeof(struct sctp_assoc_value);
5065
5066	if (copy_from_user(&params, optval, len))
5067		return -EFAULT;
5068
5069	sp = sctp_sk(sk);
5070
5071	if (params.assoc_id != 0) {
5072		asoc = sctp_id2assoc(sk, params.assoc_id);
5073		if (!asoc)
5074			return -EINVAL;
5075		params.assoc_value = asoc->default_rcv_context;
5076	} else {
5077		params.assoc_value = sp->default_rcv_context;
5078	}
5079
5080	if (put_user(len, optlen))
5081		return -EFAULT;
5082	if (copy_to_user(optval, &params, len))
5083		return -EFAULT;
5084
5085	return 0;
5086}
5087
5088/*
5089 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5090 * This option will get or set the maximum size to put in any outgoing
5091 * SCTP DATA chunk.  If a message is larger than this size it will be
5092 * fragmented by SCTP into the specified size.  Note that the underlying
5093 * SCTP implementation may fragment into smaller sized chunks when the
5094 * PMTU of the underlying association is smaller than the value set by
5095 * the user.  The default value for this option is '0' which indicates
5096 * the user is NOT limiting fragmentation and only the PMTU will effect
5097 * SCTP's choice of DATA chunk size.  Note also that values set larger
5098 * than the maximum size of an IP datagram will effectively let SCTP
5099 * control fragmentation (i.e. the same as setting this option to 0).
5100 *
5101 * The following structure is used to access and modify this parameter:
5102 *
5103 * struct sctp_assoc_value {
5104 *   sctp_assoc_t assoc_id;
5105 *   uint32_t assoc_value;
5106 * };
5107 *
5108 * assoc_id:  This parameter is ignored for one-to-one style sockets.
5109 *    For one-to-many style sockets this parameter indicates which
5110 *    association the user is performing an action upon.  Note that if
5111 *    this field's value is zero then the endpoints default value is
5112 *    changed (effecting future associations only).
5113 * assoc_value:  This parameter specifies the maximum size in bytes.
5114 */
5115static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5116				  char __user *optval, int __user *optlen)
5117{
5118	struct sctp_assoc_value params;
5119	struct sctp_association *asoc;
5120
5121	if (len == sizeof(int)) {
5122		pr_warn("Use of int in maxseg socket option deprecated\n");
5123		pr_warn("Use struct sctp_assoc_value instead\n");
5124		params.assoc_id = 0;
5125	} else if (len >= sizeof(struct sctp_assoc_value)) {
5126		len = sizeof(struct sctp_assoc_value);
5127		if (copy_from_user(&params, optval, sizeof(params)))
5128			return -EFAULT;
5129	} else
5130		return -EINVAL;
5131
5132	asoc = sctp_id2assoc(sk, params.assoc_id);
5133	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5134		return -EINVAL;
5135
5136	if (asoc)
5137		params.assoc_value = asoc->frag_point;
5138	else
5139		params.assoc_value = sctp_sk(sk)->user_frag;
5140
5141	if (put_user(len, optlen))
5142		return -EFAULT;
5143	if (len == sizeof(int)) {
5144		if (copy_to_user(optval, &params.assoc_value, len))
5145			return -EFAULT;
5146	} else {
5147		if (copy_to_user(optval, &params, len))
5148			return -EFAULT;
5149	}
5150
5151	return 0;
5152}
5153
5154/*
5155 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5156 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5157 */
5158static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5159					       char __user *optval, int __user *optlen)
5160{
5161	int val;
5162
5163	if (len < sizeof(int))
5164		return -EINVAL;
5165
5166	len = sizeof(int);
5167
5168	val = sctp_sk(sk)->frag_interleave;
5169	if (put_user(len, optlen))
5170		return -EFAULT;
5171	if (copy_to_user(optval, &val, len))
5172		return -EFAULT;
5173
5174	return 0;
5175}
5176
5177/*
5178 * 7.1.25.  Set or Get the sctp partial delivery point
5179 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5180 */
5181static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5182						  char __user *optval,
5183						  int __user *optlen)
5184{
5185	u32 val;
5186
5187	if (len < sizeof(u32))
5188		return -EINVAL;
5189
5190	len = sizeof(u32);
5191
5192	val = sctp_sk(sk)->pd_point;
5193	if (put_user(len, optlen))
5194		return -EFAULT;
5195	if (copy_to_user(optval, &val, len))
5196		return -EFAULT;
5197
5198	return 0;
5199}
5200
5201/*
5202 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5203 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5204 */
5205static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5206				    char __user *optval,
5207				    int __user *optlen)
5208{
5209	struct sctp_assoc_value params;
5210	struct sctp_sock *sp;
5211	struct sctp_association *asoc;
5212
5213	if (len == sizeof(int)) {
5214		pr_warn("Use of int in max_burst socket option deprecated\n");
5215		pr_warn("Use struct sctp_assoc_value instead\n");
5216		params.assoc_id = 0;
5217	} else if (len >= sizeof(struct sctp_assoc_value)) {
5218		len = sizeof(struct sctp_assoc_value);
5219		if (copy_from_user(&params, optval, len))
5220			return -EFAULT;
5221	} else
5222		return -EINVAL;
5223
5224	sp = sctp_sk(sk);
5225
5226	if (params.assoc_id != 0) {
5227		asoc = sctp_id2assoc(sk, params.assoc_id);
5228		if (!asoc)
5229			return -EINVAL;
5230		params.assoc_value = asoc->max_burst;
5231	} else
5232		params.assoc_value = sp->max_burst;
5233
5234	if (len == sizeof(int)) {
5235		if (copy_to_user(optval, &params.assoc_value, len))
5236			return -EFAULT;
5237	} else {
5238		if (copy_to_user(optval, &params, len))
5239			return -EFAULT;
5240	}
5241
5242	return 0;
5243
5244}
5245
5246static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5247				    char __user *optval, int __user *optlen)
5248{
5249	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5250	struct sctp_hmac_algo_param *hmacs;
5251	__u16 data_len = 0;
5252	u32 num_idents;
5253
5254	if (!sctp_auth_enable)
5255		return -EACCES;
5256
5257	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5258	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5259
5260	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5261		return -EINVAL;
5262
5263	len = sizeof(struct sctp_hmacalgo) + data_len;
5264	num_idents = data_len / sizeof(u16);
5265
5266	if (put_user(len, optlen))
5267		return -EFAULT;
5268	if (put_user(num_idents, &p->shmac_num_idents))
5269		return -EFAULT;
5270	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5271		return -EFAULT;
5272	return 0;
5273}
5274
5275static int sctp_getsockopt_active_key(struct sock *sk, int len,
5276				    char __user *optval, int __user *optlen)
5277{
5278	struct sctp_authkeyid val;
5279	struct sctp_association *asoc;
5280
5281	if (!sctp_auth_enable)
5282		return -EACCES;
5283
5284	if (len < sizeof(struct sctp_authkeyid))
5285		return -EINVAL;
5286	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5287		return -EFAULT;
5288
5289	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5290	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5291		return -EINVAL;
5292
5293	if (asoc)
5294		val.scact_keynumber = asoc->active_key_id;
5295	else
5296		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5297
5298	len = sizeof(struct sctp_authkeyid);
5299	if (put_user(len, optlen))
5300		return -EFAULT;
5301	if (copy_to_user(optval, &val, len))
5302		return -EFAULT;
5303
5304	return 0;
5305}
5306
5307static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5308				    char __user *optval, int __user *optlen)
5309{
5310	struct sctp_authchunks __user *p = (void __user *)optval;
5311	struct sctp_authchunks val;
5312	struct sctp_association *asoc;
5313	struct sctp_chunks_param *ch;
5314	u32    num_chunks = 0;
5315	char __user *to;
5316
5317	if (!sctp_auth_enable)
5318		return -EACCES;
5319
5320	if (len < sizeof(struct sctp_authchunks))
5321		return -EINVAL;
5322
5323	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5324		return -EFAULT;
5325
5326	to = p->gauth_chunks;
5327	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5328	if (!asoc)
5329		return -EINVAL;
5330
5331	ch = asoc->peer.peer_chunks;
5332	if (!ch)
5333		goto num;
5334
5335	/* See if the user provided enough room for all the data */
5336	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5337	if (len < num_chunks)
5338		return -EINVAL;
5339
5340	if (copy_to_user(to, ch->chunks, num_chunks))
5341		return -EFAULT;
5342num:
5343	len = sizeof(struct sctp_authchunks) + num_chunks;
5344	if (put_user(len, optlen)) return -EFAULT;
5345	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5346		return -EFAULT;
5347	return 0;
5348}
5349
5350static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5351				    char __user *optval, int __user *optlen)
5352{
5353	struct sctp_authchunks __user *p = (void __user *)optval;
5354	struct sctp_authchunks val;
5355	struct sctp_association *asoc;
5356	struct sctp_chunks_param *ch;
5357	u32    num_chunks = 0;
5358	char __user *to;
5359
5360	if (!sctp_auth_enable)
5361		return -EACCES;
5362
5363	if (len < sizeof(struct sctp_authchunks))
5364		return -EINVAL;
5365
5366	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5367		return -EFAULT;
5368
5369	to = p->gauth_chunks;
5370	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5371	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5372		return -EINVAL;
5373
5374	if (asoc)
5375		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5376	else
5377		ch = sctp_sk(sk)->ep->auth_chunk_list;
5378
5379	if (!ch)
5380		goto num;
5381
5382	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5383	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5384		return -EINVAL;
5385
5386	if (copy_to_user(to, ch->chunks, num_chunks))
5387		return -EFAULT;
5388num:
5389	len = sizeof(struct sctp_authchunks) + num_chunks;
5390	if (put_user(len, optlen))
5391		return -EFAULT;
5392	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5393		return -EFAULT;
5394
5395	return 0;
5396}
5397
5398/*
5399 * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5400 * This option gets the current number of associations that are attached
5401 * to a one-to-many style socket.  The option value is an uint32_t.
5402 */
5403static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5404				    char __user *optval, int __user *optlen)
5405{
5406	struct sctp_sock *sp = sctp_sk(sk);
5407	struct sctp_association *asoc;
5408	u32 val = 0;
5409
5410	if (sctp_style(sk, TCP))
5411		return -EOPNOTSUPP;
5412
5413	if (len < sizeof(u32))
5414		return -EINVAL;
5415
5416	len = sizeof(u32);
5417
5418	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5419		val++;
5420	}
5421
5422	if (put_user(len, optlen))
5423		return -EFAULT;
5424	if (copy_to_user(optval, &val, len))
5425		return -EFAULT;
5426
5427	return 0;
5428}
5429
5430/*
5431 * 8.1.23 SCTP_AUTO_ASCONF
5432 * See the corresponding setsockopt entry as description
5433 */
5434static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5435				   char __user *optval, int __user *optlen)
5436{
5437	int val = 0;
5438
5439	if (len < sizeof(int))
5440		return -EINVAL;
5441
5442	len = sizeof(int);
5443	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5444		val = 1;
5445	if (put_user(len, optlen))
5446		return -EFAULT;
5447	if (copy_to_user(optval, &val, len))
5448		return -EFAULT;
5449	return 0;
5450}
5451
5452/*
5453 * 8.2.6. Get the Current Identifiers of Associations
5454 *        (SCTP_GET_ASSOC_ID_LIST)
5455 *
5456 * This option gets the current list of SCTP association identifiers of
5457 * the SCTP associations handled by a one-to-many style socket.
5458 */
5459static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5460				    char __user *optval, int __user *optlen)
5461{
5462	struct sctp_sock *sp = sctp_sk(sk);
5463	struct sctp_association *asoc;
5464	struct sctp_assoc_ids *ids;
5465	u32 num = 0;
5466
5467	if (sctp_style(sk, TCP))
5468		return -EOPNOTSUPP;
5469
5470	if (len < sizeof(struct sctp_assoc_ids))
5471		return -EINVAL;
5472
5473	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5474		num++;
5475	}
5476
5477	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5478		return -EINVAL;
5479
5480	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5481
5482	ids = kmalloc(len, GFP_KERNEL);
5483	if (unlikely(!ids))
5484		return -ENOMEM;
5485
5486	ids->gaids_number_of_ids = num;
5487	num = 0;
5488	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5489		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5490	}
5491
5492	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5493		kfree(ids);
5494		return -EFAULT;
5495	}
5496
5497	kfree(ids);
5498	return 0;
5499}
5500
5501SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5502				char __user *optval, int __user *optlen)
5503{
5504	int retval = 0;
5505	int len;
5506
5507	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5508			  sk, optname);
5509
5510	/* I can hardly begin to describe how wrong this is.  This is
5511	 * so broken as to be worse than useless.  The API draft
5512	 * REALLY is NOT helpful here...  I am not convinced that the
5513	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5514	 * are at all well-founded.
5515	 */
5516	if (level != SOL_SCTP) {
5517		struct sctp_af *af = sctp_sk(sk)->pf->af;
5518
5519		retval = af->getsockopt(sk, level, optname, optval, optlen);
5520		return retval;
5521	}
5522
5523	if (get_user(len, optlen))
5524		return -EFAULT;
5525
5526	sctp_lock_sock(sk);
5527
5528	switch (optname) {
5529	case SCTP_STATUS:
5530		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5531		break;
5532	case SCTP_DISABLE_FRAGMENTS:
5533		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5534							   optlen);
5535		break;
5536	case SCTP_EVENTS:
5537		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5538		break;
5539	case SCTP_AUTOCLOSE:
5540		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5541		break;
5542	case SCTP_SOCKOPT_PEELOFF:
5543		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5544		break;
5545	case SCTP_PEER_ADDR_PARAMS:
5546		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5547							  optlen);
5548		break;
5549	case SCTP_DELAYED_SACK:
5550		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5551							  optlen);
5552		break;
5553	case SCTP_INITMSG:
5554		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5555		break;
5556	case SCTP_GET_PEER_ADDRS:
5557		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5558						    optlen);
5559		break;
5560	case SCTP_GET_LOCAL_ADDRS:
5561		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5562						     optlen);
5563		break;
5564	case SCTP_SOCKOPT_CONNECTX3:
5565		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5566		break;
5567	case SCTP_DEFAULT_SEND_PARAM:
5568		retval = sctp_getsockopt_default_send_param(sk, len,
5569							    optval, optlen);
5570		break;
5571	case SCTP_PRIMARY_ADDR:
5572		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5573		break;
5574	case SCTP_NODELAY:
5575		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5576		break;
5577	case SCTP_RTOINFO:
5578		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5579		break;
5580	case SCTP_ASSOCINFO:
5581		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5582		break;
5583	case SCTP_I_WANT_MAPPED_V4_ADDR:
5584		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5585		break;
5586	case SCTP_MAXSEG:
5587		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5588		break;
5589	case SCTP_GET_PEER_ADDR_INFO:
5590		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5591							optlen);
5592		break;
5593	case SCTP_ADAPTATION_LAYER:
5594		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5595							optlen);
5596		break;
5597	case SCTP_CONTEXT:
5598		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5599		break;
5600	case SCTP_FRAGMENT_INTERLEAVE:
5601		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5602							     optlen);
5603		break;
5604	case SCTP_PARTIAL_DELIVERY_POINT:
5605		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5606								optlen);
5607		break;
5608	case SCTP_MAX_BURST:
5609		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5610		break;
5611	case SCTP_AUTH_KEY:
5612	case SCTP_AUTH_CHUNK:
5613	case SCTP_AUTH_DELETE_KEY:
5614		retval = -EOPNOTSUPP;
5615		break;
5616	case SCTP_HMAC_IDENT:
5617		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5618		break;
5619	case SCTP_AUTH_ACTIVE_KEY:
5620		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5621		break;
5622	case SCTP_PEER_AUTH_CHUNKS:
5623		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5624							optlen);
5625		break;
5626	case SCTP_LOCAL_AUTH_CHUNKS:
5627		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5628							optlen);
5629		break;
5630	case SCTP_GET_ASSOC_NUMBER:
5631		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5632		break;
5633	case SCTP_GET_ASSOC_ID_LIST:
5634		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5635		break;
5636	case SCTP_AUTO_ASCONF:
5637		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5638		break;
5639	default:
5640		retval = -ENOPROTOOPT;
5641		break;
5642	}
5643
5644	sctp_release_sock(sk);
5645	return retval;
5646}
5647
5648static void sctp_hash(struct sock *sk)
5649{
5650	/* STUB */
5651}
5652
5653static void sctp_unhash(struct sock *sk)
5654{
5655	/* STUB */
5656}
5657
5658/* Check if port is acceptable.  Possibly find first available port.
5659 *
5660 * The port hash table (contained in the 'global' SCTP protocol storage
5661 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5662 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5663 * list (the list number is the port number hashed out, so as you
5664 * would expect from a hash function, all the ports in a given list have
5665 * such a number that hashes out to the same list number; you were
5666 * expecting that, right?); so each list has a set of ports, with a
5667 * link to the socket (struct sock) that uses it, the port number and
5668 * a fastreuse flag (FIXME: NPI ipg).
5669 */
5670static struct sctp_bind_bucket *sctp_bucket_create(
5671	struct sctp_bind_hashbucket *head, unsigned short snum);
5672
5673static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5674{
5675	struct sctp_bind_hashbucket *head; /* hash list */
5676	struct sctp_bind_bucket *pp; /* hash list port iterator */
5677	struct hlist_node *node;
5678	unsigned short snum;
5679	int ret;
5680
5681	snum = ntohs(addr->v4.sin_port);
5682
5683	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5684	sctp_local_bh_disable();
5685
5686	if (snum == 0) {
5687		/* Search for an available port. */
5688		int low, high, remaining, index;
5689		unsigned int rover;
5690
5691		inet_get_local_port_range(&low, &high);
5692		remaining = (high - low) + 1;
5693		rover = net_random() % remaining + low;
5694
5695		do {
5696			rover++;
5697			if ((rover < low) || (rover > high))
5698				rover = low;
5699			if (inet_is_reserved_local_port(rover))
5700				continue;
5701			index = sctp_phashfn(rover);
5702			head = &sctp_port_hashtable[index];
5703			sctp_spin_lock(&head->lock);
5704			sctp_for_each_hentry(pp, node, &head->chain)
5705				if (pp->port == rover)
5706					goto next;
5707			break;
5708		next:
5709			sctp_spin_unlock(&head->lock);
5710		} while (--remaining > 0);
5711
5712		/* Exhausted local port range during search? */
5713		ret = 1;
5714		if (remaining <= 0)
5715			goto fail;
5716
5717		/* OK, here is the one we will use.  HEAD (the port
5718		 * hash table list entry) is non-NULL and we hold it's
5719		 * mutex.
5720		 */
5721		snum = rover;
5722	} else {
5723		/* We are given an specific port number; we verify
5724		 * that it is not being used. If it is used, we will
5725		 * exahust the search in the hash list corresponding
5726		 * to the port number (snum) - we detect that with the
5727		 * port iterator, pp being NULL.
5728		 */
5729		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5730		sctp_spin_lock(&head->lock);
5731		sctp_for_each_hentry(pp, node, &head->chain) {
5732			if (pp->port == snum)
5733				goto pp_found;
5734		}
5735	}
5736	pp = NULL;
5737	goto pp_not_found;
5738pp_found:
5739	if (!hlist_empty(&pp->owner)) {
5740		/* We had a port hash table hit - there is an
5741		 * available port (pp != NULL) and it is being
5742		 * used by other socket (pp->owner not empty); that other
5743		 * socket is going to be sk2.
5744		 */
5745		int reuse = sk->sk_reuse;
5746		struct sock *sk2;
5747
5748		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5749		if (pp->fastreuse && sk->sk_reuse &&
5750			sk->sk_state != SCTP_SS_LISTENING)
5751			goto success;
5752
5753		/* Run through the list of sockets bound to the port
5754		 * (pp->port) [via the pointers bind_next and
5755		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5756		 * we get the endpoint they describe and run through
5757		 * the endpoint's list of IP (v4 or v6) addresses,
5758		 * comparing each of the addresses with the address of
5759		 * the socket sk. If we find a match, then that means
5760		 * that this port/socket (sk) combination are already
5761		 * in an endpoint.
5762		 */
5763		sk_for_each_bound(sk2, node, &pp->owner) {
5764			struct sctp_endpoint *ep2;
5765			ep2 = sctp_sk(sk2)->ep;
5766
5767			if (sk == sk2 ||
5768			    (reuse && sk2->sk_reuse &&
5769			     sk2->sk_state != SCTP_SS_LISTENING))
5770				continue;
5771
5772			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5773						 sctp_sk(sk2), sctp_sk(sk))) {
5774				ret = (long)sk2;
5775				goto fail_unlock;
5776			}
5777		}
5778		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5779	}
5780pp_not_found:
5781	/* If there was a hash table miss, create a new port.  */
5782	ret = 1;
5783	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5784		goto fail_unlock;
5785
5786	/* In either case (hit or miss), make sure fastreuse is 1 only
5787	 * if sk->sk_reuse is too (that is, if the caller requested
5788	 * SO_REUSEADDR on this socket -sk-).
5789	 */
5790	if (hlist_empty(&pp->owner)) {
5791		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5792			pp->fastreuse = 1;
5793		else
5794			pp->fastreuse = 0;
5795	} else if (pp->fastreuse &&
5796		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5797		pp->fastreuse = 0;
5798
5799	/* We are set, so fill up all the data in the hash table
5800	 * entry, tie the socket list information with the rest of the
5801	 * sockets FIXME: Blurry, NPI (ipg).
5802	 */
5803success:
5804	if (!sctp_sk(sk)->bind_hash) {
5805		inet_sk(sk)->inet_num = snum;
5806		sk_add_bind_node(sk, &pp->owner);
5807		sctp_sk(sk)->bind_hash = pp;
5808	}
5809	ret = 0;
5810
5811fail_unlock:
5812	sctp_spin_unlock(&head->lock);
5813
5814fail:
5815	sctp_local_bh_enable();
5816	return ret;
5817}
5818
5819/* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5820 * port is requested.
5821 */
5822static int sctp_get_port(struct sock *sk, unsigned short snum)
5823{
5824	long ret;
5825	union sctp_addr addr;
5826	struct sctp_af *af = sctp_sk(sk)->pf->af;
5827
5828	/* Set up a dummy address struct from the sk. */
5829	af->from_sk(&addr, sk);
5830	addr.v4.sin_port = htons(snum);
5831
5832	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5833	ret = sctp_get_port_local(sk, &addr);
5834
5835	return ret ? 1 : 0;
5836}
5837
5838/*
5839 *  Move a socket to LISTENING state.
5840 */
5841SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5842{
5843	struct sctp_sock *sp = sctp_sk(sk);
5844	struct sctp_endpoint *ep = sp->ep;
5845	struct crypto_hash *tfm = NULL;
5846
5847	/* Allocate HMAC for generating cookie. */
5848	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5849		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5850		if (IS_ERR(tfm)) {
5851			net_info_ratelimited("failed to load transform for %s: %ld\n",
5852					     sctp_hmac_alg, PTR_ERR(tfm));
 
 
5853			return -ENOSYS;
5854		}
5855		sctp_sk(sk)->hmac = tfm;
5856	}
5857
5858	/*
5859	 * If a bind() or sctp_bindx() is not called prior to a listen()
5860	 * call that allows new associations to be accepted, the system
5861	 * picks an ephemeral port and will choose an address set equivalent
5862	 * to binding with a wildcard address.
5863	 *
5864	 * This is not currently spelled out in the SCTP sockets
5865	 * extensions draft, but follows the practice as seen in TCP
5866	 * sockets.
5867	 *
5868	 */
5869	sk->sk_state = SCTP_SS_LISTENING;
5870	if (!ep->base.bind_addr.port) {
5871		if (sctp_autobind(sk))
5872			return -EAGAIN;
5873	} else {
5874		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875			sk->sk_state = SCTP_SS_CLOSED;
5876			return -EADDRINUSE;
5877		}
5878	}
5879
5880	sk->sk_max_ack_backlog = backlog;
5881	sctp_hash_endpoint(ep);
5882	return 0;
5883}
5884
5885/*
5886 * 4.1.3 / 5.1.3 listen()
5887 *
5888 *   By default, new associations are not accepted for UDP style sockets.
5889 *   An application uses listen() to mark a socket as being able to
5890 *   accept new associations.
5891 *
5892 *   On TCP style sockets, applications use listen() to ready the SCTP
5893 *   endpoint for accepting inbound associations.
5894 *
5895 *   On both types of endpoints a backlog of '0' disables listening.
5896 *
5897 *  Move a socket to LISTENING state.
5898 */
5899int sctp_inet_listen(struct socket *sock, int backlog)
5900{
5901	struct sock *sk = sock->sk;
5902	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903	int err = -EINVAL;
5904
5905	if (unlikely(backlog < 0))
5906		return err;
5907
5908	sctp_lock_sock(sk);
5909
5910	/* Peeled-off sockets are not allowed to listen().  */
5911	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912		goto out;
5913
5914	if (sock->state != SS_UNCONNECTED)
5915		goto out;
5916
5917	/* If backlog is zero, disable listening. */
5918	if (!backlog) {
5919		if (sctp_sstate(sk, CLOSED))
5920			goto out;
5921
5922		err = 0;
5923		sctp_unhash_endpoint(ep);
5924		sk->sk_state = SCTP_SS_CLOSED;
5925		if (sk->sk_reuse)
5926			sctp_sk(sk)->bind_hash->fastreuse = 1;
5927		goto out;
5928	}
5929
5930	/* If we are already listening, just update the backlog */
5931	if (sctp_sstate(sk, LISTENING))
5932		sk->sk_max_ack_backlog = backlog;
5933	else {
5934		err = sctp_listen_start(sk, backlog);
5935		if (err)
5936			goto out;
5937	}
5938
5939	err = 0;
5940out:
5941	sctp_release_sock(sk);
5942	return err;
5943}
5944
5945/*
5946 * This function is done by modeling the current datagram_poll() and the
5947 * tcp_poll().  Note that, based on these implementations, we don't
5948 * lock the socket in this function, even though it seems that,
5949 * ideally, locking or some other mechanisms can be used to ensure
5950 * the integrity of the counters (sndbuf and wmem_alloc) used
5951 * in this place.  We assume that we don't need locks either until proven
5952 * otherwise.
5953 *
5954 * Another thing to note is that we include the Async I/O support
5955 * here, again, by modeling the current TCP/UDP code.  We don't have
5956 * a good way to test with it yet.
5957 */
5958unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959{
5960	struct sock *sk = sock->sk;
5961	struct sctp_sock *sp = sctp_sk(sk);
5962	unsigned int mask;
5963
5964	poll_wait(file, sk_sleep(sk), wait);
5965
5966	/* A TCP-style listening socket becomes readable when the accept queue
5967	 * is not empty.
5968	 */
5969	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970		return (!list_empty(&sp->ep->asocs)) ?
5971			(POLLIN | POLLRDNORM) : 0;
5972
5973	mask = 0;
5974
5975	/* Is there any exceptional events?  */
5976	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977		mask |= POLLERR;
5978	if (sk->sk_shutdown & RCV_SHUTDOWN)
5979		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980	if (sk->sk_shutdown == SHUTDOWN_MASK)
5981		mask |= POLLHUP;
5982
5983	/* Is it readable?  Reconsider this code with TCP-style support.  */
5984	if (!skb_queue_empty(&sk->sk_receive_queue))
5985		mask |= POLLIN | POLLRDNORM;
5986
5987	/* The association is either gone or not ready.  */
5988	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989		return mask;
5990
5991	/* Is it writable?  */
5992	if (sctp_writeable(sk)) {
5993		mask |= POLLOUT | POLLWRNORM;
5994	} else {
5995		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996		/*
5997		 * Since the socket is not locked, the buffer
5998		 * might be made available after the writeable check and
5999		 * before the bit is set.  This could cause a lost I/O
6000		 * signal.  tcp_poll() has a race breaker for this race
6001		 * condition.  Based on their implementation, we put
6002		 * in the following code to cover it as well.
6003		 */
6004		if (sctp_writeable(sk))
6005			mask |= POLLOUT | POLLWRNORM;
6006	}
6007	return mask;
6008}
6009
6010/********************************************************************
6011 * 2nd Level Abstractions
6012 ********************************************************************/
6013
6014static struct sctp_bind_bucket *sctp_bucket_create(
6015	struct sctp_bind_hashbucket *head, unsigned short snum)
6016{
6017	struct sctp_bind_bucket *pp;
6018
6019	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020	if (pp) {
6021		SCTP_DBG_OBJCNT_INC(bind_bucket);
6022		pp->port = snum;
6023		pp->fastreuse = 0;
6024		INIT_HLIST_HEAD(&pp->owner);
6025		hlist_add_head(&pp->node, &head->chain);
6026	}
6027	return pp;
6028}
6029
6030/* Caller must hold hashbucket lock for this tb with local BH disabled */
6031static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032{
6033	if (pp && hlist_empty(&pp->owner)) {
6034		__hlist_del(&pp->node);
6035		kmem_cache_free(sctp_bucket_cachep, pp);
6036		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037	}
6038}
6039
6040/* Release this socket's reference to a local port.  */
6041static inline void __sctp_put_port(struct sock *sk)
6042{
6043	struct sctp_bind_hashbucket *head =
6044		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6045	struct sctp_bind_bucket *pp;
6046
6047	sctp_spin_lock(&head->lock);
6048	pp = sctp_sk(sk)->bind_hash;
6049	__sk_del_bind_node(sk);
6050	sctp_sk(sk)->bind_hash = NULL;
6051	inet_sk(sk)->inet_num = 0;
6052	sctp_bucket_destroy(pp);
6053	sctp_spin_unlock(&head->lock);
6054}
6055
6056void sctp_put_port(struct sock *sk)
6057{
6058	sctp_local_bh_disable();
6059	__sctp_put_port(sk);
6060	sctp_local_bh_enable();
6061}
6062
6063/*
6064 * The system picks an ephemeral port and choose an address set equivalent
6065 * to binding with a wildcard address.
6066 * One of those addresses will be the primary address for the association.
6067 * This automatically enables the multihoming capability of SCTP.
6068 */
6069static int sctp_autobind(struct sock *sk)
6070{
6071	union sctp_addr autoaddr;
6072	struct sctp_af *af;
6073	__be16 port;
6074
6075	/* Initialize a local sockaddr structure to INADDR_ANY. */
6076	af = sctp_sk(sk)->pf->af;
6077
6078	port = htons(inet_sk(sk)->inet_num);
6079	af->inaddr_any(&autoaddr, port);
6080
6081	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082}
6083
6084/* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6085 *
6086 * From RFC 2292
6087 * 4.2 The cmsghdr Structure *
6088 *
6089 * When ancillary data is sent or received, any number of ancillary data
6090 * objects can be specified by the msg_control and msg_controllen members of
6091 * the msghdr structure, because each object is preceded by
6092 * a cmsghdr structure defining the object's length (the cmsg_len member).
6093 * Historically Berkeley-derived implementations have passed only one object
6094 * at a time, but this API allows multiple objects to be
6095 * passed in a single call to sendmsg() or recvmsg(). The following example
6096 * shows two ancillary data objects in a control buffer.
6097 *
6098 *   |<--------------------------- msg_controllen -------------------------->|
6099 *   |                                                                       |
6100 *
6101 *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102 *
6103 *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104 *   |                                   |                                   |
6105 *
6106 *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6107 *
6108 *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6109 *   |                                |  |                                |  |
6110 *
6111 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112 *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6113 *
6114 *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6115 *
6116 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117 *    ^
6118 *    |
6119 *
6120 * msg_control
6121 * points here
6122 */
6123SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124				  sctp_cmsgs_t *cmsgs)
6125{
6126	struct cmsghdr *cmsg;
6127	struct msghdr *my_msg = (struct msghdr *)msg;
6128
6129	for (cmsg = CMSG_FIRSTHDR(msg);
6130	     cmsg != NULL;
6131	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132		if (!CMSG_OK(my_msg, cmsg))
6133			return -EINVAL;
6134
6135		/* Should we parse this header or ignore?  */
6136		if (cmsg->cmsg_level != IPPROTO_SCTP)
6137			continue;
6138
6139		/* Strictly check lengths following example in SCM code.  */
6140		switch (cmsg->cmsg_type) {
6141		case SCTP_INIT:
6142			/* SCTP Socket API Extension
6143			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144			 *
6145			 * This cmsghdr structure provides information for
6146			 * initializing new SCTP associations with sendmsg().
6147			 * The SCTP_INITMSG socket option uses this same data
6148			 * structure.  This structure is not used for
6149			 * recvmsg().
6150			 *
6151			 * cmsg_level    cmsg_type      cmsg_data[]
6152			 * ------------  ------------   ----------------------
6153			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6154			 */
6155			if (cmsg->cmsg_len !=
6156			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6157				return -EINVAL;
6158			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159			break;
6160
6161		case SCTP_SNDRCV:
6162			/* SCTP Socket API Extension
6163			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164			 *
6165			 * This cmsghdr structure specifies SCTP options for
6166			 * sendmsg() and describes SCTP header information
6167			 * about a received message through recvmsg().
6168			 *
6169			 * cmsg_level    cmsg_type      cmsg_data[]
6170			 * ------------  ------------   ----------------------
6171			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6172			 */
6173			if (cmsg->cmsg_len !=
6174			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175				return -EINVAL;
6176
6177			cmsgs->info =
6178				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179
6180			/* Minimally, validate the sinfo_flags. */
6181			if (cmsgs->info->sinfo_flags &
6182			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183			      SCTP_ABORT | SCTP_EOF))
6184				return -EINVAL;
6185			break;
6186
6187		default:
6188			return -EINVAL;
6189		}
6190	}
6191	return 0;
6192}
6193
6194/*
6195 * Wait for a packet..
6196 * Note: This function is the same function as in core/datagram.c
6197 * with a few modifications to make lksctp work.
6198 */
6199static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200{
6201	int error;
6202	DEFINE_WAIT(wait);
6203
6204	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205
6206	/* Socket errors? */
6207	error = sock_error(sk);
6208	if (error)
6209		goto out;
6210
6211	if (!skb_queue_empty(&sk->sk_receive_queue))
6212		goto ready;
6213
6214	/* Socket shut down?  */
6215	if (sk->sk_shutdown & RCV_SHUTDOWN)
6216		goto out;
6217
6218	/* Sequenced packets can come disconnected.  If so we report the
6219	 * problem.
6220	 */
6221	error = -ENOTCONN;
6222
6223	/* Is there a good reason to think that we may receive some data?  */
6224	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225		goto out;
6226
6227	/* Handle signals.  */
6228	if (signal_pending(current))
6229		goto interrupted;
6230
6231	/* Let another process have a go.  Since we are going to sleep
6232	 * anyway.  Note: This may cause odd behaviors if the message
6233	 * does not fit in the user's buffer, but this seems to be the
6234	 * only way to honor MSG_DONTWAIT realistically.
6235	 */
6236	sctp_release_sock(sk);
6237	*timeo_p = schedule_timeout(*timeo_p);
6238	sctp_lock_sock(sk);
6239
6240ready:
6241	finish_wait(sk_sleep(sk), &wait);
6242	return 0;
6243
6244interrupted:
6245	error = sock_intr_errno(*timeo_p);
6246
6247out:
6248	finish_wait(sk_sleep(sk), &wait);
6249	*err = error;
6250	return error;
6251}
6252
6253/* Receive a datagram.
6254 * Note: This is pretty much the same routine as in core/datagram.c
6255 * with a few changes to make lksctp work.
6256 */
6257static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258					      int noblock, int *err)
6259{
6260	int error;
6261	struct sk_buff *skb;
6262	long timeo;
6263
6264	timeo = sock_rcvtimeo(sk, noblock);
6265
6266	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267			  timeo, MAX_SCHEDULE_TIMEOUT);
6268
6269	do {
6270		/* Again only user level code calls this function,
6271		 * so nothing interrupt level
6272		 * will suddenly eat the receive_queue.
6273		 *
6274		 *  Look at current nfs client by the way...
6275		 *  However, this function was correct in any case. 8)
6276		 */
6277		if (flags & MSG_PEEK) {
6278			spin_lock_bh(&sk->sk_receive_queue.lock);
6279			skb = skb_peek(&sk->sk_receive_queue);
6280			if (skb)
6281				atomic_inc(&skb->users);
6282			spin_unlock_bh(&sk->sk_receive_queue.lock);
6283		} else {
6284			skb = skb_dequeue(&sk->sk_receive_queue);
6285		}
6286
6287		if (skb)
6288			return skb;
6289
6290		/* Caller is allowed not to check sk->sk_err before calling. */
6291		error = sock_error(sk);
6292		if (error)
6293			goto no_packet;
6294
6295		if (sk->sk_shutdown & RCV_SHUTDOWN)
6296			break;
6297
6298		/* User doesn't want to wait.  */
6299		error = -EAGAIN;
6300		if (!timeo)
6301			goto no_packet;
6302	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303
6304	return NULL;
6305
6306no_packet:
6307	*err = error;
6308	return NULL;
6309}
6310
6311/* If sndbuf has changed, wake up per association sndbuf waiters.  */
6312static void __sctp_write_space(struct sctp_association *asoc)
6313{
6314	struct sock *sk = asoc->base.sk;
6315	struct socket *sock = sk->sk_socket;
6316
6317	if ((sctp_wspace(asoc) > 0) && sock) {
6318		if (waitqueue_active(&asoc->wait))
6319			wake_up_interruptible(&asoc->wait);
6320
6321		if (sctp_writeable(sk)) {
6322			wait_queue_head_t *wq = sk_sleep(sk);
6323
6324			if (wq && waitqueue_active(wq))
6325				wake_up_interruptible(wq);
6326
6327			/* Note that we try to include the Async I/O support
6328			 * here by modeling from the current TCP/UDP code.
6329			 * We have not tested with it yet.
6330			 */
6331			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332				sock_wake_async(sock,
6333						SOCK_WAKE_SPACE, POLL_OUT);
6334		}
6335	}
6336}
6337
6338/* Do accounting for the sndbuf space.
6339 * Decrement the used sndbuf space of the corresponding association by the
6340 * data size which was just transmitted(freed).
6341 */
6342static void sctp_wfree(struct sk_buff *skb)
6343{
6344	struct sctp_association *asoc;
6345	struct sctp_chunk *chunk;
6346	struct sock *sk;
6347
6348	/* Get the saved chunk pointer.  */
6349	chunk = *((struct sctp_chunk **)(skb->cb));
6350	asoc = chunk->asoc;
6351	sk = asoc->base.sk;
6352	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353				sizeof(struct sk_buff) +
6354				sizeof(struct sctp_chunk);
6355
6356	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357
6358	/*
6359	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360	 */
6361	sk->sk_wmem_queued   -= skb->truesize;
6362	sk_mem_uncharge(sk, skb->truesize);
6363
6364	sock_wfree(skb);
6365	__sctp_write_space(asoc);
6366
6367	sctp_association_put(asoc);
6368}
6369
6370/* Do accounting for the receive space on the socket.
6371 * Accounting for the association is done in ulpevent.c
6372 * We set this as a destructor for the cloned data skbs so that
6373 * accounting is done at the correct time.
6374 */
6375void sctp_sock_rfree(struct sk_buff *skb)
6376{
6377	struct sock *sk = skb->sk;
6378	struct sctp_ulpevent *event = sctp_skb2event(skb);
6379
6380	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381
6382	/*
6383	 * Mimic the behavior of sock_rfree
6384	 */
6385	sk_mem_uncharge(sk, event->rmem_len);
6386}
6387
6388
6389/* Helper function to wait for space in the sndbuf.  */
6390static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391				size_t msg_len)
6392{
6393	struct sock *sk = asoc->base.sk;
6394	int err = 0;
6395	long current_timeo = *timeo_p;
6396	DEFINE_WAIT(wait);
6397
6398	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399			  asoc, (long)(*timeo_p), msg_len);
6400
6401	/* Increment the association's refcnt.  */
6402	sctp_association_hold(asoc);
6403
6404	/* Wait on the association specific sndbuf space. */
6405	for (;;) {
6406		prepare_to_wait_exclusive(&asoc->wait, &wait,
6407					  TASK_INTERRUPTIBLE);
6408		if (!*timeo_p)
6409			goto do_nonblock;
6410		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411		    asoc->base.dead)
6412			goto do_error;
6413		if (signal_pending(current))
6414			goto do_interrupted;
6415		if (msg_len <= sctp_wspace(asoc))
6416			break;
6417
6418		/* Let another process have a go.  Since we are going
6419		 * to sleep anyway.
6420		 */
6421		sctp_release_sock(sk);
6422		current_timeo = schedule_timeout(current_timeo);
6423		BUG_ON(sk != asoc->base.sk);
6424		sctp_lock_sock(sk);
6425
6426		*timeo_p = current_timeo;
6427	}
6428
6429out:
6430	finish_wait(&asoc->wait, &wait);
6431
6432	/* Release the association's refcnt.  */
6433	sctp_association_put(asoc);
6434
6435	return err;
6436
6437do_error:
6438	err = -EPIPE;
6439	goto out;
6440
6441do_interrupted:
6442	err = sock_intr_errno(*timeo_p);
6443	goto out;
6444
6445do_nonblock:
6446	err = -EAGAIN;
6447	goto out;
6448}
6449
6450void sctp_data_ready(struct sock *sk, int len)
6451{
6452	struct socket_wq *wq;
6453
6454	rcu_read_lock();
6455	wq = rcu_dereference(sk->sk_wq);
6456	if (wq_has_sleeper(wq))
6457		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458						POLLRDNORM | POLLRDBAND);
6459	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460	rcu_read_unlock();
6461}
6462
6463/* If socket sndbuf has changed, wake up all per association waiters.  */
6464void sctp_write_space(struct sock *sk)
6465{
6466	struct sctp_association *asoc;
6467
6468	/* Wake up the tasks in each wait queue.  */
6469	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470		__sctp_write_space(asoc);
6471	}
6472}
6473
6474/* Is there any sndbuf space available on the socket?
6475 *
6476 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477 * associations on the same socket.  For a UDP-style socket with
6478 * multiple associations, it is possible for it to be "unwriteable"
6479 * prematurely.  I assume that this is acceptable because
6480 * a premature "unwriteable" is better than an accidental "writeable" which
6481 * would cause an unwanted block under certain circumstances.  For the 1-1
6482 * UDP-style sockets or TCP-style sockets, this code should work.
6483 *  - Daisy
6484 */
6485static int sctp_writeable(struct sock *sk)
6486{
6487	int amt = 0;
6488
6489	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490	if (amt < 0)
6491		amt = 0;
6492	return amt;
6493}
6494
6495/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496 * returns immediately with EINPROGRESS.
6497 */
6498static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499{
6500	struct sock *sk = asoc->base.sk;
6501	int err = 0;
6502	long current_timeo = *timeo_p;
6503	DEFINE_WAIT(wait);
6504
6505	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506			  (long)(*timeo_p));
6507
6508	/* Increment the association's refcnt.  */
6509	sctp_association_hold(asoc);
6510
6511	for (;;) {
6512		prepare_to_wait_exclusive(&asoc->wait, &wait,
6513					  TASK_INTERRUPTIBLE);
6514		if (!*timeo_p)
6515			goto do_nonblock;
6516		if (sk->sk_shutdown & RCV_SHUTDOWN)
6517			break;
6518		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519		    asoc->base.dead)
6520			goto do_error;
6521		if (signal_pending(current))
6522			goto do_interrupted;
6523
6524		if (sctp_state(asoc, ESTABLISHED))
6525			break;
6526
6527		/* Let another process have a go.  Since we are going
6528		 * to sleep anyway.
6529		 */
6530		sctp_release_sock(sk);
6531		current_timeo = schedule_timeout(current_timeo);
6532		sctp_lock_sock(sk);
6533
6534		*timeo_p = current_timeo;
6535	}
6536
6537out:
6538	finish_wait(&asoc->wait, &wait);
6539
6540	/* Release the association's refcnt.  */
6541	sctp_association_put(asoc);
6542
6543	return err;
6544
6545do_error:
6546	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547		err = -ETIMEDOUT;
6548	else
6549		err = -ECONNREFUSED;
6550	goto out;
6551
6552do_interrupted:
6553	err = sock_intr_errno(*timeo_p);
6554	goto out;
6555
6556do_nonblock:
6557	err = -EINPROGRESS;
6558	goto out;
6559}
6560
6561static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562{
6563	struct sctp_endpoint *ep;
6564	int err = 0;
6565	DEFINE_WAIT(wait);
6566
6567	ep = sctp_sk(sk)->ep;
6568
6569
6570	for (;;) {
6571		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572					  TASK_INTERRUPTIBLE);
6573
6574		if (list_empty(&ep->asocs)) {
6575			sctp_release_sock(sk);
6576			timeo = schedule_timeout(timeo);
6577			sctp_lock_sock(sk);
6578		}
6579
6580		err = -EINVAL;
6581		if (!sctp_sstate(sk, LISTENING))
6582			break;
6583
6584		err = 0;
6585		if (!list_empty(&ep->asocs))
6586			break;
6587
6588		err = sock_intr_errno(timeo);
6589		if (signal_pending(current))
6590			break;
6591
6592		err = -EAGAIN;
6593		if (!timeo)
6594			break;
6595	}
6596
6597	finish_wait(sk_sleep(sk), &wait);
6598
6599	return err;
6600}
6601
6602static void sctp_wait_for_close(struct sock *sk, long timeout)
6603{
6604	DEFINE_WAIT(wait);
6605
6606	do {
6607		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608		if (list_empty(&sctp_sk(sk)->ep->asocs))
6609			break;
6610		sctp_release_sock(sk);
6611		timeout = schedule_timeout(timeout);
6612		sctp_lock_sock(sk);
6613	} while (!signal_pending(current) && timeout);
6614
6615	finish_wait(sk_sleep(sk), &wait);
6616}
6617
6618static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619{
6620	struct sk_buff *frag;
6621
6622	if (!skb->data_len)
6623		goto done;
6624
6625	/* Don't forget the fragments. */
6626	skb_walk_frags(skb, frag)
6627		sctp_skb_set_owner_r_frag(frag, sk);
6628
6629done:
6630	sctp_skb_set_owner_r(skb, sk);
6631}
6632
6633void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634		    struct sctp_association *asoc)
6635{
6636	struct inet_sock *inet = inet_sk(sk);
6637	struct inet_sock *newinet;
6638
6639	newsk->sk_type = sk->sk_type;
6640	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641	newsk->sk_flags = sk->sk_flags;
6642	newsk->sk_no_check = sk->sk_no_check;
6643	newsk->sk_reuse = sk->sk_reuse;
6644
6645	newsk->sk_shutdown = sk->sk_shutdown;
6646	newsk->sk_destruct = inet_sock_destruct;
6647	newsk->sk_family = sk->sk_family;
6648	newsk->sk_protocol = IPPROTO_SCTP;
6649	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650	newsk->sk_sndbuf = sk->sk_sndbuf;
6651	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652	newsk->sk_lingertime = sk->sk_lingertime;
6653	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655
6656	newinet = inet_sk(newsk);
6657
6658	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6659	 * getsockname() and getpeername()
6660	 */
6661	newinet->inet_sport = inet->inet_sport;
6662	newinet->inet_saddr = inet->inet_saddr;
6663	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664	newinet->inet_dport = htons(asoc->peer.port);
6665	newinet->pmtudisc = inet->pmtudisc;
6666	newinet->inet_id = asoc->next_tsn ^ jiffies;
6667
6668	newinet->uc_ttl = inet->uc_ttl;
6669	newinet->mc_loop = 1;
6670	newinet->mc_ttl = 1;
6671	newinet->mc_index = 0;
6672	newinet->mc_list = NULL;
6673}
6674
6675/* Populate the fields of the newsk from the oldsk and migrate the assoc
6676 * and its messages to the newsk.
6677 */
6678static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679			      struct sctp_association *assoc,
6680			      sctp_socket_type_t type)
6681{
6682	struct sctp_sock *oldsp = sctp_sk(oldsk);
6683	struct sctp_sock *newsp = sctp_sk(newsk);
6684	struct sctp_bind_bucket *pp; /* hash list port iterator */
6685	struct sctp_endpoint *newep = newsp->ep;
6686	struct sk_buff *skb, *tmp;
6687	struct sctp_ulpevent *event;
6688	struct sctp_bind_hashbucket *head;
6689	struct list_head tmplist;
6690
6691	/* Migrate socket buffer sizes and all the socket level options to the
6692	 * new socket.
6693	 */
6694	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696	/* Brute force copy old sctp opt. */
6697	if (oldsp->do_auto_asconf) {
6698		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699		inet_sk_copy_descendant(newsk, oldsk);
6700		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701	} else
6702		inet_sk_copy_descendant(newsk, oldsk);
6703
6704	/* Restore the ep value that was overwritten with the above structure
6705	 * copy.
6706	 */
6707	newsp->ep = newep;
6708	newsp->hmac = NULL;
6709
6710	/* Hook this new socket in to the bind_hash list. */
6711	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712	sctp_local_bh_disable();
6713	sctp_spin_lock(&head->lock);
6714	pp = sctp_sk(oldsk)->bind_hash;
6715	sk_add_bind_node(newsk, &pp->owner);
6716	sctp_sk(newsk)->bind_hash = pp;
6717	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718	sctp_spin_unlock(&head->lock);
6719	sctp_local_bh_enable();
6720
6721	/* Copy the bind_addr list from the original endpoint to the new
6722	 * endpoint so that we can handle restarts properly
6723	 */
6724	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6726
6727	/* Move any messages in the old socket's receive queue that are for the
6728	 * peeled off association to the new socket's receive queue.
6729	 */
6730	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731		event = sctp_skb2event(skb);
6732		if (event->asoc == assoc) {
6733			__skb_unlink(skb, &oldsk->sk_receive_queue);
6734			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6735			sctp_skb_set_owner_r_frag(skb, newsk);
6736		}
6737	}
6738
6739	/* Clean up any messages pending delivery due to partial
6740	 * delivery.   Three cases:
6741	 * 1) No partial deliver;  no work.
6742	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744	 */
6745	skb_queue_head_init(&newsp->pd_lobby);
6746	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747
6748	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749		struct sk_buff_head *queue;
6750
6751		/* Decide which queue to move pd_lobby skbs to. */
6752		if (assoc->ulpq.pd_mode) {
6753			queue = &newsp->pd_lobby;
6754		} else
6755			queue = &newsk->sk_receive_queue;
6756
6757		/* Walk through the pd_lobby, looking for skbs that
6758		 * need moved to the new socket.
6759		 */
6760		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761			event = sctp_skb2event(skb);
6762			if (event->asoc == assoc) {
6763				__skb_unlink(skb, &oldsp->pd_lobby);
6764				__skb_queue_tail(queue, skb);
6765				sctp_skb_set_owner_r_frag(skb, newsk);
6766			}
6767		}
6768
6769		/* Clear up any skbs waiting for the partial
6770		 * delivery to finish.
6771		 */
6772		if (assoc->ulpq.pd_mode)
6773			sctp_clear_pd(oldsk, NULL);
6774
6775	}
6776
6777	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778		sctp_skb_set_owner_r_frag(skb, newsk);
6779
6780	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781		sctp_skb_set_owner_r_frag(skb, newsk);
6782
6783	/* Set the type of socket to indicate that it is peeled off from the
6784	 * original UDP-style socket or created with the accept() call on a
6785	 * TCP-style socket..
6786	 */
6787	newsp->type = type;
6788
6789	/* Mark the new socket "in-use" by the user so that any packets
6790	 * that may arrive on the association after we've moved it are
6791	 * queued to the backlog.  This prevents a potential race between
6792	 * backlog processing on the old socket and new-packet processing
6793	 * on the new socket.
6794	 *
6795	 * The caller has just allocated newsk so we can guarantee that other
6796	 * paths won't try to lock it and then oldsk.
6797	 */
6798	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799	sctp_assoc_migrate(assoc, newsk);
6800
6801	/* If the association on the newsk is already closed before accept()
6802	 * is called, set RCV_SHUTDOWN flag.
6803	 */
6804	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805		newsk->sk_shutdown |= RCV_SHUTDOWN;
6806
6807	newsk->sk_state = SCTP_SS_ESTABLISHED;
6808	sctp_release_sock(newsk);
6809}
6810
6811
6812/* This proto struct describes the ULP interface for SCTP.  */
6813struct proto sctp_prot = {
6814	.name        =	"SCTP",
6815	.owner       =	THIS_MODULE,
6816	.close       =	sctp_close,
6817	.connect     =	sctp_connect,
6818	.disconnect  =	sctp_disconnect,
6819	.accept      =	sctp_accept,
6820	.ioctl       =	sctp_ioctl,
6821	.init        =	sctp_init_sock,
6822	.destroy     =	sctp_destroy_sock,
6823	.shutdown    =	sctp_shutdown,
6824	.setsockopt  =	sctp_setsockopt,
6825	.getsockopt  =	sctp_getsockopt,
6826	.sendmsg     =	sctp_sendmsg,
6827	.recvmsg     =	sctp_recvmsg,
6828	.bind        =	sctp_bind,
6829	.backlog_rcv =	sctp_backlog_rcv,
6830	.hash        =	sctp_hash,
6831	.unhash      =	sctp_unhash,
6832	.get_port    =	sctp_get_port,
6833	.obj_size    =  sizeof(struct sctp_sock),
6834	.sysctl_mem  =  sysctl_sctp_mem,
6835	.sysctl_rmem =  sysctl_sctp_rmem,
6836	.sysctl_wmem =  sysctl_sctp_wmem,
6837	.memory_pressure = &sctp_memory_pressure,
6838	.enter_memory_pressure = sctp_enter_memory_pressure,
6839	.memory_allocated = &sctp_memory_allocated,
6840	.sockets_allocated = &sctp_sockets_allocated,
6841};
6842
6843#if IS_ENABLED(CONFIG_IPV6)
6844
6845struct proto sctpv6_prot = {
6846	.name		= "SCTPv6",
6847	.owner		= THIS_MODULE,
6848	.close		= sctp_close,
6849	.connect	= sctp_connect,
6850	.disconnect	= sctp_disconnect,
6851	.accept		= sctp_accept,
6852	.ioctl		= sctp_ioctl,
6853	.init		= sctp_init_sock,
6854	.destroy	= sctp_destroy_sock,
6855	.shutdown	= sctp_shutdown,
6856	.setsockopt	= sctp_setsockopt,
6857	.getsockopt	= sctp_getsockopt,
6858	.sendmsg	= sctp_sendmsg,
6859	.recvmsg	= sctp_recvmsg,
6860	.bind		= sctp_bind,
6861	.backlog_rcv	= sctp_backlog_rcv,
6862	.hash		= sctp_hash,
6863	.unhash		= sctp_unhash,
6864	.get_port	= sctp_get_port,
6865	.obj_size	= sizeof(struct sctp6_sock),
6866	.sysctl_mem	= sysctl_sctp_mem,
6867	.sysctl_rmem	= sysctl_sctp_rmem,
6868	.sysctl_wmem	= sysctl_sctp_wmem,
6869	.memory_pressure = &sctp_memory_pressure,
6870	.enter_memory_pressure = sctp_enter_memory_pressure,
6871	.memory_allocated = &sctp_memory_allocated,
6872	.sockets_allocated = &sctp_sockets_allocated,
6873};
6874#endif /* IS_ENABLED(CONFIG_IPV6) */
v3.1
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 Intel Corp.
   6 * Copyright (c) 2001-2002 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions interface with the sockets layer to implement the
  12 * SCTP Extensions for the Sockets API.
  13 *
  14 * Note that the descriptions from the specification are USER level
  15 * functions--this file is the functions which populate the struct proto
  16 * for SCTP which is the BOTTOM of the sockets interface.
  17 *
  18 * This SCTP implementation is free software;
  19 * you can redistribute it and/or modify it under the terms of
  20 * the GNU General Public License as published by
  21 * the Free Software Foundation; either version 2, or (at your option)
  22 * any later version.
  23 *
  24 * This SCTP implementation is distributed in the hope that it
  25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  26 *                 ************************
  27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  28 * See the GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with GNU CC; see the file COPYING.  If not, write to
  32 * the Free Software Foundation, 59 Temple Place - Suite 330,
  33 * Boston, MA 02111-1307, USA.
  34 *
  35 * Please send any bug reports or fixes you make to the
  36 * email address(es):
  37 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
  38 *
  39 * Or submit a bug report through the following website:
  40 *    http://www.sf.net/projects/lksctp
  41 *
  42 * Written or modified by:
  43 *    La Monte H.P. Yarroll <piggy@acm.org>
  44 *    Narasimha Budihal     <narsi@refcode.org>
  45 *    Karl Knutson          <karl@athena.chicago.il.us>
  46 *    Jon Grimm             <jgrimm@us.ibm.com>
  47 *    Xingang Guo           <xingang.guo@intel.com>
  48 *    Daisy Chang           <daisyc@us.ibm.com>
  49 *    Sridhar Samudrala     <samudrala@us.ibm.com>
  50 *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
  51 *    Ardelle Fan	    <ardelle.fan@intel.com>
  52 *    Ryan Layer	    <rmlayer@us.ibm.com>
  53 *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
  54 *    Kevin Gao             <kevin.gao@intel.com>
  55 *
  56 * Any bugs reported given to us we will try to fix... any fixes shared will
  57 * be incorporated into the next SCTP release.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/types.h>
  63#include <linux/kernel.h>
  64#include <linux/wait.h>
  65#include <linux/time.h>
  66#include <linux/ip.h>
  67#include <linux/capability.h>
  68#include <linux/fcntl.h>
  69#include <linux/poll.h>
  70#include <linux/init.h>
  71#include <linux/crypto.h>
  72#include <linux/slab.h>
  73
  74#include <net/ip.h>
  75#include <net/icmp.h>
  76#include <net/route.h>
  77#include <net/ipv6.h>
  78#include <net/inet_common.h>
  79
  80#include <linux/socket.h> /* for sa_family_t */
 
  81#include <net/sock.h>
  82#include <net/sctp/sctp.h>
  83#include <net/sctp/sm.h>
  84
  85/* WARNING:  Please do not remove the SCTP_STATIC attribute to
  86 * any of the functions below as they are used to export functions
  87 * used by a project regression testsuite.
  88 */
  89
  90/* Forward declarations for internal helper functions. */
  91static int sctp_writeable(struct sock *sk);
  92static void sctp_wfree(struct sk_buff *skb);
  93static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
  94				size_t msg_len);
  95static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
  96static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
  97static int sctp_wait_for_accept(struct sock *sk, long timeo);
  98static void sctp_wait_for_close(struct sock *sk, long timeo);
  99static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 100					union sctp_addr *addr, int len);
 101static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
 102static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
 103static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
 104static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
 105static int sctp_send_asconf(struct sctp_association *asoc,
 106			    struct sctp_chunk *chunk);
 107static int sctp_do_bind(struct sock *, union sctp_addr *, int);
 108static int sctp_autobind(struct sock *sk);
 109static void sctp_sock_migrate(struct sock *, struct sock *,
 110			      struct sctp_association *, sctp_socket_type_t);
 111static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
 112
 113extern struct kmem_cache *sctp_bucket_cachep;
 114extern long sysctl_sctp_mem[3];
 115extern int sysctl_sctp_rmem[3];
 116extern int sysctl_sctp_wmem[3];
 117
 118static int sctp_memory_pressure;
 119static atomic_long_t sctp_memory_allocated;
 120struct percpu_counter sctp_sockets_allocated;
 121
 122static void sctp_enter_memory_pressure(struct sock *sk)
 123{
 124	sctp_memory_pressure = 1;
 125}
 126
 127
 128/* Get the sndbuf space available at the time on the association.  */
 129static inline int sctp_wspace(struct sctp_association *asoc)
 130{
 131	int amt;
 132
 133	if (asoc->ep->sndbuf_policy)
 134		amt = asoc->sndbuf_used;
 135	else
 136		amt = sk_wmem_alloc_get(asoc->base.sk);
 137
 138	if (amt >= asoc->base.sk->sk_sndbuf) {
 139		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
 140			amt = 0;
 141		else {
 142			amt = sk_stream_wspace(asoc->base.sk);
 143			if (amt < 0)
 144				amt = 0;
 145		}
 146	} else {
 147		amt = asoc->base.sk->sk_sndbuf - amt;
 148	}
 149	return amt;
 150}
 151
 152/* Increment the used sndbuf space count of the corresponding association by
 153 * the size of the outgoing data chunk.
 154 * Also, set the skb destructor for sndbuf accounting later.
 155 *
 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
 158 * destructor in the data chunk skb for the purpose of the sndbuf space
 159 * tracking.
 160 */
 161static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
 162{
 163	struct sctp_association *asoc = chunk->asoc;
 164	struct sock *sk = asoc->base.sk;
 165
 166	/* The sndbuf space is tracked per association.  */
 167	sctp_association_hold(asoc);
 168
 169	skb_set_owner_w(chunk->skb, sk);
 170
 171	chunk->skb->destructor = sctp_wfree;
 172	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
 173	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
 174
 175	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
 176				sizeof(struct sk_buff) +
 177				sizeof(struct sctp_chunk);
 178
 179	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
 180	sk->sk_wmem_queued += chunk->skb->truesize;
 181	sk_mem_charge(sk, chunk->skb->truesize);
 182}
 183
 184/* Verify that this is a valid address. */
 185static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
 186				   int len)
 187{
 188	struct sctp_af *af;
 189
 190	/* Verify basic sockaddr. */
 191	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
 192	if (!af)
 193		return -EINVAL;
 194
 195	/* Is this a valid SCTP address?  */
 196	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
 197		return -EINVAL;
 198
 199	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
 200		return -EINVAL;
 201
 202	return 0;
 203}
 204
 205/* Look up the association by its id.  If this is not a UDP-style
 206 * socket, the ID field is always ignored.
 207 */
 208struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
 209{
 210	struct sctp_association *asoc = NULL;
 211
 212	/* If this is not a UDP-style socket, assoc id should be ignored. */
 213	if (!sctp_style(sk, UDP)) {
 214		/* Return NULL if the socket state is not ESTABLISHED. It
 215		 * could be a TCP-style listening socket or a socket which
 216		 * hasn't yet called connect() to establish an association.
 217		 */
 218		if (!sctp_sstate(sk, ESTABLISHED))
 219			return NULL;
 220
 221		/* Get the first and the only association from the list. */
 222		if (!list_empty(&sctp_sk(sk)->ep->asocs))
 223			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
 224					  struct sctp_association, asocs);
 225		return asoc;
 226	}
 227
 228	/* Otherwise this is a UDP-style socket. */
 229	if (!id || (id == (sctp_assoc_t)-1))
 230		return NULL;
 231
 232	spin_lock_bh(&sctp_assocs_id_lock);
 233	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
 234	spin_unlock_bh(&sctp_assocs_id_lock);
 235
 236	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
 237		return NULL;
 238
 239	return asoc;
 240}
 241
 242/* Look up the transport from an address and an assoc id. If both address and
 243 * id are specified, the associations matching the address and the id should be
 244 * the same.
 245 */
 246static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
 247					      struct sockaddr_storage *addr,
 248					      sctp_assoc_t id)
 249{
 250	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
 251	struct sctp_transport *transport;
 252	union sctp_addr *laddr = (union sctp_addr *)addr;
 253
 254	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
 255					       laddr,
 256					       &transport);
 257
 258	if (!addr_asoc)
 259		return NULL;
 260
 261	id_asoc = sctp_id2assoc(sk, id);
 262	if (id_asoc && (id_asoc != addr_asoc))
 263		return NULL;
 264
 265	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
 266						(union sctp_addr *)addr);
 267
 268	return transport;
 269}
 270
 271/* API 3.1.2 bind() - UDP Style Syntax
 272 * The syntax of bind() is,
 273 *
 274 *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
 275 *
 276 *   sd      - the socket descriptor returned by socket().
 277 *   addr    - the address structure (struct sockaddr_in or struct
 278 *             sockaddr_in6 [RFC 2553]),
 279 *   addr_len - the size of the address structure.
 280 */
 281SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
 282{
 283	int retval = 0;
 284
 285	sctp_lock_sock(sk);
 286
 287	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
 288			  sk, addr, addr_len);
 289
 290	/* Disallow binding twice. */
 291	if (!sctp_sk(sk)->ep->base.bind_addr.port)
 292		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
 293				      addr_len);
 294	else
 295		retval = -EINVAL;
 296
 297	sctp_release_sock(sk);
 298
 299	return retval;
 300}
 301
 302static long sctp_get_port_local(struct sock *, union sctp_addr *);
 303
 304/* Verify this is a valid sockaddr. */
 305static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
 306					union sctp_addr *addr, int len)
 307{
 308	struct sctp_af *af;
 309
 310	/* Check minimum size.  */
 311	if (len < sizeof (struct sockaddr))
 312		return NULL;
 313
 314	/* V4 mapped address are really of AF_INET family */
 315	if (addr->sa.sa_family == AF_INET6 &&
 316	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
 317		if (!opt->pf->af_supported(AF_INET, opt))
 318			return NULL;
 319	} else {
 320		/* Does this PF support this AF? */
 321		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
 322			return NULL;
 323	}
 324
 325	/* If we get this far, af is valid. */
 326	af = sctp_get_af_specific(addr->sa.sa_family);
 327
 328	if (len < af->sockaddr_len)
 329		return NULL;
 330
 331	return af;
 332}
 333
 334/* Bind a local address either to an endpoint or to an association.  */
 335SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
 336{
 337	struct sctp_sock *sp = sctp_sk(sk);
 338	struct sctp_endpoint *ep = sp->ep;
 339	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 340	struct sctp_af *af;
 341	unsigned short snum;
 342	int ret = 0;
 343
 344	/* Common sockaddr verification. */
 345	af = sctp_sockaddr_af(sp, addr, len);
 346	if (!af) {
 347		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
 348				  sk, addr, len);
 349		return -EINVAL;
 350	}
 351
 352	snum = ntohs(addr->v4.sin_port);
 353
 354	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
 355				 ", port: %d, new port: %d, len: %d)\n",
 356				 sk,
 357				 addr,
 358				 bp->port, snum,
 359				 len);
 360
 361	/* PF specific bind() address verification. */
 362	if (!sp->pf->bind_verify(sp, addr))
 363		return -EADDRNOTAVAIL;
 364
 365	/* We must either be unbound, or bind to the same port.
 366	 * It's OK to allow 0 ports if we are already bound.
 367	 * We'll just inhert an already bound port in this case
 368	 */
 369	if (bp->port) {
 370		if (!snum)
 371			snum = bp->port;
 372		else if (snum != bp->port) {
 373			SCTP_DEBUG_PRINTK("sctp_do_bind:"
 374				  " New port %d does not match existing port "
 375				  "%d.\n", snum, bp->port);
 376			return -EINVAL;
 377		}
 378	}
 379
 380	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
 381		return -EACCES;
 382
 383	/* See if the address matches any of the addresses we may have
 384	 * already bound before checking against other endpoints.
 385	 */
 386	if (sctp_bind_addr_match(bp, addr, sp))
 387		return -EINVAL;
 388
 389	/* Make sure we are allowed to bind here.
 390	 * The function sctp_get_port_local() does duplicate address
 391	 * detection.
 392	 */
 393	addr->v4.sin_port = htons(snum);
 394	if ((ret = sctp_get_port_local(sk, addr))) {
 395		return -EADDRINUSE;
 396	}
 397
 398	/* Refresh ephemeral port.  */
 399	if (!bp->port)
 400		bp->port = inet_sk(sk)->inet_num;
 401
 402	/* Add the address to the bind address list.
 403	 * Use GFP_ATOMIC since BHs will be disabled.
 404	 */
 405	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
 406
 407	/* Copy back into socket for getsockname() use. */
 408	if (!ret) {
 409		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
 410		af->to_sk_saddr(addr, sk);
 411	}
 412
 413	return ret;
 414}
 415
 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
 417 *
 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
 419 * at any one time.  If a sender, after sending an ASCONF chunk, decides
 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
 422 * subsequent ASCONF. Note this restriction binds each side, so at any
 423 * time two ASCONF may be in-transit on any given association (one sent
 424 * from each endpoint).
 425 */
 426static int sctp_send_asconf(struct sctp_association *asoc,
 427			    struct sctp_chunk *chunk)
 428{
 429	int		retval = 0;
 430
 431	/* If there is an outstanding ASCONF chunk, queue it for later
 432	 * transmission.
 433	 */
 434	if (asoc->addip_last_asconf) {
 435		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
 436		goto out;
 437	}
 438
 439	/* Hold the chunk until an ASCONF_ACK is received. */
 440	sctp_chunk_hold(chunk);
 441	retval = sctp_primitive_ASCONF(asoc, chunk);
 442	if (retval)
 443		sctp_chunk_free(chunk);
 444	else
 445		asoc->addip_last_asconf = chunk;
 446
 447out:
 448	return retval;
 449}
 450
 451/* Add a list of addresses as bind addresses to local endpoint or
 452 * association.
 453 *
 454 * Basically run through each address specified in the addrs/addrcnt
 455 * array/length pair, determine if it is IPv6 or IPv4 and call
 456 * sctp_do_bind() on it.
 457 *
 458 * If any of them fails, then the operation will be reversed and the
 459 * ones that were added will be removed.
 460 *
 461 * Only sctp_setsockopt_bindx() is supposed to call this function.
 462 */
 463static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 464{
 465	int cnt;
 466	int retval = 0;
 467	void *addr_buf;
 468	struct sockaddr *sa_addr;
 469	struct sctp_af *af;
 470
 471	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
 472			  sk, addrs, addrcnt);
 473
 474	addr_buf = addrs;
 475	for (cnt = 0; cnt < addrcnt; cnt++) {
 476		/* The list may contain either IPv4 or IPv6 address;
 477		 * determine the address length for walking thru the list.
 478		 */
 479		sa_addr = addr_buf;
 480		af = sctp_get_af_specific(sa_addr->sa_family);
 481		if (!af) {
 482			retval = -EINVAL;
 483			goto err_bindx_add;
 484		}
 485
 486		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
 487				      af->sockaddr_len);
 488
 489		addr_buf += af->sockaddr_len;
 490
 491err_bindx_add:
 492		if (retval < 0) {
 493			/* Failed. Cleanup the ones that have been added */
 494			if (cnt > 0)
 495				sctp_bindx_rem(sk, addrs, cnt);
 496			return retval;
 497		}
 498	}
 499
 500	return retval;
 501}
 502
 503/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
 504 * associations that are part of the endpoint indicating that a list of local
 505 * addresses are added to the endpoint.
 506 *
 507 * If any of the addresses is already in the bind address list of the
 508 * association, we do not send the chunk for that association.  But it will not
 509 * affect other associations.
 510 *
 511 * Only sctp_setsockopt_bindx() is supposed to call this function.
 512 */
 513static int sctp_send_asconf_add_ip(struct sock		*sk,
 514				   struct sockaddr	*addrs,
 515				   int 			addrcnt)
 516{
 517	struct sctp_sock		*sp;
 518	struct sctp_endpoint		*ep;
 519	struct sctp_association		*asoc;
 520	struct sctp_bind_addr		*bp;
 521	struct sctp_chunk		*chunk;
 522	struct sctp_sockaddr_entry	*laddr;
 523	union sctp_addr			*addr;
 524	union sctp_addr			saveaddr;
 525	void				*addr_buf;
 526	struct sctp_af			*af;
 527	struct list_head		*p;
 528	int 				i;
 529	int 				retval = 0;
 530
 531	if (!sctp_addip_enable)
 532		return retval;
 533
 534	sp = sctp_sk(sk);
 535	ep = sp->ep;
 536
 537	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 538			  __func__, sk, addrs, addrcnt);
 539
 540	list_for_each_entry(asoc, &ep->asocs, asocs) {
 541
 542		if (!asoc->peer.asconf_capable)
 543			continue;
 544
 545		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
 546			continue;
 547
 548		if (!sctp_state(asoc, ESTABLISHED))
 549			continue;
 550
 551		/* Check if any address in the packed array of addresses is
 552		 * in the bind address list of the association. If so,
 553		 * do not send the asconf chunk to its peer, but continue with
 554		 * other associations.
 555		 */
 556		addr_buf = addrs;
 557		for (i = 0; i < addrcnt; i++) {
 558			addr = addr_buf;
 559			af = sctp_get_af_specific(addr->v4.sin_family);
 560			if (!af) {
 561				retval = -EINVAL;
 562				goto out;
 563			}
 564
 565			if (sctp_assoc_lookup_laddr(asoc, addr))
 566				break;
 567
 568			addr_buf += af->sockaddr_len;
 569		}
 570		if (i < addrcnt)
 571			continue;
 572
 573		/* Use the first valid address in bind addr list of
 574		 * association as Address Parameter of ASCONF CHUNK.
 575		 */
 576		bp = &asoc->base.bind_addr;
 577		p = bp->address_list.next;
 578		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
 579		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
 580						   addrcnt, SCTP_PARAM_ADD_IP);
 581		if (!chunk) {
 582			retval = -ENOMEM;
 583			goto out;
 584		}
 585
 586		/* Add the new addresses to the bind address list with
 587		 * use_as_src set to 0.
 588		 */
 589		addr_buf = addrs;
 590		for (i = 0; i < addrcnt; i++) {
 591			addr = addr_buf;
 592			af = sctp_get_af_specific(addr->v4.sin_family);
 593			memcpy(&saveaddr, addr, af->sockaddr_len);
 594			retval = sctp_add_bind_addr(bp, &saveaddr,
 595						    SCTP_ADDR_NEW, GFP_ATOMIC);
 596			addr_buf += af->sockaddr_len;
 597		}
 598		if (asoc->src_out_of_asoc_ok) {
 599			struct sctp_transport *trans;
 600
 601			list_for_each_entry(trans,
 602			    &asoc->peer.transport_addr_list, transports) {
 603				/* Clear the source and route cache */
 604				dst_release(trans->dst);
 605				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
 606				    2*asoc->pathmtu, 4380));
 607				trans->ssthresh = asoc->peer.i.a_rwnd;
 608				trans->rto = asoc->rto_initial;
 609				trans->rtt = trans->srtt = trans->rttvar = 0;
 610				sctp_transport_route(trans, NULL,
 611				    sctp_sk(asoc->base.sk));
 612			}
 613		}
 614		retval = sctp_send_asconf(asoc, chunk);
 615	}
 616
 617out:
 618	return retval;
 619}
 620
 621/* Remove a list of addresses from bind addresses list.  Do not remove the
 622 * last address.
 623 *
 624 * Basically run through each address specified in the addrs/addrcnt
 625 * array/length pair, determine if it is IPv6 or IPv4 and call
 626 * sctp_del_bind() on it.
 627 *
 628 * If any of them fails, then the operation will be reversed and the
 629 * ones that were removed will be added back.
 630 *
 631 * At least one address has to be left; if only one address is
 632 * available, the operation will return -EBUSY.
 633 *
 634 * Only sctp_setsockopt_bindx() is supposed to call this function.
 635 */
 636static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
 637{
 638	struct sctp_sock *sp = sctp_sk(sk);
 639	struct sctp_endpoint *ep = sp->ep;
 640	int cnt;
 641	struct sctp_bind_addr *bp = &ep->base.bind_addr;
 642	int retval = 0;
 643	void *addr_buf;
 644	union sctp_addr *sa_addr;
 645	struct sctp_af *af;
 646
 647	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
 648			  sk, addrs, addrcnt);
 649
 650	addr_buf = addrs;
 651	for (cnt = 0; cnt < addrcnt; cnt++) {
 652		/* If the bind address list is empty or if there is only one
 653		 * bind address, there is nothing more to be removed (we need
 654		 * at least one address here).
 655		 */
 656		if (list_empty(&bp->address_list) ||
 657		    (sctp_list_single_entry(&bp->address_list))) {
 658			retval = -EBUSY;
 659			goto err_bindx_rem;
 660		}
 661
 662		sa_addr = addr_buf;
 663		af = sctp_get_af_specific(sa_addr->sa.sa_family);
 664		if (!af) {
 665			retval = -EINVAL;
 666			goto err_bindx_rem;
 667		}
 668
 669		if (!af->addr_valid(sa_addr, sp, NULL)) {
 670			retval = -EADDRNOTAVAIL;
 671			goto err_bindx_rem;
 672		}
 673
 674		if (sa_addr->v4.sin_port &&
 675		    sa_addr->v4.sin_port != htons(bp->port)) {
 676			retval = -EINVAL;
 677			goto err_bindx_rem;
 678		}
 679
 680		if (!sa_addr->v4.sin_port)
 681			sa_addr->v4.sin_port = htons(bp->port);
 682
 683		/* FIXME - There is probably a need to check if sk->sk_saddr and
 684		 * sk->sk_rcv_addr are currently set to one of the addresses to
 685		 * be removed. This is something which needs to be looked into
 686		 * when we are fixing the outstanding issues with multi-homing
 687		 * socket routing and failover schemes. Refer to comments in
 688		 * sctp_do_bind(). -daisy
 689		 */
 690		retval = sctp_del_bind_addr(bp, sa_addr);
 691
 692		addr_buf += af->sockaddr_len;
 693err_bindx_rem:
 694		if (retval < 0) {
 695			/* Failed. Add the ones that has been removed back */
 696			if (cnt > 0)
 697				sctp_bindx_add(sk, addrs, cnt);
 698			return retval;
 699		}
 700	}
 701
 702	return retval;
 703}
 704
 705/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
 706 * the associations that are part of the endpoint indicating that a list of
 707 * local addresses are removed from the endpoint.
 708 *
 709 * If any of the addresses is already in the bind address list of the
 710 * association, we do not send the chunk for that association.  But it will not
 711 * affect other associations.
 712 *
 713 * Only sctp_setsockopt_bindx() is supposed to call this function.
 714 */
 715static int sctp_send_asconf_del_ip(struct sock		*sk,
 716				   struct sockaddr	*addrs,
 717				   int			addrcnt)
 718{
 719	struct sctp_sock	*sp;
 720	struct sctp_endpoint	*ep;
 721	struct sctp_association	*asoc;
 722	struct sctp_transport	*transport;
 723	struct sctp_bind_addr	*bp;
 724	struct sctp_chunk	*chunk;
 725	union sctp_addr		*laddr;
 726	void			*addr_buf;
 727	struct sctp_af		*af;
 728	struct sctp_sockaddr_entry *saddr;
 729	int 			i;
 730	int 			retval = 0;
 731	int			stored = 0;
 732
 733	chunk = NULL;
 734	if (!sctp_addip_enable)
 735		return retval;
 736
 737	sp = sctp_sk(sk);
 738	ep = sp->ep;
 739
 740	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
 741			  __func__, sk, addrs, addrcnt);
 742
 743	list_for_each_entry(asoc, &ep->asocs, asocs) {
 744
 745		if (!asoc->peer.asconf_capable)
 746			continue;
 747
 748		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
 749			continue;
 750
 751		if (!sctp_state(asoc, ESTABLISHED))
 752			continue;
 753
 754		/* Check if any address in the packed array of addresses is
 755		 * not present in the bind address list of the association.
 756		 * If so, do not send the asconf chunk to its peer, but
 757		 * continue with other associations.
 758		 */
 759		addr_buf = addrs;
 760		for (i = 0; i < addrcnt; i++) {
 761			laddr = addr_buf;
 762			af = sctp_get_af_specific(laddr->v4.sin_family);
 763			if (!af) {
 764				retval = -EINVAL;
 765				goto out;
 766			}
 767
 768			if (!sctp_assoc_lookup_laddr(asoc, laddr))
 769				break;
 770
 771			addr_buf += af->sockaddr_len;
 772		}
 773		if (i < addrcnt)
 774			continue;
 775
 776		/* Find one address in the association's bind address list
 777		 * that is not in the packed array of addresses. This is to
 778		 * make sure that we do not delete all the addresses in the
 779		 * association.
 780		 */
 781		bp = &asoc->base.bind_addr;
 782		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
 783					       addrcnt, sp);
 784		if ((laddr == NULL) && (addrcnt == 1)) {
 785			if (asoc->asconf_addr_del_pending)
 786				continue;
 787			asoc->asconf_addr_del_pending =
 788			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
 789			if (asoc->asconf_addr_del_pending == NULL) {
 790				retval = -ENOMEM;
 791				goto out;
 792			}
 793			asoc->asconf_addr_del_pending->sa.sa_family =
 794				    addrs->sa_family;
 795			asoc->asconf_addr_del_pending->v4.sin_port =
 796				    htons(bp->port);
 797			if (addrs->sa_family == AF_INET) {
 798				struct sockaddr_in *sin;
 799
 800				sin = (struct sockaddr_in *)addrs;
 801				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
 802			} else if (addrs->sa_family == AF_INET6) {
 803				struct sockaddr_in6 *sin6;
 804
 805				sin6 = (struct sockaddr_in6 *)addrs;
 806				ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr);
 807			}
 808			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
 809			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
 810			    asoc->asconf_addr_del_pending);
 811			asoc->src_out_of_asoc_ok = 1;
 812			stored = 1;
 813			goto skip_mkasconf;
 814		}
 815
 816		/* We do not need RCU protection throughout this loop
 817		 * because this is done under a socket lock from the
 818		 * setsockopt call.
 819		 */
 820		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
 821						   SCTP_PARAM_DEL_IP);
 822		if (!chunk) {
 823			retval = -ENOMEM;
 824			goto out;
 825		}
 826
 827skip_mkasconf:
 828		/* Reset use_as_src flag for the addresses in the bind address
 829		 * list that are to be deleted.
 830		 */
 831		addr_buf = addrs;
 832		for (i = 0; i < addrcnt; i++) {
 833			laddr = addr_buf;
 834			af = sctp_get_af_specific(laddr->v4.sin_family);
 835			list_for_each_entry(saddr, &bp->address_list, list) {
 836				if (sctp_cmp_addr_exact(&saddr->a, laddr))
 837					saddr->state = SCTP_ADDR_DEL;
 838			}
 839			addr_buf += af->sockaddr_len;
 840		}
 841
 842		/* Update the route and saddr entries for all the transports
 843		 * as some of the addresses in the bind address list are
 844		 * about to be deleted and cannot be used as source addresses.
 845		 */
 846		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
 847					transports) {
 848			dst_release(transport->dst);
 849			sctp_transport_route(transport, NULL,
 850					     sctp_sk(asoc->base.sk));
 851		}
 852
 853		if (stored)
 854			/* We don't need to transmit ASCONF */
 855			continue;
 856		retval = sctp_send_asconf(asoc, chunk);
 857	}
 858out:
 859	return retval;
 860}
 861
 862/* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
 863int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
 864{
 865	struct sock *sk = sctp_opt2sk(sp);
 866	union sctp_addr *addr;
 867	struct sctp_af *af;
 868
 869	/* It is safe to write port space in caller. */
 870	addr = &addrw->a;
 871	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
 872	af = sctp_get_af_specific(addr->sa.sa_family);
 873	if (!af)
 874		return -EINVAL;
 875	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
 876		return -EINVAL;
 877
 878	if (addrw->state == SCTP_ADDR_NEW)
 879		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
 880	else
 881		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
 882}
 883
 884/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
 885 *
 886 * API 8.1
 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
 888 *                int flags);
 889 *
 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
 892 * or IPv6 addresses.
 893 *
 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
 895 * Section 3.1.2 for this usage.
 896 *
 897 * addrs is a pointer to an array of one or more socket addresses. Each
 898 * address is contained in its appropriate structure (i.e. struct
 899 * sockaddr_in or struct sockaddr_in6) the family of the address type
 900 * must be used to distinguish the address length (note that this
 901 * representation is termed a "packed array" of addresses). The caller
 902 * specifies the number of addresses in the array with addrcnt.
 903 *
 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
 905 * -1, and sets errno to the appropriate error code.
 906 *
 907 * For SCTP, the port given in each socket address must be the same, or
 908 * sctp_bindx() will fail, setting errno to EINVAL.
 909 *
 910 * The flags parameter is formed from the bitwise OR of zero or more of
 911 * the following currently defined flags:
 912 *
 913 * SCTP_BINDX_ADD_ADDR
 914 *
 915 * SCTP_BINDX_REM_ADDR
 916 *
 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
 919 * addresses from the association. The two flags are mutually exclusive;
 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
 921 * not remove all addresses from an association; sctp_bindx() will
 922 * reject such an attempt with EINVAL.
 923 *
 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
 925 * additional addresses with an endpoint after calling bind().  Or use
 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
 927 * socket is associated with so that no new association accepted will be
 928 * associated with those addresses. If the endpoint supports dynamic
 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
 930 * endpoint to send the appropriate message to the peer to change the
 931 * peers address lists.
 932 *
 933 * Adding and removing addresses from a connected association is
 934 * optional functionality. Implementations that do not support this
 935 * functionality should return EOPNOTSUPP.
 936 *
 937 * Basically do nothing but copying the addresses from user to kernel
 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
 940 * from userspace.
 941 *
 942 * We don't use copy_from_user() for optimization: we first do the
 943 * sanity checks (buffer size -fast- and access check-healthy
 944 * pointer); if all of those succeed, then we can alloc the memory
 945 * (expensive operation) needed to copy the data to kernel. Then we do
 946 * the copying without checking the user space area
 947 * (__copy_from_user()).
 948 *
 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
 950 * it.
 951 *
 952 * sk        The sk of the socket
 953 * addrs     The pointer to the addresses in user land
 954 * addrssize Size of the addrs buffer
 955 * op        Operation to perform (add or remove, see the flags of
 956 *           sctp_bindx)
 957 *
 958 * Returns 0 if ok, <0 errno code on error.
 959 */
 960SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
 961				      struct sockaddr __user *addrs,
 962				      int addrs_size, int op)
 963{
 964	struct sockaddr *kaddrs;
 965	int err;
 966	int addrcnt = 0;
 967	int walk_size = 0;
 968	struct sockaddr *sa_addr;
 969	void *addr_buf;
 970	struct sctp_af *af;
 971
 972	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
 973			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
 974
 975	if (unlikely(addrs_size <= 0))
 976		return -EINVAL;
 977
 978	/* Check the user passed a healthy pointer.  */
 979	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
 980		return -EFAULT;
 981
 982	/* Alloc space for the address array in kernel memory.  */
 983	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
 984	if (unlikely(!kaddrs))
 985		return -ENOMEM;
 986
 987	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
 988		kfree(kaddrs);
 989		return -EFAULT;
 990	}
 991
 992	/* Walk through the addrs buffer and count the number of addresses. */
 993	addr_buf = kaddrs;
 994	while (walk_size < addrs_size) {
 995		if (walk_size + sizeof(sa_family_t) > addrs_size) {
 996			kfree(kaddrs);
 997			return -EINVAL;
 998		}
 999
1000		sa_addr = addr_buf;
1001		af = sctp_get_af_specific(sa_addr->sa_family);
1002
1003		/* If the address family is not supported or if this address
1004		 * causes the address buffer to overflow return EINVAL.
1005		 */
1006		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007			kfree(kaddrs);
1008			return -EINVAL;
1009		}
1010		addrcnt++;
1011		addr_buf += af->sockaddr_len;
1012		walk_size += af->sockaddr_len;
1013	}
1014
1015	/* Do the work. */
1016	switch (op) {
1017	case SCTP_BINDX_ADD_ADDR:
1018		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1019		if (err)
1020			goto out;
1021		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1022		break;
1023
1024	case SCTP_BINDX_REM_ADDR:
1025		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1026		if (err)
1027			goto out;
1028		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1029		break;
1030
1031	default:
1032		err = -EINVAL;
1033		break;
1034	}
1035
1036out:
1037	kfree(kaddrs);
1038
1039	return err;
1040}
1041
1042/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1043 *
1044 * Common routine for handling connect() and sctp_connectx().
1045 * Connect will come in with just a single address.
1046 */
1047static int __sctp_connect(struct sock* sk,
1048			  struct sockaddr *kaddrs,
1049			  int addrs_size,
1050			  sctp_assoc_t *assoc_id)
1051{
1052	struct sctp_sock *sp;
1053	struct sctp_endpoint *ep;
1054	struct sctp_association *asoc = NULL;
1055	struct sctp_association *asoc2;
1056	struct sctp_transport *transport;
1057	union sctp_addr to;
1058	struct sctp_af *af;
1059	sctp_scope_t scope;
1060	long timeo;
1061	int err = 0;
1062	int addrcnt = 0;
1063	int walk_size = 0;
1064	union sctp_addr *sa_addr = NULL;
1065	void *addr_buf;
1066	unsigned short port;
1067	unsigned int f_flags = 0;
1068
1069	sp = sctp_sk(sk);
1070	ep = sp->ep;
1071
1072	/* connect() cannot be done on a socket that is already in ESTABLISHED
1073	 * state - UDP-style peeled off socket or a TCP-style socket that
1074	 * is already connected.
1075	 * It cannot be done even on a TCP-style listening socket.
1076	 */
1077	if (sctp_sstate(sk, ESTABLISHED) ||
1078	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1079		err = -EISCONN;
1080		goto out_free;
1081	}
1082
1083	/* Walk through the addrs buffer and count the number of addresses. */
1084	addr_buf = kaddrs;
1085	while (walk_size < addrs_size) {
1086		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087			err = -EINVAL;
1088			goto out_free;
1089		}
1090
1091		sa_addr = addr_buf;
1092		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094		/* If the address family is not supported or if this address
1095		 * causes the address buffer to overflow return EINVAL.
1096		 */
1097		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098			err = -EINVAL;
1099			goto out_free;
1100		}
1101
1102		port = ntohs(sa_addr->v4.sin_port);
1103
1104		/* Save current address so we can work with it */
1105		memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108		if (err)
1109			goto out_free;
1110
1111		/* Make sure the destination port is correctly set
1112		 * in all addresses.
1113		 */
1114		if (asoc && asoc->peer.port && asoc->peer.port != port)
1115			goto out_free;
1116
1117
1118		/* Check if there already is a matching association on the
1119		 * endpoint (other than the one created here).
1120		 */
1121		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1122		if (asoc2 && asoc2 != asoc) {
1123			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1124				err = -EISCONN;
1125			else
1126				err = -EALREADY;
1127			goto out_free;
1128		}
1129
1130		/* If we could not find a matching association on the endpoint,
1131		 * make sure that there is no peeled-off association matching
1132		 * the peer address even on another socket.
1133		 */
1134		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1135			err = -EADDRNOTAVAIL;
1136			goto out_free;
1137		}
1138
1139		if (!asoc) {
1140			/* If a bind() or sctp_bindx() is not called prior to
1141			 * an sctp_connectx() call, the system picks an
1142			 * ephemeral port and will choose an address set
1143			 * equivalent to binding with a wildcard address.
1144			 */
1145			if (!ep->base.bind_addr.port) {
1146				if (sctp_autobind(sk)) {
1147					err = -EAGAIN;
1148					goto out_free;
1149				}
1150			} else {
1151				/*
1152				 * If an unprivileged user inherits a 1-many
1153				 * style socket with open associations on a
1154				 * privileged port, it MAY be permitted to
1155				 * accept new associations, but it SHOULD NOT
1156				 * be permitted to open new associations.
1157				 */
1158				if (ep->base.bind_addr.port < PROT_SOCK &&
1159				    !capable(CAP_NET_BIND_SERVICE)) {
1160					err = -EACCES;
1161					goto out_free;
1162				}
1163			}
1164
1165			scope = sctp_scope(&to);
1166			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1167			if (!asoc) {
1168				err = -ENOMEM;
1169				goto out_free;
1170			}
1171
1172			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1173							      GFP_KERNEL);
1174			if (err < 0) {
1175				goto out_free;
1176			}
1177
1178		}
1179
1180		/* Prime the peer's transport structures.  */
1181		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1182						SCTP_UNKNOWN);
1183		if (!transport) {
1184			err = -ENOMEM;
1185			goto out_free;
1186		}
1187
1188		addrcnt++;
1189		addr_buf += af->sockaddr_len;
1190		walk_size += af->sockaddr_len;
1191	}
1192
1193	/* In case the user of sctp_connectx() wants an association
1194	 * id back, assign one now.
1195	 */
1196	if (assoc_id) {
1197		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1198		if (err < 0)
1199			goto out_free;
1200	}
1201
1202	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1203	if (err < 0) {
1204		goto out_free;
1205	}
1206
1207	/* Initialize sk's dport and daddr for getpeername() */
1208	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1209	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1210	af->to_sk_daddr(sa_addr, sk);
1211	sk->sk_err = 0;
1212
1213	/* in-kernel sockets don't generally have a file allocated to them
1214	 * if all they do is call sock_create_kern().
1215	 */
1216	if (sk->sk_socket->file)
1217		f_flags = sk->sk_socket->file->f_flags;
1218
1219	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221	err = sctp_wait_for_connect(asoc, &timeo);
1222	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1223		*assoc_id = asoc->assoc_id;
1224
1225	/* Don't free association on exit. */
1226	asoc = NULL;
1227
1228out_free:
1229
1230	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1231			  " kaddrs: %p err: %d\n",
1232			  asoc, kaddrs, err);
1233	if (asoc)
 
 
 
 
 
1234		sctp_association_free(asoc);
 
1235	return err;
1236}
1237
1238/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * 			sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association.  On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code.  The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached.  The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent.  This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association.  It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association.  If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk        The sk of the socket
1295 * addrs     The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1301				      struct sockaddr __user *addrs,
1302				      int addrs_size,
1303				      sctp_assoc_t *assoc_id)
1304{
1305	int err = 0;
1306	struct sockaddr *kaddrs;
1307
1308	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1309			  __func__, sk, addrs, addrs_size);
1310
1311	if (unlikely(addrs_size <= 0))
1312		return -EINVAL;
1313
1314	/* Check the user passed a healthy pointer.  */
1315	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1316		return -EFAULT;
1317
1318	/* Alloc space for the address array in kernel memory.  */
1319	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1320	if (unlikely(!kaddrs))
1321		return -ENOMEM;
1322
1323	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1324		err = -EFAULT;
1325	} else {
1326		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1327	}
1328
1329	kfree(kaddrs);
1330
1331	return err;
1332}
1333
1334/*
1335 * This is an older interface.  It's kept for backward compatibility
1336 * to the option that doesn't provide association id.
1337 */
1338SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1339				      struct sockaddr __user *addrs,
1340				      int addrs_size)
1341{
1342	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1343}
1344
1345/*
1346 * New interface for the API.  The since the API is done with a socket
1347 * option, to make it simple we feed back the association id is as a return
1348 * indication to the call.  Error is always negative and association id is
1349 * always positive.
1350 */
1351SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1352				      struct sockaddr __user *addrs,
1353				      int addrs_size)
1354{
1355	sctp_assoc_t assoc_id = 0;
1356	int err = 0;
1357
1358	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1359
1360	if (err)
1361		return err;
1362	else
1363		return assoc_id;
1364}
1365
1366/*
1367 * New (hopefully final) interface for the API.
1368 * We use the sctp_getaddrs_old structure so that use-space library
1369 * can avoid any unnecessary allocations.   The only defferent part
1370 * is that we store the actual length of the address buffer into the
1371 * addrs_num structure member.  That way we can re-use the existing
1372 * code.
1373 */
1374SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1375					char __user *optval,
1376					int __user *optlen)
1377{
1378	struct sctp_getaddrs_old param;
1379	sctp_assoc_t assoc_id = 0;
1380	int err = 0;
1381
1382	if (len < sizeof(param))
1383		return -EINVAL;
1384
1385	if (copy_from_user(&param, optval, sizeof(param)))
1386		return -EFAULT;
1387
1388	err = __sctp_setsockopt_connectx(sk,
1389			(struct sockaddr __user *)param.addrs,
1390			param.addr_num, &assoc_id);
1391
1392	if (err == 0 || err == -EINPROGRESS) {
1393		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1394			return -EFAULT;
1395		if (put_user(sizeof(assoc_id), optlen))
1396			return -EFAULT;
1397	}
1398
1399	return err;
1400}
1401
1402/* API 3.1.4 close() - UDP Style Syntax
1403 * Applications use close() to perform graceful shutdown (as described in
1404 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1405 * by a UDP-style socket.
1406 *
1407 * The syntax is
1408 *
1409 *   ret = close(int sd);
1410 *
1411 *   sd      - the socket descriptor of the associations to be closed.
1412 *
1413 * To gracefully shutdown a specific association represented by the
1414 * UDP-style socket, an application should use the sendmsg() call,
1415 * passing no user data, but including the appropriate flag in the
1416 * ancillary data (see Section xxxx).
1417 *
1418 * If sd in the close() call is a branched-off socket representing only
1419 * one association, the shutdown is performed on that association only.
1420 *
1421 * 4.1.6 close() - TCP Style Syntax
1422 *
1423 * Applications use close() to gracefully close down an association.
1424 *
1425 * The syntax is:
1426 *
1427 *    int close(int sd);
1428 *
1429 *      sd      - the socket descriptor of the association to be closed.
1430 *
1431 * After an application calls close() on a socket descriptor, no further
1432 * socket operations will succeed on that descriptor.
1433 *
1434 * API 7.1.4 SO_LINGER
1435 *
1436 * An application using the TCP-style socket can use this option to
1437 * perform the SCTP ABORT primitive.  The linger option structure is:
1438 *
1439 *  struct  linger {
1440 *     int     l_onoff;                // option on/off
1441 *     int     l_linger;               // linger time
1442 * };
1443 *
1444 * To enable the option, set l_onoff to 1.  If the l_linger value is set
1445 * to 0, calling close() is the same as the ABORT primitive.  If the
1446 * value is set to a negative value, the setsockopt() call will return
1447 * an error.  If the value is set to a positive value linger_time, the
1448 * close() can be blocked for at most linger_time ms.  If the graceful
1449 * shutdown phase does not finish during this period, close() will
1450 * return but the graceful shutdown phase continues in the system.
1451 */
1452SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1453{
1454	struct sctp_endpoint *ep;
1455	struct sctp_association *asoc;
1456	struct list_head *pos, *temp;
1457	unsigned int data_was_unread;
1458
1459	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1460
1461	sctp_lock_sock(sk);
1462	sk->sk_shutdown = SHUTDOWN_MASK;
1463	sk->sk_state = SCTP_SS_CLOSING;
1464
1465	ep = sctp_sk(sk)->ep;
1466
1467	/* Clean up any skbs sitting on the receive queue.  */
1468	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1469	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1470
1471	/* Walk all associations on an endpoint.  */
1472	list_for_each_safe(pos, temp, &ep->asocs) {
1473		asoc = list_entry(pos, struct sctp_association, asocs);
1474
1475		if (sctp_style(sk, TCP)) {
1476			/* A closed association can still be in the list if
1477			 * it belongs to a TCP-style listening socket that is
1478			 * not yet accepted. If so, free it. If not, send an
1479			 * ABORT or SHUTDOWN based on the linger options.
1480			 */
1481			if (sctp_state(asoc, CLOSED)) {
1482				sctp_unhash_established(asoc);
1483				sctp_association_free(asoc);
1484				continue;
1485			}
1486		}
1487
1488		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1489		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1490		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1491			struct sctp_chunk *chunk;
1492
1493			chunk = sctp_make_abort_user(asoc, NULL, 0);
1494			if (chunk)
1495				sctp_primitive_ABORT(asoc, chunk);
1496		} else
1497			sctp_primitive_SHUTDOWN(asoc, NULL);
1498	}
1499
1500	/* On a TCP-style socket, block for at most linger_time if set. */
1501	if (sctp_style(sk, TCP) && timeout)
1502		sctp_wait_for_close(sk, timeout);
1503
1504	/* This will run the backlog queue.  */
1505	sctp_release_sock(sk);
1506
1507	/* Supposedly, no process has access to the socket, but
1508	 * the net layers still may.
1509	 */
1510	sctp_local_bh_disable();
1511	sctp_bh_lock_sock(sk);
1512
1513	/* Hold the sock, since sk_common_release() will put sock_put()
1514	 * and we have just a little more cleanup.
1515	 */
1516	sock_hold(sk);
1517	sk_common_release(sk);
1518
1519	sctp_bh_unlock_sock(sk);
1520	sctp_local_bh_enable();
1521
1522	sock_put(sk);
1523
1524	SCTP_DBG_OBJCNT_DEC(sock);
1525}
1526
1527/* Handle EPIPE error. */
1528static int sctp_error(struct sock *sk, int flags, int err)
1529{
1530	if (err == -EPIPE)
1531		err = sock_error(sk) ? : -EPIPE;
1532	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1533		send_sig(SIGPIPE, current, 0);
1534	return err;
1535}
1536
1537/* API 3.1.3 sendmsg() - UDP Style Syntax
1538 *
1539 * An application uses sendmsg() and recvmsg() calls to transmit data to
1540 * and receive data from its peer.
1541 *
1542 *  ssize_t sendmsg(int socket, const struct msghdr *message,
1543 *                  int flags);
1544 *
1545 *  socket  - the socket descriptor of the endpoint.
1546 *  message - pointer to the msghdr structure which contains a single
1547 *            user message and possibly some ancillary data.
1548 *
1549 *            See Section 5 for complete description of the data
1550 *            structures.
1551 *
1552 *  flags   - flags sent or received with the user message, see Section
1553 *            5 for complete description of the flags.
1554 *
1555 * Note:  This function could use a rewrite especially when explicit
1556 * connect support comes in.
1557 */
1558/* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1559
1560SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1561
1562SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1563			     struct msghdr *msg, size_t msg_len)
1564{
1565	struct sctp_sock *sp;
1566	struct sctp_endpoint *ep;
1567	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1568	struct sctp_transport *transport, *chunk_tp;
1569	struct sctp_chunk *chunk;
1570	union sctp_addr to;
1571	struct sockaddr *msg_name = NULL;
1572	struct sctp_sndrcvinfo default_sinfo;
1573	struct sctp_sndrcvinfo *sinfo;
1574	struct sctp_initmsg *sinit;
1575	sctp_assoc_t associd = 0;
1576	sctp_cmsgs_t cmsgs = { NULL };
1577	int err;
1578	sctp_scope_t scope;
1579	long timeo;
1580	__u16 sinfo_flags = 0;
1581	struct sctp_datamsg *datamsg;
1582	int msg_flags = msg->msg_flags;
1583
1584	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1585			  sk, msg, msg_len);
1586
1587	err = 0;
1588	sp = sctp_sk(sk);
1589	ep = sp->ep;
1590
1591	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1592
1593	/* We cannot send a message over a TCP-style listening socket. */
1594	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1595		err = -EPIPE;
1596		goto out_nounlock;
1597	}
1598
1599	/* Parse out the SCTP CMSGs.  */
1600	err = sctp_msghdr_parse(msg, &cmsgs);
1601
1602	if (err) {
1603		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1604		goto out_nounlock;
1605	}
1606
1607	/* Fetch the destination address for this packet.  This
1608	 * address only selects the association--it is not necessarily
1609	 * the address we will send to.
1610	 * For a peeled-off socket, msg_name is ignored.
1611	 */
1612	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1613		int msg_namelen = msg->msg_namelen;
1614
1615		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1616				       msg_namelen);
1617		if (err)
1618			return err;
1619
1620		if (msg_namelen > sizeof(to))
1621			msg_namelen = sizeof(to);
1622		memcpy(&to, msg->msg_name, msg_namelen);
1623		msg_name = msg->msg_name;
1624	}
1625
1626	sinfo = cmsgs.info;
1627	sinit = cmsgs.init;
1628
1629	/* Did the user specify SNDRCVINFO?  */
1630	if (sinfo) {
1631		sinfo_flags = sinfo->sinfo_flags;
1632		associd = sinfo->sinfo_assoc_id;
1633	}
1634
1635	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1636			  msg_len, sinfo_flags);
1637
1638	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1639	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1640		err = -EINVAL;
1641		goto out_nounlock;
1642	}
1643
1644	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1645	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1646	 * If SCTP_ABORT is set, the message length could be non zero with
1647	 * the msg_iov set to the user abort reason.
1648	 */
1649	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1650	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1651		err = -EINVAL;
1652		goto out_nounlock;
1653	}
1654
1655	/* If SCTP_ADDR_OVER is set, there must be an address
1656	 * specified in msg_name.
1657	 */
1658	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1659		err = -EINVAL;
1660		goto out_nounlock;
1661	}
1662
1663	transport = NULL;
1664
1665	SCTP_DEBUG_PRINTK("About to look up association.\n");
1666
1667	sctp_lock_sock(sk);
1668
1669	/* If a msg_name has been specified, assume this is to be used.  */
1670	if (msg_name) {
1671		/* Look for a matching association on the endpoint. */
1672		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1673		if (!asoc) {
1674			/* If we could not find a matching association on the
1675			 * endpoint, make sure that it is not a TCP-style
1676			 * socket that already has an association or there is
1677			 * no peeled-off association on another socket.
1678			 */
1679			if ((sctp_style(sk, TCP) &&
1680			     sctp_sstate(sk, ESTABLISHED)) ||
1681			    sctp_endpoint_is_peeled_off(ep, &to)) {
1682				err = -EADDRNOTAVAIL;
1683				goto out_unlock;
1684			}
1685		}
1686	} else {
1687		asoc = sctp_id2assoc(sk, associd);
1688		if (!asoc) {
1689			err = -EPIPE;
1690			goto out_unlock;
1691		}
1692	}
1693
1694	if (asoc) {
1695		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1696
1697		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1698		 * socket that has an association in CLOSED state. This can
1699		 * happen when an accepted socket has an association that is
1700		 * already CLOSED.
1701		 */
1702		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1703			err = -EPIPE;
1704			goto out_unlock;
1705		}
1706
1707		if (sinfo_flags & SCTP_EOF) {
1708			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1709					  asoc);
1710			sctp_primitive_SHUTDOWN(asoc, NULL);
1711			err = 0;
1712			goto out_unlock;
1713		}
1714		if (sinfo_flags & SCTP_ABORT) {
1715
1716			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1717			if (!chunk) {
1718				err = -ENOMEM;
1719				goto out_unlock;
1720			}
1721
1722			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1723			sctp_primitive_ABORT(asoc, chunk);
1724			err = 0;
1725			goto out_unlock;
1726		}
1727	}
1728
1729	/* Do we need to create the association?  */
1730	if (!asoc) {
1731		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1732
1733		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1734			err = -EINVAL;
1735			goto out_unlock;
1736		}
1737
1738		/* Check for invalid stream against the stream counts,
1739		 * either the default or the user specified stream counts.
1740		 */
1741		if (sinfo) {
1742			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1743				/* Check against the defaults. */
1744				if (sinfo->sinfo_stream >=
1745				    sp->initmsg.sinit_num_ostreams) {
1746					err = -EINVAL;
1747					goto out_unlock;
1748				}
1749			} else {
1750				/* Check against the requested.  */
1751				if (sinfo->sinfo_stream >=
1752				    sinit->sinit_num_ostreams) {
1753					err = -EINVAL;
1754					goto out_unlock;
1755				}
1756			}
1757		}
1758
1759		/*
1760		 * API 3.1.2 bind() - UDP Style Syntax
1761		 * If a bind() or sctp_bindx() is not called prior to a
1762		 * sendmsg() call that initiates a new association, the
1763		 * system picks an ephemeral port and will choose an address
1764		 * set equivalent to binding with a wildcard address.
1765		 */
1766		if (!ep->base.bind_addr.port) {
1767			if (sctp_autobind(sk)) {
1768				err = -EAGAIN;
1769				goto out_unlock;
1770			}
1771		} else {
1772			/*
1773			 * If an unprivileged user inherits a one-to-many
1774			 * style socket with open associations on a privileged
1775			 * port, it MAY be permitted to accept new associations,
1776			 * but it SHOULD NOT be permitted to open new
1777			 * associations.
1778			 */
1779			if (ep->base.bind_addr.port < PROT_SOCK &&
1780			    !capable(CAP_NET_BIND_SERVICE)) {
1781				err = -EACCES;
1782				goto out_unlock;
1783			}
1784		}
1785
1786		scope = sctp_scope(&to);
1787		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1788		if (!new_asoc) {
1789			err = -ENOMEM;
1790			goto out_unlock;
1791		}
1792		asoc = new_asoc;
1793		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1794		if (err < 0) {
1795			err = -ENOMEM;
1796			goto out_free;
1797		}
1798
1799		/* If the SCTP_INIT ancillary data is specified, set all
1800		 * the association init values accordingly.
1801		 */
1802		if (sinit) {
1803			if (sinit->sinit_num_ostreams) {
1804				asoc->c.sinit_num_ostreams =
1805					sinit->sinit_num_ostreams;
1806			}
1807			if (sinit->sinit_max_instreams) {
1808				asoc->c.sinit_max_instreams =
1809					sinit->sinit_max_instreams;
1810			}
1811			if (sinit->sinit_max_attempts) {
1812				asoc->max_init_attempts
1813					= sinit->sinit_max_attempts;
1814			}
1815			if (sinit->sinit_max_init_timeo) {
1816				asoc->max_init_timeo =
1817				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1818			}
1819		}
1820
1821		/* Prime the peer's transport structures.  */
1822		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1823		if (!transport) {
1824			err = -ENOMEM;
1825			goto out_free;
1826		}
1827	}
1828
1829	/* ASSERT: we have a valid association at this point.  */
1830	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1831
1832	if (!sinfo) {
1833		/* If the user didn't specify SNDRCVINFO, make up one with
1834		 * some defaults.
1835		 */
1836		memset(&default_sinfo, 0, sizeof(default_sinfo));
1837		default_sinfo.sinfo_stream = asoc->default_stream;
1838		default_sinfo.sinfo_flags = asoc->default_flags;
1839		default_sinfo.sinfo_ppid = asoc->default_ppid;
1840		default_sinfo.sinfo_context = asoc->default_context;
1841		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1842		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1843		sinfo = &default_sinfo;
1844	}
1845
1846	/* API 7.1.7, the sndbuf size per association bounds the
1847	 * maximum size of data that can be sent in a single send call.
1848	 */
1849	if (msg_len > sk->sk_sndbuf) {
1850		err = -EMSGSIZE;
1851		goto out_free;
1852	}
1853
1854	if (asoc->pmtu_pending)
1855		sctp_assoc_pending_pmtu(asoc);
1856
1857	/* If fragmentation is disabled and the message length exceeds the
1858	 * association fragmentation point, return EMSGSIZE.  The I-D
1859	 * does not specify what this error is, but this looks like
1860	 * a great fit.
1861	 */
1862	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1863		err = -EMSGSIZE;
1864		goto out_free;
1865	}
1866
1867	/* Check for invalid stream. */
1868	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1869		err = -EINVAL;
1870		goto out_free;
1871	}
1872
1873	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1874	if (!sctp_wspace(asoc)) {
1875		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1876		if (err)
1877			goto out_free;
1878	}
1879
1880	/* If an address is passed with the sendto/sendmsg call, it is used
1881	 * to override the primary destination address in the TCP model, or
1882	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1883	 */
1884	if ((sctp_style(sk, TCP) && msg_name) ||
1885	    (sinfo_flags & SCTP_ADDR_OVER)) {
1886		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1887		if (!chunk_tp) {
1888			err = -EINVAL;
1889			goto out_free;
1890		}
1891	} else
1892		chunk_tp = NULL;
1893
1894	/* Auto-connect, if we aren't connected already. */
1895	if (sctp_state(asoc, CLOSED)) {
1896		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1897		if (err < 0)
1898			goto out_free;
1899		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1900	}
1901
1902	/* Break the message into multiple chunks of maximum size. */
1903	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1904	if (!datamsg) {
1905		err = -ENOMEM;
1906		goto out_free;
1907	}
1908
1909	/* Now send the (possibly) fragmented message. */
1910	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1911		sctp_chunk_hold(chunk);
1912
1913		/* Do accounting for the write space.  */
1914		sctp_set_owner_w(chunk);
1915
1916		chunk->transport = chunk_tp;
1917	}
1918
1919	/* Send it to the lower layers.  Note:  all chunks
1920	 * must either fail or succeed.   The lower layer
1921	 * works that way today.  Keep it that way or this
1922	 * breaks.
1923	 */
1924	err = sctp_primitive_SEND(asoc, datamsg);
1925	/* Did the lower layer accept the chunk? */
1926	if (err)
1927		sctp_datamsg_free(datamsg);
1928	else
1929		sctp_datamsg_put(datamsg);
1930
1931	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1932
1933	if (err)
1934		goto out_free;
1935	else
1936		err = msg_len;
1937
1938	/* If we are already past ASSOCIATE, the lower
1939	 * layers are responsible for association cleanup.
1940	 */
1941	goto out_unlock;
1942
1943out_free:
1944	if (new_asoc)
 
1945		sctp_association_free(asoc);
 
1946out_unlock:
1947	sctp_release_sock(sk);
1948
1949out_nounlock:
1950	return sctp_error(sk, msg_flags, err);
1951
1952#if 0
1953do_sock_err:
1954	if (msg_len)
1955		err = msg_len;
1956	else
1957		err = sock_error(sk);
1958	goto out;
1959
1960do_interrupted:
1961	if (msg_len)
1962		err = msg_len;
1963	goto out;
1964#endif /* 0 */
1965}
1966
1967/* This is an extended version of skb_pull() that removes the data from the
1968 * start of a skb even when data is spread across the list of skb's in the
1969 * frag_list. len specifies the total amount of data that needs to be removed.
1970 * when 'len' bytes could be removed from the skb, it returns 0.
1971 * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1972 * could not be removed.
1973 */
1974static int sctp_skb_pull(struct sk_buff *skb, int len)
1975{
1976	struct sk_buff *list;
1977	int skb_len = skb_headlen(skb);
1978	int rlen;
1979
1980	if (len <= skb_len) {
1981		__skb_pull(skb, len);
1982		return 0;
1983	}
1984	len -= skb_len;
1985	__skb_pull(skb, skb_len);
1986
1987	skb_walk_frags(skb, list) {
1988		rlen = sctp_skb_pull(list, len);
1989		skb->len -= (len-rlen);
1990		skb->data_len -= (len-rlen);
1991
1992		if (!rlen)
1993			return 0;
1994
1995		len = rlen;
1996	}
1997
1998	return len;
1999}
2000
2001/* API 3.1.3  recvmsg() - UDP Style Syntax
2002 *
2003 *  ssize_t recvmsg(int socket, struct msghdr *message,
2004 *                    int flags);
2005 *
2006 *  socket  - the socket descriptor of the endpoint.
2007 *  message - pointer to the msghdr structure which contains a single
2008 *            user message and possibly some ancillary data.
2009 *
2010 *            See Section 5 for complete description of the data
2011 *            structures.
2012 *
2013 *  flags   - flags sent or received with the user message, see Section
2014 *            5 for complete description of the flags.
2015 */
2016static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2017
2018SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2019			     struct msghdr *msg, size_t len, int noblock,
2020			     int flags, int *addr_len)
2021{
2022	struct sctp_ulpevent *event = NULL;
2023	struct sctp_sock *sp = sctp_sk(sk);
2024	struct sk_buff *skb;
2025	int copied;
2026	int err = 0;
2027	int skb_len;
2028
2029	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2030			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2031			  "len", len, "knoblauch", noblock,
2032			  "flags", flags, "addr_len", addr_len);
2033
2034	sctp_lock_sock(sk);
2035
2036	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2037		err = -ENOTCONN;
2038		goto out;
2039	}
2040
2041	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2042	if (!skb)
2043		goto out;
2044
2045	/* Get the total length of the skb including any skb's in the
2046	 * frag_list.
2047	 */
2048	skb_len = skb->len;
2049
2050	copied = skb_len;
2051	if (copied > len)
2052		copied = len;
2053
2054	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2055
2056	event = sctp_skb2event(skb);
2057
2058	if (err)
2059		goto out_free;
2060
2061	sock_recv_ts_and_drops(msg, sk, skb);
2062	if (sctp_ulpevent_is_notification(event)) {
2063		msg->msg_flags |= MSG_NOTIFICATION;
2064		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2065	} else {
2066		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2067	}
2068
2069	/* Check if we allow SCTP_SNDRCVINFO. */
2070	if (sp->subscribe.sctp_data_io_event)
2071		sctp_ulpevent_read_sndrcvinfo(event, msg);
2072#if 0
2073	/* FIXME: we should be calling IP/IPv6 layers.  */
2074	if (sk->sk_protinfo.af_inet.cmsg_flags)
2075		ip_cmsg_recv(msg, skb);
2076#endif
2077
2078	err = copied;
2079
2080	/* If skb's length exceeds the user's buffer, update the skb and
2081	 * push it back to the receive_queue so that the next call to
2082	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2083	 */
2084	if (skb_len > copied) {
2085		msg->msg_flags &= ~MSG_EOR;
2086		if (flags & MSG_PEEK)
2087			goto out_free;
2088		sctp_skb_pull(skb, copied);
2089		skb_queue_head(&sk->sk_receive_queue, skb);
2090
2091		/* When only partial message is copied to the user, increase
2092		 * rwnd by that amount. If all the data in the skb is read,
2093		 * rwnd is updated when the event is freed.
2094		 */
2095		if (!sctp_ulpevent_is_notification(event))
2096			sctp_assoc_rwnd_increase(event->asoc, copied);
2097		goto out;
2098	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2099		   (event->msg_flags & MSG_EOR))
2100		msg->msg_flags |= MSG_EOR;
2101	else
2102		msg->msg_flags &= ~MSG_EOR;
2103
2104out_free:
2105	if (flags & MSG_PEEK) {
2106		/* Release the skb reference acquired after peeking the skb in
2107		 * sctp_skb_recv_datagram().
2108		 */
2109		kfree_skb(skb);
2110	} else {
2111		/* Free the event which includes releasing the reference to
2112		 * the owner of the skb, freeing the skb and updating the
2113		 * rwnd.
2114		 */
2115		sctp_ulpevent_free(event);
2116	}
2117out:
2118	sctp_release_sock(sk);
2119	return err;
2120}
2121
2122/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2123 *
2124 * This option is a on/off flag.  If enabled no SCTP message
2125 * fragmentation will be performed.  Instead if a message being sent
2126 * exceeds the current PMTU size, the message will NOT be sent and
2127 * instead a error will be indicated to the user.
2128 */
2129static int sctp_setsockopt_disable_fragments(struct sock *sk,
2130					     char __user *optval,
2131					     unsigned int optlen)
2132{
2133	int val;
2134
2135	if (optlen < sizeof(int))
2136		return -EINVAL;
2137
2138	if (get_user(val, (int __user *)optval))
2139		return -EFAULT;
2140
2141	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2142
2143	return 0;
2144}
2145
2146static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2147				  unsigned int optlen)
2148{
2149	struct sctp_association *asoc;
2150	struct sctp_ulpevent *event;
2151
2152	if (optlen > sizeof(struct sctp_event_subscribe))
2153		return -EINVAL;
2154	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2155		return -EFAULT;
2156
2157	/*
2158	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2159	 * if there is no data to be sent or retransmit, the stack will
2160	 * immediately send up this notification.
2161	 */
2162	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2163				       &sctp_sk(sk)->subscribe)) {
2164		asoc = sctp_id2assoc(sk, 0);
2165
2166		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2167			event = sctp_ulpevent_make_sender_dry_event(asoc,
2168					GFP_ATOMIC);
2169			if (!event)
2170				return -ENOMEM;
2171
2172			sctp_ulpq_tail_event(&asoc->ulpq, event);
2173		}
2174	}
2175
2176	return 0;
2177}
2178
2179/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2180 *
2181 * This socket option is applicable to the UDP-style socket only.  When
2182 * set it will cause associations that are idle for more than the
2183 * specified number of seconds to automatically close.  An association
2184 * being idle is defined an association that has NOT sent or received
2185 * user data.  The special value of '0' indicates that no automatic
2186 * close of any associations should be performed.  The option expects an
2187 * integer defining the number of seconds of idle time before an
2188 * association is closed.
2189 */
2190static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2191				     unsigned int optlen)
2192{
2193	struct sctp_sock *sp = sctp_sk(sk);
2194
2195	/* Applicable to UDP-style socket only */
2196	if (sctp_style(sk, TCP))
2197		return -EOPNOTSUPP;
2198	if (optlen != sizeof(int))
2199		return -EINVAL;
2200	if (copy_from_user(&sp->autoclose, optval, optlen))
2201		return -EFAULT;
2202	/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2203	sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2204
2205	return 0;
2206}
2207
2208/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2209 *
2210 * Applications can enable or disable heartbeats for any peer address of
2211 * an association, modify an address's heartbeat interval, force a
2212 * heartbeat to be sent immediately, and adjust the address's maximum
2213 * number of retransmissions sent before an address is considered
2214 * unreachable.  The following structure is used to access and modify an
2215 * address's parameters:
2216 *
2217 *  struct sctp_paddrparams {
2218 *     sctp_assoc_t            spp_assoc_id;
2219 *     struct sockaddr_storage spp_address;
2220 *     uint32_t                spp_hbinterval;
2221 *     uint16_t                spp_pathmaxrxt;
2222 *     uint32_t                spp_pathmtu;
2223 *     uint32_t                spp_sackdelay;
2224 *     uint32_t                spp_flags;
2225 * };
2226 *
2227 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2228 *                     application, and identifies the association for
2229 *                     this query.
2230 *   spp_address     - This specifies which address is of interest.
2231 *   spp_hbinterval  - This contains the value of the heartbeat interval,
2232 *                     in milliseconds.  If a  value of zero
2233 *                     is present in this field then no changes are to
2234 *                     be made to this parameter.
2235 *   spp_pathmaxrxt  - This contains the maximum number of
2236 *                     retransmissions before this address shall be
2237 *                     considered unreachable. If a  value of zero
2238 *                     is present in this field then no changes are to
2239 *                     be made to this parameter.
2240 *   spp_pathmtu     - When Path MTU discovery is disabled the value
2241 *                     specified here will be the "fixed" path mtu.
2242 *                     Note that if the spp_address field is empty
2243 *                     then all associations on this address will
2244 *                     have this fixed path mtu set upon them.
2245 *
2246 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2247 *                     the number of milliseconds that sacks will be delayed
2248 *                     for. This value will apply to all addresses of an
2249 *                     association if the spp_address field is empty. Note
2250 *                     also, that if delayed sack is enabled and this
2251 *                     value is set to 0, no change is made to the last
2252 *                     recorded delayed sack timer value.
2253 *
2254 *   spp_flags       - These flags are used to control various features
2255 *                     on an association. The flag field may contain
2256 *                     zero or more of the following options.
2257 *
2258 *                     SPP_HB_ENABLE  - Enable heartbeats on the
2259 *                     specified address. Note that if the address
2260 *                     field is empty all addresses for the association
2261 *                     have heartbeats enabled upon them.
2262 *
2263 *                     SPP_HB_DISABLE - Disable heartbeats on the
2264 *                     speicifed address. Note that if the address
2265 *                     field is empty all addresses for the association
2266 *                     will have their heartbeats disabled. Note also
2267 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2268 *                     mutually exclusive, only one of these two should
2269 *                     be specified. Enabling both fields will have
2270 *                     undetermined results.
2271 *
2272 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2273 *                     to be made immediately.
2274 *
2275 *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2276 *                     heartbeat delayis to be set to the value of 0
2277 *                     milliseconds.
2278 *
2279 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2280 *                     discovery upon the specified address. Note that
2281 *                     if the address feild is empty then all addresses
2282 *                     on the association are effected.
2283 *
2284 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2285 *                     discovery upon the specified address. Note that
2286 *                     if the address feild is empty then all addresses
2287 *                     on the association are effected. Not also that
2288 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2289 *                     exclusive. Enabling both will have undetermined
2290 *                     results.
2291 *
2292 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2293 *                     on delayed sack. The time specified in spp_sackdelay
2294 *                     is used to specify the sack delay for this address. Note
2295 *                     that if spp_address is empty then all addresses will
2296 *                     enable delayed sack and take on the sack delay
2297 *                     value specified in spp_sackdelay.
2298 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2299 *                     off delayed sack. If the spp_address field is blank then
2300 *                     delayed sack is disabled for the entire association. Note
2301 *                     also that this field is mutually exclusive to
2302 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2303 *                     results.
2304 */
2305static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2306				       struct sctp_transport   *trans,
2307				       struct sctp_association *asoc,
2308				       struct sctp_sock        *sp,
2309				       int                      hb_change,
2310				       int                      pmtud_change,
2311				       int                      sackdelay_change)
2312{
2313	int error;
2314
2315	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2316		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2317		if (error)
2318			return error;
2319	}
2320
2321	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2322	 * this field is ignored.  Note also that a value of zero indicates
2323	 * the current setting should be left unchanged.
2324	 */
2325	if (params->spp_flags & SPP_HB_ENABLE) {
2326
2327		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2328		 * set.  This lets us use 0 value when this flag
2329		 * is set.
2330		 */
2331		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2332			params->spp_hbinterval = 0;
2333
2334		if (params->spp_hbinterval ||
2335		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2336			if (trans) {
2337				trans->hbinterval =
2338				    msecs_to_jiffies(params->spp_hbinterval);
2339			} else if (asoc) {
2340				asoc->hbinterval =
2341				    msecs_to_jiffies(params->spp_hbinterval);
2342			} else {
2343				sp->hbinterval = params->spp_hbinterval;
2344			}
2345		}
2346	}
2347
2348	if (hb_change) {
2349		if (trans) {
2350			trans->param_flags =
2351				(trans->param_flags & ~SPP_HB) | hb_change;
2352		} else if (asoc) {
2353			asoc->param_flags =
2354				(asoc->param_flags & ~SPP_HB) | hb_change;
2355		} else {
2356			sp->param_flags =
2357				(sp->param_flags & ~SPP_HB) | hb_change;
2358		}
2359	}
2360
2361	/* When Path MTU discovery is disabled the value specified here will
2362	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2363	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2364	 * effect).
2365	 */
2366	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2367		if (trans) {
2368			trans->pathmtu = params->spp_pathmtu;
2369			sctp_assoc_sync_pmtu(asoc);
2370		} else if (asoc) {
2371			asoc->pathmtu = params->spp_pathmtu;
2372			sctp_frag_point(asoc, params->spp_pathmtu);
2373		} else {
2374			sp->pathmtu = params->spp_pathmtu;
2375		}
2376	}
2377
2378	if (pmtud_change) {
2379		if (trans) {
2380			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2381				(params->spp_flags & SPP_PMTUD_ENABLE);
2382			trans->param_flags =
2383				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2384			if (update) {
2385				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2386				sctp_assoc_sync_pmtu(asoc);
2387			}
2388		} else if (asoc) {
2389			asoc->param_flags =
2390				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2391		} else {
2392			sp->param_flags =
2393				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2394		}
2395	}
2396
2397	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2398	 * value of this field is ignored.  Note also that a value of zero
2399	 * indicates the current setting should be left unchanged.
2400	 */
2401	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2402		if (trans) {
2403			trans->sackdelay =
2404				msecs_to_jiffies(params->spp_sackdelay);
2405		} else if (asoc) {
2406			asoc->sackdelay =
2407				msecs_to_jiffies(params->spp_sackdelay);
2408		} else {
2409			sp->sackdelay = params->spp_sackdelay;
2410		}
2411	}
2412
2413	if (sackdelay_change) {
2414		if (trans) {
2415			trans->param_flags =
2416				(trans->param_flags & ~SPP_SACKDELAY) |
2417				sackdelay_change;
2418		} else if (asoc) {
2419			asoc->param_flags =
2420				(asoc->param_flags & ~SPP_SACKDELAY) |
2421				sackdelay_change;
2422		} else {
2423			sp->param_flags =
2424				(sp->param_flags & ~SPP_SACKDELAY) |
2425				sackdelay_change;
2426		}
2427	}
2428
2429	/* Note that a value of zero indicates the current setting should be
2430	   left unchanged.
2431	 */
2432	if (params->spp_pathmaxrxt) {
2433		if (trans) {
2434			trans->pathmaxrxt = params->spp_pathmaxrxt;
2435		} else if (asoc) {
2436			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2437		} else {
2438			sp->pathmaxrxt = params->spp_pathmaxrxt;
2439		}
2440	}
2441
2442	return 0;
2443}
2444
2445static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2446					    char __user *optval,
2447					    unsigned int optlen)
2448{
2449	struct sctp_paddrparams  params;
2450	struct sctp_transport   *trans = NULL;
2451	struct sctp_association *asoc = NULL;
2452	struct sctp_sock        *sp = sctp_sk(sk);
2453	int error;
2454	int hb_change, pmtud_change, sackdelay_change;
2455
2456	if (optlen != sizeof(struct sctp_paddrparams))
2457		return - EINVAL;
2458
2459	if (copy_from_user(&params, optval, optlen))
2460		return -EFAULT;
2461
2462	/* Validate flags and value parameters. */
2463	hb_change        = params.spp_flags & SPP_HB;
2464	pmtud_change     = params.spp_flags & SPP_PMTUD;
2465	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2466
2467	if (hb_change        == SPP_HB ||
2468	    pmtud_change     == SPP_PMTUD ||
2469	    sackdelay_change == SPP_SACKDELAY ||
2470	    params.spp_sackdelay > 500 ||
2471	    (params.spp_pathmtu &&
2472	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2473		return -EINVAL;
2474
2475	/* If an address other than INADDR_ANY is specified, and
2476	 * no transport is found, then the request is invalid.
2477	 */
2478	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2479		trans = sctp_addr_id2transport(sk, &params.spp_address,
2480					       params.spp_assoc_id);
2481		if (!trans)
2482			return -EINVAL;
2483	}
2484
2485	/* Get association, if assoc_id != 0 and the socket is a one
2486	 * to many style socket, and an association was not found, then
2487	 * the id was invalid.
2488	 */
2489	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2490	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2491		return -EINVAL;
2492
2493	/* Heartbeat demand can only be sent on a transport or
2494	 * association, but not a socket.
2495	 */
2496	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2497		return -EINVAL;
2498
2499	/* Process parameters. */
2500	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2501					    hb_change, pmtud_change,
2502					    sackdelay_change);
2503
2504	if (error)
2505		return error;
2506
2507	/* If changes are for association, also apply parameters to each
2508	 * transport.
2509	 */
2510	if (!trans && asoc) {
2511		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2512				transports) {
2513			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2514						    hb_change, pmtud_change,
2515						    sackdelay_change);
2516		}
2517	}
2518
2519	return 0;
2520}
2521
2522/*
2523 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2524 *
2525 * This option will effect the way delayed acks are performed.  This
2526 * option allows you to get or set the delayed ack time, in
2527 * milliseconds.  It also allows changing the delayed ack frequency.
2528 * Changing the frequency to 1 disables the delayed sack algorithm.  If
2529 * the assoc_id is 0, then this sets or gets the endpoints default
2530 * values.  If the assoc_id field is non-zero, then the set or get
2531 * effects the specified association for the one to many model (the
2532 * assoc_id field is ignored by the one to one model).  Note that if
2533 * sack_delay or sack_freq are 0 when setting this option, then the
2534 * current values will remain unchanged.
2535 *
2536 * struct sctp_sack_info {
2537 *     sctp_assoc_t            sack_assoc_id;
2538 *     uint32_t                sack_delay;
2539 *     uint32_t                sack_freq;
2540 * };
2541 *
2542 * sack_assoc_id -  This parameter, indicates which association the user
2543 *    is performing an action upon.  Note that if this field's value is
2544 *    zero then the endpoints default value is changed (effecting future
2545 *    associations only).
2546 *
2547 * sack_delay -  This parameter contains the number of milliseconds that
2548 *    the user is requesting the delayed ACK timer be set to.  Note that
2549 *    this value is defined in the standard to be between 200 and 500
2550 *    milliseconds.
2551 *
2552 * sack_freq -  This parameter contains the number of packets that must
2553 *    be received before a sack is sent without waiting for the delay
2554 *    timer to expire.  The default value for this is 2, setting this
2555 *    value to 1 will disable the delayed sack algorithm.
2556 */
2557
2558static int sctp_setsockopt_delayed_ack(struct sock *sk,
2559				       char __user *optval, unsigned int optlen)
2560{
2561	struct sctp_sack_info    params;
2562	struct sctp_transport   *trans = NULL;
2563	struct sctp_association *asoc = NULL;
2564	struct sctp_sock        *sp = sctp_sk(sk);
2565
2566	if (optlen == sizeof(struct sctp_sack_info)) {
2567		if (copy_from_user(&params, optval, optlen))
2568			return -EFAULT;
2569
2570		if (params.sack_delay == 0 && params.sack_freq == 0)
2571			return 0;
2572	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2573		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2574		pr_warn("Use struct sctp_sack_info instead\n");
2575		if (copy_from_user(&params, optval, optlen))
2576			return -EFAULT;
2577
2578		if (params.sack_delay == 0)
2579			params.sack_freq = 1;
2580		else
2581			params.sack_freq = 0;
2582	} else
2583		return - EINVAL;
2584
2585	/* Validate value parameter. */
2586	if (params.sack_delay > 500)
2587		return -EINVAL;
2588
2589	/* Get association, if sack_assoc_id != 0 and the socket is a one
2590	 * to many style socket, and an association was not found, then
2591	 * the id was invalid.
2592	 */
2593	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2594	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2595		return -EINVAL;
2596
2597	if (params.sack_delay) {
2598		if (asoc) {
2599			asoc->sackdelay =
2600				msecs_to_jiffies(params.sack_delay);
2601			asoc->param_flags =
2602				(asoc->param_flags & ~SPP_SACKDELAY) |
2603				SPP_SACKDELAY_ENABLE;
2604		} else {
2605			sp->sackdelay = params.sack_delay;
2606			sp->param_flags =
2607				(sp->param_flags & ~SPP_SACKDELAY) |
2608				SPP_SACKDELAY_ENABLE;
2609		}
2610	}
2611
2612	if (params.sack_freq == 1) {
2613		if (asoc) {
2614			asoc->param_flags =
2615				(asoc->param_flags & ~SPP_SACKDELAY) |
2616				SPP_SACKDELAY_DISABLE;
2617		} else {
2618			sp->param_flags =
2619				(sp->param_flags & ~SPP_SACKDELAY) |
2620				SPP_SACKDELAY_DISABLE;
2621		}
2622	} else if (params.sack_freq > 1) {
2623		if (asoc) {
2624			asoc->sackfreq = params.sack_freq;
2625			asoc->param_flags =
2626				(asoc->param_flags & ~SPP_SACKDELAY) |
2627				SPP_SACKDELAY_ENABLE;
2628		} else {
2629			sp->sackfreq = params.sack_freq;
2630			sp->param_flags =
2631				(sp->param_flags & ~SPP_SACKDELAY) |
2632				SPP_SACKDELAY_ENABLE;
2633		}
2634	}
2635
2636	/* If change is for association, also apply to each transport. */
2637	if (asoc) {
2638		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2639				transports) {
2640			if (params.sack_delay) {
2641				trans->sackdelay =
2642					msecs_to_jiffies(params.sack_delay);
2643				trans->param_flags =
2644					(trans->param_flags & ~SPP_SACKDELAY) |
2645					SPP_SACKDELAY_ENABLE;
2646			}
2647			if (params.sack_freq == 1) {
2648				trans->param_flags =
2649					(trans->param_flags & ~SPP_SACKDELAY) |
2650					SPP_SACKDELAY_DISABLE;
2651			} else if (params.sack_freq > 1) {
2652				trans->sackfreq = params.sack_freq;
2653				trans->param_flags =
2654					(trans->param_flags & ~SPP_SACKDELAY) |
2655					SPP_SACKDELAY_ENABLE;
2656			}
2657		}
2658	}
2659
2660	return 0;
2661}
2662
2663/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2664 *
2665 * Applications can specify protocol parameters for the default association
2666 * initialization.  The option name argument to setsockopt() and getsockopt()
2667 * is SCTP_INITMSG.
2668 *
2669 * Setting initialization parameters is effective only on an unconnected
2670 * socket (for UDP-style sockets only future associations are effected
2671 * by the change).  With TCP-style sockets, this option is inherited by
2672 * sockets derived from a listener socket.
2673 */
2674static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2675{
2676	struct sctp_initmsg sinit;
2677	struct sctp_sock *sp = sctp_sk(sk);
2678
2679	if (optlen != sizeof(struct sctp_initmsg))
2680		return -EINVAL;
2681	if (copy_from_user(&sinit, optval, optlen))
2682		return -EFAULT;
2683
2684	if (sinit.sinit_num_ostreams)
2685		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2686	if (sinit.sinit_max_instreams)
2687		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2688	if (sinit.sinit_max_attempts)
2689		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2690	if (sinit.sinit_max_init_timeo)
2691		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2692
2693	return 0;
2694}
2695
2696/*
2697 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2698 *
2699 *   Applications that wish to use the sendto() system call may wish to
2700 *   specify a default set of parameters that would normally be supplied
2701 *   through the inclusion of ancillary data.  This socket option allows
2702 *   such an application to set the default sctp_sndrcvinfo structure.
2703 *   The application that wishes to use this socket option simply passes
2704 *   in to this call the sctp_sndrcvinfo structure defined in Section
2705 *   5.2.2) The input parameters accepted by this call include
2706 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2707 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2708 *   to this call if the caller is using the UDP model.
2709 */
2710static int sctp_setsockopt_default_send_param(struct sock *sk,
2711					      char __user *optval,
2712					      unsigned int optlen)
2713{
2714	struct sctp_sndrcvinfo info;
2715	struct sctp_association *asoc;
2716	struct sctp_sock *sp = sctp_sk(sk);
2717
2718	if (optlen != sizeof(struct sctp_sndrcvinfo))
2719		return -EINVAL;
2720	if (copy_from_user(&info, optval, optlen))
2721		return -EFAULT;
2722
2723	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2724	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2725		return -EINVAL;
2726
2727	if (asoc) {
2728		asoc->default_stream = info.sinfo_stream;
2729		asoc->default_flags = info.sinfo_flags;
2730		asoc->default_ppid = info.sinfo_ppid;
2731		asoc->default_context = info.sinfo_context;
2732		asoc->default_timetolive = info.sinfo_timetolive;
2733	} else {
2734		sp->default_stream = info.sinfo_stream;
2735		sp->default_flags = info.sinfo_flags;
2736		sp->default_ppid = info.sinfo_ppid;
2737		sp->default_context = info.sinfo_context;
2738		sp->default_timetolive = info.sinfo_timetolive;
2739	}
2740
2741	return 0;
2742}
2743
2744/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2745 *
2746 * Requests that the local SCTP stack use the enclosed peer address as
2747 * the association primary.  The enclosed address must be one of the
2748 * association peer's addresses.
2749 */
2750static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2751					unsigned int optlen)
2752{
2753	struct sctp_prim prim;
2754	struct sctp_transport *trans;
2755
2756	if (optlen != sizeof(struct sctp_prim))
2757		return -EINVAL;
2758
2759	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2760		return -EFAULT;
2761
2762	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2763	if (!trans)
2764		return -EINVAL;
2765
2766	sctp_assoc_set_primary(trans->asoc, trans);
2767
2768	return 0;
2769}
2770
2771/*
2772 * 7.1.5 SCTP_NODELAY
2773 *
2774 * Turn on/off any Nagle-like algorithm.  This means that packets are
2775 * generally sent as soon as possible and no unnecessary delays are
2776 * introduced, at the cost of more packets in the network.  Expects an
2777 *  integer boolean flag.
2778 */
2779static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2780				   unsigned int optlen)
2781{
2782	int val;
2783
2784	if (optlen < sizeof(int))
2785		return -EINVAL;
2786	if (get_user(val, (int __user *)optval))
2787		return -EFAULT;
2788
2789	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2790	return 0;
2791}
2792
2793/*
2794 *
2795 * 7.1.1 SCTP_RTOINFO
2796 *
2797 * The protocol parameters used to initialize and bound retransmission
2798 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2799 * and modify these parameters.
2800 * All parameters are time values, in milliseconds.  A value of 0, when
2801 * modifying the parameters, indicates that the current value should not
2802 * be changed.
2803 *
2804 */
2805static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2806{
2807	struct sctp_rtoinfo rtoinfo;
2808	struct sctp_association *asoc;
2809
2810	if (optlen != sizeof (struct sctp_rtoinfo))
2811		return -EINVAL;
2812
2813	if (copy_from_user(&rtoinfo, optval, optlen))
2814		return -EFAULT;
2815
2816	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2817
2818	/* Set the values to the specific association */
2819	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2820		return -EINVAL;
2821
2822	if (asoc) {
2823		if (rtoinfo.srto_initial != 0)
2824			asoc->rto_initial =
2825				msecs_to_jiffies(rtoinfo.srto_initial);
2826		if (rtoinfo.srto_max != 0)
2827			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2828		if (rtoinfo.srto_min != 0)
2829			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2830	} else {
2831		/* If there is no association or the association-id = 0
2832		 * set the values to the endpoint.
2833		 */
2834		struct sctp_sock *sp = sctp_sk(sk);
2835
2836		if (rtoinfo.srto_initial != 0)
2837			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2838		if (rtoinfo.srto_max != 0)
2839			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2840		if (rtoinfo.srto_min != 0)
2841			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2842	}
2843
2844	return 0;
2845}
2846
2847/*
2848 *
2849 * 7.1.2 SCTP_ASSOCINFO
2850 *
2851 * This option is used to tune the maximum retransmission attempts
2852 * of the association.
2853 * Returns an error if the new association retransmission value is
2854 * greater than the sum of the retransmission value  of the peer.
2855 * See [SCTP] for more information.
2856 *
2857 */
2858static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2859{
2860
2861	struct sctp_assocparams assocparams;
2862	struct sctp_association *asoc;
2863
2864	if (optlen != sizeof(struct sctp_assocparams))
2865		return -EINVAL;
2866	if (copy_from_user(&assocparams, optval, optlen))
2867		return -EFAULT;
2868
2869	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2870
2871	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2872		return -EINVAL;
2873
2874	/* Set the values to the specific association */
2875	if (asoc) {
2876		if (assocparams.sasoc_asocmaxrxt != 0) {
2877			__u32 path_sum = 0;
2878			int   paths = 0;
2879			struct sctp_transport *peer_addr;
2880
2881			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2882					transports) {
2883				path_sum += peer_addr->pathmaxrxt;
2884				paths++;
2885			}
2886
2887			/* Only validate asocmaxrxt if we have more than
2888			 * one path/transport.  We do this because path
2889			 * retransmissions are only counted when we have more
2890			 * then one path.
2891			 */
2892			if (paths > 1 &&
2893			    assocparams.sasoc_asocmaxrxt > path_sum)
2894				return -EINVAL;
2895
2896			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2897		}
2898
2899		if (assocparams.sasoc_cookie_life != 0) {
2900			asoc->cookie_life.tv_sec =
2901					assocparams.sasoc_cookie_life / 1000;
2902			asoc->cookie_life.tv_usec =
2903					(assocparams.sasoc_cookie_life % 1000)
2904					* 1000;
2905		}
2906	} else {
2907		/* Set the values to the endpoint */
2908		struct sctp_sock *sp = sctp_sk(sk);
2909
2910		if (assocparams.sasoc_asocmaxrxt != 0)
2911			sp->assocparams.sasoc_asocmaxrxt =
2912						assocparams.sasoc_asocmaxrxt;
2913		if (assocparams.sasoc_cookie_life != 0)
2914			sp->assocparams.sasoc_cookie_life =
2915						assocparams.sasoc_cookie_life;
2916	}
2917	return 0;
2918}
2919
2920/*
2921 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2922 *
2923 * This socket option is a boolean flag which turns on or off mapped V4
2924 * addresses.  If this option is turned on and the socket is type
2925 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2926 * If this option is turned off, then no mapping will be done of V4
2927 * addresses and a user will receive both PF_INET6 and PF_INET type
2928 * addresses on the socket.
2929 */
2930static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2931{
2932	int val;
2933	struct sctp_sock *sp = sctp_sk(sk);
2934
2935	if (optlen < sizeof(int))
2936		return -EINVAL;
2937	if (get_user(val, (int __user *)optval))
2938		return -EFAULT;
2939	if (val)
2940		sp->v4mapped = 1;
2941	else
2942		sp->v4mapped = 0;
2943
2944	return 0;
2945}
2946
2947/*
2948 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2949 * This option will get or set the maximum size to put in any outgoing
2950 * SCTP DATA chunk.  If a message is larger than this size it will be
2951 * fragmented by SCTP into the specified size.  Note that the underlying
2952 * SCTP implementation may fragment into smaller sized chunks when the
2953 * PMTU of the underlying association is smaller than the value set by
2954 * the user.  The default value for this option is '0' which indicates
2955 * the user is NOT limiting fragmentation and only the PMTU will effect
2956 * SCTP's choice of DATA chunk size.  Note also that values set larger
2957 * than the maximum size of an IP datagram will effectively let SCTP
2958 * control fragmentation (i.e. the same as setting this option to 0).
2959 *
2960 * The following structure is used to access and modify this parameter:
2961 *
2962 * struct sctp_assoc_value {
2963 *   sctp_assoc_t assoc_id;
2964 *   uint32_t assoc_value;
2965 * };
2966 *
2967 * assoc_id:  This parameter is ignored for one-to-one style sockets.
2968 *    For one-to-many style sockets this parameter indicates which
2969 *    association the user is performing an action upon.  Note that if
2970 *    this field's value is zero then the endpoints default value is
2971 *    changed (effecting future associations only).
2972 * assoc_value:  This parameter specifies the maximum size in bytes.
2973 */
2974static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2975{
2976	struct sctp_assoc_value params;
2977	struct sctp_association *asoc;
2978	struct sctp_sock *sp = sctp_sk(sk);
2979	int val;
2980
2981	if (optlen == sizeof(int)) {
2982		pr_warn("Use of int in maxseg socket option deprecated\n");
2983		pr_warn("Use struct sctp_assoc_value instead\n");
2984		if (copy_from_user(&val, optval, optlen))
2985			return -EFAULT;
2986		params.assoc_id = 0;
2987	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2988		if (copy_from_user(&params, optval, optlen))
2989			return -EFAULT;
2990		val = params.assoc_value;
2991	} else
2992		return -EINVAL;
2993
2994	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2995		return -EINVAL;
2996
2997	asoc = sctp_id2assoc(sk, params.assoc_id);
2998	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2999		return -EINVAL;
3000
3001	if (asoc) {
3002		if (val == 0) {
3003			val = asoc->pathmtu;
3004			val -= sp->pf->af->net_header_len;
3005			val -= sizeof(struct sctphdr) +
3006					sizeof(struct sctp_data_chunk);
3007		}
3008		asoc->user_frag = val;
3009		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3010	} else {
3011		sp->user_frag = val;
3012	}
3013
3014	return 0;
3015}
3016
3017
3018/*
3019 *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3020 *
3021 *   Requests that the peer mark the enclosed address as the association
3022 *   primary. The enclosed address must be one of the association's
3023 *   locally bound addresses. The following structure is used to make a
3024 *   set primary request:
3025 */
3026static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3027					     unsigned int optlen)
3028{
3029	struct sctp_sock	*sp;
3030	struct sctp_association	*asoc = NULL;
3031	struct sctp_setpeerprim	prim;
3032	struct sctp_chunk	*chunk;
3033	struct sctp_af		*af;
3034	int 			err;
3035
3036	sp = sctp_sk(sk);
3037
3038	if (!sctp_addip_enable)
3039		return -EPERM;
3040
3041	if (optlen != sizeof(struct sctp_setpeerprim))
3042		return -EINVAL;
3043
3044	if (copy_from_user(&prim, optval, optlen))
3045		return -EFAULT;
3046
3047	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3048	if (!asoc)
3049		return -EINVAL;
3050
3051	if (!asoc->peer.asconf_capable)
3052		return -EPERM;
3053
3054	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3055		return -EPERM;
3056
3057	if (!sctp_state(asoc, ESTABLISHED))
3058		return -ENOTCONN;
3059
3060	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3061	if (!af)
3062		return -EINVAL;
3063
3064	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3065		return -EADDRNOTAVAIL;
3066
3067	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3068		return -EADDRNOTAVAIL;
3069
3070	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3071	chunk = sctp_make_asconf_set_prim(asoc,
3072					  (union sctp_addr *)&prim.sspp_addr);
3073	if (!chunk)
3074		return -ENOMEM;
3075
3076	err = sctp_send_asconf(asoc, chunk);
3077
3078	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3079
3080	return err;
3081}
3082
3083static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3084					    unsigned int optlen)
3085{
3086	struct sctp_setadaptation adaptation;
3087
3088	if (optlen != sizeof(struct sctp_setadaptation))
3089		return -EINVAL;
3090	if (copy_from_user(&adaptation, optval, optlen))
3091		return -EFAULT;
3092
3093	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3094
3095	return 0;
3096}
3097
3098/*
3099 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3100 *
3101 * The context field in the sctp_sndrcvinfo structure is normally only
3102 * used when a failed message is retrieved holding the value that was
3103 * sent down on the actual send call.  This option allows the setting of
3104 * a default context on an association basis that will be received on
3105 * reading messages from the peer.  This is especially helpful in the
3106 * one-2-many model for an application to keep some reference to an
3107 * internal state machine that is processing messages on the
3108 * association.  Note that the setting of this value only effects
3109 * received messages from the peer and does not effect the value that is
3110 * saved with outbound messages.
3111 */
3112static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3113				   unsigned int optlen)
3114{
3115	struct sctp_assoc_value params;
3116	struct sctp_sock *sp;
3117	struct sctp_association *asoc;
3118
3119	if (optlen != sizeof(struct sctp_assoc_value))
3120		return -EINVAL;
3121	if (copy_from_user(&params, optval, optlen))
3122		return -EFAULT;
3123
3124	sp = sctp_sk(sk);
3125
3126	if (params.assoc_id != 0) {
3127		asoc = sctp_id2assoc(sk, params.assoc_id);
3128		if (!asoc)
3129			return -EINVAL;
3130		asoc->default_rcv_context = params.assoc_value;
3131	} else {
3132		sp->default_rcv_context = params.assoc_value;
3133	}
3134
3135	return 0;
3136}
3137
3138/*
3139 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3140 *
3141 * This options will at a minimum specify if the implementation is doing
3142 * fragmented interleave.  Fragmented interleave, for a one to many
3143 * socket, is when subsequent calls to receive a message may return
3144 * parts of messages from different associations.  Some implementations
3145 * may allow you to turn this value on or off.  If so, when turned off,
3146 * no fragment interleave will occur (which will cause a head of line
3147 * blocking amongst multiple associations sharing the same one to many
3148 * socket).  When this option is turned on, then each receive call may
3149 * come from a different association (thus the user must receive data
3150 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3151 * association each receive belongs to.
3152 *
3153 * This option takes a boolean value.  A non-zero value indicates that
3154 * fragmented interleave is on.  A value of zero indicates that
3155 * fragmented interleave is off.
3156 *
3157 * Note that it is important that an implementation that allows this
3158 * option to be turned on, have it off by default.  Otherwise an unaware
3159 * application using the one to many model may become confused and act
3160 * incorrectly.
3161 */
3162static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3163					       char __user *optval,
3164					       unsigned int optlen)
3165{
3166	int val;
3167
3168	if (optlen != sizeof(int))
3169		return -EINVAL;
3170	if (get_user(val, (int __user *)optval))
3171		return -EFAULT;
3172
3173	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3174
3175	return 0;
3176}
3177
3178/*
3179 * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3180 *       (SCTP_PARTIAL_DELIVERY_POINT)
3181 *
3182 * This option will set or get the SCTP partial delivery point.  This
3183 * point is the size of a message where the partial delivery API will be
3184 * invoked to help free up rwnd space for the peer.  Setting this to a
3185 * lower value will cause partial deliveries to happen more often.  The
3186 * calls argument is an integer that sets or gets the partial delivery
3187 * point.  Note also that the call will fail if the user attempts to set
3188 * this value larger than the socket receive buffer size.
3189 *
3190 * Note that any single message having a length smaller than or equal to
3191 * the SCTP partial delivery point will be delivered in one single read
3192 * call as long as the user provided buffer is large enough to hold the
3193 * message.
3194 */
3195static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3196						  char __user *optval,
3197						  unsigned int optlen)
3198{
3199	u32 val;
3200
3201	if (optlen != sizeof(u32))
3202		return -EINVAL;
3203	if (get_user(val, (int __user *)optval))
3204		return -EFAULT;
3205
3206	/* Note: We double the receive buffer from what the user sets
3207	 * it to be, also initial rwnd is based on rcvbuf/2.
3208	 */
3209	if (val > (sk->sk_rcvbuf >> 1))
3210		return -EINVAL;
3211
3212	sctp_sk(sk)->pd_point = val;
3213
3214	return 0; /* is this the right error code? */
3215}
3216
3217/*
3218 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3219 *
3220 * This option will allow a user to change the maximum burst of packets
3221 * that can be emitted by this association.  Note that the default value
3222 * is 4, and some implementations may restrict this setting so that it
3223 * can only be lowered.
3224 *
3225 * NOTE: This text doesn't seem right.  Do this on a socket basis with
3226 * future associations inheriting the socket value.
3227 */
3228static int sctp_setsockopt_maxburst(struct sock *sk,
3229				    char __user *optval,
3230				    unsigned int optlen)
3231{
3232	struct sctp_assoc_value params;
3233	struct sctp_sock *sp;
3234	struct sctp_association *asoc;
3235	int val;
3236	int assoc_id = 0;
3237
3238	if (optlen == sizeof(int)) {
3239		pr_warn("Use of int in max_burst socket option deprecated\n");
3240		pr_warn("Use struct sctp_assoc_value instead\n");
3241		if (copy_from_user(&val, optval, optlen))
3242			return -EFAULT;
3243	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3244		if (copy_from_user(&params, optval, optlen))
3245			return -EFAULT;
3246		val = params.assoc_value;
3247		assoc_id = params.assoc_id;
3248	} else
3249		return -EINVAL;
3250
3251	sp = sctp_sk(sk);
3252
3253	if (assoc_id != 0) {
3254		asoc = sctp_id2assoc(sk, assoc_id);
3255		if (!asoc)
3256			return -EINVAL;
3257		asoc->max_burst = val;
3258	} else
3259		sp->max_burst = val;
3260
3261	return 0;
3262}
3263
3264/*
3265 * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3266 *
3267 * This set option adds a chunk type that the user is requesting to be
3268 * received only in an authenticated way.  Changes to the list of chunks
3269 * will only effect future associations on the socket.
3270 */
3271static int sctp_setsockopt_auth_chunk(struct sock *sk,
3272				      char __user *optval,
3273				      unsigned int optlen)
3274{
3275	struct sctp_authchunk val;
3276
3277	if (!sctp_auth_enable)
3278		return -EACCES;
3279
3280	if (optlen != sizeof(struct sctp_authchunk))
3281		return -EINVAL;
3282	if (copy_from_user(&val, optval, optlen))
3283		return -EFAULT;
3284
3285	switch (val.sauth_chunk) {
3286	case SCTP_CID_INIT:
3287	case SCTP_CID_INIT_ACK:
3288	case SCTP_CID_SHUTDOWN_COMPLETE:
3289	case SCTP_CID_AUTH:
3290		return -EINVAL;
3291	}
3292
3293	/* add this chunk id to the endpoint */
3294	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3295}
3296
3297/*
3298 * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3299 *
3300 * This option gets or sets the list of HMAC algorithms that the local
3301 * endpoint requires the peer to use.
3302 */
3303static int sctp_setsockopt_hmac_ident(struct sock *sk,
3304				      char __user *optval,
3305				      unsigned int optlen)
3306{
3307	struct sctp_hmacalgo *hmacs;
3308	u32 idents;
3309	int err;
3310
3311	if (!sctp_auth_enable)
3312		return -EACCES;
3313
3314	if (optlen < sizeof(struct sctp_hmacalgo))
3315		return -EINVAL;
3316
3317	hmacs= memdup_user(optval, optlen);
3318	if (IS_ERR(hmacs))
3319		return PTR_ERR(hmacs);
3320
3321	idents = hmacs->shmac_num_idents;
3322	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3323	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3324		err = -EINVAL;
3325		goto out;
3326	}
3327
3328	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3329out:
3330	kfree(hmacs);
3331	return err;
3332}
3333
3334/*
3335 * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3336 *
3337 * This option will set a shared secret key which is used to build an
3338 * association shared key.
3339 */
3340static int sctp_setsockopt_auth_key(struct sock *sk,
3341				    char __user *optval,
3342				    unsigned int optlen)
3343{
3344	struct sctp_authkey *authkey;
3345	struct sctp_association *asoc;
3346	int ret;
3347
3348	if (!sctp_auth_enable)
3349		return -EACCES;
3350
3351	if (optlen <= sizeof(struct sctp_authkey))
3352		return -EINVAL;
3353
3354	authkey= memdup_user(optval, optlen);
3355	if (IS_ERR(authkey))
3356		return PTR_ERR(authkey);
3357
3358	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3359		ret = -EINVAL;
3360		goto out;
3361	}
3362
3363	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3364	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3365		ret = -EINVAL;
3366		goto out;
3367	}
3368
3369	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3370out:
3371	kfree(authkey);
3372	return ret;
3373}
3374
3375/*
3376 * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3377 *
3378 * This option will get or set the active shared key to be used to build
3379 * the association shared key.
3380 */
3381static int sctp_setsockopt_active_key(struct sock *sk,
3382				      char __user *optval,
3383				      unsigned int optlen)
3384{
3385	struct sctp_authkeyid val;
3386	struct sctp_association *asoc;
3387
3388	if (!sctp_auth_enable)
3389		return -EACCES;
3390
3391	if (optlen != sizeof(struct sctp_authkeyid))
3392		return -EINVAL;
3393	if (copy_from_user(&val, optval, optlen))
3394		return -EFAULT;
3395
3396	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3397	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3398		return -EINVAL;
3399
3400	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3401					val.scact_keynumber);
3402}
3403
3404/*
3405 * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3406 *
3407 * This set option will delete a shared secret key from use.
3408 */
3409static int sctp_setsockopt_del_key(struct sock *sk,
3410				   char __user *optval,
3411				   unsigned int optlen)
3412{
3413	struct sctp_authkeyid val;
3414	struct sctp_association *asoc;
3415
3416	if (!sctp_auth_enable)
3417		return -EACCES;
3418
3419	if (optlen != sizeof(struct sctp_authkeyid))
3420		return -EINVAL;
3421	if (copy_from_user(&val, optval, optlen))
3422		return -EFAULT;
3423
3424	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3425	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3426		return -EINVAL;
3427
3428	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3429				    val.scact_keynumber);
3430
3431}
3432
3433/*
3434 * 8.1.23 SCTP_AUTO_ASCONF
3435 *
3436 * This option will enable or disable the use of the automatic generation of
3437 * ASCONF chunks to add and delete addresses to an existing association.  Note
3438 * that this option has two caveats namely: a) it only affects sockets that
3439 * are bound to all addresses available to the SCTP stack, and b) the system
3440 * administrator may have an overriding control that turns the ASCONF feature
3441 * off no matter what setting the socket option may have.
3442 * This option expects an integer boolean flag, where a non-zero value turns on
3443 * the option, and a zero value turns off the option.
3444 * Note. In this implementation, socket operation overrides default parameter
3445 * being set by sysctl as well as FreeBSD implementation
3446 */
3447static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3448					unsigned int optlen)
3449{
3450	int val;
3451	struct sctp_sock *sp = sctp_sk(sk);
3452
3453	if (optlen < sizeof(int))
3454		return -EINVAL;
3455	if (get_user(val, (int __user *)optval))
3456		return -EFAULT;
3457	if (!sctp_is_ep_boundall(sk) && val)
3458		return -EINVAL;
3459	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3460		return 0;
3461
3462	if (val == 0 && sp->do_auto_asconf) {
3463		list_del(&sp->auto_asconf_list);
3464		sp->do_auto_asconf = 0;
3465	} else if (val && !sp->do_auto_asconf) {
3466		list_add_tail(&sp->auto_asconf_list,
3467		    &sctp_auto_asconf_splist);
3468		sp->do_auto_asconf = 1;
3469	}
3470	return 0;
3471}
3472
3473
3474/* API 6.2 setsockopt(), getsockopt()
3475 *
3476 * Applications use setsockopt() and getsockopt() to set or retrieve
3477 * socket options.  Socket options are used to change the default
3478 * behavior of sockets calls.  They are described in Section 7.
3479 *
3480 * The syntax is:
3481 *
3482 *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3483 *                    int __user *optlen);
3484 *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3485 *                    int optlen);
3486 *
3487 *   sd      - the socket descript.
3488 *   level   - set to IPPROTO_SCTP for all SCTP options.
3489 *   optname - the option name.
3490 *   optval  - the buffer to store the value of the option.
3491 *   optlen  - the size of the buffer.
3492 */
3493SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3494				char __user *optval, unsigned int optlen)
3495{
3496	int retval = 0;
3497
3498	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3499			  sk, optname);
3500
3501	/* I can hardly begin to describe how wrong this is.  This is
3502	 * so broken as to be worse than useless.  The API draft
3503	 * REALLY is NOT helpful here...  I am not convinced that the
3504	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3505	 * are at all well-founded.
3506	 */
3507	if (level != SOL_SCTP) {
3508		struct sctp_af *af = sctp_sk(sk)->pf->af;
3509		retval = af->setsockopt(sk, level, optname, optval, optlen);
3510		goto out_nounlock;
3511	}
3512
3513	sctp_lock_sock(sk);
3514
3515	switch (optname) {
3516	case SCTP_SOCKOPT_BINDX_ADD:
3517		/* 'optlen' is the size of the addresses buffer. */
3518		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3519					       optlen, SCTP_BINDX_ADD_ADDR);
3520		break;
3521
3522	case SCTP_SOCKOPT_BINDX_REM:
3523		/* 'optlen' is the size of the addresses buffer. */
3524		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3525					       optlen, SCTP_BINDX_REM_ADDR);
3526		break;
3527
3528	case SCTP_SOCKOPT_CONNECTX_OLD:
3529		/* 'optlen' is the size of the addresses buffer. */
3530		retval = sctp_setsockopt_connectx_old(sk,
3531					    (struct sockaddr __user *)optval,
3532					    optlen);
3533		break;
3534
3535	case SCTP_SOCKOPT_CONNECTX:
3536		/* 'optlen' is the size of the addresses buffer. */
3537		retval = sctp_setsockopt_connectx(sk,
3538					    (struct sockaddr __user *)optval,
3539					    optlen);
3540		break;
3541
3542	case SCTP_DISABLE_FRAGMENTS:
3543		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3544		break;
3545
3546	case SCTP_EVENTS:
3547		retval = sctp_setsockopt_events(sk, optval, optlen);
3548		break;
3549
3550	case SCTP_AUTOCLOSE:
3551		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3552		break;
3553
3554	case SCTP_PEER_ADDR_PARAMS:
3555		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3556		break;
3557
3558	case SCTP_DELAYED_SACK:
3559		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3560		break;
3561	case SCTP_PARTIAL_DELIVERY_POINT:
3562		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3563		break;
3564
3565	case SCTP_INITMSG:
3566		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3567		break;
3568	case SCTP_DEFAULT_SEND_PARAM:
3569		retval = sctp_setsockopt_default_send_param(sk, optval,
3570							    optlen);
3571		break;
3572	case SCTP_PRIMARY_ADDR:
3573		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3574		break;
3575	case SCTP_SET_PEER_PRIMARY_ADDR:
3576		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3577		break;
3578	case SCTP_NODELAY:
3579		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3580		break;
3581	case SCTP_RTOINFO:
3582		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3583		break;
3584	case SCTP_ASSOCINFO:
3585		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3586		break;
3587	case SCTP_I_WANT_MAPPED_V4_ADDR:
3588		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3589		break;
3590	case SCTP_MAXSEG:
3591		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3592		break;
3593	case SCTP_ADAPTATION_LAYER:
3594		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3595		break;
3596	case SCTP_CONTEXT:
3597		retval = sctp_setsockopt_context(sk, optval, optlen);
3598		break;
3599	case SCTP_FRAGMENT_INTERLEAVE:
3600		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3601		break;
3602	case SCTP_MAX_BURST:
3603		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3604		break;
3605	case SCTP_AUTH_CHUNK:
3606		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3607		break;
3608	case SCTP_HMAC_IDENT:
3609		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3610		break;
3611	case SCTP_AUTH_KEY:
3612		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3613		break;
3614	case SCTP_AUTH_ACTIVE_KEY:
3615		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3616		break;
3617	case SCTP_AUTH_DELETE_KEY:
3618		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3619		break;
3620	case SCTP_AUTO_ASCONF:
3621		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3622		break;
3623	default:
3624		retval = -ENOPROTOOPT;
3625		break;
3626	}
3627
3628	sctp_release_sock(sk);
3629
3630out_nounlock:
3631	return retval;
3632}
3633
3634/* API 3.1.6 connect() - UDP Style Syntax
3635 *
3636 * An application may use the connect() call in the UDP model to initiate an
3637 * association without sending data.
3638 *
3639 * The syntax is:
3640 *
3641 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3642 *
3643 * sd: the socket descriptor to have a new association added to.
3644 *
3645 * nam: the address structure (either struct sockaddr_in or struct
3646 *    sockaddr_in6 defined in RFC2553 [7]).
3647 *
3648 * len: the size of the address.
3649 */
3650SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3651			     int addr_len)
3652{
3653	int err = 0;
3654	struct sctp_af *af;
3655
3656	sctp_lock_sock(sk);
3657
3658	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3659			  __func__, sk, addr, addr_len);
3660
3661	/* Validate addr_len before calling common connect/connectx routine. */
3662	af = sctp_get_af_specific(addr->sa_family);
3663	if (!af || addr_len < af->sockaddr_len) {
3664		err = -EINVAL;
3665	} else {
3666		/* Pass correct addr len to common routine (so it knows there
3667		 * is only one address being passed.
3668		 */
3669		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3670	}
3671
3672	sctp_release_sock(sk);
3673	return err;
3674}
3675
3676/* FIXME: Write comments. */
3677SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3678{
3679	return -EOPNOTSUPP; /* STUB */
3680}
3681
3682/* 4.1.4 accept() - TCP Style Syntax
3683 *
3684 * Applications use accept() call to remove an established SCTP
3685 * association from the accept queue of the endpoint.  A new socket
3686 * descriptor will be returned from accept() to represent the newly
3687 * formed association.
3688 */
3689SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3690{
3691	struct sctp_sock *sp;
3692	struct sctp_endpoint *ep;
3693	struct sock *newsk = NULL;
3694	struct sctp_association *asoc;
3695	long timeo;
3696	int error = 0;
3697
3698	sctp_lock_sock(sk);
3699
3700	sp = sctp_sk(sk);
3701	ep = sp->ep;
3702
3703	if (!sctp_style(sk, TCP)) {
3704		error = -EOPNOTSUPP;
3705		goto out;
3706	}
3707
3708	if (!sctp_sstate(sk, LISTENING)) {
3709		error = -EINVAL;
3710		goto out;
3711	}
3712
3713	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3714
3715	error = sctp_wait_for_accept(sk, timeo);
3716	if (error)
3717		goto out;
3718
3719	/* We treat the list of associations on the endpoint as the accept
3720	 * queue and pick the first association on the list.
3721	 */
3722	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3723
3724	newsk = sp->pf->create_accept_sk(sk, asoc);
3725	if (!newsk) {
3726		error = -ENOMEM;
3727		goto out;
3728	}
3729
3730	/* Populate the fields of the newsk from the oldsk and migrate the
3731	 * asoc to the newsk.
3732	 */
3733	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3734
3735out:
3736	sctp_release_sock(sk);
3737	*err = error;
3738	return newsk;
3739}
3740
3741/* The SCTP ioctl handler. */
3742SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3743{
3744	int rc = -ENOTCONN;
3745
3746	sctp_lock_sock(sk);
3747
3748	/*
3749	 * SEQPACKET-style sockets in LISTENING state are valid, for
3750	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3751	 */
3752	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3753		goto out;
3754
3755	switch (cmd) {
3756	case SIOCINQ: {
3757		struct sk_buff *skb;
3758		unsigned int amount = 0;
3759
3760		skb = skb_peek(&sk->sk_receive_queue);
3761		if (skb != NULL) {
3762			/*
3763			 * We will only return the amount of this packet since
3764			 * that is all that will be read.
3765			 */
3766			amount = skb->len;
3767		}
3768		rc = put_user(amount, (int __user *)arg);
3769		break;
3770	}
3771	default:
3772		rc = -ENOIOCTLCMD;
3773		break;
3774	}
3775out:
3776	sctp_release_sock(sk);
3777	return rc;
3778}
3779
3780/* This is the function which gets called during socket creation to
3781 * initialized the SCTP-specific portion of the sock.
3782 * The sock structure should already be zero-filled memory.
3783 */
3784SCTP_STATIC int sctp_init_sock(struct sock *sk)
3785{
3786	struct sctp_endpoint *ep;
3787	struct sctp_sock *sp;
3788
3789	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3790
3791	sp = sctp_sk(sk);
3792
3793	/* Initialize the SCTP per socket area.  */
3794	switch (sk->sk_type) {
3795	case SOCK_SEQPACKET:
3796		sp->type = SCTP_SOCKET_UDP;
3797		break;
3798	case SOCK_STREAM:
3799		sp->type = SCTP_SOCKET_TCP;
3800		break;
3801	default:
3802		return -ESOCKTNOSUPPORT;
3803	}
3804
3805	/* Initialize default send parameters. These parameters can be
3806	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3807	 */
3808	sp->default_stream = 0;
3809	sp->default_ppid = 0;
3810	sp->default_flags = 0;
3811	sp->default_context = 0;
3812	sp->default_timetolive = 0;
3813
3814	sp->default_rcv_context = 0;
3815	sp->max_burst = sctp_max_burst;
3816
3817	/* Initialize default setup parameters. These parameters
3818	 * can be modified with the SCTP_INITMSG socket option or
3819	 * overridden by the SCTP_INIT CMSG.
3820	 */
3821	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3822	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3823	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3824	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3825
3826	/* Initialize default RTO related parameters.  These parameters can
3827	 * be modified for with the SCTP_RTOINFO socket option.
3828	 */
3829	sp->rtoinfo.srto_initial = sctp_rto_initial;
3830	sp->rtoinfo.srto_max     = sctp_rto_max;
3831	sp->rtoinfo.srto_min     = sctp_rto_min;
3832
3833	/* Initialize default association related parameters. These parameters
3834	 * can be modified with the SCTP_ASSOCINFO socket option.
3835	 */
3836	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3837	sp->assocparams.sasoc_number_peer_destinations = 0;
3838	sp->assocparams.sasoc_peer_rwnd = 0;
3839	sp->assocparams.sasoc_local_rwnd = 0;
3840	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3841
3842	/* Initialize default event subscriptions. By default, all the
3843	 * options are off.
3844	 */
3845	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3846
3847	/* Default Peer Address Parameters.  These defaults can
3848	 * be modified via SCTP_PEER_ADDR_PARAMS
3849	 */
3850	sp->hbinterval  = sctp_hb_interval;
3851	sp->pathmaxrxt  = sctp_max_retrans_path;
3852	sp->pathmtu     = 0; // allow default discovery
3853	sp->sackdelay   = sctp_sack_timeout;
3854	sp->sackfreq	= 2;
3855	sp->param_flags = SPP_HB_ENABLE |
3856			  SPP_PMTUD_ENABLE |
3857			  SPP_SACKDELAY_ENABLE;
3858
3859	/* If enabled no SCTP message fragmentation will be performed.
3860	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3861	 */
3862	sp->disable_fragments = 0;
3863
3864	/* Enable Nagle algorithm by default.  */
3865	sp->nodelay           = 0;
3866
3867	/* Enable by default. */
3868	sp->v4mapped          = 1;
3869
3870	/* Auto-close idle associations after the configured
3871	 * number of seconds.  A value of 0 disables this
3872	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3873	 * for UDP-style sockets only.
3874	 */
3875	sp->autoclose         = 0;
3876
3877	/* User specified fragmentation limit. */
3878	sp->user_frag         = 0;
3879
3880	sp->adaptation_ind = 0;
3881
3882	sp->pf = sctp_get_pf_specific(sk->sk_family);
3883
3884	/* Control variables for partial data delivery. */
3885	atomic_set(&sp->pd_mode, 0);
3886	skb_queue_head_init(&sp->pd_lobby);
3887	sp->frag_interleave = 0;
3888
3889	/* Create a per socket endpoint structure.  Even if we
3890	 * change the data structure relationships, this may still
3891	 * be useful for storing pre-connect address information.
3892	 */
3893	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3894	if (!ep)
3895		return -ENOMEM;
3896
3897	sp->ep = ep;
3898	sp->hmac = NULL;
3899
3900	SCTP_DBG_OBJCNT_INC(sock);
3901
3902	local_bh_disable();
3903	percpu_counter_inc(&sctp_sockets_allocated);
3904	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3905	if (sctp_default_auto_asconf) {
3906		list_add_tail(&sp->auto_asconf_list,
3907		    &sctp_auto_asconf_splist);
3908		sp->do_auto_asconf = 1;
3909	} else
3910		sp->do_auto_asconf = 0;
3911	local_bh_enable();
3912
3913	return 0;
3914}
3915
3916/* Cleanup any SCTP per socket resources.  */
3917SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3918{
3919	struct sctp_sock *sp;
3920
3921	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3922
3923	/* Release our hold on the endpoint. */
3924	sp = sctp_sk(sk);
3925	if (sp->do_auto_asconf) {
3926		sp->do_auto_asconf = 0;
3927		list_del(&sp->auto_asconf_list);
3928	}
3929	sctp_endpoint_free(sp->ep);
3930	local_bh_disable();
3931	percpu_counter_dec(&sctp_sockets_allocated);
3932	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3933	local_bh_enable();
3934}
3935
3936/* API 4.1.7 shutdown() - TCP Style Syntax
3937 *     int shutdown(int socket, int how);
3938 *
3939 *     sd      - the socket descriptor of the association to be closed.
3940 *     how     - Specifies the type of shutdown.  The  values  are
3941 *               as follows:
3942 *               SHUT_RD
3943 *                     Disables further receive operations. No SCTP
3944 *                     protocol action is taken.
3945 *               SHUT_WR
3946 *                     Disables further send operations, and initiates
3947 *                     the SCTP shutdown sequence.
3948 *               SHUT_RDWR
3949 *                     Disables further send  and  receive  operations
3950 *                     and initiates the SCTP shutdown sequence.
3951 */
3952SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3953{
3954	struct sctp_endpoint *ep;
3955	struct sctp_association *asoc;
3956
3957	if (!sctp_style(sk, TCP))
3958		return;
3959
3960	if (how & SEND_SHUTDOWN) {
3961		ep = sctp_sk(sk)->ep;
3962		if (!list_empty(&ep->asocs)) {
3963			asoc = list_entry(ep->asocs.next,
3964					  struct sctp_association, asocs);
3965			sctp_primitive_SHUTDOWN(asoc, NULL);
3966		}
3967	}
3968}
3969
3970/* 7.2.1 Association Status (SCTP_STATUS)
3971
3972 * Applications can retrieve current status information about an
3973 * association, including association state, peer receiver window size,
3974 * number of unacked data chunks, and number of data chunks pending
3975 * receipt.  This information is read-only.
3976 */
3977static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3978				       char __user *optval,
3979				       int __user *optlen)
3980{
3981	struct sctp_status status;
3982	struct sctp_association *asoc = NULL;
3983	struct sctp_transport *transport;
3984	sctp_assoc_t associd;
3985	int retval = 0;
3986
3987	if (len < sizeof(status)) {
3988		retval = -EINVAL;
3989		goto out;
3990	}
3991
3992	len = sizeof(status);
3993	if (copy_from_user(&status, optval, len)) {
3994		retval = -EFAULT;
3995		goto out;
3996	}
3997
3998	associd = status.sstat_assoc_id;
3999	asoc = sctp_id2assoc(sk, associd);
4000	if (!asoc) {
4001		retval = -EINVAL;
4002		goto out;
4003	}
4004
4005	transport = asoc->peer.primary_path;
4006
4007	status.sstat_assoc_id = sctp_assoc2id(asoc);
4008	status.sstat_state = asoc->state;
4009	status.sstat_rwnd =  asoc->peer.rwnd;
4010	status.sstat_unackdata = asoc->unack_data;
4011
4012	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4013	status.sstat_instrms = asoc->c.sinit_max_instreams;
4014	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4015	status.sstat_fragmentation_point = asoc->frag_point;
4016	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4017	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4018			transport->af_specific->sockaddr_len);
4019	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4020	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4021		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4022	status.sstat_primary.spinfo_state = transport->state;
4023	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4024	status.sstat_primary.spinfo_srtt = transport->srtt;
4025	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4026	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4027
4028	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4029		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4030
4031	if (put_user(len, optlen)) {
4032		retval = -EFAULT;
4033		goto out;
4034	}
4035
4036	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4037			  len, status.sstat_state, status.sstat_rwnd,
4038			  status.sstat_assoc_id);
4039
4040	if (copy_to_user(optval, &status, len)) {
4041		retval = -EFAULT;
4042		goto out;
4043	}
4044
4045out:
4046	return retval;
4047}
4048
4049
4050/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4051 *
4052 * Applications can retrieve information about a specific peer address
4053 * of an association, including its reachability state, congestion
4054 * window, and retransmission timer values.  This information is
4055 * read-only.
4056 */
4057static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4058					  char __user *optval,
4059					  int __user *optlen)
4060{
4061	struct sctp_paddrinfo pinfo;
4062	struct sctp_transport *transport;
4063	int retval = 0;
4064
4065	if (len < sizeof(pinfo)) {
4066		retval = -EINVAL;
4067		goto out;
4068	}
4069
4070	len = sizeof(pinfo);
4071	if (copy_from_user(&pinfo, optval, len)) {
4072		retval = -EFAULT;
4073		goto out;
4074	}
4075
4076	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4077					   pinfo.spinfo_assoc_id);
4078	if (!transport)
4079		return -EINVAL;
4080
4081	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4082	pinfo.spinfo_state = transport->state;
4083	pinfo.spinfo_cwnd = transport->cwnd;
4084	pinfo.spinfo_srtt = transport->srtt;
4085	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4086	pinfo.spinfo_mtu = transport->pathmtu;
4087
4088	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4089		pinfo.spinfo_state = SCTP_ACTIVE;
4090
4091	if (put_user(len, optlen)) {
4092		retval = -EFAULT;
4093		goto out;
4094	}
4095
4096	if (copy_to_user(optval, &pinfo, len)) {
4097		retval = -EFAULT;
4098		goto out;
4099	}
4100
4101out:
4102	return retval;
4103}
4104
4105/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4106 *
4107 * This option is a on/off flag.  If enabled no SCTP message
4108 * fragmentation will be performed.  Instead if a message being sent
4109 * exceeds the current PMTU size, the message will NOT be sent and
4110 * instead a error will be indicated to the user.
4111 */
4112static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4113					char __user *optval, int __user *optlen)
4114{
4115	int val;
4116
4117	if (len < sizeof(int))
4118		return -EINVAL;
4119
4120	len = sizeof(int);
4121	val = (sctp_sk(sk)->disable_fragments == 1);
4122	if (put_user(len, optlen))
4123		return -EFAULT;
4124	if (copy_to_user(optval, &val, len))
4125		return -EFAULT;
4126	return 0;
4127}
4128
4129/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4130 *
4131 * This socket option is used to specify various notifications and
4132 * ancillary data the user wishes to receive.
4133 */
4134static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4135				  int __user *optlen)
4136{
4137	if (len < sizeof(struct sctp_event_subscribe))
4138		return -EINVAL;
4139	len = sizeof(struct sctp_event_subscribe);
 
4140	if (put_user(len, optlen))
4141		return -EFAULT;
4142	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4143		return -EFAULT;
4144	return 0;
4145}
4146
4147/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4148 *
4149 * This socket option is applicable to the UDP-style socket only.  When
4150 * set it will cause associations that are idle for more than the
4151 * specified number of seconds to automatically close.  An association
4152 * being idle is defined an association that has NOT sent or received
4153 * user data.  The special value of '0' indicates that no automatic
4154 * close of any associations should be performed.  The option expects an
4155 * integer defining the number of seconds of idle time before an
4156 * association is closed.
4157 */
4158static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4159{
4160	/* Applicable to UDP-style socket only */
4161	if (sctp_style(sk, TCP))
4162		return -EOPNOTSUPP;
4163	if (len < sizeof(int))
4164		return -EINVAL;
4165	len = sizeof(int);
4166	if (put_user(len, optlen))
4167		return -EFAULT;
4168	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4169		return -EFAULT;
4170	return 0;
4171}
4172
4173/* Helper routine to branch off an association to a new socket.  */
4174SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4175				struct socket **sockp)
4176{
4177	struct sock *sk = asoc->base.sk;
4178	struct socket *sock;
4179	struct sctp_af *af;
4180	int err = 0;
4181
 
 
 
4182	/* An association cannot be branched off from an already peeled-off
4183	 * socket, nor is this supported for tcp style sockets.
4184	 */
4185	if (!sctp_style(sk, UDP))
4186		return -EINVAL;
4187
4188	/* Create a new socket.  */
4189	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4190	if (err < 0)
4191		return err;
4192
4193	sctp_copy_sock(sock->sk, sk, asoc);
4194
4195	/* Make peeled-off sockets more like 1-1 accepted sockets.
4196	 * Set the daddr and initialize id to something more random
4197	 */
4198	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4199	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4200
4201	/* Populate the fields of the newsk from the oldsk and migrate the
4202	 * asoc to the newsk.
4203	 */
4204	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4205
4206	*sockp = sock;
4207
4208	return err;
4209}
 
4210
4211static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4212{
4213	sctp_peeloff_arg_t peeloff;
4214	struct socket *newsock;
4215	int retval = 0;
4216	struct sctp_association *asoc;
4217
4218	if (len < sizeof(sctp_peeloff_arg_t))
4219		return -EINVAL;
4220	len = sizeof(sctp_peeloff_arg_t);
4221	if (copy_from_user(&peeloff, optval, len))
4222		return -EFAULT;
4223
4224	asoc = sctp_id2assoc(sk, peeloff.associd);
4225	if (!asoc) {
4226		retval = -EINVAL;
4227		goto out;
4228	}
4229
4230	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4231
4232	retval = sctp_do_peeloff(asoc, &newsock);
4233	if (retval < 0)
4234		goto out;
4235
4236	/* Map the socket to an unused fd that can be returned to the user.  */
4237	retval = sock_map_fd(newsock, 0);
4238	if (retval < 0) {
4239		sock_release(newsock);
4240		goto out;
4241	}
4242
4243	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4244			  __func__, sk, asoc, newsock->sk, retval);
4245
4246	/* Return the fd mapped to the new socket.  */
4247	peeloff.sd = retval;
4248	if (put_user(len, optlen))
4249		return -EFAULT;
4250	if (copy_to_user(optval, &peeloff, len))
4251		retval = -EFAULT;
4252
4253out:
4254	return retval;
4255}
4256
4257/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4258 *
4259 * Applications can enable or disable heartbeats for any peer address of
4260 * an association, modify an address's heartbeat interval, force a
4261 * heartbeat to be sent immediately, and adjust the address's maximum
4262 * number of retransmissions sent before an address is considered
4263 * unreachable.  The following structure is used to access and modify an
4264 * address's parameters:
4265 *
4266 *  struct sctp_paddrparams {
4267 *     sctp_assoc_t            spp_assoc_id;
4268 *     struct sockaddr_storage spp_address;
4269 *     uint32_t                spp_hbinterval;
4270 *     uint16_t                spp_pathmaxrxt;
4271 *     uint32_t                spp_pathmtu;
4272 *     uint32_t                spp_sackdelay;
4273 *     uint32_t                spp_flags;
4274 * };
4275 *
4276 *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4277 *                     application, and identifies the association for
4278 *                     this query.
4279 *   spp_address     - This specifies which address is of interest.
4280 *   spp_hbinterval  - This contains the value of the heartbeat interval,
4281 *                     in milliseconds.  If a  value of zero
4282 *                     is present in this field then no changes are to
4283 *                     be made to this parameter.
4284 *   spp_pathmaxrxt  - This contains the maximum number of
4285 *                     retransmissions before this address shall be
4286 *                     considered unreachable. If a  value of zero
4287 *                     is present in this field then no changes are to
4288 *                     be made to this parameter.
4289 *   spp_pathmtu     - When Path MTU discovery is disabled the value
4290 *                     specified here will be the "fixed" path mtu.
4291 *                     Note that if the spp_address field is empty
4292 *                     then all associations on this address will
4293 *                     have this fixed path mtu set upon them.
4294 *
4295 *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4296 *                     the number of milliseconds that sacks will be delayed
4297 *                     for. This value will apply to all addresses of an
4298 *                     association if the spp_address field is empty. Note
4299 *                     also, that if delayed sack is enabled and this
4300 *                     value is set to 0, no change is made to the last
4301 *                     recorded delayed sack timer value.
4302 *
4303 *   spp_flags       - These flags are used to control various features
4304 *                     on an association. The flag field may contain
4305 *                     zero or more of the following options.
4306 *
4307 *                     SPP_HB_ENABLE  - Enable heartbeats on the
4308 *                     specified address. Note that if the address
4309 *                     field is empty all addresses for the association
4310 *                     have heartbeats enabled upon them.
4311 *
4312 *                     SPP_HB_DISABLE - Disable heartbeats on the
4313 *                     speicifed address. Note that if the address
4314 *                     field is empty all addresses for the association
4315 *                     will have their heartbeats disabled. Note also
4316 *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4317 *                     mutually exclusive, only one of these two should
4318 *                     be specified. Enabling both fields will have
4319 *                     undetermined results.
4320 *
4321 *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4322 *                     to be made immediately.
4323 *
4324 *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4325 *                     discovery upon the specified address. Note that
4326 *                     if the address feild is empty then all addresses
4327 *                     on the association are effected.
4328 *
4329 *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4330 *                     discovery upon the specified address. Note that
4331 *                     if the address feild is empty then all addresses
4332 *                     on the association are effected. Not also that
4333 *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4334 *                     exclusive. Enabling both will have undetermined
4335 *                     results.
4336 *
4337 *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4338 *                     on delayed sack. The time specified in spp_sackdelay
4339 *                     is used to specify the sack delay for this address. Note
4340 *                     that if spp_address is empty then all addresses will
4341 *                     enable delayed sack and take on the sack delay
4342 *                     value specified in spp_sackdelay.
4343 *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4344 *                     off delayed sack. If the spp_address field is blank then
4345 *                     delayed sack is disabled for the entire association. Note
4346 *                     also that this field is mutually exclusive to
4347 *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4348 *                     results.
4349 */
4350static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4351					    char __user *optval, int __user *optlen)
4352{
4353	struct sctp_paddrparams  params;
4354	struct sctp_transport   *trans = NULL;
4355	struct sctp_association *asoc = NULL;
4356	struct sctp_sock        *sp = sctp_sk(sk);
4357
4358	if (len < sizeof(struct sctp_paddrparams))
4359		return -EINVAL;
4360	len = sizeof(struct sctp_paddrparams);
4361	if (copy_from_user(&params, optval, len))
4362		return -EFAULT;
4363
4364	/* If an address other than INADDR_ANY is specified, and
4365	 * no transport is found, then the request is invalid.
4366	 */
4367	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4368		trans = sctp_addr_id2transport(sk, &params.spp_address,
4369					       params.spp_assoc_id);
4370		if (!trans) {
4371			SCTP_DEBUG_PRINTK("Failed no transport\n");
4372			return -EINVAL;
4373		}
4374	}
4375
4376	/* Get association, if assoc_id != 0 and the socket is a one
4377	 * to many style socket, and an association was not found, then
4378	 * the id was invalid.
4379	 */
4380	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4381	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4382		SCTP_DEBUG_PRINTK("Failed no association\n");
4383		return -EINVAL;
4384	}
4385
4386	if (trans) {
4387		/* Fetch transport values. */
4388		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4389		params.spp_pathmtu    = trans->pathmtu;
4390		params.spp_pathmaxrxt = trans->pathmaxrxt;
4391		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4392
4393		/*draft-11 doesn't say what to return in spp_flags*/
4394		params.spp_flags      = trans->param_flags;
4395	} else if (asoc) {
4396		/* Fetch association values. */
4397		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4398		params.spp_pathmtu    = asoc->pathmtu;
4399		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4400		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4401
4402		/*draft-11 doesn't say what to return in spp_flags*/
4403		params.spp_flags      = asoc->param_flags;
4404	} else {
4405		/* Fetch socket values. */
4406		params.spp_hbinterval = sp->hbinterval;
4407		params.spp_pathmtu    = sp->pathmtu;
4408		params.spp_sackdelay  = sp->sackdelay;
4409		params.spp_pathmaxrxt = sp->pathmaxrxt;
4410
4411		/*draft-11 doesn't say what to return in spp_flags*/
4412		params.spp_flags      = sp->param_flags;
4413	}
4414
4415	if (copy_to_user(optval, &params, len))
4416		return -EFAULT;
4417
4418	if (put_user(len, optlen))
4419		return -EFAULT;
4420
4421	return 0;
4422}
4423
4424/*
4425 * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4426 *
4427 * This option will effect the way delayed acks are performed.  This
4428 * option allows you to get or set the delayed ack time, in
4429 * milliseconds.  It also allows changing the delayed ack frequency.
4430 * Changing the frequency to 1 disables the delayed sack algorithm.  If
4431 * the assoc_id is 0, then this sets or gets the endpoints default
4432 * values.  If the assoc_id field is non-zero, then the set or get
4433 * effects the specified association for the one to many model (the
4434 * assoc_id field is ignored by the one to one model).  Note that if
4435 * sack_delay or sack_freq are 0 when setting this option, then the
4436 * current values will remain unchanged.
4437 *
4438 * struct sctp_sack_info {
4439 *     sctp_assoc_t            sack_assoc_id;
4440 *     uint32_t                sack_delay;
4441 *     uint32_t                sack_freq;
4442 * };
4443 *
4444 * sack_assoc_id -  This parameter, indicates which association the user
4445 *    is performing an action upon.  Note that if this field's value is
4446 *    zero then the endpoints default value is changed (effecting future
4447 *    associations only).
4448 *
4449 * sack_delay -  This parameter contains the number of milliseconds that
4450 *    the user is requesting the delayed ACK timer be set to.  Note that
4451 *    this value is defined in the standard to be between 200 and 500
4452 *    milliseconds.
4453 *
4454 * sack_freq -  This parameter contains the number of packets that must
4455 *    be received before a sack is sent without waiting for the delay
4456 *    timer to expire.  The default value for this is 2, setting this
4457 *    value to 1 will disable the delayed sack algorithm.
4458 */
4459static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4460					    char __user *optval,
4461					    int __user *optlen)
4462{
4463	struct sctp_sack_info    params;
4464	struct sctp_association *asoc = NULL;
4465	struct sctp_sock        *sp = sctp_sk(sk);
4466
4467	if (len >= sizeof(struct sctp_sack_info)) {
4468		len = sizeof(struct sctp_sack_info);
4469
4470		if (copy_from_user(&params, optval, len))
4471			return -EFAULT;
4472	} else if (len == sizeof(struct sctp_assoc_value)) {
4473		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4474		pr_warn("Use struct sctp_sack_info instead\n");
4475		if (copy_from_user(&params, optval, len))
4476			return -EFAULT;
4477	} else
4478		return - EINVAL;
4479
4480	/* Get association, if sack_assoc_id != 0 and the socket is a one
4481	 * to many style socket, and an association was not found, then
4482	 * the id was invalid.
4483	 */
4484	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4485	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4486		return -EINVAL;
4487
4488	if (asoc) {
4489		/* Fetch association values. */
4490		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4491			params.sack_delay = jiffies_to_msecs(
4492				asoc->sackdelay);
4493			params.sack_freq = asoc->sackfreq;
4494
4495		} else {
4496			params.sack_delay = 0;
4497			params.sack_freq = 1;
4498		}
4499	} else {
4500		/* Fetch socket values. */
4501		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4502			params.sack_delay  = sp->sackdelay;
4503			params.sack_freq = sp->sackfreq;
4504		} else {
4505			params.sack_delay  = 0;
4506			params.sack_freq = 1;
4507		}
4508	}
4509
4510	if (copy_to_user(optval, &params, len))
4511		return -EFAULT;
4512
4513	if (put_user(len, optlen))
4514		return -EFAULT;
4515
4516	return 0;
4517}
4518
4519/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4520 *
4521 * Applications can specify protocol parameters for the default association
4522 * initialization.  The option name argument to setsockopt() and getsockopt()
4523 * is SCTP_INITMSG.
4524 *
4525 * Setting initialization parameters is effective only on an unconnected
4526 * socket (for UDP-style sockets only future associations are effected
4527 * by the change).  With TCP-style sockets, this option is inherited by
4528 * sockets derived from a listener socket.
4529 */
4530static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4531{
4532	if (len < sizeof(struct sctp_initmsg))
4533		return -EINVAL;
4534	len = sizeof(struct sctp_initmsg);
4535	if (put_user(len, optlen))
4536		return -EFAULT;
4537	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4538		return -EFAULT;
4539	return 0;
4540}
4541
4542
4543static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4544				      char __user *optval, int __user *optlen)
4545{
4546	struct sctp_association *asoc;
4547	int cnt = 0;
4548	struct sctp_getaddrs getaddrs;
4549	struct sctp_transport *from;
4550	void __user *to;
4551	union sctp_addr temp;
4552	struct sctp_sock *sp = sctp_sk(sk);
4553	int addrlen;
4554	size_t space_left;
4555	int bytes_copied;
4556
4557	if (len < sizeof(struct sctp_getaddrs))
4558		return -EINVAL;
4559
4560	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4561		return -EFAULT;
4562
4563	/* For UDP-style sockets, id specifies the association to query.  */
4564	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4565	if (!asoc)
4566		return -EINVAL;
4567
4568	to = optval + offsetof(struct sctp_getaddrs,addrs);
4569	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4570
4571	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4572				transports) {
4573		memcpy(&temp, &from->ipaddr, sizeof(temp));
4574		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4575		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4576		if (space_left < addrlen)
4577			return -ENOMEM;
4578		if (copy_to_user(to, &temp, addrlen))
4579			return -EFAULT;
4580		to += addrlen;
4581		cnt++;
4582		space_left -= addrlen;
4583	}
4584
4585	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4586		return -EFAULT;
4587	bytes_copied = ((char __user *)to) - optval;
4588	if (put_user(bytes_copied, optlen))
4589		return -EFAULT;
4590
4591	return 0;
4592}
4593
4594static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4595			    size_t space_left, int *bytes_copied)
4596{
4597	struct sctp_sockaddr_entry *addr;
4598	union sctp_addr temp;
4599	int cnt = 0;
4600	int addrlen;
4601
4602	rcu_read_lock();
4603	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4604		if (!addr->valid)
4605			continue;
4606
4607		if ((PF_INET == sk->sk_family) &&
4608		    (AF_INET6 == addr->a.sa.sa_family))
4609			continue;
4610		if ((PF_INET6 == sk->sk_family) &&
4611		    inet_v6_ipv6only(sk) &&
4612		    (AF_INET == addr->a.sa.sa_family))
4613			continue;
4614		memcpy(&temp, &addr->a, sizeof(temp));
4615		if (!temp.v4.sin_port)
4616			temp.v4.sin_port = htons(port);
4617
4618		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4619								&temp);
4620		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4621		if (space_left < addrlen) {
4622			cnt =  -ENOMEM;
4623			break;
4624		}
4625		memcpy(to, &temp, addrlen);
4626
4627		to += addrlen;
4628		cnt ++;
4629		space_left -= addrlen;
4630		*bytes_copied += addrlen;
4631	}
4632	rcu_read_unlock();
4633
4634	return cnt;
4635}
4636
4637
4638static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4639				       char __user *optval, int __user *optlen)
4640{
4641	struct sctp_bind_addr *bp;
4642	struct sctp_association *asoc;
4643	int cnt = 0;
4644	struct sctp_getaddrs getaddrs;
4645	struct sctp_sockaddr_entry *addr;
4646	void __user *to;
4647	union sctp_addr temp;
4648	struct sctp_sock *sp = sctp_sk(sk);
4649	int addrlen;
4650	int err = 0;
4651	size_t space_left;
4652	int bytes_copied = 0;
4653	void *addrs;
4654	void *buf;
4655
4656	if (len < sizeof(struct sctp_getaddrs))
4657		return -EINVAL;
4658
4659	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4660		return -EFAULT;
4661
4662	/*
4663	 *  For UDP-style sockets, id specifies the association to query.
4664	 *  If the id field is set to the value '0' then the locally bound
4665	 *  addresses are returned without regard to any particular
4666	 *  association.
4667	 */
4668	if (0 == getaddrs.assoc_id) {
4669		bp = &sctp_sk(sk)->ep->base.bind_addr;
4670	} else {
4671		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4672		if (!asoc)
4673			return -EINVAL;
4674		bp = &asoc->base.bind_addr;
4675	}
4676
4677	to = optval + offsetof(struct sctp_getaddrs,addrs);
4678	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4679
4680	addrs = kmalloc(space_left, GFP_KERNEL);
4681	if (!addrs)
4682		return -ENOMEM;
4683
4684	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4685	 * addresses from the global local address list.
4686	 */
4687	if (sctp_list_single_entry(&bp->address_list)) {
4688		addr = list_entry(bp->address_list.next,
4689				  struct sctp_sockaddr_entry, list);
4690		if (sctp_is_any(sk, &addr->a)) {
4691			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4692						space_left, &bytes_copied);
4693			if (cnt < 0) {
4694				err = cnt;
4695				goto out;
4696			}
4697			goto copy_getaddrs;
4698		}
4699	}
4700
4701	buf = addrs;
4702	/* Protection on the bound address list is not needed since
4703	 * in the socket option context we hold a socket lock and
4704	 * thus the bound address list can't change.
4705	 */
4706	list_for_each_entry(addr, &bp->address_list, list) {
4707		memcpy(&temp, &addr->a, sizeof(temp));
4708		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4709		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4710		if (space_left < addrlen) {
4711			err =  -ENOMEM; /*fixme: right error?*/
4712			goto out;
4713		}
4714		memcpy(buf, &temp, addrlen);
4715		buf += addrlen;
4716		bytes_copied += addrlen;
4717		cnt ++;
4718		space_left -= addrlen;
4719	}
4720
4721copy_getaddrs:
4722	if (copy_to_user(to, addrs, bytes_copied)) {
4723		err = -EFAULT;
4724		goto out;
4725	}
4726	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4727		err = -EFAULT;
4728		goto out;
4729	}
4730	if (put_user(bytes_copied, optlen))
4731		err = -EFAULT;
4732out:
4733	kfree(addrs);
4734	return err;
4735}
4736
4737/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4738 *
4739 * Requests that the local SCTP stack use the enclosed peer address as
4740 * the association primary.  The enclosed address must be one of the
4741 * association peer's addresses.
4742 */
4743static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4744					char __user *optval, int __user *optlen)
4745{
4746	struct sctp_prim prim;
4747	struct sctp_association *asoc;
4748	struct sctp_sock *sp = sctp_sk(sk);
4749
4750	if (len < sizeof(struct sctp_prim))
4751		return -EINVAL;
4752
4753	len = sizeof(struct sctp_prim);
4754
4755	if (copy_from_user(&prim, optval, len))
4756		return -EFAULT;
4757
4758	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4759	if (!asoc)
4760		return -EINVAL;
4761
4762	if (!asoc->peer.primary_path)
4763		return -ENOTCONN;
4764
4765	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4766		asoc->peer.primary_path->af_specific->sockaddr_len);
4767
4768	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4769			(union sctp_addr *)&prim.ssp_addr);
4770
4771	if (put_user(len, optlen))
4772		return -EFAULT;
4773	if (copy_to_user(optval, &prim, len))
4774		return -EFAULT;
4775
4776	return 0;
4777}
4778
4779/*
4780 * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4781 *
4782 * Requests that the local endpoint set the specified Adaptation Layer
4783 * Indication parameter for all future INIT and INIT-ACK exchanges.
4784 */
4785static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4786				  char __user *optval, int __user *optlen)
4787{
4788	struct sctp_setadaptation adaptation;
4789
4790	if (len < sizeof(struct sctp_setadaptation))
4791		return -EINVAL;
4792
4793	len = sizeof(struct sctp_setadaptation);
4794
4795	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4796
4797	if (put_user(len, optlen))
4798		return -EFAULT;
4799	if (copy_to_user(optval, &adaptation, len))
4800		return -EFAULT;
4801
4802	return 0;
4803}
4804
4805/*
4806 *
4807 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4808 *
4809 *   Applications that wish to use the sendto() system call may wish to
4810 *   specify a default set of parameters that would normally be supplied
4811 *   through the inclusion of ancillary data.  This socket option allows
4812 *   such an application to set the default sctp_sndrcvinfo structure.
4813
4814
4815 *   The application that wishes to use this socket option simply passes
4816 *   in to this call the sctp_sndrcvinfo structure defined in Section
4817 *   5.2.2) The input parameters accepted by this call include
4818 *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4819 *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4820 *   to this call if the caller is using the UDP model.
4821 *
4822 *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4823 */
4824static int sctp_getsockopt_default_send_param(struct sock *sk,
4825					int len, char __user *optval,
4826					int __user *optlen)
4827{
4828	struct sctp_sndrcvinfo info;
4829	struct sctp_association *asoc;
4830	struct sctp_sock *sp = sctp_sk(sk);
4831
4832	if (len < sizeof(struct sctp_sndrcvinfo))
4833		return -EINVAL;
4834
4835	len = sizeof(struct sctp_sndrcvinfo);
4836
4837	if (copy_from_user(&info, optval, len))
4838		return -EFAULT;
4839
4840	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4841	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4842		return -EINVAL;
4843
4844	if (asoc) {
4845		info.sinfo_stream = asoc->default_stream;
4846		info.sinfo_flags = asoc->default_flags;
4847		info.sinfo_ppid = asoc->default_ppid;
4848		info.sinfo_context = asoc->default_context;
4849		info.sinfo_timetolive = asoc->default_timetolive;
4850	} else {
4851		info.sinfo_stream = sp->default_stream;
4852		info.sinfo_flags = sp->default_flags;
4853		info.sinfo_ppid = sp->default_ppid;
4854		info.sinfo_context = sp->default_context;
4855		info.sinfo_timetolive = sp->default_timetolive;
4856	}
4857
4858	if (put_user(len, optlen))
4859		return -EFAULT;
4860	if (copy_to_user(optval, &info, len))
4861		return -EFAULT;
4862
4863	return 0;
4864}
4865
4866/*
4867 *
4868 * 7.1.5 SCTP_NODELAY
4869 *
4870 * Turn on/off any Nagle-like algorithm.  This means that packets are
4871 * generally sent as soon as possible and no unnecessary delays are
4872 * introduced, at the cost of more packets in the network.  Expects an
4873 * integer boolean flag.
4874 */
4875
4876static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4877				   char __user *optval, int __user *optlen)
4878{
4879	int val;
4880
4881	if (len < sizeof(int))
4882		return -EINVAL;
4883
4884	len = sizeof(int);
4885	val = (sctp_sk(sk)->nodelay == 1);
4886	if (put_user(len, optlen))
4887		return -EFAULT;
4888	if (copy_to_user(optval, &val, len))
4889		return -EFAULT;
4890	return 0;
4891}
4892
4893/*
4894 *
4895 * 7.1.1 SCTP_RTOINFO
4896 *
4897 * The protocol parameters used to initialize and bound retransmission
4898 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4899 * and modify these parameters.
4900 * All parameters are time values, in milliseconds.  A value of 0, when
4901 * modifying the parameters, indicates that the current value should not
4902 * be changed.
4903 *
4904 */
4905static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4906				char __user *optval,
4907				int __user *optlen) {
4908	struct sctp_rtoinfo rtoinfo;
4909	struct sctp_association *asoc;
4910
4911	if (len < sizeof (struct sctp_rtoinfo))
4912		return -EINVAL;
4913
4914	len = sizeof(struct sctp_rtoinfo);
4915
4916	if (copy_from_user(&rtoinfo, optval, len))
4917		return -EFAULT;
4918
4919	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4920
4921	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4922		return -EINVAL;
4923
4924	/* Values corresponding to the specific association. */
4925	if (asoc) {
4926		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4927		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4928		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4929	} else {
4930		/* Values corresponding to the endpoint. */
4931		struct sctp_sock *sp = sctp_sk(sk);
4932
4933		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4934		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4935		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4936	}
4937
4938	if (put_user(len, optlen))
4939		return -EFAULT;
4940
4941	if (copy_to_user(optval, &rtoinfo, len))
4942		return -EFAULT;
4943
4944	return 0;
4945}
4946
4947/*
4948 *
4949 * 7.1.2 SCTP_ASSOCINFO
4950 *
4951 * This option is used to tune the maximum retransmission attempts
4952 * of the association.
4953 * Returns an error if the new association retransmission value is
4954 * greater than the sum of the retransmission value  of the peer.
4955 * See [SCTP] for more information.
4956 *
4957 */
4958static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4959				     char __user *optval,
4960				     int __user *optlen)
4961{
4962
4963	struct sctp_assocparams assocparams;
4964	struct sctp_association *asoc;
4965	struct list_head *pos;
4966	int cnt = 0;
4967
4968	if (len < sizeof (struct sctp_assocparams))
4969		return -EINVAL;
4970
4971	len = sizeof(struct sctp_assocparams);
4972
4973	if (copy_from_user(&assocparams, optval, len))
4974		return -EFAULT;
4975
4976	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4977
4978	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4979		return -EINVAL;
4980
4981	/* Values correspoinding to the specific association */
4982	if (asoc) {
4983		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4984		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4985		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4986		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4987						* 1000) +
4988						(asoc->cookie_life.tv_usec
4989						/ 1000);
4990
4991		list_for_each(pos, &asoc->peer.transport_addr_list) {
4992			cnt ++;
4993		}
4994
4995		assocparams.sasoc_number_peer_destinations = cnt;
4996	} else {
4997		/* Values corresponding to the endpoint */
4998		struct sctp_sock *sp = sctp_sk(sk);
4999
5000		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5001		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5002		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5003		assocparams.sasoc_cookie_life =
5004					sp->assocparams.sasoc_cookie_life;
5005		assocparams.sasoc_number_peer_destinations =
5006					sp->assocparams.
5007					sasoc_number_peer_destinations;
5008	}
5009
5010	if (put_user(len, optlen))
5011		return -EFAULT;
5012
5013	if (copy_to_user(optval, &assocparams, len))
5014		return -EFAULT;
5015
5016	return 0;
5017}
5018
5019/*
5020 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5021 *
5022 * This socket option is a boolean flag which turns on or off mapped V4
5023 * addresses.  If this option is turned on and the socket is type
5024 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5025 * If this option is turned off, then no mapping will be done of V4
5026 * addresses and a user will receive both PF_INET6 and PF_INET type
5027 * addresses on the socket.
5028 */
5029static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5030				    char __user *optval, int __user *optlen)
5031{
5032	int val;
5033	struct sctp_sock *sp = sctp_sk(sk);
5034
5035	if (len < sizeof(int))
5036		return -EINVAL;
5037
5038	len = sizeof(int);
5039	val = sp->v4mapped;
5040	if (put_user(len, optlen))
5041		return -EFAULT;
5042	if (copy_to_user(optval, &val, len))
5043		return -EFAULT;
5044
5045	return 0;
5046}
5047
5048/*
5049 * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5050 * (chapter and verse is quoted at sctp_setsockopt_context())
5051 */
5052static int sctp_getsockopt_context(struct sock *sk, int len,
5053				   char __user *optval, int __user *optlen)
5054{
5055	struct sctp_assoc_value params;
5056	struct sctp_sock *sp;
5057	struct sctp_association *asoc;
5058
5059	if (len < sizeof(struct sctp_assoc_value))
5060		return -EINVAL;
5061
5062	len = sizeof(struct sctp_assoc_value);
5063
5064	if (copy_from_user(&params, optval, len))
5065		return -EFAULT;
5066
5067	sp = sctp_sk(sk);
5068
5069	if (params.assoc_id != 0) {
5070		asoc = sctp_id2assoc(sk, params.assoc_id);
5071		if (!asoc)
5072			return -EINVAL;
5073		params.assoc_value = asoc->default_rcv_context;
5074	} else {
5075		params.assoc_value = sp->default_rcv_context;
5076	}
5077
5078	if (put_user(len, optlen))
5079		return -EFAULT;
5080	if (copy_to_user(optval, &params, len))
5081		return -EFAULT;
5082
5083	return 0;
5084}
5085
5086/*
5087 * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5088 * This option will get or set the maximum size to put in any outgoing
5089 * SCTP DATA chunk.  If a message is larger than this size it will be
5090 * fragmented by SCTP into the specified size.  Note that the underlying
5091 * SCTP implementation may fragment into smaller sized chunks when the
5092 * PMTU of the underlying association is smaller than the value set by
5093 * the user.  The default value for this option is '0' which indicates
5094 * the user is NOT limiting fragmentation and only the PMTU will effect
5095 * SCTP's choice of DATA chunk size.  Note also that values set larger
5096 * than the maximum size of an IP datagram will effectively let SCTP
5097 * control fragmentation (i.e. the same as setting this option to 0).
5098 *
5099 * The following structure is used to access and modify this parameter:
5100 *
5101 * struct sctp_assoc_value {
5102 *   sctp_assoc_t assoc_id;
5103 *   uint32_t assoc_value;
5104 * };
5105 *
5106 * assoc_id:  This parameter is ignored for one-to-one style sockets.
5107 *    For one-to-many style sockets this parameter indicates which
5108 *    association the user is performing an action upon.  Note that if
5109 *    this field's value is zero then the endpoints default value is
5110 *    changed (effecting future associations only).
5111 * assoc_value:  This parameter specifies the maximum size in bytes.
5112 */
5113static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5114				  char __user *optval, int __user *optlen)
5115{
5116	struct sctp_assoc_value params;
5117	struct sctp_association *asoc;
5118
5119	if (len == sizeof(int)) {
5120		pr_warn("Use of int in maxseg socket option deprecated\n");
5121		pr_warn("Use struct sctp_assoc_value instead\n");
5122		params.assoc_id = 0;
5123	} else if (len >= sizeof(struct sctp_assoc_value)) {
5124		len = sizeof(struct sctp_assoc_value);
5125		if (copy_from_user(&params, optval, sizeof(params)))
5126			return -EFAULT;
5127	} else
5128		return -EINVAL;
5129
5130	asoc = sctp_id2assoc(sk, params.assoc_id);
5131	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5132		return -EINVAL;
5133
5134	if (asoc)
5135		params.assoc_value = asoc->frag_point;
5136	else
5137		params.assoc_value = sctp_sk(sk)->user_frag;
5138
5139	if (put_user(len, optlen))
5140		return -EFAULT;
5141	if (len == sizeof(int)) {
5142		if (copy_to_user(optval, &params.assoc_value, len))
5143			return -EFAULT;
5144	} else {
5145		if (copy_to_user(optval, &params, len))
5146			return -EFAULT;
5147	}
5148
5149	return 0;
5150}
5151
5152/*
5153 * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5154 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5155 */
5156static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5157					       char __user *optval, int __user *optlen)
5158{
5159	int val;
5160
5161	if (len < sizeof(int))
5162		return -EINVAL;
5163
5164	len = sizeof(int);
5165
5166	val = sctp_sk(sk)->frag_interleave;
5167	if (put_user(len, optlen))
5168		return -EFAULT;
5169	if (copy_to_user(optval, &val, len))
5170		return -EFAULT;
5171
5172	return 0;
5173}
5174
5175/*
5176 * 7.1.25.  Set or Get the sctp partial delivery point
5177 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5178 */
5179static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5180						  char __user *optval,
5181						  int __user *optlen)
5182{
5183	u32 val;
5184
5185	if (len < sizeof(u32))
5186		return -EINVAL;
5187
5188	len = sizeof(u32);
5189
5190	val = sctp_sk(sk)->pd_point;
5191	if (put_user(len, optlen))
5192		return -EFAULT;
5193	if (copy_to_user(optval, &val, len))
5194		return -EFAULT;
5195
5196	return 0;
5197}
5198
5199/*
5200 * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5201 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5202 */
5203static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5204				    char __user *optval,
5205				    int __user *optlen)
5206{
5207	struct sctp_assoc_value params;
5208	struct sctp_sock *sp;
5209	struct sctp_association *asoc;
5210
5211	if (len == sizeof(int)) {
5212		pr_warn("Use of int in max_burst socket option deprecated\n");
5213		pr_warn("Use struct sctp_assoc_value instead\n");
5214		params.assoc_id = 0;
5215	} else if (len >= sizeof(struct sctp_assoc_value)) {
5216		len = sizeof(struct sctp_assoc_value);
5217		if (copy_from_user(&params, optval, len))
5218			return -EFAULT;
5219	} else
5220		return -EINVAL;
5221
5222	sp = sctp_sk(sk);
5223
5224	if (params.assoc_id != 0) {
5225		asoc = sctp_id2assoc(sk, params.assoc_id);
5226		if (!asoc)
5227			return -EINVAL;
5228		params.assoc_value = asoc->max_burst;
5229	} else
5230		params.assoc_value = sp->max_burst;
5231
5232	if (len == sizeof(int)) {
5233		if (copy_to_user(optval, &params.assoc_value, len))
5234			return -EFAULT;
5235	} else {
5236		if (copy_to_user(optval, &params, len))
5237			return -EFAULT;
5238	}
5239
5240	return 0;
5241
5242}
5243
5244static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5245				    char __user *optval, int __user *optlen)
5246{
5247	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5248	struct sctp_hmac_algo_param *hmacs;
5249	__u16 data_len = 0;
5250	u32 num_idents;
5251
5252	if (!sctp_auth_enable)
5253		return -EACCES;
5254
5255	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5256	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5257
5258	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5259		return -EINVAL;
5260
5261	len = sizeof(struct sctp_hmacalgo) + data_len;
5262	num_idents = data_len / sizeof(u16);
5263
5264	if (put_user(len, optlen))
5265		return -EFAULT;
5266	if (put_user(num_idents, &p->shmac_num_idents))
5267		return -EFAULT;
5268	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5269		return -EFAULT;
5270	return 0;
5271}
5272
5273static int sctp_getsockopt_active_key(struct sock *sk, int len,
5274				    char __user *optval, int __user *optlen)
5275{
5276	struct sctp_authkeyid val;
5277	struct sctp_association *asoc;
5278
5279	if (!sctp_auth_enable)
5280		return -EACCES;
5281
5282	if (len < sizeof(struct sctp_authkeyid))
5283		return -EINVAL;
5284	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5285		return -EFAULT;
5286
5287	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5288	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5289		return -EINVAL;
5290
5291	if (asoc)
5292		val.scact_keynumber = asoc->active_key_id;
5293	else
5294		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5295
5296	len = sizeof(struct sctp_authkeyid);
5297	if (put_user(len, optlen))
5298		return -EFAULT;
5299	if (copy_to_user(optval, &val, len))
5300		return -EFAULT;
5301
5302	return 0;
5303}
5304
5305static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5306				    char __user *optval, int __user *optlen)
5307{
5308	struct sctp_authchunks __user *p = (void __user *)optval;
5309	struct sctp_authchunks val;
5310	struct sctp_association *asoc;
5311	struct sctp_chunks_param *ch;
5312	u32    num_chunks = 0;
5313	char __user *to;
5314
5315	if (!sctp_auth_enable)
5316		return -EACCES;
5317
5318	if (len < sizeof(struct sctp_authchunks))
5319		return -EINVAL;
5320
5321	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5322		return -EFAULT;
5323
5324	to = p->gauth_chunks;
5325	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5326	if (!asoc)
5327		return -EINVAL;
5328
5329	ch = asoc->peer.peer_chunks;
5330	if (!ch)
5331		goto num;
5332
5333	/* See if the user provided enough room for all the data */
5334	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5335	if (len < num_chunks)
5336		return -EINVAL;
5337
5338	if (copy_to_user(to, ch->chunks, num_chunks))
5339		return -EFAULT;
5340num:
5341	len = sizeof(struct sctp_authchunks) + num_chunks;
5342	if (put_user(len, optlen)) return -EFAULT;
5343	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5344		return -EFAULT;
5345	return 0;
5346}
5347
5348static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5349				    char __user *optval, int __user *optlen)
5350{
5351	struct sctp_authchunks __user *p = (void __user *)optval;
5352	struct sctp_authchunks val;
5353	struct sctp_association *asoc;
5354	struct sctp_chunks_param *ch;
5355	u32    num_chunks = 0;
5356	char __user *to;
5357
5358	if (!sctp_auth_enable)
5359		return -EACCES;
5360
5361	if (len < sizeof(struct sctp_authchunks))
5362		return -EINVAL;
5363
5364	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5365		return -EFAULT;
5366
5367	to = p->gauth_chunks;
5368	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5369	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5370		return -EINVAL;
5371
5372	if (asoc)
5373		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5374	else
5375		ch = sctp_sk(sk)->ep->auth_chunk_list;
5376
5377	if (!ch)
5378		goto num;
5379
5380	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5381	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5382		return -EINVAL;
5383
5384	if (copy_to_user(to, ch->chunks, num_chunks))
5385		return -EFAULT;
5386num:
5387	len = sizeof(struct sctp_authchunks) + num_chunks;
5388	if (put_user(len, optlen))
5389		return -EFAULT;
5390	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5391		return -EFAULT;
5392
5393	return 0;
5394}
5395
5396/*
5397 * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5398 * This option gets the current number of associations that are attached
5399 * to a one-to-many style socket.  The option value is an uint32_t.
5400 */
5401static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5402				    char __user *optval, int __user *optlen)
5403{
5404	struct sctp_sock *sp = sctp_sk(sk);
5405	struct sctp_association *asoc;
5406	u32 val = 0;
5407
5408	if (sctp_style(sk, TCP))
5409		return -EOPNOTSUPP;
5410
5411	if (len < sizeof(u32))
5412		return -EINVAL;
5413
5414	len = sizeof(u32);
5415
5416	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5417		val++;
5418	}
5419
5420	if (put_user(len, optlen))
5421		return -EFAULT;
5422	if (copy_to_user(optval, &val, len))
5423		return -EFAULT;
5424
5425	return 0;
5426}
5427
5428/*
5429 * 8.1.23 SCTP_AUTO_ASCONF
5430 * See the corresponding setsockopt entry as description
5431 */
5432static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5433				   char __user *optval, int __user *optlen)
5434{
5435	int val = 0;
5436
5437	if (len < sizeof(int))
5438		return -EINVAL;
5439
5440	len = sizeof(int);
5441	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5442		val = 1;
5443	if (put_user(len, optlen))
5444		return -EFAULT;
5445	if (copy_to_user(optval, &val, len))
5446		return -EFAULT;
5447	return 0;
5448}
5449
5450/*
5451 * 8.2.6. Get the Current Identifiers of Associations
5452 *        (SCTP_GET_ASSOC_ID_LIST)
5453 *
5454 * This option gets the current list of SCTP association identifiers of
5455 * the SCTP associations handled by a one-to-many style socket.
5456 */
5457static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5458				    char __user *optval, int __user *optlen)
5459{
5460	struct sctp_sock *sp = sctp_sk(sk);
5461	struct sctp_association *asoc;
5462	struct sctp_assoc_ids *ids;
5463	u32 num = 0;
5464
5465	if (sctp_style(sk, TCP))
5466		return -EOPNOTSUPP;
5467
5468	if (len < sizeof(struct sctp_assoc_ids))
5469		return -EINVAL;
5470
5471	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5472		num++;
5473	}
5474
5475	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5476		return -EINVAL;
5477
5478	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5479
5480	ids = kmalloc(len, GFP_KERNEL);
5481	if (unlikely(!ids))
5482		return -ENOMEM;
5483
5484	ids->gaids_number_of_ids = num;
5485	num = 0;
5486	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5487		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5488	}
5489
5490	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5491		kfree(ids);
5492		return -EFAULT;
5493	}
5494
5495	kfree(ids);
5496	return 0;
5497}
5498
5499SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5500				char __user *optval, int __user *optlen)
5501{
5502	int retval = 0;
5503	int len;
5504
5505	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5506			  sk, optname);
5507
5508	/* I can hardly begin to describe how wrong this is.  This is
5509	 * so broken as to be worse than useless.  The API draft
5510	 * REALLY is NOT helpful here...  I am not convinced that the
5511	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5512	 * are at all well-founded.
5513	 */
5514	if (level != SOL_SCTP) {
5515		struct sctp_af *af = sctp_sk(sk)->pf->af;
5516
5517		retval = af->getsockopt(sk, level, optname, optval, optlen);
5518		return retval;
5519	}
5520
5521	if (get_user(len, optlen))
5522		return -EFAULT;
5523
5524	sctp_lock_sock(sk);
5525
5526	switch (optname) {
5527	case SCTP_STATUS:
5528		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5529		break;
5530	case SCTP_DISABLE_FRAGMENTS:
5531		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5532							   optlen);
5533		break;
5534	case SCTP_EVENTS:
5535		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5536		break;
5537	case SCTP_AUTOCLOSE:
5538		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5539		break;
5540	case SCTP_SOCKOPT_PEELOFF:
5541		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5542		break;
5543	case SCTP_PEER_ADDR_PARAMS:
5544		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5545							  optlen);
5546		break;
5547	case SCTP_DELAYED_SACK:
5548		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5549							  optlen);
5550		break;
5551	case SCTP_INITMSG:
5552		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5553		break;
5554	case SCTP_GET_PEER_ADDRS:
5555		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5556						    optlen);
5557		break;
5558	case SCTP_GET_LOCAL_ADDRS:
5559		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5560						     optlen);
5561		break;
5562	case SCTP_SOCKOPT_CONNECTX3:
5563		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5564		break;
5565	case SCTP_DEFAULT_SEND_PARAM:
5566		retval = sctp_getsockopt_default_send_param(sk, len,
5567							    optval, optlen);
5568		break;
5569	case SCTP_PRIMARY_ADDR:
5570		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5571		break;
5572	case SCTP_NODELAY:
5573		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5574		break;
5575	case SCTP_RTOINFO:
5576		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5577		break;
5578	case SCTP_ASSOCINFO:
5579		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5580		break;
5581	case SCTP_I_WANT_MAPPED_V4_ADDR:
5582		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5583		break;
5584	case SCTP_MAXSEG:
5585		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5586		break;
5587	case SCTP_GET_PEER_ADDR_INFO:
5588		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5589							optlen);
5590		break;
5591	case SCTP_ADAPTATION_LAYER:
5592		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5593							optlen);
5594		break;
5595	case SCTP_CONTEXT:
5596		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5597		break;
5598	case SCTP_FRAGMENT_INTERLEAVE:
5599		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5600							     optlen);
5601		break;
5602	case SCTP_PARTIAL_DELIVERY_POINT:
5603		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5604								optlen);
5605		break;
5606	case SCTP_MAX_BURST:
5607		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5608		break;
5609	case SCTP_AUTH_KEY:
5610	case SCTP_AUTH_CHUNK:
5611	case SCTP_AUTH_DELETE_KEY:
5612		retval = -EOPNOTSUPP;
5613		break;
5614	case SCTP_HMAC_IDENT:
5615		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5616		break;
5617	case SCTP_AUTH_ACTIVE_KEY:
5618		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5619		break;
5620	case SCTP_PEER_AUTH_CHUNKS:
5621		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5622							optlen);
5623		break;
5624	case SCTP_LOCAL_AUTH_CHUNKS:
5625		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5626							optlen);
5627		break;
5628	case SCTP_GET_ASSOC_NUMBER:
5629		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5630		break;
5631	case SCTP_GET_ASSOC_ID_LIST:
5632		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5633		break;
5634	case SCTP_AUTO_ASCONF:
5635		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5636		break;
5637	default:
5638		retval = -ENOPROTOOPT;
5639		break;
5640	}
5641
5642	sctp_release_sock(sk);
5643	return retval;
5644}
5645
5646static void sctp_hash(struct sock *sk)
5647{
5648	/* STUB */
5649}
5650
5651static void sctp_unhash(struct sock *sk)
5652{
5653	/* STUB */
5654}
5655
5656/* Check if port is acceptable.  Possibly find first available port.
5657 *
5658 * The port hash table (contained in the 'global' SCTP protocol storage
5659 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5660 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5661 * list (the list number is the port number hashed out, so as you
5662 * would expect from a hash function, all the ports in a given list have
5663 * such a number that hashes out to the same list number; you were
5664 * expecting that, right?); so each list has a set of ports, with a
5665 * link to the socket (struct sock) that uses it, the port number and
5666 * a fastreuse flag (FIXME: NPI ipg).
5667 */
5668static struct sctp_bind_bucket *sctp_bucket_create(
5669	struct sctp_bind_hashbucket *head, unsigned short snum);
5670
5671static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5672{
5673	struct sctp_bind_hashbucket *head; /* hash list */
5674	struct sctp_bind_bucket *pp; /* hash list port iterator */
5675	struct hlist_node *node;
5676	unsigned short snum;
5677	int ret;
5678
5679	snum = ntohs(addr->v4.sin_port);
5680
5681	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5682	sctp_local_bh_disable();
5683
5684	if (snum == 0) {
5685		/* Search for an available port. */
5686		int low, high, remaining, index;
5687		unsigned int rover;
5688
5689		inet_get_local_port_range(&low, &high);
5690		remaining = (high - low) + 1;
5691		rover = net_random() % remaining + low;
5692
5693		do {
5694			rover++;
5695			if ((rover < low) || (rover > high))
5696				rover = low;
5697			if (inet_is_reserved_local_port(rover))
5698				continue;
5699			index = sctp_phashfn(rover);
5700			head = &sctp_port_hashtable[index];
5701			sctp_spin_lock(&head->lock);
5702			sctp_for_each_hentry(pp, node, &head->chain)
5703				if (pp->port == rover)
5704					goto next;
5705			break;
5706		next:
5707			sctp_spin_unlock(&head->lock);
5708		} while (--remaining > 0);
5709
5710		/* Exhausted local port range during search? */
5711		ret = 1;
5712		if (remaining <= 0)
5713			goto fail;
5714
5715		/* OK, here is the one we will use.  HEAD (the port
5716		 * hash table list entry) is non-NULL and we hold it's
5717		 * mutex.
5718		 */
5719		snum = rover;
5720	} else {
5721		/* We are given an specific port number; we verify
5722		 * that it is not being used. If it is used, we will
5723		 * exahust the search in the hash list corresponding
5724		 * to the port number (snum) - we detect that with the
5725		 * port iterator, pp being NULL.
5726		 */
5727		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5728		sctp_spin_lock(&head->lock);
5729		sctp_for_each_hentry(pp, node, &head->chain) {
5730			if (pp->port == snum)
5731				goto pp_found;
5732		}
5733	}
5734	pp = NULL;
5735	goto pp_not_found;
5736pp_found:
5737	if (!hlist_empty(&pp->owner)) {
5738		/* We had a port hash table hit - there is an
5739		 * available port (pp != NULL) and it is being
5740		 * used by other socket (pp->owner not empty); that other
5741		 * socket is going to be sk2.
5742		 */
5743		int reuse = sk->sk_reuse;
5744		struct sock *sk2;
5745
5746		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5747		if (pp->fastreuse && sk->sk_reuse &&
5748			sk->sk_state != SCTP_SS_LISTENING)
5749			goto success;
5750
5751		/* Run through the list of sockets bound to the port
5752		 * (pp->port) [via the pointers bind_next and
5753		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5754		 * we get the endpoint they describe and run through
5755		 * the endpoint's list of IP (v4 or v6) addresses,
5756		 * comparing each of the addresses with the address of
5757		 * the socket sk. If we find a match, then that means
5758		 * that this port/socket (sk) combination are already
5759		 * in an endpoint.
5760		 */
5761		sk_for_each_bound(sk2, node, &pp->owner) {
5762			struct sctp_endpoint *ep2;
5763			ep2 = sctp_sk(sk2)->ep;
5764
5765			if (sk == sk2 ||
5766			    (reuse && sk2->sk_reuse &&
5767			     sk2->sk_state != SCTP_SS_LISTENING))
5768				continue;
5769
5770			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5771						 sctp_sk(sk2), sctp_sk(sk))) {
5772				ret = (long)sk2;
5773				goto fail_unlock;
5774			}
5775		}
5776		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5777	}
5778pp_not_found:
5779	/* If there was a hash table miss, create a new port.  */
5780	ret = 1;
5781	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5782		goto fail_unlock;
5783
5784	/* In either case (hit or miss), make sure fastreuse is 1 only
5785	 * if sk->sk_reuse is too (that is, if the caller requested
5786	 * SO_REUSEADDR on this socket -sk-).
5787	 */
5788	if (hlist_empty(&pp->owner)) {
5789		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5790			pp->fastreuse = 1;
5791		else
5792			pp->fastreuse = 0;
5793	} else if (pp->fastreuse &&
5794		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5795		pp->fastreuse = 0;
5796
5797	/* We are set, so fill up all the data in the hash table
5798	 * entry, tie the socket list information with the rest of the
5799	 * sockets FIXME: Blurry, NPI (ipg).
5800	 */
5801success:
5802	if (!sctp_sk(sk)->bind_hash) {
5803		inet_sk(sk)->inet_num = snum;
5804		sk_add_bind_node(sk, &pp->owner);
5805		sctp_sk(sk)->bind_hash = pp;
5806	}
5807	ret = 0;
5808
5809fail_unlock:
5810	sctp_spin_unlock(&head->lock);
5811
5812fail:
5813	sctp_local_bh_enable();
5814	return ret;
5815}
5816
5817/* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5818 * port is requested.
5819 */
5820static int sctp_get_port(struct sock *sk, unsigned short snum)
5821{
5822	long ret;
5823	union sctp_addr addr;
5824	struct sctp_af *af = sctp_sk(sk)->pf->af;
5825
5826	/* Set up a dummy address struct from the sk. */
5827	af->from_sk(&addr, sk);
5828	addr.v4.sin_port = htons(snum);
5829
5830	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5831	ret = sctp_get_port_local(sk, &addr);
5832
5833	return ret ? 1 : 0;
5834}
5835
5836/*
5837 *  Move a socket to LISTENING state.
5838 */
5839SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5840{
5841	struct sctp_sock *sp = sctp_sk(sk);
5842	struct sctp_endpoint *ep = sp->ep;
5843	struct crypto_hash *tfm = NULL;
5844
5845	/* Allocate HMAC for generating cookie. */
5846	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5847		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5848		if (IS_ERR(tfm)) {
5849			if (net_ratelimit()) {
5850				pr_info("failed to load transform for %s: %ld\n",
5851					sctp_hmac_alg, PTR_ERR(tfm));
5852			}
5853			return -ENOSYS;
5854		}
5855		sctp_sk(sk)->hmac = tfm;
5856	}
5857
5858	/*
5859	 * If a bind() or sctp_bindx() is not called prior to a listen()
5860	 * call that allows new associations to be accepted, the system
5861	 * picks an ephemeral port and will choose an address set equivalent
5862	 * to binding with a wildcard address.
5863	 *
5864	 * This is not currently spelled out in the SCTP sockets
5865	 * extensions draft, but follows the practice as seen in TCP
5866	 * sockets.
5867	 *
5868	 */
5869	sk->sk_state = SCTP_SS_LISTENING;
5870	if (!ep->base.bind_addr.port) {
5871		if (sctp_autobind(sk))
5872			return -EAGAIN;
5873	} else {
5874		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875			sk->sk_state = SCTP_SS_CLOSED;
5876			return -EADDRINUSE;
5877		}
5878	}
5879
5880	sk->sk_max_ack_backlog = backlog;
5881	sctp_hash_endpoint(ep);
5882	return 0;
5883}
5884
5885/*
5886 * 4.1.3 / 5.1.3 listen()
5887 *
5888 *   By default, new associations are not accepted for UDP style sockets.
5889 *   An application uses listen() to mark a socket as being able to
5890 *   accept new associations.
5891 *
5892 *   On TCP style sockets, applications use listen() to ready the SCTP
5893 *   endpoint for accepting inbound associations.
5894 *
5895 *   On both types of endpoints a backlog of '0' disables listening.
5896 *
5897 *  Move a socket to LISTENING state.
5898 */
5899int sctp_inet_listen(struct socket *sock, int backlog)
5900{
5901	struct sock *sk = sock->sk;
5902	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903	int err = -EINVAL;
5904
5905	if (unlikely(backlog < 0))
5906		return err;
5907
5908	sctp_lock_sock(sk);
5909
5910	/* Peeled-off sockets are not allowed to listen().  */
5911	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912		goto out;
5913
5914	if (sock->state != SS_UNCONNECTED)
5915		goto out;
5916
5917	/* If backlog is zero, disable listening. */
5918	if (!backlog) {
5919		if (sctp_sstate(sk, CLOSED))
5920			goto out;
5921
5922		err = 0;
5923		sctp_unhash_endpoint(ep);
5924		sk->sk_state = SCTP_SS_CLOSED;
5925		if (sk->sk_reuse)
5926			sctp_sk(sk)->bind_hash->fastreuse = 1;
5927		goto out;
5928	}
5929
5930	/* If we are already listening, just update the backlog */
5931	if (sctp_sstate(sk, LISTENING))
5932		sk->sk_max_ack_backlog = backlog;
5933	else {
5934		err = sctp_listen_start(sk, backlog);
5935		if (err)
5936			goto out;
5937	}
5938
5939	err = 0;
5940out:
5941	sctp_release_sock(sk);
5942	return err;
5943}
5944
5945/*
5946 * This function is done by modeling the current datagram_poll() and the
5947 * tcp_poll().  Note that, based on these implementations, we don't
5948 * lock the socket in this function, even though it seems that,
5949 * ideally, locking or some other mechanisms can be used to ensure
5950 * the integrity of the counters (sndbuf and wmem_alloc) used
5951 * in this place.  We assume that we don't need locks either until proven
5952 * otherwise.
5953 *
5954 * Another thing to note is that we include the Async I/O support
5955 * here, again, by modeling the current TCP/UDP code.  We don't have
5956 * a good way to test with it yet.
5957 */
5958unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959{
5960	struct sock *sk = sock->sk;
5961	struct sctp_sock *sp = sctp_sk(sk);
5962	unsigned int mask;
5963
5964	poll_wait(file, sk_sleep(sk), wait);
5965
5966	/* A TCP-style listening socket becomes readable when the accept queue
5967	 * is not empty.
5968	 */
5969	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970		return (!list_empty(&sp->ep->asocs)) ?
5971			(POLLIN | POLLRDNORM) : 0;
5972
5973	mask = 0;
5974
5975	/* Is there any exceptional events?  */
5976	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977		mask |= POLLERR;
5978	if (sk->sk_shutdown & RCV_SHUTDOWN)
5979		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980	if (sk->sk_shutdown == SHUTDOWN_MASK)
5981		mask |= POLLHUP;
5982
5983	/* Is it readable?  Reconsider this code with TCP-style support.  */
5984	if (!skb_queue_empty(&sk->sk_receive_queue))
5985		mask |= POLLIN | POLLRDNORM;
5986
5987	/* The association is either gone or not ready.  */
5988	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989		return mask;
5990
5991	/* Is it writable?  */
5992	if (sctp_writeable(sk)) {
5993		mask |= POLLOUT | POLLWRNORM;
5994	} else {
5995		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996		/*
5997		 * Since the socket is not locked, the buffer
5998		 * might be made available after the writeable check and
5999		 * before the bit is set.  This could cause a lost I/O
6000		 * signal.  tcp_poll() has a race breaker for this race
6001		 * condition.  Based on their implementation, we put
6002		 * in the following code to cover it as well.
6003		 */
6004		if (sctp_writeable(sk))
6005			mask |= POLLOUT | POLLWRNORM;
6006	}
6007	return mask;
6008}
6009
6010/********************************************************************
6011 * 2nd Level Abstractions
6012 ********************************************************************/
6013
6014static struct sctp_bind_bucket *sctp_bucket_create(
6015	struct sctp_bind_hashbucket *head, unsigned short snum)
6016{
6017	struct sctp_bind_bucket *pp;
6018
6019	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020	if (pp) {
6021		SCTP_DBG_OBJCNT_INC(bind_bucket);
6022		pp->port = snum;
6023		pp->fastreuse = 0;
6024		INIT_HLIST_HEAD(&pp->owner);
6025		hlist_add_head(&pp->node, &head->chain);
6026	}
6027	return pp;
6028}
6029
6030/* Caller must hold hashbucket lock for this tb with local BH disabled */
6031static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032{
6033	if (pp && hlist_empty(&pp->owner)) {
6034		__hlist_del(&pp->node);
6035		kmem_cache_free(sctp_bucket_cachep, pp);
6036		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037	}
6038}
6039
6040/* Release this socket's reference to a local port.  */
6041static inline void __sctp_put_port(struct sock *sk)
6042{
6043	struct sctp_bind_hashbucket *head =
6044		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6045	struct sctp_bind_bucket *pp;
6046
6047	sctp_spin_lock(&head->lock);
6048	pp = sctp_sk(sk)->bind_hash;
6049	__sk_del_bind_node(sk);
6050	sctp_sk(sk)->bind_hash = NULL;
6051	inet_sk(sk)->inet_num = 0;
6052	sctp_bucket_destroy(pp);
6053	sctp_spin_unlock(&head->lock);
6054}
6055
6056void sctp_put_port(struct sock *sk)
6057{
6058	sctp_local_bh_disable();
6059	__sctp_put_port(sk);
6060	sctp_local_bh_enable();
6061}
6062
6063/*
6064 * The system picks an ephemeral port and choose an address set equivalent
6065 * to binding with a wildcard address.
6066 * One of those addresses will be the primary address for the association.
6067 * This automatically enables the multihoming capability of SCTP.
6068 */
6069static int sctp_autobind(struct sock *sk)
6070{
6071	union sctp_addr autoaddr;
6072	struct sctp_af *af;
6073	__be16 port;
6074
6075	/* Initialize a local sockaddr structure to INADDR_ANY. */
6076	af = sctp_sk(sk)->pf->af;
6077
6078	port = htons(inet_sk(sk)->inet_num);
6079	af->inaddr_any(&autoaddr, port);
6080
6081	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082}
6083
6084/* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6085 *
6086 * From RFC 2292
6087 * 4.2 The cmsghdr Structure *
6088 *
6089 * When ancillary data is sent or received, any number of ancillary data
6090 * objects can be specified by the msg_control and msg_controllen members of
6091 * the msghdr structure, because each object is preceded by
6092 * a cmsghdr structure defining the object's length (the cmsg_len member).
6093 * Historically Berkeley-derived implementations have passed only one object
6094 * at a time, but this API allows multiple objects to be
6095 * passed in a single call to sendmsg() or recvmsg(). The following example
6096 * shows two ancillary data objects in a control buffer.
6097 *
6098 *   |<--------------------------- msg_controllen -------------------------->|
6099 *   |                                                                       |
6100 *
6101 *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102 *
6103 *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104 *   |                                   |                                   |
6105 *
6106 *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6107 *
6108 *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6109 *   |                                |  |                                |  |
6110 *
6111 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112 *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6113 *
6114 *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6115 *
6116 *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117 *    ^
6118 *    |
6119 *
6120 * msg_control
6121 * points here
6122 */
6123SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124				  sctp_cmsgs_t *cmsgs)
6125{
6126	struct cmsghdr *cmsg;
6127	struct msghdr *my_msg = (struct msghdr *)msg;
6128
6129	for (cmsg = CMSG_FIRSTHDR(msg);
6130	     cmsg != NULL;
6131	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132		if (!CMSG_OK(my_msg, cmsg))
6133			return -EINVAL;
6134
6135		/* Should we parse this header or ignore?  */
6136		if (cmsg->cmsg_level != IPPROTO_SCTP)
6137			continue;
6138
6139		/* Strictly check lengths following example in SCM code.  */
6140		switch (cmsg->cmsg_type) {
6141		case SCTP_INIT:
6142			/* SCTP Socket API Extension
6143			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144			 *
6145			 * This cmsghdr structure provides information for
6146			 * initializing new SCTP associations with sendmsg().
6147			 * The SCTP_INITMSG socket option uses this same data
6148			 * structure.  This structure is not used for
6149			 * recvmsg().
6150			 *
6151			 * cmsg_level    cmsg_type      cmsg_data[]
6152			 * ------------  ------------   ----------------------
6153			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6154			 */
6155			if (cmsg->cmsg_len !=
6156			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6157				return -EINVAL;
6158			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159			break;
6160
6161		case SCTP_SNDRCV:
6162			/* SCTP Socket API Extension
6163			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164			 *
6165			 * This cmsghdr structure specifies SCTP options for
6166			 * sendmsg() and describes SCTP header information
6167			 * about a received message through recvmsg().
6168			 *
6169			 * cmsg_level    cmsg_type      cmsg_data[]
6170			 * ------------  ------------   ----------------------
6171			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6172			 */
6173			if (cmsg->cmsg_len !=
6174			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175				return -EINVAL;
6176
6177			cmsgs->info =
6178				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179
6180			/* Minimally, validate the sinfo_flags. */
6181			if (cmsgs->info->sinfo_flags &
6182			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183			      SCTP_ABORT | SCTP_EOF))
6184				return -EINVAL;
6185			break;
6186
6187		default:
6188			return -EINVAL;
6189		}
6190	}
6191	return 0;
6192}
6193
6194/*
6195 * Wait for a packet..
6196 * Note: This function is the same function as in core/datagram.c
6197 * with a few modifications to make lksctp work.
6198 */
6199static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200{
6201	int error;
6202	DEFINE_WAIT(wait);
6203
6204	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205
6206	/* Socket errors? */
6207	error = sock_error(sk);
6208	if (error)
6209		goto out;
6210
6211	if (!skb_queue_empty(&sk->sk_receive_queue))
6212		goto ready;
6213
6214	/* Socket shut down?  */
6215	if (sk->sk_shutdown & RCV_SHUTDOWN)
6216		goto out;
6217
6218	/* Sequenced packets can come disconnected.  If so we report the
6219	 * problem.
6220	 */
6221	error = -ENOTCONN;
6222
6223	/* Is there a good reason to think that we may receive some data?  */
6224	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225		goto out;
6226
6227	/* Handle signals.  */
6228	if (signal_pending(current))
6229		goto interrupted;
6230
6231	/* Let another process have a go.  Since we are going to sleep
6232	 * anyway.  Note: This may cause odd behaviors if the message
6233	 * does not fit in the user's buffer, but this seems to be the
6234	 * only way to honor MSG_DONTWAIT realistically.
6235	 */
6236	sctp_release_sock(sk);
6237	*timeo_p = schedule_timeout(*timeo_p);
6238	sctp_lock_sock(sk);
6239
6240ready:
6241	finish_wait(sk_sleep(sk), &wait);
6242	return 0;
6243
6244interrupted:
6245	error = sock_intr_errno(*timeo_p);
6246
6247out:
6248	finish_wait(sk_sleep(sk), &wait);
6249	*err = error;
6250	return error;
6251}
6252
6253/* Receive a datagram.
6254 * Note: This is pretty much the same routine as in core/datagram.c
6255 * with a few changes to make lksctp work.
6256 */
6257static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258					      int noblock, int *err)
6259{
6260	int error;
6261	struct sk_buff *skb;
6262	long timeo;
6263
6264	timeo = sock_rcvtimeo(sk, noblock);
6265
6266	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267			  timeo, MAX_SCHEDULE_TIMEOUT);
6268
6269	do {
6270		/* Again only user level code calls this function,
6271		 * so nothing interrupt level
6272		 * will suddenly eat the receive_queue.
6273		 *
6274		 *  Look at current nfs client by the way...
6275		 *  However, this function was correct in any case. 8)
6276		 */
6277		if (flags & MSG_PEEK) {
6278			spin_lock_bh(&sk->sk_receive_queue.lock);
6279			skb = skb_peek(&sk->sk_receive_queue);
6280			if (skb)
6281				atomic_inc(&skb->users);
6282			spin_unlock_bh(&sk->sk_receive_queue.lock);
6283		} else {
6284			skb = skb_dequeue(&sk->sk_receive_queue);
6285		}
6286
6287		if (skb)
6288			return skb;
6289
6290		/* Caller is allowed not to check sk->sk_err before calling. */
6291		error = sock_error(sk);
6292		if (error)
6293			goto no_packet;
6294
6295		if (sk->sk_shutdown & RCV_SHUTDOWN)
6296			break;
6297
6298		/* User doesn't want to wait.  */
6299		error = -EAGAIN;
6300		if (!timeo)
6301			goto no_packet;
6302	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303
6304	return NULL;
6305
6306no_packet:
6307	*err = error;
6308	return NULL;
6309}
6310
6311/* If sndbuf has changed, wake up per association sndbuf waiters.  */
6312static void __sctp_write_space(struct sctp_association *asoc)
6313{
6314	struct sock *sk = asoc->base.sk;
6315	struct socket *sock = sk->sk_socket;
6316
6317	if ((sctp_wspace(asoc) > 0) && sock) {
6318		if (waitqueue_active(&asoc->wait))
6319			wake_up_interruptible(&asoc->wait);
6320
6321		if (sctp_writeable(sk)) {
6322			wait_queue_head_t *wq = sk_sleep(sk);
6323
6324			if (wq && waitqueue_active(wq))
6325				wake_up_interruptible(wq);
6326
6327			/* Note that we try to include the Async I/O support
6328			 * here by modeling from the current TCP/UDP code.
6329			 * We have not tested with it yet.
6330			 */
6331			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332				sock_wake_async(sock,
6333						SOCK_WAKE_SPACE, POLL_OUT);
6334		}
6335	}
6336}
6337
6338/* Do accounting for the sndbuf space.
6339 * Decrement the used sndbuf space of the corresponding association by the
6340 * data size which was just transmitted(freed).
6341 */
6342static void sctp_wfree(struct sk_buff *skb)
6343{
6344	struct sctp_association *asoc;
6345	struct sctp_chunk *chunk;
6346	struct sock *sk;
6347
6348	/* Get the saved chunk pointer.  */
6349	chunk = *((struct sctp_chunk **)(skb->cb));
6350	asoc = chunk->asoc;
6351	sk = asoc->base.sk;
6352	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353				sizeof(struct sk_buff) +
6354				sizeof(struct sctp_chunk);
6355
6356	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357
6358	/*
6359	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360	 */
6361	sk->sk_wmem_queued   -= skb->truesize;
6362	sk_mem_uncharge(sk, skb->truesize);
6363
6364	sock_wfree(skb);
6365	__sctp_write_space(asoc);
6366
6367	sctp_association_put(asoc);
6368}
6369
6370/* Do accounting for the receive space on the socket.
6371 * Accounting for the association is done in ulpevent.c
6372 * We set this as a destructor for the cloned data skbs so that
6373 * accounting is done at the correct time.
6374 */
6375void sctp_sock_rfree(struct sk_buff *skb)
6376{
6377	struct sock *sk = skb->sk;
6378	struct sctp_ulpevent *event = sctp_skb2event(skb);
6379
6380	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381
6382	/*
6383	 * Mimic the behavior of sock_rfree
6384	 */
6385	sk_mem_uncharge(sk, event->rmem_len);
6386}
6387
6388
6389/* Helper function to wait for space in the sndbuf.  */
6390static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391				size_t msg_len)
6392{
6393	struct sock *sk = asoc->base.sk;
6394	int err = 0;
6395	long current_timeo = *timeo_p;
6396	DEFINE_WAIT(wait);
6397
6398	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399			  asoc, (long)(*timeo_p), msg_len);
6400
6401	/* Increment the association's refcnt.  */
6402	sctp_association_hold(asoc);
6403
6404	/* Wait on the association specific sndbuf space. */
6405	for (;;) {
6406		prepare_to_wait_exclusive(&asoc->wait, &wait,
6407					  TASK_INTERRUPTIBLE);
6408		if (!*timeo_p)
6409			goto do_nonblock;
6410		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411		    asoc->base.dead)
6412			goto do_error;
6413		if (signal_pending(current))
6414			goto do_interrupted;
6415		if (msg_len <= sctp_wspace(asoc))
6416			break;
6417
6418		/* Let another process have a go.  Since we are going
6419		 * to sleep anyway.
6420		 */
6421		sctp_release_sock(sk);
6422		current_timeo = schedule_timeout(current_timeo);
6423		BUG_ON(sk != asoc->base.sk);
6424		sctp_lock_sock(sk);
6425
6426		*timeo_p = current_timeo;
6427	}
6428
6429out:
6430	finish_wait(&asoc->wait, &wait);
6431
6432	/* Release the association's refcnt.  */
6433	sctp_association_put(asoc);
6434
6435	return err;
6436
6437do_error:
6438	err = -EPIPE;
6439	goto out;
6440
6441do_interrupted:
6442	err = sock_intr_errno(*timeo_p);
6443	goto out;
6444
6445do_nonblock:
6446	err = -EAGAIN;
6447	goto out;
6448}
6449
6450void sctp_data_ready(struct sock *sk, int len)
6451{
6452	struct socket_wq *wq;
6453
6454	rcu_read_lock();
6455	wq = rcu_dereference(sk->sk_wq);
6456	if (wq_has_sleeper(wq))
6457		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458						POLLRDNORM | POLLRDBAND);
6459	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460	rcu_read_unlock();
6461}
6462
6463/* If socket sndbuf has changed, wake up all per association waiters.  */
6464void sctp_write_space(struct sock *sk)
6465{
6466	struct sctp_association *asoc;
6467
6468	/* Wake up the tasks in each wait queue.  */
6469	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470		__sctp_write_space(asoc);
6471	}
6472}
6473
6474/* Is there any sndbuf space available on the socket?
6475 *
6476 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477 * associations on the same socket.  For a UDP-style socket with
6478 * multiple associations, it is possible for it to be "unwriteable"
6479 * prematurely.  I assume that this is acceptable because
6480 * a premature "unwriteable" is better than an accidental "writeable" which
6481 * would cause an unwanted block under certain circumstances.  For the 1-1
6482 * UDP-style sockets or TCP-style sockets, this code should work.
6483 *  - Daisy
6484 */
6485static int sctp_writeable(struct sock *sk)
6486{
6487	int amt = 0;
6488
6489	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490	if (amt < 0)
6491		amt = 0;
6492	return amt;
6493}
6494
6495/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496 * returns immediately with EINPROGRESS.
6497 */
6498static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499{
6500	struct sock *sk = asoc->base.sk;
6501	int err = 0;
6502	long current_timeo = *timeo_p;
6503	DEFINE_WAIT(wait);
6504
6505	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506			  (long)(*timeo_p));
6507
6508	/* Increment the association's refcnt.  */
6509	sctp_association_hold(asoc);
6510
6511	for (;;) {
6512		prepare_to_wait_exclusive(&asoc->wait, &wait,
6513					  TASK_INTERRUPTIBLE);
6514		if (!*timeo_p)
6515			goto do_nonblock;
6516		if (sk->sk_shutdown & RCV_SHUTDOWN)
6517			break;
6518		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519		    asoc->base.dead)
6520			goto do_error;
6521		if (signal_pending(current))
6522			goto do_interrupted;
6523
6524		if (sctp_state(asoc, ESTABLISHED))
6525			break;
6526
6527		/* Let another process have a go.  Since we are going
6528		 * to sleep anyway.
6529		 */
6530		sctp_release_sock(sk);
6531		current_timeo = schedule_timeout(current_timeo);
6532		sctp_lock_sock(sk);
6533
6534		*timeo_p = current_timeo;
6535	}
6536
6537out:
6538	finish_wait(&asoc->wait, &wait);
6539
6540	/* Release the association's refcnt.  */
6541	sctp_association_put(asoc);
6542
6543	return err;
6544
6545do_error:
6546	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547		err = -ETIMEDOUT;
6548	else
6549		err = -ECONNREFUSED;
6550	goto out;
6551
6552do_interrupted:
6553	err = sock_intr_errno(*timeo_p);
6554	goto out;
6555
6556do_nonblock:
6557	err = -EINPROGRESS;
6558	goto out;
6559}
6560
6561static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562{
6563	struct sctp_endpoint *ep;
6564	int err = 0;
6565	DEFINE_WAIT(wait);
6566
6567	ep = sctp_sk(sk)->ep;
6568
6569
6570	for (;;) {
6571		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572					  TASK_INTERRUPTIBLE);
6573
6574		if (list_empty(&ep->asocs)) {
6575			sctp_release_sock(sk);
6576			timeo = schedule_timeout(timeo);
6577			sctp_lock_sock(sk);
6578		}
6579
6580		err = -EINVAL;
6581		if (!sctp_sstate(sk, LISTENING))
6582			break;
6583
6584		err = 0;
6585		if (!list_empty(&ep->asocs))
6586			break;
6587
6588		err = sock_intr_errno(timeo);
6589		if (signal_pending(current))
6590			break;
6591
6592		err = -EAGAIN;
6593		if (!timeo)
6594			break;
6595	}
6596
6597	finish_wait(sk_sleep(sk), &wait);
6598
6599	return err;
6600}
6601
6602static void sctp_wait_for_close(struct sock *sk, long timeout)
6603{
6604	DEFINE_WAIT(wait);
6605
6606	do {
6607		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608		if (list_empty(&sctp_sk(sk)->ep->asocs))
6609			break;
6610		sctp_release_sock(sk);
6611		timeout = schedule_timeout(timeout);
6612		sctp_lock_sock(sk);
6613	} while (!signal_pending(current) && timeout);
6614
6615	finish_wait(sk_sleep(sk), &wait);
6616}
6617
6618static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619{
6620	struct sk_buff *frag;
6621
6622	if (!skb->data_len)
6623		goto done;
6624
6625	/* Don't forget the fragments. */
6626	skb_walk_frags(skb, frag)
6627		sctp_skb_set_owner_r_frag(frag, sk);
6628
6629done:
6630	sctp_skb_set_owner_r(skb, sk);
6631}
6632
6633void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634		    struct sctp_association *asoc)
6635{
6636	struct inet_sock *inet = inet_sk(sk);
6637	struct inet_sock *newinet;
6638
6639	newsk->sk_type = sk->sk_type;
6640	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641	newsk->sk_flags = sk->sk_flags;
6642	newsk->sk_no_check = sk->sk_no_check;
6643	newsk->sk_reuse = sk->sk_reuse;
6644
6645	newsk->sk_shutdown = sk->sk_shutdown;
6646	newsk->sk_destruct = inet_sock_destruct;
6647	newsk->sk_family = sk->sk_family;
6648	newsk->sk_protocol = IPPROTO_SCTP;
6649	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650	newsk->sk_sndbuf = sk->sk_sndbuf;
6651	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652	newsk->sk_lingertime = sk->sk_lingertime;
6653	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655
6656	newinet = inet_sk(newsk);
6657
6658	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6659	 * getsockname() and getpeername()
6660	 */
6661	newinet->inet_sport = inet->inet_sport;
6662	newinet->inet_saddr = inet->inet_saddr;
6663	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664	newinet->inet_dport = htons(asoc->peer.port);
6665	newinet->pmtudisc = inet->pmtudisc;
6666	newinet->inet_id = asoc->next_tsn ^ jiffies;
6667
6668	newinet->uc_ttl = inet->uc_ttl;
6669	newinet->mc_loop = 1;
6670	newinet->mc_ttl = 1;
6671	newinet->mc_index = 0;
6672	newinet->mc_list = NULL;
6673}
6674
6675/* Populate the fields of the newsk from the oldsk and migrate the assoc
6676 * and its messages to the newsk.
6677 */
6678static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679			      struct sctp_association *assoc,
6680			      sctp_socket_type_t type)
6681{
6682	struct sctp_sock *oldsp = sctp_sk(oldsk);
6683	struct sctp_sock *newsp = sctp_sk(newsk);
6684	struct sctp_bind_bucket *pp; /* hash list port iterator */
6685	struct sctp_endpoint *newep = newsp->ep;
6686	struct sk_buff *skb, *tmp;
6687	struct sctp_ulpevent *event;
6688	struct sctp_bind_hashbucket *head;
6689	struct list_head tmplist;
6690
6691	/* Migrate socket buffer sizes and all the socket level options to the
6692	 * new socket.
6693	 */
6694	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696	/* Brute force copy old sctp opt. */
6697	if (oldsp->do_auto_asconf) {
6698		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699		inet_sk_copy_descendant(newsk, oldsk);
6700		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701	} else
6702		inet_sk_copy_descendant(newsk, oldsk);
6703
6704	/* Restore the ep value that was overwritten with the above structure
6705	 * copy.
6706	 */
6707	newsp->ep = newep;
6708	newsp->hmac = NULL;
6709
6710	/* Hook this new socket in to the bind_hash list. */
6711	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712	sctp_local_bh_disable();
6713	sctp_spin_lock(&head->lock);
6714	pp = sctp_sk(oldsk)->bind_hash;
6715	sk_add_bind_node(newsk, &pp->owner);
6716	sctp_sk(newsk)->bind_hash = pp;
6717	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718	sctp_spin_unlock(&head->lock);
6719	sctp_local_bh_enable();
6720
6721	/* Copy the bind_addr list from the original endpoint to the new
6722	 * endpoint so that we can handle restarts properly
6723	 */
6724	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6726
6727	/* Move any messages in the old socket's receive queue that are for the
6728	 * peeled off association to the new socket's receive queue.
6729	 */
6730	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731		event = sctp_skb2event(skb);
6732		if (event->asoc == assoc) {
6733			__skb_unlink(skb, &oldsk->sk_receive_queue);
6734			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6735			sctp_skb_set_owner_r_frag(skb, newsk);
6736		}
6737	}
6738
6739	/* Clean up any messages pending delivery due to partial
6740	 * delivery.   Three cases:
6741	 * 1) No partial deliver;  no work.
6742	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744	 */
6745	skb_queue_head_init(&newsp->pd_lobby);
6746	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747
6748	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749		struct sk_buff_head *queue;
6750
6751		/* Decide which queue to move pd_lobby skbs to. */
6752		if (assoc->ulpq.pd_mode) {
6753			queue = &newsp->pd_lobby;
6754		} else
6755			queue = &newsk->sk_receive_queue;
6756
6757		/* Walk through the pd_lobby, looking for skbs that
6758		 * need moved to the new socket.
6759		 */
6760		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761			event = sctp_skb2event(skb);
6762			if (event->asoc == assoc) {
6763				__skb_unlink(skb, &oldsp->pd_lobby);
6764				__skb_queue_tail(queue, skb);
6765				sctp_skb_set_owner_r_frag(skb, newsk);
6766			}
6767		}
6768
6769		/* Clear up any skbs waiting for the partial
6770		 * delivery to finish.
6771		 */
6772		if (assoc->ulpq.pd_mode)
6773			sctp_clear_pd(oldsk, NULL);
6774
6775	}
6776
6777	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778		sctp_skb_set_owner_r_frag(skb, newsk);
6779
6780	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781		sctp_skb_set_owner_r_frag(skb, newsk);
6782
6783	/* Set the type of socket to indicate that it is peeled off from the
6784	 * original UDP-style socket or created with the accept() call on a
6785	 * TCP-style socket..
6786	 */
6787	newsp->type = type;
6788
6789	/* Mark the new socket "in-use" by the user so that any packets
6790	 * that may arrive on the association after we've moved it are
6791	 * queued to the backlog.  This prevents a potential race between
6792	 * backlog processing on the old socket and new-packet processing
6793	 * on the new socket.
6794	 *
6795	 * The caller has just allocated newsk so we can guarantee that other
6796	 * paths won't try to lock it and then oldsk.
6797	 */
6798	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799	sctp_assoc_migrate(assoc, newsk);
6800
6801	/* If the association on the newsk is already closed before accept()
6802	 * is called, set RCV_SHUTDOWN flag.
6803	 */
6804	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805		newsk->sk_shutdown |= RCV_SHUTDOWN;
6806
6807	newsk->sk_state = SCTP_SS_ESTABLISHED;
6808	sctp_release_sock(newsk);
6809}
6810
6811
6812/* This proto struct describes the ULP interface for SCTP.  */
6813struct proto sctp_prot = {
6814	.name        =	"SCTP",
6815	.owner       =	THIS_MODULE,
6816	.close       =	sctp_close,
6817	.connect     =	sctp_connect,
6818	.disconnect  =	sctp_disconnect,
6819	.accept      =	sctp_accept,
6820	.ioctl       =	sctp_ioctl,
6821	.init        =	sctp_init_sock,
6822	.destroy     =	sctp_destroy_sock,
6823	.shutdown    =	sctp_shutdown,
6824	.setsockopt  =	sctp_setsockopt,
6825	.getsockopt  =	sctp_getsockopt,
6826	.sendmsg     =	sctp_sendmsg,
6827	.recvmsg     =	sctp_recvmsg,
6828	.bind        =	sctp_bind,
6829	.backlog_rcv =	sctp_backlog_rcv,
6830	.hash        =	sctp_hash,
6831	.unhash      =	sctp_unhash,
6832	.get_port    =	sctp_get_port,
6833	.obj_size    =  sizeof(struct sctp_sock),
6834	.sysctl_mem  =  sysctl_sctp_mem,
6835	.sysctl_rmem =  sysctl_sctp_rmem,
6836	.sysctl_wmem =  sysctl_sctp_wmem,
6837	.memory_pressure = &sctp_memory_pressure,
6838	.enter_memory_pressure = sctp_enter_memory_pressure,
6839	.memory_allocated = &sctp_memory_allocated,
6840	.sockets_allocated = &sctp_sockets_allocated,
6841};
6842
6843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6844
6845struct proto sctpv6_prot = {
6846	.name		= "SCTPv6",
6847	.owner		= THIS_MODULE,
6848	.close		= sctp_close,
6849	.connect	= sctp_connect,
6850	.disconnect	= sctp_disconnect,
6851	.accept		= sctp_accept,
6852	.ioctl		= sctp_ioctl,
6853	.init		= sctp_init_sock,
6854	.destroy	= sctp_destroy_sock,
6855	.shutdown	= sctp_shutdown,
6856	.setsockopt	= sctp_setsockopt,
6857	.getsockopt	= sctp_getsockopt,
6858	.sendmsg	= sctp_sendmsg,
6859	.recvmsg	= sctp_recvmsg,
6860	.bind		= sctp_bind,
6861	.backlog_rcv	= sctp_backlog_rcv,
6862	.hash		= sctp_hash,
6863	.unhash		= sctp_unhash,
6864	.get_port	= sctp_get_port,
6865	.obj_size	= sizeof(struct sctp6_sock),
6866	.sysctl_mem	= sysctl_sctp_mem,
6867	.sysctl_rmem	= sysctl_sctp_rmem,
6868	.sysctl_wmem	= sysctl_sctp_wmem,
6869	.memory_pressure = &sctp_memory_pressure,
6870	.enter_memory_pressure = sctp_enter_memory_pressure,
6871	.memory_allocated = &sctp_memory_allocated,
6872	.sockets_allocated = &sctp_sockets_allocated,
6873};
6874#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */