Loading...
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/archrandom.h>
19#include <asm/hypervisor.h>
20#include <asm/processor.h>
21#include <asm/debugreg.h>
22#include <asm/sections.h>
23#include <linux/topology.h>
24#include <linux/cpumask.h>
25#include <asm/pgtable.h>
26#include <linux/atomic.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/apic.h>
30#include <asm/desc.h>
31#include <asm/i387.h>
32#include <asm/fpu-internal.h>
33#include <asm/mtrr.h>
34#include <linux/numa.h>
35#include <asm/asm.h>
36#include <asm/cpu.h>
37#include <asm/mce.h>
38#include <asm/msr.h>
39#include <asm/pat.h>
40
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/uv/uv.h>
43#endif
44
45#include "cpu.h"
46
47/* all of these masks are initialized in setup_cpu_local_masks() */
48cpumask_var_t cpu_initialized_mask;
49cpumask_var_t cpu_callout_mask;
50cpumask_var_t cpu_callin_mask;
51
52/* representing cpus for which sibling maps can be computed */
53cpumask_var_t cpu_sibling_setup_mask;
54
55/* correctly size the local cpu masks */
56void __init setup_cpu_local_masks(void)
57{
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62}
63
64static void __cpuinit default_init(struct cpuinfo_x86 *c)
65{
66#ifdef CONFIG_X86_64
67 cpu_detect_cache_sizes(c);
68#else
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c->cpuid_level == -1) {
72 /* No cpuid. It must be an ancient CPU */
73 if (c->x86 == 4)
74 strcpy(c->x86_model_id, "486");
75 else if (c->x86 == 3)
76 strcpy(c->x86_model_id, "386");
77 }
78#endif
79}
80
81static const struct cpu_dev __cpuinitconst default_cpu = {
82 .c_init = default_init,
83 .c_vendor = "Unknown",
84 .c_x86_vendor = X86_VENDOR_UNKNOWN,
85};
86
87static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88
89DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90#ifdef CONFIG_X86_64
91 /*
92 * We need valid kernel segments for data and code in long mode too
93 * IRET will check the segment types kkeil 2000/10/28
94 * Also sysret mandates a special GDT layout
95 *
96 * TLS descriptors are currently at a different place compared to i386.
97 * Hopefully nobody expects them at a fixed place (Wine?)
98 */
99 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105#else
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 /*
111 * Segments used for calling PnP BIOS have byte granularity.
112 * They code segments and data segments have fixed 64k limits,
113 * the transfer segment sizes are set at run time.
114 */
115 /* 32-bit code */
116 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 /* 16-bit code */
118 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 /* 16-bit data */
120 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /*
126 * The APM segments have byte granularity and their bases
127 * are set at run time. All have 64k limits.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* data */
134 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135
136 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 GDT_STACK_CANARY_INIT
139#endif
140} };
141EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142
143static int __init x86_xsave_setup(char *s)
144{
145 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 setup_clear_cpu_cap(X86_FEATURE_AVX);
148 setup_clear_cpu_cap(X86_FEATURE_AVX2);
149 return 1;
150}
151__setup("noxsave", x86_xsave_setup);
152
153static int __init x86_xsaveopt_setup(char *s)
154{
155 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
156 return 1;
157}
158__setup("noxsaveopt", x86_xsaveopt_setup);
159
160#ifdef CONFIG_X86_32
161static int cachesize_override __cpuinitdata = -1;
162static int disable_x86_serial_nr __cpuinitdata = 1;
163
164static int __init cachesize_setup(char *str)
165{
166 get_option(&str, &cachesize_override);
167 return 1;
168}
169__setup("cachesize=", cachesize_setup);
170
171static int __init x86_fxsr_setup(char *s)
172{
173 setup_clear_cpu_cap(X86_FEATURE_FXSR);
174 setup_clear_cpu_cap(X86_FEATURE_XMM);
175 return 1;
176}
177__setup("nofxsr", x86_fxsr_setup);
178
179static int __init x86_sep_setup(char *s)
180{
181 setup_clear_cpu_cap(X86_FEATURE_SEP);
182 return 1;
183}
184__setup("nosep", x86_sep_setup);
185
186/* Standard macro to see if a specific flag is changeable */
187static inline int flag_is_changeable_p(u32 flag)
188{
189 u32 f1, f2;
190
191 /*
192 * Cyrix and IDT cpus allow disabling of CPUID
193 * so the code below may return different results
194 * when it is executed before and after enabling
195 * the CPUID. Add "volatile" to not allow gcc to
196 * optimize the subsequent calls to this function.
197 */
198 asm volatile ("pushfl \n\t"
199 "pushfl \n\t"
200 "popl %0 \n\t"
201 "movl %0, %1 \n\t"
202 "xorl %2, %0 \n\t"
203 "pushl %0 \n\t"
204 "popfl \n\t"
205 "pushfl \n\t"
206 "popl %0 \n\t"
207 "popfl \n\t"
208
209 : "=&r" (f1), "=&r" (f2)
210 : "ir" (flag));
211
212 return ((f1^f2) & flag) != 0;
213}
214
215/* Probe for the CPUID instruction */
216static int __cpuinit have_cpuid_p(void)
217{
218 return flag_is_changeable_p(X86_EFLAGS_ID);
219}
220
221static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
222{
223 unsigned long lo, hi;
224
225 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
226 return;
227
228 /* Disable processor serial number: */
229
230 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231 lo |= 0x200000;
232 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233
234 printk(KERN_NOTICE "CPU serial number disabled.\n");
235 clear_cpu_cap(c, X86_FEATURE_PN);
236
237 /* Disabling the serial number may affect the cpuid level */
238 c->cpuid_level = cpuid_eax(0);
239}
240
241static int __init x86_serial_nr_setup(char *s)
242{
243 disable_x86_serial_nr = 0;
244 return 1;
245}
246__setup("serialnumber", x86_serial_nr_setup);
247#else
248static inline int flag_is_changeable_p(u32 flag)
249{
250 return 1;
251}
252/* Probe for the CPUID instruction */
253static inline int have_cpuid_p(void)
254{
255 return 1;
256}
257static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
258{
259}
260#endif
261
262static int disable_smep __cpuinitdata;
263static __init int setup_disable_smep(char *arg)
264{
265 disable_smep = 1;
266 return 1;
267}
268__setup("nosmep", setup_disable_smep);
269
270static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
271{
272 if (cpu_has(c, X86_FEATURE_SMEP)) {
273 if (unlikely(disable_smep)) {
274 setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 clear_in_cr4(X86_CR4_SMEP);
276 } else
277 set_in_cr4(X86_CR4_SMEP);
278 }
279}
280
281/*
282 * Some CPU features depend on higher CPUID levels, which may not always
283 * be available due to CPUID level capping or broken virtualization
284 * software. Add those features to this table to auto-disable them.
285 */
286struct cpuid_dependent_feature {
287 u32 feature;
288 u32 level;
289};
290
291static const struct cpuid_dependent_feature __cpuinitconst
292cpuid_dependent_features[] = {
293 { X86_FEATURE_MWAIT, 0x00000005 },
294 { X86_FEATURE_DCA, 0x00000009 },
295 { X86_FEATURE_XSAVE, 0x0000000d },
296 { 0, 0 }
297};
298
299static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
300{
301 const struct cpuid_dependent_feature *df;
302
303 for (df = cpuid_dependent_features; df->feature; df++) {
304
305 if (!cpu_has(c, df->feature))
306 continue;
307 /*
308 * Note: cpuid_level is set to -1 if unavailable, but
309 * extended_extended_level is set to 0 if unavailable
310 * and the legitimate extended levels are all negative
311 * when signed; hence the weird messing around with
312 * signs here...
313 */
314 if (!((s32)df->level < 0 ?
315 (u32)df->level > (u32)c->extended_cpuid_level :
316 (s32)df->level > (s32)c->cpuid_level))
317 continue;
318
319 clear_cpu_cap(c, df->feature);
320 if (!warn)
321 continue;
322
323 printk(KERN_WARNING
324 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
325 x86_cap_flags[df->feature], df->level);
326 }
327}
328
329/*
330 * Naming convention should be: <Name> [(<Codename>)]
331 * This table only is used unless init_<vendor>() below doesn't set it;
332 * in particular, if CPUID levels 0x80000002..4 are supported, this
333 * isn't used
334 */
335
336/* Look up CPU names by table lookup. */
337static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
338{
339 const struct cpu_model_info *info;
340
341 if (c->x86_model >= 16)
342 return NULL; /* Range check */
343
344 if (!this_cpu)
345 return NULL;
346
347 info = this_cpu->c_models;
348
349 while (info && info->family) {
350 if (info->family == c->x86)
351 return info->model_names[c->x86_model];
352 info++;
353 }
354 return NULL; /* Not found */
355}
356
357__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
358__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
359
360void load_percpu_segment(int cpu)
361{
362#ifdef CONFIG_X86_32
363 loadsegment(fs, __KERNEL_PERCPU);
364#else
365 loadsegment(gs, 0);
366 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
367#endif
368 load_stack_canary_segment();
369}
370
371/*
372 * Current gdt points %fs at the "master" per-cpu area: after this,
373 * it's on the real one.
374 */
375void switch_to_new_gdt(int cpu)
376{
377 struct desc_ptr gdt_descr;
378
379 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
380 gdt_descr.size = GDT_SIZE - 1;
381 load_gdt(&gdt_descr);
382 /* Reload the per-cpu base */
383
384 load_percpu_segment(cpu);
385}
386
387static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
388
389static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
390{
391 unsigned int *v;
392 char *p, *q;
393
394 if (c->extended_cpuid_level < 0x80000004)
395 return;
396
397 v = (unsigned int *)c->x86_model_id;
398 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
399 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
400 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
401 c->x86_model_id[48] = 0;
402
403 /*
404 * Intel chips right-justify this string for some dumb reason;
405 * undo that brain damage:
406 */
407 p = q = &c->x86_model_id[0];
408 while (*p == ' ')
409 p++;
410 if (p != q) {
411 while (*p)
412 *q++ = *p++;
413 while (q <= &c->x86_model_id[48])
414 *q++ = '\0'; /* Zero-pad the rest */
415 }
416}
417
418void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
419{
420 unsigned int n, dummy, ebx, ecx, edx, l2size;
421
422 n = c->extended_cpuid_level;
423
424 if (n >= 0x80000005) {
425 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
426 c->x86_cache_size = (ecx>>24) + (edx>>24);
427#ifdef CONFIG_X86_64
428 /* On K8 L1 TLB is inclusive, so don't count it */
429 c->x86_tlbsize = 0;
430#endif
431 }
432
433 if (n < 0x80000006) /* Some chips just has a large L1. */
434 return;
435
436 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
437 l2size = ecx >> 16;
438
439#ifdef CONFIG_X86_64
440 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
441#else
442 /* do processor-specific cache resizing */
443 if (this_cpu->c_size_cache)
444 l2size = this_cpu->c_size_cache(c, l2size);
445
446 /* Allow user to override all this if necessary. */
447 if (cachesize_override != -1)
448 l2size = cachesize_override;
449
450 if (l2size == 0)
451 return; /* Again, no L2 cache is possible */
452#endif
453
454 c->x86_cache_size = l2size;
455}
456
457void __cpuinit detect_ht(struct cpuinfo_x86 *c)
458{
459#ifdef CONFIG_X86_HT
460 u32 eax, ebx, ecx, edx;
461 int index_msb, core_bits;
462 static bool printed;
463
464 if (!cpu_has(c, X86_FEATURE_HT))
465 return;
466
467 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
468 goto out;
469
470 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
471 return;
472
473 cpuid(1, &eax, &ebx, &ecx, &edx);
474
475 smp_num_siblings = (ebx & 0xff0000) >> 16;
476
477 if (smp_num_siblings == 1) {
478 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
479 goto out;
480 }
481
482 if (smp_num_siblings <= 1)
483 goto out;
484
485 index_msb = get_count_order(smp_num_siblings);
486 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
487
488 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
489
490 index_msb = get_count_order(smp_num_siblings);
491
492 core_bits = get_count_order(c->x86_max_cores);
493
494 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
495 ((1 << core_bits) - 1);
496
497out:
498 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
499 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
500 c->phys_proc_id);
501 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
502 c->cpu_core_id);
503 printed = 1;
504 }
505#endif
506}
507
508static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
509{
510 char *v = c->x86_vendor_id;
511 int i;
512
513 for (i = 0; i < X86_VENDOR_NUM; i++) {
514 if (!cpu_devs[i])
515 break;
516
517 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
518 (cpu_devs[i]->c_ident[1] &&
519 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
520
521 this_cpu = cpu_devs[i];
522 c->x86_vendor = this_cpu->c_x86_vendor;
523 return;
524 }
525 }
526
527 printk_once(KERN_ERR
528 "CPU: vendor_id '%s' unknown, using generic init.\n" \
529 "CPU: Your system may be unstable.\n", v);
530
531 c->x86_vendor = X86_VENDOR_UNKNOWN;
532 this_cpu = &default_cpu;
533}
534
535void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
536{
537 /* Get vendor name */
538 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
539 (unsigned int *)&c->x86_vendor_id[0],
540 (unsigned int *)&c->x86_vendor_id[8],
541 (unsigned int *)&c->x86_vendor_id[4]);
542
543 c->x86 = 4;
544 /* Intel-defined flags: level 0x00000001 */
545 if (c->cpuid_level >= 0x00000001) {
546 u32 junk, tfms, cap0, misc;
547
548 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
549 c->x86 = (tfms >> 8) & 0xf;
550 c->x86_model = (tfms >> 4) & 0xf;
551 c->x86_mask = tfms & 0xf;
552
553 if (c->x86 == 0xf)
554 c->x86 += (tfms >> 20) & 0xff;
555 if (c->x86 >= 0x6)
556 c->x86_model += ((tfms >> 16) & 0xf) << 4;
557
558 if (cap0 & (1<<19)) {
559 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
560 c->x86_cache_alignment = c->x86_clflush_size;
561 }
562 }
563}
564
565void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
566{
567 u32 tfms, xlvl;
568 u32 ebx;
569
570 /* Intel-defined flags: level 0x00000001 */
571 if (c->cpuid_level >= 0x00000001) {
572 u32 capability, excap;
573
574 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
575 c->x86_capability[0] = capability;
576 c->x86_capability[4] = excap;
577 }
578
579 /* Additional Intel-defined flags: level 0x00000007 */
580 if (c->cpuid_level >= 0x00000007) {
581 u32 eax, ebx, ecx, edx;
582
583 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
584
585 c->x86_capability[9] = ebx;
586 }
587
588 /* AMD-defined flags: level 0x80000001 */
589 xlvl = cpuid_eax(0x80000000);
590 c->extended_cpuid_level = xlvl;
591
592 if ((xlvl & 0xffff0000) == 0x80000000) {
593 if (xlvl >= 0x80000001) {
594 c->x86_capability[1] = cpuid_edx(0x80000001);
595 c->x86_capability[6] = cpuid_ecx(0x80000001);
596 }
597 }
598
599 if (c->extended_cpuid_level >= 0x80000008) {
600 u32 eax = cpuid_eax(0x80000008);
601
602 c->x86_virt_bits = (eax >> 8) & 0xff;
603 c->x86_phys_bits = eax & 0xff;
604 }
605#ifdef CONFIG_X86_32
606 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
607 c->x86_phys_bits = 36;
608#endif
609
610 if (c->extended_cpuid_level >= 0x80000007)
611 c->x86_power = cpuid_edx(0x80000007);
612
613 init_scattered_cpuid_features(c);
614}
615
616static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
617{
618#ifdef CONFIG_X86_32
619 int i;
620
621 /*
622 * First of all, decide if this is a 486 or higher
623 * It's a 486 if we can modify the AC flag
624 */
625 if (flag_is_changeable_p(X86_EFLAGS_AC))
626 c->x86 = 4;
627 else
628 c->x86 = 3;
629
630 for (i = 0; i < X86_VENDOR_NUM; i++)
631 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
632 c->x86_vendor_id[0] = 0;
633 cpu_devs[i]->c_identify(c);
634 if (c->x86_vendor_id[0]) {
635 get_cpu_vendor(c);
636 break;
637 }
638 }
639#endif
640}
641
642/*
643 * Do minimum CPU detection early.
644 * Fields really needed: vendor, cpuid_level, family, model, mask,
645 * cache alignment.
646 * The others are not touched to avoid unwanted side effects.
647 *
648 * WARNING: this function is only called on the BP. Don't add code here
649 * that is supposed to run on all CPUs.
650 */
651static void __init early_identify_cpu(struct cpuinfo_x86 *c)
652{
653#ifdef CONFIG_X86_64
654 c->x86_clflush_size = 64;
655 c->x86_phys_bits = 36;
656 c->x86_virt_bits = 48;
657#else
658 c->x86_clflush_size = 32;
659 c->x86_phys_bits = 32;
660 c->x86_virt_bits = 32;
661#endif
662 c->x86_cache_alignment = c->x86_clflush_size;
663
664 memset(&c->x86_capability, 0, sizeof c->x86_capability);
665 c->extended_cpuid_level = 0;
666
667 if (!have_cpuid_p())
668 identify_cpu_without_cpuid(c);
669
670 /* cyrix could have cpuid enabled via c_identify()*/
671 if (!have_cpuid_p())
672 return;
673
674 cpu_detect(c);
675
676 get_cpu_vendor(c);
677
678 get_cpu_cap(c);
679
680 if (this_cpu->c_early_init)
681 this_cpu->c_early_init(c);
682
683 c->cpu_index = 0;
684 filter_cpuid_features(c, false);
685
686 setup_smep(c);
687
688 if (this_cpu->c_bsp_init)
689 this_cpu->c_bsp_init(c);
690}
691
692void __init early_cpu_init(void)
693{
694 const struct cpu_dev *const *cdev;
695 int count = 0;
696
697#ifdef CONFIG_PROCESSOR_SELECT
698 printk(KERN_INFO "KERNEL supported cpus:\n");
699#endif
700
701 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
702 const struct cpu_dev *cpudev = *cdev;
703
704 if (count >= X86_VENDOR_NUM)
705 break;
706 cpu_devs[count] = cpudev;
707 count++;
708
709#ifdef CONFIG_PROCESSOR_SELECT
710 {
711 unsigned int j;
712
713 for (j = 0; j < 2; j++) {
714 if (!cpudev->c_ident[j])
715 continue;
716 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
717 cpudev->c_ident[j]);
718 }
719 }
720#endif
721 }
722 early_identify_cpu(&boot_cpu_data);
723}
724
725/*
726 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
727 * unfortunately, that's not true in practice because of early VIA
728 * chips and (more importantly) broken virtualizers that are not easy
729 * to detect. In the latter case it doesn't even *fail* reliably, so
730 * probing for it doesn't even work. Disable it completely on 32-bit
731 * unless we can find a reliable way to detect all the broken cases.
732 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
733 */
734static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
735{
736#ifdef CONFIG_X86_32
737 clear_cpu_cap(c, X86_FEATURE_NOPL);
738#else
739 set_cpu_cap(c, X86_FEATURE_NOPL);
740#endif
741}
742
743static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
744{
745 c->extended_cpuid_level = 0;
746
747 if (!have_cpuid_p())
748 identify_cpu_without_cpuid(c);
749
750 /* cyrix could have cpuid enabled via c_identify()*/
751 if (!have_cpuid_p())
752 return;
753
754 cpu_detect(c);
755
756 get_cpu_vendor(c);
757
758 get_cpu_cap(c);
759
760 if (c->cpuid_level >= 0x00000001) {
761 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
762#ifdef CONFIG_X86_32
763# ifdef CONFIG_X86_HT
764 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
765# else
766 c->apicid = c->initial_apicid;
767# endif
768#endif
769 c->phys_proc_id = c->initial_apicid;
770 }
771
772 setup_smep(c);
773
774 get_model_name(c); /* Default name */
775
776 detect_nopl(c);
777}
778
779/*
780 * This does the hard work of actually picking apart the CPU stuff...
781 */
782static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
783{
784 int i;
785
786 c->loops_per_jiffy = loops_per_jiffy;
787 c->x86_cache_size = -1;
788 c->x86_vendor = X86_VENDOR_UNKNOWN;
789 c->x86_model = c->x86_mask = 0; /* So far unknown... */
790 c->x86_vendor_id[0] = '\0'; /* Unset */
791 c->x86_model_id[0] = '\0'; /* Unset */
792 c->x86_max_cores = 1;
793 c->x86_coreid_bits = 0;
794#ifdef CONFIG_X86_64
795 c->x86_clflush_size = 64;
796 c->x86_phys_bits = 36;
797 c->x86_virt_bits = 48;
798#else
799 c->cpuid_level = -1; /* CPUID not detected */
800 c->x86_clflush_size = 32;
801 c->x86_phys_bits = 32;
802 c->x86_virt_bits = 32;
803#endif
804 c->x86_cache_alignment = c->x86_clflush_size;
805 memset(&c->x86_capability, 0, sizeof c->x86_capability);
806
807 generic_identify(c);
808
809 if (this_cpu->c_identify)
810 this_cpu->c_identify(c);
811
812 /* Clear/Set all flags overriden by options, after probe */
813 for (i = 0; i < NCAPINTS; i++) {
814 c->x86_capability[i] &= ~cpu_caps_cleared[i];
815 c->x86_capability[i] |= cpu_caps_set[i];
816 }
817
818#ifdef CONFIG_X86_64
819 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
820#endif
821
822 /*
823 * Vendor-specific initialization. In this section we
824 * canonicalize the feature flags, meaning if there are
825 * features a certain CPU supports which CPUID doesn't
826 * tell us, CPUID claiming incorrect flags, or other bugs,
827 * we handle them here.
828 *
829 * At the end of this section, c->x86_capability better
830 * indicate the features this CPU genuinely supports!
831 */
832 if (this_cpu->c_init)
833 this_cpu->c_init(c);
834
835 /* Disable the PN if appropriate */
836 squash_the_stupid_serial_number(c);
837
838 /*
839 * The vendor-specific functions might have changed features.
840 * Now we do "generic changes."
841 */
842
843 /* Filter out anything that depends on CPUID levels we don't have */
844 filter_cpuid_features(c, true);
845
846 /* If the model name is still unset, do table lookup. */
847 if (!c->x86_model_id[0]) {
848 const char *p;
849 p = table_lookup_model(c);
850 if (p)
851 strcpy(c->x86_model_id, p);
852 else
853 /* Last resort... */
854 sprintf(c->x86_model_id, "%02x/%02x",
855 c->x86, c->x86_model);
856 }
857
858#ifdef CONFIG_X86_64
859 detect_ht(c);
860#endif
861
862 init_hypervisor(c);
863 x86_init_rdrand(c);
864
865 /*
866 * Clear/Set all flags overriden by options, need do it
867 * before following smp all cpus cap AND.
868 */
869 for (i = 0; i < NCAPINTS; i++) {
870 c->x86_capability[i] &= ~cpu_caps_cleared[i];
871 c->x86_capability[i] |= cpu_caps_set[i];
872 }
873
874 /*
875 * On SMP, boot_cpu_data holds the common feature set between
876 * all CPUs; so make sure that we indicate which features are
877 * common between the CPUs. The first time this routine gets
878 * executed, c == &boot_cpu_data.
879 */
880 if (c != &boot_cpu_data) {
881 /* AND the already accumulated flags with these */
882 for (i = 0; i < NCAPINTS; i++)
883 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
884 }
885
886 /* Init Machine Check Exception if available. */
887 mcheck_cpu_init(c);
888
889 select_idle_routine(c);
890
891#ifdef CONFIG_NUMA
892 numa_add_cpu(smp_processor_id());
893#endif
894}
895
896#ifdef CONFIG_X86_64
897static void vgetcpu_set_mode(void)
898{
899 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
900 vgetcpu_mode = VGETCPU_RDTSCP;
901 else
902 vgetcpu_mode = VGETCPU_LSL;
903}
904#endif
905
906void __init identify_boot_cpu(void)
907{
908 identify_cpu(&boot_cpu_data);
909 init_amd_e400_c1e_mask();
910#ifdef CONFIG_X86_32
911 sysenter_setup();
912 enable_sep_cpu();
913#else
914 vgetcpu_set_mode();
915#endif
916}
917
918void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
919{
920 BUG_ON(c == &boot_cpu_data);
921 identify_cpu(c);
922#ifdef CONFIG_X86_32
923 enable_sep_cpu();
924#endif
925 mtrr_ap_init();
926}
927
928struct msr_range {
929 unsigned min;
930 unsigned max;
931};
932
933static const struct msr_range msr_range_array[] __cpuinitconst = {
934 { 0x00000000, 0x00000418},
935 { 0xc0000000, 0xc000040b},
936 { 0xc0010000, 0xc0010142},
937 { 0xc0011000, 0xc001103b},
938};
939
940static void __cpuinit __print_cpu_msr(void)
941{
942 unsigned index_min, index_max;
943 unsigned index;
944 u64 val;
945 int i;
946
947 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
948 index_min = msr_range_array[i].min;
949 index_max = msr_range_array[i].max;
950
951 for (index = index_min; index < index_max; index++) {
952 if (rdmsrl_amd_safe(index, &val))
953 continue;
954 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
955 }
956 }
957}
958
959static int show_msr __cpuinitdata;
960
961static __init int setup_show_msr(char *arg)
962{
963 int num;
964
965 get_option(&arg, &num);
966
967 if (num > 0)
968 show_msr = num;
969 return 1;
970}
971__setup("show_msr=", setup_show_msr);
972
973static __init int setup_noclflush(char *arg)
974{
975 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
976 return 1;
977}
978__setup("noclflush", setup_noclflush);
979
980void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
981{
982 const char *vendor = NULL;
983
984 if (c->x86_vendor < X86_VENDOR_NUM) {
985 vendor = this_cpu->c_vendor;
986 } else {
987 if (c->cpuid_level >= 0)
988 vendor = c->x86_vendor_id;
989 }
990
991 if (vendor && !strstr(c->x86_model_id, vendor))
992 printk(KERN_CONT "%s ", vendor);
993
994 if (c->x86_model_id[0])
995 printk(KERN_CONT "%s", c->x86_model_id);
996 else
997 printk(KERN_CONT "%d86", c->x86);
998
999 if (c->x86_mask || c->cpuid_level >= 0)
1000 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1001 else
1002 printk(KERN_CONT "\n");
1003
1004 print_cpu_msr(c);
1005}
1006
1007void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1008{
1009 if (c->cpu_index < show_msr)
1010 __print_cpu_msr();
1011}
1012
1013static __init int setup_disablecpuid(char *arg)
1014{
1015 int bit;
1016
1017 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1018 setup_clear_cpu_cap(bit);
1019 else
1020 return 0;
1021
1022 return 1;
1023}
1024__setup("clearcpuid=", setup_disablecpuid);
1025
1026#ifdef CONFIG_X86_64
1027struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1028struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1029 (unsigned long) nmi_idt_table };
1030
1031DEFINE_PER_CPU_FIRST(union irq_stack_union,
1032 irq_stack_union) __aligned(PAGE_SIZE);
1033
1034/*
1035 * The following four percpu variables are hot. Align current_task to
1036 * cacheline size such that all four fall in the same cacheline.
1037 */
1038DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1039 &init_task;
1040EXPORT_PER_CPU_SYMBOL(current_task);
1041
1042DEFINE_PER_CPU(unsigned long, kernel_stack) =
1043 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1044EXPORT_PER_CPU_SYMBOL(kernel_stack);
1045
1046DEFINE_PER_CPU(char *, irq_stack_ptr) =
1047 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1048
1049DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1050
1051DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1052
1053/*
1054 * Special IST stacks which the CPU switches to when it calls
1055 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1056 * limit), all of them are 4K, except the debug stack which
1057 * is 8K.
1058 */
1059static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1060 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1061 [DEBUG_STACK - 1] = DEBUG_STKSZ
1062};
1063
1064static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1065 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1066
1067/* May not be marked __init: used by software suspend */
1068void syscall_init(void)
1069{
1070 /*
1071 * LSTAR and STAR live in a bit strange symbiosis.
1072 * They both write to the same internal register. STAR allows to
1073 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1074 */
1075 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1076 wrmsrl(MSR_LSTAR, system_call);
1077 wrmsrl(MSR_CSTAR, ignore_sysret);
1078
1079#ifdef CONFIG_IA32_EMULATION
1080 syscall32_cpu_init();
1081#endif
1082
1083 /* Flags to clear on syscall */
1084 wrmsrl(MSR_SYSCALL_MASK,
1085 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1086}
1087
1088unsigned long kernel_eflags;
1089
1090/*
1091 * Copies of the original ist values from the tss are only accessed during
1092 * debugging, no special alignment required.
1093 */
1094DEFINE_PER_CPU(struct orig_ist, orig_ist);
1095
1096static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1097DEFINE_PER_CPU(int, debug_stack_usage);
1098
1099int is_debug_stack(unsigned long addr)
1100{
1101 return __get_cpu_var(debug_stack_usage) ||
1102 (addr <= __get_cpu_var(debug_stack_addr) &&
1103 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1104}
1105
1106static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1107
1108void debug_stack_set_zero(void)
1109{
1110 this_cpu_inc(debug_stack_use_ctr);
1111 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1112}
1113
1114void debug_stack_reset(void)
1115{
1116 if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1117 return;
1118 if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1119 load_idt((const struct desc_ptr *)&idt_descr);
1120}
1121
1122#else /* CONFIG_X86_64 */
1123
1124DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1125EXPORT_PER_CPU_SYMBOL(current_task);
1126DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1127
1128#ifdef CONFIG_CC_STACKPROTECTOR
1129DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1130#endif
1131
1132/* Make sure %fs and %gs are initialized properly in idle threads */
1133struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1134{
1135 memset(regs, 0, sizeof(struct pt_regs));
1136 regs->fs = __KERNEL_PERCPU;
1137 regs->gs = __KERNEL_STACK_CANARY;
1138
1139 return regs;
1140}
1141#endif /* CONFIG_X86_64 */
1142
1143/*
1144 * Clear all 6 debug registers:
1145 */
1146static void clear_all_debug_regs(void)
1147{
1148 int i;
1149
1150 for (i = 0; i < 8; i++) {
1151 /* Ignore db4, db5 */
1152 if ((i == 4) || (i == 5))
1153 continue;
1154
1155 set_debugreg(0, i);
1156 }
1157}
1158
1159#ifdef CONFIG_KGDB
1160/*
1161 * Restore debug regs if using kgdbwait and you have a kernel debugger
1162 * connection established.
1163 */
1164static void dbg_restore_debug_regs(void)
1165{
1166 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1167 arch_kgdb_ops.correct_hw_break();
1168}
1169#else /* ! CONFIG_KGDB */
1170#define dbg_restore_debug_regs()
1171#endif /* ! CONFIG_KGDB */
1172
1173/*
1174 * cpu_init() initializes state that is per-CPU. Some data is already
1175 * initialized (naturally) in the bootstrap process, such as the GDT
1176 * and IDT. We reload them nevertheless, this function acts as a
1177 * 'CPU state barrier', nothing should get across.
1178 * A lot of state is already set up in PDA init for 64 bit
1179 */
1180#ifdef CONFIG_X86_64
1181
1182void __cpuinit cpu_init(void)
1183{
1184 struct orig_ist *oist;
1185 struct task_struct *me;
1186 struct tss_struct *t;
1187 unsigned long v;
1188 int cpu;
1189 int i;
1190
1191 cpu = stack_smp_processor_id();
1192 t = &per_cpu(init_tss, cpu);
1193 oist = &per_cpu(orig_ist, cpu);
1194
1195#ifdef CONFIG_NUMA
1196 if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
1197 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1198 set_numa_node(early_cpu_to_node(cpu));
1199#endif
1200
1201 me = current;
1202
1203 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1204 panic("CPU#%d already initialized!\n", cpu);
1205
1206 pr_debug("Initializing CPU#%d\n", cpu);
1207
1208 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1209
1210 /*
1211 * Initialize the per-CPU GDT with the boot GDT,
1212 * and set up the GDT descriptor:
1213 */
1214
1215 switch_to_new_gdt(cpu);
1216 loadsegment(fs, 0);
1217
1218 load_idt((const struct desc_ptr *)&idt_descr);
1219
1220 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1221 syscall_init();
1222
1223 wrmsrl(MSR_FS_BASE, 0);
1224 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1225 barrier();
1226
1227 x86_configure_nx();
1228 if (cpu != 0)
1229 enable_x2apic();
1230
1231 /*
1232 * set up and load the per-CPU TSS
1233 */
1234 if (!oist->ist[0]) {
1235 char *estacks = per_cpu(exception_stacks, cpu);
1236
1237 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1238 estacks += exception_stack_sizes[v];
1239 oist->ist[v] = t->x86_tss.ist[v] =
1240 (unsigned long)estacks;
1241 if (v == DEBUG_STACK-1)
1242 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1243 }
1244 }
1245
1246 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1247
1248 /*
1249 * <= is required because the CPU will access up to
1250 * 8 bits beyond the end of the IO permission bitmap.
1251 */
1252 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1253 t->io_bitmap[i] = ~0UL;
1254
1255 atomic_inc(&init_mm.mm_count);
1256 me->active_mm = &init_mm;
1257 BUG_ON(me->mm);
1258 enter_lazy_tlb(&init_mm, me);
1259
1260 load_sp0(t, ¤t->thread);
1261 set_tss_desc(cpu, t);
1262 load_TR_desc();
1263 load_LDT(&init_mm.context);
1264
1265 clear_all_debug_regs();
1266 dbg_restore_debug_regs();
1267
1268 fpu_init();
1269 xsave_init();
1270
1271 raw_local_save_flags(kernel_eflags);
1272
1273 if (is_uv_system())
1274 uv_cpu_init();
1275}
1276
1277#else
1278
1279void __cpuinit cpu_init(void)
1280{
1281 int cpu = smp_processor_id();
1282 struct task_struct *curr = current;
1283 struct tss_struct *t = &per_cpu(init_tss, cpu);
1284 struct thread_struct *thread = &curr->thread;
1285
1286 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1287 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1288 for (;;)
1289 local_irq_enable();
1290 }
1291
1292 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1293
1294 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1295 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1296
1297 load_idt(&idt_descr);
1298 switch_to_new_gdt(cpu);
1299
1300 /*
1301 * Set up and load the per-CPU TSS and LDT
1302 */
1303 atomic_inc(&init_mm.mm_count);
1304 curr->active_mm = &init_mm;
1305 BUG_ON(curr->mm);
1306 enter_lazy_tlb(&init_mm, curr);
1307
1308 load_sp0(t, thread);
1309 set_tss_desc(cpu, t);
1310 load_TR_desc();
1311 load_LDT(&init_mm.context);
1312
1313 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1314
1315#ifdef CONFIG_DOUBLEFAULT
1316 /* Set up doublefault TSS pointer in the GDT */
1317 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1318#endif
1319
1320 clear_all_debug_regs();
1321 dbg_restore_debug_regs();
1322
1323 fpu_init();
1324 xsave_init();
1325}
1326#endif
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/hypervisor.h>
19#include <asm/processor.h>
20#include <asm/sections.h>
21#include <linux/topology.h>
22#include <linux/cpumask.h>
23#include <asm/pgtable.h>
24#include <linux/atomic.h>
25#include <asm/proto.h>
26#include <asm/setup.h>
27#include <asm/apic.h>
28#include <asm/desc.h>
29#include <asm/i387.h>
30#include <asm/mtrr.h>
31#include <linux/numa.h>
32#include <asm/asm.h>
33#include <asm/cpu.h>
34#include <asm/mce.h>
35#include <asm/msr.h>
36#include <asm/pat.h>
37
38#ifdef CONFIG_X86_LOCAL_APIC
39#include <asm/uv/uv.h>
40#endif
41
42#include "cpu.h"
43
44/* all of these masks are initialized in setup_cpu_local_masks() */
45cpumask_var_t cpu_initialized_mask;
46cpumask_var_t cpu_callout_mask;
47cpumask_var_t cpu_callin_mask;
48
49/* representing cpus for which sibling maps can be computed */
50cpumask_var_t cpu_sibling_setup_mask;
51
52/* correctly size the local cpu masks */
53void __init setup_cpu_local_masks(void)
54{
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59}
60
61static void __cpuinit default_init(struct cpuinfo_x86 *c)
62{
63#ifdef CONFIG_X86_64
64 cpu_detect_cache_sizes(c);
65#else
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c->cpuid_level == -1) {
69 /* No cpuid. It must be an ancient CPU */
70 if (c->x86 == 4)
71 strcpy(c->x86_model_id, "486");
72 else if (c->x86 == 3)
73 strcpy(c->x86_model_id, "386");
74 }
75#endif
76}
77
78static const struct cpu_dev __cpuinitconst default_cpu = {
79 .c_init = default_init,
80 .c_vendor = "Unknown",
81 .c_x86_vendor = X86_VENDOR_UNKNOWN,
82};
83
84static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87#ifdef CONFIG_X86_64
88 /*
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
92 *
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
95 */
96 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102#else
103 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107 /*
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
111 */
112 /* 32-bit code */
113 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114 /* 16-bit code */
115 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116 /* 16-bit data */
117 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118 /* 16-bit data */
119 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
120 /* 16-bit data */
121 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
122 /*
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
125 */
126 /* 32-bit code */
127 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 /* 16-bit code */
129 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 /* data */
131 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
136#endif
137} };
138EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140static int __init x86_xsave_setup(char *s)
141{
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
144 return 1;
145}
146__setup("noxsave", x86_xsave_setup);
147
148static int __init x86_xsaveopt_setup(char *s)
149{
150 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151 return 1;
152}
153__setup("noxsaveopt", x86_xsaveopt_setup);
154
155#ifdef CONFIG_X86_32
156static int cachesize_override __cpuinitdata = -1;
157static int disable_x86_serial_nr __cpuinitdata = 1;
158
159static int __init cachesize_setup(char *str)
160{
161 get_option(&str, &cachesize_override);
162 return 1;
163}
164__setup("cachesize=", cachesize_setup);
165
166static int __init x86_fxsr_setup(char *s)
167{
168 setup_clear_cpu_cap(X86_FEATURE_FXSR);
169 setup_clear_cpu_cap(X86_FEATURE_XMM);
170 return 1;
171}
172__setup("nofxsr", x86_fxsr_setup);
173
174static int __init x86_sep_setup(char *s)
175{
176 setup_clear_cpu_cap(X86_FEATURE_SEP);
177 return 1;
178}
179__setup("nosep", x86_sep_setup);
180
181/* Standard macro to see if a specific flag is changeable */
182static inline int flag_is_changeable_p(u32 flag)
183{
184 u32 f1, f2;
185
186 /*
187 * Cyrix and IDT cpus allow disabling of CPUID
188 * so the code below may return different results
189 * when it is executed before and after enabling
190 * the CPUID. Add "volatile" to not allow gcc to
191 * optimize the subsequent calls to this function.
192 */
193 asm volatile ("pushfl \n\t"
194 "pushfl \n\t"
195 "popl %0 \n\t"
196 "movl %0, %1 \n\t"
197 "xorl %2, %0 \n\t"
198 "pushl %0 \n\t"
199 "popfl \n\t"
200 "pushfl \n\t"
201 "popl %0 \n\t"
202 "popfl \n\t"
203
204 : "=&r" (f1), "=&r" (f2)
205 : "ir" (flag));
206
207 return ((f1^f2) & flag) != 0;
208}
209
210/* Probe for the CPUID instruction */
211static int __cpuinit have_cpuid_p(void)
212{
213 return flag_is_changeable_p(X86_EFLAGS_ID);
214}
215
216static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
217{
218 unsigned long lo, hi;
219
220 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
221 return;
222
223 /* Disable processor serial number: */
224
225 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
226 lo |= 0x200000;
227 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228
229 printk(KERN_NOTICE "CPU serial number disabled.\n");
230 clear_cpu_cap(c, X86_FEATURE_PN);
231
232 /* Disabling the serial number may affect the cpuid level */
233 c->cpuid_level = cpuid_eax(0);
234}
235
236static int __init x86_serial_nr_setup(char *s)
237{
238 disable_x86_serial_nr = 0;
239 return 1;
240}
241__setup("serialnumber", x86_serial_nr_setup);
242#else
243static inline int flag_is_changeable_p(u32 flag)
244{
245 return 1;
246}
247/* Probe for the CPUID instruction */
248static inline int have_cpuid_p(void)
249{
250 return 1;
251}
252static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
253{
254}
255#endif
256
257static int disable_smep __cpuinitdata;
258static __init int setup_disable_smep(char *arg)
259{
260 disable_smep = 1;
261 return 1;
262}
263__setup("nosmep", setup_disable_smep);
264
265static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
266{
267 if (cpu_has(c, X86_FEATURE_SMEP)) {
268 if (unlikely(disable_smep)) {
269 setup_clear_cpu_cap(X86_FEATURE_SMEP);
270 clear_in_cr4(X86_CR4_SMEP);
271 } else
272 set_in_cr4(X86_CR4_SMEP);
273 }
274}
275
276/*
277 * Some CPU features depend on higher CPUID levels, which may not always
278 * be available due to CPUID level capping or broken virtualization
279 * software. Add those features to this table to auto-disable them.
280 */
281struct cpuid_dependent_feature {
282 u32 feature;
283 u32 level;
284};
285
286static const struct cpuid_dependent_feature __cpuinitconst
287cpuid_dependent_features[] = {
288 { X86_FEATURE_MWAIT, 0x00000005 },
289 { X86_FEATURE_DCA, 0x00000009 },
290 { X86_FEATURE_XSAVE, 0x0000000d },
291 { 0, 0 }
292};
293
294static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
295{
296 const struct cpuid_dependent_feature *df;
297
298 for (df = cpuid_dependent_features; df->feature; df++) {
299
300 if (!cpu_has(c, df->feature))
301 continue;
302 /*
303 * Note: cpuid_level is set to -1 if unavailable, but
304 * extended_extended_level is set to 0 if unavailable
305 * and the legitimate extended levels are all negative
306 * when signed; hence the weird messing around with
307 * signs here...
308 */
309 if (!((s32)df->level < 0 ?
310 (u32)df->level > (u32)c->extended_cpuid_level :
311 (s32)df->level > (s32)c->cpuid_level))
312 continue;
313
314 clear_cpu_cap(c, df->feature);
315 if (!warn)
316 continue;
317
318 printk(KERN_WARNING
319 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
320 x86_cap_flags[df->feature], df->level);
321 }
322}
323
324/*
325 * Naming convention should be: <Name> [(<Codename>)]
326 * This table only is used unless init_<vendor>() below doesn't set it;
327 * in particular, if CPUID levels 0x80000002..4 are supported, this
328 * isn't used
329 */
330
331/* Look up CPU names by table lookup. */
332static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
333{
334 const struct cpu_model_info *info;
335
336 if (c->x86_model >= 16)
337 return NULL; /* Range check */
338
339 if (!this_cpu)
340 return NULL;
341
342 info = this_cpu->c_models;
343
344 while (info && info->family) {
345 if (info->family == c->x86)
346 return info->model_names[c->x86_model];
347 info++;
348 }
349 return NULL; /* Not found */
350}
351
352__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
353__u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
354
355void load_percpu_segment(int cpu)
356{
357#ifdef CONFIG_X86_32
358 loadsegment(fs, __KERNEL_PERCPU);
359#else
360 loadsegment(gs, 0);
361 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
362#endif
363 load_stack_canary_segment();
364}
365
366/*
367 * Current gdt points %fs at the "master" per-cpu area: after this,
368 * it's on the real one.
369 */
370void switch_to_new_gdt(int cpu)
371{
372 struct desc_ptr gdt_descr;
373
374 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
375 gdt_descr.size = GDT_SIZE - 1;
376 load_gdt(&gdt_descr);
377 /* Reload the per-cpu base */
378
379 load_percpu_segment(cpu);
380}
381
382static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
383
384static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
385{
386 unsigned int *v;
387 char *p, *q;
388
389 if (c->extended_cpuid_level < 0x80000004)
390 return;
391
392 v = (unsigned int *)c->x86_model_id;
393 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
394 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
395 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
396 c->x86_model_id[48] = 0;
397
398 /*
399 * Intel chips right-justify this string for some dumb reason;
400 * undo that brain damage:
401 */
402 p = q = &c->x86_model_id[0];
403 while (*p == ' ')
404 p++;
405 if (p != q) {
406 while (*p)
407 *q++ = *p++;
408 while (q <= &c->x86_model_id[48])
409 *q++ = '\0'; /* Zero-pad the rest */
410 }
411}
412
413void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
414{
415 unsigned int n, dummy, ebx, ecx, edx, l2size;
416
417 n = c->extended_cpuid_level;
418
419 if (n >= 0x80000005) {
420 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
421 c->x86_cache_size = (ecx>>24) + (edx>>24);
422#ifdef CONFIG_X86_64
423 /* On K8 L1 TLB is inclusive, so don't count it */
424 c->x86_tlbsize = 0;
425#endif
426 }
427
428 if (n < 0x80000006) /* Some chips just has a large L1. */
429 return;
430
431 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
432 l2size = ecx >> 16;
433
434#ifdef CONFIG_X86_64
435 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
436#else
437 /* do processor-specific cache resizing */
438 if (this_cpu->c_size_cache)
439 l2size = this_cpu->c_size_cache(c, l2size);
440
441 /* Allow user to override all this if necessary. */
442 if (cachesize_override != -1)
443 l2size = cachesize_override;
444
445 if (l2size == 0)
446 return; /* Again, no L2 cache is possible */
447#endif
448
449 c->x86_cache_size = l2size;
450}
451
452void __cpuinit detect_ht(struct cpuinfo_x86 *c)
453{
454#ifdef CONFIG_X86_HT
455 u32 eax, ebx, ecx, edx;
456 int index_msb, core_bits;
457 static bool printed;
458
459 if (!cpu_has(c, X86_FEATURE_HT))
460 return;
461
462 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
463 goto out;
464
465 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
466 return;
467
468 cpuid(1, &eax, &ebx, &ecx, &edx);
469
470 smp_num_siblings = (ebx & 0xff0000) >> 16;
471
472 if (smp_num_siblings == 1) {
473 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
474 goto out;
475 }
476
477 if (smp_num_siblings <= 1)
478 goto out;
479
480 index_msb = get_count_order(smp_num_siblings);
481 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
482
483 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
484
485 index_msb = get_count_order(smp_num_siblings);
486
487 core_bits = get_count_order(c->x86_max_cores);
488
489 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
490 ((1 << core_bits) - 1);
491
492out:
493 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
494 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
495 c->phys_proc_id);
496 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
497 c->cpu_core_id);
498 printed = 1;
499 }
500#endif
501}
502
503static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
504{
505 char *v = c->x86_vendor_id;
506 int i;
507
508 for (i = 0; i < X86_VENDOR_NUM; i++) {
509 if (!cpu_devs[i])
510 break;
511
512 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
513 (cpu_devs[i]->c_ident[1] &&
514 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
515
516 this_cpu = cpu_devs[i];
517 c->x86_vendor = this_cpu->c_x86_vendor;
518 return;
519 }
520 }
521
522 printk_once(KERN_ERR
523 "CPU: vendor_id '%s' unknown, using generic init.\n" \
524 "CPU: Your system may be unstable.\n", v);
525
526 c->x86_vendor = X86_VENDOR_UNKNOWN;
527 this_cpu = &default_cpu;
528}
529
530void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
531{
532 /* Get vendor name */
533 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
534 (unsigned int *)&c->x86_vendor_id[0],
535 (unsigned int *)&c->x86_vendor_id[8],
536 (unsigned int *)&c->x86_vendor_id[4]);
537
538 c->x86 = 4;
539 /* Intel-defined flags: level 0x00000001 */
540 if (c->cpuid_level >= 0x00000001) {
541 u32 junk, tfms, cap0, misc;
542
543 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
544 c->x86 = (tfms >> 8) & 0xf;
545 c->x86_model = (tfms >> 4) & 0xf;
546 c->x86_mask = tfms & 0xf;
547
548 if (c->x86 == 0xf)
549 c->x86 += (tfms >> 20) & 0xff;
550 if (c->x86 >= 0x6)
551 c->x86_model += ((tfms >> 16) & 0xf) << 4;
552
553 if (cap0 & (1<<19)) {
554 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
555 c->x86_cache_alignment = c->x86_clflush_size;
556 }
557 }
558}
559
560void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
561{
562 u32 tfms, xlvl;
563 u32 ebx;
564
565 /* Intel-defined flags: level 0x00000001 */
566 if (c->cpuid_level >= 0x00000001) {
567 u32 capability, excap;
568
569 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
570 c->x86_capability[0] = capability;
571 c->x86_capability[4] = excap;
572 }
573
574 /* Additional Intel-defined flags: level 0x00000007 */
575 if (c->cpuid_level >= 0x00000007) {
576 u32 eax, ebx, ecx, edx;
577
578 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
579
580 c->x86_capability[9] = ebx;
581 }
582
583 /* AMD-defined flags: level 0x80000001 */
584 xlvl = cpuid_eax(0x80000000);
585 c->extended_cpuid_level = xlvl;
586
587 if ((xlvl & 0xffff0000) == 0x80000000) {
588 if (xlvl >= 0x80000001) {
589 c->x86_capability[1] = cpuid_edx(0x80000001);
590 c->x86_capability[6] = cpuid_ecx(0x80000001);
591 }
592 }
593
594 if (c->extended_cpuid_level >= 0x80000008) {
595 u32 eax = cpuid_eax(0x80000008);
596
597 c->x86_virt_bits = (eax >> 8) & 0xff;
598 c->x86_phys_bits = eax & 0xff;
599 }
600#ifdef CONFIG_X86_32
601 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
602 c->x86_phys_bits = 36;
603#endif
604
605 if (c->extended_cpuid_level >= 0x80000007)
606 c->x86_power = cpuid_edx(0x80000007);
607
608 init_scattered_cpuid_features(c);
609}
610
611static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
612{
613#ifdef CONFIG_X86_32
614 int i;
615
616 /*
617 * First of all, decide if this is a 486 or higher
618 * It's a 486 if we can modify the AC flag
619 */
620 if (flag_is_changeable_p(X86_EFLAGS_AC))
621 c->x86 = 4;
622 else
623 c->x86 = 3;
624
625 for (i = 0; i < X86_VENDOR_NUM; i++)
626 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
627 c->x86_vendor_id[0] = 0;
628 cpu_devs[i]->c_identify(c);
629 if (c->x86_vendor_id[0]) {
630 get_cpu_vendor(c);
631 break;
632 }
633 }
634#endif
635}
636
637/*
638 * Do minimum CPU detection early.
639 * Fields really needed: vendor, cpuid_level, family, model, mask,
640 * cache alignment.
641 * The others are not touched to avoid unwanted side effects.
642 *
643 * WARNING: this function is only called on the BP. Don't add code here
644 * that is supposed to run on all CPUs.
645 */
646static void __init early_identify_cpu(struct cpuinfo_x86 *c)
647{
648#ifdef CONFIG_X86_64
649 c->x86_clflush_size = 64;
650 c->x86_phys_bits = 36;
651 c->x86_virt_bits = 48;
652#else
653 c->x86_clflush_size = 32;
654 c->x86_phys_bits = 32;
655 c->x86_virt_bits = 32;
656#endif
657 c->x86_cache_alignment = c->x86_clflush_size;
658
659 memset(&c->x86_capability, 0, sizeof c->x86_capability);
660 c->extended_cpuid_level = 0;
661
662 if (!have_cpuid_p())
663 identify_cpu_without_cpuid(c);
664
665 /* cyrix could have cpuid enabled via c_identify()*/
666 if (!have_cpuid_p())
667 return;
668
669 cpu_detect(c);
670
671 get_cpu_vendor(c);
672
673 get_cpu_cap(c);
674
675 if (this_cpu->c_early_init)
676 this_cpu->c_early_init(c);
677
678#ifdef CONFIG_SMP
679 c->cpu_index = 0;
680#endif
681 filter_cpuid_features(c, false);
682
683 setup_smep(c);
684}
685
686void __init early_cpu_init(void)
687{
688 const struct cpu_dev *const *cdev;
689 int count = 0;
690
691#ifdef CONFIG_PROCESSOR_SELECT
692 printk(KERN_INFO "KERNEL supported cpus:\n");
693#endif
694
695 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
696 const struct cpu_dev *cpudev = *cdev;
697
698 if (count >= X86_VENDOR_NUM)
699 break;
700 cpu_devs[count] = cpudev;
701 count++;
702
703#ifdef CONFIG_PROCESSOR_SELECT
704 {
705 unsigned int j;
706
707 for (j = 0; j < 2; j++) {
708 if (!cpudev->c_ident[j])
709 continue;
710 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
711 cpudev->c_ident[j]);
712 }
713 }
714#endif
715 }
716 early_identify_cpu(&boot_cpu_data);
717}
718
719/*
720 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
721 * unfortunately, that's not true in practice because of early VIA
722 * chips and (more importantly) broken virtualizers that are not easy
723 * to detect. In the latter case it doesn't even *fail* reliably, so
724 * probing for it doesn't even work. Disable it completely on 32-bit
725 * unless we can find a reliable way to detect all the broken cases.
726 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
727 */
728static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
729{
730#ifdef CONFIG_X86_32
731 clear_cpu_cap(c, X86_FEATURE_NOPL);
732#else
733 set_cpu_cap(c, X86_FEATURE_NOPL);
734#endif
735}
736
737static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
738{
739 c->extended_cpuid_level = 0;
740
741 if (!have_cpuid_p())
742 identify_cpu_without_cpuid(c);
743
744 /* cyrix could have cpuid enabled via c_identify()*/
745 if (!have_cpuid_p())
746 return;
747
748 cpu_detect(c);
749
750 get_cpu_vendor(c);
751
752 get_cpu_cap(c);
753
754 if (c->cpuid_level >= 0x00000001) {
755 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
756#ifdef CONFIG_X86_32
757# ifdef CONFIG_X86_HT
758 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
759# else
760 c->apicid = c->initial_apicid;
761# endif
762#endif
763
764#ifdef CONFIG_X86_HT
765 c->phys_proc_id = c->initial_apicid;
766#endif
767 }
768
769 setup_smep(c);
770
771 get_model_name(c); /* Default name */
772
773 detect_nopl(c);
774}
775
776/*
777 * This does the hard work of actually picking apart the CPU stuff...
778 */
779static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
780{
781 int i;
782
783 c->loops_per_jiffy = loops_per_jiffy;
784 c->x86_cache_size = -1;
785 c->x86_vendor = X86_VENDOR_UNKNOWN;
786 c->x86_model = c->x86_mask = 0; /* So far unknown... */
787 c->x86_vendor_id[0] = '\0'; /* Unset */
788 c->x86_model_id[0] = '\0'; /* Unset */
789 c->x86_max_cores = 1;
790 c->x86_coreid_bits = 0;
791#ifdef CONFIG_X86_64
792 c->x86_clflush_size = 64;
793 c->x86_phys_bits = 36;
794 c->x86_virt_bits = 48;
795#else
796 c->cpuid_level = -1; /* CPUID not detected */
797 c->x86_clflush_size = 32;
798 c->x86_phys_bits = 32;
799 c->x86_virt_bits = 32;
800#endif
801 c->x86_cache_alignment = c->x86_clflush_size;
802 memset(&c->x86_capability, 0, sizeof c->x86_capability);
803
804 generic_identify(c);
805
806 if (this_cpu->c_identify)
807 this_cpu->c_identify(c);
808
809 /* Clear/Set all flags overriden by options, after probe */
810 for (i = 0; i < NCAPINTS; i++) {
811 c->x86_capability[i] &= ~cpu_caps_cleared[i];
812 c->x86_capability[i] |= cpu_caps_set[i];
813 }
814
815#ifdef CONFIG_X86_64
816 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
817#endif
818
819 /*
820 * Vendor-specific initialization. In this section we
821 * canonicalize the feature flags, meaning if there are
822 * features a certain CPU supports which CPUID doesn't
823 * tell us, CPUID claiming incorrect flags, or other bugs,
824 * we handle them here.
825 *
826 * At the end of this section, c->x86_capability better
827 * indicate the features this CPU genuinely supports!
828 */
829 if (this_cpu->c_init)
830 this_cpu->c_init(c);
831
832 /* Disable the PN if appropriate */
833 squash_the_stupid_serial_number(c);
834
835 /*
836 * The vendor-specific functions might have changed features.
837 * Now we do "generic changes."
838 */
839
840 /* Filter out anything that depends on CPUID levels we don't have */
841 filter_cpuid_features(c, true);
842
843 /* If the model name is still unset, do table lookup. */
844 if (!c->x86_model_id[0]) {
845 const char *p;
846 p = table_lookup_model(c);
847 if (p)
848 strcpy(c->x86_model_id, p);
849 else
850 /* Last resort... */
851 sprintf(c->x86_model_id, "%02x/%02x",
852 c->x86, c->x86_model);
853 }
854
855#ifdef CONFIG_X86_64
856 detect_ht(c);
857#endif
858
859 init_hypervisor(c);
860
861 /*
862 * Clear/Set all flags overriden by options, need do it
863 * before following smp all cpus cap AND.
864 */
865 for (i = 0; i < NCAPINTS; i++) {
866 c->x86_capability[i] &= ~cpu_caps_cleared[i];
867 c->x86_capability[i] |= cpu_caps_set[i];
868 }
869
870 /*
871 * On SMP, boot_cpu_data holds the common feature set between
872 * all CPUs; so make sure that we indicate which features are
873 * common between the CPUs. The first time this routine gets
874 * executed, c == &boot_cpu_data.
875 */
876 if (c != &boot_cpu_data) {
877 /* AND the already accumulated flags with these */
878 for (i = 0; i < NCAPINTS; i++)
879 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
880 }
881
882 /* Init Machine Check Exception if available. */
883 mcheck_cpu_init(c);
884
885 select_idle_routine(c);
886
887#ifdef CONFIG_NUMA
888 numa_add_cpu(smp_processor_id());
889#endif
890}
891
892#ifdef CONFIG_X86_64
893static void vgetcpu_set_mode(void)
894{
895 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
896 vgetcpu_mode = VGETCPU_RDTSCP;
897 else
898 vgetcpu_mode = VGETCPU_LSL;
899}
900#endif
901
902void __init identify_boot_cpu(void)
903{
904 identify_cpu(&boot_cpu_data);
905 init_amd_e400_c1e_mask();
906#ifdef CONFIG_X86_32
907 sysenter_setup();
908 enable_sep_cpu();
909#else
910 vgetcpu_set_mode();
911#endif
912}
913
914void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
915{
916 BUG_ON(c == &boot_cpu_data);
917 identify_cpu(c);
918#ifdef CONFIG_X86_32
919 enable_sep_cpu();
920#endif
921 mtrr_ap_init();
922}
923
924struct msr_range {
925 unsigned min;
926 unsigned max;
927};
928
929static const struct msr_range msr_range_array[] __cpuinitconst = {
930 { 0x00000000, 0x00000418},
931 { 0xc0000000, 0xc000040b},
932 { 0xc0010000, 0xc0010142},
933 { 0xc0011000, 0xc001103b},
934};
935
936static void __cpuinit print_cpu_msr(void)
937{
938 unsigned index_min, index_max;
939 unsigned index;
940 u64 val;
941 int i;
942
943 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
944 index_min = msr_range_array[i].min;
945 index_max = msr_range_array[i].max;
946
947 for (index = index_min; index < index_max; index++) {
948 if (rdmsrl_amd_safe(index, &val))
949 continue;
950 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
951 }
952 }
953}
954
955static int show_msr __cpuinitdata;
956
957static __init int setup_show_msr(char *arg)
958{
959 int num;
960
961 get_option(&arg, &num);
962
963 if (num > 0)
964 show_msr = num;
965 return 1;
966}
967__setup("show_msr=", setup_show_msr);
968
969static __init int setup_noclflush(char *arg)
970{
971 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
972 return 1;
973}
974__setup("noclflush", setup_noclflush);
975
976void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
977{
978 const char *vendor = NULL;
979
980 if (c->x86_vendor < X86_VENDOR_NUM) {
981 vendor = this_cpu->c_vendor;
982 } else {
983 if (c->cpuid_level >= 0)
984 vendor = c->x86_vendor_id;
985 }
986
987 if (vendor && !strstr(c->x86_model_id, vendor))
988 printk(KERN_CONT "%s ", vendor);
989
990 if (c->x86_model_id[0])
991 printk(KERN_CONT "%s", c->x86_model_id);
992 else
993 printk(KERN_CONT "%d86", c->x86);
994
995 if (c->x86_mask || c->cpuid_level >= 0)
996 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
997 else
998 printk(KERN_CONT "\n");
999
1000#ifdef CONFIG_SMP
1001 if (c->cpu_index < show_msr)
1002 print_cpu_msr();
1003#else
1004 if (show_msr)
1005 print_cpu_msr();
1006#endif
1007}
1008
1009static __init int setup_disablecpuid(char *arg)
1010{
1011 int bit;
1012
1013 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1014 setup_clear_cpu_cap(bit);
1015 else
1016 return 0;
1017
1018 return 1;
1019}
1020__setup("clearcpuid=", setup_disablecpuid);
1021
1022#ifdef CONFIG_X86_64
1023struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1024
1025DEFINE_PER_CPU_FIRST(union irq_stack_union,
1026 irq_stack_union) __aligned(PAGE_SIZE);
1027
1028/*
1029 * The following four percpu variables are hot. Align current_task to
1030 * cacheline size such that all four fall in the same cacheline.
1031 */
1032DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1033 &init_task;
1034EXPORT_PER_CPU_SYMBOL(current_task);
1035
1036DEFINE_PER_CPU(unsigned long, kernel_stack) =
1037 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1038EXPORT_PER_CPU_SYMBOL(kernel_stack);
1039
1040DEFINE_PER_CPU(char *, irq_stack_ptr) =
1041 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1042
1043DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1044
1045/*
1046 * Special IST stacks which the CPU switches to when it calls
1047 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1048 * limit), all of them are 4K, except the debug stack which
1049 * is 8K.
1050 */
1051static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1052 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1053 [DEBUG_STACK - 1] = DEBUG_STKSZ
1054};
1055
1056static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1057 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1058
1059/* May not be marked __init: used by software suspend */
1060void syscall_init(void)
1061{
1062 /*
1063 * LSTAR and STAR live in a bit strange symbiosis.
1064 * They both write to the same internal register. STAR allows to
1065 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1066 */
1067 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1068 wrmsrl(MSR_LSTAR, system_call);
1069 wrmsrl(MSR_CSTAR, ignore_sysret);
1070
1071#ifdef CONFIG_IA32_EMULATION
1072 syscall32_cpu_init();
1073#endif
1074
1075 /* Flags to clear on syscall */
1076 wrmsrl(MSR_SYSCALL_MASK,
1077 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1078}
1079
1080unsigned long kernel_eflags;
1081
1082/*
1083 * Copies of the original ist values from the tss are only accessed during
1084 * debugging, no special alignment required.
1085 */
1086DEFINE_PER_CPU(struct orig_ist, orig_ist);
1087
1088#else /* CONFIG_X86_64 */
1089
1090DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1091EXPORT_PER_CPU_SYMBOL(current_task);
1092
1093#ifdef CONFIG_CC_STACKPROTECTOR
1094DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1095#endif
1096
1097/* Make sure %fs and %gs are initialized properly in idle threads */
1098struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1099{
1100 memset(regs, 0, sizeof(struct pt_regs));
1101 regs->fs = __KERNEL_PERCPU;
1102 regs->gs = __KERNEL_STACK_CANARY;
1103
1104 return regs;
1105}
1106#endif /* CONFIG_X86_64 */
1107
1108/*
1109 * Clear all 6 debug registers:
1110 */
1111static void clear_all_debug_regs(void)
1112{
1113 int i;
1114
1115 for (i = 0; i < 8; i++) {
1116 /* Ignore db4, db5 */
1117 if ((i == 4) || (i == 5))
1118 continue;
1119
1120 set_debugreg(0, i);
1121 }
1122}
1123
1124#ifdef CONFIG_KGDB
1125/*
1126 * Restore debug regs if using kgdbwait and you have a kernel debugger
1127 * connection established.
1128 */
1129static void dbg_restore_debug_regs(void)
1130{
1131 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1132 arch_kgdb_ops.correct_hw_break();
1133}
1134#else /* ! CONFIG_KGDB */
1135#define dbg_restore_debug_regs()
1136#endif /* ! CONFIG_KGDB */
1137
1138/*
1139 * cpu_init() initializes state that is per-CPU. Some data is already
1140 * initialized (naturally) in the bootstrap process, such as the GDT
1141 * and IDT. We reload them nevertheless, this function acts as a
1142 * 'CPU state barrier', nothing should get across.
1143 * A lot of state is already set up in PDA init for 64 bit
1144 */
1145#ifdef CONFIG_X86_64
1146
1147void __cpuinit cpu_init(void)
1148{
1149 struct orig_ist *oist;
1150 struct task_struct *me;
1151 struct tss_struct *t;
1152 unsigned long v;
1153 int cpu;
1154 int i;
1155
1156 cpu = stack_smp_processor_id();
1157 t = &per_cpu(init_tss, cpu);
1158 oist = &per_cpu(orig_ist, cpu);
1159
1160#ifdef CONFIG_NUMA
1161 if (cpu != 0 && percpu_read(numa_node) == 0 &&
1162 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1163 set_numa_node(early_cpu_to_node(cpu));
1164#endif
1165
1166 me = current;
1167
1168 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1169 panic("CPU#%d already initialized!\n", cpu);
1170
1171 pr_debug("Initializing CPU#%d\n", cpu);
1172
1173 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1174
1175 /*
1176 * Initialize the per-CPU GDT with the boot GDT,
1177 * and set up the GDT descriptor:
1178 */
1179
1180 switch_to_new_gdt(cpu);
1181 loadsegment(fs, 0);
1182
1183 load_idt((const struct desc_ptr *)&idt_descr);
1184
1185 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1186 syscall_init();
1187
1188 wrmsrl(MSR_FS_BASE, 0);
1189 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1190 barrier();
1191
1192 x86_configure_nx();
1193 if (cpu != 0)
1194 enable_x2apic();
1195
1196 /*
1197 * set up and load the per-CPU TSS
1198 */
1199 if (!oist->ist[0]) {
1200 char *estacks = per_cpu(exception_stacks, cpu);
1201
1202 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1203 estacks += exception_stack_sizes[v];
1204 oist->ist[v] = t->x86_tss.ist[v] =
1205 (unsigned long)estacks;
1206 }
1207 }
1208
1209 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1210
1211 /*
1212 * <= is required because the CPU will access up to
1213 * 8 bits beyond the end of the IO permission bitmap.
1214 */
1215 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1216 t->io_bitmap[i] = ~0UL;
1217
1218 atomic_inc(&init_mm.mm_count);
1219 me->active_mm = &init_mm;
1220 BUG_ON(me->mm);
1221 enter_lazy_tlb(&init_mm, me);
1222
1223 load_sp0(t, ¤t->thread);
1224 set_tss_desc(cpu, t);
1225 load_TR_desc();
1226 load_LDT(&init_mm.context);
1227
1228 clear_all_debug_regs();
1229 dbg_restore_debug_regs();
1230
1231 fpu_init();
1232 xsave_init();
1233
1234 raw_local_save_flags(kernel_eflags);
1235
1236 if (is_uv_system())
1237 uv_cpu_init();
1238}
1239
1240#else
1241
1242void __cpuinit cpu_init(void)
1243{
1244 int cpu = smp_processor_id();
1245 struct task_struct *curr = current;
1246 struct tss_struct *t = &per_cpu(init_tss, cpu);
1247 struct thread_struct *thread = &curr->thread;
1248
1249 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1250 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1251 for (;;)
1252 local_irq_enable();
1253 }
1254
1255 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1256
1257 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1258 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1259
1260 load_idt(&idt_descr);
1261 switch_to_new_gdt(cpu);
1262
1263 /*
1264 * Set up and load the per-CPU TSS and LDT
1265 */
1266 atomic_inc(&init_mm.mm_count);
1267 curr->active_mm = &init_mm;
1268 BUG_ON(curr->mm);
1269 enter_lazy_tlb(&init_mm, curr);
1270
1271 load_sp0(t, thread);
1272 set_tss_desc(cpu, t);
1273 load_TR_desc();
1274 load_LDT(&init_mm.context);
1275
1276 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1277
1278#ifdef CONFIG_DOUBLEFAULT
1279 /* Set up doublefault TSS pointer in the GDT */
1280 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1281#endif
1282
1283 clear_all_debug_regs();
1284 dbg_restore_debug_regs();
1285
1286 fpu_init();
1287 xsave_init();
1288}
1289#endif