Loading...
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55
56#include "rcutree.h"
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
60
61/* Data structures. */
62
63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64
65#define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \
74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \
76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .orphan_nxttail = &structname##_state.orphan_nxtlist, \
79 .orphan_donetail = &structname##_state.orphan_donelist, \
80 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
81 .n_force_qs = 0, \
82 .n_force_qs_ngp = 0, \
83 .name = #structname, \
84}
85
86struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
87DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
88
89struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
90DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
91
92static struct rcu_state *rcu_state;
93
94/*
95 * The rcu_scheduler_active variable transitions from zero to one just
96 * before the first task is spawned. So when this variable is zero, RCU
97 * can assume that there is but one task, allowing RCU to (for example)
98 * optimized synchronize_sched() to a simple barrier(). When this variable
99 * is one, RCU must actually do all the hard work required to detect real
100 * grace periods. This variable is also used to suppress boot-time false
101 * positives from lockdep-RCU error checking.
102 */
103int rcu_scheduler_active __read_mostly;
104EXPORT_SYMBOL_GPL(rcu_scheduler_active);
105
106/*
107 * The rcu_scheduler_fully_active variable transitions from zero to one
108 * during the early_initcall() processing, which is after the scheduler
109 * is capable of creating new tasks. So RCU processing (for example,
110 * creating tasks for RCU priority boosting) must be delayed until after
111 * rcu_scheduler_fully_active transitions from zero to one. We also
112 * currently delay invocation of any RCU callbacks until after this point.
113 *
114 * It might later prove better for people registering RCU callbacks during
115 * early boot to take responsibility for these callbacks, but one step at
116 * a time.
117 */
118static int rcu_scheduler_fully_active __read_mostly;
119
120#ifdef CONFIG_RCU_BOOST
121
122/*
123 * Control variables for per-CPU and per-rcu_node kthreads. These
124 * handle all flavors of RCU.
125 */
126static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
128DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
129DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
130DEFINE_PER_CPU(char, rcu_cpu_has_work);
131
132#endif /* #ifdef CONFIG_RCU_BOOST */
133
134static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
135static void invoke_rcu_core(void);
136static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
137
138/*
139 * Track the rcutorture test sequence number and the update version
140 * number within a given test. The rcutorture_testseq is incremented
141 * on every rcutorture module load and unload, so has an odd value
142 * when a test is running. The rcutorture_vernum is set to zero
143 * when rcutorture starts and is incremented on each rcutorture update.
144 * These variables enable correlating rcutorture output with the
145 * RCU tracing information.
146 */
147unsigned long rcutorture_testseq;
148unsigned long rcutorture_vernum;
149
150/* State information for rcu_barrier() and friends. */
151
152static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
153static atomic_t rcu_barrier_cpu_count;
154static DEFINE_MUTEX(rcu_barrier_mutex);
155static struct completion rcu_barrier_completion;
156
157/*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162static int rcu_gp_in_progress(struct rcu_state *rsp)
163{
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165}
166
167/*
168 * Note a quiescent state. Because we do not need to know
169 * how many quiescent states passed, just if there was at least
170 * one since the start of the grace period, this just sets a flag.
171 * The caller must have disabled preemption.
172 */
173void rcu_sched_qs(int cpu)
174{
175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182}
183
184void rcu_bh_qs(int cpu)
185{
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 rdp->passed_quiesce_gpnum = rdp->gpnum;
189 barrier();
190 if (rdp->passed_quiesce == 0)
191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192 rdp->passed_quiesce = 1;
193}
194
195/*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
198 * The caller must have disabled preemption.
199 */
200void rcu_note_context_switch(int cpu)
201{
202 trace_rcu_utilization("Start context switch");
203 rcu_sched_qs(cpu);
204 rcu_preempt_note_context_switch(cpu);
205 trace_rcu_utilization("End context switch");
206}
207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
208
209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211 .dynticks = ATOMIC_INIT(1),
212};
213
214static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
215static int qhimark = 10000; /* If this many pending, ignore blimit. */
216static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
218module_param(blimit, int, 0);
219module_param(qhimark, int, 0);
220module_param(qlowmark, int, 0);
221
222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
225module_param(rcu_cpu_stall_suppress, int, 0644);
226module_param(rcu_cpu_stall_timeout, int, 0644);
227
228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
229static int rcu_pending(int cpu);
230
231/*
232 * Return the number of RCU-sched batches processed thus far for debug & stats.
233 */
234long rcu_batches_completed_sched(void)
235{
236 return rcu_sched_state.completed;
237}
238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
239
240/*
241 * Return the number of RCU BH batches processed thus far for debug & stats.
242 */
243long rcu_batches_completed_bh(void)
244{
245 return rcu_bh_state.completed;
246}
247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
248
249/*
250 * Force a quiescent state for RCU BH.
251 */
252void rcu_bh_force_quiescent_state(void)
253{
254 force_quiescent_state(&rcu_bh_state, 0);
255}
256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
257
258/*
259 * Record the number of times rcutorture tests have been initiated and
260 * terminated. This information allows the debugfs tracing stats to be
261 * correlated to the rcutorture messages, even when the rcutorture module
262 * is being repeatedly loaded and unloaded. In other words, we cannot
263 * store this state in rcutorture itself.
264 */
265void rcutorture_record_test_transition(void)
266{
267 rcutorture_testseq++;
268 rcutorture_vernum = 0;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
271
272/*
273 * Record the number of writer passes through the current rcutorture test.
274 * This is also used to correlate debugfs tracing stats with the rcutorture
275 * messages.
276 */
277void rcutorture_record_progress(unsigned long vernum)
278{
279 rcutorture_vernum++;
280}
281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
282
283/*
284 * Force a quiescent state for RCU-sched.
285 */
286void rcu_sched_force_quiescent_state(void)
287{
288 force_quiescent_state(&rcu_sched_state, 0);
289}
290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
291
292/*
293 * Does the CPU have callbacks ready to be invoked?
294 */
295static int
296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
297{
298 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
299}
300
301/*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304static int
305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306{
307 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
308}
309
310/*
311 * Return the root node of the specified rcu_state structure.
312 */
313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
314{
315 return &rsp->node[0];
316}
317
318/*
319 * If the specified CPU is offline, tell the caller that it is in
320 * a quiescent state. Otherwise, whack it with a reschedule IPI.
321 * Grace periods can end up waiting on an offline CPU when that
322 * CPU is in the process of coming online -- it will be added to the
323 * rcu_node bitmasks before it actually makes it online. The same thing
324 * can happen while a CPU is in the process of coming online. Because this
325 * race is quite rare, we check for it after detecting that the grace
326 * period has been delayed rather than checking each and every CPU
327 * each and every time we start a new grace period.
328 */
329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
330{
331 /*
332 * If the CPU is offline for more than a jiffy, it is in a quiescent
333 * state. We can trust its state not to change because interrupts
334 * are disabled. The reason for the jiffy's worth of slack is to
335 * handle CPUs initializing on the way up and finding their way
336 * to the idle loop on the way down.
337 */
338 if (cpu_is_offline(rdp->cpu) &&
339 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
340 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
341 rdp->offline_fqs++;
342 return 1;
343 }
344 return 0;
345}
346
347/*
348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 *
350 * If the new value of the ->dynticks_nesting counter now is zero,
351 * we really have entered idle, and must do the appropriate accounting.
352 * The caller must have disabled interrupts.
353 */
354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
355{
356 trace_rcu_dyntick("Start", oldval, 0);
357 if (!is_idle_task(current)) {
358 struct task_struct *idle = idle_task(smp_processor_id());
359
360 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
361 ftrace_dump(DUMP_ALL);
362 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
363 current->pid, current->comm,
364 idle->pid, idle->comm); /* must be idle task! */
365 }
366 rcu_prepare_for_idle(smp_processor_id());
367 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
368 smp_mb__before_atomic_inc(); /* See above. */
369 atomic_inc(&rdtp->dynticks);
370 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
371 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
372
373 /*
374 * The idle task is not permitted to enter the idle loop while
375 * in an RCU read-side critical section.
376 */
377 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
378 "Illegal idle entry in RCU read-side critical section.");
379 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
380 "Illegal idle entry in RCU-bh read-side critical section.");
381 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
382 "Illegal idle entry in RCU-sched read-side critical section.");
383}
384
385/**
386 * rcu_idle_enter - inform RCU that current CPU is entering idle
387 *
388 * Enter idle mode, in other words, -leave- the mode in which RCU
389 * read-side critical sections can occur. (Though RCU read-side
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
396 */
397void rcu_idle_enter(void)
398{
399 unsigned long flags;
400 long long oldval;
401 struct rcu_dynticks *rdtp;
402
403 local_irq_save(flags);
404 rdtp = &__get_cpu_var(rcu_dynticks);
405 oldval = rdtp->dynticks_nesting;
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
411 rcu_idle_enter_common(rdtp, oldval);
412 local_irq_restore(flags);
413}
414EXPORT_SYMBOL_GPL(rcu_idle_enter);
415
416/**
417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 *
419 * Exit from an interrupt handler, which might possibly result in entering
420 * idle mode, in other words, leaving the mode in which read-side critical
421 * sections can occur.
422 *
423 * This code assumes that the idle loop never does anything that might
424 * result in unbalanced calls to irq_enter() and irq_exit(). If your
425 * architecture violates this assumption, RCU will give you what you
426 * deserve, good and hard. But very infrequently and irreproducibly.
427 *
428 * Use things like work queues to work around this limitation.
429 *
430 * You have been warned.
431 */
432void rcu_irq_exit(void)
433{
434 unsigned long flags;
435 long long oldval;
436 struct rcu_dynticks *rdtp;
437
438 local_irq_save(flags);
439 rdtp = &__get_cpu_var(rcu_dynticks);
440 oldval = rdtp->dynticks_nesting;
441 rdtp->dynticks_nesting--;
442 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
443 if (rdtp->dynticks_nesting)
444 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
445 else
446 rcu_idle_enter_common(rdtp, oldval);
447 local_irq_restore(flags);
448}
449
450/*
451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 *
453 * If the new value of the ->dynticks_nesting counter was previously zero,
454 * we really have exited idle, and must do the appropriate accounting.
455 * The caller must have disabled interrupts.
456 */
457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
458{
459 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
460 atomic_inc(&rdtp->dynticks);
461 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
462 smp_mb__after_atomic_inc(); /* See above. */
463 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
464 rcu_cleanup_after_idle(smp_processor_id());
465 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
466 if (!is_idle_task(current)) {
467 struct task_struct *idle = idle_task(smp_processor_id());
468
469 trace_rcu_dyntick("Error on exit: not idle task",
470 oldval, rdtp->dynticks_nesting);
471 ftrace_dump(DUMP_ALL);
472 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
473 current->pid, current->comm,
474 idle->pid, idle->comm); /* must be idle task! */
475 }
476}
477
478/**
479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 *
481 * Exit idle mode, in other words, -enter- the mode in which RCU
482 * read-side critical sections can occur.
483 *
484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
485 * allow for the possibility of usermode upcalls messing up our count
486 * of interrupt nesting level during the busy period that is just
487 * now starting.
488 */
489void rcu_idle_exit(void)
490{
491 unsigned long flags;
492 struct rcu_dynticks *rdtp;
493 long long oldval;
494
495 local_irq_save(flags);
496 rdtp = &__get_cpu_var(rcu_dynticks);
497 oldval = rdtp->dynticks_nesting;
498 WARN_ON_ONCE(oldval < 0);
499 if (oldval & DYNTICK_TASK_NEST_MASK)
500 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
501 else
502 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
503 rcu_idle_exit_common(rdtp, oldval);
504 local_irq_restore(flags);
505}
506EXPORT_SYMBOL_GPL(rcu_idle_exit);
507
508/**
509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 *
511 * Enter an interrupt handler, which might possibly result in exiting
512 * idle mode, in other words, entering the mode in which read-side critical
513 * sections can occur.
514 *
515 * Note that the Linux kernel is fully capable of entering an interrupt
516 * handler that it never exits, for example when doing upcalls to
517 * user mode! This code assumes that the idle loop never does upcalls to
518 * user mode. If your architecture does do upcalls from the idle loop (or
519 * does anything else that results in unbalanced calls to the irq_enter()
520 * and irq_exit() functions), RCU will give you what you deserve, good
521 * and hard. But very infrequently and irreproducibly.
522 *
523 * Use things like work queues to work around this limitation.
524 *
525 * You have been warned.
526 */
527void rcu_irq_enter(void)
528{
529 unsigned long flags;
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 local_irq_save(flags);
534 rdtp = &__get_cpu_var(rcu_dynticks);
535 oldval = rdtp->dynticks_nesting;
536 rdtp->dynticks_nesting++;
537 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
538 if (oldval)
539 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
540 else
541 rcu_idle_exit_common(rdtp, oldval);
542 local_irq_restore(flags);
543}
544
545/**
546 * rcu_nmi_enter - inform RCU of entry to NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is active.
551 */
552void rcu_nmi_enter(void)
553{
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
556 if (rdtp->dynticks_nmi_nesting == 0 &&
557 (atomic_read(&rdtp->dynticks) & 0x1))
558 return;
559 rdtp->dynticks_nmi_nesting++;
560 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
561 atomic_inc(&rdtp->dynticks);
562 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
563 smp_mb__after_atomic_inc(); /* See above. */
564 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
565}
566
567/**
568 * rcu_nmi_exit - inform RCU of exit from NMI context
569 *
570 * If the CPU was idle with dynamic ticks active, and there is no
571 * irq handler running, this updates rdtp->dynticks_nmi to let the
572 * RCU grace-period handling know that the CPU is no longer active.
573 */
574void rcu_nmi_exit(void)
575{
576 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
577
578 if (rdtp->dynticks_nmi_nesting == 0 ||
579 --rdtp->dynticks_nmi_nesting != 0)
580 return;
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic_inc(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic_inc(); /* Force delay to next write. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
586}
587
588#ifdef CONFIG_PROVE_RCU
589
590/**
591 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
592 *
593 * If the current CPU is in its idle loop and is neither in an interrupt
594 * or NMI handler, return true.
595 */
596int rcu_is_cpu_idle(void)
597{
598 int ret;
599
600 preempt_disable();
601 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
602 preempt_enable();
603 return ret;
604}
605EXPORT_SYMBOL(rcu_is_cpu_idle);
606
607#ifdef CONFIG_HOTPLUG_CPU
608
609/*
610 * Is the current CPU online? Disable preemption to avoid false positives
611 * that could otherwise happen due to the current CPU number being sampled,
612 * this task being preempted, its old CPU being taken offline, resuming
613 * on some other CPU, then determining that its old CPU is now offline.
614 * It is OK to use RCU on an offline processor during initial boot, hence
615 * the check for rcu_scheduler_fully_active. Note also that it is OK
616 * for a CPU coming online to use RCU for one jiffy prior to marking itself
617 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
618 * offline to continue to use RCU for one jiffy after marking itself
619 * offline in the cpu_online_mask. This leniency is necessary given the
620 * non-atomic nature of the online and offline processing, for example,
621 * the fact that a CPU enters the scheduler after completing the CPU_DYING
622 * notifiers.
623 *
624 * This is also why RCU internally marks CPUs online during the
625 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
626 *
627 * Disable checking if in an NMI handler because we cannot safely report
628 * errors from NMI handlers anyway.
629 */
630bool rcu_lockdep_current_cpu_online(void)
631{
632 struct rcu_data *rdp;
633 struct rcu_node *rnp;
634 bool ret;
635
636 if (in_nmi())
637 return 1;
638 preempt_disable();
639 rdp = &__get_cpu_var(rcu_sched_data);
640 rnp = rdp->mynode;
641 ret = (rdp->grpmask & rnp->qsmaskinit) ||
642 !rcu_scheduler_fully_active;
643 preempt_enable();
644 return ret;
645}
646EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
647
648#endif /* #ifdef CONFIG_HOTPLUG_CPU */
649
650#endif /* #ifdef CONFIG_PROVE_RCU */
651
652/**
653 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
654 *
655 * If the current CPU is idle or running at a first-level (not nested)
656 * interrupt from idle, return true. The caller must have at least
657 * disabled preemption.
658 */
659int rcu_is_cpu_rrupt_from_idle(void)
660{
661 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
662}
663
664/*
665 * Snapshot the specified CPU's dynticks counter so that we can later
666 * credit them with an implicit quiescent state. Return 1 if this CPU
667 * is in dynticks idle mode, which is an extended quiescent state.
668 */
669static int dyntick_save_progress_counter(struct rcu_data *rdp)
670{
671 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
672 return (rdp->dynticks_snap & 0x1) == 0;
673}
674
675/*
676 * Return true if the specified CPU has passed through a quiescent
677 * state by virtue of being in or having passed through an dynticks
678 * idle state since the last call to dyntick_save_progress_counter()
679 * for this same CPU.
680 */
681static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
682{
683 unsigned int curr;
684 unsigned int snap;
685
686 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
687 snap = (unsigned int)rdp->dynticks_snap;
688
689 /*
690 * If the CPU passed through or entered a dynticks idle phase with
691 * no active irq/NMI handlers, then we can safely pretend that the CPU
692 * already acknowledged the request to pass through a quiescent
693 * state. Either way, that CPU cannot possibly be in an RCU
694 * read-side critical section that started before the beginning
695 * of the current RCU grace period.
696 */
697 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
698 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
699 rdp->dynticks_fqs++;
700 return 1;
701 }
702
703 /* Go check for the CPU being offline. */
704 return rcu_implicit_offline_qs(rdp);
705}
706
707static int jiffies_till_stall_check(void)
708{
709 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
710
711 /*
712 * Limit check must be consistent with the Kconfig limits
713 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
714 */
715 if (till_stall_check < 3) {
716 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
717 till_stall_check = 3;
718 } else if (till_stall_check > 300) {
719 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
720 till_stall_check = 300;
721 }
722 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
723}
724
725static void record_gp_stall_check_time(struct rcu_state *rsp)
726{
727 rsp->gp_start = jiffies;
728 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
729}
730
731static void print_other_cpu_stall(struct rcu_state *rsp)
732{
733 int cpu;
734 long delta;
735 unsigned long flags;
736 int ndetected;
737 struct rcu_node *rnp = rcu_get_root(rsp);
738
739 /* Only let one CPU complain about others per time interval. */
740
741 raw_spin_lock_irqsave(&rnp->lock, flags);
742 delta = jiffies - rsp->jiffies_stall;
743 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
745 return;
746 }
747 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
748 raw_spin_unlock_irqrestore(&rnp->lock, flags);
749
750 /*
751 * OK, time to rat on our buddy...
752 * See Documentation/RCU/stallwarn.txt for info on how to debug
753 * RCU CPU stall warnings.
754 */
755 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
756 rsp->name);
757 print_cpu_stall_info_begin();
758 rcu_for_each_leaf_node(rsp, rnp) {
759 raw_spin_lock_irqsave(&rnp->lock, flags);
760 ndetected += rcu_print_task_stall(rnp);
761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
762 if (rnp->qsmask == 0)
763 continue;
764 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
765 if (rnp->qsmask & (1UL << cpu)) {
766 print_cpu_stall_info(rsp, rnp->grplo + cpu);
767 ndetected++;
768 }
769 }
770
771 /*
772 * Now rat on any tasks that got kicked up to the root rcu_node
773 * due to CPU offlining.
774 */
775 rnp = rcu_get_root(rsp);
776 raw_spin_lock_irqsave(&rnp->lock, flags);
777 ndetected = rcu_print_task_stall(rnp);
778 raw_spin_unlock_irqrestore(&rnp->lock, flags);
779
780 print_cpu_stall_info_end();
781 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
782 smp_processor_id(), (long)(jiffies - rsp->gp_start));
783 if (ndetected == 0)
784 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
785 else if (!trigger_all_cpu_backtrace())
786 dump_stack();
787
788 /* If so configured, complain about tasks blocking the grace period. */
789
790 rcu_print_detail_task_stall(rsp);
791
792 force_quiescent_state(rsp, 0); /* Kick them all. */
793}
794
795static void print_cpu_stall(struct rcu_state *rsp)
796{
797 unsigned long flags;
798 struct rcu_node *rnp = rcu_get_root(rsp);
799
800 /*
801 * OK, time to rat on ourselves...
802 * See Documentation/RCU/stallwarn.txt for info on how to debug
803 * RCU CPU stall warnings.
804 */
805 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
806 print_cpu_stall_info_begin();
807 print_cpu_stall_info(rsp, smp_processor_id());
808 print_cpu_stall_info_end();
809 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
810 if (!trigger_all_cpu_backtrace())
811 dump_stack();
812
813 raw_spin_lock_irqsave(&rnp->lock, flags);
814 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
815 rsp->jiffies_stall = jiffies +
816 3 * jiffies_till_stall_check() + 3;
817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
818
819 set_need_resched(); /* kick ourselves to get things going. */
820}
821
822static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
823{
824 unsigned long j;
825 unsigned long js;
826 struct rcu_node *rnp;
827
828 if (rcu_cpu_stall_suppress)
829 return;
830 j = ACCESS_ONCE(jiffies);
831 js = ACCESS_ONCE(rsp->jiffies_stall);
832 rnp = rdp->mynode;
833 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
834
835 /* We haven't checked in, so go dump stack. */
836 print_cpu_stall(rsp);
837
838 } else if (rcu_gp_in_progress(rsp) &&
839 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
840
841 /* They had a few time units to dump stack, so complain. */
842 print_other_cpu_stall(rsp);
843 }
844}
845
846static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
847{
848 rcu_cpu_stall_suppress = 1;
849 return NOTIFY_DONE;
850}
851
852/**
853 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
854 *
855 * Set the stall-warning timeout way off into the future, thus preventing
856 * any RCU CPU stall-warning messages from appearing in the current set of
857 * RCU grace periods.
858 *
859 * The caller must disable hard irqs.
860 */
861void rcu_cpu_stall_reset(void)
862{
863 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
864 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
865 rcu_preempt_stall_reset();
866}
867
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
883 */
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
892 rdp->gpnum = rnp->gpnum;
893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
896 rdp->passed_quiesce = 0;
897 } else
898 rdp->qs_pending = 0;
899 zero_cpu_stall_ticks(rdp);
900 }
901}
902
903static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
904{
905 unsigned long flags;
906 struct rcu_node *rnp;
907
908 local_irq_save(flags);
909 rnp = rdp->mynode;
910 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
911 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
912 local_irq_restore(flags);
913 return;
914 }
915 __note_new_gpnum(rsp, rnp, rdp);
916 raw_spin_unlock_irqrestore(&rnp->lock, flags);
917}
918
919/*
920 * Did someone else start a new RCU grace period start since we last
921 * checked? Update local state appropriately if so. Must be called
922 * on the CPU corresponding to rdp.
923 */
924static int
925check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
926{
927 unsigned long flags;
928 int ret = 0;
929
930 local_irq_save(flags);
931 if (rdp->gpnum != rsp->gpnum) {
932 note_new_gpnum(rsp, rdp);
933 ret = 1;
934 }
935 local_irq_restore(flags);
936 return ret;
937}
938
939/*
940 * Advance this CPU's callbacks, but only if the current grace period
941 * has ended. This may be called only from the CPU to whom the rdp
942 * belongs. In addition, the corresponding leaf rcu_node structure's
943 * ->lock must be held by the caller, with irqs disabled.
944 */
945static void
946__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
947{
948 /* Did another grace period end? */
949 if (rdp->completed != rnp->completed) {
950
951 /* Advance callbacks. No harm if list empty. */
952 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
953 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
954 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
955
956 /* Remember that we saw this grace-period completion. */
957 rdp->completed = rnp->completed;
958 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
959
960 /*
961 * If we were in an extended quiescent state, we may have
962 * missed some grace periods that others CPUs handled on
963 * our behalf. Catch up with this state to avoid noting
964 * spurious new grace periods. If another grace period
965 * has started, then rnp->gpnum will have advanced, so
966 * we will detect this later on.
967 */
968 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
969 rdp->gpnum = rdp->completed;
970
971 /*
972 * If RCU does not need a quiescent state from this CPU,
973 * then make sure that this CPU doesn't go looking for one.
974 */
975 if ((rnp->qsmask & rdp->grpmask) == 0)
976 rdp->qs_pending = 0;
977 }
978}
979
980/*
981 * Advance this CPU's callbacks, but only if the current grace period
982 * has ended. This may be called only from the CPU to whom the rdp
983 * belongs.
984 */
985static void
986rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
987{
988 unsigned long flags;
989 struct rcu_node *rnp;
990
991 local_irq_save(flags);
992 rnp = rdp->mynode;
993 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
994 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
995 local_irq_restore(flags);
996 return;
997 }
998 __rcu_process_gp_end(rsp, rnp, rdp);
999 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000}
1001
1002/*
1003 * Do per-CPU grace-period initialization for running CPU. The caller
1004 * must hold the lock of the leaf rcu_node structure corresponding to
1005 * this CPU.
1006 */
1007static void
1008rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1009{
1010 /* Prior grace period ended, so advance callbacks for current CPU. */
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1012
1013 /*
1014 * Because this CPU just now started the new grace period, we know
1015 * that all of its callbacks will be covered by this upcoming grace
1016 * period, even the ones that were registered arbitrarily recently.
1017 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1018 *
1019 * Other CPUs cannot be sure exactly when the grace period started.
1020 * Therefore, their recently registered callbacks must pass through
1021 * an additional RCU_NEXT_READY stage, so that they will be handled
1022 * by the next RCU grace period.
1023 */
1024 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1026
1027 /* Set state so that this CPU will detect the next quiescent state. */
1028 __note_new_gpnum(rsp, rnp, rdp);
1029}
1030
1031/*
1032 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1033 * in preparation for detecting the next grace period. The caller must hold
1034 * the root node's ->lock, which is released before return. Hard irqs must
1035 * be disabled.
1036 *
1037 * Note that it is legal for a dying CPU (which is marked as offline) to
1038 * invoke this function. This can happen when the dying CPU reports its
1039 * quiescent state.
1040 */
1041static void
1042rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1043 __releases(rcu_get_root(rsp)->lock)
1044{
1045 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1046 struct rcu_node *rnp = rcu_get_root(rsp);
1047
1048 if (!rcu_scheduler_fully_active ||
1049 !cpu_needs_another_gp(rsp, rdp)) {
1050 /*
1051 * Either the scheduler hasn't yet spawned the first
1052 * non-idle task or this CPU does not need another
1053 * grace period. Either way, don't start a new grace
1054 * period.
1055 */
1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057 return;
1058 }
1059
1060 if (rsp->fqs_active) {
1061 /*
1062 * This CPU needs a grace period, but force_quiescent_state()
1063 * is running. Tell it to start one on this CPU's behalf.
1064 */
1065 rsp->fqs_need_gp = 1;
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 return;
1068 }
1069
1070 /* Advance to a new grace period and initialize state. */
1071 rsp->gpnum++;
1072 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1073 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1074 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1075 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1076 record_gp_stall_check_time(rsp);
1077 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1078
1079 /* Exclude any concurrent CPU-hotplug operations. */
1080 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1081
1082 /*
1083 * Set the quiescent-state-needed bits in all the rcu_node
1084 * structures for all currently online CPUs in breadth-first
1085 * order, starting from the root rcu_node structure. This
1086 * operation relies on the layout of the hierarchy within the
1087 * rsp->node[] array. Note that other CPUs will access only
1088 * the leaves of the hierarchy, which still indicate that no
1089 * grace period is in progress, at least until the corresponding
1090 * leaf node has been initialized. In addition, we have excluded
1091 * CPU-hotplug operations.
1092 *
1093 * Note that the grace period cannot complete until we finish
1094 * the initialization process, as there will be at least one
1095 * qsmask bit set in the root node until that time, namely the
1096 * one corresponding to this CPU, due to the fact that we have
1097 * irqs disabled.
1098 */
1099 rcu_for_each_node_breadth_first(rsp, rnp) {
1100 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1101 rcu_preempt_check_blocked_tasks(rnp);
1102 rnp->qsmask = rnp->qsmaskinit;
1103 rnp->gpnum = rsp->gpnum;
1104 rnp->completed = rsp->completed;
1105 if (rnp == rdp->mynode)
1106 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1107 rcu_preempt_boost_start_gp(rnp);
1108 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1109 rnp->level, rnp->grplo,
1110 rnp->grphi, rnp->qsmask);
1111 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1112 }
1113
1114 rnp = rcu_get_root(rsp);
1115 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1116 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1117 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1118 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1119}
1120
1121/*
1122 * Report a full set of quiescent states to the specified rcu_state
1123 * data structure. This involves cleaning up after the prior grace
1124 * period and letting rcu_start_gp() start up the next grace period
1125 * if one is needed. Note that the caller must hold rnp->lock, as
1126 * required by rcu_start_gp(), which will release it.
1127 */
1128static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1129 __releases(rcu_get_root(rsp)->lock)
1130{
1131 unsigned long gp_duration;
1132 struct rcu_node *rnp = rcu_get_root(rsp);
1133 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1134
1135 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1136
1137 /*
1138 * Ensure that all grace-period and pre-grace-period activity
1139 * is seen before the assignment to rsp->completed.
1140 */
1141 smp_mb(); /* See above block comment. */
1142 gp_duration = jiffies - rsp->gp_start;
1143 if (gp_duration > rsp->gp_max)
1144 rsp->gp_max = gp_duration;
1145
1146 /*
1147 * We know the grace period is complete, but to everyone else
1148 * it appears to still be ongoing. But it is also the case
1149 * that to everyone else it looks like there is nothing that
1150 * they can do to advance the grace period. It is therefore
1151 * safe for us to drop the lock in order to mark the grace
1152 * period as completed in all of the rcu_node structures.
1153 *
1154 * But if this CPU needs another grace period, it will take
1155 * care of this while initializing the next grace period.
1156 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1157 * because the callbacks have not yet been advanced: Those
1158 * callbacks are waiting on the grace period that just now
1159 * completed.
1160 */
1161 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1162 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1163
1164 /*
1165 * Propagate new ->completed value to rcu_node structures
1166 * so that other CPUs don't have to wait until the start
1167 * of the next grace period to process their callbacks.
1168 */
1169 rcu_for_each_node_breadth_first(rsp, rnp) {
1170 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1171 rnp->completed = rsp->gpnum;
1172 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173 }
1174 rnp = rcu_get_root(rsp);
1175 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1176 }
1177
1178 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1179 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1180 rsp->fqs_state = RCU_GP_IDLE;
1181 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1182}
1183
1184/*
1185 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1186 * Allows quiescent states for a group of CPUs to be reported at one go
1187 * to the specified rcu_node structure, though all the CPUs in the group
1188 * must be represented by the same rcu_node structure (which need not be
1189 * a leaf rcu_node structure, though it often will be). That structure's
1190 * lock must be held upon entry, and it is released before return.
1191 */
1192static void
1193rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1194 struct rcu_node *rnp, unsigned long flags)
1195 __releases(rnp->lock)
1196{
1197 struct rcu_node *rnp_c;
1198
1199 /* Walk up the rcu_node hierarchy. */
1200 for (;;) {
1201 if (!(rnp->qsmask & mask)) {
1202
1203 /* Our bit has already been cleared, so done. */
1204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1205 return;
1206 }
1207 rnp->qsmask &= ~mask;
1208 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1209 mask, rnp->qsmask, rnp->level,
1210 rnp->grplo, rnp->grphi,
1211 !!rnp->gp_tasks);
1212 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1213
1214 /* Other bits still set at this level, so done. */
1215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216 return;
1217 }
1218 mask = rnp->grpmask;
1219 if (rnp->parent == NULL) {
1220
1221 /* No more levels. Exit loop holding root lock. */
1222
1223 break;
1224 }
1225 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1226 rnp_c = rnp;
1227 rnp = rnp->parent;
1228 raw_spin_lock_irqsave(&rnp->lock, flags);
1229 WARN_ON_ONCE(rnp_c->qsmask);
1230 }
1231
1232 /*
1233 * Get here if we are the last CPU to pass through a quiescent
1234 * state for this grace period. Invoke rcu_report_qs_rsp()
1235 * to clean up and start the next grace period if one is needed.
1236 */
1237 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1238}
1239
1240/*
1241 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1242 * structure. This must be either called from the specified CPU, or
1243 * called when the specified CPU is known to be offline (and when it is
1244 * also known that no other CPU is concurrently trying to help the offline
1245 * CPU). The lastcomp argument is used to make sure we are still in the
1246 * grace period of interest. We don't want to end the current grace period
1247 * based on quiescent states detected in an earlier grace period!
1248 */
1249static void
1250rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1251{
1252 unsigned long flags;
1253 unsigned long mask;
1254 struct rcu_node *rnp;
1255
1256 rnp = rdp->mynode;
1257 raw_spin_lock_irqsave(&rnp->lock, flags);
1258 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1259
1260 /*
1261 * The grace period in which this quiescent state was
1262 * recorded has ended, so don't report it upwards.
1263 * We will instead need a new quiescent state that lies
1264 * within the current grace period.
1265 */
1266 rdp->passed_quiesce = 0; /* need qs for new gp. */
1267 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1268 return;
1269 }
1270 mask = rdp->grpmask;
1271 if ((rnp->qsmask & mask) == 0) {
1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273 } else {
1274 rdp->qs_pending = 0;
1275
1276 /*
1277 * This GP can't end until cpu checks in, so all of our
1278 * callbacks can be processed during the next GP.
1279 */
1280 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1281
1282 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1283 }
1284}
1285
1286/*
1287 * Check to see if there is a new grace period of which this CPU
1288 * is not yet aware, and if so, set up local rcu_data state for it.
1289 * Otherwise, see if this CPU has just passed through its first
1290 * quiescent state for this grace period, and record that fact if so.
1291 */
1292static void
1293rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1294{
1295 /* If there is now a new grace period, record and return. */
1296 if (check_for_new_grace_period(rsp, rdp))
1297 return;
1298
1299 /*
1300 * Does this CPU still need to do its part for current grace period?
1301 * If no, return and let the other CPUs do their part as well.
1302 */
1303 if (!rdp->qs_pending)
1304 return;
1305
1306 /*
1307 * Was there a quiescent state since the beginning of the grace
1308 * period? If no, then exit and wait for the next call.
1309 */
1310 if (!rdp->passed_quiesce)
1311 return;
1312
1313 /*
1314 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1315 * judge of that).
1316 */
1317 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1318}
1319
1320#ifdef CONFIG_HOTPLUG_CPU
1321
1322/*
1323 * Send the specified CPU's RCU callbacks to the orphanage. The
1324 * specified CPU must be offline, and the caller must hold the
1325 * ->onofflock.
1326 */
1327static void
1328rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1329 struct rcu_node *rnp, struct rcu_data *rdp)
1330{
1331 int i;
1332
1333 /*
1334 * Orphan the callbacks. First adjust the counts. This is safe
1335 * because ->onofflock excludes _rcu_barrier()'s adoption of
1336 * the callbacks, thus no memory barrier is required.
1337 */
1338 if (rdp->nxtlist != NULL) {
1339 rsp->qlen_lazy += rdp->qlen_lazy;
1340 rsp->qlen += rdp->qlen;
1341 rdp->n_cbs_orphaned += rdp->qlen;
1342 rdp->qlen_lazy = 0;
1343 rdp->qlen = 0;
1344 }
1345
1346 /*
1347 * Next, move those callbacks still needing a grace period to
1348 * the orphanage, where some other CPU will pick them up.
1349 * Some of the callbacks might have gone partway through a grace
1350 * period, but that is too bad. They get to start over because we
1351 * cannot assume that grace periods are synchronized across CPUs.
1352 * We don't bother updating the ->nxttail[] array yet, instead
1353 * we just reset the whole thing later on.
1354 */
1355 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1356 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1357 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1358 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1359 }
1360
1361 /*
1362 * Then move the ready-to-invoke callbacks to the orphanage,
1363 * where some other CPU will pick them up. These will not be
1364 * required to pass though another grace period: They are done.
1365 */
1366 if (rdp->nxtlist != NULL) {
1367 *rsp->orphan_donetail = rdp->nxtlist;
1368 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1369 }
1370
1371 /* Finally, initialize the rcu_data structure's list to empty. */
1372 rdp->nxtlist = NULL;
1373 for (i = 0; i < RCU_NEXT_SIZE; i++)
1374 rdp->nxttail[i] = &rdp->nxtlist;
1375}
1376
1377/*
1378 * Adopt the RCU callbacks from the specified rcu_state structure's
1379 * orphanage. The caller must hold the ->onofflock.
1380 */
1381static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1382{
1383 int i;
1384 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1385
1386 /*
1387 * If there is an rcu_barrier() operation in progress, then
1388 * only the task doing that operation is permitted to adopt
1389 * callbacks. To do otherwise breaks rcu_barrier() and friends
1390 * by causing them to fail to wait for the callbacks in the
1391 * orphanage.
1392 */
1393 if (rsp->rcu_barrier_in_progress &&
1394 rsp->rcu_barrier_in_progress != current)
1395 return;
1396
1397 /* Do the accounting first. */
1398 rdp->qlen_lazy += rsp->qlen_lazy;
1399 rdp->qlen += rsp->qlen;
1400 rdp->n_cbs_adopted += rsp->qlen;
1401 if (rsp->qlen_lazy != rsp->qlen)
1402 rcu_idle_count_callbacks_posted();
1403 rsp->qlen_lazy = 0;
1404 rsp->qlen = 0;
1405
1406 /*
1407 * We do not need a memory barrier here because the only way we
1408 * can get here if there is an rcu_barrier() in flight is if
1409 * we are the task doing the rcu_barrier().
1410 */
1411
1412 /* First adopt the ready-to-invoke callbacks. */
1413 if (rsp->orphan_donelist != NULL) {
1414 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1415 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1416 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1417 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1418 rdp->nxttail[i] = rsp->orphan_donetail;
1419 rsp->orphan_donelist = NULL;
1420 rsp->orphan_donetail = &rsp->orphan_donelist;
1421 }
1422
1423 /* And then adopt the callbacks that still need a grace period. */
1424 if (rsp->orphan_nxtlist != NULL) {
1425 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1426 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1427 rsp->orphan_nxtlist = NULL;
1428 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1429 }
1430}
1431
1432/*
1433 * Trace the fact that this CPU is going offline.
1434 */
1435static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1436{
1437 RCU_TRACE(unsigned long mask);
1438 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1439 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1440
1441 RCU_TRACE(mask = rdp->grpmask);
1442 trace_rcu_grace_period(rsp->name,
1443 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1444 "cpuofl");
1445}
1446
1447/*
1448 * The CPU has been completely removed, and some other CPU is reporting
1449 * this fact from process context. Do the remainder of the cleanup,
1450 * including orphaning the outgoing CPU's RCU callbacks, and also
1451 * adopting them, if there is no _rcu_barrier() instance running.
1452 * There can only be one CPU hotplug operation at a time, so no other
1453 * CPU can be attempting to update rcu_cpu_kthread_task.
1454 */
1455static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1456{
1457 unsigned long flags;
1458 unsigned long mask;
1459 int need_report = 0;
1460 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1461 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1462
1463 /* Adjust any no-longer-needed kthreads. */
1464 rcu_stop_cpu_kthread(cpu);
1465 rcu_node_kthread_setaffinity(rnp, -1);
1466
1467 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1468
1469 /* Exclude any attempts to start a new grace period. */
1470 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1471
1472 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1473 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1474 rcu_adopt_orphan_cbs(rsp);
1475
1476 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1477 mask = rdp->grpmask; /* rnp->grplo is constant. */
1478 do {
1479 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1480 rnp->qsmaskinit &= ~mask;
1481 if (rnp->qsmaskinit != 0) {
1482 if (rnp != rdp->mynode)
1483 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1484 break;
1485 }
1486 if (rnp == rdp->mynode)
1487 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1488 else
1489 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490 mask = rnp->grpmask;
1491 rnp = rnp->parent;
1492 } while (rnp != NULL);
1493
1494 /*
1495 * We still hold the leaf rcu_node structure lock here, and
1496 * irqs are still disabled. The reason for this subterfuge is
1497 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1498 * held leads to deadlock.
1499 */
1500 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1501 rnp = rdp->mynode;
1502 if (need_report & RCU_OFL_TASKS_NORM_GP)
1503 rcu_report_unblock_qs_rnp(rnp, flags);
1504 else
1505 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1506 if (need_report & RCU_OFL_TASKS_EXP_GP)
1507 rcu_report_exp_rnp(rsp, rnp, true);
1508}
1509
1510#else /* #ifdef CONFIG_HOTPLUG_CPU */
1511
1512static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1513{
1514}
1515
1516static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1517{
1518}
1519
1520static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1521{
1522}
1523
1524#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1525
1526/*
1527 * Invoke any RCU callbacks that have made it to the end of their grace
1528 * period. Thottle as specified by rdp->blimit.
1529 */
1530static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1531{
1532 unsigned long flags;
1533 struct rcu_head *next, *list, **tail;
1534 int bl, count, count_lazy, i;
1535
1536 /* If no callbacks are ready, just return.*/
1537 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1538 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1539 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1540 need_resched(), is_idle_task(current),
1541 rcu_is_callbacks_kthread());
1542 return;
1543 }
1544
1545 /*
1546 * Extract the list of ready callbacks, disabling to prevent
1547 * races with call_rcu() from interrupt handlers.
1548 */
1549 local_irq_save(flags);
1550 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1551 bl = rdp->blimit;
1552 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1553 list = rdp->nxtlist;
1554 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1555 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1556 tail = rdp->nxttail[RCU_DONE_TAIL];
1557 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1558 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1559 rdp->nxttail[i] = &rdp->nxtlist;
1560 local_irq_restore(flags);
1561
1562 /* Invoke callbacks. */
1563 count = count_lazy = 0;
1564 while (list) {
1565 next = list->next;
1566 prefetch(next);
1567 debug_rcu_head_unqueue(list);
1568 if (__rcu_reclaim(rsp->name, list))
1569 count_lazy++;
1570 list = next;
1571 /* Stop only if limit reached and CPU has something to do. */
1572 if (++count >= bl &&
1573 (need_resched() ||
1574 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1575 break;
1576 }
1577
1578 local_irq_save(flags);
1579 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1580 is_idle_task(current),
1581 rcu_is_callbacks_kthread());
1582
1583 /* Update count, and requeue any remaining callbacks. */
1584 if (list != NULL) {
1585 *tail = rdp->nxtlist;
1586 rdp->nxtlist = list;
1587 for (i = 0; i < RCU_NEXT_SIZE; i++)
1588 if (&rdp->nxtlist == rdp->nxttail[i])
1589 rdp->nxttail[i] = tail;
1590 else
1591 break;
1592 }
1593 smp_mb(); /* List handling before counting for rcu_barrier(). */
1594 rdp->qlen_lazy -= count_lazy;
1595 rdp->qlen -= count;
1596 rdp->n_cbs_invoked += count;
1597
1598 /* Reinstate batch limit if we have worked down the excess. */
1599 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1600 rdp->blimit = blimit;
1601
1602 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1603 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1604 rdp->qlen_last_fqs_check = 0;
1605 rdp->n_force_qs_snap = rsp->n_force_qs;
1606 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1607 rdp->qlen_last_fqs_check = rdp->qlen;
1608
1609 local_irq_restore(flags);
1610
1611 /* Re-invoke RCU core processing if there are callbacks remaining. */
1612 if (cpu_has_callbacks_ready_to_invoke(rdp))
1613 invoke_rcu_core();
1614}
1615
1616/*
1617 * Check to see if this CPU is in a non-context-switch quiescent state
1618 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1619 * Also schedule RCU core processing.
1620 *
1621 * This function must be called from hardirq context. It is normally
1622 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1623 * false, there is no point in invoking rcu_check_callbacks().
1624 */
1625void rcu_check_callbacks(int cpu, int user)
1626{
1627 trace_rcu_utilization("Start scheduler-tick");
1628 increment_cpu_stall_ticks();
1629 if (user || rcu_is_cpu_rrupt_from_idle()) {
1630
1631 /*
1632 * Get here if this CPU took its interrupt from user
1633 * mode or from the idle loop, and if this is not a
1634 * nested interrupt. In this case, the CPU is in
1635 * a quiescent state, so note it.
1636 *
1637 * No memory barrier is required here because both
1638 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1639 * variables that other CPUs neither access nor modify,
1640 * at least not while the corresponding CPU is online.
1641 */
1642
1643 rcu_sched_qs(cpu);
1644 rcu_bh_qs(cpu);
1645
1646 } else if (!in_softirq()) {
1647
1648 /*
1649 * Get here if this CPU did not take its interrupt from
1650 * softirq, in other words, if it is not interrupting
1651 * a rcu_bh read-side critical section. This is an _bh
1652 * critical section, so note it.
1653 */
1654
1655 rcu_bh_qs(cpu);
1656 }
1657 rcu_preempt_check_callbacks(cpu);
1658 if (rcu_pending(cpu))
1659 invoke_rcu_core();
1660 trace_rcu_utilization("End scheduler-tick");
1661}
1662
1663/*
1664 * Scan the leaf rcu_node structures, processing dyntick state for any that
1665 * have not yet encountered a quiescent state, using the function specified.
1666 * Also initiate boosting for any threads blocked on the root rcu_node.
1667 *
1668 * The caller must have suppressed start of new grace periods.
1669 */
1670static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1671{
1672 unsigned long bit;
1673 int cpu;
1674 unsigned long flags;
1675 unsigned long mask;
1676 struct rcu_node *rnp;
1677
1678 rcu_for_each_leaf_node(rsp, rnp) {
1679 mask = 0;
1680 raw_spin_lock_irqsave(&rnp->lock, flags);
1681 if (!rcu_gp_in_progress(rsp)) {
1682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1683 return;
1684 }
1685 if (rnp->qsmask == 0) {
1686 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1687 continue;
1688 }
1689 cpu = rnp->grplo;
1690 bit = 1;
1691 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1692 if ((rnp->qsmask & bit) != 0 &&
1693 f(per_cpu_ptr(rsp->rda, cpu)))
1694 mask |= bit;
1695 }
1696 if (mask != 0) {
1697
1698 /* rcu_report_qs_rnp() releases rnp->lock. */
1699 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1700 continue;
1701 }
1702 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1703 }
1704 rnp = rcu_get_root(rsp);
1705 if (rnp->qsmask == 0) {
1706 raw_spin_lock_irqsave(&rnp->lock, flags);
1707 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1708 }
1709}
1710
1711/*
1712 * Force quiescent states on reluctant CPUs, and also detect which
1713 * CPUs are in dyntick-idle mode.
1714 */
1715static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1716{
1717 unsigned long flags;
1718 struct rcu_node *rnp = rcu_get_root(rsp);
1719
1720 trace_rcu_utilization("Start fqs");
1721 if (!rcu_gp_in_progress(rsp)) {
1722 trace_rcu_utilization("End fqs");
1723 return; /* No grace period in progress, nothing to force. */
1724 }
1725 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1726 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1727 trace_rcu_utilization("End fqs");
1728 return; /* Someone else is already on the job. */
1729 }
1730 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1731 goto unlock_fqs_ret; /* no emergency and done recently. */
1732 rsp->n_force_qs++;
1733 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1734 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1735 if(!rcu_gp_in_progress(rsp)) {
1736 rsp->n_force_qs_ngp++;
1737 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1738 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1739 }
1740 rsp->fqs_active = 1;
1741 switch (rsp->fqs_state) {
1742 case RCU_GP_IDLE:
1743 case RCU_GP_INIT:
1744
1745 break; /* grace period idle or initializing, ignore. */
1746
1747 case RCU_SAVE_DYNTICK:
1748 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1749 break; /* So gcc recognizes the dead code. */
1750
1751 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1752
1753 /* Record dyntick-idle state. */
1754 force_qs_rnp(rsp, dyntick_save_progress_counter);
1755 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1756 if (rcu_gp_in_progress(rsp))
1757 rsp->fqs_state = RCU_FORCE_QS;
1758 break;
1759
1760 case RCU_FORCE_QS:
1761
1762 /* Check dyntick-idle state, send IPI to laggarts. */
1763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1764 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1765
1766 /* Leave state in case more forcing is required. */
1767
1768 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1769 break;
1770 }
1771 rsp->fqs_active = 0;
1772 if (rsp->fqs_need_gp) {
1773 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1774 rsp->fqs_need_gp = 0;
1775 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1776 trace_rcu_utilization("End fqs");
1777 return;
1778 }
1779 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1780unlock_fqs_ret:
1781 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1782 trace_rcu_utilization("End fqs");
1783}
1784
1785/*
1786 * This does the RCU core processing work for the specified rcu_state
1787 * and rcu_data structures. This may be called only from the CPU to
1788 * whom the rdp belongs.
1789 */
1790static void
1791__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1792{
1793 unsigned long flags;
1794
1795 WARN_ON_ONCE(rdp->beenonline == 0);
1796
1797 /*
1798 * If an RCU GP has gone long enough, go check for dyntick
1799 * idle CPUs and, if needed, send resched IPIs.
1800 */
1801 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1802 force_quiescent_state(rsp, 1);
1803
1804 /*
1805 * Advance callbacks in response to end of earlier grace
1806 * period that some other CPU ended.
1807 */
1808 rcu_process_gp_end(rsp, rdp);
1809
1810 /* Update RCU state based on any recent quiescent states. */
1811 rcu_check_quiescent_state(rsp, rdp);
1812
1813 /* Does this CPU require a not-yet-started grace period? */
1814 if (cpu_needs_another_gp(rsp, rdp)) {
1815 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1816 rcu_start_gp(rsp, flags); /* releases above lock */
1817 }
1818
1819 /* If there are callbacks ready, invoke them. */
1820 if (cpu_has_callbacks_ready_to_invoke(rdp))
1821 invoke_rcu_callbacks(rsp, rdp);
1822}
1823
1824/*
1825 * Do RCU core processing for the current CPU.
1826 */
1827static void rcu_process_callbacks(struct softirq_action *unused)
1828{
1829 trace_rcu_utilization("Start RCU core");
1830 __rcu_process_callbacks(&rcu_sched_state,
1831 &__get_cpu_var(rcu_sched_data));
1832 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1833 rcu_preempt_process_callbacks();
1834 trace_rcu_utilization("End RCU core");
1835}
1836
1837/*
1838 * Schedule RCU callback invocation. If the specified type of RCU
1839 * does not support RCU priority boosting, just do a direct call,
1840 * otherwise wake up the per-CPU kernel kthread. Note that because we
1841 * are running on the current CPU with interrupts disabled, the
1842 * rcu_cpu_kthread_task cannot disappear out from under us.
1843 */
1844static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1845{
1846 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1847 return;
1848 if (likely(!rsp->boost)) {
1849 rcu_do_batch(rsp, rdp);
1850 return;
1851 }
1852 invoke_rcu_callbacks_kthread();
1853}
1854
1855static void invoke_rcu_core(void)
1856{
1857 raise_softirq(RCU_SOFTIRQ);
1858}
1859
1860static void
1861__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1862 struct rcu_state *rsp, bool lazy)
1863{
1864 unsigned long flags;
1865 struct rcu_data *rdp;
1866
1867 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1868 debug_rcu_head_queue(head);
1869 head->func = func;
1870 head->next = NULL;
1871
1872 smp_mb(); /* Ensure RCU update seen before callback registry. */
1873
1874 /*
1875 * Opportunistically note grace-period endings and beginnings.
1876 * Note that we might see a beginning right after we see an
1877 * end, but never vice versa, since this CPU has to pass through
1878 * a quiescent state betweentimes.
1879 */
1880 local_irq_save(flags);
1881 rdp = this_cpu_ptr(rsp->rda);
1882
1883 /* Add the callback to our list. */
1884 rdp->qlen++;
1885 if (lazy)
1886 rdp->qlen_lazy++;
1887 else
1888 rcu_idle_count_callbacks_posted();
1889 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1890 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1891 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1892
1893 if (__is_kfree_rcu_offset((unsigned long)func))
1894 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1895 rdp->qlen_lazy, rdp->qlen);
1896 else
1897 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1898
1899 /* If interrupts were disabled, don't dive into RCU core. */
1900 if (irqs_disabled_flags(flags)) {
1901 local_irq_restore(flags);
1902 return;
1903 }
1904
1905 /*
1906 * Force the grace period if too many callbacks or too long waiting.
1907 * Enforce hysteresis, and don't invoke force_quiescent_state()
1908 * if some other CPU has recently done so. Also, don't bother
1909 * invoking force_quiescent_state() if the newly enqueued callback
1910 * is the only one waiting for a grace period to complete.
1911 */
1912 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1913
1914 /* Are we ignoring a completed grace period? */
1915 rcu_process_gp_end(rsp, rdp);
1916 check_for_new_grace_period(rsp, rdp);
1917
1918 /* Start a new grace period if one not already started. */
1919 if (!rcu_gp_in_progress(rsp)) {
1920 unsigned long nestflag;
1921 struct rcu_node *rnp_root = rcu_get_root(rsp);
1922
1923 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1924 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1925 } else {
1926 /* Give the grace period a kick. */
1927 rdp->blimit = LONG_MAX;
1928 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1929 *rdp->nxttail[RCU_DONE_TAIL] != head)
1930 force_quiescent_state(rsp, 0);
1931 rdp->n_force_qs_snap = rsp->n_force_qs;
1932 rdp->qlen_last_fqs_check = rdp->qlen;
1933 }
1934 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1935 force_quiescent_state(rsp, 1);
1936 local_irq_restore(flags);
1937}
1938
1939/*
1940 * Queue an RCU-sched callback for invocation after a grace period.
1941 */
1942void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1943{
1944 __call_rcu(head, func, &rcu_sched_state, 0);
1945}
1946EXPORT_SYMBOL_GPL(call_rcu_sched);
1947
1948/*
1949 * Queue an RCU callback for invocation after a quicker grace period.
1950 */
1951void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1952{
1953 __call_rcu(head, func, &rcu_bh_state, 0);
1954}
1955EXPORT_SYMBOL_GPL(call_rcu_bh);
1956
1957/*
1958 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1959 * any blocking grace-period wait automatically implies a grace period
1960 * if there is only one CPU online at any point time during execution
1961 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1962 * occasionally incorrectly indicate that there are multiple CPUs online
1963 * when there was in fact only one the whole time, as this just adds
1964 * some overhead: RCU still operates correctly.
1965 *
1966 * Of course, sampling num_online_cpus() with preemption enabled can
1967 * give erroneous results if there are concurrent CPU-hotplug operations.
1968 * For example, given a demonic sequence of preemptions in num_online_cpus()
1969 * and CPU-hotplug operations, there could be two or more CPUs online at
1970 * all times, but num_online_cpus() might well return one (or even zero).
1971 *
1972 * However, all such demonic sequences require at least one CPU-offline
1973 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1974 * is only a problem if there is an RCU read-side critical section executing
1975 * throughout. But RCU-sched and RCU-bh read-side critical sections
1976 * disable either preemption or bh, which prevents a CPU from going offline.
1977 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1978 * that there is only one CPU when in fact there was more than one throughout
1979 * is when there were no RCU readers in the system. If there are no
1980 * RCU readers, the grace period by definition can be of zero length,
1981 * regardless of the number of online CPUs.
1982 */
1983static inline int rcu_blocking_is_gp(void)
1984{
1985 might_sleep(); /* Check for RCU read-side critical section. */
1986 return num_online_cpus() <= 1;
1987}
1988
1989/**
1990 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1991 *
1992 * Control will return to the caller some time after a full rcu-sched
1993 * grace period has elapsed, in other words after all currently executing
1994 * rcu-sched read-side critical sections have completed. These read-side
1995 * critical sections are delimited by rcu_read_lock_sched() and
1996 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1997 * local_irq_disable(), and so on may be used in place of
1998 * rcu_read_lock_sched().
1999 *
2000 * This means that all preempt_disable code sequences, including NMI and
2001 * hardware-interrupt handlers, in progress on entry will have completed
2002 * before this primitive returns. However, this does not guarantee that
2003 * softirq handlers will have completed, since in some kernels, these
2004 * handlers can run in process context, and can block.
2005 *
2006 * This primitive provides the guarantees made by the (now removed)
2007 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2008 * guarantees that rcu_read_lock() sections will have completed.
2009 * In "classic RCU", these two guarantees happen to be one and
2010 * the same, but can differ in realtime RCU implementations.
2011 */
2012void synchronize_sched(void)
2013{
2014 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2015 !lock_is_held(&rcu_lock_map) &&
2016 !lock_is_held(&rcu_sched_lock_map),
2017 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2018 if (rcu_blocking_is_gp())
2019 return;
2020 wait_rcu_gp(call_rcu_sched);
2021}
2022EXPORT_SYMBOL_GPL(synchronize_sched);
2023
2024/**
2025 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2026 *
2027 * Control will return to the caller some time after a full rcu_bh grace
2028 * period has elapsed, in other words after all currently executing rcu_bh
2029 * read-side critical sections have completed. RCU read-side critical
2030 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2031 * and may be nested.
2032 */
2033void synchronize_rcu_bh(void)
2034{
2035 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2036 !lock_is_held(&rcu_lock_map) &&
2037 !lock_is_held(&rcu_sched_lock_map),
2038 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2039 if (rcu_blocking_is_gp())
2040 return;
2041 wait_rcu_gp(call_rcu_bh);
2042}
2043EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2044
2045static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2046static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2047
2048static int synchronize_sched_expedited_cpu_stop(void *data)
2049{
2050 /*
2051 * There must be a full memory barrier on each affected CPU
2052 * between the time that try_stop_cpus() is called and the
2053 * time that it returns.
2054 *
2055 * In the current initial implementation of cpu_stop, the
2056 * above condition is already met when the control reaches
2057 * this point and the following smp_mb() is not strictly
2058 * necessary. Do smp_mb() anyway for documentation and
2059 * robustness against future implementation changes.
2060 */
2061 smp_mb(); /* See above comment block. */
2062 return 0;
2063}
2064
2065/**
2066 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2067 *
2068 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2069 * approach to force the grace period to end quickly. This consumes
2070 * significant time on all CPUs and is unfriendly to real-time workloads,
2071 * so is thus not recommended for any sort of common-case code. In fact,
2072 * if you are using synchronize_sched_expedited() in a loop, please
2073 * restructure your code to batch your updates, and then use a single
2074 * synchronize_sched() instead.
2075 *
2076 * Note that it is illegal to call this function while holding any lock
2077 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2078 * to call this function from a CPU-hotplug notifier. Failing to observe
2079 * these restriction will result in deadlock.
2080 *
2081 * This implementation can be thought of as an application of ticket
2082 * locking to RCU, with sync_sched_expedited_started and
2083 * sync_sched_expedited_done taking on the roles of the halves
2084 * of the ticket-lock word. Each task atomically increments
2085 * sync_sched_expedited_started upon entry, snapshotting the old value,
2086 * then attempts to stop all the CPUs. If this succeeds, then each
2087 * CPU will have executed a context switch, resulting in an RCU-sched
2088 * grace period. We are then done, so we use atomic_cmpxchg() to
2089 * update sync_sched_expedited_done to match our snapshot -- but
2090 * only if someone else has not already advanced past our snapshot.
2091 *
2092 * On the other hand, if try_stop_cpus() fails, we check the value
2093 * of sync_sched_expedited_done. If it has advanced past our
2094 * initial snapshot, then someone else must have forced a grace period
2095 * some time after we took our snapshot. In this case, our work is
2096 * done for us, and we can simply return. Otherwise, we try again,
2097 * but keep our initial snapshot for purposes of checking for someone
2098 * doing our work for us.
2099 *
2100 * If we fail too many times in a row, we fall back to synchronize_sched().
2101 */
2102void synchronize_sched_expedited(void)
2103{
2104 int firstsnap, s, snap, trycount = 0;
2105
2106 /* Note that atomic_inc_return() implies full memory barrier. */
2107 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2108 get_online_cpus();
2109 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2110
2111 /*
2112 * Each pass through the following loop attempts to force a
2113 * context switch on each CPU.
2114 */
2115 while (try_stop_cpus(cpu_online_mask,
2116 synchronize_sched_expedited_cpu_stop,
2117 NULL) == -EAGAIN) {
2118 put_online_cpus();
2119
2120 /* No joy, try again later. Or just synchronize_sched(). */
2121 if (trycount++ < 10)
2122 udelay(trycount * num_online_cpus());
2123 else {
2124 synchronize_sched();
2125 return;
2126 }
2127
2128 /* Check to see if someone else did our work for us. */
2129 s = atomic_read(&sync_sched_expedited_done);
2130 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2131 smp_mb(); /* ensure test happens before caller kfree */
2132 return;
2133 }
2134
2135 /*
2136 * Refetching sync_sched_expedited_started allows later
2137 * callers to piggyback on our grace period. We subtract
2138 * 1 to get the same token that the last incrementer got.
2139 * We retry after they started, so our grace period works
2140 * for them, and they started after our first try, so their
2141 * grace period works for us.
2142 */
2143 get_online_cpus();
2144 snap = atomic_read(&sync_sched_expedited_started);
2145 smp_mb(); /* ensure read is before try_stop_cpus(). */
2146 }
2147
2148 /*
2149 * Everyone up to our most recent fetch is covered by our grace
2150 * period. Update the counter, but only if our work is still
2151 * relevant -- which it won't be if someone who started later
2152 * than we did beat us to the punch.
2153 */
2154 do {
2155 s = atomic_read(&sync_sched_expedited_done);
2156 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2157 smp_mb(); /* ensure test happens before caller kfree */
2158 break;
2159 }
2160 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2161
2162 put_online_cpus();
2163}
2164EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2165
2166/*
2167 * Check to see if there is any immediate RCU-related work to be done
2168 * by the current CPU, for the specified type of RCU, returning 1 if so.
2169 * The checks are in order of increasing expense: checks that can be
2170 * carried out against CPU-local state are performed first. However,
2171 * we must check for CPU stalls first, else we might not get a chance.
2172 */
2173static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2174{
2175 struct rcu_node *rnp = rdp->mynode;
2176
2177 rdp->n_rcu_pending++;
2178
2179 /* Check for CPU stalls, if enabled. */
2180 check_cpu_stall(rsp, rdp);
2181
2182 /* Is the RCU core waiting for a quiescent state from this CPU? */
2183 if (rcu_scheduler_fully_active &&
2184 rdp->qs_pending && !rdp->passed_quiesce) {
2185
2186 /*
2187 * If force_quiescent_state() coming soon and this CPU
2188 * needs a quiescent state, and this is either RCU-sched
2189 * or RCU-bh, force a local reschedule.
2190 */
2191 rdp->n_rp_qs_pending++;
2192 if (!rdp->preemptible &&
2193 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2194 jiffies))
2195 set_need_resched();
2196 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2197 rdp->n_rp_report_qs++;
2198 return 1;
2199 }
2200
2201 /* Does this CPU have callbacks ready to invoke? */
2202 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2203 rdp->n_rp_cb_ready++;
2204 return 1;
2205 }
2206
2207 /* Has RCU gone idle with this CPU needing another grace period? */
2208 if (cpu_needs_another_gp(rsp, rdp)) {
2209 rdp->n_rp_cpu_needs_gp++;
2210 return 1;
2211 }
2212
2213 /* Has another RCU grace period completed? */
2214 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2215 rdp->n_rp_gp_completed++;
2216 return 1;
2217 }
2218
2219 /* Has a new RCU grace period started? */
2220 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2221 rdp->n_rp_gp_started++;
2222 return 1;
2223 }
2224
2225 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2226 if (rcu_gp_in_progress(rsp) &&
2227 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2228 rdp->n_rp_need_fqs++;
2229 return 1;
2230 }
2231
2232 /* nothing to do */
2233 rdp->n_rp_need_nothing++;
2234 return 0;
2235}
2236
2237/*
2238 * Check to see if there is any immediate RCU-related work to be done
2239 * by the current CPU, returning 1 if so. This function is part of the
2240 * RCU implementation; it is -not- an exported member of the RCU API.
2241 */
2242static int rcu_pending(int cpu)
2243{
2244 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2245 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2246 rcu_preempt_pending(cpu);
2247}
2248
2249/*
2250 * Check to see if any future RCU-related work will need to be done
2251 * by the current CPU, even if none need be done immediately, returning
2252 * 1 if so.
2253 */
2254static int rcu_cpu_has_callbacks(int cpu)
2255{
2256 /* RCU callbacks either ready or pending? */
2257 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2258 per_cpu(rcu_bh_data, cpu).nxtlist ||
2259 rcu_preempt_cpu_has_callbacks(cpu);
2260}
2261
2262/*
2263 * RCU callback function for _rcu_barrier(). If we are last, wake
2264 * up the task executing _rcu_barrier().
2265 */
2266static void rcu_barrier_callback(struct rcu_head *notused)
2267{
2268 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2269 complete(&rcu_barrier_completion);
2270}
2271
2272/*
2273 * Called with preemption disabled, and from cross-cpu IRQ context.
2274 */
2275static void rcu_barrier_func(void *type)
2276{
2277 int cpu = smp_processor_id();
2278 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2279 void (*call_rcu_func)(struct rcu_head *head,
2280 void (*func)(struct rcu_head *head));
2281
2282 atomic_inc(&rcu_barrier_cpu_count);
2283 call_rcu_func = type;
2284 call_rcu_func(head, rcu_barrier_callback);
2285}
2286
2287/*
2288 * Orchestrate the specified type of RCU barrier, waiting for all
2289 * RCU callbacks of the specified type to complete.
2290 */
2291static void _rcu_barrier(struct rcu_state *rsp,
2292 void (*call_rcu_func)(struct rcu_head *head,
2293 void (*func)(struct rcu_head *head)))
2294{
2295 int cpu;
2296 unsigned long flags;
2297 struct rcu_data *rdp;
2298 struct rcu_head rh;
2299
2300 init_rcu_head_on_stack(&rh);
2301
2302 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2303 mutex_lock(&rcu_barrier_mutex);
2304
2305 smp_mb(); /* Prevent any prior operations from leaking in. */
2306
2307 /*
2308 * Initialize the count to one rather than to zero in order to
2309 * avoid a too-soon return to zero in case of a short grace period
2310 * (or preemption of this task). Also flag this task as doing
2311 * an rcu_barrier(). This will prevent anyone else from adopting
2312 * orphaned callbacks, which could cause otherwise failure if a
2313 * CPU went offline and quickly came back online. To see this,
2314 * consider the following sequence of events:
2315 *
2316 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2317 * 2. CPU 1 goes offline, orphaning its callbacks.
2318 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2319 * 4. CPU 1 comes back online.
2320 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2321 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2322 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2323 */
2324 init_completion(&rcu_barrier_completion);
2325 atomic_set(&rcu_barrier_cpu_count, 1);
2326 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2327 rsp->rcu_barrier_in_progress = current;
2328 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2329
2330 /*
2331 * Force every CPU with callbacks to register a new callback
2332 * that will tell us when all the preceding callbacks have
2333 * been invoked. If an offline CPU has callbacks, wait for
2334 * it to either come back online or to finish orphaning those
2335 * callbacks.
2336 */
2337 for_each_possible_cpu(cpu) {
2338 preempt_disable();
2339 rdp = per_cpu_ptr(rsp->rda, cpu);
2340 if (cpu_is_offline(cpu)) {
2341 preempt_enable();
2342 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2343 schedule_timeout_interruptible(1);
2344 } else if (ACCESS_ONCE(rdp->qlen)) {
2345 smp_call_function_single(cpu, rcu_barrier_func,
2346 (void *)call_rcu_func, 1);
2347 preempt_enable();
2348 } else {
2349 preempt_enable();
2350 }
2351 }
2352
2353 /*
2354 * Now that all online CPUs have rcu_barrier_callback() callbacks
2355 * posted, we can adopt all of the orphaned callbacks and place
2356 * an rcu_barrier_callback() callback after them. When that is done,
2357 * we are guaranteed to have an rcu_barrier_callback() callback
2358 * following every callback that could possibly have been
2359 * registered before _rcu_barrier() was called.
2360 */
2361 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2362 rcu_adopt_orphan_cbs(rsp);
2363 rsp->rcu_barrier_in_progress = NULL;
2364 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2365 atomic_inc(&rcu_barrier_cpu_count);
2366 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2367 call_rcu_func(&rh, rcu_barrier_callback);
2368
2369 /*
2370 * Now that we have an rcu_barrier_callback() callback on each
2371 * CPU, and thus each counted, remove the initial count.
2372 */
2373 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2374 complete(&rcu_barrier_completion);
2375
2376 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2377 wait_for_completion(&rcu_barrier_completion);
2378
2379 /* Other rcu_barrier() invocations can now safely proceed. */
2380 mutex_unlock(&rcu_barrier_mutex);
2381
2382 destroy_rcu_head_on_stack(&rh);
2383}
2384
2385/**
2386 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2387 */
2388void rcu_barrier_bh(void)
2389{
2390 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2391}
2392EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2393
2394/**
2395 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2396 */
2397void rcu_barrier_sched(void)
2398{
2399 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2400}
2401EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2402
2403/*
2404 * Do boot-time initialization of a CPU's per-CPU RCU data.
2405 */
2406static void __init
2407rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2408{
2409 unsigned long flags;
2410 int i;
2411 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2412 struct rcu_node *rnp = rcu_get_root(rsp);
2413
2414 /* Set up local state, ensuring consistent view of global state. */
2415 raw_spin_lock_irqsave(&rnp->lock, flags);
2416 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2417 rdp->nxtlist = NULL;
2418 for (i = 0; i < RCU_NEXT_SIZE; i++)
2419 rdp->nxttail[i] = &rdp->nxtlist;
2420 rdp->qlen_lazy = 0;
2421 rdp->qlen = 0;
2422 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2423 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2424 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2425 rdp->cpu = cpu;
2426 rdp->rsp = rsp;
2427 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2428}
2429
2430/*
2431 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2432 * offline event can be happening at a given time. Note also that we
2433 * can accept some slop in the rsp->completed access due to the fact
2434 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2435 */
2436static void __cpuinit
2437rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2438{
2439 unsigned long flags;
2440 unsigned long mask;
2441 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2442 struct rcu_node *rnp = rcu_get_root(rsp);
2443
2444 /* Set up local state, ensuring consistent view of global state. */
2445 raw_spin_lock_irqsave(&rnp->lock, flags);
2446 rdp->beenonline = 1; /* We have now been online. */
2447 rdp->preemptible = preemptible;
2448 rdp->qlen_last_fqs_check = 0;
2449 rdp->n_force_qs_snap = rsp->n_force_qs;
2450 rdp->blimit = blimit;
2451 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2452 atomic_set(&rdp->dynticks->dynticks,
2453 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2454 rcu_prepare_for_idle_init(cpu);
2455 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2456
2457 /*
2458 * A new grace period might start here. If so, we won't be part
2459 * of it, but that is OK, as we are currently in a quiescent state.
2460 */
2461
2462 /* Exclude any attempts to start a new GP on large systems. */
2463 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2464
2465 /* Add CPU to rcu_node bitmasks. */
2466 rnp = rdp->mynode;
2467 mask = rdp->grpmask;
2468 do {
2469 /* Exclude any attempts to start a new GP on small systems. */
2470 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2471 rnp->qsmaskinit |= mask;
2472 mask = rnp->grpmask;
2473 if (rnp == rdp->mynode) {
2474 /*
2475 * If there is a grace period in progress, we will
2476 * set up to wait for it next time we run the
2477 * RCU core code.
2478 */
2479 rdp->gpnum = rnp->completed;
2480 rdp->completed = rnp->completed;
2481 rdp->passed_quiesce = 0;
2482 rdp->qs_pending = 0;
2483 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2484 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2485 }
2486 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2487 rnp = rnp->parent;
2488 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2489
2490 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2491}
2492
2493static void __cpuinit rcu_prepare_cpu(int cpu)
2494{
2495 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2496 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2497 rcu_preempt_init_percpu_data(cpu);
2498}
2499
2500/*
2501 * Handle CPU online/offline notification events.
2502 */
2503static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2504 unsigned long action, void *hcpu)
2505{
2506 long cpu = (long)hcpu;
2507 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2508 struct rcu_node *rnp = rdp->mynode;
2509
2510 trace_rcu_utilization("Start CPU hotplug");
2511 switch (action) {
2512 case CPU_UP_PREPARE:
2513 case CPU_UP_PREPARE_FROZEN:
2514 rcu_prepare_cpu(cpu);
2515 rcu_prepare_kthreads(cpu);
2516 break;
2517 case CPU_ONLINE:
2518 case CPU_DOWN_FAILED:
2519 rcu_node_kthread_setaffinity(rnp, -1);
2520 rcu_cpu_kthread_setrt(cpu, 1);
2521 break;
2522 case CPU_DOWN_PREPARE:
2523 rcu_node_kthread_setaffinity(rnp, cpu);
2524 rcu_cpu_kthread_setrt(cpu, 0);
2525 break;
2526 case CPU_DYING:
2527 case CPU_DYING_FROZEN:
2528 /*
2529 * The whole machine is "stopped" except this CPU, so we can
2530 * touch any data without introducing corruption. We send the
2531 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2532 */
2533 rcu_cleanup_dying_cpu(&rcu_bh_state);
2534 rcu_cleanup_dying_cpu(&rcu_sched_state);
2535 rcu_preempt_cleanup_dying_cpu();
2536 rcu_cleanup_after_idle(cpu);
2537 break;
2538 case CPU_DEAD:
2539 case CPU_DEAD_FROZEN:
2540 case CPU_UP_CANCELED:
2541 case CPU_UP_CANCELED_FROZEN:
2542 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2543 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2544 rcu_preempt_cleanup_dead_cpu(cpu);
2545 break;
2546 default:
2547 break;
2548 }
2549 trace_rcu_utilization("End CPU hotplug");
2550 return NOTIFY_OK;
2551}
2552
2553/*
2554 * This function is invoked towards the end of the scheduler's initialization
2555 * process. Before this is called, the idle task might contain
2556 * RCU read-side critical sections (during which time, this idle
2557 * task is booting the system). After this function is called, the
2558 * idle tasks are prohibited from containing RCU read-side critical
2559 * sections. This function also enables RCU lockdep checking.
2560 */
2561void rcu_scheduler_starting(void)
2562{
2563 WARN_ON(num_online_cpus() != 1);
2564 WARN_ON(nr_context_switches() > 0);
2565 rcu_scheduler_active = 1;
2566}
2567
2568/*
2569 * Compute the per-level fanout, either using the exact fanout specified
2570 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2571 */
2572#ifdef CONFIG_RCU_FANOUT_EXACT
2573static void __init rcu_init_levelspread(struct rcu_state *rsp)
2574{
2575 int i;
2576
2577 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2578 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2579 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2580}
2581#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2582static void __init rcu_init_levelspread(struct rcu_state *rsp)
2583{
2584 int ccur;
2585 int cprv;
2586 int i;
2587
2588 cprv = NR_CPUS;
2589 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2590 ccur = rsp->levelcnt[i];
2591 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2592 cprv = ccur;
2593 }
2594}
2595#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2596
2597/*
2598 * Helper function for rcu_init() that initializes one rcu_state structure.
2599 */
2600static void __init rcu_init_one(struct rcu_state *rsp,
2601 struct rcu_data __percpu *rda)
2602{
2603 static char *buf[] = { "rcu_node_level_0",
2604 "rcu_node_level_1",
2605 "rcu_node_level_2",
2606 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2607 int cpustride = 1;
2608 int i;
2609 int j;
2610 struct rcu_node *rnp;
2611
2612 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2613
2614 /* Initialize the level-tracking arrays. */
2615
2616 for (i = 1; i < NUM_RCU_LVLS; i++)
2617 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2618 rcu_init_levelspread(rsp);
2619
2620 /* Initialize the elements themselves, starting from the leaves. */
2621
2622 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2623 cpustride *= rsp->levelspread[i];
2624 rnp = rsp->level[i];
2625 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2626 raw_spin_lock_init(&rnp->lock);
2627 lockdep_set_class_and_name(&rnp->lock,
2628 &rcu_node_class[i], buf[i]);
2629 rnp->gpnum = 0;
2630 rnp->qsmask = 0;
2631 rnp->qsmaskinit = 0;
2632 rnp->grplo = j * cpustride;
2633 rnp->grphi = (j + 1) * cpustride - 1;
2634 if (rnp->grphi >= NR_CPUS)
2635 rnp->grphi = NR_CPUS - 1;
2636 if (i == 0) {
2637 rnp->grpnum = 0;
2638 rnp->grpmask = 0;
2639 rnp->parent = NULL;
2640 } else {
2641 rnp->grpnum = j % rsp->levelspread[i - 1];
2642 rnp->grpmask = 1UL << rnp->grpnum;
2643 rnp->parent = rsp->level[i - 1] +
2644 j / rsp->levelspread[i - 1];
2645 }
2646 rnp->level = i;
2647 INIT_LIST_HEAD(&rnp->blkd_tasks);
2648 }
2649 }
2650
2651 rsp->rda = rda;
2652 rnp = rsp->level[NUM_RCU_LVLS - 1];
2653 for_each_possible_cpu(i) {
2654 while (i > rnp->grphi)
2655 rnp++;
2656 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2657 rcu_boot_init_percpu_data(i, rsp);
2658 }
2659}
2660
2661void __init rcu_init(void)
2662{
2663 int cpu;
2664
2665 rcu_bootup_announce();
2666 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2667 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2668 __rcu_init_preempt();
2669 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2670
2671 /*
2672 * We don't need protection against CPU-hotplug here because
2673 * this is called early in boot, before either interrupts
2674 * or the scheduler are operational.
2675 */
2676 cpu_notifier(rcu_cpu_notify, 0);
2677 for_each_online_cpu(cpu)
2678 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2679 check_cpu_stall_init();
2680}
2681
2682#include "rcutree_plugin.h"
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53
54#include "rcutree.h"
55
56/* Data structures. */
57
58static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59
60#define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
77}
78
79struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81
82struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84
85static struct rcu_state *rcu_state;
86
87/*
88 * The rcu_scheduler_active variable transitions from zero to one just
89 * before the first task is spawned. So when this variable is zero, RCU
90 * can assume that there is but one task, allowing RCU to (for example)
91 * optimized synchronize_sched() to a simple barrier(). When this variable
92 * is one, RCU must actually do all the hard work required to detect real
93 * grace periods. This variable is also used to suppress boot-time false
94 * positives from lockdep-RCU error checking.
95 */
96int rcu_scheduler_active __read_mostly;
97EXPORT_SYMBOL_GPL(rcu_scheduler_active);
98
99/*
100 * The rcu_scheduler_fully_active variable transitions from zero to one
101 * during the early_initcall() processing, which is after the scheduler
102 * is capable of creating new tasks. So RCU processing (for example,
103 * creating tasks for RCU priority boosting) must be delayed until after
104 * rcu_scheduler_fully_active transitions from zero to one. We also
105 * currently delay invocation of any RCU callbacks until after this point.
106 *
107 * It might later prove better for people registering RCU callbacks during
108 * early boot to take responsibility for these callbacks, but one step at
109 * a time.
110 */
111static int rcu_scheduler_fully_active __read_mostly;
112
113#ifdef CONFIG_RCU_BOOST
114
115/*
116 * Control variables for per-CPU and per-rcu_node kthreads. These
117 * handle all flavors of RCU.
118 */
119static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
120DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
121DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
122DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
123DEFINE_PER_CPU(char, rcu_cpu_has_work);
124
125#endif /* #ifdef CONFIG_RCU_BOOST */
126
127static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
128static void invoke_rcu_core(void);
129static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
130
131#define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
132
133/*
134 * Track the rcutorture test sequence number and the update version
135 * number within a given test. The rcutorture_testseq is incremented
136 * on every rcutorture module load and unload, so has an odd value
137 * when a test is running. The rcutorture_vernum is set to zero
138 * when rcutorture starts and is incremented on each rcutorture update.
139 * These variables enable correlating rcutorture output with the
140 * RCU tracing information.
141 */
142unsigned long rcutorture_testseq;
143unsigned long rcutorture_vernum;
144
145/*
146 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
147 * permit this function to be invoked without holding the root rcu_node
148 * structure's ->lock, but of course results can be subject to change.
149 */
150static int rcu_gp_in_progress(struct rcu_state *rsp)
151{
152 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
153}
154
155/*
156 * Note a quiescent state. Because we do not need to know
157 * how many quiescent states passed, just if there was at least
158 * one since the start of the grace period, this just sets a flag.
159 */
160void rcu_sched_qs(int cpu)
161{
162 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
163
164 rdp->passed_quiesc_completed = rdp->gpnum - 1;
165 barrier();
166 rdp->passed_quiesc = 1;
167}
168
169void rcu_bh_qs(int cpu)
170{
171 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
172
173 rdp->passed_quiesc_completed = rdp->gpnum - 1;
174 barrier();
175 rdp->passed_quiesc = 1;
176}
177
178/*
179 * Note a context switch. This is a quiescent state for RCU-sched,
180 * and requires special handling for preemptible RCU.
181 */
182void rcu_note_context_switch(int cpu)
183{
184 rcu_sched_qs(cpu);
185 rcu_preempt_note_context_switch(cpu);
186}
187EXPORT_SYMBOL_GPL(rcu_note_context_switch);
188
189#ifdef CONFIG_NO_HZ
190DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
191 .dynticks_nesting = 1,
192 .dynticks = ATOMIC_INIT(1),
193};
194#endif /* #ifdef CONFIG_NO_HZ */
195
196static int blimit = 10; /* Maximum callbacks per softirq. */
197static int qhimark = 10000; /* If this many pending, ignore blimit. */
198static int qlowmark = 100; /* Once only this many pending, use blimit. */
199
200module_param(blimit, int, 0);
201module_param(qhimark, int, 0);
202module_param(qlowmark, int, 0);
203
204int rcu_cpu_stall_suppress __read_mostly;
205module_param(rcu_cpu_stall_suppress, int, 0644);
206
207static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
208static int rcu_pending(int cpu);
209
210/*
211 * Return the number of RCU-sched batches processed thus far for debug & stats.
212 */
213long rcu_batches_completed_sched(void)
214{
215 return rcu_sched_state.completed;
216}
217EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
218
219/*
220 * Return the number of RCU BH batches processed thus far for debug & stats.
221 */
222long rcu_batches_completed_bh(void)
223{
224 return rcu_bh_state.completed;
225}
226EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
227
228/*
229 * Force a quiescent state for RCU BH.
230 */
231void rcu_bh_force_quiescent_state(void)
232{
233 force_quiescent_state(&rcu_bh_state, 0);
234}
235EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
236
237/*
238 * Record the number of times rcutorture tests have been initiated and
239 * terminated. This information allows the debugfs tracing stats to be
240 * correlated to the rcutorture messages, even when the rcutorture module
241 * is being repeatedly loaded and unloaded. In other words, we cannot
242 * store this state in rcutorture itself.
243 */
244void rcutorture_record_test_transition(void)
245{
246 rcutorture_testseq++;
247 rcutorture_vernum = 0;
248}
249EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
250
251/*
252 * Record the number of writer passes through the current rcutorture test.
253 * This is also used to correlate debugfs tracing stats with the rcutorture
254 * messages.
255 */
256void rcutorture_record_progress(unsigned long vernum)
257{
258 rcutorture_vernum++;
259}
260EXPORT_SYMBOL_GPL(rcutorture_record_progress);
261
262/*
263 * Force a quiescent state for RCU-sched.
264 */
265void rcu_sched_force_quiescent_state(void)
266{
267 force_quiescent_state(&rcu_sched_state, 0);
268}
269EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
270
271/*
272 * Does the CPU have callbacks ready to be invoked?
273 */
274static int
275cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
276{
277 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
278}
279
280/*
281 * Does the current CPU require a yet-as-unscheduled grace period?
282 */
283static int
284cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
285{
286 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
287}
288
289/*
290 * Return the root node of the specified rcu_state structure.
291 */
292static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
293{
294 return &rsp->node[0];
295}
296
297#ifdef CONFIG_SMP
298
299/*
300 * If the specified CPU is offline, tell the caller that it is in
301 * a quiescent state. Otherwise, whack it with a reschedule IPI.
302 * Grace periods can end up waiting on an offline CPU when that
303 * CPU is in the process of coming online -- it will be added to the
304 * rcu_node bitmasks before it actually makes it online. The same thing
305 * can happen while a CPU is in the process of coming online. Because this
306 * race is quite rare, we check for it after detecting that the grace
307 * period has been delayed rather than checking each and every CPU
308 * each and every time we start a new grace period.
309 */
310static int rcu_implicit_offline_qs(struct rcu_data *rdp)
311{
312 /*
313 * If the CPU is offline, it is in a quiescent state. We can
314 * trust its state not to change because interrupts are disabled.
315 */
316 if (cpu_is_offline(rdp->cpu)) {
317 rdp->offline_fqs++;
318 return 1;
319 }
320
321 /* If preemptible RCU, no point in sending reschedule IPI. */
322 if (rdp->preemptible)
323 return 0;
324
325 /* The CPU is online, so send it a reschedule IPI. */
326 if (rdp->cpu != smp_processor_id())
327 smp_send_reschedule(rdp->cpu);
328 else
329 set_need_resched();
330 rdp->resched_ipi++;
331 return 0;
332}
333
334#endif /* #ifdef CONFIG_SMP */
335
336#ifdef CONFIG_NO_HZ
337
338/**
339 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
340 *
341 * Enter nohz mode, in other words, -leave- the mode in which RCU
342 * read-side critical sections can occur. (Though RCU read-side
343 * critical sections can occur in irq handlers in nohz mode, a possibility
344 * handled by rcu_irq_enter() and rcu_irq_exit()).
345 */
346void rcu_enter_nohz(void)
347{
348 unsigned long flags;
349 struct rcu_dynticks *rdtp;
350
351 local_irq_save(flags);
352 rdtp = &__get_cpu_var(rcu_dynticks);
353 if (--rdtp->dynticks_nesting) {
354 local_irq_restore(flags);
355 return;
356 }
357 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
358 smp_mb__before_atomic_inc(); /* See above. */
359 atomic_inc(&rdtp->dynticks);
360 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
361 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
362 local_irq_restore(flags);
363
364 /* If the interrupt queued a callback, get out of dyntick mode. */
365 if (in_irq() &&
366 (__get_cpu_var(rcu_sched_data).nxtlist ||
367 __get_cpu_var(rcu_bh_data).nxtlist ||
368 rcu_preempt_needs_cpu(smp_processor_id())))
369 set_need_resched();
370}
371
372/*
373 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
374 *
375 * Exit nohz mode, in other words, -enter- the mode in which RCU
376 * read-side critical sections normally occur.
377 */
378void rcu_exit_nohz(void)
379{
380 unsigned long flags;
381 struct rcu_dynticks *rdtp;
382
383 local_irq_save(flags);
384 rdtp = &__get_cpu_var(rcu_dynticks);
385 if (rdtp->dynticks_nesting++) {
386 local_irq_restore(flags);
387 return;
388 }
389 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
390 atomic_inc(&rdtp->dynticks);
391 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
392 smp_mb__after_atomic_inc(); /* See above. */
393 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
394 local_irq_restore(flags);
395}
396
397/**
398 * rcu_nmi_enter - inform RCU of entry to NMI context
399 *
400 * If the CPU was idle with dynamic ticks active, and there is no
401 * irq handler running, this updates rdtp->dynticks_nmi to let the
402 * RCU grace-period handling know that the CPU is active.
403 */
404void rcu_nmi_enter(void)
405{
406 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
407
408 if (rdtp->dynticks_nmi_nesting == 0 &&
409 (atomic_read(&rdtp->dynticks) & 0x1))
410 return;
411 rdtp->dynticks_nmi_nesting++;
412 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
413 atomic_inc(&rdtp->dynticks);
414 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
415 smp_mb__after_atomic_inc(); /* See above. */
416 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
417}
418
419/**
420 * rcu_nmi_exit - inform RCU of exit from NMI context
421 *
422 * If the CPU was idle with dynamic ticks active, and there is no
423 * irq handler running, this updates rdtp->dynticks_nmi to let the
424 * RCU grace-period handling know that the CPU is no longer active.
425 */
426void rcu_nmi_exit(void)
427{
428 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
429
430 if (rdtp->dynticks_nmi_nesting == 0 ||
431 --rdtp->dynticks_nmi_nesting != 0)
432 return;
433 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
434 smp_mb__before_atomic_inc(); /* See above. */
435 atomic_inc(&rdtp->dynticks);
436 smp_mb__after_atomic_inc(); /* Force delay to next write. */
437 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
438}
439
440/**
441 * rcu_irq_enter - inform RCU of entry to hard irq context
442 *
443 * If the CPU was idle with dynamic ticks active, this updates the
444 * rdtp->dynticks to let the RCU handling know that the CPU is active.
445 */
446void rcu_irq_enter(void)
447{
448 rcu_exit_nohz();
449}
450
451/**
452 * rcu_irq_exit - inform RCU of exit from hard irq context
453 *
454 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
455 * to put let the RCU handling be aware that the CPU is going back to idle
456 * with no ticks.
457 */
458void rcu_irq_exit(void)
459{
460 rcu_enter_nohz();
461}
462
463#ifdef CONFIG_SMP
464
465/*
466 * Snapshot the specified CPU's dynticks counter so that we can later
467 * credit them with an implicit quiescent state. Return 1 if this CPU
468 * is in dynticks idle mode, which is an extended quiescent state.
469 */
470static int dyntick_save_progress_counter(struct rcu_data *rdp)
471{
472 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
473 return 0;
474}
475
476/*
477 * Return true if the specified CPU has passed through a quiescent
478 * state by virtue of being in or having passed through an dynticks
479 * idle state since the last call to dyntick_save_progress_counter()
480 * for this same CPU.
481 */
482static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
483{
484 unsigned long curr;
485 unsigned long snap;
486
487 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
488 snap = (unsigned long)rdp->dynticks_snap;
489
490 /*
491 * If the CPU passed through or entered a dynticks idle phase with
492 * no active irq/NMI handlers, then we can safely pretend that the CPU
493 * already acknowledged the request to pass through a quiescent
494 * state. Either way, that CPU cannot possibly be in an RCU
495 * read-side critical section that started before the beginning
496 * of the current RCU grace period.
497 */
498 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
499 rdp->dynticks_fqs++;
500 return 1;
501 }
502
503 /* Go check for the CPU being offline. */
504 return rcu_implicit_offline_qs(rdp);
505}
506
507#endif /* #ifdef CONFIG_SMP */
508
509#else /* #ifdef CONFIG_NO_HZ */
510
511#ifdef CONFIG_SMP
512
513static int dyntick_save_progress_counter(struct rcu_data *rdp)
514{
515 return 0;
516}
517
518static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
519{
520 return rcu_implicit_offline_qs(rdp);
521}
522
523#endif /* #ifdef CONFIG_SMP */
524
525#endif /* #else #ifdef CONFIG_NO_HZ */
526
527int rcu_cpu_stall_suppress __read_mostly;
528
529static void record_gp_stall_check_time(struct rcu_state *rsp)
530{
531 rsp->gp_start = jiffies;
532 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
533}
534
535static void print_other_cpu_stall(struct rcu_state *rsp)
536{
537 int cpu;
538 long delta;
539 unsigned long flags;
540 struct rcu_node *rnp = rcu_get_root(rsp);
541
542 /* Only let one CPU complain about others per time interval. */
543
544 raw_spin_lock_irqsave(&rnp->lock, flags);
545 delta = jiffies - rsp->jiffies_stall;
546 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
547 raw_spin_unlock_irqrestore(&rnp->lock, flags);
548 return;
549 }
550 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
551
552 /*
553 * Now rat on any tasks that got kicked up to the root rcu_node
554 * due to CPU offlining.
555 */
556 rcu_print_task_stall(rnp);
557 raw_spin_unlock_irqrestore(&rnp->lock, flags);
558
559 /*
560 * OK, time to rat on our buddy...
561 * See Documentation/RCU/stallwarn.txt for info on how to debug
562 * RCU CPU stall warnings.
563 */
564 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
565 rsp->name);
566 rcu_for_each_leaf_node(rsp, rnp) {
567 raw_spin_lock_irqsave(&rnp->lock, flags);
568 rcu_print_task_stall(rnp);
569 raw_spin_unlock_irqrestore(&rnp->lock, flags);
570 if (rnp->qsmask == 0)
571 continue;
572 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
573 if (rnp->qsmask & (1UL << cpu))
574 printk(" %d", rnp->grplo + cpu);
575 }
576 printk("} (detected by %d, t=%ld jiffies)\n",
577 smp_processor_id(), (long)(jiffies - rsp->gp_start));
578 trigger_all_cpu_backtrace();
579
580 /* If so configured, complain about tasks blocking the grace period. */
581
582 rcu_print_detail_task_stall(rsp);
583
584 force_quiescent_state(rsp, 0); /* Kick them all. */
585}
586
587static void print_cpu_stall(struct rcu_state *rsp)
588{
589 unsigned long flags;
590 struct rcu_node *rnp = rcu_get_root(rsp);
591
592 /*
593 * OK, time to rat on ourselves...
594 * See Documentation/RCU/stallwarn.txt for info on how to debug
595 * RCU CPU stall warnings.
596 */
597 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
598 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
599 trigger_all_cpu_backtrace();
600
601 raw_spin_lock_irqsave(&rnp->lock, flags);
602 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
603 rsp->jiffies_stall =
604 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
605 raw_spin_unlock_irqrestore(&rnp->lock, flags);
606
607 set_need_resched(); /* kick ourselves to get things going. */
608}
609
610static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
611{
612 unsigned long j;
613 unsigned long js;
614 struct rcu_node *rnp;
615
616 if (rcu_cpu_stall_suppress)
617 return;
618 j = ACCESS_ONCE(jiffies);
619 js = ACCESS_ONCE(rsp->jiffies_stall);
620 rnp = rdp->mynode;
621 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
622
623 /* We haven't checked in, so go dump stack. */
624 print_cpu_stall(rsp);
625
626 } else if (rcu_gp_in_progress(rsp) &&
627 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
628
629 /* They had a few time units to dump stack, so complain. */
630 print_other_cpu_stall(rsp);
631 }
632}
633
634static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
635{
636 rcu_cpu_stall_suppress = 1;
637 return NOTIFY_DONE;
638}
639
640/**
641 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
642 *
643 * Set the stall-warning timeout way off into the future, thus preventing
644 * any RCU CPU stall-warning messages from appearing in the current set of
645 * RCU grace periods.
646 *
647 * The caller must disable hard irqs.
648 */
649void rcu_cpu_stall_reset(void)
650{
651 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
652 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
653 rcu_preempt_stall_reset();
654}
655
656static struct notifier_block rcu_panic_block = {
657 .notifier_call = rcu_panic,
658};
659
660static void __init check_cpu_stall_init(void)
661{
662 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
663}
664
665/*
666 * Update CPU-local rcu_data state to record the newly noticed grace period.
667 * This is used both when we started the grace period and when we notice
668 * that someone else started the grace period. The caller must hold the
669 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
670 * and must have irqs disabled.
671 */
672static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
673{
674 if (rdp->gpnum != rnp->gpnum) {
675 /*
676 * If the current grace period is waiting for this CPU,
677 * set up to detect a quiescent state, otherwise don't
678 * go looking for one.
679 */
680 rdp->gpnum = rnp->gpnum;
681 if (rnp->qsmask & rdp->grpmask) {
682 rdp->qs_pending = 1;
683 rdp->passed_quiesc = 0;
684 } else
685 rdp->qs_pending = 0;
686 }
687}
688
689static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
690{
691 unsigned long flags;
692 struct rcu_node *rnp;
693
694 local_irq_save(flags);
695 rnp = rdp->mynode;
696 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
697 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
698 local_irq_restore(flags);
699 return;
700 }
701 __note_new_gpnum(rsp, rnp, rdp);
702 raw_spin_unlock_irqrestore(&rnp->lock, flags);
703}
704
705/*
706 * Did someone else start a new RCU grace period start since we last
707 * checked? Update local state appropriately if so. Must be called
708 * on the CPU corresponding to rdp.
709 */
710static int
711check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
712{
713 unsigned long flags;
714 int ret = 0;
715
716 local_irq_save(flags);
717 if (rdp->gpnum != rsp->gpnum) {
718 note_new_gpnum(rsp, rdp);
719 ret = 1;
720 }
721 local_irq_restore(flags);
722 return ret;
723}
724
725/*
726 * Advance this CPU's callbacks, but only if the current grace period
727 * has ended. This may be called only from the CPU to whom the rdp
728 * belongs. In addition, the corresponding leaf rcu_node structure's
729 * ->lock must be held by the caller, with irqs disabled.
730 */
731static void
732__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
733{
734 /* Did another grace period end? */
735 if (rdp->completed != rnp->completed) {
736
737 /* Advance callbacks. No harm if list empty. */
738 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
739 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
740 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
741
742 /* Remember that we saw this grace-period completion. */
743 rdp->completed = rnp->completed;
744
745 /*
746 * If we were in an extended quiescent state, we may have
747 * missed some grace periods that others CPUs handled on
748 * our behalf. Catch up with this state to avoid noting
749 * spurious new grace periods. If another grace period
750 * has started, then rnp->gpnum will have advanced, so
751 * we will detect this later on.
752 */
753 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
754 rdp->gpnum = rdp->completed;
755
756 /*
757 * If RCU does not need a quiescent state from this CPU,
758 * then make sure that this CPU doesn't go looking for one.
759 */
760 if ((rnp->qsmask & rdp->grpmask) == 0)
761 rdp->qs_pending = 0;
762 }
763}
764
765/*
766 * Advance this CPU's callbacks, but only if the current grace period
767 * has ended. This may be called only from the CPU to whom the rdp
768 * belongs.
769 */
770static void
771rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
772{
773 unsigned long flags;
774 struct rcu_node *rnp;
775
776 local_irq_save(flags);
777 rnp = rdp->mynode;
778 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
779 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
780 local_irq_restore(flags);
781 return;
782 }
783 __rcu_process_gp_end(rsp, rnp, rdp);
784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
785}
786
787/*
788 * Do per-CPU grace-period initialization for running CPU. The caller
789 * must hold the lock of the leaf rcu_node structure corresponding to
790 * this CPU.
791 */
792static void
793rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
794{
795 /* Prior grace period ended, so advance callbacks for current CPU. */
796 __rcu_process_gp_end(rsp, rnp, rdp);
797
798 /*
799 * Because this CPU just now started the new grace period, we know
800 * that all of its callbacks will be covered by this upcoming grace
801 * period, even the ones that were registered arbitrarily recently.
802 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
803 *
804 * Other CPUs cannot be sure exactly when the grace period started.
805 * Therefore, their recently registered callbacks must pass through
806 * an additional RCU_NEXT_READY stage, so that they will be handled
807 * by the next RCU grace period.
808 */
809 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
810 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
811
812 /* Set state so that this CPU will detect the next quiescent state. */
813 __note_new_gpnum(rsp, rnp, rdp);
814}
815
816/*
817 * Start a new RCU grace period if warranted, re-initializing the hierarchy
818 * in preparation for detecting the next grace period. The caller must hold
819 * the root node's ->lock, which is released before return. Hard irqs must
820 * be disabled.
821 */
822static void
823rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
824 __releases(rcu_get_root(rsp)->lock)
825{
826 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
827 struct rcu_node *rnp = rcu_get_root(rsp);
828
829 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
830 if (cpu_needs_another_gp(rsp, rdp))
831 rsp->fqs_need_gp = 1;
832 if (rnp->completed == rsp->completed) {
833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
834 return;
835 }
836 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
837
838 /*
839 * Propagate new ->completed value to rcu_node structures
840 * so that other CPUs don't have to wait until the start
841 * of the next grace period to process their callbacks.
842 */
843 rcu_for_each_node_breadth_first(rsp, rnp) {
844 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
845 rnp->completed = rsp->completed;
846 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
847 }
848 local_irq_restore(flags);
849 return;
850 }
851
852 /* Advance to a new grace period and initialize state. */
853 rsp->gpnum++;
854 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
855 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
856 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
857 record_gp_stall_check_time(rsp);
858
859 /* Special-case the common single-level case. */
860 if (NUM_RCU_NODES == 1) {
861 rcu_preempt_check_blocked_tasks(rnp);
862 rnp->qsmask = rnp->qsmaskinit;
863 rnp->gpnum = rsp->gpnum;
864 rnp->completed = rsp->completed;
865 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
866 rcu_start_gp_per_cpu(rsp, rnp, rdp);
867 rcu_preempt_boost_start_gp(rnp);
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
869 return;
870 }
871
872 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
873
874
875 /* Exclude any concurrent CPU-hotplug operations. */
876 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
877
878 /*
879 * Set the quiescent-state-needed bits in all the rcu_node
880 * structures for all currently online CPUs in breadth-first
881 * order, starting from the root rcu_node structure. This
882 * operation relies on the layout of the hierarchy within the
883 * rsp->node[] array. Note that other CPUs will access only
884 * the leaves of the hierarchy, which still indicate that no
885 * grace period is in progress, at least until the corresponding
886 * leaf node has been initialized. In addition, we have excluded
887 * CPU-hotplug operations.
888 *
889 * Note that the grace period cannot complete until we finish
890 * the initialization process, as there will be at least one
891 * qsmask bit set in the root node until that time, namely the
892 * one corresponding to this CPU, due to the fact that we have
893 * irqs disabled.
894 */
895 rcu_for_each_node_breadth_first(rsp, rnp) {
896 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
897 rcu_preempt_check_blocked_tasks(rnp);
898 rnp->qsmask = rnp->qsmaskinit;
899 rnp->gpnum = rsp->gpnum;
900 rnp->completed = rsp->completed;
901 if (rnp == rdp->mynode)
902 rcu_start_gp_per_cpu(rsp, rnp, rdp);
903 rcu_preempt_boost_start_gp(rnp);
904 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
905 }
906
907 rnp = rcu_get_root(rsp);
908 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
909 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
910 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
911 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
912}
913
914/*
915 * Report a full set of quiescent states to the specified rcu_state
916 * data structure. This involves cleaning up after the prior grace
917 * period and letting rcu_start_gp() start up the next grace period
918 * if one is needed. Note that the caller must hold rnp->lock, as
919 * required by rcu_start_gp(), which will release it.
920 */
921static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
922 __releases(rcu_get_root(rsp)->lock)
923{
924 unsigned long gp_duration;
925
926 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
927
928 /*
929 * Ensure that all grace-period and pre-grace-period activity
930 * is seen before the assignment to rsp->completed.
931 */
932 smp_mb(); /* See above block comment. */
933 gp_duration = jiffies - rsp->gp_start;
934 if (gp_duration > rsp->gp_max)
935 rsp->gp_max = gp_duration;
936 rsp->completed = rsp->gpnum;
937 rsp->signaled = RCU_GP_IDLE;
938 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
939}
940
941/*
942 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
943 * Allows quiescent states for a group of CPUs to be reported at one go
944 * to the specified rcu_node structure, though all the CPUs in the group
945 * must be represented by the same rcu_node structure (which need not be
946 * a leaf rcu_node structure, though it often will be). That structure's
947 * lock must be held upon entry, and it is released before return.
948 */
949static void
950rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
951 struct rcu_node *rnp, unsigned long flags)
952 __releases(rnp->lock)
953{
954 struct rcu_node *rnp_c;
955
956 /* Walk up the rcu_node hierarchy. */
957 for (;;) {
958 if (!(rnp->qsmask & mask)) {
959
960 /* Our bit has already been cleared, so done. */
961 raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 return;
963 }
964 rnp->qsmask &= ~mask;
965 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
966
967 /* Other bits still set at this level, so done. */
968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
969 return;
970 }
971 mask = rnp->grpmask;
972 if (rnp->parent == NULL) {
973
974 /* No more levels. Exit loop holding root lock. */
975
976 break;
977 }
978 raw_spin_unlock_irqrestore(&rnp->lock, flags);
979 rnp_c = rnp;
980 rnp = rnp->parent;
981 raw_spin_lock_irqsave(&rnp->lock, flags);
982 WARN_ON_ONCE(rnp_c->qsmask);
983 }
984
985 /*
986 * Get here if we are the last CPU to pass through a quiescent
987 * state for this grace period. Invoke rcu_report_qs_rsp()
988 * to clean up and start the next grace period if one is needed.
989 */
990 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
991}
992
993/*
994 * Record a quiescent state for the specified CPU to that CPU's rcu_data
995 * structure. This must be either called from the specified CPU, or
996 * called when the specified CPU is known to be offline (and when it is
997 * also known that no other CPU is concurrently trying to help the offline
998 * CPU). The lastcomp argument is used to make sure we are still in the
999 * grace period of interest. We don't want to end the current grace period
1000 * based on quiescent states detected in an earlier grace period!
1001 */
1002static void
1003rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
1004{
1005 unsigned long flags;
1006 unsigned long mask;
1007 struct rcu_node *rnp;
1008
1009 rnp = rdp->mynode;
1010 raw_spin_lock_irqsave(&rnp->lock, flags);
1011 if (lastcomp != rnp->completed) {
1012
1013 /*
1014 * Someone beat us to it for this grace period, so leave.
1015 * The race with GP start is resolved by the fact that we
1016 * hold the leaf rcu_node lock, so that the per-CPU bits
1017 * cannot yet be initialized -- so we would simply find our
1018 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1019 * race occurred.
1020 */
1021 rdp->passed_quiesc = 0; /* try again later! */
1022 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1023 return;
1024 }
1025 mask = rdp->grpmask;
1026 if ((rnp->qsmask & mask) == 0) {
1027 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1028 } else {
1029 rdp->qs_pending = 0;
1030
1031 /*
1032 * This GP can't end until cpu checks in, so all of our
1033 * callbacks can be processed during the next GP.
1034 */
1035 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1036
1037 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1038 }
1039}
1040
1041/*
1042 * Check to see if there is a new grace period of which this CPU
1043 * is not yet aware, and if so, set up local rcu_data state for it.
1044 * Otherwise, see if this CPU has just passed through its first
1045 * quiescent state for this grace period, and record that fact if so.
1046 */
1047static void
1048rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1049{
1050 /* If there is now a new grace period, record and return. */
1051 if (check_for_new_grace_period(rsp, rdp))
1052 return;
1053
1054 /*
1055 * Does this CPU still need to do its part for current grace period?
1056 * If no, return and let the other CPUs do their part as well.
1057 */
1058 if (!rdp->qs_pending)
1059 return;
1060
1061 /*
1062 * Was there a quiescent state since the beginning of the grace
1063 * period? If no, then exit and wait for the next call.
1064 */
1065 if (!rdp->passed_quiesc)
1066 return;
1067
1068 /*
1069 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1070 * judge of that).
1071 */
1072 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1073}
1074
1075#ifdef CONFIG_HOTPLUG_CPU
1076
1077/*
1078 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1079 * Synchronization is not required because this function executes
1080 * in stop_machine() context.
1081 */
1082static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1083{
1084 int i;
1085 /* current DYING CPU is cleared in the cpu_online_mask */
1086 int receive_cpu = cpumask_any(cpu_online_mask);
1087 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1088 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1089
1090 if (rdp->nxtlist == NULL)
1091 return; /* irqs disabled, so comparison is stable. */
1092
1093 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1094 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1095 receive_rdp->qlen += rdp->qlen;
1096 receive_rdp->n_cbs_adopted += rdp->qlen;
1097 rdp->n_cbs_orphaned += rdp->qlen;
1098
1099 rdp->nxtlist = NULL;
1100 for (i = 0; i < RCU_NEXT_SIZE; i++)
1101 rdp->nxttail[i] = &rdp->nxtlist;
1102 rdp->qlen = 0;
1103}
1104
1105/*
1106 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1107 * and move all callbacks from the outgoing CPU to the current one.
1108 * There can only be one CPU hotplug operation at a time, so no other
1109 * CPU can be attempting to update rcu_cpu_kthread_task.
1110 */
1111static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1112{
1113 unsigned long flags;
1114 unsigned long mask;
1115 int need_report = 0;
1116 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1117 struct rcu_node *rnp;
1118
1119 rcu_stop_cpu_kthread(cpu);
1120
1121 /* Exclude any attempts to start a new grace period. */
1122 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1123
1124 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1125 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1126 mask = rdp->grpmask; /* rnp->grplo is constant. */
1127 do {
1128 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1129 rnp->qsmaskinit &= ~mask;
1130 if (rnp->qsmaskinit != 0) {
1131 if (rnp != rdp->mynode)
1132 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1133 break;
1134 }
1135 if (rnp == rdp->mynode)
1136 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1137 else
1138 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1139 mask = rnp->grpmask;
1140 rnp = rnp->parent;
1141 } while (rnp != NULL);
1142
1143 /*
1144 * We still hold the leaf rcu_node structure lock here, and
1145 * irqs are still disabled. The reason for this subterfuge is
1146 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1147 * held leads to deadlock.
1148 */
1149 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1150 rnp = rdp->mynode;
1151 if (need_report & RCU_OFL_TASKS_NORM_GP)
1152 rcu_report_unblock_qs_rnp(rnp, flags);
1153 else
1154 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1155 if (need_report & RCU_OFL_TASKS_EXP_GP)
1156 rcu_report_exp_rnp(rsp, rnp);
1157 rcu_node_kthread_setaffinity(rnp, -1);
1158}
1159
1160/*
1161 * Remove the specified CPU from the RCU hierarchy and move any pending
1162 * callbacks that it might have to the current CPU. This code assumes
1163 * that at least one CPU in the system will remain running at all times.
1164 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1165 */
1166static void rcu_offline_cpu(int cpu)
1167{
1168 __rcu_offline_cpu(cpu, &rcu_sched_state);
1169 __rcu_offline_cpu(cpu, &rcu_bh_state);
1170 rcu_preempt_offline_cpu(cpu);
1171}
1172
1173#else /* #ifdef CONFIG_HOTPLUG_CPU */
1174
1175static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1176{
1177}
1178
1179static void rcu_offline_cpu(int cpu)
1180{
1181}
1182
1183#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1184
1185/*
1186 * Invoke any RCU callbacks that have made it to the end of their grace
1187 * period. Thottle as specified by rdp->blimit.
1188 */
1189static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1190{
1191 unsigned long flags;
1192 struct rcu_head *next, *list, **tail;
1193 int count;
1194
1195 /* If no callbacks are ready, just return.*/
1196 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1197 return;
1198
1199 /*
1200 * Extract the list of ready callbacks, disabling to prevent
1201 * races with call_rcu() from interrupt handlers.
1202 */
1203 local_irq_save(flags);
1204 list = rdp->nxtlist;
1205 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1206 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1207 tail = rdp->nxttail[RCU_DONE_TAIL];
1208 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1209 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1210 rdp->nxttail[count] = &rdp->nxtlist;
1211 local_irq_restore(flags);
1212
1213 /* Invoke callbacks. */
1214 count = 0;
1215 while (list) {
1216 next = list->next;
1217 prefetch(next);
1218 debug_rcu_head_unqueue(list);
1219 __rcu_reclaim(list);
1220 list = next;
1221 if (++count >= rdp->blimit)
1222 break;
1223 }
1224
1225 local_irq_save(flags);
1226
1227 /* Update count, and requeue any remaining callbacks. */
1228 rdp->qlen -= count;
1229 rdp->n_cbs_invoked += count;
1230 if (list != NULL) {
1231 *tail = rdp->nxtlist;
1232 rdp->nxtlist = list;
1233 for (count = 0; count < RCU_NEXT_SIZE; count++)
1234 if (&rdp->nxtlist == rdp->nxttail[count])
1235 rdp->nxttail[count] = tail;
1236 else
1237 break;
1238 }
1239
1240 /* Reinstate batch limit if we have worked down the excess. */
1241 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1242 rdp->blimit = blimit;
1243
1244 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1245 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1246 rdp->qlen_last_fqs_check = 0;
1247 rdp->n_force_qs_snap = rsp->n_force_qs;
1248 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1249 rdp->qlen_last_fqs_check = rdp->qlen;
1250
1251 local_irq_restore(flags);
1252
1253 /* Re-raise the RCU softirq if there are callbacks remaining. */
1254 if (cpu_has_callbacks_ready_to_invoke(rdp))
1255 invoke_rcu_core();
1256}
1257
1258/*
1259 * Check to see if this CPU is in a non-context-switch quiescent state
1260 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1261 * Also schedule the RCU softirq handler.
1262 *
1263 * This function must be called with hardirqs disabled. It is normally
1264 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1265 * false, there is no point in invoking rcu_check_callbacks().
1266 */
1267void rcu_check_callbacks(int cpu, int user)
1268{
1269 if (user ||
1270 (idle_cpu(cpu) && rcu_scheduler_active &&
1271 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1272
1273 /*
1274 * Get here if this CPU took its interrupt from user
1275 * mode or from the idle loop, and if this is not a
1276 * nested interrupt. In this case, the CPU is in
1277 * a quiescent state, so note it.
1278 *
1279 * No memory barrier is required here because both
1280 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1281 * variables that other CPUs neither access nor modify,
1282 * at least not while the corresponding CPU is online.
1283 */
1284
1285 rcu_sched_qs(cpu);
1286 rcu_bh_qs(cpu);
1287
1288 } else if (!in_softirq()) {
1289
1290 /*
1291 * Get here if this CPU did not take its interrupt from
1292 * softirq, in other words, if it is not interrupting
1293 * a rcu_bh read-side critical section. This is an _bh
1294 * critical section, so note it.
1295 */
1296
1297 rcu_bh_qs(cpu);
1298 }
1299 rcu_preempt_check_callbacks(cpu);
1300 if (rcu_pending(cpu))
1301 invoke_rcu_core();
1302}
1303
1304#ifdef CONFIG_SMP
1305
1306/*
1307 * Scan the leaf rcu_node structures, processing dyntick state for any that
1308 * have not yet encountered a quiescent state, using the function specified.
1309 * Also initiate boosting for any threads blocked on the root rcu_node.
1310 *
1311 * The caller must have suppressed start of new grace periods.
1312 */
1313static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1314{
1315 unsigned long bit;
1316 int cpu;
1317 unsigned long flags;
1318 unsigned long mask;
1319 struct rcu_node *rnp;
1320
1321 rcu_for_each_leaf_node(rsp, rnp) {
1322 mask = 0;
1323 raw_spin_lock_irqsave(&rnp->lock, flags);
1324 if (!rcu_gp_in_progress(rsp)) {
1325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326 return;
1327 }
1328 if (rnp->qsmask == 0) {
1329 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1330 continue;
1331 }
1332 cpu = rnp->grplo;
1333 bit = 1;
1334 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1335 if ((rnp->qsmask & bit) != 0 &&
1336 f(per_cpu_ptr(rsp->rda, cpu)))
1337 mask |= bit;
1338 }
1339 if (mask != 0) {
1340
1341 /* rcu_report_qs_rnp() releases rnp->lock. */
1342 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1343 continue;
1344 }
1345 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1346 }
1347 rnp = rcu_get_root(rsp);
1348 if (rnp->qsmask == 0) {
1349 raw_spin_lock_irqsave(&rnp->lock, flags);
1350 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1351 }
1352}
1353
1354/*
1355 * Force quiescent states on reluctant CPUs, and also detect which
1356 * CPUs are in dyntick-idle mode.
1357 */
1358static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1359{
1360 unsigned long flags;
1361 struct rcu_node *rnp = rcu_get_root(rsp);
1362
1363 if (!rcu_gp_in_progress(rsp))
1364 return; /* No grace period in progress, nothing to force. */
1365 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1366 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1367 return; /* Someone else is already on the job. */
1368 }
1369 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1370 goto unlock_fqs_ret; /* no emergency and done recently. */
1371 rsp->n_force_qs++;
1372 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1373 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1374 if(!rcu_gp_in_progress(rsp)) {
1375 rsp->n_force_qs_ngp++;
1376 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1377 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1378 }
1379 rsp->fqs_active = 1;
1380 switch (rsp->signaled) {
1381 case RCU_GP_IDLE:
1382 case RCU_GP_INIT:
1383
1384 break; /* grace period idle or initializing, ignore. */
1385
1386 case RCU_SAVE_DYNTICK:
1387 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1388 break; /* So gcc recognizes the dead code. */
1389
1390 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1391
1392 /* Record dyntick-idle state. */
1393 force_qs_rnp(rsp, dyntick_save_progress_counter);
1394 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1395 if (rcu_gp_in_progress(rsp))
1396 rsp->signaled = RCU_FORCE_QS;
1397 break;
1398
1399 case RCU_FORCE_QS:
1400
1401 /* Check dyntick-idle state, send IPI to laggarts. */
1402 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1403 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1404
1405 /* Leave state in case more forcing is required. */
1406
1407 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1408 break;
1409 }
1410 rsp->fqs_active = 0;
1411 if (rsp->fqs_need_gp) {
1412 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1413 rsp->fqs_need_gp = 0;
1414 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1415 return;
1416 }
1417 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1418unlock_fqs_ret:
1419 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1420}
1421
1422#else /* #ifdef CONFIG_SMP */
1423
1424static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1425{
1426 set_need_resched();
1427}
1428
1429#endif /* #else #ifdef CONFIG_SMP */
1430
1431/*
1432 * This does the RCU processing work from softirq context for the
1433 * specified rcu_state and rcu_data structures. This may be called
1434 * only from the CPU to whom the rdp belongs.
1435 */
1436static void
1437__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1438{
1439 unsigned long flags;
1440
1441 WARN_ON_ONCE(rdp->beenonline == 0);
1442
1443 /*
1444 * If an RCU GP has gone long enough, go check for dyntick
1445 * idle CPUs and, if needed, send resched IPIs.
1446 */
1447 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1448 force_quiescent_state(rsp, 1);
1449
1450 /*
1451 * Advance callbacks in response to end of earlier grace
1452 * period that some other CPU ended.
1453 */
1454 rcu_process_gp_end(rsp, rdp);
1455
1456 /* Update RCU state based on any recent quiescent states. */
1457 rcu_check_quiescent_state(rsp, rdp);
1458
1459 /* Does this CPU require a not-yet-started grace period? */
1460 if (cpu_needs_another_gp(rsp, rdp)) {
1461 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1462 rcu_start_gp(rsp, flags); /* releases above lock */
1463 }
1464
1465 /* If there are callbacks ready, invoke them. */
1466 if (cpu_has_callbacks_ready_to_invoke(rdp))
1467 invoke_rcu_callbacks(rsp, rdp);
1468}
1469
1470/*
1471 * Do softirq processing for the current CPU.
1472 */
1473static void rcu_process_callbacks(struct softirq_action *unused)
1474{
1475 __rcu_process_callbacks(&rcu_sched_state,
1476 &__get_cpu_var(rcu_sched_data));
1477 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1478 rcu_preempt_process_callbacks();
1479
1480 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1481 rcu_needs_cpu_flush();
1482}
1483
1484/*
1485 * Wake up the current CPU's kthread. This replaces raise_softirq()
1486 * in earlier versions of RCU. Note that because we are running on
1487 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1488 * cannot disappear out from under us.
1489 */
1490static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1491{
1492 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1493 return;
1494 if (likely(!rsp->boost)) {
1495 rcu_do_batch(rsp, rdp);
1496 return;
1497 }
1498 invoke_rcu_callbacks_kthread();
1499}
1500
1501static void invoke_rcu_core(void)
1502{
1503 raise_softirq(RCU_SOFTIRQ);
1504}
1505
1506static void
1507__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1508 struct rcu_state *rsp)
1509{
1510 unsigned long flags;
1511 struct rcu_data *rdp;
1512
1513 debug_rcu_head_queue(head);
1514 head->func = func;
1515 head->next = NULL;
1516
1517 smp_mb(); /* Ensure RCU update seen before callback registry. */
1518
1519 /*
1520 * Opportunistically note grace-period endings and beginnings.
1521 * Note that we might see a beginning right after we see an
1522 * end, but never vice versa, since this CPU has to pass through
1523 * a quiescent state betweentimes.
1524 */
1525 local_irq_save(flags);
1526 rdp = this_cpu_ptr(rsp->rda);
1527
1528 /* Add the callback to our list. */
1529 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1530 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1531 rdp->qlen++;
1532
1533 /* If interrupts were disabled, don't dive into RCU core. */
1534 if (irqs_disabled_flags(flags)) {
1535 local_irq_restore(flags);
1536 return;
1537 }
1538
1539 /*
1540 * Force the grace period if too many callbacks or too long waiting.
1541 * Enforce hysteresis, and don't invoke force_quiescent_state()
1542 * if some other CPU has recently done so. Also, don't bother
1543 * invoking force_quiescent_state() if the newly enqueued callback
1544 * is the only one waiting for a grace period to complete.
1545 */
1546 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1547
1548 /* Are we ignoring a completed grace period? */
1549 rcu_process_gp_end(rsp, rdp);
1550 check_for_new_grace_period(rsp, rdp);
1551
1552 /* Start a new grace period if one not already started. */
1553 if (!rcu_gp_in_progress(rsp)) {
1554 unsigned long nestflag;
1555 struct rcu_node *rnp_root = rcu_get_root(rsp);
1556
1557 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1558 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1559 } else {
1560 /* Give the grace period a kick. */
1561 rdp->blimit = LONG_MAX;
1562 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1563 *rdp->nxttail[RCU_DONE_TAIL] != head)
1564 force_quiescent_state(rsp, 0);
1565 rdp->n_force_qs_snap = rsp->n_force_qs;
1566 rdp->qlen_last_fqs_check = rdp->qlen;
1567 }
1568 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1569 force_quiescent_state(rsp, 1);
1570 local_irq_restore(flags);
1571}
1572
1573/*
1574 * Queue an RCU-sched callback for invocation after a grace period.
1575 */
1576void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1577{
1578 __call_rcu(head, func, &rcu_sched_state);
1579}
1580EXPORT_SYMBOL_GPL(call_rcu_sched);
1581
1582/*
1583 * Queue an RCU for invocation after a quicker grace period.
1584 */
1585void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1586{
1587 __call_rcu(head, func, &rcu_bh_state);
1588}
1589EXPORT_SYMBOL_GPL(call_rcu_bh);
1590
1591/**
1592 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1593 *
1594 * Control will return to the caller some time after a full rcu-sched
1595 * grace period has elapsed, in other words after all currently executing
1596 * rcu-sched read-side critical sections have completed. These read-side
1597 * critical sections are delimited by rcu_read_lock_sched() and
1598 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1599 * local_irq_disable(), and so on may be used in place of
1600 * rcu_read_lock_sched().
1601 *
1602 * This means that all preempt_disable code sequences, including NMI and
1603 * hardware-interrupt handlers, in progress on entry will have completed
1604 * before this primitive returns. However, this does not guarantee that
1605 * softirq handlers will have completed, since in some kernels, these
1606 * handlers can run in process context, and can block.
1607 *
1608 * This primitive provides the guarantees made by the (now removed)
1609 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1610 * guarantees that rcu_read_lock() sections will have completed.
1611 * In "classic RCU", these two guarantees happen to be one and
1612 * the same, but can differ in realtime RCU implementations.
1613 */
1614void synchronize_sched(void)
1615{
1616 struct rcu_synchronize rcu;
1617
1618 if (rcu_blocking_is_gp())
1619 return;
1620
1621 init_rcu_head_on_stack(&rcu.head);
1622 init_completion(&rcu.completion);
1623 /* Will wake me after RCU finished. */
1624 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1625 /* Wait for it. */
1626 wait_for_completion(&rcu.completion);
1627 destroy_rcu_head_on_stack(&rcu.head);
1628}
1629EXPORT_SYMBOL_GPL(synchronize_sched);
1630
1631/**
1632 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1633 *
1634 * Control will return to the caller some time after a full rcu_bh grace
1635 * period has elapsed, in other words after all currently executing rcu_bh
1636 * read-side critical sections have completed. RCU read-side critical
1637 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1638 * and may be nested.
1639 */
1640void synchronize_rcu_bh(void)
1641{
1642 struct rcu_synchronize rcu;
1643
1644 if (rcu_blocking_is_gp())
1645 return;
1646
1647 init_rcu_head_on_stack(&rcu.head);
1648 init_completion(&rcu.completion);
1649 /* Will wake me after RCU finished. */
1650 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1651 /* Wait for it. */
1652 wait_for_completion(&rcu.completion);
1653 destroy_rcu_head_on_stack(&rcu.head);
1654}
1655EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1656
1657/*
1658 * Check to see if there is any immediate RCU-related work to be done
1659 * by the current CPU, for the specified type of RCU, returning 1 if so.
1660 * The checks are in order of increasing expense: checks that can be
1661 * carried out against CPU-local state are performed first. However,
1662 * we must check for CPU stalls first, else we might not get a chance.
1663 */
1664static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1665{
1666 struct rcu_node *rnp = rdp->mynode;
1667
1668 rdp->n_rcu_pending++;
1669
1670 /* Check for CPU stalls, if enabled. */
1671 check_cpu_stall(rsp, rdp);
1672
1673 /* Is the RCU core waiting for a quiescent state from this CPU? */
1674 if (rdp->qs_pending && !rdp->passed_quiesc) {
1675
1676 /*
1677 * If force_quiescent_state() coming soon and this CPU
1678 * needs a quiescent state, and this is either RCU-sched
1679 * or RCU-bh, force a local reschedule.
1680 */
1681 rdp->n_rp_qs_pending++;
1682 if (!rdp->preemptible &&
1683 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1684 jiffies))
1685 set_need_resched();
1686 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1687 rdp->n_rp_report_qs++;
1688 return 1;
1689 }
1690
1691 /* Does this CPU have callbacks ready to invoke? */
1692 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1693 rdp->n_rp_cb_ready++;
1694 return 1;
1695 }
1696
1697 /* Has RCU gone idle with this CPU needing another grace period? */
1698 if (cpu_needs_another_gp(rsp, rdp)) {
1699 rdp->n_rp_cpu_needs_gp++;
1700 return 1;
1701 }
1702
1703 /* Has another RCU grace period completed? */
1704 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1705 rdp->n_rp_gp_completed++;
1706 return 1;
1707 }
1708
1709 /* Has a new RCU grace period started? */
1710 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1711 rdp->n_rp_gp_started++;
1712 return 1;
1713 }
1714
1715 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1716 if (rcu_gp_in_progress(rsp) &&
1717 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1718 rdp->n_rp_need_fqs++;
1719 return 1;
1720 }
1721
1722 /* nothing to do */
1723 rdp->n_rp_need_nothing++;
1724 return 0;
1725}
1726
1727/*
1728 * Check to see if there is any immediate RCU-related work to be done
1729 * by the current CPU, returning 1 if so. This function is part of the
1730 * RCU implementation; it is -not- an exported member of the RCU API.
1731 */
1732static int rcu_pending(int cpu)
1733{
1734 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1735 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1736 rcu_preempt_pending(cpu);
1737}
1738
1739/*
1740 * Check to see if any future RCU-related work will need to be done
1741 * by the current CPU, even if none need be done immediately, returning
1742 * 1 if so.
1743 */
1744static int rcu_needs_cpu_quick_check(int cpu)
1745{
1746 /* RCU callbacks either ready or pending? */
1747 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1748 per_cpu(rcu_bh_data, cpu).nxtlist ||
1749 rcu_preempt_needs_cpu(cpu);
1750}
1751
1752static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1753static atomic_t rcu_barrier_cpu_count;
1754static DEFINE_MUTEX(rcu_barrier_mutex);
1755static struct completion rcu_barrier_completion;
1756
1757static void rcu_barrier_callback(struct rcu_head *notused)
1758{
1759 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1760 complete(&rcu_barrier_completion);
1761}
1762
1763/*
1764 * Called with preemption disabled, and from cross-cpu IRQ context.
1765 */
1766static void rcu_barrier_func(void *type)
1767{
1768 int cpu = smp_processor_id();
1769 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1770 void (*call_rcu_func)(struct rcu_head *head,
1771 void (*func)(struct rcu_head *head));
1772
1773 atomic_inc(&rcu_barrier_cpu_count);
1774 call_rcu_func = type;
1775 call_rcu_func(head, rcu_barrier_callback);
1776}
1777
1778/*
1779 * Orchestrate the specified type of RCU barrier, waiting for all
1780 * RCU callbacks of the specified type to complete.
1781 */
1782static void _rcu_barrier(struct rcu_state *rsp,
1783 void (*call_rcu_func)(struct rcu_head *head,
1784 void (*func)(struct rcu_head *head)))
1785{
1786 BUG_ON(in_interrupt());
1787 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1788 mutex_lock(&rcu_barrier_mutex);
1789 init_completion(&rcu_barrier_completion);
1790 /*
1791 * Initialize rcu_barrier_cpu_count to 1, then invoke
1792 * rcu_barrier_func() on each CPU, so that each CPU also has
1793 * incremented rcu_barrier_cpu_count. Only then is it safe to
1794 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1795 * might complete its grace period before all of the other CPUs
1796 * did their increment, causing this function to return too
1797 * early. Note that on_each_cpu() disables irqs, which prevents
1798 * any CPUs from coming online or going offline until each online
1799 * CPU has queued its RCU-barrier callback.
1800 */
1801 atomic_set(&rcu_barrier_cpu_count, 1);
1802 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1803 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1804 complete(&rcu_barrier_completion);
1805 wait_for_completion(&rcu_barrier_completion);
1806 mutex_unlock(&rcu_barrier_mutex);
1807}
1808
1809/**
1810 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1811 */
1812void rcu_barrier_bh(void)
1813{
1814 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1815}
1816EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1817
1818/**
1819 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1820 */
1821void rcu_barrier_sched(void)
1822{
1823 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1824}
1825EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1826
1827/*
1828 * Do boot-time initialization of a CPU's per-CPU RCU data.
1829 */
1830static void __init
1831rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1832{
1833 unsigned long flags;
1834 int i;
1835 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1836 struct rcu_node *rnp = rcu_get_root(rsp);
1837
1838 /* Set up local state, ensuring consistent view of global state. */
1839 raw_spin_lock_irqsave(&rnp->lock, flags);
1840 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1841 rdp->nxtlist = NULL;
1842 for (i = 0; i < RCU_NEXT_SIZE; i++)
1843 rdp->nxttail[i] = &rdp->nxtlist;
1844 rdp->qlen = 0;
1845#ifdef CONFIG_NO_HZ
1846 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1847#endif /* #ifdef CONFIG_NO_HZ */
1848 rdp->cpu = cpu;
1849 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1850}
1851
1852/*
1853 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1854 * offline event can be happening at a given time. Note also that we
1855 * can accept some slop in the rsp->completed access due to the fact
1856 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1857 */
1858static void __cpuinit
1859rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1860{
1861 unsigned long flags;
1862 unsigned long mask;
1863 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1864 struct rcu_node *rnp = rcu_get_root(rsp);
1865
1866 /* Set up local state, ensuring consistent view of global state. */
1867 raw_spin_lock_irqsave(&rnp->lock, flags);
1868 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1869 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1870 rdp->beenonline = 1; /* We have now been online. */
1871 rdp->preemptible = preemptible;
1872 rdp->qlen_last_fqs_check = 0;
1873 rdp->n_force_qs_snap = rsp->n_force_qs;
1874 rdp->blimit = blimit;
1875 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1876
1877 /*
1878 * A new grace period might start here. If so, we won't be part
1879 * of it, but that is OK, as we are currently in a quiescent state.
1880 */
1881
1882 /* Exclude any attempts to start a new GP on large systems. */
1883 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1884
1885 /* Add CPU to rcu_node bitmasks. */
1886 rnp = rdp->mynode;
1887 mask = rdp->grpmask;
1888 do {
1889 /* Exclude any attempts to start a new GP on small systems. */
1890 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1891 rnp->qsmaskinit |= mask;
1892 mask = rnp->grpmask;
1893 if (rnp == rdp->mynode) {
1894 rdp->gpnum = rnp->completed; /* if GP in progress... */
1895 rdp->completed = rnp->completed;
1896 rdp->passed_quiesc_completed = rnp->completed - 1;
1897 }
1898 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1899 rnp = rnp->parent;
1900 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1901
1902 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1903}
1904
1905static void __cpuinit rcu_prepare_cpu(int cpu)
1906{
1907 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1908 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1909 rcu_preempt_init_percpu_data(cpu);
1910}
1911
1912/*
1913 * Handle CPU online/offline notification events.
1914 */
1915static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1916 unsigned long action, void *hcpu)
1917{
1918 long cpu = (long)hcpu;
1919 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1920 struct rcu_node *rnp = rdp->mynode;
1921
1922 switch (action) {
1923 case CPU_UP_PREPARE:
1924 case CPU_UP_PREPARE_FROZEN:
1925 rcu_prepare_cpu(cpu);
1926 rcu_prepare_kthreads(cpu);
1927 break;
1928 case CPU_ONLINE:
1929 case CPU_DOWN_FAILED:
1930 rcu_node_kthread_setaffinity(rnp, -1);
1931 rcu_cpu_kthread_setrt(cpu, 1);
1932 break;
1933 case CPU_DOWN_PREPARE:
1934 rcu_node_kthread_setaffinity(rnp, cpu);
1935 rcu_cpu_kthread_setrt(cpu, 0);
1936 break;
1937 case CPU_DYING:
1938 case CPU_DYING_FROZEN:
1939 /*
1940 * The whole machine is "stopped" except this CPU, so we can
1941 * touch any data without introducing corruption. We send the
1942 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1943 */
1944 rcu_send_cbs_to_online(&rcu_bh_state);
1945 rcu_send_cbs_to_online(&rcu_sched_state);
1946 rcu_preempt_send_cbs_to_online();
1947 break;
1948 case CPU_DEAD:
1949 case CPU_DEAD_FROZEN:
1950 case CPU_UP_CANCELED:
1951 case CPU_UP_CANCELED_FROZEN:
1952 rcu_offline_cpu(cpu);
1953 break;
1954 default:
1955 break;
1956 }
1957 return NOTIFY_OK;
1958}
1959
1960/*
1961 * This function is invoked towards the end of the scheduler's initialization
1962 * process. Before this is called, the idle task might contain
1963 * RCU read-side critical sections (during which time, this idle
1964 * task is booting the system). After this function is called, the
1965 * idle tasks are prohibited from containing RCU read-side critical
1966 * sections. This function also enables RCU lockdep checking.
1967 */
1968void rcu_scheduler_starting(void)
1969{
1970 WARN_ON(num_online_cpus() != 1);
1971 WARN_ON(nr_context_switches() > 0);
1972 rcu_scheduler_active = 1;
1973}
1974
1975/*
1976 * Compute the per-level fanout, either using the exact fanout specified
1977 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1978 */
1979#ifdef CONFIG_RCU_FANOUT_EXACT
1980static void __init rcu_init_levelspread(struct rcu_state *rsp)
1981{
1982 int i;
1983
1984 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
1985 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1986 rsp->levelspread[0] = RCU_FANOUT_LEAF;
1987}
1988#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1989static void __init rcu_init_levelspread(struct rcu_state *rsp)
1990{
1991 int ccur;
1992 int cprv;
1993 int i;
1994
1995 cprv = NR_CPUS;
1996 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1997 ccur = rsp->levelcnt[i];
1998 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1999 cprv = ccur;
2000 }
2001}
2002#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2003
2004/*
2005 * Helper function for rcu_init() that initializes one rcu_state structure.
2006 */
2007static void __init rcu_init_one(struct rcu_state *rsp,
2008 struct rcu_data __percpu *rda)
2009{
2010 static char *buf[] = { "rcu_node_level_0",
2011 "rcu_node_level_1",
2012 "rcu_node_level_2",
2013 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2014 int cpustride = 1;
2015 int i;
2016 int j;
2017 struct rcu_node *rnp;
2018
2019 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2020
2021 /* Initialize the level-tracking arrays. */
2022
2023 for (i = 1; i < NUM_RCU_LVLS; i++)
2024 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2025 rcu_init_levelspread(rsp);
2026
2027 /* Initialize the elements themselves, starting from the leaves. */
2028
2029 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2030 cpustride *= rsp->levelspread[i];
2031 rnp = rsp->level[i];
2032 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2033 raw_spin_lock_init(&rnp->lock);
2034 lockdep_set_class_and_name(&rnp->lock,
2035 &rcu_node_class[i], buf[i]);
2036 rnp->gpnum = 0;
2037 rnp->qsmask = 0;
2038 rnp->qsmaskinit = 0;
2039 rnp->grplo = j * cpustride;
2040 rnp->grphi = (j + 1) * cpustride - 1;
2041 if (rnp->grphi >= NR_CPUS)
2042 rnp->grphi = NR_CPUS - 1;
2043 if (i == 0) {
2044 rnp->grpnum = 0;
2045 rnp->grpmask = 0;
2046 rnp->parent = NULL;
2047 } else {
2048 rnp->grpnum = j % rsp->levelspread[i - 1];
2049 rnp->grpmask = 1UL << rnp->grpnum;
2050 rnp->parent = rsp->level[i - 1] +
2051 j / rsp->levelspread[i - 1];
2052 }
2053 rnp->level = i;
2054 INIT_LIST_HEAD(&rnp->blkd_tasks);
2055 }
2056 }
2057
2058 rsp->rda = rda;
2059 rnp = rsp->level[NUM_RCU_LVLS - 1];
2060 for_each_possible_cpu(i) {
2061 while (i > rnp->grphi)
2062 rnp++;
2063 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2064 rcu_boot_init_percpu_data(i, rsp);
2065 }
2066}
2067
2068void __init rcu_init(void)
2069{
2070 int cpu;
2071
2072 rcu_bootup_announce();
2073 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2074 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2075 __rcu_init_preempt();
2076 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2077
2078 /*
2079 * We don't need protection against CPU-hotplug here because
2080 * this is called early in boot, before either interrupts
2081 * or the scheduler are operational.
2082 */
2083 cpu_notifier(rcu_cpu_notify, 0);
2084 for_each_online_cpu(cpu)
2085 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2086 check_cpu_stall_init();
2087}
2088
2089#include "rcutree_plugin.h"