Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * linux/kernel/capability.c
  3 *
  4 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  5 *
  6 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  7 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  8 */
  9
 10#include <linux/audit.h>
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/export.h>
 14#include <linux/security.h>
 15#include <linux/syscalls.h>
 16#include <linux/pid_namespace.h>
 17#include <linux/user_namespace.h>
 18#include <asm/uaccess.h>
 19
 20/*
 21 * Leveraged for setting/resetting capabilities
 22 */
 23
 24const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 25
 26EXPORT_SYMBOL(__cap_empty_set);
 27
 28int file_caps_enabled = 1;
 29
 30static int __init file_caps_disable(char *str)
 31{
 32	file_caps_enabled = 0;
 33	return 1;
 34}
 35__setup("no_file_caps", file_caps_disable);
 36
 37/*
 38 * More recent versions of libcap are available from:
 39 *
 40 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 41 */
 42
 43static void warn_legacy_capability_use(void)
 44{
 45	static int warned;
 46	if (!warned) {
 47		char name[sizeof(current->comm)];
 48
 49		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
 50		       " (legacy support in use)\n",
 51		       get_task_comm(name, current));
 52		warned = 1;
 53	}
 54}
 55
 56/*
 57 * Version 2 capabilities worked fine, but the linux/capability.h file
 58 * that accompanied their introduction encouraged their use without
 59 * the necessary user-space source code changes. As such, we have
 60 * created a version 3 with equivalent functionality to version 2, but
 61 * with a header change to protect legacy source code from using
 62 * version 2 when it wanted to use version 1. If your system has code
 63 * that trips the following warning, it is using version 2 specific
 64 * capabilities and may be doing so insecurely.
 65 *
 66 * The remedy is to either upgrade your version of libcap (to 2.10+,
 67 * if the application is linked against it), or recompile your
 68 * application with modern kernel headers and this warning will go
 69 * away.
 70 */
 71
 72static void warn_deprecated_v2(void)
 73{
 74	static int warned;
 75
 76	if (!warned) {
 77		char name[sizeof(current->comm)];
 78
 79		printk(KERN_INFO "warning: `%s' uses deprecated v2"
 80		       " capabilities in a way that may be insecure.\n",
 81		       get_task_comm(name, current));
 82		warned = 1;
 83	}
 84}
 85
 86/*
 87 * Version check. Return the number of u32s in each capability flag
 88 * array, or a negative value on error.
 89 */
 90static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 91{
 92	__u32 version;
 93
 94	if (get_user(version, &header->version))
 95		return -EFAULT;
 96
 97	switch (version) {
 98	case _LINUX_CAPABILITY_VERSION_1:
 99		warn_legacy_capability_use();
100		*tocopy = _LINUX_CAPABILITY_U32S_1;
101		break;
102	case _LINUX_CAPABILITY_VERSION_2:
103		warn_deprecated_v2();
104		/*
105		 * fall through - v3 is otherwise equivalent to v2.
106		 */
107	case _LINUX_CAPABILITY_VERSION_3:
108		*tocopy = _LINUX_CAPABILITY_U32S_3;
109		break;
110	default:
111		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
112			return -EFAULT;
113		return -EINVAL;
114	}
115
116	return 0;
117}
118
119/*
120 * The only thing that can change the capabilities of the current
121 * process is the current process. As such, we can't be in this code
122 * at the same time as we are in the process of setting capabilities
123 * in this process. The net result is that we can limit our use of
124 * locks to when we are reading the caps of another process.
125 */
126static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
127				     kernel_cap_t *pIp, kernel_cap_t *pPp)
128{
129	int ret;
130
131	if (pid && (pid != task_pid_vnr(current))) {
132		struct task_struct *target;
133
134		rcu_read_lock();
135
136		target = find_task_by_vpid(pid);
137		if (!target)
138			ret = -ESRCH;
139		else
140			ret = security_capget(target, pEp, pIp, pPp);
141
142		rcu_read_unlock();
143	} else
144		ret = security_capget(current, pEp, pIp, pPp);
145
146	return ret;
147}
148
149/**
150 * sys_capget - get the capabilities of a given process.
151 * @header: pointer to struct that contains capability version and
152 *	target pid data
153 * @dataptr: pointer to struct that contains the effective, permitted,
154 *	and inheritable capabilities that are returned
155 *
156 * Returns 0 on success and < 0 on error.
157 */
158SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
159{
160	int ret = 0;
161	pid_t pid;
162	unsigned tocopy;
163	kernel_cap_t pE, pI, pP;
164
165	ret = cap_validate_magic(header, &tocopy);
166	if ((dataptr == NULL) || (ret != 0))
167		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
168
169	if (get_user(pid, &header->pid))
170		return -EFAULT;
171
172	if (pid < 0)
173		return -EINVAL;
174
175	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
176	if (!ret) {
177		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
178		unsigned i;
179
180		for (i = 0; i < tocopy; i++) {
181			kdata[i].effective = pE.cap[i];
182			kdata[i].permitted = pP.cap[i];
183			kdata[i].inheritable = pI.cap[i];
184		}
185
186		/*
187		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
188		 * we silently drop the upper capabilities here. This
189		 * has the effect of making older libcap
190		 * implementations implicitly drop upper capability
191		 * bits when they perform a: capget/modify/capset
192		 * sequence.
193		 *
194		 * This behavior is considered fail-safe
195		 * behavior. Upgrading the application to a newer
196		 * version of libcap will enable access to the newer
197		 * capabilities.
198		 *
199		 * An alternative would be to return an error here
200		 * (-ERANGE), but that causes legacy applications to
201		 * unexpectidly fail; the capget/modify/capset aborts
202		 * before modification is attempted and the application
203		 * fails.
204		 */
205		if (copy_to_user(dataptr, kdata, tocopy
206				 * sizeof(struct __user_cap_data_struct))) {
207			return -EFAULT;
208		}
209	}
210
211	return ret;
212}
213
214/**
215 * sys_capset - set capabilities for a process or (*) a group of processes
216 * @header: pointer to struct that contains capability version and
217 *	target pid data
218 * @data: pointer to struct that contains the effective, permitted,
219 *	and inheritable capabilities
220 *
221 * Set capabilities for the current process only.  The ability to any other
222 * process(es) has been deprecated and removed.
223 *
224 * The restrictions on setting capabilities are specified as:
225 *
226 * I: any raised capabilities must be a subset of the old permitted
227 * P: any raised capabilities must be a subset of the old permitted
228 * E: must be set to a subset of new permitted
229 *
230 * Returns 0 on success and < 0 on error.
231 */
232SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
233{
234	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
235	unsigned i, tocopy, copybytes;
236	kernel_cap_t inheritable, permitted, effective;
237	struct cred *new;
238	int ret;
239	pid_t pid;
240
241	ret = cap_validate_magic(header, &tocopy);
242	if (ret != 0)
243		return ret;
244
245	if (get_user(pid, &header->pid))
246		return -EFAULT;
247
248	/* may only affect current now */
249	if (pid != 0 && pid != task_pid_vnr(current))
250		return -EPERM;
251
252	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
253	if (copybytes > sizeof(kdata))
254		return -EFAULT;
255
256	if (copy_from_user(&kdata, data, copybytes))
257		return -EFAULT;
258
259	for (i = 0; i < tocopy; i++) {
260		effective.cap[i] = kdata[i].effective;
261		permitted.cap[i] = kdata[i].permitted;
262		inheritable.cap[i] = kdata[i].inheritable;
263	}
264	while (i < _KERNEL_CAPABILITY_U32S) {
265		effective.cap[i] = 0;
266		permitted.cap[i] = 0;
267		inheritable.cap[i] = 0;
268		i++;
269	}
270
271	new = prepare_creds();
272	if (!new)
273		return -ENOMEM;
274
275	ret = security_capset(new, current_cred(),
276			      &effective, &inheritable, &permitted);
277	if (ret < 0)
278		goto error;
279
280	audit_log_capset(pid, new, current_cred());
281
282	return commit_creds(new);
283
284error:
285	abort_creds(new);
286	return ret;
287}
288
289/**
290 * has_ns_capability - Does a task have a capability in a specific user ns
291 * @t: The task in question
292 * @ns: target user namespace
293 * @cap: The capability to be tested for
294 *
295 * Return true if the specified task has the given superior capability
296 * currently in effect to the specified user namespace, false if not.
297 *
298 * Note that this does not set PF_SUPERPRIV on the task.
299 */
300bool has_ns_capability(struct task_struct *t,
301		       struct user_namespace *ns, int cap)
302{
303	int ret;
304
305	rcu_read_lock();
306	ret = security_capable(__task_cred(t), ns, cap);
307	rcu_read_unlock();
308
309	return (ret == 0);
310}
311
312/**
313 * has_capability - Does a task have a capability in init_user_ns
314 * @t: The task in question
 
315 * @cap: The capability to be tested for
316 *
317 * Return true if the specified task has the given superior capability
318 * currently in effect to the initial user namespace, false if not.
319 *
320 * Note that this does not set PF_SUPERPRIV on the task.
321 */
322bool has_capability(struct task_struct *t, int cap)
 
323{
324	return has_ns_capability(t, &init_user_ns, cap);
 
 
325}
326
327/**
328 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
329 * in a specific user ns.
330 * @t: The task in question
331 * @ns: target user namespace
332 * @cap: The capability to be tested for
333 *
334 * Return true if the specified task has the given superior capability
335 * currently in effect to the specified user namespace, false if not.
336 * Do not write an audit message for the check.
337 *
338 * Note that this does not set PF_SUPERPRIV on the task.
339 */
340bool has_ns_capability_noaudit(struct task_struct *t,
341			       struct user_namespace *ns, int cap)
342{
343	int ret;
344
345	rcu_read_lock();
346	ret = security_capable_noaudit(__task_cred(t), ns, cap);
347	rcu_read_unlock();
348
349	return (ret == 0);
350}
351
352/**
353 * has_capability_noaudit - Does a task have a capability (unaudited) in the
354 * initial user ns
355 * @t: The task in question
356 * @cap: The capability to be tested for
357 *
358 * Return true if the specified task has the given superior capability
359 * currently in effect to init_user_ns, false if not.  Don't write an
360 * audit message for the check.
361 *
362 * Note that this does not set PF_SUPERPRIV on the task.
 
363 */
364bool has_capability_noaudit(struct task_struct *t, int cap)
365{
366	return has_ns_capability_noaudit(t, &init_user_ns, cap);
367}
 
368
369/**
370 * ns_capable - Determine if the current task has a superior capability in effect
371 * @ns:  The usernamespace we want the capability in
372 * @cap: The capability to be tested for
373 *
374 * Return true if the current task has the given superior capability currently
375 * available for use, false if not.
376 *
377 * This sets PF_SUPERPRIV on the task if the capability is available on the
378 * assumption that it's about to be used.
379 */
380bool ns_capable(struct user_namespace *ns, int cap)
381{
382	if (unlikely(!cap_valid(cap))) {
383		printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
384		BUG();
385	}
386
387	if (security_capable(current_cred(), ns, cap) == 0) {
388		current->flags |= PF_SUPERPRIV;
389		return true;
390	}
391	return false;
392}
393EXPORT_SYMBOL(ns_capable);
394
395/**
396 * capable - Determine if the current task has a superior capability in effect
397 * @cap: The capability to be tested for
 
 
398 *
399 * Return true if the current task has the given superior capability currently
400 * available for use, false if not.
401 *
402 * This sets PF_SUPERPRIV on the task if the capability is available on the
403 * assumption that it's about to be used.
404 */
405bool capable(int cap)
406{
407	return ns_capable(&init_user_ns, cap);
408}
409EXPORT_SYMBOL(capable);
410
411/**
412 * nsown_capable - Check superior capability to one's own user_ns
413 * @cap: The capability in question
414 *
415 * Return true if the current task has the given superior capability
416 * targeted at its own user namespace.
417 */
418bool nsown_capable(int cap)
419{
420	return ns_capable(current_user_ns(), cap);
421}
422
423/**
424 * inode_capable - Check superior capability over inode
425 * @inode: The inode in question
426 * @cap: The capability in question
427 *
428 * Return true if the current task has the given superior capability
429 * targeted at it's own user namespace and that the given inode is owned
430 * by the current user namespace or a child namespace.
431 *
432 * Currently we check to see if an inode is owned by the current
433 * user namespace by seeing if the inode's owner maps into the
434 * current user namespace.
435 *
436 */
437bool inode_capable(const struct inode *inode, int cap)
438{
439	struct user_namespace *ns = current_user_ns();
440
441	return ns_capable(ns, cap) && kuid_has_mapping(ns, inode->i_uid);
442}
v3.1
  1/*
  2 * linux/kernel/capability.c
  3 *
  4 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  5 *
  6 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  7 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  8 */
  9
 10#include <linux/audit.h>
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/security.h>
 15#include <linux/syscalls.h>
 16#include <linux/pid_namespace.h>
 17#include <linux/user_namespace.h>
 18#include <asm/uaccess.h>
 19
 20/*
 21 * Leveraged for setting/resetting capabilities
 22 */
 23
 24const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 25
 26EXPORT_SYMBOL(__cap_empty_set);
 27
 28int file_caps_enabled = 1;
 29
 30static int __init file_caps_disable(char *str)
 31{
 32	file_caps_enabled = 0;
 33	return 1;
 34}
 35__setup("no_file_caps", file_caps_disable);
 36
 37/*
 38 * More recent versions of libcap are available from:
 39 *
 40 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 41 */
 42
 43static void warn_legacy_capability_use(void)
 44{
 45	static int warned;
 46	if (!warned) {
 47		char name[sizeof(current->comm)];
 48
 49		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
 50		       " (legacy support in use)\n",
 51		       get_task_comm(name, current));
 52		warned = 1;
 53	}
 54}
 55
 56/*
 57 * Version 2 capabilities worked fine, but the linux/capability.h file
 58 * that accompanied their introduction encouraged their use without
 59 * the necessary user-space source code changes. As such, we have
 60 * created a version 3 with equivalent functionality to version 2, but
 61 * with a header change to protect legacy source code from using
 62 * version 2 when it wanted to use version 1. If your system has code
 63 * that trips the following warning, it is using version 2 specific
 64 * capabilities and may be doing so insecurely.
 65 *
 66 * The remedy is to either upgrade your version of libcap (to 2.10+,
 67 * if the application is linked against it), or recompile your
 68 * application with modern kernel headers and this warning will go
 69 * away.
 70 */
 71
 72static void warn_deprecated_v2(void)
 73{
 74	static int warned;
 75
 76	if (!warned) {
 77		char name[sizeof(current->comm)];
 78
 79		printk(KERN_INFO "warning: `%s' uses deprecated v2"
 80		       " capabilities in a way that may be insecure.\n",
 81		       get_task_comm(name, current));
 82		warned = 1;
 83	}
 84}
 85
 86/*
 87 * Version check. Return the number of u32s in each capability flag
 88 * array, or a negative value on error.
 89 */
 90static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 91{
 92	__u32 version;
 93
 94	if (get_user(version, &header->version))
 95		return -EFAULT;
 96
 97	switch (version) {
 98	case _LINUX_CAPABILITY_VERSION_1:
 99		warn_legacy_capability_use();
100		*tocopy = _LINUX_CAPABILITY_U32S_1;
101		break;
102	case _LINUX_CAPABILITY_VERSION_2:
103		warn_deprecated_v2();
104		/*
105		 * fall through - v3 is otherwise equivalent to v2.
106		 */
107	case _LINUX_CAPABILITY_VERSION_3:
108		*tocopy = _LINUX_CAPABILITY_U32S_3;
109		break;
110	default:
111		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
112			return -EFAULT;
113		return -EINVAL;
114	}
115
116	return 0;
117}
118
119/*
120 * The only thing that can change the capabilities of the current
121 * process is the current process. As such, we can't be in this code
122 * at the same time as we are in the process of setting capabilities
123 * in this process. The net result is that we can limit our use of
124 * locks to when we are reading the caps of another process.
125 */
126static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
127				     kernel_cap_t *pIp, kernel_cap_t *pPp)
128{
129	int ret;
130
131	if (pid && (pid != task_pid_vnr(current))) {
132		struct task_struct *target;
133
134		rcu_read_lock();
135
136		target = find_task_by_vpid(pid);
137		if (!target)
138			ret = -ESRCH;
139		else
140			ret = security_capget(target, pEp, pIp, pPp);
141
142		rcu_read_unlock();
143	} else
144		ret = security_capget(current, pEp, pIp, pPp);
145
146	return ret;
147}
148
149/**
150 * sys_capget - get the capabilities of a given process.
151 * @header: pointer to struct that contains capability version and
152 *	target pid data
153 * @dataptr: pointer to struct that contains the effective, permitted,
154 *	and inheritable capabilities that are returned
155 *
156 * Returns 0 on success and < 0 on error.
157 */
158SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
159{
160	int ret = 0;
161	pid_t pid;
162	unsigned tocopy;
163	kernel_cap_t pE, pI, pP;
164
165	ret = cap_validate_magic(header, &tocopy);
166	if ((dataptr == NULL) || (ret != 0))
167		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
168
169	if (get_user(pid, &header->pid))
170		return -EFAULT;
171
172	if (pid < 0)
173		return -EINVAL;
174
175	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
176	if (!ret) {
177		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
178		unsigned i;
179
180		for (i = 0; i < tocopy; i++) {
181			kdata[i].effective = pE.cap[i];
182			kdata[i].permitted = pP.cap[i];
183			kdata[i].inheritable = pI.cap[i];
184		}
185
186		/*
187		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
188		 * we silently drop the upper capabilities here. This
189		 * has the effect of making older libcap
190		 * implementations implicitly drop upper capability
191		 * bits when they perform a: capget/modify/capset
192		 * sequence.
193		 *
194		 * This behavior is considered fail-safe
195		 * behavior. Upgrading the application to a newer
196		 * version of libcap will enable access to the newer
197		 * capabilities.
198		 *
199		 * An alternative would be to return an error here
200		 * (-ERANGE), but that causes legacy applications to
201		 * unexpectidly fail; the capget/modify/capset aborts
202		 * before modification is attempted and the application
203		 * fails.
204		 */
205		if (copy_to_user(dataptr, kdata, tocopy
206				 * sizeof(struct __user_cap_data_struct))) {
207			return -EFAULT;
208		}
209	}
210
211	return ret;
212}
213
214/**
215 * sys_capset - set capabilities for a process or (*) a group of processes
216 * @header: pointer to struct that contains capability version and
217 *	target pid data
218 * @data: pointer to struct that contains the effective, permitted,
219 *	and inheritable capabilities
220 *
221 * Set capabilities for the current process only.  The ability to any other
222 * process(es) has been deprecated and removed.
223 *
224 * The restrictions on setting capabilities are specified as:
225 *
226 * I: any raised capabilities must be a subset of the old permitted
227 * P: any raised capabilities must be a subset of the old permitted
228 * E: must be set to a subset of new permitted
229 *
230 * Returns 0 on success and < 0 on error.
231 */
232SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
233{
234	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
235	unsigned i, tocopy, copybytes;
236	kernel_cap_t inheritable, permitted, effective;
237	struct cred *new;
238	int ret;
239	pid_t pid;
240
241	ret = cap_validate_magic(header, &tocopy);
242	if (ret != 0)
243		return ret;
244
245	if (get_user(pid, &header->pid))
246		return -EFAULT;
247
248	/* may only affect current now */
249	if (pid != 0 && pid != task_pid_vnr(current))
250		return -EPERM;
251
252	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
253	if (copybytes > sizeof(kdata))
254		return -EFAULT;
255
256	if (copy_from_user(&kdata, data, copybytes))
257		return -EFAULT;
258
259	for (i = 0; i < tocopy; i++) {
260		effective.cap[i] = kdata[i].effective;
261		permitted.cap[i] = kdata[i].permitted;
262		inheritable.cap[i] = kdata[i].inheritable;
263	}
264	while (i < _KERNEL_CAPABILITY_U32S) {
265		effective.cap[i] = 0;
266		permitted.cap[i] = 0;
267		inheritable.cap[i] = 0;
268		i++;
269	}
270
271	new = prepare_creds();
272	if (!new)
273		return -ENOMEM;
274
275	ret = security_capset(new, current_cred(),
276			      &effective, &inheritable, &permitted);
277	if (ret < 0)
278		goto error;
279
280	audit_log_capset(pid, new, current_cred());
281
282	return commit_creds(new);
283
284error:
285	abort_creds(new);
286	return ret;
287}
288
289/**
290 * has_capability - Does a task have a capability in init_user_ns
291 * @t: The task in question
 
292 * @cap: The capability to be tested for
293 *
294 * Return true if the specified task has the given superior capability
295 * currently in effect to the initial user namespace, false if not.
296 *
297 * Note that this does not set PF_SUPERPRIV on the task.
298 */
299bool has_capability(struct task_struct *t, int cap)
 
300{
301	int ret = security_real_capable(t, &init_user_ns, cap);
 
 
 
 
302
303	return (ret == 0);
304}
305
306/**
307 * has_capability - Does a task have a capability in a specific user ns
308 * @t: The task in question
309 * @ns: target user namespace
310 * @cap: The capability to be tested for
311 *
312 * Return true if the specified task has the given superior capability
313 * currently in effect to the specified user namespace, false if not.
314 *
315 * Note that this does not set PF_SUPERPRIV on the task.
316 */
317bool has_ns_capability(struct task_struct *t,
318		       struct user_namespace *ns, int cap)
319{
320	int ret = security_real_capable(t, ns, cap);
321
322	return (ret == 0);
323}
324
325/**
326 * has_capability_noaudit - Does a task have a capability (unaudited)
 
327 * @t: The task in question
 
328 * @cap: The capability to be tested for
329 *
330 * Return true if the specified task has the given superior capability
331 * currently in effect to init_user_ns, false if not.  Don't write an
332 * audit message for the check.
333 *
334 * Note that this does not set PF_SUPERPRIV on the task.
335 */
336bool has_capability_noaudit(struct task_struct *t, int cap)
 
337{
338	int ret = security_real_capable_noaudit(t, &init_user_ns, cap);
 
 
 
 
339
340	return (ret == 0);
341}
342
343/**
344 * capable - Determine if the current task has a superior capability in effect
 
 
345 * @cap: The capability to be tested for
346 *
347 * Return true if the current task has the given superior capability currently
348 * available for use, false if not.
 
349 *
350 * This sets PF_SUPERPRIV on the task if the capability is available on the
351 * assumption that it's about to be used.
352 */
353bool capable(int cap)
354{
355	return ns_capable(&init_user_ns, cap);
356}
357EXPORT_SYMBOL(capable);
358
359/**
360 * ns_capable - Determine if the current task has a superior capability in effect
361 * @ns:  The usernamespace we want the capability in
362 * @cap: The capability to be tested for
363 *
364 * Return true if the current task has the given superior capability currently
365 * available for use, false if not.
366 *
367 * This sets PF_SUPERPRIV on the task if the capability is available on the
368 * assumption that it's about to be used.
369 */
370bool ns_capable(struct user_namespace *ns, int cap)
371{
372	if (unlikely(!cap_valid(cap))) {
373		printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
374		BUG();
375	}
376
377	if (security_capable(ns, current_cred(), cap) == 0) {
378		current->flags |= PF_SUPERPRIV;
379		return true;
380	}
381	return false;
382}
383EXPORT_SYMBOL(ns_capable);
384
385/**
386 * task_ns_capable - Determine whether current task has a superior
387 * capability targeted at a specific task's user namespace.
388 * @t: The task whose user namespace is targeted.
389 * @cap: The capability in question.
390 *
391 *  Return true if it does, false otherwise.
 
 
 
 
392 */
393bool task_ns_capable(struct task_struct *t, int cap)
394{
395	return ns_capable(task_cred_xxx(t, user)->user_ns, cap);
396}
397EXPORT_SYMBOL(task_ns_capable);
398
399/**
400 * nsown_capable - Check superior capability to one's own user_ns
401 * @cap: The capability in question
402 *
403 * Return true if the current task has the given superior capability
404 * targeted at its own user namespace.
405 */
406bool nsown_capable(int cap)
407{
408	return ns_capable(current_user_ns(), cap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409}