Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * drivers/rtc/rtc-pl031.c
  3 *
  4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
  5 *
  6 * Author: Deepak Saxena <dsaxena@plexity.net>
  7 *
  8 * Copyright 2006 (c) MontaVista Software, Inc.
  9 *
 10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
 11 * Copyright 2010 (c) ST-Ericsson AB
 12 *
 13 * This program is free software; you can redistribute it and/or
 14 * modify it under the terms of the GNU General Public License
 15 * as published by the Free Software Foundation; either version
 16 * 2 of the License, or (at your option) any later version.
 17 */
 18#include <linux/module.h>
 19#include <linux/rtc.h>
 20#include <linux/init.h>
 21#include <linux/interrupt.h>
 22#include <linux/amba/bus.h>
 23#include <linux/io.h>
 24#include <linux/bcd.h>
 25#include <linux/delay.h>
 26#include <linux/slab.h>
 27
 28/*
 29 * Register definitions
 30 */
 31#define	RTC_DR		0x00	/* Data read register */
 32#define	RTC_MR		0x04	/* Match register */
 33#define	RTC_LR		0x08	/* Data load register */
 34#define	RTC_CR		0x0c	/* Control register */
 35#define	RTC_IMSC	0x10	/* Interrupt mask and set register */
 36#define	RTC_RIS		0x14	/* Raw interrupt status register */
 37#define	RTC_MIS		0x18	/* Masked interrupt status register */
 38#define	RTC_ICR		0x1c	/* Interrupt clear register */
 39/* ST variants have additional timer functionality */
 40#define RTC_TDR		0x20	/* Timer data read register */
 41#define RTC_TLR		0x24	/* Timer data load register */
 42#define RTC_TCR		0x28	/* Timer control register */
 43#define RTC_YDR		0x30	/* Year data read register */
 44#define RTC_YMR		0x34	/* Year match register */
 45#define RTC_YLR		0x38	/* Year data load register */
 46
 47#define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
 48
 49#define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
 50
 51/* Common bit definitions for Interrupt status and control registers */
 52#define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
 53#define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
 54
 55/* Common bit definations for ST v2 for reading/writing time */
 56#define RTC_SEC_SHIFT 0
 57#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
 58#define RTC_MIN_SHIFT 6
 59#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
 60#define RTC_HOUR_SHIFT 12
 61#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
 62#define RTC_WDAY_SHIFT 17
 63#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
 64#define RTC_MDAY_SHIFT 20
 65#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
 66#define RTC_MON_SHIFT 25
 67#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
 68
 69#define RTC_TIMER_FREQ 32768
 70
 71struct pl031_local {
 72	struct rtc_device *rtc;
 73	void __iomem *base;
 74	u8 hw_designer;
 75	u8 hw_revision:4;
 76};
 77
 78static int pl031_alarm_irq_enable(struct device *dev,
 79	unsigned int enabled)
 80{
 81	struct pl031_local *ldata = dev_get_drvdata(dev);
 82	unsigned long imsc;
 83
 84	/* Clear any pending alarm interrupts. */
 85	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
 86
 87	imsc = readl(ldata->base + RTC_IMSC);
 88
 89	if (enabled == 1)
 90		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
 91	else
 92		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
 93
 94	return 0;
 95}
 96
 97/*
 98 * Convert Gregorian date to ST v2 RTC format.
 99 */
100static int pl031_stv2_tm_to_time(struct device *dev,
101				 struct rtc_time *tm, unsigned long *st_time,
102	unsigned long *bcd_year)
103{
104	int year = tm->tm_year + 1900;
105	int wday = tm->tm_wday;
106
107	/* wday masking is not working in hardware so wday must be valid */
108	if (wday < -1 || wday > 6) {
109		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
110		return -EINVAL;
111	} else if (wday == -1) {
112		/* wday is not provided, calculate it here */
113		unsigned long time;
114		struct rtc_time calc_tm;
115
116		rtc_tm_to_time(tm, &time);
117		rtc_time_to_tm(time, &calc_tm);
118		wday = calc_tm.tm_wday;
119	}
120
121	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
122
123	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
124			|	(tm->tm_mday << RTC_MDAY_SHIFT)
125			|	((wday + 1) << RTC_WDAY_SHIFT)
126			|	(tm->tm_hour << RTC_HOUR_SHIFT)
127			|	(tm->tm_min << RTC_MIN_SHIFT)
128			|	(tm->tm_sec << RTC_SEC_SHIFT);
129
130	return 0;
131}
132
133/*
134 * Convert ST v2 RTC format to Gregorian date.
135 */
136static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
137	struct rtc_time *tm)
138{
139	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
140	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
141	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
142	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
143	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
144	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
145	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
146
147	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148	tm->tm_year -= 1900;
149
150	return 0;
151}
152
153static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
154{
155	struct pl031_local *ldata = dev_get_drvdata(dev);
156
157	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
158			readl(ldata->base + RTC_YDR), tm);
159
160	return 0;
161}
162
163static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
164{
165	unsigned long time;
166	unsigned long bcd_year;
167	struct pl031_local *ldata = dev_get_drvdata(dev);
168	int ret;
169
170	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
171	if (ret == 0) {
172		writel(bcd_year, ldata->base + RTC_YLR);
173		writel(time, ldata->base + RTC_LR);
174	}
175
176	return ret;
177}
178
179static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
180{
181	struct pl031_local *ldata = dev_get_drvdata(dev);
182	int ret;
183
184	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
185			readl(ldata->base + RTC_YMR), &alarm->time);
186
187	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
188	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
189
190	return ret;
191}
192
193static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
194{
195	struct pl031_local *ldata = dev_get_drvdata(dev);
196	unsigned long time;
197	unsigned long bcd_year;
198	int ret;
199
200	/* At the moment, we can only deal with non-wildcarded alarm times. */
201	ret = rtc_valid_tm(&alarm->time);
202	if (ret == 0) {
203		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
204					    &time, &bcd_year);
205		if (ret == 0) {
206			writel(bcd_year, ldata->base + RTC_YMR);
207			writel(time, ldata->base + RTC_MR);
208
209			pl031_alarm_irq_enable(dev, alarm->enabled);
210		}
211	}
212
213	return ret;
214}
215
216static irqreturn_t pl031_interrupt(int irq, void *dev_id)
217{
218	struct pl031_local *ldata = dev_id;
219	unsigned long rtcmis;
220	unsigned long events = 0;
221
222	rtcmis = readl(ldata->base + RTC_MIS);
223	if (rtcmis & RTC_BIT_AI) {
224		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
225		events |= (RTC_AF | RTC_IRQF);
 
 
 
 
 
 
 
 
226		rtc_update_irq(ldata->rtc, 1, events);
227
228		return IRQ_HANDLED;
229	}
230
231	return IRQ_NONE;
232}
233
234static int pl031_read_time(struct device *dev, struct rtc_time *tm)
235{
236	struct pl031_local *ldata = dev_get_drvdata(dev);
237
238	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
239
240	return 0;
241}
242
243static int pl031_set_time(struct device *dev, struct rtc_time *tm)
244{
245	unsigned long time;
246	struct pl031_local *ldata = dev_get_drvdata(dev);
247	int ret;
248
249	ret = rtc_tm_to_time(tm, &time);
250
251	if (ret == 0)
252		writel(time, ldata->base + RTC_LR);
253
254	return ret;
255}
256
257static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
258{
259	struct pl031_local *ldata = dev_get_drvdata(dev);
260
261	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
262
263	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
264	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
265
266	return 0;
267}
268
269static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
270{
271	struct pl031_local *ldata = dev_get_drvdata(dev);
272	unsigned long time;
273	int ret;
274
275	/* At the moment, we can only deal with non-wildcarded alarm times. */
276	ret = rtc_valid_tm(&alarm->time);
277	if (ret == 0) {
278		ret = rtc_tm_to_time(&alarm->time, &time);
279		if (ret == 0) {
280			writel(time, ldata->base + RTC_MR);
281			pl031_alarm_irq_enable(dev, alarm->enabled);
282		}
283	}
284
285	return ret;
286}
287
288static int pl031_remove(struct amba_device *adev)
289{
290	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
291
292	amba_set_drvdata(adev, NULL);
293	free_irq(adev->irq[0], ldata->rtc);
294	rtc_device_unregister(ldata->rtc);
295	iounmap(ldata->base);
296	kfree(ldata);
297	amba_release_regions(adev);
298
299	return 0;
300}
301
302static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
303{
304	int ret;
305	struct pl031_local *ldata;
306	struct rtc_class_ops *ops = id->data;
307	unsigned long time;
308
309	ret = amba_request_regions(adev, NULL);
310	if (ret)
311		goto err_req;
312
313	ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
314	if (!ldata) {
315		ret = -ENOMEM;
316		goto out;
317	}
318
319	ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
320
321	if (!ldata->base) {
322		ret = -ENOMEM;
323		goto out_no_remap;
324	}
325
326	amba_set_drvdata(adev, ldata);
327
328	ldata->hw_designer = amba_manf(adev);
329	ldata->hw_revision = amba_rev(adev);
330
331	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
332	dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
333
334	/* Enable the clockwatch on ST Variants */
335	if (ldata->hw_designer == AMBA_VENDOR_ST)
 
336		writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
337		       ldata->base + RTC_CR);
338
339	/*
340	 * On ST PL031 variants, the RTC reset value does not provide correct
341	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
342	 */
343	if (ldata->hw_designer == AMBA_VENDOR_ST) {
344		if (readl(ldata->base + RTC_YDR) == 0x2000) {
345			time = readl(ldata->base + RTC_DR);
346			if ((time &
347			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
348			    == 0x02120000) {
349				time = time | (0x7 << RTC_WDAY_SHIFT);
350				writel(0x2000, ldata->base + RTC_YLR);
351				writel(time, ldata->base + RTC_LR);
352			}
353		}
354	}
355
356	ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
357					THIS_MODULE);
358	if (IS_ERR(ldata->rtc)) {
359		ret = PTR_ERR(ldata->rtc);
360		goto out_no_rtc;
361	}
362
363	if (request_irq(adev->irq[0], pl031_interrupt,
364			0, "rtc-pl031", ldata)) {
365		ret = -EIO;
366		goto out_no_irq;
367	}
368
369	return 0;
370
371out_no_irq:
372	rtc_device_unregister(ldata->rtc);
373out_no_rtc:
374	iounmap(ldata->base);
375	amba_set_drvdata(adev, NULL);
376out_no_remap:
377	kfree(ldata);
378out:
379	amba_release_regions(adev);
380err_req:
381
382	return ret;
383}
384
385/* Operations for the original ARM version */
386static struct rtc_class_ops arm_pl031_ops = {
387	.read_time = pl031_read_time,
388	.set_time = pl031_set_time,
389	.read_alarm = pl031_read_alarm,
390	.set_alarm = pl031_set_alarm,
391	.alarm_irq_enable = pl031_alarm_irq_enable,
392};
393
394/* The First ST derivative */
395static struct rtc_class_ops stv1_pl031_ops = {
396	.read_time = pl031_read_time,
397	.set_time = pl031_set_time,
398	.read_alarm = pl031_read_alarm,
399	.set_alarm = pl031_set_alarm,
400	.alarm_irq_enable = pl031_alarm_irq_enable,
401};
402
403/* And the second ST derivative */
404static struct rtc_class_ops stv2_pl031_ops = {
405	.read_time = pl031_stv2_read_time,
406	.set_time = pl031_stv2_set_time,
407	.read_alarm = pl031_stv2_read_alarm,
408	.set_alarm = pl031_stv2_set_alarm,
409	.alarm_irq_enable = pl031_alarm_irq_enable,
410};
411
412static struct amba_id pl031_ids[] = {
413	{
414		.id = 0x00041031,
415		.mask = 0x000fffff,
416		.data = &arm_pl031_ops,
417	},
418	/* ST Micro variants */
419	{
420		.id = 0x00180031,
421		.mask = 0x00ffffff,
422		.data = &stv1_pl031_ops,
423	},
424	{
425		.id = 0x00280031,
426		.mask = 0x00ffffff,
427		.data = &stv2_pl031_ops,
428	},
429	{0, 0},
430};
431
432MODULE_DEVICE_TABLE(amba, pl031_ids);
433
434static struct amba_driver pl031_driver = {
435	.drv = {
436		.name = "rtc-pl031",
437	},
438	.id_table = pl031_ids,
439	.probe = pl031_probe,
440	.remove = pl031_remove,
441};
442
443module_amba_driver(pl031_driver);
 
 
 
 
 
 
 
 
 
 
 
444
445MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
446MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
447MODULE_LICENSE("GPL");
v3.1
  1/*
  2 * drivers/rtc/rtc-pl031.c
  3 *
  4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
  5 *
  6 * Author: Deepak Saxena <dsaxena@plexity.net>
  7 *
  8 * Copyright 2006 (c) MontaVista Software, Inc.
  9 *
 10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
 11 * Copyright 2010 (c) ST-Ericsson AB
 12 *
 13 * This program is free software; you can redistribute it and/or
 14 * modify it under the terms of the GNU General Public License
 15 * as published by the Free Software Foundation; either version
 16 * 2 of the License, or (at your option) any later version.
 17 */
 18#include <linux/module.h>
 19#include <linux/rtc.h>
 20#include <linux/init.h>
 21#include <linux/interrupt.h>
 22#include <linux/amba/bus.h>
 23#include <linux/io.h>
 24#include <linux/bcd.h>
 25#include <linux/delay.h>
 26#include <linux/slab.h>
 27
 28/*
 29 * Register definitions
 30 */
 31#define	RTC_DR		0x00	/* Data read register */
 32#define	RTC_MR		0x04	/* Match register */
 33#define	RTC_LR		0x08	/* Data load register */
 34#define	RTC_CR		0x0c	/* Control register */
 35#define	RTC_IMSC	0x10	/* Interrupt mask and set register */
 36#define	RTC_RIS		0x14	/* Raw interrupt status register */
 37#define	RTC_MIS		0x18	/* Masked interrupt status register */
 38#define	RTC_ICR		0x1c	/* Interrupt clear register */
 39/* ST variants have additional timer functionality */
 40#define RTC_TDR		0x20	/* Timer data read register */
 41#define RTC_TLR		0x24	/* Timer data load register */
 42#define RTC_TCR		0x28	/* Timer control register */
 43#define RTC_YDR		0x30	/* Year data read register */
 44#define RTC_YMR		0x34	/* Year match register */
 45#define RTC_YLR		0x38	/* Year data load register */
 46
 47#define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
 48
 49#define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
 50
 51/* Common bit definitions for Interrupt status and control registers */
 52#define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
 53#define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
 54
 55/* Common bit definations for ST v2 for reading/writing time */
 56#define RTC_SEC_SHIFT 0
 57#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
 58#define RTC_MIN_SHIFT 6
 59#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
 60#define RTC_HOUR_SHIFT 12
 61#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
 62#define RTC_WDAY_SHIFT 17
 63#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
 64#define RTC_MDAY_SHIFT 20
 65#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
 66#define RTC_MON_SHIFT 25
 67#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
 68
 69#define RTC_TIMER_FREQ 32768
 70
 71struct pl031_local {
 72	struct rtc_device *rtc;
 73	void __iomem *base;
 74	u8 hw_designer;
 75	u8 hw_revision:4;
 76};
 77
 78static int pl031_alarm_irq_enable(struct device *dev,
 79	unsigned int enabled)
 80{
 81	struct pl031_local *ldata = dev_get_drvdata(dev);
 82	unsigned long imsc;
 83
 84	/* Clear any pending alarm interrupts. */
 85	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
 86
 87	imsc = readl(ldata->base + RTC_IMSC);
 88
 89	if (enabled == 1)
 90		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
 91	else
 92		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
 93
 94	return 0;
 95}
 96
 97/*
 98 * Convert Gregorian date to ST v2 RTC format.
 99 */
100static int pl031_stv2_tm_to_time(struct device *dev,
101				 struct rtc_time *tm, unsigned long *st_time,
102	unsigned long *bcd_year)
103{
104	int year = tm->tm_year + 1900;
105	int wday = tm->tm_wday;
106
107	/* wday masking is not working in hardware so wday must be valid */
108	if (wday < -1 || wday > 6) {
109		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
110		return -EINVAL;
111	} else if (wday == -1) {
112		/* wday is not provided, calculate it here */
113		unsigned long time;
114		struct rtc_time calc_tm;
115
116		rtc_tm_to_time(tm, &time);
117		rtc_time_to_tm(time, &calc_tm);
118		wday = calc_tm.tm_wday;
119	}
120
121	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
122
123	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
124			|	(tm->tm_mday << RTC_MDAY_SHIFT)
125			|	((wday + 1) << RTC_WDAY_SHIFT)
126			|	(tm->tm_hour << RTC_HOUR_SHIFT)
127			|	(tm->tm_min << RTC_MIN_SHIFT)
128			|	(tm->tm_sec << RTC_SEC_SHIFT);
129
130	return 0;
131}
132
133/*
134 * Convert ST v2 RTC format to Gregorian date.
135 */
136static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
137	struct rtc_time *tm)
138{
139	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
140	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
141	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
142	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
143	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
144	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
145	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
146
147	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148	tm->tm_year -= 1900;
149
150	return 0;
151}
152
153static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
154{
155	struct pl031_local *ldata = dev_get_drvdata(dev);
156
157	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
158			readl(ldata->base + RTC_YDR), tm);
159
160	return 0;
161}
162
163static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
164{
165	unsigned long time;
166	unsigned long bcd_year;
167	struct pl031_local *ldata = dev_get_drvdata(dev);
168	int ret;
169
170	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
171	if (ret == 0) {
172		writel(bcd_year, ldata->base + RTC_YLR);
173		writel(time, ldata->base + RTC_LR);
174	}
175
176	return ret;
177}
178
179static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
180{
181	struct pl031_local *ldata = dev_get_drvdata(dev);
182	int ret;
183
184	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
185			readl(ldata->base + RTC_YMR), &alarm->time);
186
187	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
188	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
189
190	return ret;
191}
192
193static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
194{
195	struct pl031_local *ldata = dev_get_drvdata(dev);
196	unsigned long time;
197	unsigned long bcd_year;
198	int ret;
199
200	/* At the moment, we can only deal with non-wildcarded alarm times. */
201	ret = rtc_valid_tm(&alarm->time);
202	if (ret == 0) {
203		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
204					    &time, &bcd_year);
205		if (ret == 0) {
206			writel(bcd_year, ldata->base + RTC_YMR);
207			writel(time, ldata->base + RTC_MR);
208
209			pl031_alarm_irq_enable(dev, alarm->enabled);
210		}
211	}
212
213	return ret;
214}
215
216static irqreturn_t pl031_interrupt(int irq, void *dev_id)
217{
218	struct pl031_local *ldata = dev_id;
219	unsigned long rtcmis;
220	unsigned long events = 0;
221
222	rtcmis = readl(ldata->base + RTC_MIS);
223	if (rtcmis) {
224		writel(rtcmis, ldata->base + RTC_ICR);
225
226		if (rtcmis & RTC_BIT_AI)
227			events |= (RTC_AF | RTC_IRQF);
228
229		/* Timer interrupt is only available in ST variants */
230		if ((rtcmis & RTC_BIT_PI) &&
231			(ldata->hw_designer == AMBA_VENDOR_ST))
232			events |= (RTC_PF | RTC_IRQF);
233
234		rtc_update_irq(ldata->rtc, 1, events);
235
236		return IRQ_HANDLED;
237	}
238
239	return IRQ_NONE;
240}
241
242static int pl031_read_time(struct device *dev, struct rtc_time *tm)
243{
244	struct pl031_local *ldata = dev_get_drvdata(dev);
245
246	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
247
248	return 0;
249}
250
251static int pl031_set_time(struct device *dev, struct rtc_time *tm)
252{
253	unsigned long time;
254	struct pl031_local *ldata = dev_get_drvdata(dev);
255	int ret;
256
257	ret = rtc_tm_to_time(tm, &time);
258
259	if (ret == 0)
260		writel(time, ldata->base + RTC_LR);
261
262	return ret;
263}
264
265static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
266{
267	struct pl031_local *ldata = dev_get_drvdata(dev);
268
269	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
270
271	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
272	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
273
274	return 0;
275}
276
277static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
278{
279	struct pl031_local *ldata = dev_get_drvdata(dev);
280	unsigned long time;
281	int ret;
282
283	/* At the moment, we can only deal with non-wildcarded alarm times. */
284	ret = rtc_valid_tm(&alarm->time);
285	if (ret == 0) {
286		ret = rtc_tm_to_time(&alarm->time, &time);
287		if (ret == 0) {
288			writel(time, ldata->base + RTC_MR);
289			pl031_alarm_irq_enable(dev, alarm->enabled);
290		}
291	}
292
293	return ret;
294}
295
296static int pl031_remove(struct amba_device *adev)
297{
298	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
299
300	amba_set_drvdata(adev, NULL);
301	free_irq(adev->irq[0], ldata->rtc);
302	rtc_device_unregister(ldata->rtc);
303	iounmap(ldata->base);
304	kfree(ldata);
305	amba_release_regions(adev);
306
307	return 0;
308}
309
310static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
311{
312	int ret;
313	struct pl031_local *ldata;
314	struct rtc_class_ops *ops = id->data;
 
315
316	ret = amba_request_regions(adev, NULL);
317	if (ret)
318		goto err_req;
319
320	ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
321	if (!ldata) {
322		ret = -ENOMEM;
323		goto out;
324	}
325
326	ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
327
328	if (!ldata->base) {
329		ret = -ENOMEM;
330		goto out_no_remap;
331	}
332
333	amba_set_drvdata(adev, ldata);
334
335	ldata->hw_designer = amba_manf(adev);
336	ldata->hw_revision = amba_rev(adev);
337
338	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
339	dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
340
341	/* Enable the clockwatch on ST Variants */
342	if ((ldata->hw_designer == AMBA_VENDOR_ST) &&
343	    (ldata->hw_revision > 1))
344		writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
345		       ldata->base + RTC_CR);
346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347	ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
348					THIS_MODULE);
349	if (IS_ERR(ldata->rtc)) {
350		ret = PTR_ERR(ldata->rtc);
351		goto out_no_rtc;
352	}
353
354	if (request_irq(adev->irq[0], pl031_interrupt,
355			IRQF_DISABLED, "rtc-pl031", ldata)) {
356		ret = -EIO;
357		goto out_no_irq;
358	}
359
360	return 0;
361
362out_no_irq:
363	rtc_device_unregister(ldata->rtc);
364out_no_rtc:
365	iounmap(ldata->base);
366	amba_set_drvdata(adev, NULL);
367out_no_remap:
368	kfree(ldata);
369out:
370	amba_release_regions(adev);
371err_req:
372
373	return ret;
374}
375
376/* Operations for the original ARM version */
377static struct rtc_class_ops arm_pl031_ops = {
378	.read_time = pl031_read_time,
379	.set_time = pl031_set_time,
380	.read_alarm = pl031_read_alarm,
381	.set_alarm = pl031_set_alarm,
382	.alarm_irq_enable = pl031_alarm_irq_enable,
383};
384
385/* The First ST derivative */
386static struct rtc_class_ops stv1_pl031_ops = {
387	.read_time = pl031_read_time,
388	.set_time = pl031_set_time,
389	.read_alarm = pl031_read_alarm,
390	.set_alarm = pl031_set_alarm,
391	.alarm_irq_enable = pl031_alarm_irq_enable,
392};
393
394/* And the second ST derivative */
395static struct rtc_class_ops stv2_pl031_ops = {
396	.read_time = pl031_stv2_read_time,
397	.set_time = pl031_stv2_set_time,
398	.read_alarm = pl031_stv2_read_alarm,
399	.set_alarm = pl031_stv2_set_alarm,
400	.alarm_irq_enable = pl031_alarm_irq_enable,
401};
402
403static struct amba_id pl031_ids[] = {
404	{
405		.id = 0x00041031,
406		.mask = 0x000fffff,
407		.data = &arm_pl031_ops,
408	},
409	/* ST Micro variants */
410	{
411		.id = 0x00180031,
412		.mask = 0x00ffffff,
413		.data = &stv1_pl031_ops,
414	},
415	{
416		.id = 0x00280031,
417		.mask = 0x00ffffff,
418		.data = &stv2_pl031_ops,
419	},
420	{0, 0},
421};
422
 
 
423static struct amba_driver pl031_driver = {
424	.drv = {
425		.name = "rtc-pl031",
426	},
427	.id_table = pl031_ids,
428	.probe = pl031_probe,
429	.remove = pl031_remove,
430};
431
432static int __init pl031_init(void)
433{
434	return amba_driver_register(&pl031_driver);
435}
436
437static void __exit pl031_exit(void)
438{
439	amba_driver_unregister(&pl031_driver);
440}
441
442module_init(pl031_init);
443module_exit(pl031_exit);
444
445MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
446MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
447MODULE_LICENSE("GPL");