Loading...
1/*
2 * This file handles the architecture dependent parts of process handling.
3 *
4 * Copyright IBM Corp. 1999,2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
7 * Denis Joseph Barrow,
8 */
9
10#include <linux/compiler.h>
11#include <linux/cpu.h>
12#include <linux/sched.h>
13#include <linux/kernel.h>
14#include <linux/mm.h>
15#include <linux/elfcore.h>
16#include <linux/smp.h>
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/tick.h>
20#include <linux/personality.h>
21#include <linux/syscalls.h>
22#include <linux/compat.h>
23#include <linux/kprobes.h>
24#include <linux/random.h>
25#include <linux/module.h>
26#include <asm/io.h>
27#include <asm/processor.h>
28#include <asm/irq.h>
29#include <asm/timer.h>
30#include <asm/nmi.h>
31#include <asm/smp.h>
32#include <asm/switch_to.h>
33#include "entry.h"
34
35asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
36
37/*
38 * Return saved PC of a blocked thread. used in kernel/sched.
39 * resume in entry.S does not create a new stack frame, it
40 * just stores the registers %r6-%r15 to the frame given by
41 * schedule. We want to return the address of the caller of
42 * schedule, so we have to walk the backchain one time to
43 * find the frame schedule() store its return address.
44 */
45unsigned long thread_saved_pc(struct task_struct *tsk)
46{
47 struct stack_frame *sf, *low, *high;
48
49 if (!tsk || !task_stack_page(tsk))
50 return 0;
51 low = task_stack_page(tsk);
52 high = (struct stack_frame *) task_pt_regs(tsk);
53 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
54 if (sf <= low || sf > high)
55 return 0;
56 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
57 if (sf <= low || sf > high)
58 return 0;
59 return sf->gprs[8];
60}
61
62/*
63 * The idle loop on a S390...
64 */
65static void default_idle(void)
66{
67 if (cpu_is_offline(smp_processor_id()))
68 cpu_die();
69 local_irq_disable();
70 if (need_resched()) {
71 local_irq_enable();
72 return;
73 }
74 local_mcck_disable();
75 if (test_thread_flag(TIF_MCCK_PENDING)) {
76 local_mcck_enable();
77 local_irq_enable();
78 return;
79 }
80 /* Halt the cpu and keep track of cpu time accounting. */
81 vtime_stop_cpu();
82}
83
84void cpu_idle(void)
85{
86 for (;;) {
87 tick_nohz_idle_enter();
88 rcu_idle_enter();
89 while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
90 default_idle();
91 rcu_idle_exit();
92 tick_nohz_idle_exit();
93 if (test_thread_flag(TIF_MCCK_PENDING))
94 s390_handle_mcck();
95 schedule_preempt_disabled();
96 }
97}
98
99extern void __kprobes kernel_thread_starter(void);
100
101asm(
102 ".section .kprobes.text, \"ax\"\n"
103 ".global kernel_thread_starter\n"
104 "kernel_thread_starter:\n"
105 " la 2,0(10)\n"
106 " basr 14,9\n"
107 " la 2,0\n"
108 " br 11\n"
109 ".previous\n");
110
111int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
112{
113 struct pt_regs regs;
114
115 memset(®s, 0, sizeof(regs));
116 regs.psw.mask = psw_kernel_bits |
117 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
118 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
119 regs.gprs[9] = (unsigned long) fn;
120 regs.gprs[10] = (unsigned long) arg;
121 regs.gprs[11] = (unsigned long) do_exit;
122 regs.orig_gpr2 = -1;
123
124 /* Ok, create the new process.. */
125 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
126 0, ®s, 0, NULL, NULL);
127}
128EXPORT_SYMBOL(kernel_thread);
129
130/*
131 * Free current thread data structures etc..
132 */
133void exit_thread(void)
134{
135}
136
137void flush_thread(void)
138{
139}
140
141void release_thread(struct task_struct *dead_task)
142{
143}
144
145int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
146 unsigned long unused,
147 struct task_struct *p, struct pt_regs *regs)
148{
149 struct thread_info *ti;
150 struct fake_frame
151 {
152 struct stack_frame sf;
153 struct pt_regs childregs;
154 } *frame;
155
156 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
157 p->thread.ksp = (unsigned long) frame;
158 /* Store access registers to kernel stack of new process. */
159 frame->childregs = *regs;
160 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
161 frame->childregs.gprs[15] = new_stackp;
162 frame->sf.back_chain = 0;
163
164 /* new return point is ret_from_fork */
165 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
166
167 /* fake return stack for resume(), don't go back to schedule */
168 frame->sf.gprs[9] = (unsigned long) frame;
169
170 /* Save access registers to new thread structure. */
171 save_access_regs(&p->thread.acrs[0]);
172
173#ifndef CONFIG_64BIT
174 /*
175 * save fprs to current->thread.fp_regs to merge them with
176 * the emulated registers and then copy the result to the child.
177 */
178 save_fp_regs(¤t->thread.fp_regs);
179 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
180 sizeof(s390_fp_regs));
181 /* Set a new TLS ? */
182 if (clone_flags & CLONE_SETTLS)
183 p->thread.acrs[0] = regs->gprs[6];
184#else /* CONFIG_64BIT */
185 /* Save the fpu registers to new thread structure. */
186 save_fp_regs(&p->thread.fp_regs);
187 /* Set a new TLS ? */
188 if (clone_flags & CLONE_SETTLS) {
189 if (is_compat_task()) {
190 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
191 } else {
192 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
193 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
194 }
195 }
196#endif /* CONFIG_64BIT */
197 /* start new process with ar4 pointing to the correct address space */
198 p->thread.mm_segment = get_fs();
199 /* Don't copy debug registers */
200 memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
201 memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
202 clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
203 clear_tsk_thread_flag(p, TIF_PER_TRAP);
204 /* Initialize per thread user and system timer values */
205 ti = task_thread_info(p);
206 ti->user_timer = 0;
207 ti->system_timer = 0;
208 return 0;
209}
210
211SYSCALL_DEFINE0(fork)
212{
213 struct pt_regs *regs = task_pt_regs(current);
214 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
215}
216
217SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
218 int __user *, parent_tidptr, int __user *, child_tidptr)
219{
220 struct pt_regs *regs = task_pt_regs(current);
221
222 if (!newsp)
223 newsp = regs->gprs[15];
224 return do_fork(clone_flags, newsp, regs, 0,
225 parent_tidptr, child_tidptr);
226}
227
228/*
229 * This is trivial, and on the face of it looks like it
230 * could equally well be done in user mode.
231 *
232 * Not so, for quite unobvious reasons - register pressure.
233 * In user mode vfork() cannot have a stack frame, and if
234 * done by calling the "clone()" system call directly, you
235 * do not have enough call-clobbered registers to hold all
236 * the information you need.
237 */
238SYSCALL_DEFINE0(vfork)
239{
240 struct pt_regs *regs = task_pt_regs(current);
241 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
242 regs->gprs[15], regs, 0, NULL, NULL);
243}
244
245asmlinkage void execve_tail(void)
246{
247 current->thread.fp_regs.fpc = 0;
248 if (MACHINE_HAS_IEEE)
249 asm volatile("sfpc %0,%0" : : "d" (0));
250}
251
252/*
253 * sys_execve() executes a new program.
254 */
255SYSCALL_DEFINE3(execve, const char __user *, name,
256 const char __user *const __user *, argv,
257 const char __user *const __user *, envp)
258{
259 struct pt_regs *regs = task_pt_regs(current);
260 char *filename;
261 long rc;
262
263 filename = getname(name);
264 rc = PTR_ERR(filename);
265 if (IS_ERR(filename))
266 return rc;
267 rc = do_execve(filename, argv, envp, regs);
268 if (rc)
269 goto out;
270 execve_tail();
271 rc = regs->gprs[2];
272out:
273 putname(filename);
274 return rc;
275}
276
277/*
278 * fill in the FPU structure for a core dump.
279 */
280int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
281{
282#ifndef CONFIG_64BIT
283 /*
284 * save fprs to current->thread.fp_regs to merge them with
285 * the emulated registers and then copy the result to the dump.
286 */
287 save_fp_regs(¤t->thread.fp_regs);
288 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs));
289#else /* CONFIG_64BIT */
290 save_fp_regs(fpregs);
291#endif /* CONFIG_64BIT */
292 return 1;
293}
294EXPORT_SYMBOL(dump_fpu);
295
296unsigned long get_wchan(struct task_struct *p)
297{
298 struct stack_frame *sf, *low, *high;
299 unsigned long return_address;
300 int count;
301
302 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
303 return 0;
304 low = task_stack_page(p);
305 high = (struct stack_frame *) task_pt_regs(p);
306 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
307 if (sf <= low || sf > high)
308 return 0;
309 for (count = 0; count < 16; count++) {
310 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
311 if (sf <= low || sf > high)
312 return 0;
313 return_address = sf->gprs[8] & PSW_ADDR_INSN;
314 if (!in_sched_functions(return_address))
315 return return_address;
316 }
317 return 0;
318}
319
320unsigned long arch_align_stack(unsigned long sp)
321{
322 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
323 sp -= get_random_int() & ~PAGE_MASK;
324 return sp & ~0xf;
325}
326
327static inline unsigned long brk_rnd(void)
328{
329 /* 8MB for 32bit, 1GB for 64bit */
330 if (is_32bit_task())
331 return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
332 else
333 return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
334}
335
336unsigned long arch_randomize_brk(struct mm_struct *mm)
337{
338 unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
339
340 if (ret < mm->brk)
341 return mm->brk;
342 return ret;
343}
344
345unsigned long randomize_et_dyn(unsigned long base)
346{
347 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
348
349 if (!(current->flags & PF_RANDOMIZE))
350 return base;
351 if (ret < base)
352 return base;
353 return ret;
354}
1/*
2 * This file handles the architecture dependent parts of process handling.
3 *
4 * Copyright IBM Corp. 1999,2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
7 * Denis Joseph Barrow,
8 */
9
10#include <linux/compiler.h>
11#include <linux/cpu.h>
12#include <linux/sched.h>
13#include <linux/kernel.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/tick.h>
19#include <linux/personality.h>
20#include <linux/syscalls.h>
21#include <linux/compat.h>
22#include <linux/kprobes.h>
23#include <linux/random.h>
24#include <linux/module.h>
25#include <asm/system.h>
26#include <asm/io.h>
27#include <asm/processor.h>
28#include <asm/irq.h>
29#include <asm/timer.h>
30#include <asm/nmi.h>
31#include <asm/compat.h>
32#include <asm/smp.h>
33#include "entry.h"
34
35asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
36
37/*
38 * Return saved PC of a blocked thread. used in kernel/sched.
39 * resume in entry.S does not create a new stack frame, it
40 * just stores the registers %r6-%r15 to the frame given by
41 * schedule. We want to return the address of the caller of
42 * schedule, so we have to walk the backchain one time to
43 * find the frame schedule() store its return address.
44 */
45unsigned long thread_saved_pc(struct task_struct *tsk)
46{
47 struct stack_frame *sf, *low, *high;
48
49 if (!tsk || !task_stack_page(tsk))
50 return 0;
51 low = task_stack_page(tsk);
52 high = (struct stack_frame *) task_pt_regs(tsk);
53 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
54 if (sf <= low || sf > high)
55 return 0;
56 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
57 if (sf <= low || sf > high)
58 return 0;
59 return sf->gprs[8];
60}
61
62/*
63 * The idle loop on a S390...
64 */
65static void default_idle(void)
66{
67 if (cpu_is_offline(smp_processor_id()))
68 cpu_die();
69 local_irq_disable();
70 if (need_resched()) {
71 local_irq_enable();
72 return;
73 }
74 local_mcck_disable();
75 if (test_thread_flag(TIF_MCCK_PENDING)) {
76 local_mcck_enable();
77 local_irq_enable();
78 s390_handle_mcck();
79 return;
80 }
81 trace_hardirqs_on();
82 /* Don't trace preempt off for idle. */
83 stop_critical_timings();
84 /* Stop virtual timer and halt the cpu. */
85 vtime_stop_cpu();
86 /* Reenable preemption tracer. */
87 start_critical_timings();
88}
89
90void cpu_idle(void)
91{
92 for (;;) {
93 tick_nohz_stop_sched_tick(1);
94 while (!need_resched())
95 default_idle();
96 tick_nohz_restart_sched_tick();
97 preempt_enable_no_resched();
98 schedule();
99 preempt_disable();
100 }
101}
102
103extern void __kprobes kernel_thread_starter(void);
104
105asm(
106 ".section .kprobes.text, \"ax\"\n"
107 ".global kernel_thread_starter\n"
108 "kernel_thread_starter:\n"
109 " la 2,0(10)\n"
110 " basr 14,9\n"
111 " la 2,0\n"
112 " br 11\n"
113 ".previous\n");
114
115int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
116{
117 struct pt_regs regs;
118
119 memset(®s, 0, sizeof(regs));
120 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
121 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
122 regs.gprs[9] = (unsigned long) fn;
123 regs.gprs[10] = (unsigned long) arg;
124 regs.gprs[11] = (unsigned long) do_exit;
125 regs.orig_gpr2 = -1;
126
127 /* Ok, create the new process.. */
128 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
129 0, ®s, 0, NULL, NULL);
130}
131EXPORT_SYMBOL(kernel_thread);
132
133/*
134 * Free current thread data structures etc..
135 */
136void exit_thread(void)
137{
138}
139
140void flush_thread(void)
141{
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146}
147
148int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
149 unsigned long unused,
150 struct task_struct *p, struct pt_regs *regs)
151{
152 struct thread_info *ti;
153 struct fake_frame
154 {
155 struct stack_frame sf;
156 struct pt_regs childregs;
157 } *frame;
158
159 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
160 p->thread.ksp = (unsigned long) frame;
161 /* Store access registers to kernel stack of new process. */
162 frame->childregs = *regs;
163 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
164 frame->childregs.gprs[15] = new_stackp;
165 frame->sf.back_chain = 0;
166
167 /* new return point is ret_from_fork */
168 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
169
170 /* fake return stack for resume(), don't go back to schedule */
171 frame->sf.gprs[9] = (unsigned long) frame;
172
173 /* Save access registers to new thread structure. */
174 save_access_regs(&p->thread.acrs[0]);
175
176#ifndef CONFIG_64BIT
177 /*
178 * save fprs to current->thread.fp_regs to merge them with
179 * the emulated registers and then copy the result to the child.
180 */
181 save_fp_regs(¤t->thread.fp_regs);
182 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
183 sizeof(s390_fp_regs));
184 /* Set a new TLS ? */
185 if (clone_flags & CLONE_SETTLS)
186 p->thread.acrs[0] = regs->gprs[6];
187#else /* CONFIG_64BIT */
188 /* Save the fpu registers to new thread structure. */
189 save_fp_regs(&p->thread.fp_regs);
190 /* Set a new TLS ? */
191 if (clone_flags & CLONE_SETTLS) {
192 if (is_compat_task()) {
193 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
194 } else {
195 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
196 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
197 }
198 }
199#endif /* CONFIG_64BIT */
200 /* start new process with ar4 pointing to the correct address space */
201 p->thread.mm_segment = get_fs();
202 /* Don't copy debug registers */
203 memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
204 memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
205 clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
206 clear_tsk_thread_flag(p, TIF_PER_TRAP);
207 /* Initialize per thread user and system timer values */
208 ti = task_thread_info(p);
209 ti->user_timer = 0;
210 ti->system_timer = 0;
211 return 0;
212}
213
214SYSCALL_DEFINE0(fork)
215{
216 struct pt_regs *regs = task_pt_regs(current);
217 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
218}
219
220SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
221 int __user *, parent_tidptr, int __user *, child_tidptr)
222{
223 struct pt_regs *regs = task_pt_regs(current);
224
225 if (!newsp)
226 newsp = regs->gprs[15];
227 return do_fork(clone_flags, newsp, regs, 0,
228 parent_tidptr, child_tidptr);
229}
230
231/*
232 * This is trivial, and on the face of it looks like it
233 * could equally well be done in user mode.
234 *
235 * Not so, for quite unobvious reasons - register pressure.
236 * In user mode vfork() cannot have a stack frame, and if
237 * done by calling the "clone()" system call directly, you
238 * do not have enough call-clobbered registers to hold all
239 * the information you need.
240 */
241SYSCALL_DEFINE0(vfork)
242{
243 struct pt_regs *regs = task_pt_regs(current);
244 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
245 regs->gprs[15], regs, 0, NULL, NULL);
246}
247
248asmlinkage void execve_tail(void)
249{
250 current->thread.fp_regs.fpc = 0;
251 if (MACHINE_HAS_IEEE)
252 asm volatile("sfpc %0,%0" : : "d" (0));
253}
254
255/*
256 * sys_execve() executes a new program.
257 */
258SYSCALL_DEFINE3(execve, const char __user *, name,
259 const char __user *const __user *, argv,
260 const char __user *const __user *, envp)
261{
262 struct pt_regs *regs = task_pt_regs(current);
263 char *filename;
264 long rc;
265
266 filename = getname(name);
267 rc = PTR_ERR(filename);
268 if (IS_ERR(filename))
269 return rc;
270 rc = do_execve(filename, argv, envp, regs);
271 if (rc)
272 goto out;
273 execve_tail();
274 rc = regs->gprs[2];
275out:
276 putname(filename);
277 return rc;
278}
279
280/*
281 * fill in the FPU structure for a core dump.
282 */
283int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
284{
285#ifndef CONFIG_64BIT
286 /*
287 * save fprs to current->thread.fp_regs to merge them with
288 * the emulated registers and then copy the result to the dump.
289 */
290 save_fp_regs(¤t->thread.fp_regs);
291 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs));
292#else /* CONFIG_64BIT */
293 save_fp_regs(fpregs);
294#endif /* CONFIG_64BIT */
295 return 1;
296}
297EXPORT_SYMBOL(dump_fpu);
298
299unsigned long get_wchan(struct task_struct *p)
300{
301 struct stack_frame *sf, *low, *high;
302 unsigned long return_address;
303 int count;
304
305 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
306 return 0;
307 low = task_stack_page(p);
308 high = (struct stack_frame *) task_pt_regs(p);
309 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
310 if (sf <= low || sf > high)
311 return 0;
312 for (count = 0; count < 16; count++) {
313 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
314 if (sf <= low || sf > high)
315 return 0;
316 return_address = sf->gprs[8] & PSW_ADDR_INSN;
317 if (!in_sched_functions(return_address))
318 return return_address;
319 }
320 return 0;
321}
322
323unsigned long arch_align_stack(unsigned long sp)
324{
325 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
326 sp -= get_random_int() & ~PAGE_MASK;
327 return sp & ~0xf;
328}
329
330static inline unsigned long brk_rnd(void)
331{
332 /* 8MB for 32bit, 1GB for 64bit */
333 if (is_32bit_task())
334 return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
335 else
336 return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
337}
338
339unsigned long arch_randomize_brk(struct mm_struct *mm)
340{
341 unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
342
343 if (ret < mm->brk)
344 return mm->brk;
345 return ret;
346}
347
348unsigned long randomize_et_dyn(unsigned long base)
349{
350 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
351
352 if (!(current->flags & PF_RANDOMIZE))
353 return base;
354 if (ret < base)
355 return base;
356 return ret;
357}