Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 
 14#include <asm/proc-fns.h>
 15
 16#ifndef CONFIG_MMU
 17
 18#include <asm-generic/4level-fixup.h>
 19#include "pgtable-nommu.h"
 20
 21#else
 22
 23#include <asm-generic/pgtable-nopud.h>
 24#include <asm/memory.h>
 
 25#include <asm/pgtable-hwdef.h>
 26
 27#ifdef CONFIG_ARM_LPAE
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33/*
 34 * Just any arbitrary offset to the start of the vmalloc VM area: the
 35 * current 8MB value just means that there will be a 8MB "hole" after the
 36 * physical memory until the kernel virtual memory starts.  That means that
 37 * any out-of-bounds memory accesses will hopefully be caught.
 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 39 * area for the same reason. ;)
 
 
 
 
 40 */
 
 41#define VMALLOC_OFFSET		(8*1024*1024)
 42#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 43#define VMALLOC_END		0xff000000UL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45#define LIBRARY_TEXT_START	0x0c000000
 46
 47#ifndef __ASSEMBLY__
 48extern void __pte_error(const char *file, int line, pte_t);
 49extern void __pmd_error(const char *file, int line, pmd_t);
 50extern void __pgd_error(const char *file, int line, pgd_t);
 51
 52#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 53#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 54#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 
 
 
 
 
 
 55
 56/*
 57 * This is the lowest virtual address we can permit any user space
 58 * mapping to be mapped at.  This is particularly important for
 59 * non-high vector CPUs.
 60 */
 61#define FIRST_USER_ADDRESS	PAGE_SIZE
 62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63/*
 64 * The pgprot_* and protection_map entries will be fixed up in runtime
 65 * to include the cachable and bufferable bits based on memory policy,
 66 * as well as any architecture dependent bits like global/ASID and SMP
 67 * shared mapping bits.
 68 */
 69#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 70
 71extern pgprot_t		pgprot_user;
 72extern pgprot_t		pgprot_kernel;
 73
 74#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 75
 76#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
 77#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 78#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 79#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 80#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 81#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 82#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 83#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 84#define PAGE_KERNEL_EXEC	pgprot_kernel
 85
 86#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
 87#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 88#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 89#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 90#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 91#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 92#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
 93
 94#define __pgprot_modify(prot,mask,bits)		\
 95	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
 96
 97#define pgprot_noncached(prot) \
 98	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
 99
100#define pgprot_writecombine(prot) \
101	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
102
103#define pgprot_stronglyordered(prot) \
104	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
105
106#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
107#define pgprot_dmacoherent(prot) \
108	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
109#define __HAVE_PHYS_MEM_ACCESS_PROT
110struct file;
111extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
112				     unsigned long size, pgprot_t vma_prot);
113#else
114#define pgprot_dmacoherent(prot) \
115	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
116#endif
117
118#endif /* __ASSEMBLY__ */
119
120/*
121 * The table below defines the page protection levels that we insert into our
122 * Linux page table version.  These get translated into the best that the
123 * architecture can perform.  Note that on most ARM hardware:
124 *  1) We cannot do execute protection
125 *  2) If we could do execute protection, then read is implied
126 *  3) write implies read permissions
127 */
128#define __P000  __PAGE_NONE
129#define __P001  __PAGE_READONLY
130#define __P010  __PAGE_COPY
131#define __P011  __PAGE_COPY
132#define __P100  __PAGE_READONLY_EXEC
133#define __P101  __PAGE_READONLY_EXEC
134#define __P110  __PAGE_COPY_EXEC
135#define __P111  __PAGE_COPY_EXEC
136
137#define __S000  __PAGE_NONE
138#define __S001  __PAGE_READONLY
139#define __S010  __PAGE_SHARED
140#define __S011  __PAGE_SHARED
141#define __S100  __PAGE_READONLY_EXEC
142#define __S101  __PAGE_READONLY_EXEC
143#define __S110  __PAGE_SHARED_EXEC
144#define __S111  __PAGE_SHARED_EXEC
145
146#ifndef __ASSEMBLY__
147/*
148 * ZERO_PAGE is a global shared page that is always zero: used
149 * for zero-mapped memory areas etc..
150 */
151extern struct page *empty_zero_page;
152#define ZERO_PAGE(vaddr)	(empty_zero_page)
153
154
155extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
156
157/* to find an entry in a page-table-directory */
158#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
159
160#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
161
162/* to find an entry in a kernel page-table-directory */
163#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165#define pmd_none(pmd)		(!pmd_val(pmd))
166#define pmd_present(pmd)	(pmd_val(pmd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168static inline pte_t *pmd_page_vaddr(pmd_t pmd)
169{
170	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
171}
172
173#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
 
 
 
 
174
175#ifndef CONFIG_HIGHPTE
176#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
177#define __pte_unmap(pte)	do { } while (0)
178#else
179#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
180#define __pte_unmap(pte)	kunmap_atomic(pte)
181#endif
182
183#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
184
185#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
186
187#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
188#define pte_unmap(pte)			__pte_unmap(pte)
189
190#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
191#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
192
193#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
194#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
195
 
196#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
197
198#define pte_none(pte)		(!pte_val(pte))
199#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
200#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
201#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
202#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
203#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
204#define pte_special(pte)	(0)
205
206#define pte_present_user(pte) \
207	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
208	 (L_PTE_PRESENT | L_PTE_USER))
209
210#if __LINUX_ARM_ARCH__ < 6
211static inline void __sync_icache_dcache(pte_t pteval)
212{
213}
214#else
215extern void __sync_icache_dcache(pte_t pteval);
216#endif
217
218static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
219			      pte_t *ptep, pte_t pteval)
220{
221	unsigned long ext = 0;
222
223	if (addr < TASK_SIZE && pte_present_user(pteval)) {
224		__sync_icache_dcache(pteval);
225		ext |= PTE_EXT_NG;
226	}
227
228	set_pte_ext(ptep, pteval, ext);
229}
230
 
 
 
 
 
 
 
 
 
 
 
 
231#define PTE_BIT_FUNC(fn,op) \
232static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
233
234PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
235PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
236PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
237PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
238PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
239PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
240
241static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
242
243static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
244{
245	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
246	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
247	return pte;
248}
249
250/*
251 * Encode and decode a swap entry.  Swap entries are stored in the Linux
252 * page tables as follows:
253 *
254 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
255 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
256 *   <--------------- offset ----------------------> < type -> 0 0 0
257 *
258 * This gives us up to 31 swap files and 64GB per swap file.  Note that
259 * the offset field is always non-zero.
260 */
261#define __SWP_TYPE_SHIFT	3
262#define __SWP_TYPE_BITS		5
263#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
264#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
265
266#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
267#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
268#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
269
270#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
271#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
272
273/*
274 * It is an error for the kernel to have more swap files than we can
275 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
276 * is increased beyond what we presently support.
277 */
278#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
279
280/*
281 * Encode and decode a file entry.  File entries are stored in the Linux
282 * page tables as follows:
283 *
284 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
285 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
286 *   <----------------------- offset ------------------------> 1 0 0
287 */
288#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
289#define pte_to_pgoff(x)		(pte_val(x) >> 3)
290#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
291
292#define PTE_FILE_MAX_BITS	29
293
294/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
295/* FIXME: this is not correct */
296#define kern_addr_valid(addr)	(1)
297
298#include <asm-generic/pgtable.h>
299
300/*
301 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
302 */
303#define HAVE_ARCH_UNMAPPED_AREA
304#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
305
306/*
307 * remap a physical page `pfn' of size `size' with page protection `prot'
308 * into virtual address `from'
309 */
310#define io_remap_pfn_range(vma,from,pfn,size,prot) \
311		remap_pfn_range(vma, from, pfn, size, prot)
312
313#define pgtable_cache_init() do { } while (0)
 
 
 
314
315#endif /* !__ASSEMBLY__ */
316
317#endif /* CONFIG_MMU */
318
319#endif /* _ASMARM_PGTABLE_H */
v3.1
  1/*
  2 *  arch/arm/include/asm/pgtable.h
  3 *
  4 *  Copyright (C) 1995-2002 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#ifndef _ASMARM_PGTABLE_H
 11#define _ASMARM_PGTABLE_H
 12
 13#include <linux/const.h>
 14#include <asm-generic/4level-fixup.h>
 15#include <asm/proc-fns.h>
 16
 17#ifndef CONFIG_MMU
 18
 
 19#include "pgtable-nommu.h"
 20
 21#else
 22
 
 23#include <asm/memory.h>
 24#include <mach/vmalloc.h>
 25#include <asm/pgtable-hwdef.h>
 26
 
 
 
 
 
 
 27/*
 28 * Just any arbitrary offset to the start of the vmalloc VM area: the
 29 * current 8MB value just means that there will be a 8MB "hole" after the
 30 * physical memory until the kernel virtual memory starts.  That means that
 31 * any out-of-bounds memory accesses will hopefully be caught.
 32 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 33 * area for the same reason. ;)
 34 *
 35 * Note that platforms may override VMALLOC_START, but they must provide
 36 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 37 * which may not overlap IO space.
 38 */
 39#ifndef VMALLOC_START
 40#define VMALLOC_OFFSET		(8*1024*1024)
 41#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 42#endif
 43
 44/*
 45 * Hardware-wise, we have a two level page table structure, where the first
 46 * level has 4096 entries, and the second level has 256 entries.  Each entry
 47 * is one 32-bit word.  Most of the bits in the second level entry are used
 48 * by hardware, and there aren't any "accessed" and "dirty" bits.
 49 *
 50 * Linux on the other hand has a three level page table structure, which can
 51 * be wrapped to fit a two level page table structure easily - using the PGD
 52 * and PTE only.  However, Linux also expects one "PTE" table per page, and
 53 * at least a "dirty" bit.
 54 *
 55 * Therefore, we tweak the implementation slightly - we tell Linux that we
 56 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 57 * hardware pointers to the second level.)  The second level contains two
 58 * hardware PTE tables arranged contiguously, preceded by Linux versions
 59 * which contain the state information Linux needs.  We, therefore, end up
 60 * with 512 entries in the "PTE" level.
 61 *
 62 * This leads to the page tables having the following layout:
 63 *
 64 *    pgd             pte
 65 * |        |
 66 * +--------+
 67 * |        |       +------------+ +0
 68 * +- - - - +       | Linux pt 0 |
 69 * |        |       +------------+ +1024
 70 * +--------+ +0    | Linux pt 1 |
 71 * |        |-----> +------------+ +2048
 72 * +- - - - + +4    |  h/w pt 0  |
 73 * |        |-----> +------------+ +3072
 74 * +--------+ +8    |  h/w pt 1  |
 75 * |        |       +------------+ +4096
 76 *
 77 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 78 * PTE_xxx for definitions of bits appearing in the "h/w pt".
 79 *
 80 * PMD_xxx definitions refer to bits in the first level page table.
 81 *
 82 * The "dirty" bit is emulated by only granting hardware write permission
 83 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 84 * means that a write to a clean page will cause a permission fault, and
 85 * the Linux MM layer will mark the page dirty via handle_pte_fault().
 86 * For the hardware to notice the permission change, the TLB entry must
 87 * be flushed, and ptep_set_access_flags() does that for us.
 88 *
 89 * The "accessed" or "young" bit is emulated by a similar method; we only
 90 * allow accesses to the page if the "young" bit is set.  Accesses to the
 91 * page will cause a fault, and handle_pte_fault() will set the young bit
 92 * for us as long as the page is marked present in the corresponding Linux
 93 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 94 * up to date.
 95 *
 96 * However, when the "young" bit is cleared, we deny access to the page
 97 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 98 * for us in this case, which means the TLB will retain the transation
 99 * until either the TLB entry is evicted under pressure, or a context
100 * switch which changes the user space mapping occurs.
101 */
102#define PTRS_PER_PTE		512
103#define PTRS_PER_PMD		1
104#define PTRS_PER_PGD		2048
105
106#define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
107#define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
108#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
109
110/*
111 * PMD_SHIFT determines the size of the area a second-level page table can map
112 * PGDIR_SHIFT determines what a third-level page table entry can map
113 */
114#define PMD_SHIFT		21
115#define PGDIR_SHIFT		21
116
117#define LIBRARY_TEXT_START	0x0c000000
118
119#ifndef __ASSEMBLY__
120extern void __pte_error(const char *file, int line, pte_t);
121extern void __pmd_error(const char *file, int line, pmd_t);
122extern void __pgd_error(const char *file, int line, pgd_t);
123
124#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
125#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
126#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
127#endif /* !__ASSEMBLY__ */
128
129#define PMD_SIZE		(1UL << PMD_SHIFT)
130#define PMD_MASK		(~(PMD_SIZE-1))
131#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
132#define PGDIR_MASK		(~(PGDIR_SIZE-1))
133
134/*
135 * This is the lowest virtual address we can permit any user space
136 * mapping to be mapped at.  This is particularly important for
137 * non-high vector CPUs.
138 */
139#define FIRST_USER_ADDRESS	PAGE_SIZE
140
141#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
142
143/*
144 * section address mask and size definitions.
145 */
146#define SECTION_SHIFT		20
147#define SECTION_SIZE		(1UL << SECTION_SHIFT)
148#define SECTION_MASK		(~(SECTION_SIZE-1))
149
150/*
151 * ARMv6 supersection address mask and size definitions.
152 */
153#define SUPERSECTION_SHIFT	24
154#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
155#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
156
157/*
158 * "Linux" PTE definitions.
159 *
160 * We keep two sets of PTEs - the hardware and the linux version.
161 * This allows greater flexibility in the way we map the Linux bits
162 * onto the hardware tables, and allows us to have YOUNG and DIRTY
163 * bits.
164 *
165 * The PTE table pointer refers to the hardware entries; the "Linux"
166 * entries are stored 1024 bytes below.
167 */
168#define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
169#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
170#define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */
171#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
172#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
173#define L_PTE_USER		(_AT(pteval_t, 1) << 8)
174#define L_PTE_XN		(_AT(pteval_t, 1) << 9)
175#define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
176
177/*
178 * These are the memory types, defined to be compatible with
179 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
180 */
181#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
182#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
183#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
184#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
185#define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
186#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
187#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
188#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
189#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
190#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
191#define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
192
193#ifndef __ASSEMBLY__
194
195/*
196 * The pgprot_* and protection_map entries will be fixed up in runtime
197 * to include the cachable and bufferable bits based on memory policy,
198 * as well as any architecture dependent bits like global/ASID and SMP
199 * shared mapping bits.
200 */
201#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
202
203extern pgprot_t		pgprot_user;
204extern pgprot_t		pgprot_kernel;
205
206#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
207
208#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
209#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
210#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
211#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
212#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
213#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
214#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
215#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
216#define PAGE_KERNEL_EXEC	pgprot_kernel
217
218#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
219#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
220#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
221#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
222#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
223#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
224#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
225
226#define __pgprot_modify(prot,mask,bits)		\
227	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
228
229#define pgprot_noncached(prot) \
230	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
231
232#define pgprot_writecombine(prot) \
233	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
234
 
 
 
235#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
236#define pgprot_dmacoherent(prot) \
237	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
238#define __HAVE_PHYS_MEM_ACCESS_PROT
239struct file;
240extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
241				     unsigned long size, pgprot_t vma_prot);
242#else
243#define pgprot_dmacoherent(prot) \
244	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
245#endif
246
247#endif /* __ASSEMBLY__ */
248
249/*
250 * The table below defines the page protection levels that we insert into our
251 * Linux page table version.  These get translated into the best that the
252 * architecture can perform.  Note that on most ARM hardware:
253 *  1) We cannot do execute protection
254 *  2) If we could do execute protection, then read is implied
255 *  3) write implies read permissions
256 */
257#define __P000  __PAGE_NONE
258#define __P001  __PAGE_READONLY
259#define __P010  __PAGE_COPY
260#define __P011  __PAGE_COPY
261#define __P100  __PAGE_READONLY_EXEC
262#define __P101  __PAGE_READONLY_EXEC
263#define __P110  __PAGE_COPY_EXEC
264#define __P111  __PAGE_COPY_EXEC
265
266#define __S000  __PAGE_NONE
267#define __S001  __PAGE_READONLY
268#define __S010  __PAGE_SHARED
269#define __S011  __PAGE_SHARED
270#define __S100  __PAGE_READONLY_EXEC
271#define __S101  __PAGE_READONLY_EXEC
272#define __S110  __PAGE_SHARED_EXEC
273#define __S111  __PAGE_SHARED_EXEC
274
275#ifndef __ASSEMBLY__
276/*
277 * ZERO_PAGE is a global shared page that is always zero: used
278 * for zero-mapped memory areas etc..
279 */
280extern struct page *empty_zero_page;
281#define ZERO_PAGE(vaddr)	(empty_zero_page)
282
283
284extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
285
286/* to find an entry in a page-table-directory */
287#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
288
289#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
290
291/* to find an entry in a kernel page-table-directory */
292#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
293
294/*
295 * The "pgd_xxx()" functions here are trivial for a folded two-level
296 * setup: the pgd is never bad, and a pmd always exists (as it's folded
297 * into the pgd entry)
298 */
299#define pgd_none(pgd)		(0)
300#define pgd_bad(pgd)		(0)
301#define pgd_present(pgd)	(1)
302#define pgd_clear(pgdp)		do { } while (0)
303#define set_pgd(pgd,pgdp)	do { } while (0)
304#define set_pud(pud,pudp)	do { } while (0)
305
306
307/* Find an entry in the second-level page table.. */
308#define pmd_offset(dir, addr)	((pmd_t *)(dir))
309
310#define pmd_none(pmd)		(!pmd_val(pmd))
311#define pmd_present(pmd)	(pmd_val(pmd))
312#define pmd_bad(pmd)		(pmd_val(pmd) & 2)
313
314#define copy_pmd(pmdpd,pmdps)		\
315	do {				\
316		pmdpd[0] = pmdps[0];	\
317		pmdpd[1] = pmdps[1];	\
318		flush_pmd_entry(pmdpd);	\
319	} while (0)
320
321#define pmd_clear(pmdp)			\
322	do {				\
323		pmdp[0] = __pmd(0);	\
324		pmdp[1] = __pmd(0);	\
325		clean_pmd_entry(pmdp);	\
326	} while (0)
327
328static inline pte_t *pmd_page_vaddr(pmd_t pmd)
329{
330	return __va(pmd_val(pmd) & PAGE_MASK);
331}
332
333#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
334
335/* we don't need complex calculations here as the pmd is folded into the pgd */
336#define pmd_addr_end(addr,end)	(end)
337
338
339#ifndef CONFIG_HIGHPTE
340#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
341#define __pte_unmap(pte)	do { } while (0)
342#else
343#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
344#define __pte_unmap(pte)	kunmap_atomic(pte)
345#endif
346
347#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
348
349#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
350
351#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
352#define pte_unmap(pte)			__pte_unmap(pte)
353
354#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
355#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
356
357#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
358#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
359
360#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
361#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
362
 
 
 
 
 
 
 
 
 
 
 
 
363#if __LINUX_ARM_ARCH__ < 6
364static inline void __sync_icache_dcache(pte_t pteval)
365{
366}
367#else
368extern void __sync_icache_dcache(pte_t pteval);
369#endif
370
371static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
372			      pte_t *ptep, pte_t pteval)
373{
374	if (addr >= TASK_SIZE)
375		set_pte_ext(ptep, pteval, 0);
376	else {
377		__sync_icache_dcache(pteval);
378		set_pte_ext(ptep, pteval, PTE_EXT_NG);
379	}
 
 
380}
381
382#define pte_none(pte)		(!pte_val(pte))
383#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
384#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
385#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
386#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
387#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
388#define pte_special(pte)	(0)
389
390#define pte_present_user(pte) \
391	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
392	 (L_PTE_PRESENT | L_PTE_USER))
393
394#define PTE_BIT_FUNC(fn,op) \
395static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
396
397PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
398PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
399PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
400PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
401PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
402PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
403
404static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
405
406static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
407{
408	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
409	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
410	return pte;
411}
412
413/*
414 * Encode and decode a swap entry.  Swap entries are stored in the Linux
415 * page tables as follows:
416 *
417 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
418 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
419 *   <--------------- offset --------------------> <- type --> 0 0 0
420 *
421 * This gives us up to 63 swap files and 32GB per swap file.  Note that
422 * the offset field is always non-zero.
423 */
424#define __SWP_TYPE_SHIFT	3
425#define __SWP_TYPE_BITS		6
426#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
427#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
428
429#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
430#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
431#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
432
433#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
434#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
435
436/*
437 * It is an error for the kernel to have more swap files than we can
438 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
439 * is increased beyond what we presently support.
440 */
441#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
442
443/*
444 * Encode and decode a file entry.  File entries are stored in the Linux
445 * page tables as follows:
446 *
447 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
448 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
449 *   <----------------------- offset ------------------------> 1 0 0
450 */
451#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
452#define pte_to_pgoff(x)		(pte_val(x) >> 3)
453#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
454
455#define PTE_FILE_MAX_BITS	29
456
457/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
458/* FIXME: this is not correct */
459#define kern_addr_valid(addr)	(1)
460
461#include <asm-generic/pgtable.h>
462
463/*
464 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
465 */
466#define HAVE_ARCH_UNMAPPED_AREA
 
467
468/*
469 * remap a physical page `pfn' of size `size' with page protection `prot'
470 * into virtual address `from'
471 */
472#define io_remap_pfn_range(vma,from,pfn,size,prot) \
473		remap_pfn_range(vma, from, pfn, size, prot)
474
475#define pgtable_cache_init() do { } while (0)
476
477void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
478void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
479
480#endif /* !__ASSEMBLY__ */
481
482#endif /* CONFIG_MMU */
483
484#endif /* _ASMARM_PGTABLE_H */