Loading...
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
30#include <asm/pgtable.h>
31#include <asm/pgalloc.h>
32#include <asm/fixmap.h>
33#include <asm/tlb.h>
34#include <asm/tlbflush.h>
35#include <asm/homecache.h>
36
37#define K(x) ((x) << (PAGE_SHIFT-10))
38
39/*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
43void show_mem(unsigned int filter)
44{
45 struct zone *zone;
46
47 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
48 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 " pagecache:%lu swap:%lu\n",
50 (global_page_state(NR_ACTIVE_ANON) +
51 global_page_state(NR_ACTIVE_FILE)),
52 (global_page_state(NR_INACTIVE_ANON) +
53 global_page_state(NR_INACTIVE_FILE)),
54 global_page_state(NR_FILE_DIRTY),
55 global_page_state(NR_WRITEBACK),
56 global_page_state(NR_UNSTABLE_NFS),
57 global_page_state(NR_FREE_PAGES),
58 (global_page_state(NR_SLAB_RECLAIMABLE) +
59 global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 global_page_state(NR_FILE_MAPPED),
61 global_page_state(NR_PAGETABLE),
62 global_page_state(NR_BOUNCE),
63 global_page_state(NR_FILE_PAGES),
64 nr_swap_pages);
65
66 for_each_zone(zone) {
67 unsigned long flags, order, total = 0, largest_order = -1;
68
69 if (!populated_zone(zone))
70 continue;
71
72 spin_lock_irqsave(&zone->lock, flags);
73 for (order = 0; order < MAX_ORDER; order++) {
74 int nr = zone->free_area[order].nr_free;
75 total += nr << order;
76 if (nr)
77 largest_order = order;
78 }
79 spin_unlock_irqrestore(&zone->lock, flags);
80 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 zone_to_nid(zone), zone->name,
82 K(total), largest_order ? K(1UL) << largest_order : 0);
83 }
84}
85
86/*
87 * Associate a virtual page frame with a given physical page frame
88 * and protection flags for that frame.
89 */
90static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
91{
92 pgd_t *pgd;
93 pud_t *pud;
94 pmd_t *pmd;
95 pte_t *pte;
96
97 pgd = swapper_pg_dir + pgd_index(vaddr);
98 if (pgd_none(*pgd)) {
99 BUG();
100 return;
101 }
102 pud = pud_offset(pgd, vaddr);
103 if (pud_none(*pud)) {
104 BUG();
105 return;
106 }
107 pmd = pmd_offset(pud, vaddr);
108 if (pmd_none(*pmd)) {
109 BUG();
110 return;
111 }
112 pte = pte_offset_kernel(pmd, vaddr);
113 /* <pfn,flags> stored as-is, to permit clearing entries */
114 set_pte(pte, pfn_pte(pfn, flags));
115
116 /*
117 * It's enough to flush this one mapping.
118 * This appears conservative since it is only called
119 * from __set_fixmap.
120 */
121 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
122}
123
124void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
125{
126 unsigned long address = __fix_to_virt(idx);
127
128 if (idx >= __end_of_fixed_addresses) {
129 BUG();
130 return;
131 }
132 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
133}
134
135/**
136 * shatter_huge_page() - ensure a given address is mapped by a small page.
137 *
138 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
139 * of small PTEs with the same caching. No cache flush required, but we
140 * must do a global TLB flush.
141 *
142 * Any caller that wishes to modify a kernel mapping that might
143 * have been made with a huge page should call this function,
144 * since doing so properly avoids race conditions with installing the
145 * newly-shattered page and then flushing all the TLB entries.
146 *
147 * @addr: Address at which to shatter any existing huge page.
148 */
149void shatter_huge_page(unsigned long addr)
150{
151 pgd_t *pgd;
152 pud_t *pud;
153 pmd_t *pmd;
154 unsigned long flags = 0; /* happy compiler */
155#ifdef __PAGETABLE_PMD_FOLDED
156 struct list_head *pos;
157#endif
158
159 /* Get a pointer to the pmd entry that we need to change. */
160 addr &= HPAGE_MASK;
161 BUG_ON(pgd_addr_invalid(addr));
162 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
163 pgd = swapper_pg_dir + pgd_index(addr);
164 pud = pud_offset(pgd, addr);
165 BUG_ON(!pud_present(*pud));
166 pmd = pmd_offset(pud, addr);
167 BUG_ON(!pmd_present(*pmd));
168 if (!pmd_huge_page(*pmd))
169 return;
170
171 spin_lock_irqsave(&init_mm.page_table_lock, flags);
172 if (!pmd_huge_page(*pmd)) {
173 /* Lost the race to convert the huge page. */
174 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
175 return;
176 }
177
178 /* Shatter the huge page into the preallocated L2 page table. */
179 pmd_populate_kernel(&init_mm, pmd,
180 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
181
182#ifdef __PAGETABLE_PMD_FOLDED
183 /* Walk every pgd on the system and update the pmd there. */
184 spin_lock(&pgd_lock);
185 list_for_each(pos, &pgd_list) {
186 pmd_t *copy_pmd;
187 pgd = list_to_pgd(pos) + pgd_index(addr);
188 pud = pud_offset(pgd, addr);
189 copy_pmd = pmd_offset(pud, addr);
190 __set_pmd(copy_pmd, *pmd);
191 }
192 spin_unlock(&pgd_lock);
193#endif
194
195 /* Tell every cpu to notice the change. */
196 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
197 cpu_possible_mask, NULL, 0);
198
199 /* Hold the lock until the TLB flush is finished to avoid races. */
200 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
201}
202
203/*
204 * List of all pgd's needed so it can invalidate entries in both cached
205 * and uncached pgd's. This is essentially codepath-based locking
206 * against pageattr.c; it is the unique case in which a valid change
207 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
208 * vmalloc faults work because attached pagetables are never freed.
209 *
210 * The lock is always taken with interrupts disabled, unlike on x86
211 * and other platforms, because we need to take the lock in
212 * shatter_huge_page(), which may be called from an interrupt context.
213 * We are not at risk from the tlbflush IPI deadlock that was seen on
214 * x86, since we use the flush_remote() API to have the hypervisor do
215 * the TLB flushes regardless of irq disabling.
216 */
217DEFINE_SPINLOCK(pgd_lock);
218LIST_HEAD(pgd_list);
219
220static inline void pgd_list_add(pgd_t *pgd)
221{
222 list_add(pgd_to_list(pgd), &pgd_list);
223}
224
225static inline void pgd_list_del(pgd_t *pgd)
226{
227 list_del(pgd_to_list(pgd));
228}
229
230#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
231#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
232
233static void pgd_ctor(pgd_t *pgd)
234{
235 unsigned long flags;
236
237 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
238 spin_lock_irqsave(&pgd_lock, flags);
239
240#ifndef __tilegx__
241 /*
242 * Check that the user interrupt vector has no L2.
243 * It never should for the swapper, and new page tables
244 * should always start with an empty user interrupt vector.
245 */
246 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
247#endif
248
249 memcpy(pgd + KERNEL_PGD_INDEX_START,
250 swapper_pg_dir + KERNEL_PGD_INDEX_START,
251 KERNEL_PGD_PTRS * sizeof(pgd_t));
252
253 pgd_list_add(pgd);
254 spin_unlock_irqrestore(&pgd_lock, flags);
255}
256
257static void pgd_dtor(pgd_t *pgd)
258{
259 unsigned long flags; /* can be called from interrupt context */
260
261 spin_lock_irqsave(&pgd_lock, flags);
262 pgd_list_del(pgd);
263 spin_unlock_irqrestore(&pgd_lock, flags);
264}
265
266pgd_t *pgd_alloc(struct mm_struct *mm)
267{
268 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
269 if (pgd)
270 pgd_ctor(pgd);
271 return pgd;
272}
273
274void pgd_free(struct mm_struct *mm, pgd_t *pgd)
275{
276 pgd_dtor(pgd);
277 kmem_cache_free(pgd_cache, pgd);
278}
279
280
281#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
282
283struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
284 int order)
285{
286 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
287 struct page *p;
288 int i;
289
290 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
291 if (p == NULL)
292 return NULL;
293
294 /*
295 * Make every page have a page_count() of one, not just the first.
296 * We don't use __GFP_COMP since it doesn't look like it works
297 * correctly with tlb_remove_page().
298 */
299 for (i = 1; i < order; ++i) {
300 init_page_count(p+i);
301 inc_zone_page_state(p+i, NR_PAGETABLE);
302 }
303
304 pgtable_page_ctor(p);
305 return p;
306}
307
308/*
309 * Free page immediately (used in __pte_alloc if we raced with another
310 * process). We have to correct whatever pte_alloc_one() did before
311 * returning the pages to the allocator.
312 */
313void pgtable_free(struct mm_struct *mm, struct page *p, int order)
314{
315 int i;
316
317 pgtable_page_dtor(p);
318 __free_page(p);
319
320 for (i = 1; i < order; ++i) {
321 __free_page(p+i);
322 dec_zone_page_state(p+i, NR_PAGETABLE);
323 }
324}
325
326void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
327 unsigned long address, int order)
328{
329 int i;
330
331 pgtable_page_dtor(pte);
332 tlb_remove_page(tlb, pte);
333
334 for (i = 1; i < order; ++i) {
335 tlb_remove_page(tlb, pte + i);
336 dec_zone_page_state(pte + i, NR_PAGETABLE);
337 }
338}
339
340#ifndef __tilegx__
341
342/*
343 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
344 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
345 */
346int ptep_test_and_clear_young(struct vm_area_struct *vma,
347 unsigned long addr, pte_t *ptep)
348{
349#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
350# error Code assumes HV_PTE "accessed" bit in second byte
351#endif
352 u8 *tmp = (u8 *)ptep;
353 u8 second_byte = tmp[1];
354 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
355 return 0;
356 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
357 return 1;
358}
359
360/*
361 * This implementation is atomic vs hypervisor writes, since the hypervisor
362 * always writes the low word (where "accessed" and "dirty" are) and this
363 * routine only writes the high word.
364 */
365void ptep_set_wrprotect(struct mm_struct *mm,
366 unsigned long addr, pte_t *ptep)
367{
368#if HV_PTE_INDEX_WRITABLE < 32
369# error Code assumes HV_PTE "writable" bit in high word
370#endif
371 u32 *tmp = (u32 *)ptep;
372 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
373}
374
375#endif
376
377pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
378{
379 pgd_t *pgd;
380 pud_t *pud;
381 pmd_t *pmd;
382
383 if (pgd_addr_invalid(addr))
384 return NULL;
385
386 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
387 pud = pud_offset(pgd, addr);
388 if (!pud_present(*pud))
389 return NULL;
390 pmd = pmd_offset(pud, addr);
391 if (pmd_huge_page(*pmd))
392 return (pte_t *)pmd;
393 if (!pmd_present(*pmd))
394 return NULL;
395 return pte_offset_kernel(pmd, addr);
396}
397
398pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
399{
400 unsigned int width = smp_width;
401 int x = cpu % width;
402 int y = cpu / width;
403 BUG_ON(y >= smp_height);
404 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
405 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
406 BUG_ON(!cpu_is_valid_lotar(cpu));
407 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
408}
409
410int get_remote_cache_cpu(pgprot_t prot)
411{
412 HV_LOTAR lotar = hv_pte_get_lotar(prot);
413 int x = HV_LOTAR_X(lotar);
414 int y = HV_LOTAR_Y(lotar);
415 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
416 return x + y * smp_width;
417}
418
419/*
420 * Convert a kernel VA to a PA and homing information.
421 */
422int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
423{
424 struct page *page = virt_to_page(va);
425 pte_t null_pte = { 0 };
426
427 *cpa = __pa(va);
428
429 /* Note that this is not writing a page table, just returning a pte. */
430 *pte = pte_set_home(null_pte, page_home(page));
431
432 return 0; /* return non-zero if not hfh? */
433}
434EXPORT_SYMBOL(va_to_cpa_and_pte);
435
436void __set_pte(pte_t *ptep, pte_t pte)
437{
438#ifdef __tilegx__
439 *ptep = pte;
440#else
441# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
442# error Must write the present and migrating bits last
443# endif
444 if (pte_present(pte)) {
445 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
446 barrier();
447 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
448 } else {
449 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
450 barrier();
451 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
452 }
453#endif /* __tilegx__ */
454}
455
456void set_pte(pte_t *ptep, pte_t pte)
457{
458 if (pte_present(pte) &&
459 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
460 /* The PTE actually references physical memory. */
461 unsigned long pfn = pte_pfn(pte);
462 if (pfn_valid(pfn)) {
463 /* Update the home of the PTE from the struct page. */
464 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
465 } else if (hv_pte_get_mode(pte) == 0) {
466 /* remap_pfn_range(), etc, must supply PTE mode. */
467 panic("set_pte(): out-of-range PFN and mode 0\n");
468 }
469 }
470
471 __set_pte(ptep, pte);
472}
473
474/* Can this mm load a PTE with cached_priority set? */
475static inline int mm_is_priority_cached(struct mm_struct *mm)
476{
477 return mm->context.priority_cached != 0;
478}
479
480/*
481 * Add a priority mapping to an mm_context and
482 * notify the hypervisor if this is the first one.
483 */
484void start_mm_caching(struct mm_struct *mm)
485{
486 if (!mm_is_priority_cached(mm)) {
487 mm->context.priority_cached = -1UL;
488 hv_set_caching(-1UL);
489 }
490}
491
492/*
493 * Validate and return the priority_cached flag. We know if it's zero
494 * that we don't need to scan, since we immediately set it non-zero
495 * when we first consider a MAP_CACHE_PRIORITY mapping.
496 *
497 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
498 * since we're in an interrupt context (servicing switch_mm) we don't
499 * worry about it and don't unset the "priority_cached" field.
500 * Presumably we'll come back later and have more luck and clear
501 * the value then; for now we'll just keep the cache marked for priority.
502 */
503static unsigned long update_priority_cached(struct mm_struct *mm)
504{
505 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
506 struct vm_area_struct *vm;
507 for (vm = mm->mmap; vm; vm = vm->vm_next) {
508 if (hv_pte_get_cached_priority(vm->vm_page_prot))
509 break;
510 }
511 if (vm == NULL)
512 mm->context.priority_cached = 0;
513 up_write(&mm->mmap_sem);
514 }
515 return mm->context.priority_cached;
516}
517
518/* Set caching correctly for an mm that we are switching to. */
519void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
520{
521 if (!mm_is_priority_cached(next)) {
522 /*
523 * If the new mm doesn't use priority caching, just see if we
524 * need the hv_set_caching(), or can assume it's already zero.
525 */
526 if (mm_is_priority_cached(prev))
527 hv_set_caching(0);
528 } else {
529 hv_set_caching(update_priority_cached(next));
530 }
531}
532
533#if CHIP_HAS_MMIO()
534
535/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
536void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
537 pgprot_t home)
538{
539 void *addr;
540 struct vm_struct *area;
541 unsigned long offset, last_addr;
542 pgprot_t pgprot;
543
544 /* Don't allow wraparound or zero size */
545 last_addr = phys_addr + size - 1;
546 if (!size || last_addr < phys_addr)
547 return NULL;
548
549 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
550 pgprot = PAGE_KERNEL;
551 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
552 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
553
554 /*
555 * Mappings have to be page-aligned
556 */
557 offset = phys_addr & ~PAGE_MASK;
558 phys_addr &= PAGE_MASK;
559 size = PAGE_ALIGN(last_addr+1) - phys_addr;
560
561 /*
562 * Ok, go for it..
563 */
564 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
565 if (!area)
566 return NULL;
567 area->phys_addr = phys_addr;
568 addr = area->addr;
569 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
570 phys_addr, pgprot)) {
571 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
572 return NULL;
573 }
574 return (__force void __iomem *) (offset + (char *)addr);
575}
576EXPORT_SYMBOL(ioremap_prot);
577
578/* Map a PCI MMIO bus address into VA space. */
579void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
580{
581 panic("ioremap for PCI MMIO is not supported");
582}
583EXPORT_SYMBOL(ioremap);
584
585/* Unmap an MMIO VA mapping. */
586void iounmap(volatile void __iomem *addr_in)
587{
588 volatile void __iomem *addr = (volatile void __iomem *)
589 (PAGE_MASK & (unsigned long __force)addr_in);
590#if 1
591 vunmap((void * __force)addr);
592#else
593 /* x86 uses this complicated flow instead of vunmap(). Is
594 * there any particular reason we should do the same? */
595 struct vm_struct *p, *o;
596
597 /* Use the vm area unlocked, assuming the caller
598 ensures there isn't another iounmap for the same address
599 in parallel. Reuse of the virtual address is prevented by
600 leaving it in the global lists until we're done with it.
601 cpa takes care of the direct mappings. */
602 read_lock(&vmlist_lock);
603 for (p = vmlist; p; p = p->next) {
604 if (p->addr == addr)
605 break;
606 }
607 read_unlock(&vmlist_lock);
608
609 if (!p) {
610 pr_err("iounmap: bad address %p\n", addr);
611 dump_stack();
612 return;
613 }
614
615 /* Finally remove it */
616 o = remove_vm_area((void *)addr);
617 BUG_ON(p != o || o == NULL);
618 kfree(p);
619#endif
620}
621EXPORT_SYMBOL(iounmap);
622
623#endif /* CHIP_HAS_MMIO() */
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
30#include <asm/system.h>
31#include <asm/pgtable.h>
32#include <asm/pgalloc.h>
33#include <asm/fixmap.h>
34#include <asm/tlb.h>
35#include <asm/tlbflush.h>
36#include <asm/homecache.h>
37
38#define K(x) ((x) << (PAGE_SHIFT-10))
39
40/*
41 * The normal show_free_areas() is too verbose on Tile, with dozens
42 * of processors and often four NUMA zones each with high and lowmem.
43 */
44void show_mem(unsigned int filter)
45{
46 struct zone *zone;
47
48 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
49 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
50 " pagecache:%lu swap:%lu\n",
51 (global_page_state(NR_ACTIVE_ANON) +
52 global_page_state(NR_ACTIVE_FILE)),
53 (global_page_state(NR_INACTIVE_ANON) +
54 global_page_state(NR_INACTIVE_FILE)),
55 global_page_state(NR_FILE_DIRTY),
56 global_page_state(NR_WRITEBACK),
57 global_page_state(NR_UNSTABLE_NFS),
58 global_page_state(NR_FREE_PAGES),
59 (global_page_state(NR_SLAB_RECLAIMABLE) +
60 global_page_state(NR_SLAB_UNRECLAIMABLE)),
61 global_page_state(NR_FILE_MAPPED),
62 global_page_state(NR_PAGETABLE),
63 global_page_state(NR_BOUNCE),
64 global_page_state(NR_FILE_PAGES),
65 nr_swap_pages);
66
67 for_each_zone(zone) {
68 unsigned long flags, order, total = 0, largest_order = -1;
69
70 if (!populated_zone(zone))
71 continue;
72
73 spin_lock_irqsave(&zone->lock, flags);
74 for (order = 0; order < MAX_ORDER; order++) {
75 int nr = zone->free_area[order].nr_free;
76 total += nr << order;
77 if (nr)
78 largest_order = order;
79 }
80 spin_unlock_irqrestore(&zone->lock, flags);
81 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
82 zone_to_nid(zone), zone->name,
83 K(total), largest_order ? K(1UL) << largest_order : 0);
84 }
85}
86
87/*
88 * Associate a virtual page frame with a given physical page frame
89 * and protection flags for that frame.
90 */
91static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
92{
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *pte;
97
98 pgd = swapper_pg_dir + pgd_index(vaddr);
99 if (pgd_none(*pgd)) {
100 BUG();
101 return;
102 }
103 pud = pud_offset(pgd, vaddr);
104 if (pud_none(*pud)) {
105 BUG();
106 return;
107 }
108 pmd = pmd_offset(pud, vaddr);
109 if (pmd_none(*pmd)) {
110 BUG();
111 return;
112 }
113 pte = pte_offset_kernel(pmd, vaddr);
114 /* <pfn,flags> stored as-is, to permit clearing entries */
115 set_pte(pte, pfn_pte(pfn, flags));
116
117 /*
118 * It's enough to flush this one mapping.
119 * This appears conservative since it is only called
120 * from __set_fixmap.
121 */
122 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
123}
124
125void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
126{
127 unsigned long address = __fix_to_virt(idx);
128
129 if (idx >= __end_of_fixed_addresses) {
130 BUG();
131 return;
132 }
133 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
134}
135
136#if defined(CONFIG_HIGHPTE)
137pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
138{
139 pte_t *pte = kmap_atomic(pmd_page(*dir)) +
140 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
141 return &pte[pte_index(address)];
142}
143#endif
144
145/**
146 * shatter_huge_page() - ensure a given address is mapped by a small page.
147 *
148 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
149 * of small PTEs with the same caching. No cache flush required, but we
150 * must do a global TLB flush.
151 *
152 * Any caller that wishes to modify a kernel mapping that might
153 * have been made with a huge page should call this function,
154 * since doing so properly avoids race conditions with installing the
155 * newly-shattered page and then flushing all the TLB entries.
156 *
157 * @addr: Address at which to shatter any existing huge page.
158 */
159void shatter_huge_page(unsigned long addr)
160{
161 pgd_t *pgd;
162 pud_t *pud;
163 pmd_t *pmd;
164 unsigned long flags = 0; /* happy compiler */
165#ifdef __PAGETABLE_PMD_FOLDED
166 struct list_head *pos;
167#endif
168
169 /* Get a pointer to the pmd entry that we need to change. */
170 addr &= HPAGE_MASK;
171 BUG_ON(pgd_addr_invalid(addr));
172 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
173 pgd = swapper_pg_dir + pgd_index(addr);
174 pud = pud_offset(pgd, addr);
175 BUG_ON(!pud_present(*pud));
176 pmd = pmd_offset(pud, addr);
177 BUG_ON(!pmd_present(*pmd));
178 if (!pmd_huge_page(*pmd))
179 return;
180
181 /*
182 * Grab the pgd_lock, since we may need it to walk the pgd_list,
183 * and since we need some kind of lock here to avoid races.
184 */
185 spin_lock_irqsave(&pgd_lock, flags);
186 if (!pmd_huge_page(*pmd)) {
187 /* Lost the race to convert the huge page. */
188 spin_unlock_irqrestore(&pgd_lock, flags);
189 return;
190 }
191
192 /* Shatter the huge page into the preallocated L2 page table. */
193 pmd_populate_kernel(&init_mm, pmd,
194 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
195
196#ifdef __PAGETABLE_PMD_FOLDED
197 /* Walk every pgd on the system and update the pmd there. */
198 list_for_each(pos, &pgd_list) {
199 pmd_t *copy_pmd;
200 pgd = list_to_pgd(pos) + pgd_index(addr);
201 pud = pud_offset(pgd, addr);
202 copy_pmd = pmd_offset(pud, addr);
203 __set_pmd(copy_pmd, *pmd);
204 }
205#endif
206
207 /* Tell every cpu to notice the change. */
208 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
209 cpu_possible_mask, NULL, 0);
210
211 /* Hold the lock until the TLB flush is finished to avoid races. */
212 spin_unlock_irqrestore(&pgd_lock, flags);
213}
214
215/*
216 * List of all pgd's needed so it can invalidate entries in both cached
217 * and uncached pgd's. This is essentially codepath-based locking
218 * against pageattr.c; it is the unique case in which a valid change
219 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
220 * vmalloc faults work because attached pagetables are never freed.
221 * The locking scheme was chosen on the basis of manfred's
222 * recommendations and having no core impact whatsoever.
223 * -- wli
224 */
225DEFINE_SPINLOCK(pgd_lock);
226LIST_HEAD(pgd_list);
227
228static inline void pgd_list_add(pgd_t *pgd)
229{
230 list_add(pgd_to_list(pgd), &pgd_list);
231}
232
233static inline void pgd_list_del(pgd_t *pgd)
234{
235 list_del(pgd_to_list(pgd));
236}
237
238#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
239#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
240
241static void pgd_ctor(pgd_t *pgd)
242{
243 unsigned long flags;
244
245 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
246 spin_lock_irqsave(&pgd_lock, flags);
247
248#ifndef __tilegx__
249 /*
250 * Check that the user interrupt vector has no L2.
251 * It never should for the swapper, and new page tables
252 * should always start with an empty user interrupt vector.
253 */
254 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
255#endif
256
257 memcpy(pgd + KERNEL_PGD_INDEX_START,
258 swapper_pg_dir + KERNEL_PGD_INDEX_START,
259 KERNEL_PGD_PTRS * sizeof(pgd_t));
260
261 pgd_list_add(pgd);
262 spin_unlock_irqrestore(&pgd_lock, flags);
263}
264
265static void pgd_dtor(pgd_t *pgd)
266{
267 unsigned long flags; /* can be called from interrupt context */
268
269 spin_lock_irqsave(&pgd_lock, flags);
270 pgd_list_del(pgd);
271 spin_unlock_irqrestore(&pgd_lock, flags);
272}
273
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
277 if (pgd)
278 pgd_ctor(pgd);
279 return pgd;
280}
281
282void pgd_free(struct mm_struct *mm, pgd_t *pgd)
283{
284 pgd_dtor(pgd);
285 kmem_cache_free(pgd_cache, pgd);
286}
287
288
289#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
290
291struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
292{
293 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
294 struct page *p;
295#if L2_USER_PGTABLE_ORDER > 0
296 int i;
297#endif
298
299#ifdef CONFIG_HIGHPTE
300 flags |= __GFP_HIGHMEM;
301#endif
302
303 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
304 if (p == NULL)
305 return NULL;
306
307#if L2_USER_PGTABLE_ORDER > 0
308 /*
309 * Make every page have a page_count() of one, not just the first.
310 * We don't use __GFP_COMP since it doesn't look like it works
311 * correctly with tlb_remove_page().
312 */
313 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
314 init_page_count(p+i);
315 inc_zone_page_state(p+i, NR_PAGETABLE);
316 }
317#endif
318
319 pgtable_page_ctor(p);
320 return p;
321}
322
323/*
324 * Free page immediately (used in __pte_alloc if we raced with another
325 * process). We have to correct whatever pte_alloc_one() did before
326 * returning the pages to the allocator.
327 */
328void pte_free(struct mm_struct *mm, struct page *p)
329{
330 int i;
331
332 pgtable_page_dtor(p);
333 __free_page(p);
334
335 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
336 __free_page(p+i);
337 dec_zone_page_state(p+i, NR_PAGETABLE);
338 }
339}
340
341void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
342 unsigned long address)
343{
344 int i;
345
346 pgtable_page_dtor(pte);
347 tlb_remove_page(tlb, pte);
348
349 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
350 tlb_remove_page(tlb, pte + i);
351 dec_zone_page_state(pte + i, NR_PAGETABLE);
352 }
353}
354
355#ifndef __tilegx__
356
357/*
358 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
359 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
360 */
361int ptep_test_and_clear_young(struct vm_area_struct *vma,
362 unsigned long addr, pte_t *ptep)
363{
364#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
365# error Code assumes HV_PTE "accessed" bit in second byte
366#endif
367 u8 *tmp = (u8 *)ptep;
368 u8 second_byte = tmp[1];
369 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
370 return 0;
371 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
372 return 1;
373}
374
375/*
376 * This implementation is atomic vs hypervisor writes, since the hypervisor
377 * always writes the low word (where "accessed" and "dirty" are) and this
378 * routine only writes the high word.
379 */
380void ptep_set_wrprotect(struct mm_struct *mm,
381 unsigned long addr, pte_t *ptep)
382{
383#if HV_PTE_INDEX_WRITABLE < 32
384# error Code assumes HV_PTE "writable" bit in high word
385#endif
386 u32 *tmp = (u32 *)ptep;
387 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
388}
389
390#endif
391
392pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
393{
394 pgd_t *pgd;
395 pud_t *pud;
396 pmd_t *pmd;
397
398 if (pgd_addr_invalid(addr))
399 return NULL;
400
401 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
402 pud = pud_offset(pgd, addr);
403 if (!pud_present(*pud))
404 return NULL;
405 pmd = pmd_offset(pud, addr);
406 if (pmd_huge_page(*pmd))
407 return (pte_t *)pmd;
408 if (!pmd_present(*pmd))
409 return NULL;
410 return pte_offset_kernel(pmd, addr);
411}
412
413pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
414{
415 unsigned int width = smp_width;
416 int x = cpu % width;
417 int y = cpu / width;
418 BUG_ON(y >= smp_height);
419 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
420 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
421 BUG_ON(!cpu_is_valid_lotar(cpu));
422 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
423}
424
425int get_remote_cache_cpu(pgprot_t prot)
426{
427 HV_LOTAR lotar = hv_pte_get_lotar(prot);
428 int x = HV_LOTAR_X(lotar);
429 int y = HV_LOTAR_Y(lotar);
430 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
431 return x + y * smp_width;
432}
433
434/*
435 * Convert a kernel VA to a PA and homing information.
436 */
437int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
438{
439 struct page *page = virt_to_page(va);
440 pte_t null_pte = { 0 };
441
442 *cpa = __pa(va);
443
444 /* Note that this is not writing a page table, just returning a pte. */
445 *pte = pte_set_home(null_pte, page_home(page));
446
447 return 0; /* return non-zero if not hfh? */
448}
449EXPORT_SYMBOL(va_to_cpa_and_pte);
450
451void __set_pte(pte_t *ptep, pte_t pte)
452{
453#ifdef __tilegx__
454 *ptep = pte;
455#else
456# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
457# error Must write the present and migrating bits last
458# endif
459 if (pte_present(pte)) {
460 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
461 barrier();
462 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
463 } else {
464 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
465 barrier();
466 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
467 }
468#endif /* __tilegx__ */
469}
470
471void set_pte(pte_t *ptep, pte_t pte)
472{
473 struct page *page = pfn_to_page(pte_pfn(pte));
474
475 /* Update the home of a PTE if necessary */
476 pte = pte_set_home(pte, page_home(page));
477
478 __set_pte(ptep, pte);
479}
480
481/* Can this mm load a PTE with cached_priority set? */
482static inline int mm_is_priority_cached(struct mm_struct *mm)
483{
484 return mm->context.priority_cached;
485}
486
487/*
488 * Add a priority mapping to an mm_context and
489 * notify the hypervisor if this is the first one.
490 */
491void start_mm_caching(struct mm_struct *mm)
492{
493 if (!mm_is_priority_cached(mm)) {
494 mm->context.priority_cached = -1U;
495 hv_set_caching(-1U);
496 }
497}
498
499/*
500 * Validate and return the priority_cached flag. We know if it's zero
501 * that we don't need to scan, since we immediately set it non-zero
502 * when we first consider a MAP_CACHE_PRIORITY mapping.
503 *
504 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
505 * since we're in an interrupt context (servicing switch_mm) we don't
506 * worry about it and don't unset the "priority_cached" field.
507 * Presumably we'll come back later and have more luck and clear
508 * the value then; for now we'll just keep the cache marked for priority.
509 */
510static unsigned int update_priority_cached(struct mm_struct *mm)
511{
512 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
513 struct vm_area_struct *vm;
514 for (vm = mm->mmap; vm; vm = vm->vm_next) {
515 if (hv_pte_get_cached_priority(vm->vm_page_prot))
516 break;
517 }
518 if (vm == NULL)
519 mm->context.priority_cached = 0;
520 up_write(&mm->mmap_sem);
521 }
522 return mm->context.priority_cached;
523}
524
525/* Set caching correctly for an mm that we are switching to. */
526void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
527{
528 if (!mm_is_priority_cached(next)) {
529 /*
530 * If the new mm doesn't use priority caching, just see if we
531 * need the hv_set_caching(), or can assume it's already zero.
532 */
533 if (mm_is_priority_cached(prev))
534 hv_set_caching(0);
535 } else {
536 hv_set_caching(update_priority_cached(next));
537 }
538}
539
540#if CHIP_HAS_MMIO()
541
542/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
543void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
544 pgprot_t home)
545{
546 void *addr;
547 struct vm_struct *area;
548 unsigned long offset, last_addr;
549 pgprot_t pgprot;
550
551 /* Don't allow wraparound or zero size */
552 last_addr = phys_addr + size - 1;
553 if (!size || last_addr < phys_addr)
554 return NULL;
555
556 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
557 pgprot = PAGE_KERNEL;
558 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
559 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
560
561 /*
562 * Mappings have to be page-aligned
563 */
564 offset = phys_addr & ~PAGE_MASK;
565 phys_addr &= PAGE_MASK;
566 size = PAGE_ALIGN(last_addr+1) - phys_addr;
567
568 /*
569 * Ok, go for it..
570 */
571 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
572 if (!area)
573 return NULL;
574 area->phys_addr = phys_addr;
575 addr = area->addr;
576 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
577 phys_addr, pgprot)) {
578 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
579 return NULL;
580 }
581 return (__force void __iomem *) (offset + (char *)addr);
582}
583EXPORT_SYMBOL(ioremap_prot);
584
585/* Map a PCI MMIO bus address into VA space. */
586void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
587{
588 panic("ioremap for PCI MMIO is not supported");
589}
590EXPORT_SYMBOL(ioremap);
591
592/* Unmap an MMIO VA mapping. */
593void iounmap(volatile void __iomem *addr_in)
594{
595 volatile void __iomem *addr = (volatile void __iomem *)
596 (PAGE_MASK & (unsigned long __force)addr_in);
597#if 1
598 vunmap((void * __force)addr);
599#else
600 /* x86 uses this complicated flow instead of vunmap(). Is
601 * there any particular reason we should do the same? */
602 struct vm_struct *p, *o;
603
604 /* Use the vm area unlocked, assuming the caller
605 ensures there isn't another iounmap for the same address
606 in parallel. Reuse of the virtual address is prevented by
607 leaving it in the global lists until we're done with it.
608 cpa takes care of the direct mappings. */
609 read_lock(&vmlist_lock);
610 for (p = vmlist; p; p = p->next) {
611 if (p->addr == addr)
612 break;
613 }
614 read_unlock(&vmlist_lock);
615
616 if (!p) {
617 pr_err("iounmap: bad address %p\n", addr);
618 dump_stack();
619 return;
620 }
621
622 /* Finally remove it */
623 o = remove_vm_area((void *)addr);
624 BUG_ON(p != o || o == NULL);
625 kfree(p);
626#endif
627}
628EXPORT_SYMBOL(iounmap);
629
630#endif /* CHIP_HAS_MMIO() */