Loading...
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <linux/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70#include <linux/compat.h>
71
72#include "audit.h"
73
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
83
84/* Indicates that audit should log the full pathname. */
85#define AUDIT_NAME_FULL -1
86
87/* no execve audit message should be longer than this (userspace limits) */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* number of audit rules */
91int audit_n_rules;
92
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
96struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103};
104
105/* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110struct audit_names {
111 struct list_head list; /* audit_context->names_list */
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
116 uid_t uid;
117 gid_t gid;
118 dev_t rdev;
119 u32 osid;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
130};
131
132struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135};
136
137#define AUDIT_AUX_IPCPERM 0
138
139/* Number of target pids per aux struct. */
140#define AUDIT_AUX_PIDS 16
141
142struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
147};
148
149struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 uid_t target_auid[AUDIT_AUX_PIDS];
153 uid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 int pid_count;
158};
159
160struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166};
167
168struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172};
173
174struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177};
178
179/* The per-task audit context. */
180struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
189 u64 prio;
190 int return_valid; /* return code is valid */
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
203 struct path pwd;
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
209 /* Save things to print about task_struct */
210 pid_t pid, ppid;
211 uid_t uid, euid, suid, fsuid;
212 gid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
214 int arch;
215
216 pid_t target_pid;
217 uid_t target_auid;
218 uid_t target_uid;
219 unsigned int target_sessionid;
220 u32 target_sid;
221 char target_comm[TASK_COMM_LEN];
222
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
225 int tree_count;
226
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
233 struct {
234 uid_t uid;
235 gid_t gid;
236 umode_t mode;
237 u32 osid;
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
241 umode_t perm_mode;
242 unsigned long qbytes;
243 } ipc;
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
258 struct {
259 int oflag;
260 umode_t mode;
261 struct mq_attr attr;
262 } mq_open;
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
267 struct {
268 int fd;
269 int flags;
270 } mmap;
271 };
272 int fds[2];
273
274#if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277#endif
278};
279
280static inline int open_arg(int flags, int mask)
281{
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286}
287
288static int audit_match_perm(struct audit_context *ctx, int mask)
289{
290 unsigned n;
291 if (unlikely(!ctx))
292 return 0;
293 n = ctx->major;
294
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329}
330
331static int audit_match_filetype(struct audit_context *ctx, int val)
332{
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
335
336 if (unlikely(!ctx))
337 return 0;
338
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
342 return 1;
343 }
344
345 return 0;
346}
347
348/*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358#ifdef CONFIG_AUDIT_TREE
359static void audit_set_auditable(struct audit_context *ctx)
360{
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365}
366
367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368{
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386}
387
388static int grow_tree_refs(struct audit_context *ctx)
389{
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402}
403#endif
404
405static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407{
408#ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432#endif
433}
434
435static void free_tree_refs(struct audit_context *ctx)
436{
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442}
443
444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445{
446#ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463#endif
464 return 0;
465}
466
467static int audit_compare_id(uid_t uid1,
468 struct audit_names *name,
469 unsigned long name_offset,
470 struct audit_field *f,
471 struct audit_context *ctx)
472{
473 struct audit_names *n;
474 unsigned long addr;
475 uid_t uid2;
476 int rc;
477
478 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
479
480 if (name) {
481 addr = (unsigned long)name;
482 addr += name_offset;
483
484 uid2 = *(uid_t *)addr;
485 rc = audit_comparator(uid1, f->op, uid2);
486 if (rc)
487 return rc;
488 }
489
490 if (ctx) {
491 list_for_each_entry(n, &ctx->names_list, list) {
492 addr = (unsigned long)n;
493 addr += name_offset;
494
495 uid2 = *(uid_t *)addr;
496
497 rc = audit_comparator(uid1, f->op, uid2);
498 if (rc)
499 return rc;
500 }
501 }
502 return 0;
503}
504
505static int audit_field_compare(struct task_struct *tsk,
506 const struct cred *cred,
507 struct audit_field *f,
508 struct audit_context *ctx,
509 struct audit_names *name)
510{
511 switch (f->val) {
512 /* process to file object comparisons */
513 case AUDIT_COMPARE_UID_TO_OBJ_UID:
514 return audit_compare_id(cred->uid,
515 name, offsetof(struct audit_names, uid),
516 f, ctx);
517 case AUDIT_COMPARE_GID_TO_OBJ_GID:
518 return audit_compare_id(cred->gid,
519 name, offsetof(struct audit_names, gid),
520 f, ctx);
521 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
522 return audit_compare_id(cred->euid,
523 name, offsetof(struct audit_names, uid),
524 f, ctx);
525 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
526 return audit_compare_id(cred->egid,
527 name, offsetof(struct audit_names, gid),
528 f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_id(tsk->loginuid,
531 name, offsetof(struct audit_names, uid),
532 f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_id(cred->suid,
535 name, offsetof(struct audit_names, uid),
536 f, ctx);
537 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
538 return audit_compare_id(cred->sgid,
539 name, offsetof(struct audit_names, gid),
540 f, ctx);
541 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
542 return audit_compare_id(cred->fsuid,
543 name, offsetof(struct audit_names, uid),
544 f, ctx);
545 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
546 return audit_compare_id(cred->fsgid,
547 name, offsetof(struct audit_names, gid),
548 f, ctx);
549 /* uid comparisons */
550 case AUDIT_COMPARE_UID_TO_AUID:
551 return audit_comparator(cred->uid, f->op, tsk->loginuid);
552 case AUDIT_COMPARE_UID_TO_EUID:
553 return audit_comparator(cred->uid, f->op, cred->euid);
554 case AUDIT_COMPARE_UID_TO_SUID:
555 return audit_comparator(cred->uid, f->op, cred->suid);
556 case AUDIT_COMPARE_UID_TO_FSUID:
557 return audit_comparator(cred->uid, f->op, cred->fsuid);
558 /* auid comparisons */
559 case AUDIT_COMPARE_AUID_TO_EUID:
560 return audit_comparator(tsk->loginuid, f->op, cred->euid);
561 case AUDIT_COMPARE_AUID_TO_SUID:
562 return audit_comparator(tsk->loginuid, f->op, cred->suid);
563 case AUDIT_COMPARE_AUID_TO_FSUID:
564 return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
565 /* euid comparisons */
566 case AUDIT_COMPARE_EUID_TO_SUID:
567 return audit_comparator(cred->euid, f->op, cred->suid);
568 case AUDIT_COMPARE_EUID_TO_FSUID:
569 return audit_comparator(cred->euid, f->op, cred->fsuid);
570 /* suid comparisons */
571 case AUDIT_COMPARE_SUID_TO_FSUID:
572 return audit_comparator(cred->suid, f->op, cred->fsuid);
573 /* gid comparisons */
574 case AUDIT_COMPARE_GID_TO_EGID:
575 return audit_comparator(cred->gid, f->op, cred->egid);
576 case AUDIT_COMPARE_GID_TO_SGID:
577 return audit_comparator(cred->gid, f->op, cred->sgid);
578 case AUDIT_COMPARE_GID_TO_FSGID:
579 return audit_comparator(cred->gid, f->op, cred->fsgid);
580 /* egid comparisons */
581 case AUDIT_COMPARE_EGID_TO_SGID:
582 return audit_comparator(cred->egid, f->op, cred->sgid);
583 case AUDIT_COMPARE_EGID_TO_FSGID:
584 return audit_comparator(cred->egid, f->op, cred->fsgid);
585 /* sgid comparison */
586 case AUDIT_COMPARE_SGID_TO_FSGID:
587 return audit_comparator(cred->sgid, f->op, cred->fsgid);
588 default:
589 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
590 return 0;
591 }
592 return 0;
593}
594
595/* Determine if any context name data matches a rule's watch data */
596/* Compare a task_struct with an audit_rule. Return 1 on match, 0
597 * otherwise.
598 *
599 * If task_creation is true, this is an explicit indication that we are
600 * filtering a task rule at task creation time. This and tsk == current are
601 * the only situations where tsk->cred may be accessed without an rcu read lock.
602 */
603static int audit_filter_rules(struct task_struct *tsk,
604 struct audit_krule *rule,
605 struct audit_context *ctx,
606 struct audit_names *name,
607 enum audit_state *state,
608 bool task_creation)
609{
610 const struct cred *cred;
611 int i, need_sid = 1;
612 u32 sid;
613
614 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
615
616 for (i = 0; i < rule->field_count; i++) {
617 struct audit_field *f = &rule->fields[i];
618 struct audit_names *n;
619 int result = 0;
620
621 switch (f->type) {
622 case AUDIT_PID:
623 result = audit_comparator(tsk->pid, f->op, f->val);
624 break;
625 case AUDIT_PPID:
626 if (ctx) {
627 if (!ctx->ppid)
628 ctx->ppid = sys_getppid();
629 result = audit_comparator(ctx->ppid, f->op, f->val);
630 }
631 break;
632 case AUDIT_UID:
633 result = audit_comparator(cred->uid, f->op, f->val);
634 break;
635 case AUDIT_EUID:
636 result = audit_comparator(cred->euid, f->op, f->val);
637 break;
638 case AUDIT_SUID:
639 result = audit_comparator(cred->suid, f->op, f->val);
640 break;
641 case AUDIT_FSUID:
642 result = audit_comparator(cred->fsuid, f->op, f->val);
643 break;
644 case AUDIT_GID:
645 result = audit_comparator(cred->gid, f->op, f->val);
646 break;
647 case AUDIT_EGID:
648 result = audit_comparator(cred->egid, f->op, f->val);
649 break;
650 case AUDIT_SGID:
651 result = audit_comparator(cred->sgid, f->op, f->val);
652 break;
653 case AUDIT_FSGID:
654 result = audit_comparator(cred->fsgid, f->op, f->val);
655 break;
656 case AUDIT_PERS:
657 result = audit_comparator(tsk->personality, f->op, f->val);
658 break;
659 case AUDIT_ARCH:
660 if (ctx)
661 result = audit_comparator(ctx->arch, f->op, f->val);
662 break;
663
664 case AUDIT_EXIT:
665 if (ctx && ctx->return_valid)
666 result = audit_comparator(ctx->return_code, f->op, f->val);
667 break;
668 case AUDIT_SUCCESS:
669 if (ctx && ctx->return_valid) {
670 if (f->val)
671 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
672 else
673 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
674 }
675 break;
676 case AUDIT_DEVMAJOR:
677 if (name) {
678 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
679 audit_comparator(MAJOR(name->rdev), f->op, f->val))
680 ++result;
681 } else if (ctx) {
682 list_for_each_entry(n, &ctx->names_list, list) {
683 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
684 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
685 ++result;
686 break;
687 }
688 }
689 }
690 break;
691 case AUDIT_DEVMINOR:
692 if (name) {
693 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
694 audit_comparator(MINOR(name->rdev), f->op, f->val))
695 ++result;
696 } else if (ctx) {
697 list_for_each_entry(n, &ctx->names_list, list) {
698 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
699 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
700 ++result;
701 break;
702 }
703 }
704 }
705 break;
706 case AUDIT_INODE:
707 if (name)
708 result = (name->ino == f->val);
709 else if (ctx) {
710 list_for_each_entry(n, &ctx->names_list, list) {
711 if (audit_comparator(n->ino, f->op, f->val)) {
712 ++result;
713 break;
714 }
715 }
716 }
717 break;
718 case AUDIT_OBJ_UID:
719 if (name) {
720 result = audit_comparator(name->uid, f->op, f->val);
721 } else if (ctx) {
722 list_for_each_entry(n, &ctx->names_list, list) {
723 if (audit_comparator(n->uid, f->op, f->val)) {
724 ++result;
725 break;
726 }
727 }
728 }
729 break;
730 case AUDIT_OBJ_GID:
731 if (name) {
732 result = audit_comparator(name->gid, f->op, f->val);
733 } else if (ctx) {
734 list_for_each_entry(n, &ctx->names_list, list) {
735 if (audit_comparator(n->gid, f->op, f->val)) {
736 ++result;
737 break;
738 }
739 }
740 }
741 break;
742 case AUDIT_WATCH:
743 if (name)
744 result = audit_watch_compare(rule->watch, name->ino, name->dev);
745 break;
746 case AUDIT_DIR:
747 if (ctx)
748 result = match_tree_refs(ctx, rule->tree);
749 break;
750 case AUDIT_LOGINUID:
751 result = 0;
752 if (ctx)
753 result = audit_comparator(tsk->loginuid, f->op, f->val);
754 break;
755 case AUDIT_SUBJ_USER:
756 case AUDIT_SUBJ_ROLE:
757 case AUDIT_SUBJ_TYPE:
758 case AUDIT_SUBJ_SEN:
759 case AUDIT_SUBJ_CLR:
760 /* NOTE: this may return negative values indicating
761 a temporary error. We simply treat this as a
762 match for now to avoid losing information that
763 may be wanted. An error message will also be
764 logged upon error */
765 if (f->lsm_rule) {
766 if (need_sid) {
767 security_task_getsecid(tsk, &sid);
768 need_sid = 0;
769 }
770 result = security_audit_rule_match(sid, f->type,
771 f->op,
772 f->lsm_rule,
773 ctx);
774 }
775 break;
776 case AUDIT_OBJ_USER:
777 case AUDIT_OBJ_ROLE:
778 case AUDIT_OBJ_TYPE:
779 case AUDIT_OBJ_LEV_LOW:
780 case AUDIT_OBJ_LEV_HIGH:
781 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
782 also applies here */
783 if (f->lsm_rule) {
784 /* Find files that match */
785 if (name) {
786 result = security_audit_rule_match(
787 name->osid, f->type, f->op,
788 f->lsm_rule, ctx);
789 } else if (ctx) {
790 list_for_each_entry(n, &ctx->names_list, list) {
791 if (security_audit_rule_match(n->osid, f->type,
792 f->op, f->lsm_rule,
793 ctx)) {
794 ++result;
795 break;
796 }
797 }
798 }
799 /* Find ipc objects that match */
800 if (!ctx || ctx->type != AUDIT_IPC)
801 break;
802 if (security_audit_rule_match(ctx->ipc.osid,
803 f->type, f->op,
804 f->lsm_rule, ctx))
805 ++result;
806 }
807 break;
808 case AUDIT_ARG0:
809 case AUDIT_ARG1:
810 case AUDIT_ARG2:
811 case AUDIT_ARG3:
812 if (ctx)
813 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
814 break;
815 case AUDIT_FILTERKEY:
816 /* ignore this field for filtering */
817 result = 1;
818 break;
819 case AUDIT_PERM:
820 result = audit_match_perm(ctx, f->val);
821 break;
822 case AUDIT_FILETYPE:
823 result = audit_match_filetype(ctx, f->val);
824 break;
825 case AUDIT_FIELD_COMPARE:
826 result = audit_field_compare(tsk, cred, f, ctx, name);
827 break;
828 }
829 if (!result)
830 return 0;
831 }
832
833 if (ctx) {
834 if (rule->prio <= ctx->prio)
835 return 0;
836 if (rule->filterkey) {
837 kfree(ctx->filterkey);
838 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
839 }
840 ctx->prio = rule->prio;
841 }
842 switch (rule->action) {
843 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
844 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
845 }
846 return 1;
847}
848
849/* At process creation time, we can determine if system-call auditing is
850 * completely disabled for this task. Since we only have the task
851 * structure at this point, we can only check uid and gid.
852 */
853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
854{
855 struct audit_entry *e;
856 enum audit_state state;
857
858 rcu_read_lock();
859 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
860 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
861 &state, true)) {
862 if (state == AUDIT_RECORD_CONTEXT)
863 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
864 rcu_read_unlock();
865 return state;
866 }
867 }
868 rcu_read_unlock();
869 return AUDIT_BUILD_CONTEXT;
870}
871
872/* At syscall entry and exit time, this filter is called if the
873 * audit_state is not low enough that auditing cannot take place, but is
874 * also not high enough that we already know we have to write an audit
875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
876 */
877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
878 struct audit_context *ctx,
879 struct list_head *list)
880{
881 struct audit_entry *e;
882 enum audit_state state;
883
884 if (audit_pid && tsk->tgid == audit_pid)
885 return AUDIT_DISABLED;
886
887 rcu_read_lock();
888 if (!list_empty(list)) {
889 int word = AUDIT_WORD(ctx->major);
890 int bit = AUDIT_BIT(ctx->major);
891
892 list_for_each_entry_rcu(e, list, list) {
893 if ((e->rule.mask[word] & bit) == bit &&
894 audit_filter_rules(tsk, &e->rule, ctx, NULL,
895 &state, false)) {
896 rcu_read_unlock();
897 ctx->current_state = state;
898 return state;
899 }
900 }
901 }
902 rcu_read_unlock();
903 return AUDIT_BUILD_CONTEXT;
904}
905
906/*
907 * Given an audit_name check the inode hash table to see if they match.
908 * Called holding the rcu read lock to protect the use of audit_inode_hash
909 */
910static int audit_filter_inode_name(struct task_struct *tsk,
911 struct audit_names *n,
912 struct audit_context *ctx) {
913 int word, bit;
914 int h = audit_hash_ino((u32)n->ino);
915 struct list_head *list = &audit_inode_hash[h];
916 struct audit_entry *e;
917 enum audit_state state;
918
919 word = AUDIT_WORD(ctx->major);
920 bit = AUDIT_BIT(ctx->major);
921
922 if (list_empty(list))
923 return 0;
924
925 list_for_each_entry_rcu(e, list, list) {
926 if ((e->rule.mask[word] & bit) == bit &&
927 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
928 ctx->current_state = state;
929 return 1;
930 }
931 }
932
933 return 0;
934}
935
936/* At syscall exit time, this filter is called if any audit_names have been
937 * collected during syscall processing. We only check rules in sublists at hash
938 * buckets applicable to the inode numbers in audit_names.
939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
940 */
941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
942{
943 struct audit_names *n;
944
945 if (audit_pid && tsk->tgid == audit_pid)
946 return;
947
948 rcu_read_lock();
949
950 list_for_each_entry(n, &ctx->names_list, list) {
951 if (audit_filter_inode_name(tsk, n, ctx))
952 break;
953 }
954 rcu_read_unlock();
955}
956
957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
958 int return_valid,
959 long return_code)
960{
961 struct audit_context *context = tsk->audit_context;
962
963 if (!context)
964 return NULL;
965 context->return_valid = return_valid;
966
967 /*
968 * we need to fix up the return code in the audit logs if the actual
969 * return codes are later going to be fixed up by the arch specific
970 * signal handlers
971 *
972 * This is actually a test for:
973 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
974 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
975 *
976 * but is faster than a bunch of ||
977 */
978 if (unlikely(return_code <= -ERESTARTSYS) &&
979 (return_code >= -ERESTART_RESTARTBLOCK) &&
980 (return_code != -ENOIOCTLCMD))
981 context->return_code = -EINTR;
982 else
983 context->return_code = return_code;
984
985 if (context->in_syscall && !context->dummy) {
986 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
987 audit_filter_inodes(tsk, context);
988 }
989
990 tsk->audit_context = NULL;
991 return context;
992}
993
994static inline void audit_free_names(struct audit_context *context)
995{
996 struct audit_names *n, *next;
997
998#if AUDIT_DEBUG == 2
999 if (context->put_count + context->ino_count != context->name_count) {
1000 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001 " name_count=%d put_count=%d"
1002 " ino_count=%d [NOT freeing]\n",
1003 __FILE__, __LINE__,
1004 context->serial, context->major, context->in_syscall,
1005 context->name_count, context->put_count,
1006 context->ino_count);
1007 list_for_each_entry(n, &context->names_list, list) {
1008 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009 n->name, n->name ?: "(null)");
1010 }
1011 dump_stack();
1012 return;
1013 }
1014#endif
1015#if AUDIT_DEBUG
1016 context->put_count = 0;
1017 context->ino_count = 0;
1018#endif
1019
1020 list_for_each_entry_safe(n, next, &context->names_list, list) {
1021 list_del(&n->list);
1022 if (n->name && n->name_put)
1023 __putname(n->name);
1024 if (n->should_free)
1025 kfree(n);
1026 }
1027 context->name_count = 0;
1028 path_put(&context->pwd);
1029 context->pwd.dentry = NULL;
1030 context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035 struct audit_aux_data *aux;
1036
1037 while ((aux = context->aux)) {
1038 context->aux = aux->next;
1039 kfree(aux);
1040 }
1041 while ((aux = context->aux_pids)) {
1042 context->aux_pids = aux->next;
1043 kfree(aux);
1044 }
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048 enum audit_state state)
1049{
1050 memset(context, 0, sizeof(*context));
1051 context->state = state;
1052 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057 struct audit_context *context;
1058
1059 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060 return NULL;
1061 audit_zero_context(context, state);
1062 INIT_LIST_HEAD(&context->killed_trees);
1063 INIT_LIST_HEAD(&context->names_list);
1064 return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary. Doing so turns on system call auditing for the
1073 * specified task. This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078 struct audit_context *context;
1079 enum audit_state state;
1080 char *key = NULL;
1081
1082 if (likely(!audit_ever_enabled))
1083 return 0; /* Return if not auditing. */
1084
1085 state = audit_filter_task(tsk, &key);
1086 if (state == AUDIT_DISABLED)
1087 return 0;
1088
1089 if (!(context = audit_alloc_context(state))) {
1090 kfree(key);
1091 audit_log_lost("out of memory in audit_alloc");
1092 return -ENOMEM;
1093 }
1094 context->filterkey = key;
1095
1096 tsk->audit_context = context;
1097 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098 return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103 struct audit_context *previous;
1104 int count = 0;
1105
1106 do {
1107 previous = context->previous;
1108 if (previous || (count && count < 10)) {
1109 ++count;
1110 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111 " freeing multiple contexts (%d)\n",
1112 context->serial, context->major,
1113 context->name_count, count);
1114 }
1115 audit_free_names(context);
1116 unroll_tree_refs(context, NULL, 0);
1117 free_tree_refs(context);
1118 audit_free_aux(context);
1119 kfree(context->filterkey);
1120 kfree(context->sockaddr);
1121 kfree(context);
1122 context = previous;
1123 } while (context);
1124 if (count >= 10)
1125 printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130 char *ctx = NULL;
1131 unsigned len;
1132 int error;
1133 u32 sid;
1134
1135 security_task_getsecid(current, &sid);
1136 if (!sid)
1137 return;
1138
1139 error = security_secid_to_secctx(sid, &ctx, &len);
1140 if (error) {
1141 if (error != -EINVAL)
1142 goto error_path;
1143 return;
1144 }
1145
1146 audit_log_format(ab, " subj=%s", ctx);
1147 security_release_secctx(ctx, len);
1148 return;
1149
1150error_path:
1151 audit_panic("error in audit_log_task_context");
1152 return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159 char name[sizeof(tsk->comm)];
1160 struct mm_struct *mm = tsk->mm;
1161 struct vm_area_struct *vma;
1162
1163 /* tsk == current */
1164
1165 get_task_comm(name, tsk);
1166 audit_log_format(ab, " comm=");
1167 audit_log_untrustedstring(ab, name);
1168
1169 if (mm) {
1170 down_read(&mm->mmap_sem);
1171 vma = mm->mmap;
1172 while (vma) {
1173 if ((vma->vm_flags & VM_EXECUTABLE) &&
1174 vma->vm_file) {
1175 audit_log_d_path(ab, " exe=",
1176 &vma->vm_file->f_path);
1177 break;
1178 }
1179 vma = vma->vm_next;
1180 }
1181 up_read(&mm->mmap_sem);
1182 }
1183 audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187 uid_t auid, uid_t uid, unsigned int sessionid,
1188 u32 sid, char *comm)
1189{
1190 struct audit_buffer *ab;
1191 char *ctx = NULL;
1192 u32 len;
1193 int rc = 0;
1194
1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196 if (!ab)
1197 return rc;
1198
1199 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200 uid, sessionid);
1201 if (security_secid_to_secctx(sid, &ctx, &len)) {
1202 audit_log_format(ab, " obj=(none)");
1203 rc = 1;
1204 } else {
1205 audit_log_format(ab, " obj=%s", ctx);
1206 security_release_secctx(ctx, len);
1207 }
1208 audit_log_format(ab, " ocomm=");
1209 audit_log_untrustedstring(ab, comm);
1210 audit_log_end(ab);
1211
1212 return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates. We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf? an int is up to 12 digits long. if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message. In one 7500 byte message we can log up to
1223 * about 1000 min size arguments. That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227 struct audit_buffer **ab,
1228 int arg_num,
1229 size_t *len_sent,
1230 const char __user *p,
1231 char *buf)
1232{
1233 char arg_num_len_buf[12];
1234 const char __user *tmp_p = p;
1235 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1236 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237 size_t len, len_left, to_send;
1238 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239 unsigned int i, has_cntl = 0, too_long = 0;
1240 int ret;
1241
1242 /* strnlen_user includes the null we don't want to send */
1243 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1244
1245 /*
1246 * We just created this mm, if we can't find the strings
1247 * we just copied into it something is _very_ wrong. Similar
1248 * for strings that are too long, we should not have created
1249 * any.
1250 */
1251 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252 WARN_ON(1);
1253 send_sig(SIGKILL, current, 0);
1254 return -1;
1255 }
1256
1257 /* walk the whole argument looking for non-ascii chars */
1258 do {
1259 if (len_left > MAX_EXECVE_AUDIT_LEN)
1260 to_send = MAX_EXECVE_AUDIT_LEN;
1261 else
1262 to_send = len_left;
1263 ret = copy_from_user(buf, tmp_p, to_send);
1264 /*
1265 * There is no reason for this copy to be short. We just
1266 * copied them here, and the mm hasn't been exposed to user-
1267 * space yet.
1268 */
1269 if (ret) {
1270 WARN_ON(1);
1271 send_sig(SIGKILL, current, 0);
1272 return -1;
1273 }
1274 buf[to_send] = '\0';
1275 has_cntl = audit_string_contains_control(buf, to_send);
1276 if (has_cntl) {
1277 /*
1278 * hex messages get logged as 2 bytes, so we can only
1279 * send half as much in each message
1280 */
1281 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282 break;
1283 }
1284 len_left -= to_send;
1285 tmp_p += to_send;
1286 } while (len_left > 0);
1287
1288 len_left = len;
1289
1290 if (len > max_execve_audit_len)
1291 too_long = 1;
1292
1293 /* rewalk the argument actually logging the message */
1294 for (i = 0; len_left > 0; i++) {
1295 int room_left;
1296
1297 if (len_left > max_execve_audit_len)
1298 to_send = max_execve_audit_len;
1299 else
1300 to_send = len_left;
1301
1302 /* do we have space left to send this argument in this ab? */
1303 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304 if (has_cntl)
1305 room_left -= (to_send * 2);
1306 else
1307 room_left -= to_send;
1308 if (room_left < 0) {
1309 *len_sent = 0;
1310 audit_log_end(*ab);
1311 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312 if (!*ab)
1313 return 0;
1314 }
1315
1316 /*
1317 * first record needs to say how long the original string was
1318 * so we can be sure nothing was lost.
1319 */
1320 if ((i == 0) && (too_long))
1321 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322 has_cntl ? 2*len : len);
1323
1324 /*
1325 * normally arguments are small enough to fit and we already
1326 * filled buf above when we checked for control characters
1327 * so don't bother with another copy_from_user
1328 */
1329 if (len >= max_execve_audit_len)
1330 ret = copy_from_user(buf, p, to_send);
1331 else
1332 ret = 0;
1333 if (ret) {
1334 WARN_ON(1);
1335 send_sig(SIGKILL, current, 0);
1336 return -1;
1337 }
1338 buf[to_send] = '\0';
1339
1340 /* actually log it */
1341 audit_log_format(*ab, " a%d", arg_num);
1342 if (too_long)
1343 audit_log_format(*ab, "[%d]", i);
1344 audit_log_format(*ab, "=");
1345 if (has_cntl)
1346 audit_log_n_hex(*ab, buf, to_send);
1347 else
1348 audit_log_string(*ab, buf);
1349
1350 p += to_send;
1351 len_left -= to_send;
1352 *len_sent += arg_num_len;
1353 if (has_cntl)
1354 *len_sent += to_send * 2;
1355 else
1356 *len_sent += to_send;
1357 }
1358 /* include the null we didn't log */
1359 return len + 1;
1360}
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363 struct audit_buffer **ab,
1364 struct audit_aux_data_execve *axi)
1365{
1366 int i, len;
1367 size_t len_sent = 0;
1368 const char __user *p;
1369 char *buf;
1370
1371 if (axi->mm != current->mm)
1372 return; /* execve failed, no additional info */
1373
1374 p = (const char __user *)axi->mm->arg_start;
1375
1376 audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378 /*
1379 * we need some kernel buffer to hold the userspace args. Just
1380 * allocate one big one rather than allocating one of the right size
1381 * for every single argument inside audit_log_single_execve_arg()
1382 * should be <8k allocation so should be pretty safe.
1383 */
1384 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385 if (!buf) {
1386 audit_panic("out of memory for argv string\n");
1387 return;
1388 }
1389
1390 for (i = 0; i < axi->argc; i++) {
1391 len = audit_log_single_execve_arg(context, ab, i,
1392 &len_sent, p, buf);
1393 if (len <= 0)
1394 break;
1395 p += len;
1396 }
1397 kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401{
1402 int i;
1403
1404 audit_log_format(ab, " %s=", prefix);
1405 CAP_FOR_EACH_U32(i) {
1406 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407 }
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412 kernel_cap_t *perm = &name->fcap.permitted;
1413 kernel_cap_t *inh = &name->fcap.inheritable;
1414 int log = 0;
1415
1416 if (!cap_isclear(*perm)) {
1417 audit_log_cap(ab, "cap_fp", perm);
1418 log = 1;
1419 }
1420 if (!cap_isclear(*inh)) {
1421 audit_log_cap(ab, "cap_fi", inh);
1422 log = 1;
1423 }
1424
1425 if (log)
1426 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431 struct audit_buffer *ab;
1432 int i;
1433
1434 ab = audit_log_start(context, GFP_KERNEL, context->type);
1435 if (!ab)
1436 return;
1437
1438 switch (context->type) {
1439 case AUDIT_SOCKETCALL: {
1440 int nargs = context->socketcall.nargs;
1441 audit_log_format(ab, "nargs=%d", nargs);
1442 for (i = 0; i < nargs; i++)
1443 audit_log_format(ab, " a%d=%lx", i,
1444 context->socketcall.args[i]);
1445 break; }
1446 case AUDIT_IPC: {
1447 u32 osid = context->ipc.osid;
1448
1449 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451 if (osid) {
1452 char *ctx = NULL;
1453 u32 len;
1454 if (security_secid_to_secctx(osid, &ctx, &len)) {
1455 audit_log_format(ab, " osid=%u", osid);
1456 *call_panic = 1;
1457 } else {
1458 audit_log_format(ab, " obj=%s", ctx);
1459 security_release_secctx(ctx, len);
1460 }
1461 }
1462 if (context->ipc.has_perm) {
1463 audit_log_end(ab);
1464 ab = audit_log_start(context, GFP_KERNEL,
1465 AUDIT_IPC_SET_PERM);
1466 audit_log_format(ab,
1467 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468 context->ipc.qbytes,
1469 context->ipc.perm_uid,
1470 context->ipc.perm_gid,
1471 context->ipc.perm_mode);
1472 if (!ab)
1473 return;
1474 }
1475 break; }
1476 case AUDIT_MQ_OPEN: {
1477 audit_log_format(ab,
1478 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479 "mq_msgsize=%ld mq_curmsgs=%ld",
1480 context->mq_open.oflag, context->mq_open.mode,
1481 context->mq_open.attr.mq_flags,
1482 context->mq_open.attr.mq_maxmsg,
1483 context->mq_open.attr.mq_msgsize,
1484 context->mq_open.attr.mq_curmsgs);
1485 break; }
1486 case AUDIT_MQ_SENDRECV: {
1487 audit_log_format(ab,
1488 "mqdes=%d msg_len=%zd msg_prio=%u "
1489 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490 context->mq_sendrecv.mqdes,
1491 context->mq_sendrecv.msg_len,
1492 context->mq_sendrecv.msg_prio,
1493 context->mq_sendrecv.abs_timeout.tv_sec,
1494 context->mq_sendrecv.abs_timeout.tv_nsec);
1495 break; }
1496 case AUDIT_MQ_NOTIFY: {
1497 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498 context->mq_notify.mqdes,
1499 context->mq_notify.sigev_signo);
1500 break; }
1501 case AUDIT_MQ_GETSETATTR: {
1502 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503 audit_log_format(ab,
1504 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505 "mq_curmsgs=%ld ",
1506 context->mq_getsetattr.mqdes,
1507 attr->mq_flags, attr->mq_maxmsg,
1508 attr->mq_msgsize, attr->mq_curmsgs);
1509 break; }
1510 case AUDIT_CAPSET: {
1511 audit_log_format(ab, "pid=%d", context->capset.pid);
1512 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515 break; }
1516 case AUDIT_MMAP: {
1517 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518 context->mmap.flags);
1519 break; }
1520 }
1521 audit_log_end(ab);
1522}
1523
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525 int record_num, int *call_panic)
1526{
1527 struct audit_buffer *ab;
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529 if (!ab)
1530 return; /* audit_panic has been called */
1531
1532 audit_log_format(ab, "item=%d", record_num);
1533
1534 if (n->name) {
1535 switch (n->name_len) {
1536 case AUDIT_NAME_FULL:
1537 /* log the full path */
1538 audit_log_format(ab, " name=");
1539 audit_log_untrustedstring(ab, n->name);
1540 break;
1541 case 0:
1542 /* name was specified as a relative path and the
1543 * directory component is the cwd */
1544 audit_log_d_path(ab, " name=", &context->pwd);
1545 break;
1546 default:
1547 /* log the name's directory component */
1548 audit_log_format(ab, " name=");
1549 audit_log_n_untrustedstring(ab, n->name,
1550 n->name_len);
1551 }
1552 } else
1553 audit_log_format(ab, " name=(null)");
1554
1555 if (n->ino != (unsigned long)-1) {
1556 audit_log_format(ab, " inode=%lu"
1557 " dev=%02x:%02x mode=%#ho"
1558 " ouid=%u ogid=%u rdev=%02x:%02x",
1559 n->ino,
1560 MAJOR(n->dev),
1561 MINOR(n->dev),
1562 n->mode,
1563 n->uid,
1564 n->gid,
1565 MAJOR(n->rdev),
1566 MINOR(n->rdev));
1567 }
1568 if (n->osid != 0) {
1569 char *ctx = NULL;
1570 u32 len;
1571 if (security_secid_to_secctx(
1572 n->osid, &ctx, &len)) {
1573 audit_log_format(ab, " osid=%u", n->osid);
1574 *call_panic = 2;
1575 } else {
1576 audit_log_format(ab, " obj=%s", ctx);
1577 security_release_secctx(ctx, len);
1578 }
1579 }
1580
1581 audit_log_fcaps(ab, n);
1582
1583 audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587{
1588 const struct cred *cred;
1589 int i, call_panic = 0;
1590 struct audit_buffer *ab;
1591 struct audit_aux_data *aux;
1592 const char *tty;
1593 struct audit_names *n;
1594
1595 /* tsk == current */
1596 context->pid = tsk->pid;
1597 if (!context->ppid)
1598 context->ppid = sys_getppid();
1599 cred = current_cred();
1600 context->uid = cred->uid;
1601 context->gid = cred->gid;
1602 context->euid = cred->euid;
1603 context->suid = cred->suid;
1604 context->fsuid = cred->fsuid;
1605 context->egid = cred->egid;
1606 context->sgid = cred->sgid;
1607 context->fsgid = cred->fsgid;
1608 context->personality = tsk->personality;
1609
1610 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611 if (!ab)
1612 return; /* audit_panic has been called */
1613 audit_log_format(ab, "arch=%x syscall=%d",
1614 context->arch, context->major);
1615 if (context->personality != PER_LINUX)
1616 audit_log_format(ab, " per=%lx", context->personality);
1617 if (context->return_valid)
1618 audit_log_format(ab, " success=%s exit=%ld",
1619 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620 context->return_code);
1621
1622 spin_lock_irq(&tsk->sighand->siglock);
1623 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624 tty = tsk->signal->tty->name;
1625 else
1626 tty = "(none)";
1627 spin_unlock_irq(&tsk->sighand->siglock);
1628
1629 audit_log_format(ab,
1630 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632 " euid=%u suid=%u fsuid=%u"
1633 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634 context->argv[0],
1635 context->argv[1],
1636 context->argv[2],
1637 context->argv[3],
1638 context->name_count,
1639 context->ppid,
1640 context->pid,
1641 tsk->loginuid,
1642 context->uid,
1643 context->gid,
1644 context->euid, context->suid, context->fsuid,
1645 context->egid, context->sgid, context->fsgid, tty,
1646 tsk->sessionid);
1647
1648
1649 audit_log_task_info(ab, tsk);
1650 audit_log_key(ab, context->filterkey);
1651 audit_log_end(ab);
1652
1653 for (aux = context->aux; aux; aux = aux->next) {
1654
1655 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656 if (!ab)
1657 continue; /* audit_panic has been called */
1658
1659 switch (aux->type) {
1660
1661 case AUDIT_EXECVE: {
1662 struct audit_aux_data_execve *axi = (void *)aux;
1663 audit_log_execve_info(context, &ab, axi);
1664 break; }
1665
1666 case AUDIT_BPRM_FCAPS: {
1667 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678 break; }
1679
1680 }
1681 audit_log_end(ab);
1682 }
1683
1684 if (context->type)
1685 show_special(context, &call_panic);
1686
1687 if (context->fds[0] >= 0) {
1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689 if (ab) {
1690 audit_log_format(ab, "fd0=%d fd1=%d",
1691 context->fds[0], context->fds[1]);
1692 audit_log_end(ab);
1693 }
1694 }
1695
1696 if (context->sockaddr_len) {
1697 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698 if (ab) {
1699 audit_log_format(ab, "saddr=");
1700 audit_log_n_hex(ab, (void *)context->sockaddr,
1701 context->sockaddr_len);
1702 audit_log_end(ab);
1703 }
1704 }
1705
1706 for (aux = context->aux_pids; aux; aux = aux->next) {
1707 struct audit_aux_data_pids *axs = (void *)aux;
1708
1709 for (i = 0; i < axs->pid_count; i++)
1710 if (audit_log_pid_context(context, axs->target_pid[i],
1711 axs->target_auid[i],
1712 axs->target_uid[i],
1713 axs->target_sessionid[i],
1714 axs->target_sid[i],
1715 axs->target_comm[i]))
1716 call_panic = 1;
1717 }
1718
1719 if (context->target_pid &&
1720 audit_log_pid_context(context, context->target_pid,
1721 context->target_auid, context->target_uid,
1722 context->target_sessionid,
1723 context->target_sid, context->target_comm))
1724 call_panic = 1;
1725
1726 if (context->pwd.dentry && context->pwd.mnt) {
1727 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728 if (ab) {
1729 audit_log_d_path(ab, " cwd=", &context->pwd);
1730 audit_log_end(ab);
1731 }
1732 }
1733
1734 i = 0;
1735 list_for_each_entry(n, &context->names_list, list)
1736 audit_log_name(context, n, i++, &call_panic);
1737
1738 /* Send end of event record to help user space know we are finished */
1739 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740 if (ab)
1741 audit_log_end(ab);
1742 if (call_panic)
1743 audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754 struct audit_context *context;
1755
1756 context = audit_get_context(tsk, 0, 0);
1757 if (!context)
1758 return;
1759
1760 /* Check for system calls that do not go through the exit
1761 * function (e.g., exit_group), then free context block.
1762 * We use GFP_ATOMIC here because we might be doing this
1763 * in the context of the idle thread */
1764 /* that can happen only if we are called from do_exit() */
1765 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766 audit_log_exit(context, tsk);
1767 if (!list_empty(&context->killed_trees))
1768 audit_kill_trees(&context->killed_trees);
1769
1770 audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry. This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built. If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791 unsigned long a1, unsigned long a2,
1792 unsigned long a3, unsigned long a4)
1793{
1794 struct task_struct *tsk = current;
1795 struct audit_context *context = tsk->audit_context;
1796 enum audit_state state;
1797
1798 if (!context)
1799 return;
1800
1801 /*
1802 * This happens only on certain architectures that make system
1803 * calls in kernel_thread via the entry.S interface, instead of
1804 * with direct calls. (If you are porting to a new
1805 * architecture, hitting this condition can indicate that you
1806 * got the _exit/_leave calls backward in entry.S.)
1807 *
1808 * i386 no
1809 * x86_64 no
1810 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1811 *
1812 * This also happens with vm86 emulation in a non-nested manner
1813 * (entries without exits), so this case must be caught.
1814 */
1815 if (context->in_syscall) {
1816 struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819 printk(KERN_ERR
1820 "audit(:%d) pid=%d in syscall=%d;"
1821 " entering syscall=%d\n",
1822 context->serial, tsk->pid, context->major, major);
1823#endif
1824 newctx = audit_alloc_context(context->state);
1825 if (newctx) {
1826 newctx->previous = context;
1827 context = newctx;
1828 tsk->audit_context = newctx;
1829 } else {
1830 /* If we can't alloc a new context, the best we
1831 * can do is to leak memory (any pending putname
1832 * will be lost). The only other alternative is
1833 * to abandon auditing. */
1834 audit_zero_context(context, context->state);
1835 }
1836 }
1837 BUG_ON(context->in_syscall || context->name_count);
1838
1839 if (!audit_enabled)
1840 return;
1841
1842 context->arch = arch;
1843 context->major = major;
1844 context->argv[0] = a1;
1845 context->argv[1] = a2;
1846 context->argv[2] = a3;
1847 context->argv[3] = a4;
1848
1849 state = context->state;
1850 context->dummy = !audit_n_rules;
1851 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852 context->prio = 0;
1853 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854 }
1855 if (state == AUDIT_DISABLED)
1856 return;
1857
1858 context->serial = 0;
1859 context->ctime = CURRENT_TIME;
1860 context->in_syscall = 1;
1861 context->current_state = state;
1862 context->ppid = 0;
1863}
1864
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call. If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information. In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878 struct task_struct *tsk = current;
1879 struct audit_context *context;
1880
1881 if (success)
1882 success = AUDITSC_SUCCESS;
1883 else
1884 success = AUDITSC_FAILURE;
1885
1886 context = audit_get_context(tsk, success, return_code);
1887 if (!context)
1888 return;
1889
1890 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891 audit_log_exit(context, tsk);
1892
1893 context->in_syscall = 0;
1894 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896 if (!list_empty(&context->killed_trees))
1897 audit_kill_trees(&context->killed_trees);
1898
1899 if (context->previous) {
1900 struct audit_context *new_context = context->previous;
1901 context->previous = NULL;
1902 audit_free_context(context);
1903 tsk->audit_context = new_context;
1904 } else {
1905 audit_free_names(context);
1906 unroll_tree_refs(context, NULL, 0);
1907 audit_free_aux(context);
1908 context->aux = NULL;
1909 context->aux_pids = NULL;
1910 context->target_pid = 0;
1911 context->target_sid = 0;
1912 context->sockaddr_len = 0;
1913 context->type = 0;
1914 context->fds[0] = -1;
1915 if (context->state != AUDIT_RECORD_CONTEXT) {
1916 kfree(context->filterkey);
1917 context->filterkey = NULL;
1918 }
1919 tsk->audit_context = context;
1920 }
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926 struct audit_context *context;
1927 struct audit_tree_refs *p;
1928 struct audit_chunk *chunk;
1929 int count;
1930 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931 return;
1932 context = current->audit_context;
1933 p = context->trees;
1934 count = context->tree_count;
1935 rcu_read_lock();
1936 chunk = audit_tree_lookup(inode);
1937 rcu_read_unlock();
1938 if (!chunk)
1939 return;
1940 if (likely(put_tree_ref(context, chunk)))
1941 return;
1942 if (unlikely(!grow_tree_refs(context))) {
1943 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944 audit_set_auditable(context);
1945 audit_put_chunk(chunk);
1946 unroll_tree_refs(context, p, count);
1947 return;
1948 }
1949 put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956 struct audit_context *context;
1957 struct audit_tree_refs *p;
1958 const struct dentry *d, *parent;
1959 struct audit_chunk *drop;
1960 unsigned long seq;
1961 int count;
1962
1963 context = current->audit_context;
1964 p = context->trees;
1965 count = context->tree_count;
1966retry:
1967 drop = NULL;
1968 d = dentry;
1969 rcu_read_lock();
1970 seq = read_seqbegin(&rename_lock);
1971 for(;;) {
1972 struct inode *inode = d->d_inode;
1973 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974 struct audit_chunk *chunk;
1975 chunk = audit_tree_lookup(inode);
1976 if (chunk) {
1977 if (unlikely(!put_tree_ref(context, chunk))) {
1978 drop = chunk;
1979 break;
1980 }
1981 }
1982 }
1983 parent = d->d_parent;
1984 if (parent == d)
1985 break;
1986 d = parent;
1987 }
1988 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1989 rcu_read_unlock();
1990 if (!drop) {
1991 /* just a race with rename */
1992 unroll_tree_refs(context, p, count);
1993 goto retry;
1994 }
1995 audit_put_chunk(drop);
1996 if (grow_tree_refs(context)) {
1997 /* OK, got more space */
1998 unroll_tree_refs(context, p, count);
1999 goto retry;
2000 }
2001 /* too bad */
2002 printk(KERN_WARNING
2003 "out of memory, audit has lost a tree reference\n");
2004 unroll_tree_refs(context, p, count);
2005 audit_set_auditable(context);
2006 return;
2007 }
2008 rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
2013{
2014 struct audit_names *aname;
2015
2016 if (context->name_count < AUDIT_NAMES) {
2017 aname = &context->preallocated_names[context->name_count];
2018 memset(aname, 0, sizeof(*aname));
2019 } else {
2020 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021 if (!aname)
2022 return NULL;
2023 aname->should_free = true;
2024 }
2025
2026 aname->ino = (unsigned long)-1;
2027 list_add_tail(&aname->list, &context->names_list);
2028
2029 context->name_count++;
2030#if AUDIT_DEBUG
2031 context->ino_count++;
2032#endif
2033 return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045 struct audit_context *context = current->audit_context;
2046 struct audit_names *n;
2047
2048 if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051 __FILE__, __LINE__, context->serial, name);
2052 dump_stack();
2053#endif
2054 return;
2055 }
2056
2057 n = audit_alloc_name(context);
2058 if (!n)
2059 return;
2060
2061 n->name = name;
2062 n->name_len = AUDIT_NAME_FULL;
2063 n->name_put = true;
2064
2065 if (!context->pwd.dentry)
2066 get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078 struct audit_context *context = current->audit_context;
2079
2080 BUG_ON(!context);
2081 if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084 __FILE__, __LINE__, context->serial, name);
2085 if (context->name_count) {
2086 struct audit_names *n;
2087 int i;
2088
2089 list_for_each_entry(n, &context->names_list, list)
2090 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091 n->name, n->name ?: "(null)");
2092 }
2093#endif
2094 __putname(name);
2095 }
2096#if AUDIT_DEBUG
2097 else {
2098 ++context->put_count;
2099 if (context->put_count > context->name_count) {
2100 printk(KERN_ERR "%s:%d(:%d): major=%d"
2101 " in_syscall=%d putname(%p) name_count=%d"
2102 " put_count=%d\n",
2103 __FILE__, __LINE__,
2104 context->serial, context->major,
2105 context->in_syscall, name, context->name_count,
2106 context->put_count);
2107 dump_stack();
2108 }
2109 }
2110#endif
2111}
2112
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115 struct cpu_vfs_cap_data caps;
2116 int rc;
2117
2118 if (!dentry)
2119 return 0;
2120
2121 rc = get_vfs_caps_from_disk(dentry, &caps);
2122 if (rc)
2123 return rc;
2124
2125 name->fcap.permitted = caps.permitted;
2126 name->fcap.inheritable = caps.inheritable;
2127 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129
2130 return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136 const struct inode *inode)
2137{
2138 name->ino = inode->i_ino;
2139 name->dev = inode->i_sb->s_dev;
2140 name->mode = inode->i_mode;
2141 name->uid = inode->i_uid;
2142 name->gid = inode->i_gid;
2143 name->rdev = inode->i_rdev;
2144 security_inode_getsecid(inode, &name->osid);
2145 audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
2156{
2157 struct audit_context *context = current->audit_context;
2158 const struct inode *inode = dentry->d_inode;
2159 struct audit_names *n;
2160
2161 if (!context->in_syscall)
2162 return;
2163
2164 list_for_each_entry_reverse(n, &context->names_list, list) {
2165 if (n->name && (n->name == name))
2166 goto out;
2167 }
2168
2169 /* unable to find the name from a previous getname() */
2170 n = audit_alloc_name(context);
2171 if (!n)
2172 return;
2173out:
2174 handle_path(dentry);
2175 audit_copy_inode(n, dentry, inode);
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created. Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192 const struct inode *parent)
2193{
2194 struct audit_context *context = current->audit_context;
2195 const char *found_parent = NULL, *found_child = NULL;
2196 const struct inode *inode = dentry->d_inode;
2197 const char *dname = dentry->d_name.name;
2198 struct audit_names *n;
2199 int dirlen = 0;
2200
2201 if (!context->in_syscall)
2202 return;
2203
2204 if (inode)
2205 handle_one(inode);
2206
2207 /* parent is more likely, look for it first */
2208 list_for_each_entry(n, &context->names_list, list) {
2209 if (!n->name)
2210 continue;
2211
2212 if (n->ino == parent->i_ino &&
2213 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214 n->name_len = dirlen; /* update parent data in place */
2215 found_parent = n->name;
2216 goto add_names;
2217 }
2218 }
2219
2220 /* no matching parent, look for matching child */
2221 list_for_each_entry(n, &context->names_list, list) {
2222 if (!n->name)
2223 continue;
2224
2225 /* strcmp() is the more likely scenario */
2226 if (!strcmp(dname, n->name) ||
2227 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228 if (inode)
2229 audit_copy_inode(n, NULL, inode);
2230 else
2231 n->ino = (unsigned long)-1;
2232 found_child = n->name;
2233 goto add_names;
2234 }
2235 }
2236
2237add_names:
2238 if (!found_parent) {
2239 n = audit_alloc_name(context);
2240 if (!n)
2241 return;
2242 audit_copy_inode(n, NULL, parent);
2243 }
2244
2245 if (!found_child) {
2246 n = audit_alloc_name(context);
2247 if (!n)
2248 return;
2249
2250 /* Re-use the name belonging to the slot for a matching parent
2251 * directory. All names for this context are relinquished in
2252 * audit_free_names() */
2253 if (found_parent) {
2254 n->name = found_parent;
2255 n->name_len = AUDIT_NAME_FULL;
2256 /* don't call __putname() */
2257 n->name_put = false;
2258 }
2259
2260 if (inode)
2261 audit_copy_inode(n, NULL, inode);
2262 }
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275 struct timespec *t, unsigned int *serial)
2276{
2277 if (!ctx->in_syscall)
2278 return 0;
2279 if (!ctx->serial)
2280 ctx->serial = audit_serial();
2281 t->tv_sec = ctx->ctime.tv_sec;
2282 t->tv_nsec = ctx->ctime.tv_nsec;
2283 *serial = ctx->serial;
2284 if (!ctx->prio) {
2285 ctx->prio = 1;
2286 ctx->current_state = AUDIT_RECORD_CONTEXT;
2287 }
2288 return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304 struct task_struct *task = current;
2305 struct audit_context *context = task->audit_context;
2306 unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309 if (task->loginuid != -1)
2310 return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312 if (!capable(CAP_AUDIT_CONTROL))
2313 return -EPERM;
2314#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316 sessionid = atomic_inc_return(&session_id);
2317 if (context && context->in_syscall) {
2318 struct audit_buffer *ab;
2319
2320 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321 if (ab) {
2322 audit_log_format(ab, "login pid=%d uid=%u "
2323 "old auid=%u new auid=%u"
2324 " old ses=%u new ses=%u",
2325 task->pid, task_uid(task),
2326 task->loginuid, loginuid,
2327 task->sessionid, sessionid);
2328 audit_log_end(ab);
2329 }
2330 }
2331 task->sessionid = sessionid;
2332 task->loginuid = loginuid;
2333 return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345 struct audit_context *context = current->audit_context;
2346
2347 if (attr)
2348 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349 else
2350 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352 context->mq_open.oflag = oflag;
2353 context->mq_open.mode = mode;
2354
2355 context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367 const struct timespec *abs_timeout)
2368{
2369 struct audit_context *context = current->audit_context;
2370 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372 if (abs_timeout)
2373 memcpy(p, abs_timeout, sizeof(struct timespec));
2374 else
2375 memset(p, 0, sizeof(struct timespec));
2376
2377 context->mq_sendrecv.mqdes = mqdes;
2378 context->mq_sendrecv.msg_len = msg_len;
2379 context->mq_sendrecv.msg_prio = msg_prio;
2380
2381 context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393 struct audit_context *context = current->audit_context;
2394
2395 if (notification)
2396 context->mq_notify.sigev_signo = notification->sigev_signo;
2397 else
2398 context->mq_notify.sigev_signo = 0;
2399
2400 context->mq_notify.mqdes = mqdes;
2401 context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412 struct audit_context *context = current->audit_context;
2413 context->mq_getsetattr.mqdes = mqdes;
2414 context->mq_getsetattr.mqstat = *mqstat;
2415 context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425 struct audit_context *context = current->audit_context;
2426 context->ipc.uid = ipcp->uid;
2427 context->ipc.gid = ipcp->gid;
2428 context->ipc.mode = ipcp->mode;
2429 context->ipc.has_perm = 0;
2430 security_ipc_getsecid(ipcp, &context->ipc.osid);
2431 context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445 struct audit_context *context = current->audit_context;
2446
2447 context->ipc.qbytes = qbytes;
2448 context->ipc.perm_uid = uid;
2449 context->ipc.perm_gid = gid;
2450 context->ipc.perm_mode = mode;
2451 context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456 struct audit_aux_data_execve *ax;
2457 struct audit_context *context = current->audit_context;
2458
2459 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460 if (!ax)
2461 return -ENOMEM;
2462
2463 ax->argc = bprm->argc;
2464 ax->envc = bprm->envc;
2465 ax->mm = bprm->mm;
2466 ax->d.type = AUDIT_EXECVE;
2467 ax->d.next = context->aux;
2468 context->aux = (void *)ax;
2469 return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481 struct audit_context *context = current->audit_context;
2482
2483 context->type = AUDIT_SOCKETCALL;
2484 context->socketcall.nargs = nargs;
2485 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->fds[0] = fd1;
2498 context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510 struct audit_context *context = current->audit_context;
2511
2512 if (!context->sockaddr) {
2513 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514 if (!p)
2515 return -ENOMEM;
2516 context->sockaddr = p;
2517 }
2518
2519 context->sockaddr_len = len;
2520 memcpy(context->sockaddr, a, len);
2521 return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526 struct audit_context *context = current->audit_context;
2527
2528 context->target_pid = t->pid;
2529 context->target_auid = audit_get_loginuid(t);
2530 context->target_uid = task_uid(t);
2531 context->target_sessionid = audit_get_sessionid(t);
2532 security_task_getsecid(t, &context->target_sid);
2533 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546 struct audit_aux_data_pids *axp;
2547 struct task_struct *tsk = current;
2548 struct audit_context *ctx = tsk->audit_context;
2549 uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551 if (audit_pid && t->tgid == audit_pid) {
2552 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553 audit_sig_pid = tsk->pid;
2554 if (tsk->loginuid != -1)
2555 audit_sig_uid = tsk->loginuid;
2556 else
2557 audit_sig_uid = uid;
2558 security_task_getsecid(tsk, &audit_sig_sid);
2559 }
2560 if (!audit_signals || audit_dummy_context())
2561 return 0;
2562 }
2563
2564 /* optimize the common case by putting first signal recipient directly
2565 * in audit_context */
2566 if (!ctx->target_pid) {
2567 ctx->target_pid = t->tgid;
2568 ctx->target_auid = audit_get_loginuid(t);
2569 ctx->target_uid = t_uid;
2570 ctx->target_sessionid = audit_get_sessionid(t);
2571 security_task_getsecid(t, &ctx->target_sid);
2572 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573 return 0;
2574 }
2575
2576 axp = (void *)ctx->aux_pids;
2577 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579 if (!axp)
2580 return -ENOMEM;
2581
2582 axp->d.type = AUDIT_OBJ_PID;
2583 axp->d.next = ctx->aux_pids;
2584 ctx->aux_pids = (void *)axp;
2585 }
2586 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588 axp->target_pid[axp->pid_count] = t->tgid;
2589 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590 axp->target_uid[axp->pid_count] = t_uid;
2591 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594 axp->pid_count++;
2595
2596 return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611 const struct cred *new, const struct cred *old)
2612{
2613 struct audit_aux_data_bprm_fcaps *ax;
2614 struct audit_context *context = current->audit_context;
2615 struct cpu_vfs_cap_data vcaps;
2616 struct dentry *dentry;
2617
2618 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619 if (!ax)
2620 return -ENOMEM;
2621
2622 ax->d.type = AUDIT_BPRM_FCAPS;
2623 ax->d.next = context->aux;
2624 context->aux = (void *)ax;
2625
2626 dentry = dget(bprm->file->f_dentry);
2627 get_vfs_caps_from_disk(dentry, &vcaps);
2628 dput(dentry);
2629
2630 ax->fcap.permitted = vcaps.permitted;
2631 ax->fcap.inheritable = vcaps.inheritable;
2632 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635 ax->old_pcap.permitted = old->cap_permitted;
2636 ax->old_pcap.inheritable = old->cap_inheritable;
2637 ax->old_pcap.effective = old->cap_effective;
2638
2639 ax->new_pcap.permitted = new->cap_permitted;
2640 ax->new_pcap.inheritable = new->cap_inheritable;
2641 ax->new_pcap.effective = new->cap_effective;
2642 return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655 const struct cred *new, const struct cred *old)
2656{
2657 struct audit_context *context = current->audit_context;
2658 context->capset.pid = pid;
2659 context->capset.cap.effective = new->cap_effective;
2660 context->capset.cap.inheritable = new->cap_effective;
2661 context->capset.cap.permitted = new->cap_permitted;
2662 context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667 struct audit_context *context = current->audit_context;
2668 context->mmap.fd = fd;
2669 context->mmap.flags = flags;
2670 context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674{
2675 uid_t auid, uid;
2676 gid_t gid;
2677 unsigned int sessionid;
2678
2679 auid = audit_get_loginuid(current);
2680 sessionid = audit_get_sessionid(current);
2681 current_uid_gid(&uid, &gid);
2682
2683 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684 auid, uid, gid, sessionid);
2685 audit_log_task_context(ab);
2686 audit_log_format(ab, " pid=%d comm=", current->pid);
2687 audit_log_untrustedstring(ab, current->comm);
2688 audit_log_format(ab, " reason=");
2689 audit_log_string(ab, reason);
2690 audit_log_format(ab, " sig=%ld", signr);
2691}
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701 struct audit_buffer *ab;
2702
2703 if (!audit_enabled)
2704 return;
2705
2706 if (signr == SIGQUIT) /* don't care for those */
2707 return;
2708
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "memory violation", signr);
2711 audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
2715{
2716 struct audit_buffer *ab;
2717
2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 audit_log_abend(ab, "seccomp", signr);
2720 audit_log_format(ab, " syscall=%ld", syscall);
2721 audit_log_format(ab, " compat=%d", is_compat_task());
2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 audit_log_format(ab, " code=0x%x", code);
2724 audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729 struct audit_context *ctx = current->audit_context;
2730 if (likely(!ctx || !ctx->in_syscall))
2731 return NULL;
2732 return &ctx->killed_trees;
2733}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <linux/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
192
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
199
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
203
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
244 struct {
245 int fd;
246 int flags;
247 } mmap;
248 };
249 int fds[2];
250
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
267 unsigned n;
268 if (unlikely(!ctx))
269 return 0;
270 n = ctx->major;
271
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
312
313 if (unlikely(!ctx))
314 return 0;
315
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static void audit_set_auditable(struct audit_context *ctx)
337{
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 }
342}
343
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
352 }
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
361 }
362 return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
372 }
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
395 }
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 }
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
406 }
407 ctx->trees = p;
408 ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
418 }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
433 }
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
439 }
440#endif
441 return 0;
442}
443
444/* Determine if any context name data matches a rule's watch data */
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise.
447 *
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
451 */
452static int audit_filter_rules(struct task_struct *tsk,
453 struct audit_krule *rule,
454 struct audit_context *ctx,
455 struct audit_names *name,
456 enum audit_state *state,
457 bool task_creation)
458{
459 const struct cred *cred;
460 int i, j, need_sid = 1;
461 u32 sid;
462
463 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
465 for (i = 0; i < rule->field_count; i++) {
466 struct audit_field *f = &rule->fields[i];
467 int result = 0;
468
469 switch (f->type) {
470 case AUDIT_PID:
471 result = audit_comparator(tsk->pid, f->op, f->val);
472 break;
473 case AUDIT_PPID:
474 if (ctx) {
475 if (!ctx->ppid)
476 ctx->ppid = sys_getppid();
477 result = audit_comparator(ctx->ppid, f->op, f->val);
478 }
479 break;
480 case AUDIT_UID:
481 result = audit_comparator(cred->uid, f->op, f->val);
482 break;
483 case AUDIT_EUID:
484 result = audit_comparator(cred->euid, f->op, f->val);
485 break;
486 case AUDIT_SUID:
487 result = audit_comparator(cred->suid, f->op, f->val);
488 break;
489 case AUDIT_FSUID:
490 result = audit_comparator(cred->fsuid, f->op, f->val);
491 break;
492 case AUDIT_GID:
493 result = audit_comparator(cred->gid, f->op, f->val);
494 break;
495 case AUDIT_EGID:
496 result = audit_comparator(cred->egid, f->op, f->val);
497 break;
498 case AUDIT_SGID:
499 result = audit_comparator(cred->sgid, f->op, f->val);
500 break;
501 case AUDIT_FSGID:
502 result = audit_comparator(cred->fsgid, f->op, f->val);
503 break;
504 case AUDIT_PERS:
505 result = audit_comparator(tsk->personality, f->op, f->val);
506 break;
507 case AUDIT_ARCH:
508 if (ctx)
509 result = audit_comparator(ctx->arch, f->op, f->val);
510 break;
511
512 case AUDIT_EXIT:
513 if (ctx && ctx->return_valid)
514 result = audit_comparator(ctx->return_code, f->op, f->val);
515 break;
516 case AUDIT_SUCCESS:
517 if (ctx && ctx->return_valid) {
518 if (f->val)
519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520 else
521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522 }
523 break;
524 case AUDIT_DEVMAJOR:
525 if (name)
526 result = audit_comparator(MAJOR(name->dev),
527 f->op, f->val);
528 else if (ctx) {
529 for (j = 0; j < ctx->name_count; j++) {
530 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
537 case AUDIT_DEVMINOR:
538 if (name)
539 result = audit_comparator(MINOR(name->dev),
540 f->op, f->val);
541 else if (ctx) {
542 for (j = 0; j < ctx->name_count; j++) {
543 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
550 case AUDIT_INODE:
551 if (name)
552 result = (name->ino == f->val);
553 else if (ctx) {
554 for (j = 0; j < ctx->name_count; j++) {
555 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_WATCH:
563 if (name)
564 result = audit_watch_compare(rule->watch, name->ino, name->dev);
565 break;
566 case AUDIT_DIR:
567 if (ctx)
568 result = match_tree_refs(ctx, rule->tree);
569 break;
570 case AUDIT_LOGINUID:
571 result = 0;
572 if (ctx)
573 result = audit_comparator(tsk->loginuid, f->op, f->val);
574 break;
575 case AUDIT_SUBJ_USER:
576 case AUDIT_SUBJ_ROLE:
577 case AUDIT_SUBJ_TYPE:
578 case AUDIT_SUBJ_SEN:
579 case AUDIT_SUBJ_CLR:
580 /* NOTE: this may return negative values indicating
581 a temporary error. We simply treat this as a
582 match for now to avoid losing information that
583 may be wanted. An error message will also be
584 logged upon error */
585 if (f->lsm_rule) {
586 if (need_sid) {
587 security_task_getsecid(tsk, &sid);
588 need_sid = 0;
589 }
590 result = security_audit_rule_match(sid, f->type,
591 f->op,
592 f->lsm_rule,
593 ctx);
594 }
595 break;
596 case AUDIT_OBJ_USER:
597 case AUDIT_OBJ_ROLE:
598 case AUDIT_OBJ_TYPE:
599 case AUDIT_OBJ_LEV_LOW:
600 case AUDIT_OBJ_LEV_HIGH:
601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602 also applies here */
603 if (f->lsm_rule) {
604 /* Find files that match */
605 if (name) {
606 result = security_audit_rule_match(
607 name->osid, f->type, f->op,
608 f->lsm_rule, ctx);
609 } else if (ctx) {
610 for (j = 0; j < ctx->name_count; j++) {
611 if (security_audit_rule_match(
612 ctx->names[j].osid,
613 f->type, f->op,
614 f->lsm_rule, ctx)) {
615 ++result;
616 break;
617 }
618 }
619 }
620 /* Find ipc objects that match */
621 if (!ctx || ctx->type != AUDIT_IPC)
622 break;
623 if (security_audit_rule_match(ctx->ipc.osid,
624 f->type, f->op,
625 f->lsm_rule, ctx))
626 ++result;
627 }
628 break;
629 case AUDIT_ARG0:
630 case AUDIT_ARG1:
631 case AUDIT_ARG2:
632 case AUDIT_ARG3:
633 if (ctx)
634 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635 break;
636 case AUDIT_FILTERKEY:
637 /* ignore this field for filtering */
638 result = 1;
639 break;
640 case AUDIT_PERM:
641 result = audit_match_perm(ctx, f->val);
642 break;
643 case AUDIT_FILETYPE:
644 result = audit_match_filetype(ctx, f->val);
645 break;
646 }
647
648 if (!result)
649 return 0;
650 }
651
652 if (ctx) {
653 if (rule->prio <= ctx->prio)
654 return 0;
655 if (rule->filterkey) {
656 kfree(ctx->filterkey);
657 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658 }
659 ctx->prio = rule->prio;
660 }
661 switch (rule->action) {
662 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
663 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664 }
665 return 1;
666}
667
668/* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
671 */
672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673{
674 struct audit_entry *e;
675 enum audit_state state;
676
677 rcu_read_lock();
678 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680 &state, true)) {
681 if (state == AUDIT_RECORD_CONTEXT)
682 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683 rcu_read_unlock();
684 return state;
685 }
686 }
687 rcu_read_unlock();
688 return AUDIT_BUILD_CONTEXT;
689}
690
691/* At syscall entry and exit time, this filter is called if the
692 * audit_state is not low enough that auditing cannot take place, but is
693 * also not high enough that we already know we have to write an audit
694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695 */
696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697 struct audit_context *ctx,
698 struct list_head *list)
699{
700 struct audit_entry *e;
701 enum audit_state state;
702
703 if (audit_pid && tsk->tgid == audit_pid)
704 return AUDIT_DISABLED;
705
706 rcu_read_lock();
707 if (!list_empty(list)) {
708 int word = AUDIT_WORD(ctx->major);
709 int bit = AUDIT_BIT(ctx->major);
710
711 list_for_each_entry_rcu(e, list, list) {
712 if ((e->rule.mask[word] & bit) == bit &&
713 audit_filter_rules(tsk, &e->rule, ctx, NULL,
714 &state, false)) {
715 rcu_read_unlock();
716 ctx->current_state = state;
717 return state;
718 }
719 }
720 }
721 rcu_read_unlock();
722 return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall exit time, this filter is called if any audit_names[] have been
726 * collected during syscall processing. We only check rules in sublists at hash
727 * buckets applicable to the inode numbers in audit_names[].
728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
729 */
730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731{
732 int i;
733 struct audit_entry *e;
734 enum audit_state state;
735
736 if (audit_pid && tsk->tgid == audit_pid)
737 return;
738
739 rcu_read_lock();
740 for (i = 0; i < ctx->name_count; i++) {
741 int word = AUDIT_WORD(ctx->major);
742 int bit = AUDIT_BIT(ctx->major);
743 struct audit_names *n = &ctx->names[i];
744 int h = audit_hash_ino((u32)n->ino);
745 struct list_head *list = &audit_inode_hash[h];
746
747 if (list_empty(list))
748 continue;
749
750 list_for_each_entry_rcu(e, list, list) {
751 if ((e->rule.mask[word] & bit) == bit &&
752 audit_filter_rules(tsk, &e->rule, ctx, n,
753 &state, false)) {
754 rcu_read_unlock();
755 ctx->current_state = state;
756 return;
757 }
758 }
759 }
760 rcu_read_unlock();
761}
762
763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764 int return_valid,
765 long return_code)
766{
767 struct audit_context *context = tsk->audit_context;
768
769 if (likely(!context))
770 return NULL;
771 context->return_valid = return_valid;
772
773 /*
774 * we need to fix up the return code in the audit logs if the actual
775 * return codes are later going to be fixed up by the arch specific
776 * signal handlers
777 *
778 * This is actually a test for:
779 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781 *
782 * but is faster than a bunch of ||
783 */
784 if (unlikely(return_code <= -ERESTARTSYS) &&
785 (return_code >= -ERESTART_RESTARTBLOCK) &&
786 (return_code != -ENOIOCTLCMD))
787 context->return_code = -EINTR;
788 else
789 context->return_code = return_code;
790
791 if (context->in_syscall && !context->dummy) {
792 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793 audit_filter_inodes(tsk, context);
794 }
795
796 tsk->audit_context = NULL;
797 return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802 int i;
803
804#if AUDIT_DEBUG == 2
805 if (context->put_count + context->ino_count != context->name_count) {
806 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807 " name_count=%d put_count=%d"
808 " ino_count=%d [NOT freeing]\n",
809 __FILE__, __LINE__,
810 context->serial, context->major, context->in_syscall,
811 context->name_count, context->put_count,
812 context->ino_count);
813 for (i = 0; i < context->name_count; i++) {
814 printk(KERN_ERR "names[%d] = %p = %s\n", i,
815 context->names[i].name,
816 context->names[i].name ?: "(null)");
817 }
818 dump_stack();
819 return;
820 }
821#endif
822#if AUDIT_DEBUG
823 context->put_count = 0;
824 context->ino_count = 0;
825#endif
826
827 for (i = 0; i < context->name_count; i++) {
828 if (context->names[i].name && context->names[i].name_put)
829 __putname(context->names[i].name);
830 }
831 context->name_count = 0;
832 path_put(&context->pwd);
833 context->pwd.dentry = NULL;
834 context->pwd.mnt = NULL;
835}
836
837static inline void audit_free_aux(struct audit_context *context)
838{
839 struct audit_aux_data *aux;
840
841 while ((aux = context->aux)) {
842 context->aux = aux->next;
843 kfree(aux);
844 }
845 while ((aux = context->aux_pids)) {
846 context->aux_pids = aux->next;
847 kfree(aux);
848 }
849}
850
851static inline void audit_zero_context(struct audit_context *context,
852 enum audit_state state)
853{
854 memset(context, 0, sizeof(*context));
855 context->state = state;
856 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
866 INIT_LIST_HEAD(&context->killed_trees);
867 return context;
868}
869
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
877 * needed.
878 */
879int audit_alloc(struct task_struct *tsk)
880{
881 struct audit_context *context;
882 enum audit_state state;
883 char *key = NULL;
884
885 if (likely(!audit_ever_enabled))
886 return 0; /* Return if not auditing. */
887
888 state = audit_filter_task(tsk, &key);
889 if (likely(state == AUDIT_DISABLED))
890 return 0;
891
892 if (!(context = audit_alloc_context(state))) {
893 kfree(key);
894 audit_log_lost("out of memory in audit_alloc");
895 return -ENOMEM;
896 }
897 context->filterkey = key;
898
899 tsk->audit_context = context;
900 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901 return 0;
902}
903
904static inline void audit_free_context(struct audit_context *context)
905{
906 struct audit_context *previous;
907 int count = 0;
908
909 do {
910 previous = context->previous;
911 if (previous || (count && count < 10)) {
912 ++count;
913 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914 " freeing multiple contexts (%d)\n",
915 context->serial, context->major,
916 context->name_count, count);
917 }
918 audit_free_names(context);
919 unroll_tree_refs(context, NULL, 0);
920 free_tree_refs(context);
921 audit_free_aux(context);
922 kfree(context->filterkey);
923 kfree(context->sockaddr);
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929}
930
931void audit_log_task_context(struct audit_buffer *ab)
932{
933 char *ctx = NULL;
934 unsigned len;
935 int error;
936 u32 sid;
937
938 security_task_getsecid(current, &sid);
939 if (!sid)
940 return;
941
942 error = security_secid_to_secctx(sid, &ctx, &len);
943 if (error) {
944 if (error != -EINVAL)
945 goto error_path;
946 return;
947 }
948
949 audit_log_format(ab, " subj=%s", ctx);
950 security_release_secctx(ctx, len);
951 return;
952
953error_path:
954 audit_panic("error in audit_log_task_context");
955 return;
956}
957
958EXPORT_SYMBOL(audit_log_task_context);
959
960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961{
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
964 struct vm_area_struct *vma;
965
966 /* tsk == current */
967
968 get_task_comm(name, tsk);
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
971
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
979 &vma->vm_file->f_path);
980 break;
981 }
982 vma = vma->vm_next;
983 }
984 up_read(&mm->mmap_sem);
985 }
986 audit_log_task_context(ab);
987}
988
989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992{
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
1013 audit_log_end(ab);
1014
1015 return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
1035{
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
1067 /*
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
1071 */
1072 if (ret) {
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
1075 return -1;
1076 }
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 break;
1086 }
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
1118
1119 /*
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
1124 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1131 */
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
1136 if (ret) {
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
1139 return -1;
1140 }
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
1144 audit_log_format(*ab, " a%d", arg_num);
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
1149 audit_log_n_hex(*ab, buf, to_send);
1150 else
1151 audit_log_string(*ab, buf);
1152
1153 p += to_send;
1154 len_left -= to_send;
1155 *len_sent += arg_num_len;
1156 if (has_cntl)
1157 *len_sent += to_send * 2;
1158 else
1159 *len_sent += to_send;
1160 }
1161 /* include the null we didn't log */
1162 return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166 struct audit_buffer **ab,
1167 struct audit_aux_data_execve *axi)
1168{
1169 int i;
1170 size_t len, len_sent = 0;
1171 const char __user *p;
1172 char *buf;
1173
1174 if (axi->mm != current->mm)
1175 return; /* execve failed, no additional info */
1176
1177 p = (const char __user *)axi->mm->arg_start;
1178
1179 audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181 /*
1182 * we need some kernel buffer to hold the userspace args. Just
1183 * allocate one big one rather than allocating one of the right size
1184 * for every single argument inside audit_log_single_execve_arg()
1185 * should be <8k allocation so should be pretty safe.
1186 */
1187 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188 if (!buf) {
1189 audit_panic("out of memory for argv string\n");
1190 return;
1191 }
1192
1193 for (i = 0; i < axi->argc; i++) {
1194 len = audit_log_single_execve_arg(context, ab, i,
1195 &len_sent, p, buf);
1196 if (len <= 0)
1197 break;
1198 p += len;
1199 }
1200 kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205 int i;
1206
1207 audit_log_format(ab, " %s=", prefix);
1208 CAP_FOR_EACH_U32(i) {
1209 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210 }
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215 kernel_cap_t *perm = &name->fcap.permitted;
1216 kernel_cap_t *inh = &name->fcap.inheritable;
1217 int log = 0;
1218
1219 if (!cap_isclear(*perm)) {
1220 audit_log_cap(ab, "cap_fp", perm);
1221 log = 1;
1222 }
1223 if (!cap_isclear(*inh)) {
1224 audit_log_cap(ab, "cap_fi", inh);
1225 log = 1;
1226 }
1227
1228 if (log)
1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234 struct audit_buffer *ab;
1235 int i;
1236
1237 ab = audit_log_start(context, GFP_KERNEL, context->type);
1238 if (!ab)
1239 return;
1240
1241 switch (context->type) {
1242 case AUDIT_SOCKETCALL: {
1243 int nargs = context->socketcall.nargs;
1244 audit_log_format(ab, "nargs=%d", nargs);
1245 for (i = 0; i < nargs; i++)
1246 audit_log_format(ab, " a%d=%lx", i,
1247 context->socketcall.args[i]);
1248 break; }
1249 case AUDIT_IPC: {
1250 u32 osid = context->ipc.osid;
1251
1252 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254 if (osid) {
1255 char *ctx = NULL;
1256 u32 len;
1257 if (security_secid_to_secctx(osid, &ctx, &len)) {
1258 audit_log_format(ab, " osid=%u", osid);
1259 *call_panic = 1;
1260 } else {
1261 audit_log_format(ab, " obj=%s", ctx);
1262 security_release_secctx(ctx, len);
1263 }
1264 }
1265 if (context->ipc.has_perm) {
1266 audit_log_end(ab);
1267 ab = audit_log_start(context, GFP_KERNEL,
1268 AUDIT_IPC_SET_PERM);
1269 audit_log_format(ab,
1270 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271 context->ipc.qbytes,
1272 context->ipc.perm_uid,
1273 context->ipc.perm_gid,
1274 context->ipc.perm_mode);
1275 if (!ab)
1276 return;
1277 }
1278 break; }
1279 case AUDIT_MQ_OPEN: {
1280 audit_log_format(ab,
1281 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282 "mq_msgsize=%ld mq_curmsgs=%ld",
1283 context->mq_open.oflag, context->mq_open.mode,
1284 context->mq_open.attr.mq_flags,
1285 context->mq_open.attr.mq_maxmsg,
1286 context->mq_open.attr.mq_msgsize,
1287 context->mq_open.attr.mq_curmsgs);
1288 break; }
1289 case AUDIT_MQ_SENDRECV: {
1290 audit_log_format(ab,
1291 "mqdes=%d msg_len=%zd msg_prio=%u "
1292 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293 context->mq_sendrecv.mqdes,
1294 context->mq_sendrecv.msg_len,
1295 context->mq_sendrecv.msg_prio,
1296 context->mq_sendrecv.abs_timeout.tv_sec,
1297 context->mq_sendrecv.abs_timeout.tv_nsec);
1298 break; }
1299 case AUDIT_MQ_NOTIFY: {
1300 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301 context->mq_notify.mqdes,
1302 context->mq_notify.sigev_signo);
1303 break; }
1304 case AUDIT_MQ_GETSETATTR: {
1305 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306 audit_log_format(ab,
1307 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308 "mq_curmsgs=%ld ",
1309 context->mq_getsetattr.mqdes,
1310 attr->mq_flags, attr->mq_maxmsg,
1311 attr->mq_msgsize, attr->mq_curmsgs);
1312 break; }
1313 case AUDIT_CAPSET: {
1314 audit_log_format(ab, "pid=%d", context->capset.pid);
1315 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318 break; }
1319 case AUDIT_MMAP: {
1320 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321 context->mmap.flags);
1322 break; }
1323 }
1324 audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329 const struct cred *cred;
1330 int i, call_panic = 0;
1331 struct audit_buffer *ab;
1332 struct audit_aux_data *aux;
1333 const char *tty;
1334
1335 /* tsk == current */
1336 context->pid = tsk->pid;
1337 if (!context->ppid)
1338 context->ppid = sys_getppid();
1339 cred = current_cred();
1340 context->uid = cred->uid;
1341 context->gid = cred->gid;
1342 context->euid = cred->euid;
1343 context->suid = cred->suid;
1344 context->fsuid = cred->fsuid;
1345 context->egid = cred->egid;
1346 context->sgid = cred->sgid;
1347 context->fsgid = cred->fsgid;
1348 context->personality = tsk->personality;
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351 if (!ab)
1352 return; /* audit_panic has been called */
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
1358 audit_log_format(ab, " success=%s exit=%ld",
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
1361
1362 spin_lock_irq(&tsk->sighand->siglock);
1363 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364 tty = tsk->signal->tty->name;
1365 else
1366 tty = "(none)";
1367 spin_unlock_irq(&tsk->sighand->siglock);
1368
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372 " euid=%u suid=%u fsuid=%u"
1373 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374 context->argv[0],
1375 context->argv[1],
1376 context->argv[2],
1377 context->argv[3],
1378 context->name_count,
1379 context->ppid,
1380 context->pid,
1381 tsk->loginuid,
1382 context->uid,
1383 context->gid,
1384 context->euid, context->suid, context->fsuid,
1385 context->egid, context->sgid, context->fsgid, tty,
1386 tsk->sessionid);
1387
1388
1389 audit_log_task_info(ab, tsk);
1390 audit_log_key(ab, context->filterkey);
1391 audit_log_end(ab);
1392
1393 for (aux = context->aux; aux; aux = aux->next) {
1394
1395 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396 if (!ab)
1397 continue; /* audit_panic has been called */
1398
1399 switch (aux->type) {
1400
1401 case AUDIT_EXECVE: {
1402 struct audit_aux_data_execve *axi = (void *)aux;
1403 audit_log_execve_info(context, &ab, axi);
1404 break; }
1405
1406 case AUDIT_BPRM_FCAPS: {
1407 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418 break; }
1419
1420 }
1421 audit_log_end(ab);
1422 }
1423
1424 if (context->type)
1425 show_special(context, &call_panic);
1426
1427 if (context->fds[0] >= 0) {
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429 if (ab) {
1430 audit_log_format(ab, "fd0=%d fd1=%d",
1431 context->fds[0], context->fds[1]);
1432 audit_log_end(ab);
1433 }
1434 }
1435
1436 if (context->sockaddr_len) {
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438 if (ab) {
1439 audit_log_format(ab, "saddr=");
1440 audit_log_n_hex(ab, (void *)context->sockaddr,
1441 context->sockaddr_len);
1442 audit_log_end(ab);
1443 }
1444 }
1445
1446 for (aux = context->aux_pids; aux; aux = aux->next) {
1447 struct audit_aux_data_pids *axs = (void *)aux;
1448
1449 for (i = 0; i < axs->pid_count; i++)
1450 if (audit_log_pid_context(context, axs->target_pid[i],
1451 axs->target_auid[i],
1452 axs->target_uid[i],
1453 axs->target_sessionid[i],
1454 axs->target_sid[i],
1455 axs->target_comm[i]))
1456 call_panic = 1;
1457 }
1458
1459 if (context->target_pid &&
1460 audit_log_pid_context(context, context->target_pid,
1461 context->target_auid, context->target_uid,
1462 context->target_sessionid,
1463 context->target_sid, context->target_comm))
1464 call_panic = 1;
1465
1466 if (context->pwd.dentry && context->pwd.mnt) {
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468 if (ab) {
1469 audit_log_d_path(ab, "cwd=", &context->pwd);
1470 audit_log_end(ab);
1471 }
1472 }
1473 for (i = 0; i < context->name_count; i++) {
1474 struct audit_names *n = &context->names[i];
1475
1476 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477 if (!ab)
1478 continue; /* audit_panic has been called */
1479
1480 audit_log_format(ab, "item=%d", i);
1481
1482 if (n->name) {
1483 switch(n->name_len) {
1484 case AUDIT_NAME_FULL:
1485 /* log the full path */
1486 audit_log_format(ab, " name=");
1487 audit_log_untrustedstring(ab, n->name);
1488 break;
1489 case 0:
1490 /* name was specified as a relative path and the
1491 * directory component is the cwd */
1492 audit_log_d_path(ab, "name=", &context->pwd);
1493 break;
1494 default:
1495 /* log the name's directory component */
1496 audit_log_format(ab, " name=");
1497 audit_log_n_untrustedstring(ab, n->name,
1498 n->name_len);
1499 }
1500 } else
1501 audit_log_format(ab, " name=(null)");
1502
1503 if (n->ino != (unsigned long)-1) {
1504 audit_log_format(ab, " inode=%lu"
1505 " dev=%02x:%02x mode=%#o"
1506 " ouid=%u ogid=%u rdev=%02x:%02x",
1507 n->ino,
1508 MAJOR(n->dev),
1509 MINOR(n->dev),
1510 n->mode,
1511 n->uid,
1512 n->gid,
1513 MAJOR(n->rdev),
1514 MINOR(n->rdev));
1515 }
1516 if (n->osid != 0) {
1517 char *ctx = NULL;
1518 u32 len;
1519 if (security_secid_to_secctx(
1520 n->osid, &ctx, &len)) {
1521 audit_log_format(ab, " osid=%u", n->osid);
1522 call_panic = 2;
1523 } else {
1524 audit_log_format(ab, " obj=%s", ctx);
1525 security_release_secctx(ctx, len);
1526 }
1527 }
1528
1529 audit_log_fcaps(ab, n);
1530
1531 audit_log_end(ab);
1532 }
1533
1534 /* Send end of event record to help user space know we are finished */
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536 if (ab)
1537 audit_log_end(ab);
1538 if (call_panic)
1539 audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550 struct audit_context *context;
1551
1552 context = audit_get_context(tsk, 0, 0);
1553 if (likely(!context))
1554 return;
1555
1556 /* Check for system calls that do not go through the exit
1557 * function (e.g., exit_group), then free context block.
1558 * We use GFP_ATOMIC here because we might be doing this
1559 * in the context of the idle thread */
1560 /* that can happen only if we are called from do_exit() */
1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 audit_log_exit(context, tsk);
1563 if (!list_empty(&context->killed_trees))
1564 audit_kill_trees(&context->killed_trees);
1565
1566 audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry. This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built. If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587 unsigned long a1, unsigned long a2,
1588 unsigned long a3, unsigned long a4)
1589{
1590 struct task_struct *tsk = current;
1591 struct audit_context *context = tsk->audit_context;
1592 enum audit_state state;
1593
1594 if (unlikely(!context))
1595 return;
1596
1597 /*
1598 * This happens only on certain architectures that make system
1599 * calls in kernel_thread via the entry.S interface, instead of
1600 * with direct calls. (If you are porting to a new
1601 * architecture, hitting this condition can indicate that you
1602 * got the _exit/_leave calls backward in entry.S.)
1603 *
1604 * i386 no
1605 * x86_64 no
1606 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1607 *
1608 * This also happens with vm86 emulation in a non-nested manner
1609 * (entries without exits), so this case must be caught.
1610 */
1611 if (context->in_syscall) {
1612 struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615 printk(KERN_ERR
1616 "audit(:%d) pid=%d in syscall=%d;"
1617 " entering syscall=%d\n",
1618 context->serial, tsk->pid, context->major, major);
1619#endif
1620 newctx = audit_alloc_context(context->state);
1621 if (newctx) {
1622 newctx->previous = context;
1623 context = newctx;
1624 tsk->audit_context = newctx;
1625 } else {
1626 /* If we can't alloc a new context, the best we
1627 * can do is to leak memory (any pending putname
1628 * will be lost). The only other alternative is
1629 * to abandon auditing. */
1630 audit_zero_context(context, context->state);
1631 }
1632 }
1633 BUG_ON(context->in_syscall || context->name_count);
1634
1635 if (!audit_enabled)
1636 return;
1637
1638 context->arch = arch;
1639 context->major = major;
1640 context->argv[0] = a1;
1641 context->argv[1] = a2;
1642 context->argv[2] = a3;
1643 context->argv[3] = a4;
1644
1645 state = context->state;
1646 context->dummy = !audit_n_rules;
1647 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648 context->prio = 0;
1649 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650 }
1651 if (likely(state == AUDIT_DISABLED))
1652 return;
1653
1654 context->serial = 0;
1655 context->ctime = CURRENT_TIME;
1656 context->in_syscall = 1;
1657 context->current_state = state;
1658 context->ppid = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663 struct audit_context *ctx = current->audit_context;
1664 struct audit_context *p = child->audit_context;
1665 if (!p || !ctx)
1666 return;
1667 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668 return;
1669 p->arch = ctx->arch;
1670 p->major = ctx->major;
1671 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672 p->ctime = ctx->ctime;
1673 p->dummy = ctx->dummy;
1674 p->in_syscall = ctx->in_syscall;
1675 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676 p->ppid = current->pid;
1677 p->prio = ctx->prio;
1678 p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call. If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information. In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694 struct task_struct *tsk = current;
1695 struct audit_context *context;
1696
1697 context = audit_get_context(tsk, valid, return_code);
1698
1699 if (likely(!context))
1700 return;
1701
1702 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703 audit_log_exit(context, tsk);
1704
1705 context->in_syscall = 0;
1706 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708 if (!list_empty(&context->killed_trees))
1709 audit_kill_trees(&context->killed_trees);
1710
1711 if (context->previous) {
1712 struct audit_context *new_context = context->previous;
1713 context->previous = NULL;
1714 audit_free_context(context);
1715 tsk->audit_context = new_context;
1716 } else {
1717 audit_free_names(context);
1718 unroll_tree_refs(context, NULL, 0);
1719 audit_free_aux(context);
1720 context->aux = NULL;
1721 context->aux_pids = NULL;
1722 context->target_pid = 0;
1723 context->target_sid = 0;
1724 context->sockaddr_len = 0;
1725 context->type = 0;
1726 context->fds[0] = -1;
1727 if (context->state != AUDIT_RECORD_CONTEXT) {
1728 kfree(context->filterkey);
1729 context->filterkey = NULL;
1730 }
1731 tsk->audit_context = context;
1732 }
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
1742 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743 return;
1744 context = current->audit_context;
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
1755 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768 struct audit_context *context;
1769 struct audit_tree_refs *p;
1770 const struct dentry *d, *parent;
1771 struct audit_chunk *drop;
1772 unsigned long seq;
1773 int count;
1774
1775 context = current->audit_context;
1776 p = context->trees;
1777 count = context->tree_count;
1778retry:
1779 drop = NULL;
1780 d = dentry;
1781 rcu_read_lock();
1782 seq = read_seqbegin(&rename_lock);
1783 for(;;) {
1784 struct inode *inode = d->d_inode;
1785 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786 struct audit_chunk *chunk;
1787 chunk = audit_tree_lookup(inode);
1788 if (chunk) {
1789 if (unlikely(!put_tree_ref(context, chunk))) {
1790 drop = chunk;
1791 break;
1792 }
1793 }
1794 }
1795 parent = d->d_parent;
1796 if (parent == d)
1797 break;
1798 d = parent;
1799 }
1800 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801 rcu_read_unlock();
1802 if (!drop) {
1803 /* just a race with rename */
1804 unroll_tree_refs(context, p, count);
1805 goto retry;
1806 }
1807 audit_put_chunk(drop);
1808 if (grow_tree_refs(context)) {
1809 /* OK, got more space */
1810 unroll_tree_refs(context, p, count);
1811 goto retry;
1812 }
1813 /* too bad */
1814 printk(KERN_WARNING
1815 "out of memory, audit has lost a tree reference\n");
1816 unroll_tree_refs(context, p, count);
1817 audit_set_auditable(context);
1818 return;
1819 }
1820 rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833 struct audit_context *context = current->audit_context;
1834
1835 if (IS_ERR(name) || !name)
1836 return;
1837
1838 if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841 __FILE__, __LINE__, context->serial, name);
1842 dump_stack();
1843#endif
1844 return;
1845 }
1846 BUG_ON(context->name_count >= AUDIT_NAMES);
1847 context->names[context->name_count].name = name;
1848 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849 context->names[context->name_count].name_put = 1;
1850 context->names[context->name_count].ino = (unsigned long)-1;
1851 context->names[context->name_count].osid = 0;
1852 ++context->name_count;
1853 if (!context->pwd.dentry)
1854 get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866 struct audit_context *context = current->audit_context;
1867
1868 BUG_ON(!context);
1869 if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872 __FILE__, __LINE__, context->serial, name);
1873 if (context->name_count) {
1874 int i;
1875 for (i = 0; i < context->name_count; i++)
1876 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877 context->names[i].name,
1878 context->names[i].name ?: "(null)");
1879 }
1880#endif
1881 __putname(name);
1882 }
1883#if AUDIT_DEBUG
1884 else {
1885 ++context->put_count;
1886 if (context->put_count > context->name_count) {
1887 printk(KERN_ERR "%s:%d(:%d): major=%d"
1888 " in_syscall=%d putname(%p) name_count=%d"
1889 " put_count=%d\n",
1890 __FILE__, __LINE__,
1891 context->serial, context->major,
1892 context->in_syscall, name, context->name_count,
1893 context->put_count);
1894 dump_stack();
1895 }
1896 }
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901 const struct inode *inode)
1902{
1903 if (context->name_count >= AUDIT_NAMES) {
1904 if (inode)
1905 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906 "dev=%02x:%02x, inode=%lu\n",
1907 MAJOR(inode->i_sb->s_dev),
1908 MINOR(inode->i_sb->s_dev),
1909 inode->i_ino);
1910
1911 else
1912 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913 return 1;
1914 }
1915 context->name_count++;
1916#if AUDIT_DEBUG
1917 context->ino_count++;
1918#endif
1919 return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925 struct cpu_vfs_cap_data caps;
1926 int rc;
1927
1928 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930 name->fcap.fE = 0;
1931 name->fcap_ver = 0;
1932
1933 if (!dentry)
1934 return 0;
1935
1936 rc = get_vfs_caps_from_disk(dentry, &caps);
1937 if (rc)
1938 return rc;
1939
1940 name->fcap.permitted = caps.permitted;
1941 name->fcap.inheritable = caps.inheritable;
1942 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945 return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951 const struct inode *inode)
1952{
1953 name->ino = inode->i_ino;
1954 name->dev = inode->i_sb->s_dev;
1955 name->mode = inode->i_mode;
1956 name->uid = inode->i_uid;
1957 name->gid = inode->i_gid;
1958 name->rdev = inode->i_rdev;
1959 security_inode_getsecid(inode, &name->osid);
1960 audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
1971{
1972 int idx;
1973 struct audit_context *context = current->audit_context;
1974 const struct inode *inode = dentry->d_inode;
1975
1976 if (!context->in_syscall)
1977 return;
1978 if (context->name_count
1979 && context->names[context->name_count-1].name
1980 && context->names[context->name_count-1].name == name)
1981 idx = context->name_count - 1;
1982 else if (context->name_count > 1
1983 && context->names[context->name_count-2].name
1984 && context->names[context->name_count-2].name == name)
1985 idx = context->name_count - 2;
1986 else {
1987 /* FIXME: how much do we care about inodes that have no
1988 * associated name? */
1989 if (audit_inc_name_count(context, inode))
1990 return;
1991 idx = context->name_count - 1;
1992 context->names[idx].name = NULL;
1993 }
1994 handle_path(dentry);
1995 audit_copy_inode(&context->names[idx], dentry, inode);
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created. Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012 const struct inode *parent)
2013{
2014 int idx;
2015 struct audit_context *context = current->audit_context;
2016 const char *found_parent = NULL, *found_child = NULL;
2017 const struct inode *inode = dentry->d_inode;
2018 const char *dname = dentry->d_name.name;
2019 int dirlen = 0;
2020
2021 if (!context->in_syscall)
2022 return;
2023
2024 if (inode)
2025 handle_one(inode);
2026
2027 /* parent is more likely, look for it first */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2030
2031 if (!n->name)
2032 continue;
2033
2034 if (n->ino == parent->i_ino &&
2035 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036 n->name_len = dirlen; /* update parent data in place */
2037 found_parent = n->name;
2038 goto add_names;
2039 }
2040 }
2041
2042 /* no matching parent, look for matching child */
2043 for (idx = 0; idx < context->name_count; idx++) {
2044 struct audit_names *n = &context->names[idx];
2045
2046 if (!n->name)
2047 continue;
2048
2049 /* strcmp() is the more likely scenario */
2050 if (!strcmp(dname, n->name) ||
2051 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052 if (inode)
2053 audit_copy_inode(n, NULL, inode);
2054 else
2055 n->ino = (unsigned long)-1;
2056 found_child = n->name;
2057 goto add_names;
2058 }
2059 }
2060
2061add_names:
2062 if (!found_parent) {
2063 if (audit_inc_name_count(context, parent))
2064 return;
2065 idx = context->name_count - 1;
2066 context->names[idx].name = NULL;
2067 audit_copy_inode(&context->names[idx], NULL, parent);
2068 }
2069
2070 if (!found_child) {
2071 if (audit_inc_name_count(context, inode))
2072 return;
2073 idx = context->name_count - 1;
2074
2075 /* Re-use the name belonging to the slot for a matching parent
2076 * directory. All names for this context are relinquished in
2077 * audit_free_names() */
2078 if (found_parent) {
2079 context->names[idx].name = found_parent;
2080 context->names[idx].name_len = AUDIT_NAME_FULL;
2081 /* don't call __putname() */
2082 context->names[idx].name_put = 0;
2083 } else {
2084 context->names[idx].name = NULL;
2085 }
2086
2087 if (inode)
2088 audit_copy_inode(&context->names[idx], NULL, inode);
2089 else
2090 context->names[idx].ino = (unsigned long)-1;
2091 }
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104 struct timespec *t, unsigned int *serial)
2105{
2106 if (!ctx->in_syscall)
2107 return 0;
2108 if (!ctx->serial)
2109 ctx->serial = audit_serial();
2110 t->tv_sec = ctx->ctime.tv_sec;
2111 t->tv_nsec = ctx->ctime.tv_nsec;
2112 *serial = ctx->serial;
2113 if (!ctx->prio) {
2114 ctx->prio = 1;
2115 ctx->current_state = AUDIT_RECORD_CONTEXT;
2116 }
2117 return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134 unsigned int sessionid = atomic_inc_return(&session_id);
2135 struct audit_context *context = task->audit_context;
2136
2137 if (context && context->in_syscall) {
2138 struct audit_buffer *ab;
2139
2140 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141 if (ab) {
2142 audit_log_format(ab, "login pid=%d uid=%u "
2143 "old auid=%u new auid=%u"
2144 " old ses=%u new ses=%u",
2145 task->pid, task_uid(task),
2146 task->loginuid, loginuid,
2147 task->sessionid, sessionid);
2148 audit_log_end(ab);
2149 }
2150 }
2151 task->sessionid = sessionid;
2152 task->loginuid = loginuid;
2153 return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165 struct audit_context *context = current->audit_context;
2166
2167 if (attr)
2168 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169 else
2170 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172 context->mq_open.oflag = oflag;
2173 context->mq_open.mode = mode;
2174
2175 context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187 const struct timespec *abs_timeout)
2188{
2189 struct audit_context *context = current->audit_context;
2190 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192 if (abs_timeout)
2193 memcpy(p, abs_timeout, sizeof(struct timespec));
2194 else
2195 memset(p, 0, sizeof(struct timespec));
2196
2197 context->mq_sendrecv.mqdes = mqdes;
2198 context->mq_sendrecv.msg_len = msg_len;
2199 context->mq_sendrecv.msg_prio = msg_prio;
2200
2201 context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213 struct audit_context *context = current->audit_context;
2214
2215 if (notification)
2216 context->mq_notify.sigev_signo = notification->sigev_signo;
2217 else
2218 context->mq_notify.sigev_signo = 0;
2219
2220 context->mq_notify.mqdes = mqdes;
2221 context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232 struct audit_context *context = current->audit_context;
2233 context->mq_getsetattr.mqdes = mqdes;
2234 context->mq_getsetattr.mqstat = *mqstat;
2235 context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245 struct audit_context *context = current->audit_context;
2246 context->ipc.uid = ipcp->uid;
2247 context->ipc.gid = ipcp->gid;
2248 context->ipc.mode = ipcp->mode;
2249 context->ipc.has_perm = 0;
2250 security_ipc_getsecid(ipcp, &context->ipc.osid);
2251 context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265 struct audit_context *context = current->audit_context;
2266
2267 context->ipc.qbytes = qbytes;
2268 context->ipc.perm_uid = uid;
2269 context->ipc.perm_gid = gid;
2270 context->ipc.perm_mode = mode;
2271 context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276 struct audit_aux_data_execve *ax;
2277 struct audit_context *context = current->audit_context;
2278
2279 if (likely(!audit_enabled || !context || context->dummy))
2280 return 0;
2281
2282 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283 if (!ax)
2284 return -ENOMEM;
2285
2286 ax->argc = bprm->argc;
2287 ax->envc = bprm->envc;
2288 ax->mm = bprm->mm;
2289 ax->d.type = AUDIT_EXECVE;
2290 ax->d.next = context->aux;
2291 context->aux = (void *)ax;
2292 return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304 struct audit_context *context = current->audit_context;
2305
2306 if (likely(!context || context->dummy))
2307 return;
2308
2309 context->type = AUDIT_SOCKETCALL;
2310 context->socketcall.nargs = nargs;
2311 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322 struct audit_context *context = current->audit_context;
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336 struct audit_context *context = current->audit_context;
2337
2338 if (likely(!context || context->dummy))
2339 return 0;
2340
2341 if (!context->sockaddr) {
2342 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343 if (!p)
2344 return -ENOMEM;
2345 context->sockaddr = p;
2346 }
2347
2348 context->sockaddr_len = len;
2349 memcpy(context->sockaddr, a, len);
2350 return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355 struct audit_context *context = current->audit_context;
2356
2357 context->target_pid = t->pid;
2358 context->target_auid = audit_get_loginuid(t);
2359 context->target_uid = task_uid(t);
2360 context->target_sessionid = audit_get_sessionid(t);
2361 security_task_getsecid(t, &context->target_sid);
2362 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375 struct audit_aux_data_pids *axp;
2376 struct task_struct *tsk = current;
2377 struct audit_context *ctx = tsk->audit_context;
2378 uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380 if (audit_pid && t->tgid == audit_pid) {
2381 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382 audit_sig_pid = tsk->pid;
2383 if (tsk->loginuid != -1)
2384 audit_sig_uid = tsk->loginuid;
2385 else
2386 audit_sig_uid = uid;
2387 security_task_getsecid(tsk, &audit_sig_sid);
2388 }
2389 if (!audit_signals || audit_dummy_context())
2390 return 0;
2391 }
2392
2393 /* optimize the common case by putting first signal recipient directly
2394 * in audit_context */
2395 if (!ctx->target_pid) {
2396 ctx->target_pid = t->tgid;
2397 ctx->target_auid = audit_get_loginuid(t);
2398 ctx->target_uid = t_uid;
2399 ctx->target_sessionid = audit_get_sessionid(t);
2400 security_task_getsecid(t, &ctx->target_sid);
2401 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402 return 0;
2403 }
2404
2405 axp = (void *)ctx->aux_pids;
2406 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408 if (!axp)
2409 return -ENOMEM;
2410
2411 axp->d.type = AUDIT_OBJ_PID;
2412 axp->d.next = ctx->aux_pids;
2413 ctx->aux_pids = (void *)axp;
2414 }
2415 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417 axp->target_pid[axp->pid_count] = t->tgid;
2418 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419 axp->target_uid[axp->pid_count] = t_uid;
2420 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423 axp->pid_count++;
2424
2425 return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440 const struct cred *new, const struct cred *old)
2441{
2442 struct audit_aux_data_bprm_fcaps *ax;
2443 struct audit_context *context = current->audit_context;
2444 struct cpu_vfs_cap_data vcaps;
2445 struct dentry *dentry;
2446
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 if (!ax)
2449 return -ENOMEM;
2450
2451 ax->d.type = AUDIT_BPRM_FCAPS;
2452 ax->d.next = context->aux;
2453 context->aux = (void *)ax;
2454
2455 dentry = dget(bprm->file->f_dentry);
2456 get_vfs_caps_from_disk(dentry, &vcaps);
2457 dput(dentry);
2458
2459 ax->fcap.permitted = vcaps.permitted;
2460 ax->fcap.inheritable = vcaps.inheritable;
2461 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
2467
2468 ax->new_pcap.permitted = new->cap_permitted;
2469 ax->new_pcap.inheritable = new->cap_inheritable;
2470 ax->new_pcap.effective = new->cap_effective;
2471 return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484 const struct cred *new, const struct cred *old)
2485{
2486 struct audit_context *context = current->audit_context;
2487 context->capset.pid = pid;
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->mmap.fd = fd;
2498 context->mmap.flags = flags;
2499 context->type = AUDIT_MMAP;
2500}
2501
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511 struct audit_buffer *ab;
2512 u32 sid;
2513 uid_t auid = audit_get_loginuid(current), uid;
2514 gid_t gid;
2515 unsigned int sessionid = audit_get_sessionid(current);
2516
2517 if (!audit_enabled)
2518 return;
2519
2520 if (signr == SIGQUIT) /* don't care for those */
2521 return;
2522
2523 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524 current_uid_gid(&uid, &gid);
2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526 auid, uid, gid, sessionid);
2527 security_task_getsecid(current, &sid);
2528 if (sid) {
2529 char *ctx = NULL;
2530 u32 len;
2531
2532 if (security_secid_to_secctx(sid, &ctx, &len))
2533 audit_log_format(ab, " ssid=%u", sid);
2534 else {
2535 audit_log_format(ab, " subj=%s", ctx);
2536 security_release_secctx(ctx, len);
2537 }
2538 }
2539 audit_log_format(ab, " pid=%d comm=", current->pid);
2540 audit_log_untrustedstring(ab, current->comm);
2541 audit_log_format(ab, " sig=%ld", signr);
2542 audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547 struct audit_context *ctx = current->audit_context;
2548 if (likely(!ctx || !ctx->in_syscall))
2549 return NULL;
2550 return &ctx->killed_trees;
2551}