Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 *      Davicom DM9000 Fast Ethernet driver for Linux.
   3 * 	Copyright (C) 1997  Sten Wang
   4 *
   5 * 	This program is free software; you can redistribute it and/or
   6 * 	modify it under the terms of the GNU General Public License
   7 * 	as published by the Free Software Foundation; either version 2
   8 * 	of the License, or (at your option) any later version.
   9 *
  10 * 	This program is distributed in the hope that it will be useful,
  11 * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * 	GNU General Public License for more details.
  14 *
  15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16 *
  17 * Additional updates, Copyright:
  18 *	Ben Dooks <ben@simtec.co.uk>
  19 *	Sascha Hauer <s.hauer@pengutronix.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/skbuff.h>
  29#include <linux/spinlock.h>
  30#include <linux/crc32.h>
  31#include <linux/mii.h>
  32#include <linux/ethtool.h>
  33#include <linux/dm9000.h>
  34#include <linux/delay.h>
  35#include <linux/platform_device.h>
  36#include <linux/irq.h>
  37#include <linux/slab.h>
  38
  39#include <asm/delay.h>
  40#include <asm/irq.h>
  41#include <asm/io.h>
  42
  43#include "dm9000.h"
  44
  45/* Board/System/Debug information/definition ---------------- */
  46
  47#define DM9000_PHY		0x40	/* PHY address 0x01 */
  48
  49#define CARDNAME	"dm9000"
  50#define DRV_VERSION	"1.31"
  51
  52/*
  53 * Transmit timeout, default 5 seconds.
  54 */
  55static int watchdog = 5000;
  56module_param(watchdog, int, 0400);
  57MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  58
  59/*
  60 * Debug messages level
  61 */
  62static int debug;
  63module_param(debug, int, 0644);
  64MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  65
  66/* DM9000 register address locking.
  67 *
  68 * The DM9000 uses an address register to control where data written
  69 * to the data register goes. This means that the address register
  70 * must be preserved over interrupts or similar calls.
  71 *
  72 * During interrupt and other critical calls, a spinlock is used to
  73 * protect the system, but the calls themselves save the address
  74 * in the address register in case they are interrupting another
  75 * access to the device.
  76 *
  77 * For general accesses a lock is provided so that calls which are
  78 * allowed to sleep are serialised so that the address register does
  79 * not need to be saved. This lock also serves to serialise access
  80 * to the EEPROM and PHY access registers which are shared between
  81 * these two devices.
  82 */
  83
  84/* The driver supports the original DM9000E, and now the two newer
  85 * devices, DM9000A and DM9000B.
  86 */
  87
  88enum dm9000_type {
  89	TYPE_DM9000E,	/* original DM9000 */
  90	TYPE_DM9000A,
  91	TYPE_DM9000B
  92};
  93
  94/* Structure/enum declaration ------------------------------- */
  95typedef struct board_info {
  96
  97	void __iomem	*io_addr;	/* Register I/O base address */
  98	void __iomem	*io_data;	/* Data I/O address */
  99	u16		 irq;		/* IRQ */
 100
 101	u16		tx_pkt_cnt;
 102	u16		queue_pkt_len;
 103	u16		queue_start_addr;
 104	u16		queue_ip_summed;
 105	u16		dbug_cnt;
 106	u8		io_mode;		/* 0:word, 2:byte */
 107	u8		phy_addr;
 108	u8		imr_all;
 109
 110	unsigned int	flags;
 111	unsigned int	in_suspend :1;
 112	unsigned int	wake_supported :1;
 113
 114	enum dm9000_type type;
 115
 116	void (*inblk)(void __iomem *port, void *data, int length);
 117	void (*outblk)(void __iomem *port, void *data, int length);
 118	void (*dumpblk)(void __iomem *port, int length);
 119
 120	struct device	*dev;	     /* parent device */
 121
 122	struct resource	*addr_res;   /* resources found */
 123	struct resource *data_res;
 124	struct resource	*addr_req;   /* resources requested */
 125	struct resource *data_req;
 126	struct resource *irq_res;
 127
 128	int		 irq_wake;
 129
 130	struct mutex	 addr_lock;	/* phy and eeprom access lock */
 131
 132	struct delayed_work phy_poll;
 133	struct net_device  *ndev;
 134
 135	spinlock_t	lock;
 136
 137	struct mii_if_info mii;
 138	u32		msg_enable;
 139	u32		wake_state;
 140
 141	int		ip_summed;
 142} board_info_t;
 143
 144/* debug code */
 145
 146#define dm9000_dbg(db, lev, msg...) do {		\
 147	if ((lev) < debug) {				\
 148		dev_dbg(db->dev, msg);			\
 149	}						\
 150} while (0)
 151
 152static inline board_info_t *to_dm9000_board(struct net_device *dev)
 153{
 154	return netdev_priv(dev);
 155}
 156
 157/* DM9000 network board routine ---------------------------- */
 158
 159static void
 160dm9000_reset(board_info_t * db)
 161{
 162	dev_dbg(db->dev, "resetting device\n");
 163
 164	/* RESET device */
 165	writeb(DM9000_NCR, db->io_addr);
 166	udelay(200);
 167	writeb(NCR_RST, db->io_data);
 168	udelay(200);
 169}
 170
 171/*
 172 *   Read a byte from I/O port
 173 */
 174static u8
 175ior(board_info_t * db, int reg)
 176{
 177	writeb(reg, db->io_addr);
 178	return readb(db->io_data);
 179}
 180
 181/*
 182 *   Write a byte to I/O port
 183 */
 184
 185static void
 186iow(board_info_t * db, int reg, int value)
 187{
 188	writeb(reg, db->io_addr);
 189	writeb(value, db->io_data);
 190}
 191
 192/* routines for sending block to chip */
 193
 194static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 195{
 196	writesb(reg, data, count);
 197}
 198
 199static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 200{
 201	writesw(reg, data, (count+1) >> 1);
 202}
 203
 204static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 205{
 206	writesl(reg, data, (count+3) >> 2);
 207}
 208
 209/* input block from chip to memory */
 210
 211static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 212{
 213	readsb(reg, data, count);
 214}
 215
 216
 217static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 218{
 219	readsw(reg, data, (count+1) >> 1);
 220}
 221
 222static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 223{
 224	readsl(reg, data, (count+3) >> 2);
 225}
 226
 227/* dump block from chip to null */
 228
 229static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 230{
 231	int i;
 232	int tmp;
 233
 234	for (i = 0; i < count; i++)
 235		tmp = readb(reg);
 236}
 237
 238static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 239{
 240	int i;
 241	int tmp;
 242
 243	count = (count + 1) >> 1;
 244
 245	for (i = 0; i < count; i++)
 246		tmp = readw(reg);
 247}
 248
 249static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 250{
 251	int i;
 252	int tmp;
 253
 254	count = (count + 3) >> 2;
 255
 256	for (i = 0; i < count; i++)
 257		tmp = readl(reg);
 258}
 259
 260/* dm9000_set_io
 261 *
 262 * select the specified set of io routines to use with the
 263 * device
 264 */
 265
 266static void dm9000_set_io(struct board_info *db, int byte_width)
 267{
 268	/* use the size of the data resource to work out what IO
 269	 * routines we want to use
 270	 */
 271
 272	switch (byte_width) {
 273	case 1:
 274		db->dumpblk = dm9000_dumpblk_8bit;
 275		db->outblk  = dm9000_outblk_8bit;
 276		db->inblk   = dm9000_inblk_8bit;
 277		break;
 278
 279
 280	case 3:
 281		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 282	case 2:
 283		db->dumpblk = dm9000_dumpblk_16bit;
 284		db->outblk  = dm9000_outblk_16bit;
 285		db->inblk   = dm9000_inblk_16bit;
 286		break;
 287
 288	case 4:
 289	default:
 290		db->dumpblk = dm9000_dumpblk_32bit;
 291		db->outblk  = dm9000_outblk_32bit;
 292		db->inblk   = dm9000_inblk_32bit;
 293		break;
 294	}
 295}
 296
 297static void dm9000_schedule_poll(board_info_t *db)
 298{
 299	if (db->type == TYPE_DM9000E)
 300		schedule_delayed_work(&db->phy_poll, HZ * 2);
 301}
 302
 303static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 304{
 305	board_info_t *dm = to_dm9000_board(dev);
 306
 307	if (!netif_running(dev))
 308		return -EINVAL;
 309
 310	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 311}
 312
 313static unsigned int
 314dm9000_read_locked(board_info_t *db, int reg)
 315{
 316	unsigned long flags;
 317	unsigned int ret;
 318
 319	spin_lock_irqsave(&db->lock, flags);
 320	ret = ior(db, reg);
 321	spin_unlock_irqrestore(&db->lock, flags);
 322
 323	return ret;
 324}
 325
 326static int dm9000_wait_eeprom(board_info_t *db)
 327{
 328	unsigned int status;
 329	int timeout = 8;	/* wait max 8msec */
 330
 331	/* The DM9000 data sheets say we should be able to
 332	 * poll the ERRE bit in EPCR to wait for the EEPROM
 333	 * operation. From testing several chips, this bit
 334	 * does not seem to work.
 335	 *
 336	 * We attempt to use the bit, but fall back to the
 337	 * timeout (which is why we do not return an error
 338	 * on expiry) to say that the EEPROM operation has
 339	 * completed.
 340	 */
 341
 342	while (1) {
 343		status = dm9000_read_locked(db, DM9000_EPCR);
 344
 345		if ((status & EPCR_ERRE) == 0)
 346			break;
 347
 348		msleep(1);
 349
 350		if (timeout-- < 0) {
 351			dev_dbg(db->dev, "timeout waiting EEPROM\n");
 352			break;
 353		}
 354	}
 355
 356	return 0;
 357}
 358
 359/*
 360 *  Read a word data from EEPROM
 361 */
 362static void
 363dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
 364{
 365	unsigned long flags;
 366
 367	if (db->flags & DM9000_PLATF_NO_EEPROM) {
 368		to[0] = 0xff;
 369		to[1] = 0xff;
 370		return;
 371	}
 372
 373	mutex_lock(&db->addr_lock);
 374
 375	spin_lock_irqsave(&db->lock, flags);
 376
 377	iow(db, DM9000_EPAR, offset);
 378	iow(db, DM9000_EPCR, EPCR_ERPRR);
 379
 380	spin_unlock_irqrestore(&db->lock, flags);
 381
 382	dm9000_wait_eeprom(db);
 383
 384	/* delay for at-least 150uS */
 385	msleep(1);
 386
 387	spin_lock_irqsave(&db->lock, flags);
 388
 389	iow(db, DM9000_EPCR, 0x0);
 390
 391	to[0] = ior(db, DM9000_EPDRL);
 392	to[1] = ior(db, DM9000_EPDRH);
 393
 394	spin_unlock_irqrestore(&db->lock, flags);
 395
 396	mutex_unlock(&db->addr_lock);
 397}
 398
 399/*
 400 * Write a word data to SROM
 401 */
 402static void
 403dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
 404{
 405	unsigned long flags;
 406
 407	if (db->flags & DM9000_PLATF_NO_EEPROM)
 408		return;
 409
 410	mutex_lock(&db->addr_lock);
 411
 412	spin_lock_irqsave(&db->lock, flags);
 413	iow(db, DM9000_EPAR, offset);
 414	iow(db, DM9000_EPDRH, data[1]);
 415	iow(db, DM9000_EPDRL, data[0]);
 416	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 417	spin_unlock_irqrestore(&db->lock, flags);
 418
 419	dm9000_wait_eeprom(db);
 420
 421	mdelay(1);	/* wait at least 150uS to clear */
 422
 423	spin_lock_irqsave(&db->lock, flags);
 424	iow(db, DM9000_EPCR, 0);
 425	spin_unlock_irqrestore(&db->lock, flags);
 426
 427	mutex_unlock(&db->addr_lock);
 428}
 429
 430/* ethtool ops */
 431
 432static void dm9000_get_drvinfo(struct net_device *dev,
 433			       struct ethtool_drvinfo *info)
 434{
 435	board_info_t *dm = to_dm9000_board(dev);
 436
 437	strcpy(info->driver, CARDNAME);
 438	strcpy(info->version, DRV_VERSION);
 439	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
 440}
 441
 442static u32 dm9000_get_msglevel(struct net_device *dev)
 443{
 444	board_info_t *dm = to_dm9000_board(dev);
 445
 446	return dm->msg_enable;
 447}
 448
 449static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 450{
 451	board_info_t *dm = to_dm9000_board(dev);
 452
 453	dm->msg_enable = value;
 454}
 455
 456static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 457{
 458	board_info_t *dm = to_dm9000_board(dev);
 459
 460	mii_ethtool_gset(&dm->mii, cmd);
 461	return 0;
 462}
 463
 464static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 465{
 466	board_info_t *dm = to_dm9000_board(dev);
 467
 468	return mii_ethtool_sset(&dm->mii, cmd);
 469}
 470
 471static int dm9000_nway_reset(struct net_device *dev)
 472{
 473	board_info_t *dm = to_dm9000_board(dev);
 474	return mii_nway_restart(&dm->mii);
 475}
 476
 477static int dm9000_set_features(struct net_device *dev,
 478	netdev_features_t features)
 479{
 480	board_info_t *dm = to_dm9000_board(dev);
 481	netdev_features_t changed = dev->features ^ features;
 482	unsigned long flags;
 483
 484	if (!(changed & NETIF_F_RXCSUM))
 485		return 0;
 486
 487	spin_lock_irqsave(&dm->lock, flags);
 488	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 489	spin_unlock_irqrestore(&dm->lock, flags);
 490
 491	return 0;
 492}
 493
 494static u32 dm9000_get_link(struct net_device *dev)
 495{
 496	board_info_t *dm = to_dm9000_board(dev);
 497	u32 ret;
 498
 499	if (dm->flags & DM9000_PLATF_EXT_PHY)
 500		ret = mii_link_ok(&dm->mii);
 501	else
 502		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 503
 504	return ret;
 505}
 506
 507#define DM_EEPROM_MAGIC		(0x444D394B)
 508
 509static int dm9000_get_eeprom_len(struct net_device *dev)
 510{
 511	return 128;
 512}
 513
 514static int dm9000_get_eeprom(struct net_device *dev,
 515			     struct ethtool_eeprom *ee, u8 *data)
 516{
 517	board_info_t *dm = to_dm9000_board(dev);
 518	int offset = ee->offset;
 519	int len = ee->len;
 520	int i;
 521
 522	/* EEPROM access is aligned to two bytes */
 523
 524	if ((len & 1) != 0 || (offset & 1) != 0)
 525		return -EINVAL;
 526
 527	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 528		return -ENOENT;
 529
 530	ee->magic = DM_EEPROM_MAGIC;
 531
 532	for (i = 0; i < len; i += 2)
 533		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 534
 535	return 0;
 536}
 537
 538static int dm9000_set_eeprom(struct net_device *dev,
 539			     struct ethtool_eeprom *ee, u8 *data)
 540{
 541	board_info_t *dm = to_dm9000_board(dev);
 542	int offset = ee->offset;
 543	int len = ee->len;
 544	int done;
 545
 546	/* EEPROM access is aligned to two bytes */
 547
 548	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 549		return -ENOENT;
 550
 551	if (ee->magic != DM_EEPROM_MAGIC)
 552		return -EINVAL;
 553
 554	while (len > 0) {
 555		if (len & 1 || offset & 1) {
 556			int which = offset & 1;
 557			u8 tmp[2];
 558
 559			dm9000_read_eeprom(dm, offset / 2, tmp);
 560			tmp[which] = *data;
 561			dm9000_write_eeprom(dm, offset / 2, tmp);
 562
 563			done = 1;
 564		} else {
 565			dm9000_write_eeprom(dm, offset / 2, data);
 566			done = 2;
 567		}
 568
 569		data += done;
 570		offset += done;
 571		len -= done;
 572	}
 573
 574	return 0;
 575}
 576
 577static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 578{
 579	board_info_t *dm = to_dm9000_board(dev);
 580
 581	memset(w, 0, sizeof(struct ethtool_wolinfo));
 582
 583	/* note, we could probably support wake-phy too */
 584	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 585	w->wolopts = dm->wake_state;
 586}
 587
 588static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 589{
 590	board_info_t *dm = to_dm9000_board(dev);
 591	unsigned long flags;
 592	u32 opts = w->wolopts;
 593	u32 wcr = 0;
 594
 595	if (!dm->wake_supported)
 596		return -EOPNOTSUPP;
 597
 598	if (opts & ~WAKE_MAGIC)
 599		return -EINVAL;
 600
 601	if (opts & WAKE_MAGIC)
 602		wcr |= WCR_MAGICEN;
 603
 604	mutex_lock(&dm->addr_lock);
 605
 606	spin_lock_irqsave(&dm->lock, flags);
 607	iow(dm, DM9000_WCR, wcr);
 608	spin_unlock_irqrestore(&dm->lock, flags);
 609
 610	mutex_unlock(&dm->addr_lock);
 611
 612	if (dm->wake_state != opts) {
 613		/* change in wol state, update IRQ state */
 614
 615		if (!dm->wake_state)
 616			irq_set_irq_wake(dm->irq_wake, 1);
 617		else if (dm->wake_state && !opts)
 618			irq_set_irq_wake(dm->irq_wake, 0);
 619	}
 620
 621	dm->wake_state = opts;
 622	return 0;
 623}
 624
 625static const struct ethtool_ops dm9000_ethtool_ops = {
 626	.get_drvinfo		= dm9000_get_drvinfo,
 627	.get_settings		= dm9000_get_settings,
 628	.set_settings		= dm9000_set_settings,
 629	.get_msglevel		= dm9000_get_msglevel,
 630	.set_msglevel		= dm9000_set_msglevel,
 631	.nway_reset		= dm9000_nway_reset,
 632	.get_link		= dm9000_get_link,
 633	.get_wol		= dm9000_get_wol,
 634	.set_wol		= dm9000_set_wol,
 635 	.get_eeprom_len		= dm9000_get_eeprom_len,
 636 	.get_eeprom		= dm9000_get_eeprom,
 637 	.set_eeprom		= dm9000_set_eeprom,
 638};
 639
 640static void dm9000_show_carrier(board_info_t *db,
 641				unsigned carrier, unsigned nsr)
 642{
 643	struct net_device *ndev = db->ndev;
 644	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 645
 646	if (carrier)
 647		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
 648			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 649			 (ncr & NCR_FDX) ? "full" : "half");
 650	else
 651		dev_info(db->dev, "%s: link down\n", ndev->name);
 652}
 653
 654static void
 655dm9000_poll_work(struct work_struct *w)
 656{
 657	struct delayed_work *dw = to_delayed_work(w);
 658	board_info_t *db = container_of(dw, board_info_t, phy_poll);
 659	struct net_device *ndev = db->ndev;
 660
 661	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 662	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
 663		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 664		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 665		unsigned new_carrier;
 666
 667		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 668
 669		if (old_carrier != new_carrier) {
 670			if (netif_msg_link(db))
 671				dm9000_show_carrier(db, new_carrier, nsr);
 672
 673			if (!new_carrier)
 674				netif_carrier_off(ndev);
 675			else
 676				netif_carrier_on(ndev);
 677		}
 678	} else
 679		mii_check_media(&db->mii, netif_msg_link(db), 0);
 680	
 681	if (netif_running(ndev))
 682		dm9000_schedule_poll(db);
 683}
 684
 685/* dm9000_release_board
 686 *
 687 * release a board, and any mapped resources
 688 */
 689
 690static void
 691dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 692{
 693	/* unmap our resources */
 694
 695	iounmap(db->io_addr);
 696	iounmap(db->io_data);
 697
 698	/* release the resources */
 699
 700	release_resource(db->data_req);
 701	kfree(db->data_req);
 702
 703	release_resource(db->addr_req);
 704	kfree(db->addr_req);
 705}
 706
 707static unsigned char dm9000_type_to_char(enum dm9000_type type)
 708{
 709	switch (type) {
 710	case TYPE_DM9000E: return 'e';
 711	case TYPE_DM9000A: return 'a';
 712	case TYPE_DM9000B: return 'b';
 713	}
 714
 715	return '?';
 716}
 717
 718/*
 719 *  Set DM9000 multicast address
 720 */
 721static void
 722dm9000_hash_table_unlocked(struct net_device *dev)
 723{
 724	board_info_t *db = netdev_priv(dev);
 725	struct netdev_hw_addr *ha;
 726	int i, oft;
 727	u32 hash_val;
 728	u16 hash_table[4];
 729	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 730
 731	dm9000_dbg(db, 1, "entering %s\n", __func__);
 732
 733	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 734		iow(db, oft, dev->dev_addr[i]);
 735
 736	/* Clear Hash Table */
 737	for (i = 0; i < 4; i++)
 738		hash_table[i] = 0x0;
 739
 740	/* broadcast address */
 741	hash_table[3] = 0x8000;
 742
 743	if (dev->flags & IFF_PROMISC)
 744		rcr |= RCR_PRMSC;
 745
 746	if (dev->flags & IFF_ALLMULTI)
 747		rcr |= RCR_ALL;
 748
 749	/* the multicast address in Hash Table : 64 bits */
 750	netdev_for_each_mc_addr(ha, dev) {
 751		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 752		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 753	}
 754
 755	/* Write the hash table to MAC MD table */
 756	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 757		iow(db, oft++, hash_table[i]);
 758		iow(db, oft++, hash_table[i] >> 8);
 759	}
 760
 761	iow(db, DM9000_RCR, rcr);
 762}
 763
 764static void
 765dm9000_hash_table(struct net_device *dev)
 766{
 767	board_info_t *db = netdev_priv(dev);
 768	unsigned long flags;
 769
 770	spin_lock_irqsave(&db->lock, flags);
 771	dm9000_hash_table_unlocked(dev);
 772	spin_unlock_irqrestore(&db->lock, flags);
 773}
 774
 775/*
 776 * Initialize dm9000 board
 777 */
 778static void
 779dm9000_init_dm9000(struct net_device *dev)
 780{
 781	board_info_t *db = netdev_priv(dev);
 782	unsigned int imr;
 783	unsigned int ncr;
 784
 785	dm9000_dbg(db, 1, "entering %s\n", __func__);
 786
 787	/* I/O mode */
 788	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
 789
 790	/* Checksum mode */
 791	if (dev->hw_features & NETIF_F_RXCSUM)
 792		iow(db, DM9000_RCSR,
 793			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 794
 795	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
 796
 797	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 798
 799	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
 800	 * up dumping the wake events if we disable this. There is already
 801	 * a wake-mask in DM9000_WCR */
 802	if (db->wake_supported)
 803		ncr |= NCR_WAKEEN;
 804
 805	iow(db, DM9000_NCR, ncr);
 806
 807	/* Program operating register */
 808	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
 809	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
 810	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
 811	iow(db, DM9000_SMCR, 0);        /* Special Mode */
 812	/* clear TX status */
 813	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 814	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 815
 816	/* Set address filter table */
 817	dm9000_hash_table_unlocked(dev);
 818
 819	imr = IMR_PAR | IMR_PTM | IMR_PRM;
 820	if (db->type != TYPE_DM9000E)
 821		imr |= IMR_LNKCHNG;
 822
 823	db->imr_all = imr;
 824
 825	/* Enable TX/RX interrupt mask */
 826	iow(db, DM9000_IMR, imr);
 827
 828	/* Init Driver variable */
 829	db->tx_pkt_cnt = 0;
 830	db->queue_pkt_len = 0;
 831	dev->trans_start = jiffies;
 832}
 833
 834/* Our watchdog timed out. Called by the networking layer */
 835static void dm9000_timeout(struct net_device *dev)
 836{
 837	board_info_t *db = netdev_priv(dev);
 838	u8 reg_save;
 839	unsigned long flags;
 840
 841	/* Save previous register address */
 842	spin_lock_irqsave(&db->lock, flags);
 843	reg_save = readb(db->io_addr);
 844
 845	netif_stop_queue(dev);
 846	dm9000_reset(db);
 847	dm9000_init_dm9000(dev);
 848	/* We can accept TX packets again */
 849	dev->trans_start = jiffies; /* prevent tx timeout */
 850	netif_wake_queue(dev);
 851
 852	/* Restore previous register address */
 853	writeb(reg_save, db->io_addr);
 854	spin_unlock_irqrestore(&db->lock, flags);
 855}
 856
 857static void dm9000_send_packet(struct net_device *dev,
 858			       int ip_summed,
 859			       u16 pkt_len)
 860{
 861	board_info_t *dm = to_dm9000_board(dev);
 862
 863	/* The DM9000 is not smart enough to leave fragmented packets alone. */
 864	if (dm->ip_summed != ip_summed) {
 865		if (ip_summed == CHECKSUM_NONE)
 866			iow(dm, DM9000_TCCR, 0);
 867		else
 868			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 869		dm->ip_summed = ip_summed;
 870	}
 871
 872	/* Set TX length to DM9000 */
 873	iow(dm, DM9000_TXPLL, pkt_len);
 874	iow(dm, DM9000_TXPLH, pkt_len >> 8);
 875
 876	/* Issue TX polling command */
 877	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
 878}
 879
 880/*
 881 *  Hardware start transmission.
 882 *  Send a packet to media from the upper layer.
 883 */
 884static int
 885dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
 886{
 887	unsigned long flags;
 888	board_info_t *db = netdev_priv(dev);
 889
 890	dm9000_dbg(db, 3, "%s:\n", __func__);
 891
 892	if (db->tx_pkt_cnt > 1)
 893		return NETDEV_TX_BUSY;
 894
 895	spin_lock_irqsave(&db->lock, flags);
 896
 897	/* Move data to DM9000 TX RAM */
 898	writeb(DM9000_MWCMD, db->io_addr);
 899
 900	(db->outblk)(db->io_data, skb->data, skb->len);
 901	dev->stats.tx_bytes += skb->len;
 902
 903	db->tx_pkt_cnt++;
 904	/* TX control: First packet immediately send, second packet queue */
 905	if (db->tx_pkt_cnt == 1) {
 906		dm9000_send_packet(dev, skb->ip_summed, skb->len);
 907	} else {
 908		/* Second packet */
 909		db->queue_pkt_len = skb->len;
 910		db->queue_ip_summed = skb->ip_summed;
 911		netif_stop_queue(dev);
 912	}
 913
 914	spin_unlock_irqrestore(&db->lock, flags);
 915
 916	/* free this SKB */
 917	dev_kfree_skb(skb);
 918
 919	return NETDEV_TX_OK;
 920}
 921
 922/*
 923 * DM9000 interrupt handler
 924 * receive the packet to upper layer, free the transmitted packet
 925 */
 926
 927static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
 928{
 929	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
 930
 931	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
 932		/* One packet sent complete */
 933		db->tx_pkt_cnt--;
 934		dev->stats.tx_packets++;
 935
 936		if (netif_msg_tx_done(db))
 937			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
 938
 939		/* Queue packet check & send */
 940		if (db->tx_pkt_cnt > 0)
 941			dm9000_send_packet(dev, db->queue_ip_summed,
 942					   db->queue_pkt_len);
 943		netif_wake_queue(dev);
 944	}
 945}
 946
 947struct dm9000_rxhdr {
 948	u8	RxPktReady;
 949	u8	RxStatus;
 950	__le16	RxLen;
 951} __packed;
 952
 953/*
 954 *  Received a packet and pass to upper layer
 955 */
 956static void
 957dm9000_rx(struct net_device *dev)
 958{
 959	board_info_t *db = netdev_priv(dev);
 960	struct dm9000_rxhdr rxhdr;
 961	struct sk_buff *skb;
 962	u8 rxbyte, *rdptr;
 963	bool GoodPacket;
 964	int RxLen;
 965
 966	/* Check packet ready or not */
 967	do {
 968		ior(db, DM9000_MRCMDX);	/* Dummy read */
 969
 970		/* Get most updated data */
 971		rxbyte = readb(db->io_data);
 972
 973		/* Status check: this byte must be 0 or 1 */
 974		if (rxbyte & DM9000_PKT_ERR) {
 975			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
 976			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
 977			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
 978			return;
 979		}
 980
 981		if (!(rxbyte & DM9000_PKT_RDY))
 982			return;
 983
 984		/* A packet ready now  & Get status/length */
 985		GoodPacket = true;
 986		writeb(DM9000_MRCMD, db->io_addr);
 987
 988		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
 989
 990		RxLen = le16_to_cpu(rxhdr.RxLen);
 991
 992		if (netif_msg_rx_status(db))
 993			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
 994				rxhdr.RxStatus, RxLen);
 995
 996		/* Packet Status check */
 997		if (RxLen < 0x40) {
 998			GoodPacket = false;
 999			if (netif_msg_rx_err(db))
1000				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1001		}
1002
1003		if (RxLen > DM9000_PKT_MAX) {
1004			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1005		}
1006
1007		/* rxhdr.RxStatus is identical to RSR register. */
1008		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1009				      RSR_PLE | RSR_RWTO |
1010				      RSR_LCS | RSR_RF)) {
1011			GoodPacket = false;
1012			if (rxhdr.RxStatus & RSR_FOE) {
1013				if (netif_msg_rx_err(db))
1014					dev_dbg(db->dev, "fifo error\n");
1015				dev->stats.rx_fifo_errors++;
1016			}
1017			if (rxhdr.RxStatus & RSR_CE) {
1018				if (netif_msg_rx_err(db))
1019					dev_dbg(db->dev, "crc error\n");
1020				dev->stats.rx_crc_errors++;
1021			}
1022			if (rxhdr.RxStatus & RSR_RF) {
1023				if (netif_msg_rx_err(db))
1024					dev_dbg(db->dev, "length error\n");
1025				dev->stats.rx_length_errors++;
1026			}
1027		}
1028
1029		/* Move data from DM9000 */
1030		if (GoodPacket &&
1031		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1032			skb_reserve(skb, 2);
1033			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1034
1035			/* Read received packet from RX SRAM */
1036
1037			(db->inblk)(db->io_data, rdptr, RxLen);
1038			dev->stats.rx_bytes += RxLen;
1039
1040			/* Pass to upper layer */
1041			skb->protocol = eth_type_trans(skb, dev);
1042			if (dev->features & NETIF_F_RXCSUM) {
1043				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1044					skb->ip_summed = CHECKSUM_UNNECESSARY;
1045				else
1046					skb_checksum_none_assert(skb);
1047			}
1048			netif_rx(skb);
1049			dev->stats.rx_packets++;
1050
1051		} else {
1052			/* need to dump the packet's data */
1053
1054			(db->dumpblk)(db->io_data, RxLen);
1055		}
1056	} while (rxbyte & DM9000_PKT_RDY);
1057}
1058
1059static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1060{
1061	struct net_device *dev = dev_id;
1062	board_info_t *db = netdev_priv(dev);
1063	int int_status;
1064	unsigned long flags;
1065	u8 reg_save;
1066
1067	dm9000_dbg(db, 3, "entering %s\n", __func__);
1068
1069	/* A real interrupt coming */
1070
1071	/* holders of db->lock must always block IRQs */
1072	spin_lock_irqsave(&db->lock, flags);
1073
1074	/* Save previous register address */
1075	reg_save = readb(db->io_addr);
1076
1077	/* Disable all interrupts */
1078	iow(db, DM9000_IMR, IMR_PAR);
1079
1080	/* Got DM9000 interrupt status */
1081	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1082	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1083
1084	if (netif_msg_intr(db))
1085		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1086
1087	/* Received the coming packet */
1088	if (int_status & ISR_PRS)
1089		dm9000_rx(dev);
1090
1091	/* Trnasmit Interrupt check */
1092	if (int_status & ISR_PTS)
1093		dm9000_tx_done(dev, db);
1094
1095	if (db->type != TYPE_DM9000E) {
1096		if (int_status & ISR_LNKCHNG) {
1097			/* fire a link-change request */
1098			schedule_delayed_work(&db->phy_poll, 1);
1099		}
1100	}
1101
1102	/* Re-enable interrupt mask */
1103	iow(db, DM9000_IMR, db->imr_all);
1104
1105	/* Restore previous register address */
1106	writeb(reg_save, db->io_addr);
1107
1108	spin_unlock_irqrestore(&db->lock, flags);
1109
1110	return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1114{
1115	struct net_device *dev = dev_id;
1116	board_info_t *db = netdev_priv(dev);
1117	unsigned long flags;
1118	unsigned nsr, wcr;
1119
1120	spin_lock_irqsave(&db->lock, flags);
1121
1122	nsr = ior(db, DM9000_NSR);
1123	wcr = ior(db, DM9000_WCR);
1124
1125	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1126
1127	if (nsr & NSR_WAKEST) {
1128		/* clear, so we can avoid */
1129		iow(db, DM9000_NSR, NSR_WAKEST);
1130
1131		if (wcr & WCR_LINKST)
1132			dev_info(db->dev, "wake by link status change\n");
1133		if (wcr & WCR_SAMPLEST)
1134			dev_info(db->dev, "wake by sample packet\n");
1135		if (wcr & WCR_MAGICST )
1136			dev_info(db->dev, "wake by magic packet\n");
1137		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1138			dev_err(db->dev, "wake signalled with no reason? "
1139				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1140
1141	}
1142
1143	spin_unlock_irqrestore(&db->lock, flags);
1144
1145	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1146}
1147
1148#ifdef CONFIG_NET_POLL_CONTROLLER
1149/*
1150 *Used by netconsole
1151 */
1152static void dm9000_poll_controller(struct net_device *dev)
1153{
1154	disable_irq(dev->irq);
1155	dm9000_interrupt(dev->irq, dev);
1156	enable_irq(dev->irq);
1157}
1158#endif
1159
1160/*
1161 *  Open the interface.
1162 *  The interface is opened whenever "ifconfig" actives it.
1163 */
1164static int
1165dm9000_open(struct net_device *dev)
1166{
1167	board_info_t *db = netdev_priv(dev);
1168	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1169
1170	if (netif_msg_ifup(db))
1171		dev_dbg(db->dev, "enabling %s\n", dev->name);
1172
1173	/* If there is no IRQ type specified, default to something that
1174	 * may work, and tell the user that this is a problem */
1175
1176	if (irqflags == IRQF_TRIGGER_NONE)
1177		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1178
1179	irqflags |= IRQF_SHARED;
1180
1181	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1182	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1183	mdelay(1); /* delay needs by DM9000B */
1184
1185	/* Initialize DM9000 board */
1186	dm9000_reset(db);
1187	dm9000_init_dm9000(dev);
1188
1189	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1190		return -EAGAIN;
1191
1192	/* Init driver variable */
1193	db->dbug_cnt = 0;
1194
1195	mii_check_media(&db->mii, netif_msg_link(db), 1);
1196	netif_start_queue(dev);
1197	
1198	dm9000_schedule_poll(db);
1199
1200	return 0;
1201}
1202
1203/*
1204 * Sleep, either by using msleep() or if we are suspending, then
1205 * use mdelay() to sleep.
1206 */
1207static void dm9000_msleep(board_info_t *db, unsigned int ms)
1208{
1209	if (db->in_suspend)
1210		mdelay(ms);
1211	else
1212		msleep(ms);
1213}
1214
1215/*
1216 *   Read a word from phyxcer
1217 */
1218static int
1219dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1220{
1221	board_info_t *db = netdev_priv(dev);
1222	unsigned long flags;
1223	unsigned int reg_save;
1224	int ret;
1225
1226	mutex_lock(&db->addr_lock);
1227
1228	spin_lock_irqsave(&db->lock,flags);
1229
1230	/* Save previous register address */
1231	reg_save = readb(db->io_addr);
1232
1233	/* Fill the phyxcer register into REG_0C */
1234	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1235
1236	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1237
1238	writeb(reg_save, db->io_addr);
1239	spin_unlock_irqrestore(&db->lock,flags);
1240
1241	dm9000_msleep(db, 1);		/* Wait read complete */
1242
1243	spin_lock_irqsave(&db->lock,flags);
1244	reg_save = readb(db->io_addr);
1245
1246	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1247
1248	/* The read data keeps on REG_0D & REG_0E */
1249	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1250
1251	/* restore the previous address */
1252	writeb(reg_save, db->io_addr);
1253	spin_unlock_irqrestore(&db->lock,flags);
1254
1255	mutex_unlock(&db->addr_lock);
1256
1257	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1258	return ret;
1259}
1260
1261/*
1262 *   Write a word to phyxcer
1263 */
1264static void
1265dm9000_phy_write(struct net_device *dev,
1266		 int phyaddr_unused, int reg, int value)
1267{
1268	board_info_t *db = netdev_priv(dev);
1269	unsigned long flags;
1270	unsigned long reg_save;
1271
1272	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1273	mutex_lock(&db->addr_lock);
1274
1275	spin_lock_irqsave(&db->lock,flags);
1276
1277	/* Save previous register address */
1278	reg_save = readb(db->io_addr);
1279
1280	/* Fill the phyxcer register into REG_0C */
1281	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1282
1283	/* Fill the written data into REG_0D & REG_0E */
1284	iow(db, DM9000_EPDRL, value);
1285	iow(db, DM9000_EPDRH, value >> 8);
1286
1287	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1288
1289	writeb(reg_save, db->io_addr);
1290	spin_unlock_irqrestore(&db->lock, flags);
1291
1292	dm9000_msleep(db, 1);		/* Wait write complete */
1293
1294	spin_lock_irqsave(&db->lock,flags);
1295	reg_save = readb(db->io_addr);
1296
1297	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1298
1299	/* restore the previous address */
1300	writeb(reg_save, db->io_addr);
1301
1302	spin_unlock_irqrestore(&db->lock, flags);
1303	mutex_unlock(&db->addr_lock);
1304}
1305
1306static void
1307dm9000_shutdown(struct net_device *dev)
1308{
1309	board_info_t *db = netdev_priv(dev);
1310
1311	/* RESET device */
1312	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1313	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1314	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1315	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1316}
1317
1318/*
1319 * Stop the interface.
1320 * The interface is stopped when it is brought.
1321 */
1322static int
1323dm9000_stop(struct net_device *ndev)
1324{
1325	board_info_t *db = netdev_priv(ndev);
1326
1327	if (netif_msg_ifdown(db))
1328		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1329
1330	cancel_delayed_work_sync(&db->phy_poll);
1331
1332	netif_stop_queue(ndev);
1333	netif_carrier_off(ndev);
1334
1335	/* free interrupt */
1336	free_irq(ndev->irq, ndev);
1337
1338	dm9000_shutdown(ndev);
1339
1340	return 0;
1341}
1342
1343static const struct net_device_ops dm9000_netdev_ops = {
1344	.ndo_open		= dm9000_open,
1345	.ndo_stop		= dm9000_stop,
1346	.ndo_start_xmit		= dm9000_start_xmit,
1347	.ndo_tx_timeout		= dm9000_timeout,
1348	.ndo_set_rx_mode	= dm9000_hash_table,
1349	.ndo_do_ioctl		= dm9000_ioctl,
1350	.ndo_change_mtu		= eth_change_mtu,
1351	.ndo_set_features	= dm9000_set_features,
1352	.ndo_validate_addr	= eth_validate_addr,
1353	.ndo_set_mac_address	= eth_mac_addr,
1354#ifdef CONFIG_NET_POLL_CONTROLLER
1355	.ndo_poll_controller	= dm9000_poll_controller,
1356#endif
1357};
1358
1359/*
1360 * Search DM9000 board, allocate space and register it
1361 */
1362static int __devinit
1363dm9000_probe(struct platform_device *pdev)
1364{
1365	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1366	struct board_info *db;	/* Point a board information structure */
1367	struct net_device *ndev;
1368	const unsigned char *mac_src;
1369	int ret = 0;
1370	int iosize;
1371	int i;
1372	u32 id_val;
1373
1374	/* Init network device */
1375	ndev = alloc_etherdev(sizeof(struct board_info));
1376	if (!ndev)
1377		return -ENOMEM;
1378
1379	SET_NETDEV_DEV(ndev, &pdev->dev);
1380
1381	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1382
1383	/* setup board info structure */
1384	db = netdev_priv(ndev);
1385
1386	db->dev = &pdev->dev;
1387	db->ndev = ndev;
1388
1389	spin_lock_init(&db->lock);
1390	mutex_init(&db->addr_lock);
1391
1392	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1393
1394	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1395	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1396	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1397
1398	if (db->addr_res == NULL || db->data_res == NULL ||
1399	    db->irq_res == NULL) {
1400		dev_err(db->dev, "insufficient resources\n");
1401		ret = -ENOENT;
1402		goto out;
1403	}
1404
1405	db->irq_wake = platform_get_irq(pdev, 1);
1406	if (db->irq_wake >= 0) {
1407		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1408
1409		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1410				  IRQF_SHARED, dev_name(db->dev), ndev);
1411		if (ret) {
1412			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1413		} else {
1414
1415			/* test to see if irq is really wakeup capable */
1416			ret = irq_set_irq_wake(db->irq_wake, 1);
1417			if (ret) {
1418				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1419					db->irq_wake, ret);
1420				ret = 0;
1421			} else {
1422				irq_set_irq_wake(db->irq_wake, 0);
1423				db->wake_supported = 1;
1424			}
1425		}
1426	}
1427
1428	iosize = resource_size(db->addr_res);
1429	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1430					  pdev->name);
1431
1432	if (db->addr_req == NULL) {
1433		dev_err(db->dev, "cannot claim address reg area\n");
1434		ret = -EIO;
1435		goto out;
1436	}
1437
1438	db->io_addr = ioremap(db->addr_res->start, iosize);
1439
1440	if (db->io_addr == NULL) {
1441		dev_err(db->dev, "failed to ioremap address reg\n");
1442		ret = -EINVAL;
1443		goto out;
1444	}
1445
1446	iosize = resource_size(db->data_res);
1447	db->data_req = request_mem_region(db->data_res->start, iosize,
1448					  pdev->name);
1449
1450	if (db->data_req == NULL) {
1451		dev_err(db->dev, "cannot claim data reg area\n");
1452		ret = -EIO;
1453		goto out;
1454	}
1455
1456	db->io_data = ioremap(db->data_res->start, iosize);
1457
1458	if (db->io_data == NULL) {
1459		dev_err(db->dev, "failed to ioremap data reg\n");
1460		ret = -EINVAL;
1461		goto out;
1462	}
1463
1464	/* fill in parameters for net-dev structure */
1465	ndev->base_addr = (unsigned long)db->io_addr;
1466	ndev->irq	= db->irq_res->start;
1467
1468	/* ensure at least we have a default set of IO routines */
1469	dm9000_set_io(db, iosize);
1470
1471	/* check to see if anything is being over-ridden */
1472	if (pdata != NULL) {
1473		/* check to see if the driver wants to over-ride the
1474		 * default IO width */
1475
1476		if (pdata->flags & DM9000_PLATF_8BITONLY)
1477			dm9000_set_io(db, 1);
1478
1479		if (pdata->flags & DM9000_PLATF_16BITONLY)
1480			dm9000_set_io(db, 2);
1481
1482		if (pdata->flags & DM9000_PLATF_32BITONLY)
1483			dm9000_set_io(db, 4);
1484
1485		/* check to see if there are any IO routine
1486		 * over-rides */
1487
1488		if (pdata->inblk != NULL)
1489			db->inblk = pdata->inblk;
1490
1491		if (pdata->outblk != NULL)
1492			db->outblk = pdata->outblk;
1493
1494		if (pdata->dumpblk != NULL)
1495			db->dumpblk = pdata->dumpblk;
1496
1497		db->flags = pdata->flags;
1498	}
1499
1500#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1501	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1502#endif
1503
1504	dm9000_reset(db);
1505
1506	/* try multiple times, DM9000 sometimes gets the read wrong */
1507	for (i = 0; i < 8; i++) {
1508		id_val  = ior(db, DM9000_VIDL);
1509		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1510		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1511		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1512
1513		if (id_val == DM9000_ID)
1514			break;
1515		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1516	}
1517
1518	if (id_val != DM9000_ID) {
1519		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1520		ret = -ENODEV;
1521		goto out;
1522	}
1523
1524	/* Identify what type of DM9000 we are working on */
1525
1526	id_val = ior(db, DM9000_CHIPR);
1527	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1528
1529	switch (id_val) {
1530	case CHIPR_DM9000A:
1531		db->type = TYPE_DM9000A;
1532		break;
1533	case CHIPR_DM9000B:
1534		db->type = TYPE_DM9000B;
1535		break;
1536	default:
1537		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1538		db->type = TYPE_DM9000E;
1539	}
1540
1541	/* dm9000a/b are capable of hardware checksum offload */
1542	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1543		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1544		ndev->features |= ndev->hw_features;
1545	}
1546
1547	/* from this point we assume that we have found a DM9000 */
1548
1549	/* driver system function */
1550	ether_setup(ndev);
1551
1552	ndev->netdev_ops	= &dm9000_netdev_ops;
1553	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1554	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1555
1556	db->msg_enable       = NETIF_MSG_LINK;
1557	db->mii.phy_id_mask  = 0x1f;
1558	db->mii.reg_num_mask = 0x1f;
1559	db->mii.force_media  = 0;
1560	db->mii.full_duplex  = 0;
1561	db->mii.dev	     = ndev;
1562	db->mii.mdio_read    = dm9000_phy_read;
1563	db->mii.mdio_write   = dm9000_phy_write;
1564
1565	mac_src = "eeprom";
1566
1567	/* try reading the node address from the attached EEPROM */
1568	for (i = 0; i < 6; i += 2)
1569		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1570
1571	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1572		mac_src = "platform data";
1573		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1574	}
1575
1576	if (!is_valid_ether_addr(ndev->dev_addr)) {
1577		/* try reading from mac */
1578		
1579		mac_src = "chip";
1580		for (i = 0; i < 6; i++)
1581			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1582	}
1583
1584	if (!is_valid_ether_addr(ndev->dev_addr)) {
1585		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1586			 "set using ifconfig\n", ndev->name);
1587
1588		eth_hw_addr_random(ndev);
1589		mac_src = "random";
1590	}
1591
1592
1593	platform_set_drvdata(pdev, ndev);
1594	ret = register_netdev(ndev);
1595
1596	if (ret == 0)
1597		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1598		       ndev->name, dm9000_type_to_char(db->type),
1599		       db->io_addr, db->io_data, ndev->irq,
1600		       ndev->dev_addr, mac_src);
1601	return 0;
1602
1603out:
1604	dev_err(db->dev, "not found (%d).\n", ret);
1605
1606	dm9000_release_board(pdev, db);
1607	free_netdev(ndev);
1608
1609	return ret;
1610}
1611
1612static int
1613dm9000_drv_suspend(struct device *dev)
1614{
1615	struct platform_device *pdev = to_platform_device(dev);
1616	struct net_device *ndev = platform_get_drvdata(pdev);
1617	board_info_t *db;
1618
1619	if (ndev) {
1620		db = netdev_priv(ndev);
1621		db->in_suspend = 1;
1622
1623		if (!netif_running(ndev))
1624			return 0;
1625
1626		netif_device_detach(ndev);
1627
1628		/* only shutdown if not using WoL */
1629		if (!db->wake_state)
1630			dm9000_shutdown(ndev);
1631	}
1632	return 0;
1633}
1634
1635static int
1636dm9000_drv_resume(struct device *dev)
1637{
1638	struct platform_device *pdev = to_platform_device(dev);
1639	struct net_device *ndev = platform_get_drvdata(pdev);
1640	board_info_t *db = netdev_priv(ndev);
1641
1642	if (ndev) {
1643		if (netif_running(ndev)) {
1644			/* reset if we were not in wake mode to ensure if
1645			 * the device was powered off it is in a known state */
1646			if (!db->wake_state) {
1647				dm9000_reset(db);
1648				dm9000_init_dm9000(ndev);
1649			}
1650
1651			netif_device_attach(ndev);
1652		}
1653
1654		db->in_suspend = 0;
1655	}
1656	return 0;
1657}
1658
1659static const struct dev_pm_ops dm9000_drv_pm_ops = {
1660	.suspend	= dm9000_drv_suspend,
1661	.resume		= dm9000_drv_resume,
1662};
1663
1664static int __devexit
1665dm9000_drv_remove(struct platform_device *pdev)
1666{
1667	struct net_device *ndev = platform_get_drvdata(pdev);
1668
1669	platform_set_drvdata(pdev, NULL);
1670
1671	unregister_netdev(ndev);
1672	dm9000_release_board(pdev, netdev_priv(ndev));
1673	free_netdev(ndev);		/* free device structure */
1674
1675	dev_dbg(&pdev->dev, "released and freed device\n");
1676	return 0;
1677}
1678
1679static struct platform_driver dm9000_driver = {
1680	.driver	= {
1681		.name    = "dm9000",
1682		.owner	 = THIS_MODULE,
1683		.pm	 = &dm9000_drv_pm_ops,
1684	},
1685	.probe   = dm9000_probe,
1686	.remove  = __devexit_p(dm9000_drv_remove),
1687};
1688
1689static int __init
1690dm9000_init(void)
1691{
1692	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1693
1694	return platform_driver_register(&dm9000_driver);
1695}
1696
1697static void __exit
1698dm9000_cleanup(void)
1699{
1700	platform_driver_unregister(&dm9000_driver);
1701}
1702
1703module_init(dm9000_init);
1704module_exit(dm9000_cleanup);
1705
1706MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1707MODULE_DESCRIPTION("Davicom DM9000 network driver");
1708MODULE_LICENSE("GPL");
1709MODULE_ALIAS("platform:dm9000");