Linux Audio

Check our new training course

Loading...
v3.5.6
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 15#include <linux/stackprotector.h>
 16#include <linux/tick.h>
 17#include <linux/cpuidle.h>
 18#include <trace/events/power.h>
 19#include <linux/hw_breakpoint.h>
 20#include <asm/cpu.h>
 
 21#include <asm/apic.h>
 22#include <asm/syscalls.h>
 23#include <asm/idle.h>
 24#include <asm/uaccess.h>
 25#include <asm/i387.h>
 26#include <asm/fpu-internal.h>
 27#include <asm/debugreg.h>
 28#include <asm/nmi.h>
 29
 30/*
 31 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 32 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 33 * so they are allowed to end up in the .data..cacheline_aligned
 34 * section. Since TSS's are completely CPU-local, we want them
 35 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 36 */
 37DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 38
 39#ifdef CONFIG_X86_64
 40static DEFINE_PER_CPU(unsigned char, is_idle);
 41static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 42
 43void idle_notifier_register(struct notifier_block *n)
 44{
 45	atomic_notifier_chain_register(&idle_notifier, n);
 46}
 47EXPORT_SYMBOL_GPL(idle_notifier_register);
 48
 49void idle_notifier_unregister(struct notifier_block *n)
 50{
 51	atomic_notifier_chain_unregister(&idle_notifier, n);
 52}
 53EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 54#endif
 55
 56struct kmem_cache *task_xstate_cachep;
 57EXPORT_SYMBOL_GPL(task_xstate_cachep);
 58
 59/*
 60 * this gets called so that we can store lazy state into memory and copy the
 61 * current task into the new thread.
 62 */
 63int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 64{
 65	int ret;
 66
 67	unlazy_fpu(src);
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 98static inline void drop_fpu(struct task_struct *tsk)
 99{
100	/*
101	 * Forget coprocessor state..
102	 */
103	tsk->fpu_counter = 0;
104	clear_fpu(tsk);
105	clear_used_math();
106}
107
108/*
109 * Free current thread data structures etc..
110 */
111void exit_thread(void)
112{
113	struct task_struct *me = current;
114	struct thread_struct *t = &me->thread;
115	unsigned long *bp = t->io_bitmap_ptr;
116
117	if (bp) {
118		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
119
120		t->io_bitmap_ptr = NULL;
121		clear_thread_flag(TIF_IO_BITMAP);
122		/*
123		 * Careful, clear this in the TSS too:
124		 */
125		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
126		t->io_bitmap_max = 0;
127		put_cpu();
128		kfree(bp);
129	}
 
130
131	drop_fpu(me);
 
 
 
132}
133
134void show_regs_common(void)
135{
136	const char *vendor, *product, *board;
137
138	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
139	if (!vendor)
140		vendor = "";
141	product = dmi_get_system_info(DMI_PRODUCT_NAME);
142	if (!product)
143		product = "";
144
145	/* Board Name is optional */
146	board = dmi_get_system_info(DMI_BOARD_NAME);
147
148	printk(KERN_CONT "\n");
149	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
150		current->pid, current->comm, print_tainted(),
151		init_utsname()->release,
152		(int)strcspn(init_utsname()->version, " "),
153		init_utsname()->version);
154	printk(KERN_CONT " %s %s", vendor, product);
155	if (board)
156		printk(KERN_CONT "/%s", board);
157	printk(KERN_CONT "\n");
158}
159
160void flush_thread(void)
161{
162	struct task_struct *tsk = current;
163
164	flush_ptrace_hw_breakpoint(tsk);
165	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
166	drop_fpu(tsk);
 
 
 
 
 
167}
168
169static void hard_disable_TSC(void)
170{
171	write_cr4(read_cr4() | X86_CR4_TSD);
172}
173
174void disable_TSC(void)
175{
176	preempt_disable();
177	if (!test_and_set_thread_flag(TIF_NOTSC))
178		/*
179		 * Must flip the CPU state synchronously with
180		 * TIF_NOTSC in the current running context.
181		 */
182		hard_disable_TSC();
183	preempt_enable();
184}
185
186static void hard_enable_TSC(void)
187{
188	write_cr4(read_cr4() & ~X86_CR4_TSD);
189}
190
191static void enable_TSC(void)
192{
193	preempt_disable();
194	if (test_and_clear_thread_flag(TIF_NOTSC))
195		/*
196		 * Must flip the CPU state synchronously with
197		 * TIF_NOTSC in the current running context.
198		 */
199		hard_enable_TSC();
200	preempt_enable();
201}
202
203int get_tsc_mode(unsigned long adr)
204{
205	unsigned int val;
206
207	if (test_thread_flag(TIF_NOTSC))
208		val = PR_TSC_SIGSEGV;
209	else
210		val = PR_TSC_ENABLE;
211
212	return put_user(val, (unsigned int __user *)adr);
213}
214
215int set_tsc_mode(unsigned int val)
216{
217	if (val == PR_TSC_SIGSEGV)
218		disable_TSC();
219	else if (val == PR_TSC_ENABLE)
220		enable_TSC();
221	else
222		return -EINVAL;
223
224	return 0;
225}
226
227void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
228		      struct tss_struct *tss)
229{
230	struct thread_struct *prev, *next;
231
232	prev = &prev_p->thread;
233	next = &next_p->thread;
234
235	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
236	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
237		unsigned long debugctl = get_debugctlmsr();
238
239		debugctl &= ~DEBUGCTLMSR_BTF;
240		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
241			debugctl |= DEBUGCTLMSR_BTF;
242
243		update_debugctlmsr(debugctl);
244	}
245
246	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
247	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
248		/* prev and next are different */
249		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
250			hard_disable_TSC();
251		else
252			hard_enable_TSC();
253	}
254
255	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
256		/*
257		 * Copy the relevant range of the IO bitmap.
258		 * Normally this is 128 bytes or less:
259		 */
260		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
261		       max(prev->io_bitmap_max, next->io_bitmap_max));
262	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
263		/*
264		 * Clear any possible leftover bits:
265		 */
266		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
267	}
268	propagate_user_return_notify(prev_p, next_p);
269}
270
271int sys_fork(struct pt_regs *regs)
272{
273	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
274}
275
276/*
277 * This is trivial, and on the face of it looks like it
278 * could equally well be done in user mode.
279 *
280 * Not so, for quite unobvious reasons - register pressure.
281 * In user mode vfork() cannot have a stack frame, and if
282 * done by calling the "clone()" system call directly, you
283 * do not have enough call-clobbered registers to hold all
284 * the information you need.
285 */
286int sys_vfork(struct pt_regs *regs)
287{
288	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
289		       NULL, NULL);
290}
291
292long
293sys_clone(unsigned long clone_flags, unsigned long newsp,
294	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
295{
296	if (!newsp)
297		newsp = regs->sp;
298	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
299}
300
301/*
302 * This gets run with %si containing the
303 * function to call, and %di containing
304 * the "args".
305 */
306extern void kernel_thread_helper(void);
307
308/*
309 * Create a kernel thread
310 */
311int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
312{
313	struct pt_regs regs;
314
315	memset(&regs, 0, sizeof(regs));
316
317	regs.si = (unsigned long) fn;
318	regs.di = (unsigned long) arg;
319
320#ifdef CONFIG_X86_32
321	regs.ds = __USER_DS;
322	regs.es = __USER_DS;
323	regs.fs = __KERNEL_PERCPU;
324	regs.gs = __KERNEL_STACK_CANARY;
325#else
326	regs.ss = __KERNEL_DS;
327#endif
328
329	regs.orig_ax = -1;
330	regs.ip = (unsigned long) kernel_thread_helper;
331	regs.cs = __KERNEL_CS | get_kernel_rpl();
332	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
333
334	/* Ok, create the new process.. */
335	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
336}
337EXPORT_SYMBOL(kernel_thread);
338
339/*
340 * sys_execve() executes a new program.
341 */
342long sys_execve(const char __user *name,
343		const char __user *const __user *argv,
344		const char __user *const __user *envp, struct pt_regs *regs)
345{
346	long error;
347	char *filename;
348
349	filename = getname(name);
350	error = PTR_ERR(filename);
351	if (IS_ERR(filename))
352		return error;
353	error = do_execve(filename, argv, envp, regs);
354
355#ifdef CONFIG_X86_32
356	if (error == 0) {
357		/* Make sure we don't return using sysenter.. */
358                set_thread_flag(TIF_IRET);
359        }
360#endif
361
362	putname(filename);
363	return error;
364}
365
366/*
367 * Idle related variables and functions
368 */
369unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
370EXPORT_SYMBOL(boot_option_idle_override);
371
372/*
373 * Powermanagement idle function, if any..
374 */
375void (*pm_idle)(void);
376#ifdef CONFIG_APM_MODULE
377EXPORT_SYMBOL(pm_idle);
378#endif
379
380static inline int hlt_use_halt(void)
381{
382	return 1;
383}
384
385#ifndef CONFIG_SMP
386static inline void play_dead(void)
387{
388	BUG();
389}
390#endif
391
392#ifdef CONFIG_X86_64
393void enter_idle(void)
394{
395	this_cpu_write(is_idle, 1);
396	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
397}
 
398
399static void __exit_idle(void)
400{
401	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
402		return;
403	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
404}
405
406/* Called from interrupts to signify idle end */
407void exit_idle(void)
408{
409	/* idle loop has pid 0 */
410	if (current->pid)
411		return;
412	__exit_idle();
413}
414#endif
415
416/*
417 * The idle thread. There's no useful work to be
418 * done, so just try to conserve power and have a
419 * low exit latency (ie sit in a loop waiting for
420 * somebody to say that they'd like to reschedule)
421 */
422void cpu_idle(void)
423{
424	/*
425	 * If we're the non-boot CPU, nothing set the stack canary up
426	 * for us.  CPU0 already has it initialized but no harm in
427	 * doing it again.  This is a good place for updating it, as
428	 * we wont ever return from this function (so the invalid
429	 * canaries already on the stack wont ever trigger).
430	 */
431	boot_init_stack_canary();
432	current_thread_info()->status |= TS_POLLING;
433
434	while (1) {
435		tick_nohz_idle_enter();
436
437		while (!need_resched()) {
438			rmb();
439
440			if (cpu_is_offline(smp_processor_id()))
441				play_dead();
442
443			/*
444			 * Idle routines should keep interrupts disabled
445			 * from here on, until they go to idle.
446			 * Otherwise, idle callbacks can misfire.
447			 */
448			local_touch_nmi();
449			local_irq_disable();
450
451			enter_idle();
452
453			/* Don't trace irqs off for idle */
454			stop_critical_timings();
455
456			/* enter_idle() needs rcu for notifiers */
457			rcu_idle_enter();
458
459			if (cpuidle_idle_call())
460				pm_idle();
461
462			rcu_idle_exit();
463			start_critical_timings();
464
465			/* In many cases the interrupt that ended idle
466			   has already called exit_idle. But some idle
467			   loops can be woken up without interrupt. */
468			__exit_idle();
469		}
470
471		tick_nohz_idle_exit();
472		preempt_enable_no_resched();
473		schedule();
474		preempt_disable();
475	}
476}
477
478/*
479 * We use this if we don't have any better
480 * idle routine..
481 */
482void default_idle(void)
483{
484	if (hlt_use_halt()) {
485		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
486		trace_cpu_idle_rcuidle(1, smp_processor_id());
487		current_thread_info()->status &= ~TS_POLLING;
488		/*
489		 * TS_POLLING-cleared state must be visible before we
490		 * test NEED_RESCHED:
491		 */
492		smp_mb();
493
494		if (!need_resched())
495			safe_halt();	/* enables interrupts racelessly */
496		else
497			local_irq_enable();
498		current_thread_info()->status |= TS_POLLING;
499		trace_power_end_rcuidle(smp_processor_id());
500		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
501	} else {
502		local_irq_enable();
503		/* loop is done by the caller */
504		cpu_relax();
505	}
506}
507#ifdef CONFIG_APM_MODULE
508EXPORT_SYMBOL(default_idle);
509#endif
510
511bool set_pm_idle_to_default(void)
512{
513	bool ret = !!pm_idle;
514
515	pm_idle = default_idle;
516
517	return ret;
518}
519void stop_this_cpu(void *dummy)
520{
521	local_irq_disable();
522	/*
523	 * Remove this CPU:
524	 */
525	set_cpu_online(smp_processor_id(), false);
526	disable_local_APIC();
527
528	for (;;) {
529		if (hlt_works(smp_processor_id()))
530			halt();
531	}
532}
533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534/* Default MONITOR/MWAIT with no hints, used for default C1 state */
535static void mwait_idle(void)
536{
537	if (!need_resched()) {
538		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
539		trace_cpu_idle_rcuidle(1, smp_processor_id());
540		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
541			clflush((void *)&current_thread_info()->flags);
542
543		__monitor((void *)&current_thread_info()->flags, 0, 0);
544		smp_mb();
545		if (!need_resched())
546			__sti_mwait(0, 0);
547		else
548			local_irq_enable();
549		trace_power_end_rcuidle(smp_processor_id());
550		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
551	} else
552		local_irq_enable();
553}
554
555/*
556 * On SMP it's slightly faster (but much more power-consuming!)
557 * to poll the ->work.need_resched flag instead of waiting for the
558 * cross-CPU IPI to arrive. Use this option with caution.
559 */
560static void poll_idle(void)
561{
562	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
563	trace_cpu_idle_rcuidle(0, smp_processor_id());
564	local_irq_enable();
565	while (!need_resched())
566		cpu_relax();
567	trace_power_end_rcuidle(smp_processor_id());
568	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
569}
570
571/*
572 * mwait selection logic:
573 *
574 * It depends on the CPU. For AMD CPUs that support MWAIT this is
575 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
576 * then depend on a clock divisor and current Pstate of the core. If
577 * all cores of a processor are in halt state (C1) the processor can
578 * enter the C1E (C1 enhanced) state. If mwait is used this will never
579 * happen.
580 *
581 * idle=mwait overrides this decision and forces the usage of mwait.
582 */
583
584#define MWAIT_INFO			0x05
585#define MWAIT_ECX_EXTENDED_INFO		0x01
586#define MWAIT_EDX_C1			0xf0
587
588int mwait_usable(const struct cpuinfo_x86 *c)
589{
590	u32 eax, ebx, ecx, edx;
591
592	/* Use mwait if idle=mwait boot option is given */
593	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
594		return 1;
595
596	/*
597	 * Any idle= boot option other than idle=mwait means that we must not
598	 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
599	 */
600	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
601		return 0;
602
603	if (c->cpuid_level < MWAIT_INFO)
604		return 0;
605
606	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
607	/* Check, whether EDX has extended info about MWAIT */
608	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
609		return 1;
610
611	/*
612	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
613	 * C1  supports MWAIT
614	 */
615	return (edx & MWAIT_EDX_C1);
616}
617
618bool amd_e400_c1e_detected;
619EXPORT_SYMBOL(amd_e400_c1e_detected);
620
621static cpumask_var_t amd_e400_c1e_mask;
622
623void amd_e400_remove_cpu(int cpu)
624{
625	if (amd_e400_c1e_mask != NULL)
626		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
627}
628
629/*
630 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
631 * pending message MSR. If we detect C1E, then we handle it the same
632 * way as C3 power states (local apic timer and TSC stop)
633 */
634static void amd_e400_idle(void)
635{
636	if (need_resched())
637		return;
638
639	if (!amd_e400_c1e_detected) {
640		u32 lo, hi;
641
642		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
643
644		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
645			amd_e400_c1e_detected = true;
646			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
647				mark_tsc_unstable("TSC halt in AMD C1E");
648			printk(KERN_INFO "System has AMD C1E enabled\n");
649		}
650	}
651
652	if (amd_e400_c1e_detected) {
653		int cpu = smp_processor_id();
654
655		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
656			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
657			/*
658			 * Force broadcast so ACPI can not interfere.
659			 */
660			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
661					   &cpu);
662			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
663			       cpu);
664		}
665		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
666
667		default_idle();
668
669		/*
670		 * The switch back from broadcast mode needs to be
671		 * called with interrupts disabled.
672		 */
673		 local_irq_disable();
674		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
675		 local_irq_enable();
676	} else
677		default_idle();
678}
679
680void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683	if (pm_idle == poll_idle && smp_num_siblings > 1) {
684		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
685			" performance may degrade.\n");
686	}
687#endif
688	if (pm_idle)
689		return;
690
691	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
692		/*
693		 * One CPU supports mwait => All CPUs supports mwait
694		 */
695		printk(KERN_INFO "using mwait in idle threads.\n");
696		pm_idle = mwait_idle;
697	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
698		/* E400: APIC timer interrupt does not wake up CPU from C1e */
699		printk(KERN_INFO "using AMD E400 aware idle routine\n");
700		pm_idle = amd_e400_idle;
701	} else
702		pm_idle = default_idle;
703}
704
705void __init init_amd_e400_c1e_mask(void)
706{
707	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
708	if (pm_idle == amd_e400_idle)
709		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
710}
711
712static int __init idle_setup(char *str)
713{
714	if (!str)
715		return -EINVAL;
716
717	if (!strcmp(str, "poll")) {
718		printk("using polling idle threads.\n");
719		pm_idle = poll_idle;
720		boot_option_idle_override = IDLE_POLL;
721	} else if (!strcmp(str, "mwait")) {
722		boot_option_idle_override = IDLE_FORCE_MWAIT;
723		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
724	} else if (!strcmp(str, "halt")) {
725		/*
726		 * When the boot option of idle=halt is added, halt is
727		 * forced to be used for CPU idle. In such case CPU C2/C3
728		 * won't be used again.
729		 * To continue to load the CPU idle driver, don't touch
730		 * the boot_option_idle_override.
731		 */
732		pm_idle = default_idle;
733		boot_option_idle_override = IDLE_HALT;
734	} else if (!strcmp(str, "nomwait")) {
735		/*
736		 * If the boot option of "idle=nomwait" is added,
737		 * it means that mwait will be disabled for CPU C2/C3
738		 * states. In such case it won't touch the variable
739		 * of boot_option_idle_override.
740		 */
741		boot_option_idle_override = IDLE_NOMWAIT;
742	} else
743		return -1;
744
745	return 0;
746}
747early_param("idle", idle_setup);
748
749unsigned long arch_align_stack(unsigned long sp)
750{
751	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
752		sp -= get_random_int() % 8192;
753	return sp & ~0xf;
754}
755
756unsigned long arch_randomize_brk(struct mm_struct *mm)
757{
758	unsigned long range_end = mm->brk + 0x02000000;
759	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
760}
761
v3.1
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 
 
 
 15#include <trace/events/power.h>
 16#include <linux/hw_breakpoint.h>
 17#include <asm/cpu.h>
 18#include <asm/system.h>
 19#include <asm/apic.h>
 20#include <asm/syscalls.h>
 21#include <asm/idle.h>
 22#include <asm/uaccess.h>
 23#include <asm/i387.h>
 
 24#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26struct kmem_cache *task_xstate_cachep;
 27EXPORT_SYMBOL_GPL(task_xstate_cachep);
 28
 
 
 
 
 29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 30{
 31	int ret;
 32
 
 
 33	*dst = *src;
 34	if (fpu_allocated(&src->thread.fpu)) {
 35		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 36		ret = fpu_alloc(&dst->thread.fpu);
 37		if (ret)
 38			return ret;
 39		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 40	}
 41	return 0;
 42}
 43
 44void free_thread_xstate(struct task_struct *tsk)
 45{
 46	fpu_free(&tsk->thread.fpu);
 47}
 48
 49void free_thread_info(struct thread_info *ti)
 50{
 51	free_thread_xstate(ti->task);
 52	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 53}
 54
 55void arch_task_cache_init(void)
 56{
 57        task_xstate_cachep =
 58        	kmem_cache_create("task_xstate", xstate_size,
 59				  __alignof__(union thread_xstate),
 60				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 61}
 62
 
 
 
 
 
 
 
 
 
 
 63/*
 64 * Free current thread data structures etc..
 65 */
 66void exit_thread(void)
 67{
 68	struct task_struct *me = current;
 69	struct thread_struct *t = &me->thread;
 70	unsigned long *bp = t->io_bitmap_ptr;
 71
 72	if (bp) {
 73		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 74
 75		t->io_bitmap_ptr = NULL;
 76		clear_thread_flag(TIF_IO_BITMAP);
 77		/*
 78		 * Careful, clear this in the TSS too:
 79		 */
 80		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 81		t->io_bitmap_max = 0;
 82		put_cpu();
 83		kfree(bp);
 84	}
 85}
 86
 87void show_regs(struct pt_regs *regs)
 88{
 89	show_registers(regs);
 90	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
 91}
 92
 93void show_regs_common(void)
 94{
 95	const char *vendor, *product, *board;
 96
 97	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 98	if (!vendor)
 99		vendor = "";
100	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101	if (!product)
102		product = "";
103
104	/* Board Name is optional */
105	board = dmi_get_system_info(DMI_BOARD_NAME);
106
107	printk(KERN_CONT "\n");
108	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109		current->pid, current->comm, print_tainted(),
110		init_utsname()->release,
111		(int)strcspn(init_utsname()->version, " "),
112		init_utsname()->version);
113	printk(KERN_CONT " %s %s", vendor, product);
114	if (board)
115		printk(KERN_CONT "/%s", board);
116	printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121	struct task_struct *tsk = current;
122
123	flush_ptrace_hw_breakpoint(tsk);
124	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125	/*
126	 * Forget coprocessor state..
127	 */
128	tsk->fpu_counter = 0;
129	clear_fpu(tsk);
130	clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135	write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140	preempt_disable();
141	if (!test_and_set_thread_flag(TIF_NOTSC))
142		/*
143		 * Must flip the CPU state synchronously with
144		 * TIF_NOTSC in the current running context.
145		 */
146		hard_disable_TSC();
147	preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152	write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157	preempt_disable();
158	if (test_and_clear_thread_flag(TIF_NOTSC))
159		/*
160		 * Must flip the CPU state synchronously with
161		 * TIF_NOTSC in the current running context.
162		 */
163		hard_enable_TSC();
164	preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169	unsigned int val;
170
171	if (test_thread_flag(TIF_NOTSC))
172		val = PR_TSC_SIGSEGV;
173	else
174		val = PR_TSC_ENABLE;
175
176	return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181	if (val == PR_TSC_SIGSEGV)
182		disable_TSC();
183	else if (val == PR_TSC_ENABLE)
184		enable_TSC();
185	else
186		return -EINVAL;
187
188	return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192		      struct tss_struct *tss)
193{
194	struct thread_struct *prev, *next;
195
196	prev = &prev_p->thread;
197	next = &next_p->thread;
198
199	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201		unsigned long debugctl = get_debugctlmsr();
202
203		debugctl &= ~DEBUGCTLMSR_BTF;
204		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205			debugctl |= DEBUGCTLMSR_BTF;
206
207		update_debugctlmsr(debugctl);
208	}
209
210	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212		/* prev and next are different */
213		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214			hard_disable_TSC();
215		else
216			hard_enable_TSC();
217	}
218
219	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220		/*
221		 * Copy the relevant range of the IO bitmap.
222		 * Normally this is 128 bytes or less:
223		 */
224		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225		       max(prev->io_bitmap_max, next->io_bitmap_max));
226	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227		/*
228		 * Clear any possible leftover bits:
229		 */
230		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231	}
232	propagate_user_return_notify(prev_p, next_p);
233}
234
235int sys_fork(struct pt_regs *regs)
236{
237	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
251{
252	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253		       NULL, NULL);
254}
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260	if (!newsp)
261		newsp = regs->sp;
262	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270extern void kernel_thread_helper(void);
271
272/*
273 * Create a kernel thread
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276{
277	struct pt_regs regs;
278
279	memset(&regs, 0, sizeof(regs));
280
281	regs.si = (unsigned long) fn;
282	regs.di = (unsigned long) arg;
283
284#ifdef CONFIG_X86_32
285	regs.ds = __USER_DS;
286	regs.es = __USER_DS;
287	regs.fs = __KERNEL_PERCPU;
288	regs.gs = __KERNEL_STACK_CANARY;
289#else
290	regs.ss = __KERNEL_DS;
291#endif
292
293	regs.orig_ax = -1;
294	regs.ip = (unsigned long) kernel_thread_helper;
295	regs.cs = __KERNEL_CS | get_kernel_rpl();
296	regs.flags = X86_EFLAGS_IF | 0x2;
297
298	/* Ok, create the new process.. */
299	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300}
301EXPORT_SYMBOL(kernel_thread);
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307		const char __user *const __user *argv,
308		const char __user *const __user *envp, struct pt_regs *regs)
309{
310	long error;
311	char *filename;
312
313	filename = getname(name);
314	error = PTR_ERR(filename);
315	if (IS_ERR(filename))
316		return error;
317	error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320	if (error == 0) {
321		/* Make sure we don't return using sysenter.. */
322                set_thread_flag(TIF_IRET);
323        }
324#endif
325
326	putname(filename);
327	return error;
328}
329
330/*
331 * Idle related variables and functions
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
342#endif
343
344#ifdef CONFIG_X86_32
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352	hlt_counter++;
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
 
357{
358	hlt_counter--;
 
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
363{
364	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
 
 
365}
366#else
367static inline int hlt_use_halt(void)
 
368{
369	return 1;
 
 
 
370}
371#endif
372
373/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379	if (hlt_use_halt()) {
380		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381		trace_cpu_idle(1, smp_processor_id());
382		current_thread_info()->status &= ~TS_POLLING;
383		/*
384		 * TS_POLLING-cleared state must be visible before we
385		 * test NEED_RESCHED:
386		 */
387		smp_mb();
388
389		if (!need_resched())
390			safe_halt();	/* enables interrupts racelessly */
391		else
392			local_irq_enable();
393		current_thread_info()->status |= TS_POLLING;
394		trace_power_end(smp_processor_id());
395		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396	} else {
397		local_irq_enable();
398		/* loop is done by the caller */
399		cpu_relax();
400	}
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
 
 
 
 
 
 
 
 
406void stop_this_cpu(void *dummy)
407{
408	local_irq_disable();
409	/*
410	 * Remove this CPU:
411	 */
412	set_cpu_online(smp_processor_id(), false);
413	disable_local_APIC();
414
415	for (;;) {
416		if (hlt_works(smp_processor_id()))
417			halt();
418	}
419}
420
421static void do_nothing(void *unused)
422{
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
434{
435	smp_mb();
436	/* kick all the CPUs so that they exit out of pm_idle */
437	smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444	if (!need_resched()) {
445		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446		trace_cpu_idle(1, smp_processor_id());
447		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448			clflush((void *)&current_thread_info()->flags);
449
450		__monitor((void *)&current_thread_info()->flags, 0, 0);
451		smp_mb();
452		if (!need_resched())
453			__sti_mwait(0, 0);
454		else
455			local_irq_enable();
456		trace_power_end(smp_processor_id());
457		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458	} else
459		local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470	trace_cpu_idle(0, smp_processor_id());
471	local_irq_enable();
472	while (!need_resched())
473		cpu_relax();
474	trace_power_end(smp_processor_id());
475	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
477
478/*
479 * mwait selection logic:
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
489 */
490
491#define MWAIT_INFO			0x05
492#define MWAIT_ECX_EXTENDED_INFO		0x01
493#define MWAIT_EDX_C1			0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497	u32 eax, ebx, ecx, edx;
498
 
499	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500		return 1;
 
 
 
 
 
 
 
501
502	if (c->cpuid_level < MWAIT_INFO)
503		return 0;
504
505	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506	/* Check, whether EDX has extended info about MWAIT */
507	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508		return 1;
509
510	/*
511	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512	 * C1  supports MWAIT
513	 */
514	return (edx & MWAIT_EDX_C1);
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524	if (amd_e400_c1e_mask != NULL)
525		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535	if (need_resched())
536		return;
537
538	if (!amd_e400_c1e_detected) {
539		u32 lo, hi;
540
541		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544			amd_e400_c1e_detected = true;
545			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546				mark_tsc_unstable("TSC halt in AMD C1E");
547			printk(KERN_INFO "System has AMD C1E enabled\n");
548		}
549	}
550
551	if (amd_e400_c1e_detected) {
552		int cpu = smp_processor_id();
553
554		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556			/*
557			 * Force broadcast so ACPI can not interfere.
558			 */
559			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560					   &cpu);
561			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562			       cpu);
563		}
564		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566		default_idle();
567
568		/*
569		 * The switch back from broadcast mode needs to be
570		 * called with interrupts disabled.
571		 */
572		 local_irq_disable();
573		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574		 local_irq_enable();
575	} else
576		default_idle();
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582	if (pm_idle == poll_idle && smp_num_siblings > 1) {
583		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584			" performance may degrade.\n");
585	}
586#endif
587	if (pm_idle)
588		return;
589
590	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591		/*
592		 * One CPU supports mwait => All CPUs supports mwait
593		 */
594		printk(KERN_INFO "using mwait in idle threads.\n");
595		pm_idle = mwait_idle;
596	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
597		/* E400: APIC timer interrupt does not wake up CPU from C1e */
598		printk(KERN_INFO "using AMD E400 aware idle routine\n");
599		pm_idle = amd_e400_idle;
600	} else
601		pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607	if (pm_idle == amd_e400_idle)
608		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
609}
610
611static int __init idle_setup(char *str)
612{
613	if (!str)
614		return -EINVAL;
615
616	if (!strcmp(str, "poll")) {
617		printk("using polling idle threads.\n");
618		pm_idle = poll_idle;
619		boot_option_idle_override = IDLE_POLL;
620	} else if (!strcmp(str, "mwait")) {
621		boot_option_idle_override = IDLE_FORCE_MWAIT;
622		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623	} else if (!strcmp(str, "halt")) {
624		/*
625		 * When the boot option of idle=halt is added, halt is
626		 * forced to be used for CPU idle. In such case CPU C2/C3
627		 * won't be used again.
628		 * To continue to load the CPU idle driver, don't touch
629		 * the boot_option_idle_override.
630		 */
631		pm_idle = default_idle;
632		boot_option_idle_override = IDLE_HALT;
633	} else if (!strcmp(str, "nomwait")) {
634		/*
635		 * If the boot option of "idle=nomwait" is added,
636		 * it means that mwait will be disabled for CPU C2/C3
637		 * states. In such case it won't touch the variable
638		 * of boot_option_idle_override.
639		 */
640		boot_option_idle_override = IDLE_NOMWAIT;
641	} else
642		return -1;
643
644	return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651		sp -= get_random_int() % 8192;
652	return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657	unsigned long range_end = mm->brk + 0x02000000;
658	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660