Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 16#include <linux/export.h>
 17
 18#include <asm/cacheflush.h>
 19#include <asm/cpudata.h>
 20#include <asm/pcic.h>
 21#include <asm/leon.h>
 22
 23#include "kernel.h"
 24#include "irq.h"
 25
 
 
 
 
 
 
 
 
 26/* platform specific irq setup */
 27struct sparc_config sparc_config;
 28
 29unsigned long arch_local_irq_save(void)
 30{
 31	unsigned long retval;
 32	unsigned long tmp;
 33
 34	__asm__ __volatile__(
 35		"rd	%%psr, %0\n\t"
 
 36		"or	%0, %2, %1\n\t"
 37		"wr	%1, 0, %%psr\n\t"
 38		"nop; nop; nop\n"
 39		: "=&r" (retval), "=r" (tmp)
 40		: "i" (PSR_PIL)
 41		: "memory");
 42
 43	return retval;
 44}
 45EXPORT_SYMBOL(arch_local_irq_save);
 46
 47void arch_local_irq_enable(void)
 48{
 49	unsigned long tmp;
 50
 51	__asm__ __volatile__(
 52		"rd	%%psr, %0\n\t"
 
 53		"andn	%0, %1, %0\n\t"
 54		"wr	%0, 0, %%psr\n\t"
 55		"nop; nop; nop\n"
 56		: "=&r" (tmp)
 57		: "i" (PSR_PIL)
 58		: "memory");
 59}
 60EXPORT_SYMBOL(arch_local_irq_enable);
 61
 62void arch_local_irq_restore(unsigned long old_psr)
 63{
 64	unsigned long tmp;
 65
 66	__asm__ __volatile__(
 67		"rd	%%psr, %0\n\t"
 68		"and	%2, %1, %2\n\t"
 
 69		"andn	%0, %1, %0\n\t"
 70		"wr	%0, %2, %%psr\n\t"
 71		"nop; nop; nop\n"
 72		: "=&r" (tmp)
 73		: "i" (PSR_PIL), "r" (old_psr)
 74		: "memory");
 75}
 76EXPORT_SYMBOL(arch_local_irq_restore);
 77
 78/*
 79 * Dave Redman (djhr@tadpole.co.uk)
 80 *
 81 * IRQ numbers.. These are no longer restricted to 15..
 82 *
 83 * this is done to enable SBUS cards and onboard IO to be masked
 84 * correctly. using the interrupt level isn't good enough.
 85 *
 86 * For example:
 87 *   A device interrupting at sbus level6 and the Floppy both come in
 88 *   at IRQ11, but enabling and disabling them requires writing to
 89 *   different bits in the SLAVIO/SEC.
 90 *
 91 * As a result of these changes sun4m machines could now support
 92 * directed CPU interrupts using the existing enable/disable irq code
 93 * with tweaks.
 94 *
 95 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 96 * 32-bit values in that case.  Since this is similar to sparc64,
 97 * we adopt a virtual IRQ numbering scheme as is done there.
 98 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
 99 * just becomes a limit of how many interrupt sources we can handle in
100 * a single system.  Even fully loaded SS2000 machines top off at
101 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
102 * is more than enough.
103  *
104 * We keep a map of per-PIL enable interrupts.  These get wired
105 * up via the irq_chip->startup() method which gets invoked by
106 * the generic IRQ layer during request_irq().
107 */
108
109
110/* Table of allocated irqs. Unused entries has irq == 0 */
111static struct irq_bucket irq_table[NR_IRQS];
112/* Protect access to irq_table */
113static DEFINE_SPINLOCK(irq_table_lock);
114
115/* Map between the irq identifier used in hw to the irq_bucket. */
116struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
117/* Protect access to irq_map */
118static DEFINE_SPINLOCK(irq_map_lock);
119
120/* Allocate a new irq from the irq_table */
121unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
122{
123	unsigned long flags;
124	unsigned int i;
125
126	spin_lock_irqsave(&irq_table_lock, flags);
127	for (i = 1; i < NR_IRQS; i++) {
128		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
129			goto found;
130	}
131
132	for (i = 1; i < NR_IRQS; i++) {
133		if (!irq_table[i].irq)
134			break;
135	}
136
137	if (i < NR_IRQS) {
138		irq_table[i].real_irq = real_irq;
139		irq_table[i].irq = i;
140		irq_table[i].pil = pil;
141	} else {
142		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
143		i = 0;
144	}
145found:
146	spin_unlock_irqrestore(&irq_table_lock, flags);
147
148	return i;
149}
150
151/* Based on a single pil handler_irq may need to call several
152 * interrupt handlers. Use irq_map as entry to irq_table,
153 * and let each entry in irq_table point to the next entry.
154 */
155void irq_link(unsigned int irq)
156{
157	struct irq_bucket *p;
158	unsigned long flags;
159	unsigned int pil;
160
161	BUG_ON(irq >= NR_IRQS);
162
163	spin_lock_irqsave(&irq_map_lock, flags);
164
165	p = &irq_table[irq];
166	pil = p->pil;
167	BUG_ON(pil > SUN4D_MAX_IRQ);
168	p->next = irq_map[pil];
169	irq_map[pil] = p;
170
171	spin_unlock_irqrestore(&irq_map_lock, flags);
172}
173
174void irq_unlink(unsigned int irq)
175{
176	struct irq_bucket *p, **pnext;
177	unsigned long flags;
178
179	BUG_ON(irq >= NR_IRQS);
180
181	spin_lock_irqsave(&irq_map_lock, flags);
182
183	p = &irq_table[irq];
184	BUG_ON(p->pil > SUN4D_MAX_IRQ);
185	pnext = &irq_map[p->pil];
186	while (*pnext != p)
187		pnext = &(*pnext)->next;
188	*pnext = p->next;
189
190	spin_unlock_irqrestore(&irq_map_lock, flags);
191}
192
193
194/* /proc/interrupts printing */
195int arch_show_interrupts(struct seq_file *p, int prec)
196{
197	int j;
198
199#ifdef CONFIG_SMP
200	seq_printf(p, "RES: ");
201	for_each_online_cpu(j)
202		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
203	seq_printf(p, "     IPI rescheduling interrupts\n");
204	seq_printf(p, "CAL: ");
205	for_each_online_cpu(j)
206		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
207	seq_printf(p, "     IPI function call interrupts\n");
208#endif
209	seq_printf(p, "NMI: ");
210	for_each_online_cpu(j)
211		seq_printf(p, "%10u ", cpu_data(j).counter);
212	seq_printf(p, "     Non-maskable interrupts\n");
213	return 0;
214}
215
216void handler_irq(unsigned int pil, struct pt_regs *regs)
217{
218	struct pt_regs *old_regs;
219	struct irq_bucket *p;
220
221	BUG_ON(pil > 15);
222	old_regs = set_irq_regs(regs);
223	irq_enter();
224
225	p = irq_map[pil];
226	while (p) {
227		struct irq_bucket *next = p->next;
228
229		generic_handle_irq(p->irq);
230		p = next;
231	}
232	irq_exit();
233	set_irq_regs(old_regs);
234}
235
236#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
237static unsigned int floppy_irq;
238
239int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
240{
241	unsigned int cpu_irq;
242	int err;
243
 
 
 
244
245	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
246	if (err)
247		return -1;
248
249	/* Save for later use in floppy interrupt handler */
250	floppy_irq = irq;
251
252	cpu_irq = (irq & (NR_IRQS - 1));
253
254	/* Dork with trap table if we get this far. */
255#define INSTANTIATE(table) \
256	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
257	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
258		SPARC_BRANCH((unsigned long) floppy_hardint, \
259			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
260	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
261	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
262
263	INSTANTIATE(sparc_ttable)
264
265#if defined CONFIG_SMP
266	if (sparc_cpu_model != sparc_leon) {
267		struct tt_entry *trap_table;
268
269		trap_table = &trapbase_cpu1;
270		INSTANTIATE(trap_table)
271		trap_table = &trapbase_cpu2;
272		INSTANTIATE(trap_table)
273		trap_table = &trapbase_cpu3;
274		INSTANTIATE(trap_table)
275	}
276#endif
277#undef INSTANTIATE
278	/*
279	 * XXX Correct thing whould be to flush only I- and D-cache lines
280	 * which contain the handler in question. But as of time of the
281	 * writing we have no CPU-neutral interface to fine-grained flushes.
282	 */
283	flush_cache_all();
284	return 0;
285}
286EXPORT_SYMBOL(sparc_floppy_request_irq);
287
288/*
289 * These variables are used to access state from the assembler
290 * interrupt handler, floppy_hardint, so we cannot put these in
291 * the floppy driver image because that would not work in the
292 * modular case.
293 */
294volatile unsigned char *fdc_status;
295EXPORT_SYMBOL(fdc_status);
296
297char *pdma_vaddr;
298EXPORT_SYMBOL(pdma_vaddr);
299
300unsigned long pdma_size;
301EXPORT_SYMBOL(pdma_size);
302
303volatile int doing_pdma;
304EXPORT_SYMBOL(doing_pdma);
305
306char *pdma_base;
307EXPORT_SYMBOL(pdma_base);
308
309unsigned long pdma_areasize;
310EXPORT_SYMBOL(pdma_areasize);
311
312/* Use the generic irq support to call floppy_interrupt
313 * which was setup using request_irq() in sparc_floppy_request_irq().
314 * We only have one floppy interrupt so we do not need to check
315 * for additional handlers being wired up by irq_link()
316 */
317void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
318{
319	struct pt_regs *old_regs;
320
321	old_regs = set_irq_regs(regs);
322	irq_enter();
323	generic_handle_irq(floppy_irq);
324	irq_exit();
325	set_irq_regs(old_regs);
326}
327#endif
328
329/* djhr
330 * This could probably be made indirect too and assigned in the CPU
331 * bits of the code. That would be much nicer I think and would also
332 * fit in with the idea of being able to tune your kernel for your machine
333 * by removing unrequired machine and device support.
334 *
335 */
336
337void __init init_IRQ(void)
338{
339	switch (sparc_cpu_model) {
 
 
 
 
 
340	case sun4m:
341		pcic_probe();
342		if (pcic_present())
343			sun4m_pci_init_IRQ();
344		else
345			sun4m_init_IRQ();
346		break;
347
348	case sun4d:
349		sun4d_init_IRQ();
350		break;
351
352	case sparc_leon:
353		leon_init_IRQ();
354		break;
355
356	default:
357		prom_printf("Cannot initialize IRQs on this Sun machine...");
358		break;
359	}
 
360}
361
v3.1
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 
 16
 17#include <asm/cacheflush.h>
 18#include <asm/cpudata.h>
 19#include <asm/pcic.h>
 20#include <asm/leon.h>
 21
 22#include "kernel.h"
 23#include "irq.h"
 24
 25#ifdef CONFIG_SMP
 26#define SMP_NOP2 "nop; nop;\n\t"
 27#define SMP_NOP3 "nop; nop; nop;\n\t"
 28#else
 29#define SMP_NOP2
 30#define SMP_NOP3
 31#endif /* SMP */
 32
 33/* platform specific irq setup */
 34struct sparc_irq_config sparc_irq_config;
 35
 36unsigned long arch_local_irq_save(void)
 37{
 38	unsigned long retval;
 39	unsigned long tmp;
 40
 41	__asm__ __volatile__(
 42		"rd	%%psr, %0\n\t"
 43		SMP_NOP3	/* Sun4m + Cypress + SMP bug */
 44		"or	%0, %2, %1\n\t"
 45		"wr	%1, 0, %%psr\n\t"
 46		"nop; nop; nop\n"
 47		: "=&r" (retval), "=r" (tmp)
 48		: "i" (PSR_PIL)
 49		: "memory");
 50
 51	return retval;
 52}
 53EXPORT_SYMBOL(arch_local_irq_save);
 54
 55void arch_local_irq_enable(void)
 56{
 57	unsigned long tmp;
 58
 59	__asm__ __volatile__(
 60		"rd	%%psr, %0\n\t"
 61		SMP_NOP3	/* Sun4m + Cypress + SMP bug */
 62		"andn	%0, %1, %0\n\t"
 63		"wr	%0, 0, %%psr\n\t"
 64		"nop; nop; nop\n"
 65		: "=&r" (tmp)
 66		: "i" (PSR_PIL)
 67		: "memory");
 68}
 69EXPORT_SYMBOL(arch_local_irq_enable);
 70
 71void arch_local_irq_restore(unsigned long old_psr)
 72{
 73	unsigned long tmp;
 74
 75	__asm__ __volatile__(
 76		"rd	%%psr, %0\n\t"
 77		"and	%2, %1, %2\n\t"
 78		SMP_NOP2	/* Sun4m + Cypress + SMP bug */
 79		"andn	%0, %1, %0\n\t"
 80		"wr	%0, %2, %%psr\n\t"
 81		"nop; nop; nop\n"
 82		: "=&r" (tmp)
 83		: "i" (PSR_PIL), "r" (old_psr)
 84		: "memory");
 85}
 86EXPORT_SYMBOL(arch_local_irq_restore);
 87
 88/*
 89 * Dave Redman (djhr@tadpole.co.uk)
 90 *
 91 * IRQ numbers.. These are no longer restricted to 15..
 92 *
 93 * this is done to enable SBUS cards and onboard IO to be masked
 94 * correctly. using the interrupt level isn't good enough.
 95 *
 96 * For example:
 97 *   A device interrupting at sbus level6 and the Floppy both come in
 98 *   at IRQ11, but enabling and disabling them requires writing to
 99 *   different bits in the SLAVIO/SEC.
100 *
101 * As a result of these changes sun4m machines could now support
102 * directed CPU interrupts using the existing enable/disable irq code
103 * with tweaks.
104 *
105 * Sun4d complicates things even further.  IRQ numbers are arbitrary
106 * 32-bit values in that case.  Since this is similar to sparc64,
107 * we adopt a virtual IRQ numbering scheme as is done there.
108 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
109 * just becomes a limit of how many interrupt sources we can handle in
110 * a single system.  Even fully loaded SS2000 machines top off at
111 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
112 * is more than enough.
113  *
114 * We keep a map of per-PIL enable interrupts.  These get wired
115 * up via the irq_chip->startup() method which gets invoked by
116 * the generic IRQ layer during request_irq().
117 */
118
119
120/* Table of allocated irqs. Unused entries has irq == 0 */
121static struct irq_bucket irq_table[NR_IRQS];
122/* Protect access to irq_table */
123static DEFINE_SPINLOCK(irq_table_lock);
124
125/* Map between the irq identifier used in hw to the irq_bucket. */
126struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
127/* Protect access to irq_map */
128static DEFINE_SPINLOCK(irq_map_lock);
129
130/* Allocate a new irq from the irq_table */
131unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
132{
133	unsigned long flags;
134	unsigned int i;
135
136	spin_lock_irqsave(&irq_table_lock, flags);
137	for (i = 1; i < NR_IRQS; i++) {
138		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
139			goto found;
140	}
141
142	for (i = 1; i < NR_IRQS; i++) {
143		if (!irq_table[i].irq)
144			break;
145	}
146
147	if (i < NR_IRQS) {
148		irq_table[i].real_irq = real_irq;
149		irq_table[i].irq = i;
150		irq_table[i].pil = pil;
151	} else {
152		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
153		i = 0;
154	}
155found:
156	spin_unlock_irqrestore(&irq_table_lock, flags);
157
158	return i;
159}
160
161/* Based on a single pil handler_irq may need to call several
162 * interrupt handlers. Use irq_map as entry to irq_table,
163 * and let each entry in irq_table point to the next entry.
164 */
165void irq_link(unsigned int irq)
166{
167	struct irq_bucket *p;
168	unsigned long flags;
169	unsigned int pil;
170
171	BUG_ON(irq >= NR_IRQS);
172
173	spin_lock_irqsave(&irq_map_lock, flags);
174
175	p = &irq_table[irq];
176	pil = p->pil;
177	BUG_ON(pil > SUN4D_MAX_IRQ);
178	p->next = irq_map[pil];
179	irq_map[pil] = p;
180
181	spin_unlock_irqrestore(&irq_map_lock, flags);
182}
183
184void irq_unlink(unsigned int irq)
185{
186	struct irq_bucket *p, **pnext;
187	unsigned long flags;
188
189	BUG_ON(irq >= NR_IRQS);
190
191	spin_lock_irqsave(&irq_map_lock, flags);
192
193	p = &irq_table[irq];
194	BUG_ON(p->pil > SUN4D_MAX_IRQ);
195	pnext = &irq_map[p->pil];
196	while (*pnext != p)
197		pnext = &(*pnext)->next;
198	*pnext = p->next;
199
200	spin_unlock_irqrestore(&irq_map_lock, flags);
201}
202
203
204/* /proc/interrupts printing */
205int arch_show_interrupts(struct seq_file *p, int prec)
206{
207	int j;
208
209#ifdef CONFIG_SMP
210	seq_printf(p, "RES: ");
211	for_each_online_cpu(j)
212		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
213	seq_printf(p, "     IPI rescheduling interrupts\n");
214	seq_printf(p, "CAL: ");
215	for_each_online_cpu(j)
216		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
217	seq_printf(p, "     IPI function call interrupts\n");
218#endif
219	seq_printf(p, "NMI: ");
220	for_each_online_cpu(j)
221		seq_printf(p, "%10u ", cpu_data(j).counter);
222	seq_printf(p, "     Non-maskable interrupts\n");
223	return 0;
224}
225
226void handler_irq(unsigned int pil, struct pt_regs *regs)
227{
228	struct pt_regs *old_regs;
229	struct irq_bucket *p;
230
231	BUG_ON(pil > 15);
232	old_regs = set_irq_regs(regs);
233	irq_enter();
234
235	p = irq_map[pil];
236	while (p) {
237		struct irq_bucket *next = p->next;
238
239		generic_handle_irq(p->irq);
240		p = next;
241	}
242	irq_exit();
243	set_irq_regs(old_regs);
244}
245
246#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
247static unsigned int floppy_irq;
248
249int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
250{
251	unsigned int cpu_irq;
252	int err;
253
254#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
255	struct tt_entry *trap_table;
256#endif
257
258	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
259	if (err)
260		return -1;
261
262	/* Save for later use in floppy interrupt handler */
263	floppy_irq = irq;
264
265	cpu_irq = (irq & (NR_IRQS - 1));
266
267	/* Dork with trap table if we get this far. */
268#define INSTANTIATE(table) \
269	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
270	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
271		SPARC_BRANCH((unsigned long) floppy_hardint, \
272			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
273	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
274	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
275
276	INSTANTIATE(sparc_ttable)
277#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
278	trap_table = &trapbase_cpu1;
279	INSTANTIATE(trap_table)
280	trap_table = &trapbase_cpu2;
281	INSTANTIATE(trap_table)
282	trap_table = &trapbase_cpu3;
283	INSTANTIATE(trap_table)
 
 
 
 
 
284#endif
285#undef INSTANTIATE
286	/*
287	 * XXX Correct thing whould be to flush only I- and D-cache lines
288	 * which contain the handler in question. But as of time of the
289	 * writing we have no CPU-neutral interface to fine-grained flushes.
290	 */
291	flush_cache_all();
292	return 0;
293}
294EXPORT_SYMBOL(sparc_floppy_request_irq);
295
296/*
297 * These variables are used to access state from the assembler
298 * interrupt handler, floppy_hardint, so we cannot put these in
299 * the floppy driver image because that would not work in the
300 * modular case.
301 */
302volatile unsigned char *fdc_status;
303EXPORT_SYMBOL(fdc_status);
304
305char *pdma_vaddr;
306EXPORT_SYMBOL(pdma_vaddr);
307
308unsigned long pdma_size;
309EXPORT_SYMBOL(pdma_size);
310
311volatile int doing_pdma;
312EXPORT_SYMBOL(doing_pdma);
313
314char *pdma_base;
315EXPORT_SYMBOL(pdma_base);
316
317unsigned long pdma_areasize;
318EXPORT_SYMBOL(pdma_areasize);
319
320/* Use the generic irq support to call floppy_interrupt
321 * which was setup using request_irq() in sparc_floppy_request_irq().
322 * We only have one floppy interrupt so we do not need to check
323 * for additional handlers being wired up by irq_link()
324 */
325void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
326{
327	struct pt_regs *old_regs;
328
329	old_regs = set_irq_regs(regs);
330	irq_enter();
331	generic_handle_irq(floppy_irq);
332	irq_exit();
333	set_irq_regs(old_regs);
334}
335#endif
336
337/* djhr
338 * This could probably be made indirect too and assigned in the CPU
339 * bits of the code. That would be much nicer I think and would also
340 * fit in with the idea of being able to tune your kernel for your machine
341 * by removing unrequired machine and device support.
342 *
343 */
344
345void __init init_IRQ(void)
346{
347	switch (sparc_cpu_model) {
348	case sun4c:
349	case sun4:
350		sun4c_init_IRQ();
351		break;
352
353	case sun4m:
354		pcic_probe();
355		if (pcic_present())
356			sun4m_pci_init_IRQ();
357		else
358			sun4m_init_IRQ();
359		break;
360
361	case sun4d:
362		sun4d_init_IRQ();
363		break;
364
365	case sparc_leon:
366		leon_init_IRQ();
367		break;
368
369	default:
370		prom_printf("Cannot initialize IRQs on this Sun machine...");
371		break;
372	}
373	btfixup();
374}
375