Loading...
1#include <linux/errno.h>
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/smp.h>
5#include <linux/prctl.h>
6#include <linux/slab.h>
7#include <linux/sched.h>
8#include <linux/module.h>
9#include <linux/pm.h>
10#include <linux/clockchips.h>
11#include <linux/random.h>
12#include <linux/user-return-notifier.h>
13#include <linux/dmi.h>
14#include <linux/utsname.h>
15#include <linux/stackprotector.h>
16#include <linux/tick.h>
17#include <linux/cpuidle.h>
18#include <trace/events/power.h>
19#include <linux/hw_breakpoint.h>
20#include <asm/cpu.h>
21#include <asm/apic.h>
22#include <asm/syscalls.h>
23#include <asm/idle.h>
24#include <asm/uaccess.h>
25#include <asm/i387.h>
26#include <asm/fpu-internal.h>
27#include <asm/debugreg.h>
28#include <asm/nmi.h>
29
30/*
31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
33 * so they are allowed to end up in the .data..cacheline_aligned
34 * section. Since TSS's are completely CPU-local, we want them
35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
36 */
37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
38
39#ifdef CONFIG_X86_64
40static DEFINE_PER_CPU(unsigned char, is_idle);
41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
42
43void idle_notifier_register(struct notifier_block *n)
44{
45 atomic_notifier_chain_register(&idle_notifier, n);
46}
47EXPORT_SYMBOL_GPL(idle_notifier_register);
48
49void idle_notifier_unregister(struct notifier_block *n)
50{
51 atomic_notifier_chain_unregister(&idle_notifier, n);
52}
53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
54#endif
55
56struct kmem_cache *task_xstate_cachep;
57EXPORT_SYMBOL_GPL(task_xstate_cachep);
58
59/*
60 * this gets called so that we can store lazy state into memory and copy the
61 * current task into the new thread.
62 */
63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
64{
65 int ret;
66
67 unlazy_fpu(src);
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
76 }
77 return 0;
78}
79
80void free_thread_xstate(struct task_struct *tsk)
81{
82 fpu_free(&tsk->thread.fpu);
83}
84
85void arch_release_task_struct(struct task_struct *tsk)
86{
87 free_thread_xstate(tsk);
88}
89
90void arch_task_cache_init(void)
91{
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96}
97
98static inline void drop_fpu(struct task_struct *tsk)
99{
100 /*
101 * Forget coprocessor state..
102 */
103 tsk->fpu_counter = 0;
104 clear_fpu(tsk);
105 clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113 struct task_struct *me = current;
114 struct thread_struct *t = &me->thread;
115 unsigned long *bp = t->io_bitmap_ptr;
116
117 if (bp) {
118 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
119
120 t->io_bitmap_ptr = NULL;
121 clear_thread_flag(TIF_IO_BITMAP);
122 /*
123 * Careful, clear this in the TSS too:
124 */
125 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126 t->io_bitmap_max = 0;
127 put_cpu();
128 kfree(bp);
129 }
130
131 drop_fpu(me);
132}
133
134void show_regs_common(void)
135{
136 const char *vendor, *product, *board;
137
138 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139 if (!vendor)
140 vendor = "";
141 product = dmi_get_system_info(DMI_PRODUCT_NAME);
142 if (!product)
143 product = "";
144
145 /* Board Name is optional */
146 board = dmi_get_system_info(DMI_BOARD_NAME);
147
148 printk(KERN_CONT "\n");
149 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150 current->pid, current->comm, print_tainted(),
151 init_utsname()->release,
152 (int)strcspn(init_utsname()->version, " "),
153 init_utsname()->version);
154 printk(KERN_CONT " %s %s", vendor, product);
155 if (board)
156 printk(KERN_CONT "/%s", board);
157 printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162 struct task_struct *tsk = current;
163
164 flush_ptrace_hw_breakpoint(tsk);
165 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166 drop_fpu(tsk);
167}
168
169static void hard_disable_TSC(void)
170{
171 write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176 preempt_disable();
177 if (!test_and_set_thread_flag(TIF_NOTSC))
178 /*
179 * Must flip the CPU state synchronously with
180 * TIF_NOTSC in the current running context.
181 */
182 hard_disable_TSC();
183 preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188 write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193 preempt_disable();
194 if (test_and_clear_thread_flag(TIF_NOTSC))
195 /*
196 * Must flip the CPU state synchronously with
197 * TIF_NOTSC in the current running context.
198 */
199 hard_enable_TSC();
200 preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205 unsigned int val;
206
207 if (test_thread_flag(TIF_NOTSC))
208 val = PR_TSC_SIGSEGV;
209 else
210 val = PR_TSC_ENABLE;
211
212 return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217 if (val == PR_TSC_SIGSEGV)
218 disable_TSC();
219 else if (val == PR_TSC_ENABLE)
220 enable_TSC();
221 else
222 return -EINVAL;
223
224 return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228 struct tss_struct *tss)
229{
230 struct thread_struct *prev, *next;
231
232 prev = &prev_p->thread;
233 next = &next_p->thread;
234
235 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237 unsigned long debugctl = get_debugctlmsr();
238
239 debugctl &= ~DEBUGCTLMSR_BTF;
240 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241 debugctl |= DEBUGCTLMSR_BTF;
242
243 update_debugctlmsr(debugctl);
244 }
245
246 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248 /* prev and next are different */
249 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250 hard_disable_TSC();
251 else
252 hard_enable_TSC();
253 }
254
255 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
256 /*
257 * Copy the relevant range of the IO bitmap.
258 * Normally this is 128 bytes or less:
259 */
260 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261 max(prev->io_bitmap_max, next->io_bitmap_max));
262 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
263 /*
264 * Clear any possible leftover bits:
265 */
266 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267 }
268 propagate_user_return_notify(prev_p, next_p);
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289 NULL, NULL);
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296 if (!newsp)
297 newsp = regs->sp;
298 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
307
308/*
309 * Create a kernel thread
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313 struct pt_regs regs;
314
315 memset(®s, 0, sizeof(regs));
316
317 regs.si = (unsigned long) fn;
318 regs.di = (unsigned long) arg;
319
320#ifdef CONFIG_X86_32
321 regs.ds = __USER_DS;
322 regs.es = __USER_DS;
323 regs.fs = __KERNEL_PERCPU;
324 regs.gs = __KERNEL_STACK_CANARY;
325#else
326 regs.ss = __KERNEL_DS;
327#endif
328
329 regs.orig_ax = -1;
330 regs.ip = (unsigned long) kernel_thread_helper;
331 regs.cs = __KERNEL_CS | get_kernel_rpl();
332 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
333
334 /* Ok, create the new process.. */
335 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
341 */
342long sys_execve(const char __user *name,
343 const char __user *const __user *argv,
344 const char __user *const __user *envp, struct pt_regs *regs)
345{
346 long error;
347 char *filename;
348
349 filename = getname(name);
350 error = PTR_ERR(filename);
351 if (IS_ERR(filename))
352 return error;
353 error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356 if (error == 0) {
357 /* Make sure we don't return using sysenter.. */
358 set_thread_flag(TIF_IRET);
359 }
360#endif
361
362 putname(filename);
363 return error;
364}
365
366/*
367 * Idle related variables and functions
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382 return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388 BUG();
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395 this_cpu_write(is_idle, 1);
396 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
397}
398
399static void __exit_idle(void)
400{
401 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402 return;
403 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409 /* idle loop has pid 0 */
410 if (current->pid)
411 return;
412 __exit_idle();
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424 /*
425 * If we're the non-boot CPU, nothing set the stack canary up
426 * for us. CPU0 already has it initialized but no harm in
427 * doing it again. This is a good place for updating it, as
428 * we wont ever return from this function (so the invalid
429 * canaries already on the stack wont ever trigger).
430 */
431 boot_init_stack_canary();
432 current_thread_info()->status |= TS_POLLING;
433
434 while (1) {
435 tick_nohz_idle_enter();
436
437 while (!need_resched()) {
438 rmb();
439
440 if (cpu_is_offline(smp_processor_id()))
441 play_dead();
442
443 /*
444 * Idle routines should keep interrupts disabled
445 * from here on, until they go to idle.
446 * Otherwise, idle callbacks can misfire.
447 */
448 local_touch_nmi();
449 local_irq_disable();
450
451 enter_idle();
452
453 /* Don't trace irqs off for idle */
454 stop_critical_timings();
455
456 /* enter_idle() needs rcu for notifiers */
457 rcu_idle_enter();
458
459 if (cpuidle_idle_call())
460 pm_idle();
461
462 rcu_idle_exit();
463 start_critical_timings();
464
465 /* In many cases the interrupt that ended idle
466 has already called exit_idle. But some idle
467 loops can be woken up without interrupt. */
468 __exit_idle();
469 }
470
471 tick_nohz_idle_exit();
472 preempt_enable_no_resched();
473 schedule();
474 preempt_disable();
475 }
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484 if (hlt_use_halt()) {
485 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486 trace_cpu_idle_rcuidle(1, smp_processor_id());
487 current_thread_info()->status &= ~TS_POLLING;
488 /*
489 * TS_POLLING-cleared state must be visible before we
490 * test NEED_RESCHED:
491 */
492 smp_mb();
493
494 if (!need_resched())
495 safe_halt(); /* enables interrupts racelessly */
496 else
497 local_irq_enable();
498 current_thread_info()->status |= TS_POLLING;
499 trace_power_end_rcuidle(smp_processor_id());
500 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501 } else {
502 local_irq_enable();
503 /* loop is done by the caller */
504 cpu_relax();
505 }
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
512{
513 bool ret = !!pm_idle;
514
515 pm_idle = default_idle;
516
517 return ret;
518}
519void stop_this_cpu(void *dummy)
520{
521 local_irq_disable();
522 /*
523 * Remove this CPU:
524 */
525 set_cpu_online(smp_processor_id(), false);
526 disable_local_APIC();
527
528 for (;;) {
529 if (hlt_works(smp_processor_id()))
530 halt();
531 }
532}
533
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537 if (!need_resched()) {
538 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539 trace_cpu_idle_rcuidle(1, smp_processor_id());
540 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541 clflush((void *)¤t_thread_info()->flags);
542
543 __monitor((void *)¤t_thread_info()->flags, 0, 0);
544 smp_mb();
545 if (!need_resched())
546 __sti_mwait(0, 0);
547 else
548 local_irq_enable();
549 trace_power_end_rcuidle(smp_processor_id());
550 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551 } else
552 local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
559 */
560static void poll_idle(void)
561{
562 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563 trace_cpu_idle_rcuidle(0, smp_processor_id());
564 local_irq_enable();
565 while (!need_resched())
566 cpu_relax();
567 trace_power_end_rcuidle(smp_processor_id());
568 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
582 */
583
584#define MWAIT_INFO 0x05
585#define MWAIT_ECX_EXTENDED_INFO 0x01
586#define MWAIT_EDX_C1 0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590 u32 eax, ebx, ecx, edx;
591
592 /* Use mwait if idle=mwait boot option is given */
593 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594 return 1;
595
596 /*
597 * Any idle= boot option other than idle=mwait means that we must not
598 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599 */
600 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601 return 0;
602
603 if (c->cpuid_level < MWAIT_INFO)
604 return 0;
605
606 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607 /* Check, whether EDX has extended info about MWAIT */
608 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609 return 1;
610
611 /*
612 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613 * C1 supports MWAIT
614 */
615 return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625 if (amd_e400_c1e_mask != NULL)
626 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
633 */
634static void amd_e400_idle(void)
635{
636 if (need_resched())
637 return;
638
639 if (!amd_e400_c1e_detected) {
640 u32 lo, hi;
641
642 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645 amd_e400_c1e_detected = true;
646 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647 mark_tsc_unstable("TSC halt in AMD C1E");
648 printk(KERN_INFO "System has AMD C1E enabled\n");
649 }
650 }
651
652 if (amd_e400_c1e_detected) {
653 int cpu = smp_processor_id();
654
655 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657 /*
658 * Force broadcast so ACPI can not interfere.
659 */
660 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661 &cpu);
662 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663 cpu);
664 }
665 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667 default_idle();
668
669 /*
670 * The switch back from broadcast mode needs to be
671 * called with interrupts disabled.
672 */
673 local_irq_disable();
674 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675 local_irq_enable();
676 } else
677 default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683 if (pm_idle == poll_idle && smp_num_siblings > 1) {
684 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685 " performance may degrade.\n");
686 }
687#endif
688 if (pm_idle)
689 return;
690
691 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692 /*
693 * One CPU supports mwait => All CPUs supports mwait
694 */
695 printk(KERN_INFO "using mwait in idle threads.\n");
696 pm_idle = mwait_idle;
697 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
698 /* E400: APIC timer interrupt does not wake up CPU from C1e */
699 printk(KERN_INFO "using AMD E400 aware idle routine\n");
700 pm_idle = amd_e400_idle;
701 } else
702 pm_idle = default_idle;
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708 if (pm_idle == amd_e400_idle)
709 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
710}
711
712static int __init idle_setup(char *str)
713{
714 if (!str)
715 return -EINVAL;
716
717 if (!strcmp(str, "poll")) {
718 printk("using polling idle threads.\n");
719 pm_idle = poll_idle;
720 boot_option_idle_override = IDLE_POLL;
721 } else if (!strcmp(str, "mwait")) {
722 boot_option_idle_override = IDLE_FORCE_MWAIT;
723 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724 } else if (!strcmp(str, "halt")) {
725 /*
726 * When the boot option of idle=halt is added, halt is
727 * forced to be used for CPU idle. In such case CPU C2/C3
728 * won't be used again.
729 * To continue to load the CPU idle driver, don't touch
730 * the boot_option_idle_override.
731 */
732 pm_idle = default_idle;
733 boot_option_idle_override = IDLE_HALT;
734 } else if (!strcmp(str, "nomwait")) {
735 /*
736 * If the boot option of "idle=nomwait" is added,
737 * it means that mwait will be disabled for CPU C2/C3
738 * states. In such case it won't touch the variable
739 * of boot_option_idle_override.
740 */
741 boot_option_idle_override = IDLE_NOMWAIT;
742 } else
743 return -1;
744
745 return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752 sp -= get_random_int() % 8192;
753 return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758 unsigned long range_end = mm->brk + 0x02000000;
759 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760}
761
1#include <linux/errno.h>
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/smp.h>
5#include <linux/prctl.h>
6#include <linux/slab.h>
7#include <linux/sched.h>
8#include <linux/module.h>
9#include <linux/pm.h>
10#include <linux/clockchips.h>
11#include <linux/random.h>
12#include <linux/user-return-notifier.h>
13#include <linux/dmi.h>
14#include <linux/utsname.h>
15#include <trace/events/power.h>
16#include <linux/hw_breakpoint.h>
17#include <asm/cpu.h>
18#include <asm/system.h>
19#include <asm/apic.h>
20#include <asm/syscalls.h>
21#include <asm/idle.h>
22#include <asm/uaccess.h>
23#include <asm/i387.h>
24#include <asm/debugreg.h>
25
26struct kmem_cache *task_xstate_cachep;
27EXPORT_SYMBOL_GPL(task_xstate_cachep);
28
29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30{
31 int ret;
32
33 *dst = *src;
34 if (fpu_allocated(&src->thread.fpu)) {
35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 ret = fpu_alloc(&dst->thread.fpu);
37 if (ret)
38 return ret;
39 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 }
41 return 0;
42}
43
44void free_thread_xstate(struct task_struct *tsk)
45{
46 fpu_free(&tsk->thread.fpu);
47}
48
49void free_thread_info(struct thread_info *ti)
50{
51 free_thread_xstate(ti->task);
52 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53}
54
55void arch_task_cache_init(void)
56{
57 task_xstate_cachep =
58 kmem_cache_create("task_xstate", xstate_size,
59 __alignof__(union thread_xstate),
60 SLAB_PANIC | SLAB_NOTRACK, NULL);
61}
62
63/*
64 * Free current thread data structures etc..
65 */
66void exit_thread(void)
67{
68 struct task_struct *me = current;
69 struct thread_struct *t = &me->thread;
70 unsigned long *bp = t->io_bitmap_ptr;
71
72 if (bp) {
73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74
75 t->io_bitmap_ptr = NULL;
76 clear_thread_flag(TIF_IO_BITMAP);
77 /*
78 * Careful, clear this in the TSS too:
79 */
80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 t->io_bitmap_max = 0;
82 put_cpu();
83 kfree(bp);
84 }
85}
86
87void show_regs(struct pt_regs *regs)
88{
89 show_registers(regs);
90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
91}
92
93void show_regs_common(void)
94{
95 const char *vendor, *product, *board;
96
97 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 if (!vendor)
99 vendor = "";
100 product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 if (!product)
102 product = "";
103
104 /* Board Name is optional */
105 board = dmi_get_system_info(DMI_BOARD_NAME);
106
107 printk(KERN_CONT "\n");
108 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 current->pid, current->comm, print_tainted(),
110 init_utsname()->release,
111 (int)strcspn(init_utsname()->version, " "),
112 init_utsname()->version);
113 printk(KERN_CONT " %s %s", vendor, product);
114 if (board)
115 printk(KERN_CONT "/%s", board);
116 printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121 struct task_struct *tsk = current;
122
123 flush_ptrace_hw_breakpoint(tsk);
124 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125 /*
126 * Forget coprocessor state..
127 */
128 tsk->fpu_counter = 0;
129 clear_fpu(tsk);
130 clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135 write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140 preempt_disable();
141 if (!test_and_set_thread_flag(TIF_NOTSC))
142 /*
143 * Must flip the CPU state synchronously with
144 * TIF_NOTSC in the current running context.
145 */
146 hard_disable_TSC();
147 preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152 write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157 preempt_disable();
158 if (test_and_clear_thread_flag(TIF_NOTSC))
159 /*
160 * Must flip the CPU state synchronously with
161 * TIF_NOTSC in the current running context.
162 */
163 hard_enable_TSC();
164 preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169 unsigned int val;
170
171 if (test_thread_flag(TIF_NOTSC))
172 val = PR_TSC_SIGSEGV;
173 else
174 val = PR_TSC_ENABLE;
175
176 return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181 if (val == PR_TSC_SIGSEGV)
182 disable_TSC();
183 else if (val == PR_TSC_ENABLE)
184 enable_TSC();
185 else
186 return -EINVAL;
187
188 return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192 struct tss_struct *tss)
193{
194 struct thread_struct *prev, *next;
195
196 prev = &prev_p->thread;
197 next = &next_p->thread;
198
199 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201 unsigned long debugctl = get_debugctlmsr();
202
203 debugctl &= ~DEBUGCTLMSR_BTF;
204 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205 debugctl |= DEBUGCTLMSR_BTF;
206
207 update_debugctlmsr(debugctl);
208 }
209
210 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212 /* prev and next are different */
213 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214 hard_disable_TSC();
215 else
216 hard_enable_TSC();
217 }
218
219 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220 /*
221 * Copy the relevant range of the IO bitmap.
222 * Normally this is 128 bytes or less:
223 */
224 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225 max(prev->io_bitmap_max, next->io_bitmap_max));
226 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227 /*
228 * Clear any possible leftover bits:
229 */
230 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231 }
232 propagate_user_return_notify(prev_p, next_p);
233}
234
235int sys_fork(struct pt_regs *regs)
236{
237 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
251{
252 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253 NULL, NULL);
254}
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260 if (!newsp)
261 newsp = regs->sp;
262 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270extern void kernel_thread_helper(void);
271
272/*
273 * Create a kernel thread
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276{
277 struct pt_regs regs;
278
279 memset(®s, 0, sizeof(regs));
280
281 regs.si = (unsigned long) fn;
282 regs.di = (unsigned long) arg;
283
284#ifdef CONFIG_X86_32
285 regs.ds = __USER_DS;
286 regs.es = __USER_DS;
287 regs.fs = __KERNEL_PERCPU;
288 regs.gs = __KERNEL_STACK_CANARY;
289#else
290 regs.ss = __KERNEL_DS;
291#endif
292
293 regs.orig_ax = -1;
294 regs.ip = (unsigned long) kernel_thread_helper;
295 regs.cs = __KERNEL_CS | get_kernel_rpl();
296 regs.flags = X86_EFLAGS_IF | 0x2;
297
298 /* Ok, create the new process.. */
299 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
300}
301EXPORT_SYMBOL(kernel_thread);
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307 const char __user *const __user *argv,
308 const char __user *const __user *envp, struct pt_regs *regs)
309{
310 long error;
311 char *filename;
312
313 filename = getname(name);
314 error = PTR_ERR(filename);
315 if (IS_ERR(filename))
316 return error;
317 error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320 if (error == 0) {
321 /* Make sure we don't return using sysenter.. */
322 set_thread_flag(TIF_IRET);
323 }
324#endif
325
326 putname(filename);
327 return error;
328}
329
330/*
331 * Idle related variables and functions
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
342#endif
343
344#ifdef CONFIG_X86_32
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352 hlt_counter++;
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
357{
358 hlt_counter--;
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
363{
364 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
365}
366#else
367static inline int hlt_use_halt(void)
368{
369 return 1;
370}
371#endif
372
373/*
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379 if (hlt_use_halt()) {
380 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381 trace_cpu_idle(1, smp_processor_id());
382 current_thread_info()->status &= ~TS_POLLING;
383 /*
384 * TS_POLLING-cleared state must be visible before we
385 * test NEED_RESCHED:
386 */
387 smp_mb();
388
389 if (!need_resched())
390 safe_halt(); /* enables interrupts racelessly */
391 else
392 local_irq_enable();
393 current_thread_info()->status |= TS_POLLING;
394 trace_power_end(smp_processor_id());
395 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396 } else {
397 local_irq_enable();
398 /* loop is done by the caller */
399 cpu_relax();
400 }
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
406void stop_this_cpu(void *dummy)
407{
408 local_irq_disable();
409 /*
410 * Remove this CPU:
411 */
412 set_cpu_online(smp_processor_id(), false);
413 disable_local_APIC();
414
415 for (;;) {
416 if (hlt_works(smp_processor_id()))
417 halt();
418 }
419}
420
421static void do_nothing(void *unused)
422{
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
434{
435 smp_mb();
436 /* kick all the CPUs so that they exit out of pm_idle */
437 smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444 if (!need_resched()) {
445 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446 trace_cpu_idle(1, smp_processor_id());
447 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448 clflush((void *)¤t_thread_info()->flags);
449
450 __monitor((void *)¤t_thread_info()->flags, 0, 0);
451 smp_mb();
452 if (!need_resched())
453 __sti_mwait(0, 0);
454 else
455 local_irq_enable();
456 trace_power_end(smp_processor_id());
457 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458 } else
459 local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470 trace_cpu_idle(0, smp_processor_id());
471 local_irq_enable();
472 while (!need_resched())
473 cpu_relax();
474 trace_power_end(smp_processor_id());
475 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
477
478/*
479 * mwait selection logic:
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
489 */
490
491#define MWAIT_INFO 0x05
492#define MWAIT_ECX_EXTENDED_INFO 0x01
493#define MWAIT_EDX_C1 0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497 u32 eax, ebx, ecx, edx;
498
499 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500 return 1;
501
502 if (c->cpuid_level < MWAIT_INFO)
503 return 0;
504
505 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506 /* Check, whether EDX has extended info about MWAIT */
507 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508 return 1;
509
510 /*
511 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512 * C1 supports MWAIT
513 */
514 return (edx & MWAIT_EDX_C1);
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524 if (amd_e400_c1e_mask != NULL)
525 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535 if (need_resched())
536 return;
537
538 if (!amd_e400_c1e_detected) {
539 u32 lo, hi;
540
541 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544 amd_e400_c1e_detected = true;
545 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546 mark_tsc_unstable("TSC halt in AMD C1E");
547 printk(KERN_INFO "System has AMD C1E enabled\n");
548 }
549 }
550
551 if (amd_e400_c1e_detected) {
552 int cpu = smp_processor_id();
553
554 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556 /*
557 * Force broadcast so ACPI can not interfere.
558 */
559 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560 &cpu);
561 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562 cpu);
563 }
564 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566 default_idle();
567
568 /*
569 * The switch back from broadcast mode needs to be
570 * called with interrupts disabled.
571 */
572 local_irq_disable();
573 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574 local_irq_enable();
575 } else
576 default_idle();
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582 if (pm_idle == poll_idle && smp_num_siblings > 1) {
583 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584 " performance may degrade.\n");
585 }
586#endif
587 if (pm_idle)
588 return;
589
590 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591 /*
592 * One CPU supports mwait => All CPUs supports mwait
593 */
594 printk(KERN_INFO "using mwait in idle threads.\n");
595 pm_idle = mwait_idle;
596 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
597 /* E400: APIC timer interrupt does not wake up CPU from C1e */
598 printk(KERN_INFO "using AMD E400 aware idle routine\n");
599 pm_idle = amd_e400_idle;
600 } else
601 pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607 if (pm_idle == amd_e400_idle)
608 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
609}
610
611static int __init idle_setup(char *str)
612{
613 if (!str)
614 return -EINVAL;
615
616 if (!strcmp(str, "poll")) {
617 printk("using polling idle threads.\n");
618 pm_idle = poll_idle;
619 boot_option_idle_override = IDLE_POLL;
620 } else if (!strcmp(str, "mwait")) {
621 boot_option_idle_override = IDLE_FORCE_MWAIT;
622 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623 } else if (!strcmp(str, "halt")) {
624 /*
625 * When the boot option of idle=halt is added, halt is
626 * forced to be used for CPU idle. In such case CPU C2/C3
627 * won't be used again.
628 * To continue to load the CPU idle driver, don't touch
629 * the boot_option_idle_override.
630 */
631 pm_idle = default_idle;
632 boot_option_idle_override = IDLE_HALT;
633 } else if (!strcmp(str, "nomwait")) {
634 /*
635 * If the boot option of "idle=nomwait" is added,
636 * it means that mwait will be disabled for CPU C2/C3
637 * states. In such case it won't touch the variable
638 * of boot_option_idle_override.
639 */
640 boot_option_idle_override = IDLE_NOMWAIT;
641 } else
642 return -1;
643
644 return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651 sp -= get_random_int() % 8192;
652 return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657 unsigned long range_end = mm->brk + 0x02000000;
658 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660