Loading...
1/*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25#include <linux/kthread.h>
26#include <linux/module.h>
27#include <linux/debugfs.h>
28#include <linux/seq_file.h>
29
30/* Global control variables for rcupdate callback mechanism. */
31struct rcu_ctrlblk {
32 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
33 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
34 struct rcu_head **curtail; /* ->next pointer of last CB. */
35 RCU_TRACE(long qlen); /* Number of pending CBs. */
36 RCU_TRACE(char *name); /* Name of RCU type. */
37};
38
39/* Definition for rcupdate control block. */
40static struct rcu_ctrlblk rcu_sched_ctrlblk = {
41 .donetail = &rcu_sched_ctrlblk.rcucblist,
42 .curtail = &rcu_sched_ctrlblk.rcucblist,
43 RCU_TRACE(.name = "rcu_sched")
44};
45
46static struct rcu_ctrlblk rcu_bh_ctrlblk = {
47 .donetail = &rcu_bh_ctrlblk.rcucblist,
48 .curtail = &rcu_bh_ctrlblk.rcucblist,
49 RCU_TRACE(.name = "rcu_bh")
50};
51
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53int rcu_scheduler_active __read_mostly;
54EXPORT_SYMBOL_GPL(rcu_scheduler_active);
55#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
56
57#ifdef CONFIG_TINY_PREEMPT_RCU
58
59#include <linux/delay.h>
60
61/* Global control variables for preemptible RCU. */
62struct rcu_preempt_ctrlblk {
63 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
64 struct rcu_head **nexttail;
65 /* Tasks blocked in a preemptible RCU */
66 /* read-side critical section while an */
67 /* preemptible-RCU grace period is in */
68 /* progress must wait for a later grace */
69 /* period. This pointer points to the */
70 /* ->next pointer of the last task that */
71 /* must wait for a later grace period, or */
72 /* to &->rcb.rcucblist if there is no */
73 /* such task. */
74 struct list_head blkd_tasks;
75 /* Tasks blocked in RCU read-side critical */
76 /* section. Tasks are placed at the head */
77 /* of this list and age towards the tail. */
78 struct list_head *gp_tasks;
79 /* Pointer to the first task blocking the */
80 /* current grace period, or NULL if there */
81 /* is no such task. */
82 struct list_head *exp_tasks;
83 /* Pointer to first task blocking the */
84 /* current expedited grace period, or NULL */
85 /* if there is no such task. If there */
86 /* is no current expedited grace period, */
87 /* then there cannot be any such task. */
88#ifdef CONFIG_RCU_BOOST
89 struct list_head *boost_tasks;
90 /* Pointer to first task that needs to be */
91 /* priority-boosted, or NULL if no priority */
92 /* boosting is needed. If there is no */
93 /* current or expedited grace period, there */
94 /* can be no such task. */
95#endif /* #ifdef CONFIG_RCU_BOOST */
96 u8 gpnum; /* Current grace period. */
97 u8 gpcpu; /* Last grace period blocked by the CPU. */
98 u8 completed; /* Last grace period completed. */
99 /* If all three are equal, RCU is idle. */
100#ifdef CONFIG_RCU_BOOST
101 unsigned long boost_time; /* When to start boosting (jiffies) */
102#endif /* #ifdef CONFIG_RCU_BOOST */
103#ifdef CONFIG_RCU_TRACE
104 unsigned long n_grace_periods;
105#ifdef CONFIG_RCU_BOOST
106 unsigned long n_tasks_boosted;
107 /* Total number of tasks boosted. */
108 unsigned long n_exp_boosts;
109 /* Number of tasks boosted for expedited GP. */
110 unsigned long n_normal_boosts;
111 /* Number of tasks boosted for normal GP. */
112 unsigned long n_balk_blkd_tasks;
113 /* Refused to boost: no blocked tasks. */
114 unsigned long n_balk_exp_gp_tasks;
115 /* Refused to boost: nothing blocking GP. */
116 unsigned long n_balk_boost_tasks;
117 /* Refused to boost: already boosting. */
118 unsigned long n_balk_notyet;
119 /* Refused to boost: not yet time. */
120 unsigned long n_balk_nos;
121 /* Refused to boost: not sure why, though. */
122 /* This can happen due to race conditions. */
123#endif /* #ifdef CONFIG_RCU_BOOST */
124#endif /* #ifdef CONFIG_RCU_TRACE */
125};
126
127static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
128 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
129 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
130 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
132 RCU_TRACE(.rcb.name = "rcu_preempt")
133};
134
135static void rcu_read_unlock_special(struct task_struct *t);
136static int rcu_preempted_readers_exp(void);
137static void rcu_report_exp_done(void);
138
139/*
140 * Return true if the CPU has not yet responded to the current grace period.
141 */
142static int rcu_cpu_blocking_cur_gp(void)
143{
144 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
145}
146
147/*
148 * Check for a running RCU reader. Because there is only one CPU,
149 * there can be but one running RCU reader at a time. ;-)
150 *
151 * Returns zero if there are no running readers. Returns a positive
152 * number if there is at least one reader within its RCU read-side
153 * critical section. Returns a negative number if an outermost reader
154 * is in the midst of exiting from its RCU read-side critical section
155 *
156 * Returns zero if there are no running readers. Returns a positive
157 * number if there is at least one reader within its RCU read-side
158 * critical section. Returns a negative number if an outermost reader
159 * is in the midst of exiting from its RCU read-side critical section.
160 */
161static int rcu_preempt_running_reader(void)
162{
163 return current->rcu_read_lock_nesting;
164}
165
166/*
167 * Check for preempted RCU readers blocking any grace period.
168 * If the caller needs a reliable answer, it must disable hard irqs.
169 */
170static int rcu_preempt_blocked_readers_any(void)
171{
172 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
173}
174
175/*
176 * Check for preempted RCU readers blocking the current grace period.
177 * If the caller needs a reliable answer, it must disable hard irqs.
178 */
179static int rcu_preempt_blocked_readers_cgp(void)
180{
181 return rcu_preempt_ctrlblk.gp_tasks != NULL;
182}
183
184/*
185 * Return true if another preemptible-RCU grace period is needed.
186 */
187static int rcu_preempt_needs_another_gp(void)
188{
189 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
190}
191
192/*
193 * Return true if a preemptible-RCU grace period is in progress.
194 * The caller must disable hardirqs.
195 */
196static int rcu_preempt_gp_in_progress(void)
197{
198 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
199}
200
201/*
202 * Advance a ->blkd_tasks-list pointer to the next entry, instead
203 * returning NULL if at the end of the list.
204 */
205static struct list_head *rcu_next_node_entry(struct task_struct *t)
206{
207 struct list_head *np;
208
209 np = t->rcu_node_entry.next;
210 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
211 np = NULL;
212 return np;
213}
214
215#ifdef CONFIG_RCU_TRACE
216
217#ifdef CONFIG_RCU_BOOST
218static void rcu_initiate_boost_trace(void);
219#endif /* #ifdef CONFIG_RCU_BOOST */
220
221/*
222 * Dump additional statistice for TINY_PREEMPT_RCU.
223 */
224static void show_tiny_preempt_stats(struct seq_file *m)
225{
226 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
227 rcu_preempt_ctrlblk.rcb.qlen,
228 rcu_preempt_ctrlblk.n_grace_periods,
229 rcu_preempt_ctrlblk.gpnum,
230 rcu_preempt_ctrlblk.gpcpu,
231 rcu_preempt_ctrlblk.completed,
232 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
233 "N."[!rcu_preempt_ctrlblk.gp_tasks],
234 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
235#ifdef CONFIG_RCU_BOOST
236 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
237 " ",
238 "B."[!rcu_preempt_ctrlblk.boost_tasks],
239 rcu_preempt_ctrlblk.n_tasks_boosted,
240 rcu_preempt_ctrlblk.n_exp_boosts,
241 rcu_preempt_ctrlblk.n_normal_boosts,
242 (int)(jiffies & 0xffff),
243 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
244 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
245 " balk",
246 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
247 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
248 rcu_preempt_ctrlblk.n_balk_boost_tasks,
249 rcu_preempt_ctrlblk.n_balk_notyet,
250 rcu_preempt_ctrlblk.n_balk_nos);
251#endif /* #ifdef CONFIG_RCU_BOOST */
252}
253
254#endif /* #ifdef CONFIG_RCU_TRACE */
255
256#ifdef CONFIG_RCU_BOOST
257
258#include "rtmutex_common.h"
259
260#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
261
262/* Controls for rcu_kthread() kthread. */
263static struct task_struct *rcu_kthread_task;
264static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
265static unsigned long have_rcu_kthread_work;
266
267/*
268 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
269 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
270 */
271static int rcu_boost(void)
272{
273 unsigned long flags;
274 struct rt_mutex mtx;
275 struct task_struct *t;
276 struct list_head *tb;
277
278 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
279 rcu_preempt_ctrlblk.exp_tasks == NULL)
280 return 0; /* Nothing to boost. */
281
282 raw_local_irq_save(flags);
283
284 /*
285 * Recheck with irqs disabled: all tasks in need of boosting
286 * might exit their RCU read-side critical sections on their own
287 * if we are preempted just before disabling irqs.
288 */
289 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
290 rcu_preempt_ctrlblk.exp_tasks == NULL) {
291 raw_local_irq_restore(flags);
292 return 0;
293 }
294
295 /*
296 * Preferentially boost tasks blocking expedited grace periods.
297 * This cannot starve the normal grace periods because a second
298 * expedited grace period must boost all blocked tasks, including
299 * those blocking the pre-existing normal grace period.
300 */
301 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
302 tb = rcu_preempt_ctrlblk.exp_tasks;
303 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
304 } else {
305 tb = rcu_preempt_ctrlblk.boost_tasks;
306 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
307 }
308 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
309
310 /*
311 * We boost task t by manufacturing an rt_mutex that appears to
312 * be held by task t. We leave a pointer to that rt_mutex where
313 * task t can find it, and task t will release the mutex when it
314 * exits its outermost RCU read-side critical section. Then
315 * simply acquiring this artificial rt_mutex will boost task
316 * t's priority. (Thanks to tglx for suggesting this approach!)
317 */
318 t = container_of(tb, struct task_struct, rcu_node_entry);
319 rt_mutex_init_proxy_locked(&mtx, t);
320 t->rcu_boost_mutex = &mtx;
321 raw_local_irq_restore(flags);
322 rt_mutex_lock(&mtx);
323 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
324
325 return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
326 ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
327}
328
329/*
330 * Check to see if it is now time to start boosting RCU readers blocking
331 * the current grace period, and, if so, tell the rcu_kthread_task to
332 * start boosting them. If there is an expedited boost in progress,
333 * we wait for it to complete.
334 *
335 * If there are no blocked readers blocking the current grace period,
336 * return 0 to let the caller know, otherwise return 1. Note that this
337 * return value is independent of whether or not boosting was done.
338 */
339static int rcu_initiate_boost(void)
340{
341 if (!rcu_preempt_blocked_readers_cgp() &&
342 rcu_preempt_ctrlblk.exp_tasks == NULL) {
343 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
344 return 0;
345 }
346 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
347 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
348 rcu_preempt_ctrlblk.boost_tasks == NULL &&
349 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
350 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
351 rcu_preempt_ctrlblk.boost_tasks =
352 rcu_preempt_ctrlblk.gp_tasks;
353 invoke_rcu_callbacks();
354 } else
355 RCU_TRACE(rcu_initiate_boost_trace());
356 return 1;
357}
358
359#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
360
361/*
362 * Do priority-boost accounting for the start of a new grace period.
363 */
364static void rcu_preempt_boost_start_gp(void)
365{
366 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
367}
368
369#else /* #ifdef CONFIG_RCU_BOOST */
370
371/*
372 * If there is no RCU priority boosting, we don't initiate boosting,
373 * but we do indicate whether there are blocked readers blocking the
374 * current grace period.
375 */
376static int rcu_initiate_boost(void)
377{
378 return rcu_preempt_blocked_readers_cgp();
379}
380
381/*
382 * If there is no RCU priority boosting, nothing to do at grace-period start.
383 */
384static void rcu_preempt_boost_start_gp(void)
385{
386}
387
388#endif /* else #ifdef CONFIG_RCU_BOOST */
389
390/*
391 * Record a preemptible-RCU quiescent state for the specified CPU. Note
392 * that this just means that the task currently running on the CPU is
393 * in a quiescent state. There might be any number of tasks blocked
394 * while in an RCU read-side critical section.
395 *
396 * Unlike the other rcu_*_qs() functions, callers to this function
397 * must disable irqs in order to protect the assignment to
398 * ->rcu_read_unlock_special.
399 *
400 * Because this is a single-CPU implementation, the only way a grace
401 * period can end is if the CPU is in a quiescent state. The reason is
402 * that a blocked preemptible-RCU reader can exit its critical section
403 * only if the CPU is running it at the time. Therefore, when the
404 * last task blocking the current grace period exits its RCU read-side
405 * critical section, neither the CPU nor blocked tasks will be stopping
406 * the current grace period. (In contrast, SMP implementations
407 * might have CPUs running in RCU read-side critical sections that
408 * block later grace periods -- but this is not possible given only
409 * one CPU.)
410 */
411static void rcu_preempt_cpu_qs(void)
412{
413 /* Record both CPU and task as having responded to current GP. */
414 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
415 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
416
417 /* If there is no GP then there is nothing more to do. */
418 if (!rcu_preempt_gp_in_progress())
419 return;
420 /*
421 * Check up on boosting. If there are readers blocking the
422 * current grace period, leave.
423 */
424 if (rcu_initiate_boost())
425 return;
426
427 /* Advance callbacks. */
428 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
429 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
430 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
431
432 /* If there are no blocked readers, next GP is done instantly. */
433 if (!rcu_preempt_blocked_readers_any())
434 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
435
436 /* If there are done callbacks, cause them to be invoked. */
437 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
438 invoke_rcu_callbacks();
439}
440
441/*
442 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
443 */
444static void rcu_preempt_start_gp(void)
445{
446 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
447
448 /* Official start of GP. */
449 rcu_preempt_ctrlblk.gpnum++;
450 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
451
452 /* Any blocked RCU readers block new GP. */
453 if (rcu_preempt_blocked_readers_any())
454 rcu_preempt_ctrlblk.gp_tasks =
455 rcu_preempt_ctrlblk.blkd_tasks.next;
456
457 /* Set up for RCU priority boosting. */
458 rcu_preempt_boost_start_gp();
459
460 /* If there is no running reader, CPU is done with GP. */
461 if (!rcu_preempt_running_reader())
462 rcu_preempt_cpu_qs();
463 }
464}
465
466/*
467 * We have entered the scheduler, and the current task might soon be
468 * context-switched away from. If this task is in an RCU read-side
469 * critical section, we will no longer be able to rely on the CPU to
470 * record that fact, so we enqueue the task on the blkd_tasks list.
471 * If the task started after the current grace period began, as recorded
472 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
473 * before the element referenced by ->gp_tasks (or at the tail if
474 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
475 * The task will dequeue itself when it exits the outermost enclosing
476 * RCU read-side critical section. Therefore, the current grace period
477 * cannot be permitted to complete until the ->gp_tasks pointer becomes
478 * NULL.
479 *
480 * Caller must disable preemption.
481 */
482void rcu_preempt_note_context_switch(void)
483{
484 struct task_struct *t = current;
485 unsigned long flags;
486
487 local_irq_save(flags); /* must exclude scheduler_tick(). */
488 if (rcu_preempt_running_reader() > 0 &&
489 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
490
491 /* Possibly blocking in an RCU read-side critical section. */
492 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
493
494 /*
495 * If this CPU has already checked in, then this task
496 * will hold up the next grace period rather than the
497 * current grace period. Queue the task accordingly.
498 * If the task is queued for the current grace period
499 * (i.e., this CPU has not yet passed through a quiescent
500 * state for the current grace period), then as long
501 * as that task remains queued, the current grace period
502 * cannot end.
503 */
504 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
505 if (rcu_cpu_blocking_cur_gp())
506 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
507 } else if (rcu_preempt_running_reader() < 0 &&
508 t->rcu_read_unlock_special) {
509 /*
510 * Complete exit from RCU read-side critical section on
511 * behalf of preempted instance of __rcu_read_unlock().
512 */
513 rcu_read_unlock_special(t);
514 }
515
516 /*
517 * Either we were not in an RCU read-side critical section to
518 * begin with, or we have now recorded that critical section
519 * globally. Either way, we can now note a quiescent state
520 * for this CPU. Again, if we were in an RCU read-side critical
521 * section, and if that critical section was blocking the current
522 * grace period, then the fact that the task has been enqueued
523 * means that current grace period continues to be blocked.
524 */
525 rcu_preempt_cpu_qs();
526 local_irq_restore(flags);
527}
528
529/*
530 * Tiny-preemptible RCU implementation for rcu_read_lock().
531 * Just increment ->rcu_read_lock_nesting, shared state will be updated
532 * if we block.
533 */
534void __rcu_read_lock(void)
535{
536 current->rcu_read_lock_nesting++;
537 barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
538}
539EXPORT_SYMBOL_GPL(__rcu_read_lock);
540
541/*
542 * Handle special cases during rcu_read_unlock(), such as needing to
543 * notify RCU core processing or task having blocked during the RCU
544 * read-side critical section.
545 */
546static noinline void rcu_read_unlock_special(struct task_struct *t)
547{
548 int empty;
549 int empty_exp;
550 unsigned long flags;
551 struct list_head *np;
552#ifdef CONFIG_RCU_BOOST
553 struct rt_mutex *rbmp = NULL;
554#endif /* #ifdef CONFIG_RCU_BOOST */
555 int special;
556
557 /*
558 * NMI handlers cannot block and cannot safely manipulate state.
559 * They therefore cannot possibly be special, so just leave.
560 */
561 if (in_nmi())
562 return;
563
564 local_irq_save(flags);
565
566 /*
567 * If RCU core is waiting for this CPU to exit critical section,
568 * let it know that we have done so.
569 */
570 special = t->rcu_read_unlock_special;
571 if (special & RCU_READ_UNLOCK_NEED_QS)
572 rcu_preempt_cpu_qs();
573
574 /* Hardware IRQ handlers cannot block. */
575 if (in_irq() || in_serving_softirq()) {
576 local_irq_restore(flags);
577 return;
578 }
579
580 /* Clean up if blocked during RCU read-side critical section. */
581 if (special & RCU_READ_UNLOCK_BLOCKED) {
582 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
583
584 /*
585 * Remove this task from the ->blkd_tasks list and adjust
586 * any pointers that might have been referencing it.
587 */
588 empty = !rcu_preempt_blocked_readers_cgp();
589 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
590 np = rcu_next_node_entry(t);
591 list_del_init(&t->rcu_node_entry);
592 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
593 rcu_preempt_ctrlblk.gp_tasks = np;
594 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
595 rcu_preempt_ctrlblk.exp_tasks = np;
596#ifdef CONFIG_RCU_BOOST
597 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
598 rcu_preempt_ctrlblk.boost_tasks = np;
599#endif /* #ifdef CONFIG_RCU_BOOST */
600
601 /*
602 * If this was the last task on the current list, and if
603 * we aren't waiting on the CPU, report the quiescent state
604 * and start a new grace period if needed.
605 */
606 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
607 rcu_preempt_cpu_qs();
608 rcu_preempt_start_gp();
609 }
610
611 /*
612 * If this was the last task on the expedited lists,
613 * then we need wake up the waiting task.
614 */
615 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
616 rcu_report_exp_done();
617 }
618#ifdef CONFIG_RCU_BOOST
619 /* Unboost self if was boosted. */
620 if (t->rcu_boost_mutex != NULL) {
621 rbmp = t->rcu_boost_mutex;
622 t->rcu_boost_mutex = NULL;
623 rt_mutex_unlock(rbmp);
624 }
625#endif /* #ifdef CONFIG_RCU_BOOST */
626 local_irq_restore(flags);
627}
628
629/*
630 * Tiny-preemptible RCU implementation for rcu_read_unlock().
631 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
632 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
633 * invoke rcu_read_unlock_special() to clean up after a context switch
634 * in an RCU read-side critical section and other special cases.
635 */
636void __rcu_read_unlock(void)
637{
638 struct task_struct *t = current;
639
640 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
641 if (t->rcu_read_lock_nesting != 1)
642 --t->rcu_read_lock_nesting;
643 else {
644 t->rcu_read_lock_nesting = INT_MIN;
645 barrier(); /* assign before ->rcu_read_unlock_special load */
646 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
647 rcu_read_unlock_special(t);
648 barrier(); /* ->rcu_read_unlock_special load before assign */
649 t->rcu_read_lock_nesting = 0;
650 }
651#ifdef CONFIG_PROVE_LOCKING
652 {
653 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
654
655 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
656 }
657#endif /* #ifdef CONFIG_PROVE_LOCKING */
658}
659EXPORT_SYMBOL_GPL(__rcu_read_unlock);
660
661/*
662 * Check for a quiescent state from the current CPU. When a task blocks,
663 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
664 * checked elsewhere. This is called from the scheduling-clock interrupt.
665 *
666 * Caller must disable hard irqs.
667 */
668static void rcu_preempt_check_callbacks(void)
669{
670 struct task_struct *t = current;
671
672 if (rcu_preempt_gp_in_progress() &&
673 (!rcu_preempt_running_reader() ||
674 !rcu_cpu_blocking_cur_gp()))
675 rcu_preempt_cpu_qs();
676 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
677 rcu_preempt_ctrlblk.rcb.donetail)
678 invoke_rcu_callbacks();
679 if (rcu_preempt_gp_in_progress() &&
680 rcu_cpu_blocking_cur_gp() &&
681 rcu_preempt_running_reader() > 0)
682 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
683}
684
685/*
686 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
687 * update, so this is invoked from rcu_process_callbacks() to
688 * handle that case. Of course, it is invoked for all flavors of
689 * RCU, but RCU callbacks can appear only on one of the lists, and
690 * neither ->nexttail nor ->donetail can possibly be NULL, so there
691 * is no need for an explicit check.
692 */
693static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
694{
695 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
696 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
697}
698
699/*
700 * Process callbacks for preemptible RCU.
701 */
702static void rcu_preempt_process_callbacks(void)
703{
704 __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
705}
706
707/*
708 * Queue a preemptible -RCU callback for invocation after a grace period.
709 */
710void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
711{
712 unsigned long flags;
713
714 debug_rcu_head_queue(head);
715 head->func = func;
716 head->next = NULL;
717
718 local_irq_save(flags);
719 *rcu_preempt_ctrlblk.nexttail = head;
720 rcu_preempt_ctrlblk.nexttail = &head->next;
721 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
722 rcu_preempt_start_gp(); /* checks to see if GP needed. */
723 local_irq_restore(flags);
724}
725EXPORT_SYMBOL_GPL(call_rcu);
726
727/*
728 * synchronize_rcu - wait until a grace period has elapsed.
729 *
730 * Control will return to the caller some time after a full grace
731 * period has elapsed, in other words after all currently executing RCU
732 * read-side critical sections have completed. RCU read-side critical
733 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
734 * and may be nested.
735 */
736void synchronize_rcu(void)
737{
738 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
739 !lock_is_held(&rcu_lock_map) &&
740 !lock_is_held(&rcu_sched_lock_map),
741 "Illegal synchronize_rcu() in RCU read-side critical section");
742
743#ifdef CONFIG_DEBUG_LOCK_ALLOC
744 if (!rcu_scheduler_active)
745 return;
746#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
747
748 WARN_ON_ONCE(rcu_preempt_running_reader());
749 if (!rcu_preempt_blocked_readers_any())
750 return;
751
752 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
753 rcu_barrier();
754}
755EXPORT_SYMBOL_GPL(synchronize_rcu);
756
757static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
758static unsigned long sync_rcu_preempt_exp_count;
759static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
760
761/*
762 * Return non-zero if there are any tasks in RCU read-side critical
763 * sections blocking the current preemptible-RCU expedited grace period.
764 * If there is no preemptible-RCU expedited grace period currently in
765 * progress, returns zero unconditionally.
766 */
767static int rcu_preempted_readers_exp(void)
768{
769 return rcu_preempt_ctrlblk.exp_tasks != NULL;
770}
771
772/*
773 * Report the exit from RCU read-side critical section for the last task
774 * that queued itself during or before the current expedited preemptible-RCU
775 * grace period.
776 */
777static void rcu_report_exp_done(void)
778{
779 wake_up(&sync_rcu_preempt_exp_wq);
780}
781
782/*
783 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
784 * is to rely in the fact that there is but one CPU, and that it is
785 * illegal for a task to invoke synchronize_rcu_expedited() while in a
786 * preemptible-RCU read-side critical section. Therefore, any such
787 * critical sections must correspond to blocked tasks, which must therefore
788 * be on the ->blkd_tasks list. So just record the current head of the
789 * list in the ->exp_tasks pointer, and wait for all tasks including and
790 * after the task pointed to by ->exp_tasks to drain.
791 */
792void synchronize_rcu_expedited(void)
793{
794 unsigned long flags;
795 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
796 unsigned long snap;
797
798 barrier(); /* ensure prior action seen before grace period. */
799
800 WARN_ON_ONCE(rcu_preempt_running_reader());
801
802 /*
803 * Acquire lock so that there is only one preemptible RCU grace
804 * period in flight. Of course, if someone does the expedited
805 * grace period for us while we are acquiring the lock, just leave.
806 */
807 snap = sync_rcu_preempt_exp_count + 1;
808 mutex_lock(&sync_rcu_preempt_exp_mutex);
809 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
810 goto unlock_mb_ret; /* Others did our work for us. */
811
812 local_irq_save(flags);
813
814 /*
815 * All RCU readers have to already be on blkd_tasks because
816 * we cannot legally be executing in an RCU read-side critical
817 * section.
818 */
819
820 /* Snapshot current head of ->blkd_tasks list. */
821 rpcp->exp_tasks = rpcp->blkd_tasks.next;
822 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
823 rpcp->exp_tasks = NULL;
824
825 /* Wait for tail of ->blkd_tasks list to drain. */
826 if (!rcu_preempted_readers_exp())
827 local_irq_restore(flags);
828 else {
829 rcu_initiate_boost();
830 local_irq_restore(flags);
831 wait_event(sync_rcu_preempt_exp_wq,
832 !rcu_preempted_readers_exp());
833 }
834
835 /* Clean up and exit. */
836 barrier(); /* ensure expedited GP seen before counter increment. */
837 sync_rcu_preempt_exp_count++;
838unlock_mb_ret:
839 mutex_unlock(&sync_rcu_preempt_exp_mutex);
840 barrier(); /* ensure subsequent action seen after grace period. */
841}
842EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
843
844/*
845 * Does preemptible RCU need the CPU to stay out of dynticks mode?
846 */
847int rcu_preempt_needs_cpu(void)
848{
849 if (!rcu_preempt_running_reader())
850 rcu_preempt_cpu_qs();
851 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
852}
853
854#else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
855
856#ifdef CONFIG_RCU_TRACE
857
858/*
859 * Because preemptible RCU does not exist, it is not necessary to
860 * dump out its statistics.
861 */
862static void show_tiny_preempt_stats(struct seq_file *m)
863{
864}
865
866#endif /* #ifdef CONFIG_RCU_TRACE */
867
868/*
869 * Because preemptible RCU does not exist, it never has any callbacks
870 * to check.
871 */
872static void rcu_preempt_check_callbacks(void)
873{
874}
875
876/*
877 * Because preemptible RCU does not exist, it never has any callbacks
878 * to remove.
879 */
880static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
881{
882}
883
884/*
885 * Because preemptible RCU does not exist, it never has any callbacks
886 * to process.
887 */
888static void rcu_preempt_process_callbacks(void)
889{
890}
891
892#endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
893
894#ifdef CONFIG_RCU_BOOST
895
896/*
897 * Wake up rcu_kthread() to process callbacks now eligible for invocation
898 * or to boost readers.
899 */
900static void invoke_rcu_callbacks(void)
901{
902 have_rcu_kthread_work = 1;
903 if (rcu_kthread_task != NULL)
904 wake_up(&rcu_kthread_wq);
905}
906
907#ifdef CONFIG_RCU_TRACE
908
909/*
910 * Is the current CPU running the RCU-callbacks kthread?
911 * Caller must have preemption disabled.
912 */
913static bool rcu_is_callbacks_kthread(void)
914{
915 return rcu_kthread_task == current;
916}
917
918#endif /* #ifdef CONFIG_RCU_TRACE */
919
920/*
921 * This kthread invokes RCU callbacks whose grace periods have
922 * elapsed. It is awakened as needed, and takes the place of the
923 * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
924 * This is a kthread, but it is never stopped, at least not until
925 * the system goes down.
926 */
927static int rcu_kthread(void *arg)
928{
929 unsigned long work;
930 unsigned long morework;
931 unsigned long flags;
932
933 for (;;) {
934 wait_event_interruptible(rcu_kthread_wq,
935 have_rcu_kthread_work != 0);
936 morework = rcu_boost();
937 local_irq_save(flags);
938 work = have_rcu_kthread_work;
939 have_rcu_kthread_work = morework;
940 local_irq_restore(flags);
941 if (work)
942 rcu_process_callbacks(NULL);
943 schedule_timeout_interruptible(1); /* Leave CPU for others. */
944 }
945
946 return 0; /* Not reached, but needed to shut gcc up. */
947}
948
949/*
950 * Spawn the kthread that invokes RCU callbacks.
951 */
952static int __init rcu_spawn_kthreads(void)
953{
954 struct sched_param sp;
955
956 rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
957 sp.sched_priority = RCU_BOOST_PRIO;
958 sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
959 return 0;
960}
961early_initcall(rcu_spawn_kthreads);
962
963#else /* #ifdef CONFIG_RCU_BOOST */
964
965/* Hold off callback invocation until early_initcall() time. */
966static int rcu_scheduler_fully_active __read_mostly;
967
968/*
969 * Start up softirq processing of callbacks.
970 */
971void invoke_rcu_callbacks(void)
972{
973 if (rcu_scheduler_fully_active)
974 raise_softirq(RCU_SOFTIRQ);
975}
976
977#ifdef CONFIG_RCU_TRACE
978
979/*
980 * There is no callback kthread, so this thread is never it.
981 */
982static bool rcu_is_callbacks_kthread(void)
983{
984 return false;
985}
986
987#endif /* #ifdef CONFIG_RCU_TRACE */
988
989static int __init rcu_scheduler_really_started(void)
990{
991 rcu_scheduler_fully_active = 1;
992 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
993 raise_softirq(RCU_SOFTIRQ); /* Invoke any callbacks from early boot. */
994 return 0;
995}
996early_initcall(rcu_scheduler_really_started);
997
998#endif /* #else #ifdef CONFIG_RCU_BOOST */
999
1000#ifdef CONFIG_DEBUG_LOCK_ALLOC
1001#include <linux/kernel_stat.h>
1002
1003/*
1004 * During boot, we forgive RCU lockdep issues. After this function is
1005 * invoked, we start taking RCU lockdep issues seriously.
1006 */
1007void __init rcu_scheduler_starting(void)
1008{
1009 WARN_ON(nr_context_switches() > 0);
1010 rcu_scheduler_active = 1;
1011}
1012
1013#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1014
1015#ifdef CONFIG_RCU_TRACE
1016
1017#ifdef CONFIG_RCU_BOOST
1018
1019static void rcu_initiate_boost_trace(void)
1020{
1021 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
1022 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
1023 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
1024 rcu_preempt_ctrlblk.exp_tasks == NULL)
1025 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
1026 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
1027 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
1028 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
1029 rcu_preempt_ctrlblk.n_balk_notyet++;
1030 else
1031 rcu_preempt_ctrlblk.n_balk_nos++;
1032}
1033
1034#endif /* #ifdef CONFIG_RCU_BOOST */
1035
1036static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
1037{
1038 unsigned long flags;
1039
1040 raw_local_irq_save(flags);
1041 rcp->qlen -= n;
1042 raw_local_irq_restore(flags);
1043}
1044
1045/*
1046 * Dump statistics for TINY_RCU, such as they are.
1047 */
1048static int show_tiny_stats(struct seq_file *m, void *unused)
1049{
1050 show_tiny_preempt_stats(m);
1051 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1052 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1053 return 0;
1054}
1055
1056static int show_tiny_stats_open(struct inode *inode, struct file *file)
1057{
1058 return single_open(file, show_tiny_stats, NULL);
1059}
1060
1061static const struct file_operations show_tiny_stats_fops = {
1062 .owner = THIS_MODULE,
1063 .open = show_tiny_stats_open,
1064 .read = seq_read,
1065 .llseek = seq_lseek,
1066 .release = single_release,
1067};
1068
1069static struct dentry *rcudir;
1070
1071static int __init rcutiny_trace_init(void)
1072{
1073 struct dentry *retval;
1074
1075 rcudir = debugfs_create_dir("rcu", NULL);
1076 if (!rcudir)
1077 goto free_out;
1078 retval = debugfs_create_file("rcudata", 0444, rcudir,
1079 NULL, &show_tiny_stats_fops);
1080 if (!retval)
1081 goto free_out;
1082 return 0;
1083free_out:
1084 debugfs_remove_recursive(rcudir);
1085 return 1;
1086}
1087
1088static void __exit rcutiny_trace_cleanup(void)
1089{
1090 debugfs_remove_recursive(rcudir);
1091}
1092
1093module_init(rcutiny_trace_init);
1094module_exit(rcutiny_trace_cleanup);
1095
1096MODULE_AUTHOR("Paul E. McKenney");
1097MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1098MODULE_LICENSE("GPL");
1099
1100#endif /* #ifdef CONFIG_RCU_TRACE */
1/*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25#include <linux/kthread.h>
26#include <linux/debugfs.h>
27#include <linux/seq_file.h>
28
29#ifdef CONFIG_RCU_TRACE
30#define RCU_TRACE(stmt) stmt
31#else /* #ifdef CONFIG_RCU_TRACE */
32#define RCU_TRACE(stmt)
33#endif /* #else #ifdef CONFIG_RCU_TRACE */
34
35/* Global control variables for rcupdate callback mechanism. */
36struct rcu_ctrlblk {
37 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
38 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
39 struct rcu_head **curtail; /* ->next pointer of last CB. */
40 RCU_TRACE(long qlen); /* Number of pending CBs. */
41};
42
43/* Definition for rcupdate control block. */
44static struct rcu_ctrlblk rcu_sched_ctrlblk = {
45 .donetail = &rcu_sched_ctrlblk.rcucblist,
46 .curtail = &rcu_sched_ctrlblk.rcucblist,
47};
48
49static struct rcu_ctrlblk rcu_bh_ctrlblk = {
50 .donetail = &rcu_bh_ctrlblk.rcucblist,
51 .curtail = &rcu_bh_ctrlblk.rcucblist,
52};
53
54#ifdef CONFIG_DEBUG_LOCK_ALLOC
55int rcu_scheduler_active __read_mostly;
56EXPORT_SYMBOL_GPL(rcu_scheduler_active);
57#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
58
59#ifdef CONFIG_TINY_PREEMPT_RCU
60
61#include <linux/delay.h>
62
63/* Global control variables for preemptible RCU. */
64struct rcu_preempt_ctrlblk {
65 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
66 struct rcu_head **nexttail;
67 /* Tasks blocked in a preemptible RCU */
68 /* read-side critical section while an */
69 /* preemptible-RCU grace period is in */
70 /* progress must wait for a later grace */
71 /* period. This pointer points to the */
72 /* ->next pointer of the last task that */
73 /* must wait for a later grace period, or */
74 /* to &->rcb.rcucblist if there is no */
75 /* such task. */
76 struct list_head blkd_tasks;
77 /* Tasks blocked in RCU read-side critical */
78 /* section. Tasks are placed at the head */
79 /* of this list and age towards the tail. */
80 struct list_head *gp_tasks;
81 /* Pointer to the first task blocking the */
82 /* current grace period, or NULL if there */
83 /* is no such task. */
84 struct list_head *exp_tasks;
85 /* Pointer to first task blocking the */
86 /* current expedited grace period, or NULL */
87 /* if there is no such task. If there */
88 /* is no current expedited grace period, */
89 /* then there cannot be any such task. */
90#ifdef CONFIG_RCU_BOOST
91 struct list_head *boost_tasks;
92 /* Pointer to first task that needs to be */
93 /* priority-boosted, or NULL if no priority */
94 /* boosting is needed. If there is no */
95 /* current or expedited grace period, there */
96 /* can be no such task. */
97#endif /* #ifdef CONFIG_RCU_BOOST */
98 u8 gpnum; /* Current grace period. */
99 u8 gpcpu; /* Last grace period blocked by the CPU. */
100 u8 completed; /* Last grace period completed. */
101 /* If all three are equal, RCU is idle. */
102#ifdef CONFIG_RCU_BOOST
103 unsigned long boost_time; /* When to start boosting (jiffies) */
104#endif /* #ifdef CONFIG_RCU_BOOST */
105#ifdef CONFIG_RCU_TRACE
106 unsigned long n_grace_periods;
107#ifdef CONFIG_RCU_BOOST
108 unsigned long n_tasks_boosted;
109 /* Total number of tasks boosted. */
110 unsigned long n_exp_boosts;
111 /* Number of tasks boosted for expedited GP. */
112 unsigned long n_normal_boosts;
113 /* Number of tasks boosted for normal GP. */
114 unsigned long n_balk_blkd_tasks;
115 /* Refused to boost: no blocked tasks. */
116 unsigned long n_balk_exp_gp_tasks;
117 /* Refused to boost: nothing blocking GP. */
118 unsigned long n_balk_boost_tasks;
119 /* Refused to boost: already boosting. */
120 unsigned long n_balk_notyet;
121 /* Refused to boost: not yet time. */
122 unsigned long n_balk_nos;
123 /* Refused to boost: not sure why, though. */
124 /* This can happen due to race conditions. */
125#endif /* #ifdef CONFIG_RCU_BOOST */
126#endif /* #ifdef CONFIG_RCU_TRACE */
127};
128
129static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
130 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
132 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
133 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
134};
135
136static int rcu_preempted_readers_exp(void);
137static void rcu_report_exp_done(void);
138
139/*
140 * Return true if the CPU has not yet responded to the current grace period.
141 */
142static int rcu_cpu_blocking_cur_gp(void)
143{
144 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
145}
146
147/*
148 * Check for a running RCU reader. Because there is only one CPU,
149 * there can be but one running RCU reader at a time. ;-)
150 */
151static int rcu_preempt_running_reader(void)
152{
153 return current->rcu_read_lock_nesting;
154}
155
156/*
157 * Check for preempted RCU readers blocking any grace period.
158 * If the caller needs a reliable answer, it must disable hard irqs.
159 */
160static int rcu_preempt_blocked_readers_any(void)
161{
162 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
163}
164
165/*
166 * Check for preempted RCU readers blocking the current grace period.
167 * If the caller needs a reliable answer, it must disable hard irqs.
168 */
169static int rcu_preempt_blocked_readers_cgp(void)
170{
171 return rcu_preempt_ctrlblk.gp_tasks != NULL;
172}
173
174/*
175 * Return true if another preemptible-RCU grace period is needed.
176 */
177static int rcu_preempt_needs_another_gp(void)
178{
179 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
180}
181
182/*
183 * Return true if a preemptible-RCU grace period is in progress.
184 * The caller must disable hardirqs.
185 */
186static int rcu_preempt_gp_in_progress(void)
187{
188 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
189}
190
191/*
192 * Advance a ->blkd_tasks-list pointer to the next entry, instead
193 * returning NULL if at the end of the list.
194 */
195static struct list_head *rcu_next_node_entry(struct task_struct *t)
196{
197 struct list_head *np;
198
199 np = t->rcu_node_entry.next;
200 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
201 np = NULL;
202 return np;
203}
204
205#ifdef CONFIG_RCU_TRACE
206
207#ifdef CONFIG_RCU_BOOST
208static void rcu_initiate_boost_trace(void);
209#endif /* #ifdef CONFIG_RCU_BOOST */
210
211/*
212 * Dump additional statistice for TINY_PREEMPT_RCU.
213 */
214static void show_tiny_preempt_stats(struct seq_file *m)
215{
216 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
217 rcu_preempt_ctrlblk.rcb.qlen,
218 rcu_preempt_ctrlblk.n_grace_periods,
219 rcu_preempt_ctrlblk.gpnum,
220 rcu_preempt_ctrlblk.gpcpu,
221 rcu_preempt_ctrlblk.completed,
222 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
223 "N."[!rcu_preempt_ctrlblk.gp_tasks],
224 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
225#ifdef CONFIG_RCU_BOOST
226 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
227 " ",
228 "B."[!rcu_preempt_ctrlblk.boost_tasks],
229 rcu_preempt_ctrlblk.n_tasks_boosted,
230 rcu_preempt_ctrlblk.n_exp_boosts,
231 rcu_preempt_ctrlblk.n_normal_boosts,
232 (int)(jiffies & 0xffff),
233 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
234 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
235 " balk",
236 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
237 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
238 rcu_preempt_ctrlblk.n_balk_boost_tasks,
239 rcu_preempt_ctrlblk.n_balk_notyet,
240 rcu_preempt_ctrlblk.n_balk_nos);
241#endif /* #ifdef CONFIG_RCU_BOOST */
242}
243
244#endif /* #ifdef CONFIG_RCU_TRACE */
245
246#ifdef CONFIG_RCU_BOOST
247
248#include "rtmutex_common.h"
249
250/*
251 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
252 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
253 */
254static int rcu_boost(void)
255{
256 unsigned long flags;
257 struct rt_mutex mtx;
258 struct task_struct *t;
259 struct list_head *tb;
260
261 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
262 rcu_preempt_ctrlblk.exp_tasks == NULL)
263 return 0; /* Nothing to boost. */
264
265 raw_local_irq_save(flags);
266
267 /*
268 * Recheck with irqs disabled: all tasks in need of boosting
269 * might exit their RCU read-side critical sections on their own
270 * if we are preempted just before disabling irqs.
271 */
272 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
273 rcu_preempt_ctrlblk.exp_tasks == NULL) {
274 raw_local_irq_restore(flags);
275 return 0;
276 }
277
278 /*
279 * Preferentially boost tasks blocking expedited grace periods.
280 * This cannot starve the normal grace periods because a second
281 * expedited grace period must boost all blocked tasks, including
282 * those blocking the pre-existing normal grace period.
283 */
284 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
285 tb = rcu_preempt_ctrlblk.exp_tasks;
286 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
287 } else {
288 tb = rcu_preempt_ctrlblk.boost_tasks;
289 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
290 }
291 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
292
293 /*
294 * We boost task t by manufacturing an rt_mutex that appears to
295 * be held by task t. We leave a pointer to that rt_mutex where
296 * task t can find it, and task t will release the mutex when it
297 * exits its outermost RCU read-side critical section. Then
298 * simply acquiring this artificial rt_mutex will boost task
299 * t's priority. (Thanks to tglx for suggesting this approach!)
300 */
301 t = container_of(tb, struct task_struct, rcu_node_entry);
302 rt_mutex_init_proxy_locked(&mtx, t);
303 t->rcu_boost_mutex = &mtx;
304 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
305 raw_local_irq_restore(flags);
306 rt_mutex_lock(&mtx);
307 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
308
309 return rcu_preempt_ctrlblk.boost_tasks != NULL ||
310 rcu_preempt_ctrlblk.exp_tasks != NULL;
311}
312
313/*
314 * Check to see if it is now time to start boosting RCU readers blocking
315 * the current grace period, and, if so, tell the rcu_kthread_task to
316 * start boosting them. If there is an expedited boost in progress,
317 * we wait for it to complete.
318 *
319 * If there are no blocked readers blocking the current grace period,
320 * return 0 to let the caller know, otherwise return 1. Note that this
321 * return value is independent of whether or not boosting was done.
322 */
323static int rcu_initiate_boost(void)
324{
325 if (!rcu_preempt_blocked_readers_cgp() &&
326 rcu_preempt_ctrlblk.exp_tasks == NULL) {
327 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
328 return 0;
329 }
330 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
331 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
332 rcu_preempt_ctrlblk.boost_tasks == NULL &&
333 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
334 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
335 rcu_preempt_ctrlblk.boost_tasks =
336 rcu_preempt_ctrlblk.gp_tasks;
337 invoke_rcu_kthread();
338 } else
339 RCU_TRACE(rcu_initiate_boost_trace());
340 return 1;
341}
342
343#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
344
345/*
346 * Do priority-boost accounting for the start of a new grace period.
347 */
348static void rcu_preempt_boost_start_gp(void)
349{
350 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
351}
352
353#else /* #ifdef CONFIG_RCU_BOOST */
354
355/*
356 * If there is no RCU priority boosting, we don't boost.
357 */
358static int rcu_boost(void)
359{
360 return 0;
361}
362
363/*
364 * If there is no RCU priority boosting, we don't initiate boosting,
365 * but we do indicate whether there are blocked readers blocking the
366 * current grace period.
367 */
368static int rcu_initiate_boost(void)
369{
370 return rcu_preempt_blocked_readers_cgp();
371}
372
373/*
374 * If there is no RCU priority boosting, nothing to do at grace-period start.
375 */
376static void rcu_preempt_boost_start_gp(void)
377{
378}
379
380#endif /* else #ifdef CONFIG_RCU_BOOST */
381
382/*
383 * Record a preemptible-RCU quiescent state for the specified CPU. Note
384 * that this just means that the task currently running on the CPU is
385 * in a quiescent state. There might be any number of tasks blocked
386 * while in an RCU read-side critical section.
387 *
388 * Unlike the other rcu_*_qs() functions, callers to this function
389 * must disable irqs in order to protect the assignment to
390 * ->rcu_read_unlock_special.
391 *
392 * Because this is a single-CPU implementation, the only way a grace
393 * period can end is if the CPU is in a quiescent state. The reason is
394 * that a blocked preemptible-RCU reader can exit its critical section
395 * only if the CPU is running it at the time. Therefore, when the
396 * last task blocking the current grace period exits its RCU read-side
397 * critical section, neither the CPU nor blocked tasks will be stopping
398 * the current grace period. (In contrast, SMP implementations
399 * might have CPUs running in RCU read-side critical sections that
400 * block later grace periods -- but this is not possible given only
401 * one CPU.)
402 */
403static void rcu_preempt_cpu_qs(void)
404{
405 /* Record both CPU and task as having responded to current GP. */
406 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
407 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
408
409 /* If there is no GP then there is nothing more to do. */
410 if (!rcu_preempt_gp_in_progress())
411 return;
412 /*
413 * Check up on boosting. If there are readers blocking the
414 * current grace period, leave.
415 */
416 if (rcu_initiate_boost())
417 return;
418
419 /* Advance callbacks. */
420 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
421 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
422 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
423
424 /* If there are no blocked readers, next GP is done instantly. */
425 if (!rcu_preempt_blocked_readers_any())
426 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
427
428 /* If there are done callbacks, cause them to be invoked. */
429 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
430 invoke_rcu_kthread();
431}
432
433/*
434 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
435 */
436static void rcu_preempt_start_gp(void)
437{
438 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
439
440 /* Official start of GP. */
441 rcu_preempt_ctrlblk.gpnum++;
442 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
443
444 /* Any blocked RCU readers block new GP. */
445 if (rcu_preempt_blocked_readers_any())
446 rcu_preempt_ctrlblk.gp_tasks =
447 rcu_preempt_ctrlblk.blkd_tasks.next;
448
449 /* Set up for RCU priority boosting. */
450 rcu_preempt_boost_start_gp();
451
452 /* If there is no running reader, CPU is done with GP. */
453 if (!rcu_preempt_running_reader())
454 rcu_preempt_cpu_qs();
455 }
456}
457
458/*
459 * We have entered the scheduler, and the current task might soon be
460 * context-switched away from. If this task is in an RCU read-side
461 * critical section, we will no longer be able to rely on the CPU to
462 * record that fact, so we enqueue the task on the blkd_tasks list.
463 * If the task started after the current grace period began, as recorded
464 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
465 * before the element referenced by ->gp_tasks (or at the tail if
466 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
467 * The task will dequeue itself when it exits the outermost enclosing
468 * RCU read-side critical section. Therefore, the current grace period
469 * cannot be permitted to complete until the ->gp_tasks pointer becomes
470 * NULL.
471 *
472 * Caller must disable preemption.
473 */
474void rcu_preempt_note_context_switch(void)
475{
476 struct task_struct *t = current;
477 unsigned long flags;
478
479 local_irq_save(flags); /* must exclude scheduler_tick(). */
480 if (rcu_preempt_running_reader() &&
481 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
482
483 /* Possibly blocking in an RCU read-side critical section. */
484 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
485
486 /*
487 * If this CPU has already checked in, then this task
488 * will hold up the next grace period rather than the
489 * current grace period. Queue the task accordingly.
490 * If the task is queued for the current grace period
491 * (i.e., this CPU has not yet passed through a quiescent
492 * state for the current grace period), then as long
493 * as that task remains queued, the current grace period
494 * cannot end.
495 */
496 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
497 if (rcu_cpu_blocking_cur_gp())
498 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
499 }
500
501 /*
502 * Either we were not in an RCU read-side critical section to
503 * begin with, or we have now recorded that critical section
504 * globally. Either way, we can now note a quiescent state
505 * for this CPU. Again, if we were in an RCU read-side critical
506 * section, and if that critical section was blocking the current
507 * grace period, then the fact that the task has been enqueued
508 * means that current grace period continues to be blocked.
509 */
510 rcu_preempt_cpu_qs();
511 local_irq_restore(flags);
512}
513
514/*
515 * Tiny-preemptible RCU implementation for rcu_read_lock().
516 * Just increment ->rcu_read_lock_nesting, shared state will be updated
517 * if we block.
518 */
519void __rcu_read_lock(void)
520{
521 current->rcu_read_lock_nesting++;
522 barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
523}
524EXPORT_SYMBOL_GPL(__rcu_read_lock);
525
526/*
527 * Handle special cases during rcu_read_unlock(), such as needing to
528 * notify RCU core processing or task having blocked during the RCU
529 * read-side critical section.
530 */
531static void rcu_read_unlock_special(struct task_struct *t)
532{
533 int empty;
534 int empty_exp;
535 unsigned long flags;
536 struct list_head *np;
537 int special;
538
539 /*
540 * NMI handlers cannot block and cannot safely manipulate state.
541 * They therefore cannot possibly be special, so just leave.
542 */
543 if (in_nmi())
544 return;
545
546 local_irq_save(flags);
547
548 /*
549 * If RCU core is waiting for this CPU to exit critical section,
550 * let it know that we have done so.
551 */
552 special = t->rcu_read_unlock_special;
553 if (special & RCU_READ_UNLOCK_NEED_QS)
554 rcu_preempt_cpu_qs();
555
556 /* Hardware IRQ handlers cannot block. */
557 if (in_irq()) {
558 local_irq_restore(flags);
559 return;
560 }
561
562 /* Clean up if blocked during RCU read-side critical section. */
563 if (special & RCU_READ_UNLOCK_BLOCKED) {
564 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
565
566 /*
567 * Remove this task from the ->blkd_tasks list and adjust
568 * any pointers that might have been referencing it.
569 */
570 empty = !rcu_preempt_blocked_readers_cgp();
571 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
572 np = rcu_next_node_entry(t);
573 list_del_init(&t->rcu_node_entry);
574 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
575 rcu_preempt_ctrlblk.gp_tasks = np;
576 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
577 rcu_preempt_ctrlblk.exp_tasks = np;
578#ifdef CONFIG_RCU_BOOST
579 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
580 rcu_preempt_ctrlblk.boost_tasks = np;
581#endif /* #ifdef CONFIG_RCU_BOOST */
582
583 /*
584 * If this was the last task on the current list, and if
585 * we aren't waiting on the CPU, report the quiescent state
586 * and start a new grace period if needed.
587 */
588 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
589 rcu_preempt_cpu_qs();
590 rcu_preempt_start_gp();
591 }
592
593 /*
594 * If this was the last task on the expedited lists,
595 * then we need wake up the waiting task.
596 */
597 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
598 rcu_report_exp_done();
599 }
600#ifdef CONFIG_RCU_BOOST
601 /* Unboost self if was boosted. */
602 if (special & RCU_READ_UNLOCK_BOOSTED) {
603 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
604 rt_mutex_unlock(t->rcu_boost_mutex);
605 t->rcu_boost_mutex = NULL;
606 }
607#endif /* #ifdef CONFIG_RCU_BOOST */
608 local_irq_restore(flags);
609}
610
611/*
612 * Tiny-preemptible RCU implementation for rcu_read_unlock().
613 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
614 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
615 * invoke rcu_read_unlock_special() to clean up after a context switch
616 * in an RCU read-side critical section and other special cases.
617 */
618void __rcu_read_unlock(void)
619{
620 struct task_struct *t = current;
621
622 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
623 --t->rcu_read_lock_nesting;
624 barrier(); /* decrement before load of ->rcu_read_unlock_special */
625 if (t->rcu_read_lock_nesting == 0 &&
626 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
627 rcu_read_unlock_special(t);
628#ifdef CONFIG_PROVE_LOCKING
629 WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
630#endif /* #ifdef CONFIG_PROVE_LOCKING */
631}
632EXPORT_SYMBOL_GPL(__rcu_read_unlock);
633
634/*
635 * Check for a quiescent state from the current CPU. When a task blocks,
636 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
637 * checked elsewhere. This is called from the scheduling-clock interrupt.
638 *
639 * Caller must disable hard irqs.
640 */
641static void rcu_preempt_check_callbacks(void)
642{
643 struct task_struct *t = current;
644
645 if (rcu_preempt_gp_in_progress() &&
646 (!rcu_preempt_running_reader() ||
647 !rcu_cpu_blocking_cur_gp()))
648 rcu_preempt_cpu_qs();
649 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
650 rcu_preempt_ctrlblk.rcb.donetail)
651 invoke_rcu_kthread();
652 if (rcu_preempt_gp_in_progress() &&
653 rcu_cpu_blocking_cur_gp() &&
654 rcu_preempt_running_reader())
655 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
656}
657
658/*
659 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
660 * update, so this is invoked from rcu_process_callbacks() to
661 * handle that case. Of course, it is invoked for all flavors of
662 * RCU, but RCU callbacks can appear only on one of the lists, and
663 * neither ->nexttail nor ->donetail can possibly be NULL, so there
664 * is no need for an explicit check.
665 */
666static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
667{
668 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
669 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
670}
671
672/*
673 * Process callbacks for preemptible RCU.
674 */
675static void rcu_preempt_process_callbacks(void)
676{
677 rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
678}
679
680/*
681 * Queue a preemptible -RCU callback for invocation after a grace period.
682 */
683void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
684{
685 unsigned long flags;
686
687 debug_rcu_head_queue(head);
688 head->func = func;
689 head->next = NULL;
690
691 local_irq_save(flags);
692 *rcu_preempt_ctrlblk.nexttail = head;
693 rcu_preempt_ctrlblk.nexttail = &head->next;
694 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
695 rcu_preempt_start_gp(); /* checks to see if GP needed. */
696 local_irq_restore(flags);
697}
698EXPORT_SYMBOL_GPL(call_rcu);
699
700void rcu_barrier(void)
701{
702 struct rcu_synchronize rcu;
703
704 init_rcu_head_on_stack(&rcu.head);
705 init_completion(&rcu.completion);
706 /* Will wake me after RCU finished. */
707 call_rcu(&rcu.head, wakeme_after_rcu);
708 /* Wait for it. */
709 wait_for_completion(&rcu.completion);
710 destroy_rcu_head_on_stack(&rcu.head);
711}
712EXPORT_SYMBOL_GPL(rcu_barrier);
713
714/*
715 * synchronize_rcu - wait until a grace period has elapsed.
716 *
717 * Control will return to the caller some time after a full grace
718 * period has elapsed, in other words after all currently executing RCU
719 * read-side critical sections have completed. RCU read-side critical
720 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
721 * and may be nested.
722 */
723void synchronize_rcu(void)
724{
725#ifdef CONFIG_DEBUG_LOCK_ALLOC
726 if (!rcu_scheduler_active)
727 return;
728#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
729
730 WARN_ON_ONCE(rcu_preempt_running_reader());
731 if (!rcu_preempt_blocked_readers_any())
732 return;
733
734 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
735 rcu_barrier();
736}
737EXPORT_SYMBOL_GPL(synchronize_rcu);
738
739static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
740static unsigned long sync_rcu_preempt_exp_count;
741static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
742
743/*
744 * Return non-zero if there are any tasks in RCU read-side critical
745 * sections blocking the current preemptible-RCU expedited grace period.
746 * If there is no preemptible-RCU expedited grace period currently in
747 * progress, returns zero unconditionally.
748 */
749static int rcu_preempted_readers_exp(void)
750{
751 return rcu_preempt_ctrlblk.exp_tasks != NULL;
752}
753
754/*
755 * Report the exit from RCU read-side critical section for the last task
756 * that queued itself during or before the current expedited preemptible-RCU
757 * grace period.
758 */
759static void rcu_report_exp_done(void)
760{
761 wake_up(&sync_rcu_preempt_exp_wq);
762}
763
764/*
765 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
766 * is to rely in the fact that there is but one CPU, and that it is
767 * illegal for a task to invoke synchronize_rcu_expedited() while in a
768 * preemptible-RCU read-side critical section. Therefore, any such
769 * critical sections must correspond to blocked tasks, which must therefore
770 * be on the ->blkd_tasks list. So just record the current head of the
771 * list in the ->exp_tasks pointer, and wait for all tasks including and
772 * after the task pointed to by ->exp_tasks to drain.
773 */
774void synchronize_rcu_expedited(void)
775{
776 unsigned long flags;
777 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
778 unsigned long snap;
779
780 barrier(); /* ensure prior action seen before grace period. */
781
782 WARN_ON_ONCE(rcu_preempt_running_reader());
783
784 /*
785 * Acquire lock so that there is only one preemptible RCU grace
786 * period in flight. Of course, if someone does the expedited
787 * grace period for us while we are acquiring the lock, just leave.
788 */
789 snap = sync_rcu_preempt_exp_count + 1;
790 mutex_lock(&sync_rcu_preempt_exp_mutex);
791 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
792 goto unlock_mb_ret; /* Others did our work for us. */
793
794 local_irq_save(flags);
795
796 /*
797 * All RCU readers have to already be on blkd_tasks because
798 * we cannot legally be executing in an RCU read-side critical
799 * section.
800 */
801
802 /* Snapshot current head of ->blkd_tasks list. */
803 rpcp->exp_tasks = rpcp->blkd_tasks.next;
804 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
805 rpcp->exp_tasks = NULL;
806
807 /* Wait for tail of ->blkd_tasks list to drain. */
808 if (!rcu_preempted_readers_exp())
809 local_irq_restore(flags);
810 else {
811 rcu_initiate_boost();
812 local_irq_restore(flags);
813 wait_event(sync_rcu_preempt_exp_wq,
814 !rcu_preempted_readers_exp());
815 }
816
817 /* Clean up and exit. */
818 barrier(); /* ensure expedited GP seen before counter increment. */
819 sync_rcu_preempt_exp_count++;
820unlock_mb_ret:
821 mutex_unlock(&sync_rcu_preempt_exp_mutex);
822 barrier(); /* ensure subsequent action seen after grace period. */
823}
824EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
825
826/*
827 * Does preemptible RCU need the CPU to stay out of dynticks mode?
828 */
829int rcu_preempt_needs_cpu(void)
830{
831 if (!rcu_preempt_running_reader())
832 rcu_preempt_cpu_qs();
833 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
834}
835
836/*
837 * Check for a task exiting while in a preemptible -RCU read-side
838 * critical section, clean up if so. No need to issue warnings,
839 * as debug_check_no_locks_held() already does this if lockdep
840 * is enabled.
841 */
842void exit_rcu(void)
843{
844 struct task_struct *t = current;
845
846 if (t->rcu_read_lock_nesting == 0)
847 return;
848 t->rcu_read_lock_nesting = 1;
849 __rcu_read_unlock();
850}
851
852#else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
853
854#ifdef CONFIG_RCU_TRACE
855
856/*
857 * Because preemptible RCU does not exist, it is not necessary to
858 * dump out its statistics.
859 */
860static void show_tiny_preempt_stats(struct seq_file *m)
861{
862}
863
864#endif /* #ifdef CONFIG_RCU_TRACE */
865
866/*
867 * Because preemptible RCU does not exist, it is never necessary to
868 * boost preempted RCU readers.
869 */
870static int rcu_boost(void)
871{
872 return 0;
873}
874
875/*
876 * Because preemptible RCU does not exist, it never has any callbacks
877 * to check.
878 */
879static void rcu_preempt_check_callbacks(void)
880{
881}
882
883/*
884 * Because preemptible RCU does not exist, it never has any callbacks
885 * to remove.
886 */
887static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
888{
889}
890
891/*
892 * Because preemptible RCU does not exist, it never has any callbacks
893 * to process.
894 */
895static void rcu_preempt_process_callbacks(void)
896{
897}
898
899#endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
900
901#ifdef CONFIG_DEBUG_LOCK_ALLOC
902#include <linux/kernel_stat.h>
903
904/*
905 * During boot, we forgive RCU lockdep issues. After this function is
906 * invoked, we start taking RCU lockdep issues seriously.
907 */
908void __init rcu_scheduler_starting(void)
909{
910 WARN_ON(nr_context_switches() > 0);
911 rcu_scheduler_active = 1;
912}
913
914#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
915
916#ifdef CONFIG_RCU_BOOST
917#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
918#else /* #ifdef CONFIG_RCU_BOOST */
919#define RCU_BOOST_PRIO 1
920#endif /* #else #ifdef CONFIG_RCU_BOOST */
921
922#ifdef CONFIG_RCU_TRACE
923
924#ifdef CONFIG_RCU_BOOST
925
926static void rcu_initiate_boost_trace(void)
927{
928 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
929 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
930 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
931 rcu_preempt_ctrlblk.exp_tasks == NULL)
932 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
933 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
934 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
935 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
936 rcu_preempt_ctrlblk.n_balk_notyet++;
937 else
938 rcu_preempt_ctrlblk.n_balk_nos++;
939}
940
941#endif /* #ifdef CONFIG_RCU_BOOST */
942
943static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
944{
945 unsigned long flags;
946
947 raw_local_irq_save(flags);
948 rcp->qlen -= n;
949 raw_local_irq_restore(flags);
950}
951
952/*
953 * Dump statistics for TINY_RCU, such as they are.
954 */
955static int show_tiny_stats(struct seq_file *m, void *unused)
956{
957 show_tiny_preempt_stats(m);
958 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
959 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
960 return 0;
961}
962
963static int show_tiny_stats_open(struct inode *inode, struct file *file)
964{
965 return single_open(file, show_tiny_stats, NULL);
966}
967
968static const struct file_operations show_tiny_stats_fops = {
969 .owner = THIS_MODULE,
970 .open = show_tiny_stats_open,
971 .read = seq_read,
972 .llseek = seq_lseek,
973 .release = single_release,
974};
975
976static struct dentry *rcudir;
977
978static int __init rcutiny_trace_init(void)
979{
980 struct dentry *retval;
981
982 rcudir = debugfs_create_dir("rcu", NULL);
983 if (!rcudir)
984 goto free_out;
985 retval = debugfs_create_file("rcudata", 0444, rcudir,
986 NULL, &show_tiny_stats_fops);
987 if (!retval)
988 goto free_out;
989 return 0;
990free_out:
991 debugfs_remove_recursive(rcudir);
992 return 1;
993}
994
995static void __exit rcutiny_trace_cleanup(void)
996{
997 debugfs_remove_recursive(rcudir);
998}
999
1000module_init(rcutiny_trace_init);
1001module_exit(rcutiny_trace_cleanup);
1002
1003MODULE_AUTHOR("Paul E. McKenney");
1004MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1005MODULE_LICENSE("GPL");
1006
1007#endif /* #ifdef CONFIG_RCU_TRACE */