Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * arch/arm/kernel/kprobes-common.c
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/kprobes.h>
 16#include <asm/system_info.h>
 17
 18#include "kprobes.h"
 19
 20
 21#ifndef find_str_pc_offset
 22
 23/*
 24 * For STR and STM instructions, an ARM core may choose to use either
 25 * a +8 or a +12 displacement from the current instruction's address.
 26 * Whichever value is chosen for a given core, it must be the same for
 27 * both instructions and may not change.  This function measures it.
 28 */
 29
 30int str_pc_offset;
 31
 32void __init find_str_pc_offset(void)
 33{
 34	int addr, scratch, ret;
 35
 36	__asm__ (
 37		"sub	%[ret], pc, #4		\n\t"
 38		"str	pc, %[addr]		\n\t"
 39		"ldr	%[scr], %[addr]		\n\t"
 40		"sub	%[ret], %[scr], %[ret]	\n\t"
 41		: [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
 42
 43	str_pc_offset = ret;
 44}
 45
 46#endif /* !find_str_pc_offset */
 47
 48
 49#ifndef test_load_write_pc_interworking
 50
 51bool load_write_pc_interworks;
 52
 53void __init test_load_write_pc_interworking(void)
 54{
 55	int arch = cpu_architecture();
 56	BUG_ON(arch == CPU_ARCH_UNKNOWN);
 57	load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T;
 58}
 59
 60#endif /* !test_load_write_pc_interworking */
 61
 62
 63#ifndef test_alu_write_pc_interworking
 64
 65bool alu_write_pc_interworks;
 66
 67void __init test_alu_write_pc_interworking(void)
 68{
 69	int arch = cpu_architecture();
 70	BUG_ON(arch == CPU_ARCH_UNKNOWN);
 71	alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7;
 72}
 73
 74#endif /* !test_alu_write_pc_interworking */
 75
 76
 77void __init arm_kprobe_decode_init(void)
 78{
 79	find_str_pc_offset();
 80	test_load_write_pc_interworking();
 81	test_alu_write_pc_interworking();
 82}
 83
 84
 85static unsigned long __kprobes __check_eq(unsigned long cpsr)
 86{
 87	return cpsr & PSR_Z_BIT;
 88}
 89
 90static unsigned long __kprobes __check_ne(unsigned long cpsr)
 91{
 92	return (~cpsr) & PSR_Z_BIT;
 93}
 94
 95static unsigned long __kprobes __check_cs(unsigned long cpsr)
 96{
 97	return cpsr & PSR_C_BIT;
 98}
 99
100static unsigned long __kprobes __check_cc(unsigned long cpsr)
101{
102	return (~cpsr) & PSR_C_BIT;
103}
104
105static unsigned long __kprobes __check_mi(unsigned long cpsr)
106{
107	return cpsr & PSR_N_BIT;
108}
109
110static unsigned long __kprobes __check_pl(unsigned long cpsr)
111{
112	return (~cpsr) & PSR_N_BIT;
113}
114
115static unsigned long __kprobes __check_vs(unsigned long cpsr)
116{
117	return cpsr & PSR_V_BIT;
118}
119
120static unsigned long __kprobes __check_vc(unsigned long cpsr)
121{
122	return (~cpsr) & PSR_V_BIT;
123}
124
125static unsigned long __kprobes __check_hi(unsigned long cpsr)
126{
127	cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
128	return cpsr & PSR_C_BIT;
129}
130
131static unsigned long __kprobes __check_ls(unsigned long cpsr)
132{
133	cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
134	return (~cpsr) & PSR_C_BIT;
135}
136
137static unsigned long __kprobes __check_ge(unsigned long cpsr)
138{
139	cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
140	return (~cpsr) & PSR_N_BIT;
141}
142
143static unsigned long __kprobes __check_lt(unsigned long cpsr)
144{
145	cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
146	return cpsr & PSR_N_BIT;
147}
148
149static unsigned long __kprobes __check_gt(unsigned long cpsr)
150{
151	unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
152	temp |= (cpsr << 1);			 /* PSR_N_BIT |= PSR_Z_BIT */
153	return (~temp) & PSR_N_BIT;
154}
155
156static unsigned long __kprobes __check_le(unsigned long cpsr)
157{
158	unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
159	temp |= (cpsr << 1);			 /* PSR_N_BIT |= PSR_Z_BIT */
160	return temp & PSR_N_BIT;
161}
162
163static unsigned long __kprobes __check_al(unsigned long cpsr)
164{
165	return true;
166}
167
168kprobe_check_cc * const kprobe_condition_checks[16] = {
169	&__check_eq, &__check_ne, &__check_cs, &__check_cc,
170	&__check_mi, &__check_pl, &__check_vs, &__check_vc,
171	&__check_hi, &__check_ls, &__check_ge, &__check_lt,
172	&__check_gt, &__check_le, &__check_al, &__check_al
173};
174
175
176void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs)
177{
178}
179
180void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs)
181{
182	p->ainsn.insn_fn();
183}
184
185static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
186{
187	kprobe_opcode_t insn = p->opcode;
188	int rn = (insn >> 16) & 0xf;
189	int lbit = insn & (1 << 20);
190	int wbit = insn & (1 << 21);
191	int ubit = insn & (1 << 23);
192	int pbit = insn & (1 << 24);
193	long *addr = (long *)regs->uregs[rn];
194	int reg_bit_vector;
195	int reg_count;
196
197	reg_count = 0;
198	reg_bit_vector = insn & 0xffff;
199	while (reg_bit_vector) {
200		reg_bit_vector &= (reg_bit_vector - 1);
201		++reg_count;
202	}
203
204	if (!ubit)
205		addr -= reg_count;
206	addr += (!pbit == !ubit);
207
208	reg_bit_vector = insn & 0xffff;
209	while (reg_bit_vector) {
210		int reg = __ffs(reg_bit_vector);
211		reg_bit_vector &= (reg_bit_vector - 1);
212		if (lbit)
213			regs->uregs[reg] = *addr++;
214		else
215			*addr++ = regs->uregs[reg];
216	}
217
218	if (wbit) {
219		if (!ubit)
220			addr -= reg_count;
221		addr -= (!pbit == !ubit);
222		regs->uregs[rn] = (long)addr;
223	}
224}
225
226static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
227{
228	regs->ARM_pc = (long)p->addr + str_pc_offset;
229	simulate_ldm1stm1(p, regs);
230	regs->ARM_pc = (long)p->addr + 4;
231}
232
233static void __kprobes simulate_ldm1_pc(struct kprobe *p, struct pt_regs *regs)
234{
235	simulate_ldm1stm1(p, regs);
236	load_write_pc(regs->ARM_pc, regs);
237}
238
239static void __kprobes
240emulate_generic_r0_12_noflags(struct kprobe *p, struct pt_regs *regs)
241{
242	register void *rregs asm("r1") = regs;
243	register void *rfn asm("lr") = p->ainsn.insn_fn;
244
245	__asm__ __volatile__ (
246		"stmdb	sp!, {%[regs], r11}	\n\t"
247		"ldmia	%[regs], {r0-r12}	\n\t"
248#if __LINUX_ARM_ARCH__ >= 6
249		"blx	%[fn]			\n\t"
250#else
251		"str	%[fn], [sp, #-4]!	\n\t"
252		"adr	lr, 1f			\n\t"
253		"ldr	pc, [sp], #4		\n\t"
254		"1:				\n\t"
255#endif
256		"ldr	lr, [sp], #4		\n\t" /* lr = regs */
257		"stmia	lr, {r0-r12}		\n\t"
258		"ldr	r11, [sp], #4		\n\t"
259		: [regs] "=r" (rregs), [fn] "=r" (rfn)
260		: "0" (rregs), "1" (rfn)
261		: "r0", "r2", "r3", "r4", "r5", "r6", "r7",
262		  "r8", "r9", "r10", "r12", "memory", "cc"
263		);
264}
265
266static void __kprobes
267emulate_generic_r2_14_noflags(struct kprobe *p, struct pt_regs *regs)
268{
269	emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2));
270}
271
272static void __kprobes
273emulate_ldm_r3_15(struct kprobe *p, struct pt_regs *regs)
274{
275	emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3));
276	load_write_pc(regs->ARM_pc, regs);
277}
278
279enum kprobe_insn __kprobes
280kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi)
281{
282	kprobe_insn_handler_t *handler = 0;
283	unsigned reglist = insn & 0xffff;
284	int is_ldm = insn & 0x100000;
285	int rn = (insn >> 16) & 0xf;
286
287	if (rn <= 12 && (reglist & 0xe000) == 0) {
288		/* Instruction only uses registers in the range R0..R12 */
289		handler = emulate_generic_r0_12_noflags;
290
291	} else if (rn >= 2 && (reglist & 0x8003) == 0) {
292		/* Instruction only uses registers in the range R2..R14 */
293		rn -= 2;
294		reglist >>= 2;
295		handler = emulate_generic_r2_14_noflags;
296
297	} else if (rn >= 3 && (reglist & 0x0007) == 0) {
298		/* Instruction only uses registers in the range R3..R15 */
299		if (is_ldm && (reglist & 0x8000)) {
300			rn -= 3;
301			reglist >>= 3;
302			handler = emulate_ldm_r3_15;
303		}
304	}
305
306	if (handler) {
307		/* We can emulate the instruction in (possibly) modified form */
308		asi->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist;
309		asi->insn_handler = handler;
310		return INSN_GOOD;
311	}
312
313	/* Fallback to slower simulation... */
314	if (reglist & 0x8000)
315		handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc;
316	else
317		handler = simulate_ldm1stm1;
318	asi->insn_handler = handler;
319	return INSN_GOOD_NO_SLOT;
320}
321
322
323/*
324 * Prepare an instruction slot to receive an instruction for emulating.
325 * This is done by placing a subroutine return after the location where the
326 * instruction will be placed. We also modify ARM instructions to be
327 * unconditional as the condition code will already be checked before any
328 * emulation handler is called.
329 */
330static kprobe_opcode_t __kprobes
331prepare_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
332								bool thumb)
333{
334#ifdef CONFIG_THUMB2_KERNEL
335	if (thumb) {
336		u16 *thumb_insn = (u16 *)asi->insn;
337		thumb_insn[1] = 0x4770; /* Thumb bx lr */
338		thumb_insn[2] = 0x4770; /* Thumb bx lr */
339		return insn;
340	}
341	asi->insn[1] = 0xe12fff1e; /* ARM bx lr */
342#else
343	asi->insn[1] = 0xe1a0f00e; /* mov pc, lr */
344#endif
345	/* Make an ARM instruction unconditional */
346	if (insn < 0xe0000000)
347		insn = (insn | 0xe0000000) & ~0x10000000;
348	return insn;
349}
350
351/*
352 * Write a (probably modified) instruction into the slot previously prepared by
353 * prepare_emulated_insn
354 */
355static void  __kprobes
356set_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
357								bool thumb)
358{
359#ifdef CONFIG_THUMB2_KERNEL
360	if (thumb) {
361		u16 *ip = (u16 *)asi->insn;
362		if (is_wide_instruction(insn))
363			*ip++ = insn >> 16;
364		*ip++ = insn;
365		return;
366	}
367#endif
368	asi->insn[0] = insn;
369}
370
371/*
372 * When we modify the register numbers encoded in an instruction to be emulated,
373 * the new values come from this define. For ARM and 32-bit Thumb instructions
374 * this gives...
375 *
376 *	bit position	  16  12   8   4   0
377 *	---------------+---+---+---+---+---+
378 *	register	 r2  r0  r1  --  r3
379 */
380#define INSN_NEW_BITS		0x00020103
381
382/* Each nibble has same value as that at INSN_NEW_BITS bit 16 */
383#define INSN_SAMEAS16_BITS	0x22222222
384
385/*
386 * Validate and modify each of the registers encoded in an instruction.
387 *
388 * Each nibble in regs contains a value from enum decode_reg_type. For each
389 * non-zero value, the corresponding nibble in pinsn is validated and modified
390 * according to the type.
391 */
392static bool __kprobes decode_regs(kprobe_opcode_t* pinsn, u32 regs)
393{
394	kprobe_opcode_t insn = *pinsn;
395	kprobe_opcode_t mask = 0xf; /* Start at least significant nibble */
396
397	for (; regs != 0; regs >>= 4, mask <<= 4) {
398
399		kprobe_opcode_t new_bits = INSN_NEW_BITS;
400
401		switch (regs & 0xf) {
402
403		case REG_TYPE_NONE:
404			/* Nibble not a register, skip to next */
405			continue;
406
407		case REG_TYPE_ANY:
408			/* Any register is allowed */
409			break;
410
411		case REG_TYPE_SAMEAS16:
412			/* Replace register with same as at bit position 16 */
413			new_bits = INSN_SAMEAS16_BITS;
414			break;
415
416		case REG_TYPE_SP:
417			/* Only allow SP (R13) */
418			if ((insn ^ 0xdddddddd) & mask)
419				goto reject;
420			break;
421
422		case REG_TYPE_PC:
423			/* Only allow PC (R15) */
424			if ((insn ^ 0xffffffff) & mask)
425				goto reject;
426			break;
427
428		case REG_TYPE_NOSP:
429			/* Reject SP (R13) */
430			if (((insn ^ 0xdddddddd) & mask) == 0)
431				goto reject;
432			break;
433
434		case REG_TYPE_NOSPPC:
435		case REG_TYPE_NOSPPCX:
436			/* Reject SP and PC (R13 and R15) */
437			if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0)
438				goto reject;
439			break;
440
441		case REG_TYPE_NOPCWB:
442			if (!is_writeback(insn))
443				break; /* No writeback, so any register is OK */
444			/* fall through... */
445		case REG_TYPE_NOPC:
446		case REG_TYPE_NOPCX:
447			/* Reject PC (R15) */
448			if (((insn ^ 0xffffffff) & mask) == 0)
449				goto reject;
450			break;
451		}
452
453		/* Replace value of nibble with new register number... */
454		insn &= ~mask;
455		insn |= new_bits & mask;
456	}
457
458	*pinsn = insn;
459	return true;
460
461reject:
462	return false;
463}
464
465static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
466	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
467	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
468	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
469	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
470	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
471	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
472};
473
474/*
475 * kprobe_decode_insn operates on data tables in order to decode an ARM
476 * architecture instruction onto which a kprobe has been placed.
477 *
478 * These instruction decoding tables are a concatenation of entries each
479 * of which consist of one of the following structs:
480 *
481 *	decode_table
482 *	decode_custom
483 *	decode_simulate
484 *	decode_emulate
485 *	decode_or
486 *	decode_reject
487 *
488 * Each of these starts with a struct decode_header which has the following
489 * fields:
490 *
491 *	type_regs
492 *	mask
493 *	value
494 *
495 * The least significant DECODE_TYPE_BITS of type_regs contains a value
496 * from enum decode_type, this indicates which of the decode_* structs
497 * the entry contains. The value DECODE_TYPE_END indicates the end of the
498 * table.
499 *
500 * When the table is parsed, each entry is checked in turn to see if it
501 * matches the instruction to be decoded using the test:
502 *
503 *	(insn & mask) == value
504 *
505 * If no match is found before the end of the table is reached then decoding
506 * fails with INSN_REJECTED.
507 *
508 * When a match is found, decode_regs() is called to validate and modify each
509 * of the registers encoded in the instruction; the data it uses to do this
510 * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding
511 * to fail with INSN_REJECTED.
512 *
513 * Once the instruction has passed the above tests, further processing
514 * depends on the type of the table entry's decode struct.
515 *
516 */
517int __kprobes
518kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
519				const union decode_item *table, bool thumb)
520{
521	const struct decode_header *h = (struct decode_header *)table;
522	const struct decode_header *next;
523	bool matched = false;
524
525	insn = prepare_emulated_insn(insn, asi, thumb);
526
527	for (;; h = next) {
528		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
529		u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS;
530
531		if (type == DECODE_TYPE_END)
532			return INSN_REJECTED;
533
534		next = (struct decode_header *)
535				((uintptr_t)h + decode_struct_sizes[type]);
536
537		if (!matched && (insn & h->mask.bits) != h->value.bits)
538			continue;
539
540		if (!decode_regs(&insn, regs))
541			return INSN_REJECTED;
542
543		switch (type) {
544
545		case DECODE_TYPE_TABLE: {
546			struct decode_table *d = (struct decode_table *)h;
547			next = (struct decode_header *)d->table.table;
548			break;
549		}
550
551		case DECODE_TYPE_CUSTOM: {
552			struct decode_custom *d = (struct decode_custom *)h;
553			return (*d->decoder.decoder)(insn, asi);
554		}
555
556		case DECODE_TYPE_SIMULATE: {
557			struct decode_simulate *d = (struct decode_simulate *)h;
558			asi->insn_handler = d->handler.handler;
559			return INSN_GOOD_NO_SLOT;
560		}
561
562		case DECODE_TYPE_EMULATE: {
563			struct decode_emulate *d = (struct decode_emulate *)h;
564			asi->insn_handler = d->handler.handler;
565			set_emulated_insn(insn, asi, thumb);
566			return INSN_GOOD;
567		}
568
569		case DECODE_TYPE_OR:
570			matched = true;
571			break;
572
573		case DECODE_TYPE_REJECT:
574		default:
575			return INSN_REJECTED;
576		}
577		}
578	}
v3.1
  1/*
  2 * arch/arm/kernel/kprobes-common.c
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/kprobes.h>
 
 16
 17#include "kprobes.h"
 18
 19
 20#ifndef find_str_pc_offset
 21
 22/*
 23 * For STR and STM instructions, an ARM core may choose to use either
 24 * a +8 or a +12 displacement from the current instruction's address.
 25 * Whichever value is chosen for a given core, it must be the same for
 26 * both instructions and may not change.  This function measures it.
 27 */
 28
 29int str_pc_offset;
 30
 31void __init find_str_pc_offset(void)
 32{
 33	int addr, scratch, ret;
 34
 35	__asm__ (
 36		"sub	%[ret], pc, #4		\n\t"
 37		"str	pc, %[addr]		\n\t"
 38		"ldr	%[scr], %[addr]		\n\t"
 39		"sub	%[ret], %[scr], %[ret]	\n\t"
 40		: [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
 41
 42	str_pc_offset = ret;
 43}
 44
 45#endif /* !find_str_pc_offset */
 46
 47
 48#ifndef test_load_write_pc_interworking
 49
 50bool load_write_pc_interworks;
 51
 52void __init test_load_write_pc_interworking(void)
 53{
 54	int arch = cpu_architecture();
 55	BUG_ON(arch == CPU_ARCH_UNKNOWN);
 56	load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T;
 57}
 58
 59#endif /* !test_load_write_pc_interworking */
 60
 61
 62#ifndef test_alu_write_pc_interworking
 63
 64bool alu_write_pc_interworks;
 65
 66void __init test_alu_write_pc_interworking(void)
 67{
 68	int arch = cpu_architecture();
 69	BUG_ON(arch == CPU_ARCH_UNKNOWN);
 70	alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7;
 71}
 72
 73#endif /* !test_alu_write_pc_interworking */
 74
 75
 76void __init arm_kprobe_decode_init(void)
 77{
 78	find_str_pc_offset();
 79	test_load_write_pc_interworking();
 80	test_alu_write_pc_interworking();
 81}
 82
 83
 84static unsigned long __kprobes __check_eq(unsigned long cpsr)
 85{
 86	return cpsr & PSR_Z_BIT;
 87}
 88
 89static unsigned long __kprobes __check_ne(unsigned long cpsr)
 90{
 91	return (~cpsr) & PSR_Z_BIT;
 92}
 93
 94static unsigned long __kprobes __check_cs(unsigned long cpsr)
 95{
 96	return cpsr & PSR_C_BIT;
 97}
 98
 99static unsigned long __kprobes __check_cc(unsigned long cpsr)
100{
101	return (~cpsr) & PSR_C_BIT;
102}
103
104static unsigned long __kprobes __check_mi(unsigned long cpsr)
105{
106	return cpsr & PSR_N_BIT;
107}
108
109static unsigned long __kprobes __check_pl(unsigned long cpsr)
110{
111	return (~cpsr) & PSR_N_BIT;
112}
113
114static unsigned long __kprobes __check_vs(unsigned long cpsr)
115{
116	return cpsr & PSR_V_BIT;
117}
118
119static unsigned long __kprobes __check_vc(unsigned long cpsr)
120{
121	return (~cpsr) & PSR_V_BIT;
122}
123
124static unsigned long __kprobes __check_hi(unsigned long cpsr)
125{
126	cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
127	return cpsr & PSR_C_BIT;
128}
129
130static unsigned long __kprobes __check_ls(unsigned long cpsr)
131{
132	cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
133	return (~cpsr) & PSR_C_BIT;
134}
135
136static unsigned long __kprobes __check_ge(unsigned long cpsr)
137{
138	cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
139	return (~cpsr) & PSR_N_BIT;
140}
141
142static unsigned long __kprobes __check_lt(unsigned long cpsr)
143{
144	cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
145	return cpsr & PSR_N_BIT;
146}
147
148static unsigned long __kprobes __check_gt(unsigned long cpsr)
149{
150	unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
151	temp |= (cpsr << 1);			 /* PSR_N_BIT |= PSR_Z_BIT */
152	return (~temp) & PSR_N_BIT;
153}
154
155static unsigned long __kprobes __check_le(unsigned long cpsr)
156{
157	unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
158	temp |= (cpsr << 1);			 /* PSR_N_BIT |= PSR_Z_BIT */
159	return temp & PSR_N_BIT;
160}
161
162static unsigned long __kprobes __check_al(unsigned long cpsr)
163{
164	return true;
165}
166
167kprobe_check_cc * const kprobe_condition_checks[16] = {
168	&__check_eq, &__check_ne, &__check_cs, &__check_cc,
169	&__check_mi, &__check_pl, &__check_vs, &__check_vc,
170	&__check_hi, &__check_ls, &__check_ge, &__check_lt,
171	&__check_gt, &__check_le, &__check_al, &__check_al
172};
173
174
175void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs)
176{
177}
178
179void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs)
180{
181	p->ainsn.insn_fn();
182}
183
184static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
185{
186	kprobe_opcode_t insn = p->opcode;
187	int rn = (insn >> 16) & 0xf;
188	int lbit = insn & (1 << 20);
189	int wbit = insn & (1 << 21);
190	int ubit = insn & (1 << 23);
191	int pbit = insn & (1 << 24);
192	long *addr = (long *)regs->uregs[rn];
193	int reg_bit_vector;
194	int reg_count;
195
196	reg_count = 0;
197	reg_bit_vector = insn & 0xffff;
198	while (reg_bit_vector) {
199		reg_bit_vector &= (reg_bit_vector - 1);
200		++reg_count;
201	}
202
203	if (!ubit)
204		addr -= reg_count;
205	addr += (!pbit == !ubit);
206
207	reg_bit_vector = insn & 0xffff;
208	while (reg_bit_vector) {
209		int reg = __ffs(reg_bit_vector);
210		reg_bit_vector &= (reg_bit_vector - 1);
211		if (lbit)
212			regs->uregs[reg] = *addr++;
213		else
214			*addr++ = regs->uregs[reg];
215	}
216
217	if (wbit) {
218		if (!ubit)
219			addr -= reg_count;
220		addr -= (!pbit == !ubit);
221		regs->uregs[rn] = (long)addr;
222	}
223}
224
225static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
226{
227	regs->ARM_pc = (long)p->addr + str_pc_offset;
228	simulate_ldm1stm1(p, regs);
229	regs->ARM_pc = (long)p->addr + 4;
230}
231
232static void __kprobes simulate_ldm1_pc(struct kprobe *p, struct pt_regs *regs)
233{
234	simulate_ldm1stm1(p, regs);
235	load_write_pc(regs->ARM_pc, regs);
236}
237
238static void __kprobes
239emulate_generic_r0_12_noflags(struct kprobe *p, struct pt_regs *regs)
240{
241	register void *rregs asm("r1") = regs;
242	register void *rfn asm("lr") = p->ainsn.insn_fn;
243
244	__asm__ __volatile__ (
245		"stmdb	sp!, {%[regs], r11}	\n\t"
246		"ldmia	%[regs], {r0-r12}	\n\t"
247#if __LINUX_ARM_ARCH__ >= 6
248		"blx	%[fn]			\n\t"
249#else
250		"str	%[fn], [sp, #-4]!	\n\t"
251		"adr	lr, 1f			\n\t"
252		"ldr	pc, [sp], #4		\n\t"
253		"1:				\n\t"
254#endif
255		"ldr	lr, [sp], #4		\n\t" /* lr = regs */
256		"stmia	lr, {r0-r12}		\n\t"
257		"ldr	r11, [sp], #4		\n\t"
258		: [regs] "=r" (rregs), [fn] "=r" (rfn)
259		: "0" (rregs), "1" (rfn)
260		: "r0", "r2", "r3", "r4", "r5", "r6", "r7",
261		  "r8", "r9", "r10", "r12", "memory", "cc"
262		);
263}
264
265static void __kprobes
266emulate_generic_r2_14_noflags(struct kprobe *p, struct pt_regs *regs)
267{
268	emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2));
269}
270
271static void __kprobes
272emulate_ldm_r3_15(struct kprobe *p, struct pt_regs *regs)
273{
274	emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3));
275	load_write_pc(regs->ARM_pc, regs);
276}
277
278enum kprobe_insn __kprobes
279kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi)
280{
281	kprobe_insn_handler_t *handler = 0;
282	unsigned reglist = insn & 0xffff;
283	int is_ldm = insn & 0x100000;
284	int rn = (insn >> 16) & 0xf;
285
286	if (rn <= 12 && (reglist & 0xe000) == 0) {
287		/* Instruction only uses registers in the range R0..R12 */
288		handler = emulate_generic_r0_12_noflags;
289
290	} else if (rn >= 2 && (reglist & 0x8003) == 0) {
291		/* Instruction only uses registers in the range R2..R14 */
292		rn -= 2;
293		reglist >>= 2;
294		handler = emulate_generic_r2_14_noflags;
295
296	} else if (rn >= 3 && (reglist & 0x0007) == 0) {
297		/* Instruction only uses registers in the range R3..R15 */
298		if (is_ldm && (reglist & 0x8000)) {
299			rn -= 3;
300			reglist >>= 3;
301			handler = emulate_ldm_r3_15;
302		}
303	}
304
305	if (handler) {
306		/* We can emulate the instruction in (possibly) modified form */
307		asi->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist;
308		asi->insn_handler = handler;
309		return INSN_GOOD;
310	}
311
312	/* Fallback to slower simulation... */
313	if (reglist & 0x8000)
314		handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc;
315	else
316		handler = simulate_ldm1stm1;
317	asi->insn_handler = handler;
318	return INSN_GOOD_NO_SLOT;
319}
320
321
322/*
323 * Prepare an instruction slot to receive an instruction for emulating.
324 * This is done by placing a subroutine return after the location where the
325 * instruction will be placed. We also modify ARM instructions to be
326 * unconditional as the condition code will already be checked before any
327 * emulation handler is called.
328 */
329static kprobe_opcode_t __kprobes
330prepare_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
331								bool thumb)
332{
333#ifdef CONFIG_THUMB2_KERNEL
334	if (thumb) {
335		u16 *thumb_insn = (u16 *)asi->insn;
336		thumb_insn[1] = 0x4770; /* Thumb bx lr */
337		thumb_insn[2] = 0x4770; /* Thumb bx lr */
338		return insn;
339	}
340	asi->insn[1] = 0xe12fff1e; /* ARM bx lr */
341#else
342	asi->insn[1] = 0xe1a0f00e; /* mov pc, lr */
343#endif
344	/* Make an ARM instruction unconditional */
345	if (insn < 0xe0000000)
346		insn = (insn | 0xe0000000) & ~0x10000000;
347	return insn;
348}
349
350/*
351 * Write a (probably modified) instruction into the slot previously prepared by
352 * prepare_emulated_insn
353 */
354static void  __kprobes
355set_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
356								bool thumb)
357{
358#ifdef CONFIG_THUMB2_KERNEL
359	if (thumb) {
360		u16 *ip = (u16 *)asi->insn;
361		if (is_wide_instruction(insn))
362			*ip++ = insn >> 16;
363		*ip++ = insn;
364		return;
365	}
366#endif
367	asi->insn[0] = insn;
368}
369
370/*
371 * When we modify the register numbers encoded in an instruction to be emulated,
372 * the new values come from this define. For ARM and 32-bit Thumb instructions
373 * this gives...
374 *
375 *	bit position	  16  12   8   4   0
376 *	---------------+---+---+---+---+---+
377 *	register	 r2  r0  r1  --  r3
378 */
379#define INSN_NEW_BITS		0x00020103
380
381/* Each nibble has same value as that at INSN_NEW_BITS bit 16 */
382#define INSN_SAMEAS16_BITS	0x22222222
383
384/*
385 * Validate and modify each of the registers encoded in an instruction.
386 *
387 * Each nibble in regs contains a value from enum decode_reg_type. For each
388 * non-zero value, the corresponding nibble in pinsn is validated and modified
389 * according to the type.
390 */
391static bool __kprobes decode_regs(kprobe_opcode_t* pinsn, u32 regs)
392{
393	kprobe_opcode_t insn = *pinsn;
394	kprobe_opcode_t mask = 0xf; /* Start at least significant nibble */
395
396	for (; regs != 0; regs >>= 4, mask <<= 4) {
397
398		kprobe_opcode_t new_bits = INSN_NEW_BITS;
399
400		switch (regs & 0xf) {
401
402		case REG_TYPE_NONE:
403			/* Nibble not a register, skip to next */
404			continue;
405
406		case REG_TYPE_ANY:
407			/* Any register is allowed */
408			break;
409
410		case REG_TYPE_SAMEAS16:
411			/* Replace register with same as at bit position 16 */
412			new_bits = INSN_SAMEAS16_BITS;
413			break;
414
415		case REG_TYPE_SP:
416			/* Only allow SP (R13) */
417			if ((insn ^ 0xdddddddd) & mask)
418				goto reject;
419			break;
420
421		case REG_TYPE_PC:
422			/* Only allow PC (R15) */
423			if ((insn ^ 0xffffffff) & mask)
424				goto reject;
425			break;
426
427		case REG_TYPE_NOSP:
428			/* Reject SP (R13) */
429			if (((insn ^ 0xdddddddd) & mask) == 0)
430				goto reject;
431			break;
432
433		case REG_TYPE_NOSPPC:
434		case REG_TYPE_NOSPPCX:
435			/* Reject SP and PC (R13 and R15) */
436			if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0)
437				goto reject;
438			break;
439
440		case REG_TYPE_NOPCWB:
441			if (!is_writeback(insn))
442				break; /* No writeback, so any register is OK */
443			/* fall through... */
444		case REG_TYPE_NOPC:
445		case REG_TYPE_NOPCX:
446			/* Reject PC (R15) */
447			if (((insn ^ 0xffffffff) & mask) == 0)
448				goto reject;
449			break;
450		}
451
452		/* Replace value of nibble with new register number... */
453		insn &= ~mask;
454		insn |= new_bits & mask;
455	}
456
457	*pinsn = insn;
458	return true;
459
460reject:
461	return false;
462}
463
464static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
465	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
466	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
467	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
468	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
469	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
470	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
471};
472
473/*
474 * kprobe_decode_insn operates on data tables in order to decode an ARM
475 * architecture instruction onto which a kprobe has been placed.
476 *
477 * These instruction decoding tables are a concatenation of entries each
478 * of which consist of one of the following structs:
479 *
480 *	decode_table
481 *	decode_custom
482 *	decode_simulate
483 *	decode_emulate
484 *	decode_or
485 *	decode_reject
486 *
487 * Each of these starts with a struct decode_header which has the following
488 * fields:
489 *
490 *	type_regs
491 *	mask
492 *	value
493 *
494 * The least significant DECODE_TYPE_BITS of type_regs contains a value
495 * from enum decode_type, this indicates which of the decode_* structs
496 * the entry contains. The value DECODE_TYPE_END indicates the end of the
497 * table.
498 *
499 * When the table is parsed, each entry is checked in turn to see if it
500 * matches the instruction to be decoded using the test:
501 *
502 *	(insn & mask) == value
503 *
504 * If no match is found before the end of the table is reached then decoding
505 * fails with INSN_REJECTED.
506 *
507 * When a match is found, decode_regs() is called to validate and modify each
508 * of the registers encoded in the instruction; the data it uses to do this
509 * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding
510 * to fail with INSN_REJECTED.
511 *
512 * Once the instruction has passed the above tests, further processing
513 * depends on the type of the table entry's decode struct.
514 *
515 */
516int __kprobes
517kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
518				const union decode_item *table, bool thumb)
519{
520	const struct decode_header *h = (struct decode_header *)table;
521	const struct decode_header *next;
522	bool matched = false;
523
524	insn = prepare_emulated_insn(insn, asi, thumb);
525
526	for (;; h = next) {
527		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
528		u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS;
529
530		if (type == DECODE_TYPE_END)
531			return INSN_REJECTED;
532
533		next = (struct decode_header *)
534				((uintptr_t)h + decode_struct_sizes[type]);
535
536		if (!matched && (insn & h->mask.bits) != h->value.bits)
537			continue;
538
539		if (!decode_regs(&insn, regs))
540			return INSN_REJECTED;
541
542		switch (type) {
543
544		case DECODE_TYPE_TABLE: {
545			struct decode_table *d = (struct decode_table *)h;
546			next = (struct decode_header *)d->table.table;
547			break;
548		}
549
550		case DECODE_TYPE_CUSTOM: {
551			struct decode_custom *d = (struct decode_custom *)h;
552			return (*d->decoder.decoder)(insn, asi);
553		}
554
555		case DECODE_TYPE_SIMULATE: {
556			struct decode_simulate *d = (struct decode_simulate *)h;
557			asi->insn_handler = d->handler.handler;
558			return INSN_GOOD_NO_SLOT;
559		}
560
561		case DECODE_TYPE_EMULATE: {
562			struct decode_emulate *d = (struct decode_emulate *)h;
563			asi->insn_handler = d->handler.handler;
564			set_emulated_insn(insn, asi, thumb);
565			return INSN_GOOD;
566		}
567
568		case DECODE_TYPE_OR:
569			matched = true;
570			break;
571
572		case DECODE_TYPE_REJECT:
573		default:
574			return INSN_REJECTED;
575		}
576		}
577	}