Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  linux/fs/ext4/fsync.c
  3 *
  4 *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
  5 *  from
  6 *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
  7 *                      Laboratoire MASI - Institut Blaise Pascal
  8 *                      Universite Pierre et Marie Curie (Paris VI)
  9 *  from
 10 *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
 11 *
 12 *  ext4fs fsync primitive
 13 *
 14 *  Big-endian to little-endian byte-swapping/bitmaps by
 15 *        David S. Miller (davem@caip.rutgers.edu), 1995
 16 *
 17 *  Removed unnecessary code duplication for little endian machines
 18 *  and excessive __inline__s.
 19 *        Andi Kleen, 1997
 20 *
 21 * Major simplications and cleanup - we only need to do the metadata, because
 22 * we can depend on generic_block_fdatasync() to sync the data blocks.
 23 */
 24
 25#include <linux/time.h>
 26#include <linux/fs.h>
 27#include <linux/sched.h>
 28#include <linux/writeback.h>
 29#include <linux/jbd2.h>
 30#include <linux/blkdev.h>
 31
 32#include "ext4.h"
 33#include "ext4_jbd2.h"
 34
 35#include <trace/events/ext4.h>
 36
 37static void dump_completed_IO(struct inode * inode)
 38{
 39#ifdef	EXT4FS_DEBUG
 40	struct list_head *cur, *before, *after;
 41	ext4_io_end_t *io, *io0, *io1;
 42	unsigned long flags;
 43
 44	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
 45		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
 46		return;
 47	}
 48
 49	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
 50	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
 51	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
 52		cur = &io->list;
 53		before = cur->prev;
 54		io0 = container_of(before, ext4_io_end_t, list);
 55		after = cur->next;
 56		io1 = container_of(after, ext4_io_end_t, list);
 57
 58		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
 59			    io, inode->i_ino, io0, io1);
 60	}
 61	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
 62#endif
 63}
 64
 65/*
 66 * This function is called from ext4_sync_file().
 67 *
 68 * When IO is completed, the work to convert unwritten extents to
 69 * written is queued on workqueue but may not get immediately
 70 * scheduled. When fsync is called, we need to ensure the
 71 * conversion is complete before fsync returns.
 72 * The inode keeps track of a list of pending/completed IO that
 73 * might needs to do the conversion. This function walks through
 74 * the list and convert the related unwritten extents for completed IO
 75 * to written.
 76 * The function return the number of pending IOs on success.
 77 */
 78int ext4_flush_completed_IO(struct inode *inode)
 79{
 80	ext4_io_end_t *io;
 81	struct ext4_inode_info *ei = EXT4_I(inode);
 82	unsigned long flags;
 83	int ret = 0;
 84	int ret2 = 0;
 85
 
 
 
 86	dump_completed_IO(inode);
 87	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 88	while (!list_empty(&ei->i_completed_io_list)){
 89		io = list_entry(ei->i_completed_io_list.next,
 90				ext4_io_end_t, list);
 91		list_del_init(&io->list);
 92		io->flag |= EXT4_IO_END_IN_FSYNC;
 93		/*
 94		 * Calling ext4_end_io_nolock() to convert completed
 95		 * IO to written.
 96		 *
 97		 * When ext4_sync_file() is called, run_queue() may already
 98		 * about to flush the work corresponding to this io structure.
 99		 * It will be upset if it founds the io structure related
100		 * to the work-to-be schedule is freed.
101		 *
102		 * Thus we need to keep the io structure still valid here after
103		 * conversion finished. The io structure has a flag to
104		 * avoid double converting from both fsync and background work
105		 * queue work.
106		 */
107		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
108		ret = ext4_end_io_nolock(io);
 
109		if (ret < 0)
110			ret2 = ret;
111		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
112		io->flag &= ~EXT4_IO_END_IN_FSYNC;
113	}
114	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
115	return (ret2 < 0) ? ret2 : 0;
116}
117
118/*
119 * If we're not journaling and this is a just-created file, we have to
120 * sync our parent directory (if it was freshly created) since
121 * otherwise it will only be written by writeback, leaving a huge
122 * window during which a crash may lose the file.  This may apply for
123 * the parent directory's parent as well, and so on recursively, if
124 * they are also freshly created.
125 */
126static int ext4_sync_parent(struct inode *inode)
127{
128	struct writeback_control wbc;
129	struct dentry *dentry = NULL;
130	struct inode *next;
131	int ret = 0;
132
133	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
134		return 0;
135	inode = igrab(inode);
136	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
137		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
138		dentry = NULL;
139		spin_lock(&inode->i_lock);
140		if (!list_empty(&inode->i_dentry)) {
141			dentry = list_first_entry(&inode->i_dentry,
142						  struct dentry, d_alias);
143			dget(dentry);
144		}
145		spin_unlock(&inode->i_lock);
146		if (!dentry)
147			break;
148		next = igrab(dentry->d_parent->d_inode);
149		dput(dentry);
150		if (!next)
151			break;
152		iput(inode);
153		inode = next;
154		ret = sync_mapping_buffers(inode->i_mapping);
155		if (ret)
156			break;
157		memset(&wbc, 0, sizeof(wbc));
158		wbc.sync_mode = WB_SYNC_ALL;
159		wbc.nr_to_write = 0;         /* only write out the inode */
160		ret = sync_inode(inode, &wbc);
161		if (ret)
162			break;
163	}
164	iput(inode);
165	return ret;
166}
167
168/**
169 * __sync_file - generic_file_fsync without the locking and filemap_write
170 * @inode:	inode to sync
171 * @datasync:	only sync essential metadata if true
172 *
173 * This is just generic_file_fsync without the locking.  This is needed for
174 * nojournal mode to make sure this inodes data/metadata makes it to disk
175 * properly.  The i_mutex should be held already.
176 */
177static int __sync_inode(struct inode *inode, int datasync)
178{
179	int err;
180	int ret;
181
182	ret = sync_mapping_buffers(inode->i_mapping);
183	if (!(inode->i_state & I_DIRTY))
184		return ret;
185	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
186		return ret;
187
188	err = sync_inode_metadata(inode, 1);
189	if (ret == 0)
190		ret = err;
191	return ret;
192}
193
194/*
195 * akpm: A new design for ext4_sync_file().
196 *
197 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
198 * There cannot be a transaction open by this task.
199 * Another task could have dirtied this inode.  Its data can be in any
200 * state in the journalling system.
201 *
202 * What we do is just kick off a commit and wait on it.  This will snapshot the
203 * inode to disk.
204 *
205 * i_mutex lock is held when entering and exiting this function
206 */
207
208int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
209{
210	struct inode *inode = file->f_mapping->host;
211	struct ext4_inode_info *ei = EXT4_I(inode);
212	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213	int ret;
214	tid_t commit_tid;
215	bool needs_barrier = false;
216
217	J_ASSERT(ext4_journal_current_handle() == NULL);
218
219	trace_ext4_sync_file_enter(file, datasync);
220
221	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
222	if (ret)
223		return ret;
224	mutex_lock(&inode->i_mutex);
225
226	if (inode->i_sb->s_flags & MS_RDONLY)
227		goto out;
228
229	ret = ext4_flush_completed_IO(inode);
230	if (ret < 0)
231		goto out;
232
233	if (!journal) {
234		ret = __sync_inode(inode, datasync);
235		if (!ret && !list_empty(&inode->i_dentry))
236			ret = ext4_sync_parent(inode);
237		goto out;
238	}
239
240	/*
241	 * data=writeback,ordered:
242	 *  The caller's filemap_fdatawrite()/wait will sync the data.
243	 *  Metadata is in the journal, we wait for proper transaction to
244	 *  commit here.
245	 *
246	 * data=journal:
247	 *  filemap_fdatawrite won't do anything (the buffers are clean).
248	 *  ext4_force_commit will write the file data into the journal and
249	 *  will wait on that.
250	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
251	 *  (they were dirtied by commit).  But that's OK - the blocks are
252	 *  safe in-journal, which is all fsync() needs to ensure.
253	 */
254	if (ext4_should_journal_data(inode)) {
255		ret = ext4_force_commit(inode->i_sb);
256		goto out;
257	}
258
259	commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
260	if (journal->j_flags & JBD2_BARRIER &&
261	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
262		needs_barrier = true;
263	jbd2_log_start_commit(journal, commit_tid);
264	ret = jbd2_log_wait_commit(journal, commit_tid);
265	if (needs_barrier)
266		blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
267 out:
268	mutex_unlock(&inode->i_mutex);
269	trace_ext4_sync_file_exit(inode, ret);
270	return ret;
271}
v3.1
  1/*
  2 *  linux/fs/ext4/fsync.c
  3 *
  4 *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
  5 *  from
  6 *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
  7 *                      Laboratoire MASI - Institut Blaise Pascal
  8 *                      Universite Pierre et Marie Curie (Paris VI)
  9 *  from
 10 *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
 11 *
 12 *  ext4fs fsync primitive
 13 *
 14 *  Big-endian to little-endian byte-swapping/bitmaps by
 15 *        David S. Miller (davem@caip.rutgers.edu), 1995
 16 *
 17 *  Removed unnecessary code duplication for little endian machines
 18 *  and excessive __inline__s.
 19 *        Andi Kleen, 1997
 20 *
 21 * Major simplications and cleanup - we only need to do the metadata, because
 22 * we can depend on generic_block_fdatasync() to sync the data blocks.
 23 */
 24
 25#include <linux/time.h>
 26#include <linux/fs.h>
 27#include <linux/sched.h>
 28#include <linux/writeback.h>
 29#include <linux/jbd2.h>
 30#include <linux/blkdev.h>
 31
 32#include "ext4.h"
 33#include "ext4_jbd2.h"
 34
 35#include <trace/events/ext4.h>
 36
 37static void dump_completed_IO(struct inode * inode)
 38{
 39#ifdef	EXT4FS_DEBUG
 40	struct list_head *cur, *before, *after;
 41	ext4_io_end_t *io, *io0, *io1;
 42	unsigned long flags;
 43
 44	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
 45		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
 46		return;
 47	}
 48
 49	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
 50	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
 51	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
 52		cur = &io->list;
 53		before = cur->prev;
 54		io0 = container_of(before, ext4_io_end_t, list);
 55		after = cur->next;
 56		io1 = container_of(after, ext4_io_end_t, list);
 57
 58		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
 59			    io, inode->i_ino, io0, io1);
 60	}
 61	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
 62#endif
 63}
 64
 65/*
 66 * This function is called from ext4_sync_file().
 67 *
 68 * When IO is completed, the work to convert unwritten extents to
 69 * written is queued on workqueue but may not get immediately
 70 * scheduled. When fsync is called, we need to ensure the
 71 * conversion is complete before fsync returns.
 72 * The inode keeps track of a list of pending/completed IO that
 73 * might needs to do the conversion. This function walks through
 74 * the list and convert the related unwritten extents for completed IO
 75 * to written.
 76 * The function return the number of pending IOs on success.
 77 */
 78extern int ext4_flush_completed_IO(struct inode *inode)
 79{
 80	ext4_io_end_t *io;
 81	struct ext4_inode_info *ei = EXT4_I(inode);
 82	unsigned long flags;
 83	int ret = 0;
 84	int ret2 = 0;
 85
 86	if (list_empty(&ei->i_completed_io_list))
 87		return ret;
 88
 89	dump_completed_IO(inode);
 90	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 91	while (!list_empty(&ei->i_completed_io_list)){
 92		io = list_entry(ei->i_completed_io_list.next,
 93				ext4_io_end_t, list);
 
 
 94		/*
 95		 * Calling ext4_end_io_nolock() to convert completed
 96		 * IO to written.
 97		 *
 98		 * When ext4_sync_file() is called, run_queue() may already
 99		 * about to flush the work corresponding to this io structure.
100		 * It will be upset if it founds the io structure related
101		 * to the work-to-be schedule is freed.
102		 *
103		 * Thus we need to keep the io structure still valid here after
104		 * conversion finished. The io structure has a flag to
105		 * avoid double converting from both fsync and background work
106		 * queue work.
107		 */
108		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
109		ret = ext4_end_io_nolock(io);
110		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111		if (ret < 0)
112			ret2 = ret;
113		else
114			list_del_init(&io->list);
115	}
116	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
117	return (ret2 < 0) ? ret2 : 0;
118}
119
120/*
121 * If we're not journaling and this is a just-created file, we have to
122 * sync our parent directory (if it was freshly created) since
123 * otherwise it will only be written by writeback, leaving a huge
124 * window during which a crash may lose the file.  This may apply for
125 * the parent directory's parent as well, and so on recursively, if
126 * they are also freshly created.
127 */
128static int ext4_sync_parent(struct inode *inode)
129{
130	struct writeback_control wbc;
131	struct dentry *dentry = NULL;
132	struct inode *next;
133	int ret = 0;
134
135	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
136		return 0;
137	inode = igrab(inode);
138	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
139		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
140		dentry = NULL;
141		spin_lock(&inode->i_lock);
142		if (!list_empty(&inode->i_dentry)) {
143			dentry = list_first_entry(&inode->i_dentry,
144						  struct dentry, d_alias);
145			dget(dentry);
146		}
147		spin_unlock(&inode->i_lock);
148		if (!dentry)
149			break;
150		next = igrab(dentry->d_parent->d_inode);
151		dput(dentry);
152		if (!next)
153			break;
154		iput(inode);
155		inode = next;
156		ret = sync_mapping_buffers(inode->i_mapping);
157		if (ret)
158			break;
159		memset(&wbc, 0, sizeof(wbc));
160		wbc.sync_mode = WB_SYNC_ALL;
161		wbc.nr_to_write = 0;         /* only write out the inode */
162		ret = sync_inode(inode, &wbc);
163		if (ret)
164			break;
165	}
166	iput(inode);
167	return ret;
168}
169
170/**
171 * __sync_file - generic_file_fsync without the locking and filemap_write
172 * @inode:	inode to sync
173 * @datasync:	only sync essential metadata if true
174 *
175 * This is just generic_file_fsync without the locking.  This is needed for
176 * nojournal mode to make sure this inodes data/metadata makes it to disk
177 * properly.  The i_mutex should be held already.
178 */
179static int __sync_inode(struct inode *inode, int datasync)
180{
181	int err;
182	int ret;
183
184	ret = sync_mapping_buffers(inode->i_mapping);
185	if (!(inode->i_state & I_DIRTY))
186		return ret;
187	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
188		return ret;
189
190	err = sync_inode_metadata(inode, 1);
191	if (ret == 0)
192		ret = err;
193	return ret;
194}
195
196/*
197 * akpm: A new design for ext4_sync_file().
198 *
199 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
200 * There cannot be a transaction open by this task.
201 * Another task could have dirtied this inode.  Its data can be in any
202 * state in the journalling system.
203 *
204 * What we do is just kick off a commit and wait on it.  This will snapshot the
205 * inode to disk.
206 *
207 * i_mutex lock is held when entering and exiting this function
208 */
209
210int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
211{
212	struct inode *inode = file->f_mapping->host;
213	struct ext4_inode_info *ei = EXT4_I(inode);
214	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
215	int ret;
216	tid_t commit_tid;
217	bool needs_barrier = false;
218
219	J_ASSERT(ext4_journal_current_handle() == NULL);
220
221	trace_ext4_sync_file_enter(file, datasync);
222
223	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
224	if (ret)
225		return ret;
226	mutex_lock(&inode->i_mutex);
227
228	if (inode->i_sb->s_flags & MS_RDONLY)
229		goto out;
230
231	ret = ext4_flush_completed_IO(inode);
232	if (ret < 0)
233		goto out;
234
235	if (!journal) {
236		ret = __sync_inode(inode, datasync);
237		if (!ret && !list_empty(&inode->i_dentry))
238			ret = ext4_sync_parent(inode);
239		goto out;
240	}
241
242	/*
243	 * data=writeback,ordered:
244	 *  The caller's filemap_fdatawrite()/wait will sync the data.
245	 *  Metadata is in the journal, we wait for proper transaction to
246	 *  commit here.
247	 *
248	 * data=journal:
249	 *  filemap_fdatawrite won't do anything (the buffers are clean).
250	 *  ext4_force_commit will write the file data into the journal and
251	 *  will wait on that.
252	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
253	 *  (they were dirtied by commit).  But that's OK - the blocks are
254	 *  safe in-journal, which is all fsync() needs to ensure.
255	 */
256	if (ext4_should_journal_data(inode)) {
257		ret = ext4_force_commit(inode->i_sb);
258		goto out;
259	}
260
261	commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
262	if (journal->j_flags & JBD2_BARRIER &&
263	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
264		needs_barrier = true;
265	jbd2_log_start_commit(journal, commit_tid);
266	ret = jbd2_log_wait_commit(journal, commit_tid);
267	if (needs_barrier)
268		blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
269 out:
270	mutex_unlock(&inode->i_mutex);
271	trace_ext4_sync_file_exit(inode, ret);
272	return ret;
273}