Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES	5
  83
  84/* Indicates that audit should log the full pathname. */
  85#define AUDIT_NAME_FULL -1
  86
  87/* no execve audit message should be longer than this (userspace limits) */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* number of audit rules */
  91int audit_n_rules;
  92
  93/* determines whether we collect data for signals sent */
  94int audit_signals;
  95
  96struct audit_cap_data {
  97	kernel_cap_t		permitted;
  98	kernel_cap_t		inheritable;
  99	union {
 100		unsigned int	fE;		/* effective bit of a file capability */
 101		kernel_cap_t	effective;	/* effective set of a process */
 102	};
 103};
 104
 105/* When fs/namei.c:getname() is called, we store the pointer in name and
 106 * we don't let putname() free it (instead we free all of the saved
 107 * pointers at syscall exit time).
 108 *
 109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 110struct audit_names {
 111	struct list_head list;		/* audit_context->names_list */
 112	const char	*name;
 
 
 113	unsigned long	ino;
 114	dev_t		dev;
 115	umode_t		mode;
 116	uid_t		uid;
 117	gid_t		gid;
 118	dev_t		rdev;
 119	u32		osid;
 120	struct audit_cap_data fcap;
 121	unsigned int	fcap_ver;
 122	int		name_len;	/* number of name's characters to log */
 123	bool		name_put;	/* call __putname() for this name */
 124	/*
 125	 * This was an allocated audit_names and not from the array of
 126	 * names allocated in the task audit context.  Thus this name
 127	 * should be freed on syscall exit
 128	 */
 129	bool		should_free;
 130};
 131
 132struct audit_aux_data {
 133	struct audit_aux_data	*next;
 134	int			type;
 135};
 136
 137#define AUDIT_AUX_IPCPERM	0
 138
 139/* Number of target pids per aux struct. */
 140#define AUDIT_AUX_PIDS	16
 141
 142struct audit_aux_data_execve {
 143	struct audit_aux_data	d;
 144	int argc;
 145	int envc;
 146	struct mm_struct *mm;
 147};
 148
 149struct audit_aux_data_pids {
 150	struct audit_aux_data	d;
 151	pid_t			target_pid[AUDIT_AUX_PIDS];
 152	uid_t			target_auid[AUDIT_AUX_PIDS];
 153	uid_t			target_uid[AUDIT_AUX_PIDS];
 154	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 155	u32			target_sid[AUDIT_AUX_PIDS];
 156	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 157	int			pid_count;
 158};
 159
 160struct audit_aux_data_bprm_fcaps {
 161	struct audit_aux_data	d;
 162	struct audit_cap_data	fcap;
 163	unsigned int		fcap_ver;
 164	struct audit_cap_data	old_pcap;
 165	struct audit_cap_data	new_pcap;
 166};
 167
 168struct audit_aux_data_capset {
 169	struct audit_aux_data	d;
 170	pid_t			pid;
 171	struct audit_cap_data	cap;
 172};
 173
 174struct audit_tree_refs {
 175	struct audit_tree_refs *next;
 176	struct audit_chunk *c[31];
 177};
 178
 179/* The per-task audit context. */
 180struct audit_context {
 181	int		    dummy;	/* must be the first element */
 182	int		    in_syscall;	/* 1 if task is in a syscall */
 183	enum audit_state    state, current_state;
 184	unsigned int	    serial;     /* serial number for record */
 185	int		    major;      /* syscall number */
 186	struct timespec	    ctime;      /* time of syscall entry */
 187	unsigned long	    argv[4];    /* syscall arguments */
 188	long		    return_code;/* syscall return code */
 189	u64		    prio;
 190	int		    return_valid; /* return code is valid */
 191	/*
 192	 * The names_list is the list of all audit_names collected during this
 193	 * syscall.  The first AUDIT_NAMES entries in the names_list will
 194	 * actually be from the preallocated_names array for performance
 195	 * reasons.  Except during allocation they should never be referenced
 196	 * through the preallocated_names array and should only be found/used
 197	 * by running the names_list.
 198	 */
 199	struct audit_names  preallocated_names[AUDIT_NAMES];
 200	int		    name_count; /* total records in names_list */
 201	struct list_head    names_list;	/* anchor for struct audit_names->list */
 202	char *		    filterkey;	/* key for rule that triggered record */
 203	struct path	    pwd;
 204	struct audit_context *previous; /* For nested syscalls */
 205	struct audit_aux_data *aux;
 206	struct audit_aux_data *aux_pids;
 207	struct sockaddr_storage *sockaddr;
 208	size_t sockaddr_len;
 209				/* Save things to print about task_struct */
 210	pid_t		    pid, ppid;
 211	uid_t		    uid, euid, suid, fsuid;
 212	gid_t		    gid, egid, sgid, fsgid;
 213	unsigned long	    personality;
 214	int		    arch;
 215
 216	pid_t		    target_pid;
 217	uid_t		    target_auid;
 218	uid_t		    target_uid;
 219	unsigned int	    target_sessionid;
 220	u32		    target_sid;
 221	char		    target_comm[TASK_COMM_LEN];
 222
 223	struct audit_tree_refs *trees, *first_trees;
 224	struct list_head killed_trees;
 225	int tree_count;
 226
 227	int type;
 228	union {
 229		struct {
 230			int nargs;
 231			long args[6];
 232		} socketcall;
 233		struct {
 234			uid_t			uid;
 235			gid_t			gid;
 236			umode_t			mode;
 237			u32			osid;
 238			int			has_perm;
 239			uid_t			perm_uid;
 240			gid_t			perm_gid;
 241			umode_t			perm_mode;
 242			unsigned long		qbytes;
 243		} ipc;
 244		struct {
 245			mqd_t			mqdes;
 246			struct mq_attr 		mqstat;
 247		} mq_getsetattr;
 248		struct {
 249			mqd_t			mqdes;
 250			int			sigev_signo;
 251		} mq_notify;
 252		struct {
 253			mqd_t			mqdes;
 254			size_t			msg_len;
 255			unsigned int		msg_prio;
 256			struct timespec		abs_timeout;
 257		} mq_sendrecv;
 258		struct {
 259			int			oflag;
 260			umode_t			mode;
 261			struct mq_attr		attr;
 262		} mq_open;
 263		struct {
 264			pid_t			pid;
 265			struct audit_cap_data	cap;
 266		} capset;
 267		struct {
 268			int			fd;
 269			int			flags;
 270		} mmap;
 271	};
 272	int fds[2];
 273
 274#if AUDIT_DEBUG
 275	int		    put_count;
 276	int		    ino_count;
 277#endif
 278};
 279
 280static inline int open_arg(int flags, int mask)
 281{
 282	int n = ACC_MODE(flags);
 283	if (flags & (O_TRUNC | O_CREAT))
 284		n |= AUDIT_PERM_WRITE;
 285	return n & mask;
 286}
 287
 288static int audit_match_perm(struct audit_context *ctx, int mask)
 289{
 290	unsigned n;
 291	if (unlikely(!ctx))
 292		return 0;
 293	n = ctx->major;
 294
 295	switch (audit_classify_syscall(ctx->arch, n)) {
 296	case 0:	/* native */
 297		if ((mask & AUDIT_PERM_WRITE) &&
 298		     audit_match_class(AUDIT_CLASS_WRITE, n))
 299			return 1;
 300		if ((mask & AUDIT_PERM_READ) &&
 301		     audit_match_class(AUDIT_CLASS_READ, n))
 302			return 1;
 303		if ((mask & AUDIT_PERM_ATTR) &&
 304		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 305			return 1;
 306		return 0;
 307	case 1: /* 32bit on biarch */
 308		if ((mask & AUDIT_PERM_WRITE) &&
 309		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 310			return 1;
 311		if ((mask & AUDIT_PERM_READ) &&
 312		     audit_match_class(AUDIT_CLASS_READ_32, n))
 313			return 1;
 314		if ((mask & AUDIT_PERM_ATTR) &&
 315		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 316			return 1;
 317		return 0;
 318	case 2: /* open */
 319		return mask & ACC_MODE(ctx->argv[1]);
 320	case 3: /* openat */
 321		return mask & ACC_MODE(ctx->argv[2]);
 322	case 4: /* socketcall */
 323		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 324	case 5: /* execve */
 325		return mask & AUDIT_PERM_EXEC;
 326	default:
 327		return 0;
 328	}
 329}
 330
 331static int audit_match_filetype(struct audit_context *ctx, int val)
 332{
 333	struct audit_names *n;
 334	umode_t mode = (umode_t)val;
 335
 336	if (unlikely(!ctx))
 337		return 0;
 338
 339	list_for_each_entry(n, &ctx->names_list, list) {
 340		if ((n->ino != -1) &&
 341		    ((n->mode & S_IFMT) == mode))
 342			return 1;
 343	}
 344
 345	return 0;
 346}
 347
 348/*
 349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 350 * ->first_trees points to its beginning, ->trees - to the current end of data.
 351 * ->tree_count is the number of free entries in array pointed to by ->trees.
 352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 353 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 354 * it's going to remain 1-element for almost any setup) until we free context itself.
 355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 356 */
 357
 358#ifdef CONFIG_AUDIT_TREE
 359static void audit_set_auditable(struct audit_context *ctx)
 360{
 361	if (!ctx->prio) {
 362		ctx->prio = 1;
 363		ctx->current_state = AUDIT_RECORD_CONTEXT;
 364	}
 365}
 366
 367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 368{
 369	struct audit_tree_refs *p = ctx->trees;
 370	int left = ctx->tree_count;
 371	if (likely(left)) {
 372		p->c[--left] = chunk;
 373		ctx->tree_count = left;
 374		return 1;
 375	}
 376	if (!p)
 377		return 0;
 378	p = p->next;
 379	if (p) {
 380		p->c[30] = chunk;
 381		ctx->trees = p;
 382		ctx->tree_count = 30;
 383		return 1;
 384	}
 385	return 0;
 386}
 387
 388static int grow_tree_refs(struct audit_context *ctx)
 389{
 390	struct audit_tree_refs *p = ctx->trees;
 391	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 392	if (!ctx->trees) {
 393		ctx->trees = p;
 394		return 0;
 395	}
 396	if (p)
 397		p->next = ctx->trees;
 398	else
 399		ctx->first_trees = ctx->trees;
 400	ctx->tree_count = 31;
 401	return 1;
 402}
 403#endif
 404
 405static void unroll_tree_refs(struct audit_context *ctx,
 406		      struct audit_tree_refs *p, int count)
 407{
 408#ifdef CONFIG_AUDIT_TREE
 409	struct audit_tree_refs *q;
 410	int n;
 411	if (!p) {
 412		/* we started with empty chain */
 413		p = ctx->first_trees;
 414		count = 31;
 415		/* if the very first allocation has failed, nothing to do */
 416		if (!p)
 417			return;
 418	}
 419	n = count;
 420	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 421		while (n--) {
 422			audit_put_chunk(q->c[n]);
 423			q->c[n] = NULL;
 424		}
 425	}
 426	while (n-- > ctx->tree_count) {
 427		audit_put_chunk(q->c[n]);
 428		q->c[n] = NULL;
 429	}
 430	ctx->trees = p;
 431	ctx->tree_count = count;
 432#endif
 433}
 434
 435static void free_tree_refs(struct audit_context *ctx)
 436{
 437	struct audit_tree_refs *p, *q;
 438	for (p = ctx->first_trees; p; p = q) {
 439		q = p->next;
 440		kfree(p);
 441	}
 442}
 443
 444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 445{
 446#ifdef CONFIG_AUDIT_TREE
 447	struct audit_tree_refs *p;
 448	int n;
 449	if (!tree)
 450		return 0;
 451	/* full ones */
 452	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 453		for (n = 0; n < 31; n++)
 454			if (audit_tree_match(p->c[n], tree))
 455				return 1;
 456	}
 457	/* partial */
 458	if (p) {
 459		for (n = ctx->tree_count; n < 31; n++)
 460			if (audit_tree_match(p->c[n], tree))
 461				return 1;
 462	}
 463#endif
 464	return 0;
 465}
 466
 467static int audit_compare_id(uid_t uid1,
 468			    struct audit_names *name,
 469			    unsigned long name_offset,
 470			    struct audit_field *f,
 471			    struct audit_context *ctx)
 472{
 473	struct audit_names *n;
 474	unsigned long addr;
 475	uid_t uid2;
 476	int rc;
 477
 478	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 479
 480	if (name) {
 481		addr = (unsigned long)name;
 482		addr += name_offset;
 483
 484		uid2 = *(uid_t *)addr;
 485		rc = audit_comparator(uid1, f->op, uid2);
 486		if (rc)
 487			return rc;
 488	}
 489
 490	if (ctx) {
 491		list_for_each_entry(n, &ctx->names_list, list) {
 492			addr = (unsigned long)n;
 493			addr += name_offset;
 494
 495			uid2 = *(uid_t *)addr;
 496
 497			rc = audit_comparator(uid1, f->op, uid2);
 498			if (rc)
 499				return rc;
 500		}
 501	}
 502	return 0;
 503}
 504
 505static int audit_field_compare(struct task_struct *tsk,
 506			       const struct cred *cred,
 507			       struct audit_field *f,
 508			       struct audit_context *ctx,
 509			       struct audit_names *name)
 510{
 511	switch (f->val) {
 512	/* process to file object comparisons */
 513	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 514		return audit_compare_id(cred->uid,
 515					name, offsetof(struct audit_names, uid),
 516					f, ctx);
 517	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 518		return audit_compare_id(cred->gid,
 519					name, offsetof(struct audit_names, gid),
 520					f, ctx);
 521	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 522		return audit_compare_id(cred->euid,
 523					name, offsetof(struct audit_names, uid),
 524					f, ctx);
 525	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 526		return audit_compare_id(cred->egid,
 527					name, offsetof(struct audit_names, gid),
 528					f, ctx);
 529	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530		return audit_compare_id(tsk->loginuid,
 531					name, offsetof(struct audit_names, uid),
 532					f, ctx);
 533	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 534		return audit_compare_id(cred->suid,
 535					name, offsetof(struct audit_names, uid),
 536					f, ctx);
 537	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 538		return audit_compare_id(cred->sgid,
 539					name, offsetof(struct audit_names, gid),
 540					f, ctx);
 541	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 542		return audit_compare_id(cred->fsuid,
 543					name, offsetof(struct audit_names, uid),
 544					f, ctx);
 545	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 546		return audit_compare_id(cred->fsgid,
 547					name, offsetof(struct audit_names, gid),
 548					f, ctx);
 549	/* uid comparisons */
 550	case AUDIT_COMPARE_UID_TO_AUID:
 551		return audit_comparator(cred->uid, f->op, tsk->loginuid);
 552	case AUDIT_COMPARE_UID_TO_EUID:
 553		return audit_comparator(cred->uid, f->op, cred->euid);
 554	case AUDIT_COMPARE_UID_TO_SUID:
 555		return audit_comparator(cred->uid, f->op, cred->suid);
 556	case AUDIT_COMPARE_UID_TO_FSUID:
 557		return audit_comparator(cred->uid, f->op, cred->fsuid);
 558	/* auid comparisons */
 559	case AUDIT_COMPARE_AUID_TO_EUID:
 560		return audit_comparator(tsk->loginuid, f->op, cred->euid);
 561	case AUDIT_COMPARE_AUID_TO_SUID:
 562		return audit_comparator(tsk->loginuid, f->op, cred->suid);
 563	case AUDIT_COMPARE_AUID_TO_FSUID:
 564		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 565	/* euid comparisons */
 566	case AUDIT_COMPARE_EUID_TO_SUID:
 567		return audit_comparator(cred->euid, f->op, cred->suid);
 568	case AUDIT_COMPARE_EUID_TO_FSUID:
 569		return audit_comparator(cred->euid, f->op, cred->fsuid);
 570	/* suid comparisons */
 571	case AUDIT_COMPARE_SUID_TO_FSUID:
 572		return audit_comparator(cred->suid, f->op, cred->fsuid);
 573	/* gid comparisons */
 574	case AUDIT_COMPARE_GID_TO_EGID:
 575		return audit_comparator(cred->gid, f->op, cred->egid);
 576	case AUDIT_COMPARE_GID_TO_SGID:
 577		return audit_comparator(cred->gid, f->op, cred->sgid);
 578	case AUDIT_COMPARE_GID_TO_FSGID:
 579		return audit_comparator(cred->gid, f->op, cred->fsgid);
 580	/* egid comparisons */
 581	case AUDIT_COMPARE_EGID_TO_SGID:
 582		return audit_comparator(cred->egid, f->op, cred->sgid);
 583	case AUDIT_COMPARE_EGID_TO_FSGID:
 584		return audit_comparator(cred->egid, f->op, cred->fsgid);
 585	/* sgid comparison */
 586	case AUDIT_COMPARE_SGID_TO_FSGID:
 587		return audit_comparator(cred->sgid, f->op, cred->fsgid);
 588	default:
 589		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 590		return 0;
 591	}
 592	return 0;
 593}
 594
 595/* Determine if any context name data matches a rule's watch data */
 596/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 597 * otherwise.
 598 *
 599 * If task_creation is true, this is an explicit indication that we are
 600 * filtering a task rule at task creation time.  This and tsk == current are
 601 * the only situations where tsk->cred may be accessed without an rcu read lock.
 602 */
 603static int audit_filter_rules(struct task_struct *tsk,
 604			      struct audit_krule *rule,
 605			      struct audit_context *ctx,
 606			      struct audit_names *name,
 607			      enum audit_state *state,
 608			      bool task_creation)
 609{
 610	const struct cred *cred;
 611	int i, need_sid = 1;
 612	u32 sid;
 613
 614	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 615
 616	for (i = 0; i < rule->field_count; i++) {
 617		struct audit_field *f = &rule->fields[i];
 618		struct audit_names *n;
 619		int result = 0;
 620
 621		switch (f->type) {
 622		case AUDIT_PID:
 623			result = audit_comparator(tsk->pid, f->op, f->val);
 624			break;
 625		case AUDIT_PPID:
 626			if (ctx) {
 627				if (!ctx->ppid)
 628					ctx->ppid = sys_getppid();
 629				result = audit_comparator(ctx->ppid, f->op, f->val);
 630			}
 631			break;
 632		case AUDIT_UID:
 633			result = audit_comparator(cred->uid, f->op, f->val);
 634			break;
 635		case AUDIT_EUID:
 636			result = audit_comparator(cred->euid, f->op, f->val);
 637			break;
 638		case AUDIT_SUID:
 639			result = audit_comparator(cred->suid, f->op, f->val);
 640			break;
 641		case AUDIT_FSUID:
 642			result = audit_comparator(cred->fsuid, f->op, f->val);
 643			break;
 644		case AUDIT_GID:
 645			result = audit_comparator(cred->gid, f->op, f->val);
 646			break;
 647		case AUDIT_EGID:
 648			result = audit_comparator(cred->egid, f->op, f->val);
 649			break;
 650		case AUDIT_SGID:
 651			result = audit_comparator(cred->sgid, f->op, f->val);
 652			break;
 653		case AUDIT_FSGID:
 654			result = audit_comparator(cred->fsgid, f->op, f->val);
 655			break;
 656		case AUDIT_PERS:
 657			result = audit_comparator(tsk->personality, f->op, f->val);
 658			break;
 659		case AUDIT_ARCH:
 660			if (ctx)
 661				result = audit_comparator(ctx->arch, f->op, f->val);
 662			break;
 663
 664		case AUDIT_EXIT:
 665			if (ctx && ctx->return_valid)
 666				result = audit_comparator(ctx->return_code, f->op, f->val);
 667			break;
 668		case AUDIT_SUCCESS:
 669			if (ctx && ctx->return_valid) {
 670				if (f->val)
 671					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 672				else
 673					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 674			}
 675			break;
 676		case AUDIT_DEVMAJOR:
 677			if (name) {
 678				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 679				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 680					++result;
 681			} else if (ctx) {
 682				list_for_each_entry(n, &ctx->names_list, list) {
 683					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 684					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 685						++result;
 686						break;
 687					}
 688				}
 689			}
 690			break;
 691		case AUDIT_DEVMINOR:
 692			if (name) {
 693				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 694				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 695					++result;
 696			} else if (ctx) {
 697				list_for_each_entry(n, &ctx->names_list, list) {
 698					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 699					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 700						++result;
 701						break;
 702					}
 703				}
 704			}
 705			break;
 706		case AUDIT_INODE:
 707			if (name)
 708				result = (name->ino == f->val);
 709			else if (ctx) {
 710				list_for_each_entry(n, &ctx->names_list, list) {
 711					if (audit_comparator(n->ino, f->op, f->val)) {
 712						++result;
 713						break;
 714					}
 715				}
 716			}
 717			break;
 718		case AUDIT_OBJ_UID:
 719			if (name) {
 720				result = audit_comparator(name->uid, f->op, f->val);
 721			} else if (ctx) {
 722				list_for_each_entry(n, &ctx->names_list, list) {
 723					if (audit_comparator(n->uid, f->op, f->val)) {
 724						++result;
 725						break;
 726					}
 727				}
 728			}
 729			break;
 730		case AUDIT_OBJ_GID:
 731			if (name) {
 732				result = audit_comparator(name->gid, f->op, f->val);
 733			} else if (ctx) {
 734				list_for_each_entry(n, &ctx->names_list, list) {
 735					if (audit_comparator(n->gid, f->op, f->val)) {
 736						++result;
 737						break;
 738					}
 739				}
 740			}
 741			break;
 742		case AUDIT_WATCH:
 743			if (name)
 744				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 745			break;
 746		case AUDIT_DIR:
 747			if (ctx)
 748				result = match_tree_refs(ctx, rule->tree);
 749			break;
 750		case AUDIT_LOGINUID:
 751			result = 0;
 752			if (ctx)
 753				result = audit_comparator(tsk->loginuid, f->op, f->val);
 754			break;
 755		case AUDIT_SUBJ_USER:
 756		case AUDIT_SUBJ_ROLE:
 757		case AUDIT_SUBJ_TYPE:
 758		case AUDIT_SUBJ_SEN:
 759		case AUDIT_SUBJ_CLR:
 760			/* NOTE: this may return negative values indicating
 761			   a temporary error.  We simply treat this as a
 762			   match for now to avoid losing information that
 763			   may be wanted.   An error message will also be
 764			   logged upon error */
 765			if (f->lsm_rule) {
 766				if (need_sid) {
 767					security_task_getsecid(tsk, &sid);
 768					need_sid = 0;
 769				}
 770				result = security_audit_rule_match(sid, f->type,
 771				                                  f->op,
 772				                                  f->lsm_rule,
 773				                                  ctx);
 774			}
 775			break;
 776		case AUDIT_OBJ_USER:
 777		case AUDIT_OBJ_ROLE:
 778		case AUDIT_OBJ_TYPE:
 779		case AUDIT_OBJ_LEV_LOW:
 780		case AUDIT_OBJ_LEV_HIGH:
 781			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 782			   also applies here */
 783			if (f->lsm_rule) {
 784				/* Find files that match */
 785				if (name) {
 786					result = security_audit_rule_match(
 787					           name->osid, f->type, f->op,
 788					           f->lsm_rule, ctx);
 789				} else if (ctx) {
 790					list_for_each_entry(n, &ctx->names_list, list) {
 791						if (security_audit_rule_match(n->osid, f->type,
 792									      f->op, f->lsm_rule,
 793									      ctx)) {
 
 794							++result;
 795							break;
 796						}
 797					}
 798				}
 799				/* Find ipc objects that match */
 800				if (!ctx || ctx->type != AUDIT_IPC)
 801					break;
 802				if (security_audit_rule_match(ctx->ipc.osid,
 803							      f->type, f->op,
 804							      f->lsm_rule, ctx))
 805					++result;
 806			}
 807			break;
 808		case AUDIT_ARG0:
 809		case AUDIT_ARG1:
 810		case AUDIT_ARG2:
 811		case AUDIT_ARG3:
 812			if (ctx)
 813				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 814			break;
 815		case AUDIT_FILTERKEY:
 816			/* ignore this field for filtering */
 817			result = 1;
 818			break;
 819		case AUDIT_PERM:
 820			result = audit_match_perm(ctx, f->val);
 821			break;
 822		case AUDIT_FILETYPE:
 823			result = audit_match_filetype(ctx, f->val);
 824			break;
 825		case AUDIT_FIELD_COMPARE:
 826			result = audit_field_compare(tsk, cred, f, ctx, name);
 827			break;
 828		}
 
 829		if (!result)
 830			return 0;
 831	}
 832
 833	if (ctx) {
 834		if (rule->prio <= ctx->prio)
 835			return 0;
 836		if (rule->filterkey) {
 837			kfree(ctx->filterkey);
 838			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 839		}
 840		ctx->prio = rule->prio;
 841	}
 842	switch (rule->action) {
 843	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 844	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 845	}
 846	return 1;
 847}
 848
 849/* At process creation time, we can determine if system-call auditing is
 850 * completely disabled for this task.  Since we only have the task
 851 * structure at this point, we can only check uid and gid.
 852 */
 853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 854{
 855	struct audit_entry *e;
 856	enum audit_state   state;
 857
 858	rcu_read_lock();
 859	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 860		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 861				       &state, true)) {
 862			if (state == AUDIT_RECORD_CONTEXT)
 863				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 864			rcu_read_unlock();
 865			return state;
 866		}
 867	}
 868	rcu_read_unlock();
 869	return AUDIT_BUILD_CONTEXT;
 870}
 871
 872/* At syscall entry and exit time, this filter is called if the
 873 * audit_state is not low enough that auditing cannot take place, but is
 874 * also not high enough that we already know we have to write an audit
 875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 876 */
 877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 878					     struct audit_context *ctx,
 879					     struct list_head *list)
 880{
 881	struct audit_entry *e;
 882	enum audit_state state;
 883
 884	if (audit_pid && tsk->tgid == audit_pid)
 885		return AUDIT_DISABLED;
 886
 887	rcu_read_lock();
 888	if (!list_empty(list)) {
 889		int word = AUDIT_WORD(ctx->major);
 890		int bit  = AUDIT_BIT(ctx->major);
 891
 892		list_for_each_entry_rcu(e, list, list) {
 893			if ((e->rule.mask[word] & bit) == bit &&
 894			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 895					       &state, false)) {
 896				rcu_read_unlock();
 897				ctx->current_state = state;
 898				return state;
 899			}
 900		}
 901	}
 902	rcu_read_unlock();
 903	return AUDIT_BUILD_CONTEXT;
 904}
 905
 906/*
 907 * Given an audit_name check the inode hash table to see if they match.
 908 * Called holding the rcu read lock to protect the use of audit_inode_hash
 909 */
 910static int audit_filter_inode_name(struct task_struct *tsk,
 911				   struct audit_names *n,
 912				   struct audit_context *ctx) {
 913	int word, bit;
 914	int h = audit_hash_ino((u32)n->ino);
 915	struct list_head *list = &audit_inode_hash[h];
 916	struct audit_entry *e;
 917	enum audit_state state;
 918
 919	word = AUDIT_WORD(ctx->major);
 920	bit  = AUDIT_BIT(ctx->major);
 921
 922	if (list_empty(list))
 923		return 0;
 924
 925	list_for_each_entry_rcu(e, list, list) {
 926		if ((e->rule.mask[word] & bit) == bit &&
 927		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 928			ctx->current_state = state;
 929			return 1;
 930		}
 931	}
 932
 933	return 0;
 934}
 935
 936/* At syscall exit time, this filter is called if any audit_names have been
 937 * collected during syscall processing.  We only check rules in sublists at hash
 938 * buckets applicable to the inode numbers in audit_names.
 939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 940 */
 941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 942{
 943	struct audit_names *n;
 
 
 944
 945	if (audit_pid && tsk->tgid == audit_pid)
 946		return;
 947
 948	rcu_read_lock();
 
 
 
 
 
 
 949
 950	list_for_each_entry(n, &ctx->names_list, list) {
 951		if (audit_filter_inode_name(tsk, n, ctx))
 952			break;
 
 
 
 
 
 
 
 
 
 953	}
 954	rcu_read_unlock();
 955}
 956
 957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 958						      int return_valid,
 959						      long return_code)
 960{
 961	struct audit_context *context = tsk->audit_context;
 962
 963	if (!context)
 964		return NULL;
 965	context->return_valid = return_valid;
 966
 967	/*
 968	 * we need to fix up the return code in the audit logs if the actual
 969	 * return codes are later going to be fixed up by the arch specific
 970	 * signal handlers
 971	 *
 972	 * This is actually a test for:
 973	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 974	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 975	 *
 976	 * but is faster than a bunch of ||
 977	 */
 978	if (unlikely(return_code <= -ERESTARTSYS) &&
 979	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 980	    (return_code != -ENOIOCTLCMD))
 981		context->return_code = -EINTR;
 982	else
 983		context->return_code  = return_code;
 984
 985	if (context->in_syscall && !context->dummy) {
 986		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 987		audit_filter_inodes(tsk, context);
 988	}
 989
 990	tsk->audit_context = NULL;
 991	return context;
 992}
 993
 994static inline void audit_free_names(struct audit_context *context)
 995{
 996	struct audit_names *n, *next;
 997
 998#if AUDIT_DEBUG == 2
 999	if (context->put_count + context->ino_count != context->name_count) {
1000		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001		       " name_count=%d put_count=%d"
1002		       " ino_count=%d [NOT freeing]\n",
1003		       __FILE__, __LINE__,
1004		       context->serial, context->major, context->in_syscall,
1005		       context->name_count, context->put_count,
1006		       context->ino_count);
1007		list_for_each_entry(n, &context->names_list, list) {
1008			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009			       n->name, n->name ?: "(null)");
 
1010		}
1011		dump_stack();
1012		return;
1013	}
1014#endif
1015#if AUDIT_DEBUG
1016	context->put_count  = 0;
1017	context->ino_count  = 0;
1018#endif
1019
1020	list_for_each_entry_safe(n, next, &context->names_list, list) {
1021		list_del(&n->list);
1022		if (n->name && n->name_put)
1023			__putname(n->name);
1024		if (n->should_free)
1025			kfree(n);
1026	}
1027	context->name_count = 0;
1028	path_put(&context->pwd);
1029	context->pwd.dentry = NULL;
1030	context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035	struct audit_aux_data *aux;
1036
1037	while ((aux = context->aux)) {
1038		context->aux = aux->next;
1039		kfree(aux);
1040	}
1041	while ((aux = context->aux_pids)) {
1042		context->aux_pids = aux->next;
1043		kfree(aux);
1044	}
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048				      enum audit_state state)
1049{
1050	memset(context, 0, sizeof(*context));
1051	context->state      = state;
1052	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057	struct audit_context *context;
1058
1059	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060		return NULL;
1061	audit_zero_context(context, state);
1062	INIT_LIST_HEAD(&context->killed_trees);
1063	INIT_LIST_HEAD(&context->names_list);
1064	return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary.  Doing so turns on system call auditing for the
1073 * specified task.  This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078	struct audit_context *context;
1079	enum audit_state     state;
1080	char *key = NULL;
1081
1082	if (likely(!audit_ever_enabled))
1083		return 0; /* Return if not auditing. */
1084
1085	state = audit_filter_task(tsk, &key);
1086	if (state == AUDIT_DISABLED)
1087		return 0;
1088
1089	if (!(context = audit_alloc_context(state))) {
1090		kfree(key);
1091		audit_log_lost("out of memory in audit_alloc");
1092		return -ENOMEM;
1093	}
1094	context->filterkey = key;
1095
1096	tsk->audit_context  = context;
1097	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098	return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103	struct audit_context *previous;
1104	int		     count = 0;
1105
1106	do {
1107		previous = context->previous;
1108		if (previous || (count &&  count < 10)) {
1109			++count;
1110			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111			       " freeing multiple contexts (%d)\n",
1112			       context->serial, context->major,
1113			       context->name_count, count);
1114		}
1115		audit_free_names(context);
1116		unroll_tree_refs(context, NULL, 0);
1117		free_tree_refs(context);
1118		audit_free_aux(context);
1119		kfree(context->filterkey);
1120		kfree(context->sockaddr);
1121		kfree(context);
1122		context  = previous;
1123	} while (context);
1124	if (count >= 10)
1125		printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130	char *ctx = NULL;
1131	unsigned len;
1132	int error;
1133	u32 sid;
1134
1135	security_task_getsecid(current, &sid);
1136	if (!sid)
1137		return;
1138
1139	error = security_secid_to_secctx(sid, &ctx, &len);
1140	if (error) {
1141		if (error != -EINVAL)
1142			goto error_path;
1143		return;
1144	}
1145
1146	audit_log_format(ab, " subj=%s", ctx);
1147	security_release_secctx(ctx, len);
1148	return;
1149
1150error_path:
1151	audit_panic("error in audit_log_task_context");
1152	return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159	char name[sizeof(tsk->comm)];
1160	struct mm_struct *mm = tsk->mm;
1161	struct vm_area_struct *vma;
1162
1163	/* tsk == current */
1164
1165	get_task_comm(name, tsk);
1166	audit_log_format(ab, " comm=");
1167	audit_log_untrustedstring(ab, name);
1168
1169	if (mm) {
1170		down_read(&mm->mmap_sem);
1171		vma = mm->mmap;
1172		while (vma) {
1173			if ((vma->vm_flags & VM_EXECUTABLE) &&
1174			    vma->vm_file) {
1175				audit_log_d_path(ab, " exe=",
1176						 &vma->vm_file->f_path);
1177				break;
1178			}
1179			vma = vma->vm_next;
1180		}
1181		up_read(&mm->mmap_sem);
1182	}
1183	audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187				 uid_t auid, uid_t uid, unsigned int sessionid,
1188				 u32 sid, char *comm)
1189{
1190	struct audit_buffer *ab;
1191	char *ctx = NULL;
1192	u32 len;
1193	int rc = 0;
1194
1195	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196	if (!ab)
1197		return rc;
1198
1199	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200			 uid, sessionid);
1201	if (security_secid_to_secctx(sid, &ctx, &len)) {
1202		audit_log_format(ab, " obj=(none)");
1203		rc = 1;
1204	} else {
1205		audit_log_format(ab, " obj=%s", ctx);
1206		security_release_secctx(ctx, len);
1207	}
1208	audit_log_format(ab, " ocomm=");
1209	audit_log_untrustedstring(ab, comm);
1210	audit_log_end(ab);
1211
1212	return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates.  We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message.  In one 7500 byte message we can log up to
1223 * about 1000 min size arguments.  That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227					struct audit_buffer **ab,
1228					int arg_num,
1229					size_t *len_sent,
1230					const char __user *p,
1231					char *buf)
1232{
1233	char arg_num_len_buf[12];
1234	const char __user *tmp_p = p;
1235	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1236	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237	size_t len, len_left, to_send;
1238	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239	unsigned int i, has_cntl = 0, too_long = 0;
1240	int ret;
1241
1242	/* strnlen_user includes the null we don't want to send */
1243	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1244
1245	/*
1246	 * We just created this mm, if we can't find the strings
1247	 * we just copied into it something is _very_ wrong. Similar
1248	 * for strings that are too long, we should not have created
1249	 * any.
1250	 */
1251	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252		WARN_ON(1);
1253		send_sig(SIGKILL, current, 0);
1254		return -1;
1255	}
1256
1257	/* walk the whole argument looking for non-ascii chars */
1258	do {
1259		if (len_left > MAX_EXECVE_AUDIT_LEN)
1260			to_send = MAX_EXECVE_AUDIT_LEN;
1261		else
1262			to_send = len_left;
1263		ret = copy_from_user(buf, tmp_p, to_send);
1264		/*
1265		 * There is no reason for this copy to be short. We just
1266		 * copied them here, and the mm hasn't been exposed to user-
1267		 * space yet.
1268		 */
1269		if (ret) {
1270			WARN_ON(1);
1271			send_sig(SIGKILL, current, 0);
1272			return -1;
1273		}
1274		buf[to_send] = '\0';
1275		has_cntl = audit_string_contains_control(buf, to_send);
1276		if (has_cntl) {
1277			/*
1278			 * hex messages get logged as 2 bytes, so we can only
1279			 * send half as much in each message
1280			 */
1281			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282			break;
1283		}
1284		len_left -= to_send;
1285		tmp_p += to_send;
1286	} while (len_left > 0);
1287
1288	len_left = len;
1289
1290	if (len > max_execve_audit_len)
1291		too_long = 1;
1292
1293	/* rewalk the argument actually logging the message */
1294	for (i = 0; len_left > 0; i++) {
1295		int room_left;
1296
1297		if (len_left > max_execve_audit_len)
1298			to_send = max_execve_audit_len;
1299		else
1300			to_send = len_left;
1301
1302		/* do we have space left to send this argument in this ab? */
1303		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304		if (has_cntl)
1305			room_left -= (to_send * 2);
1306		else
1307			room_left -= to_send;
1308		if (room_left < 0) {
1309			*len_sent = 0;
1310			audit_log_end(*ab);
1311			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312			if (!*ab)
1313				return 0;
1314		}
1315
1316		/*
1317		 * first record needs to say how long the original string was
1318		 * so we can be sure nothing was lost.
1319		 */
1320		if ((i == 0) && (too_long))
1321			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322					 has_cntl ? 2*len : len);
1323
1324		/*
1325		 * normally arguments are small enough to fit and we already
1326		 * filled buf above when we checked for control characters
1327		 * so don't bother with another copy_from_user
1328		 */
1329		if (len >= max_execve_audit_len)
1330			ret = copy_from_user(buf, p, to_send);
1331		else
1332			ret = 0;
1333		if (ret) {
1334			WARN_ON(1);
1335			send_sig(SIGKILL, current, 0);
1336			return -1;
1337		}
1338		buf[to_send] = '\0';
1339
1340		/* actually log it */
1341		audit_log_format(*ab, " a%d", arg_num);
1342		if (too_long)
1343			audit_log_format(*ab, "[%d]", i);
1344		audit_log_format(*ab, "=");
1345		if (has_cntl)
1346			audit_log_n_hex(*ab, buf, to_send);
1347		else
1348			audit_log_string(*ab, buf);
1349
1350		p += to_send;
1351		len_left -= to_send;
1352		*len_sent += arg_num_len;
1353		if (has_cntl)
1354			*len_sent += to_send * 2;
1355		else
1356			*len_sent += to_send;
1357	}
1358	/* include the null we didn't log */
1359	return len + 1;
1360}
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363				  struct audit_buffer **ab,
1364				  struct audit_aux_data_execve *axi)
1365{
1366	int i, len;
1367	size_t len_sent = 0;
1368	const char __user *p;
1369	char *buf;
1370
1371	if (axi->mm != current->mm)
1372		return; /* execve failed, no additional info */
1373
1374	p = (const char __user *)axi->mm->arg_start;
1375
1376	audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378	/*
1379	 * we need some kernel buffer to hold the userspace args.  Just
1380	 * allocate one big one rather than allocating one of the right size
1381	 * for every single argument inside audit_log_single_execve_arg()
1382	 * should be <8k allocation so should be pretty safe.
1383	 */
1384	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385	if (!buf) {
1386		audit_panic("out of memory for argv string\n");
1387		return;
1388	}
1389
1390	for (i = 0; i < axi->argc; i++) {
1391		len = audit_log_single_execve_arg(context, ab, i,
1392						  &len_sent, p, buf);
1393		if (len <= 0)
1394			break;
1395		p += len;
1396	}
1397	kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401{
1402	int i;
1403
1404	audit_log_format(ab, " %s=", prefix);
1405	CAP_FOR_EACH_U32(i) {
1406		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407	}
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412	kernel_cap_t *perm = &name->fcap.permitted;
1413	kernel_cap_t *inh = &name->fcap.inheritable;
1414	int log = 0;
1415
1416	if (!cap_isclear(*perm)) {
1417		audit_log_cap(ab, "cap_fp", perm);
1418		log = 1;
1419	}
1420	if (!cap_isclear(*inh)) {
1421		audit_log_cap(ab, "cap_fi", inh);
1422		log = 1;
1423	}
1424
1425	if (log)
1426		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431	struct audit_buffer *ab;
1432	int i;
1433
1434	ab = audit_log_start(context, GFP_KERNEL, context->type);
1435	if (!ab)
1436		return;
1437
1438	switch (context->type) {
1439	case AUDIT_SOCKETCALL: {
1440		int nargs = context->socketcall.nargs;
1441		audit_log_format(ab, "nargs=%d", nargs);
1442		for (i = 0; i < nargs; i++)
1443			audit_log_format(ab, " a%d=%lx", i,
1444				context->socketcall.args[i]);
1445		break; }
1446	case AUDIT_IPC: {
1447		u32 osid = context->ipc.osid;
1448
1449		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451		if (osid) {
1452			char *ctx = NULL;
1453			u32 len;
1454			if (security_secid_to_secctx(osid, &ctx, &len)) {
1455				audit_log_format(ab, " osid=%u", osid);
1456				*call_panic = 1;
1457			} else {
1458				audit_log_format(ab, " obj=%s", ctx);
1459				security_release_secctx(ctx, len);
1460			}
1461		}
1462		if (context->ipc.has_perm) {
1463			audit_log_end(ab);
1464			ab = audit_log_start(context, GFP_KERNEL,
1465					     AUDIT_IPC_SET_PERM);
1466			audit_log_format(ab,
1467				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468				context->ipc.qbytes,
1469				context->ipc.perm_uid,
1470				context->ipc.perm_gid,
1471				context->ipc.perm_mode);
1472			if (!ab)
1473				return;
1474		}
1475		break; }
1476	case AUDIT_MQ_OPEN: {
1477		audit_log_format(ab,
1478			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479			"mq_msgsize=%ld mq_curmsgs=%ld",
1480			context->mq_open.oflag, context->mq_open.mode,
1481			context->mq_open.attr.mq_flags,
1482			context->mq_open.attr.mq_maxmsg,
1483			context->mq_open.attr.mq_msgsize,
1484			context->mq_open.attr.mq_curmsgs);
1485		break; }
1486	case AUDIT_MQ_SENDRECV: {
1487		audit_log_format(ab,
1488			"mqdes=%d msg_len=%zd msg_prio=%u "
1489			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490			context->mq_sendrecv.mqdes,
1491			context->mq_sendrecv.msg_len,
1492			context->mq_sendrecv.msg_prio,
1493			context->mq_sendrecv.abs_timeout.tv_sec,
1494			context->mq_sendrecv.abs_timeout.tv_nsec);
1495		break; }
1496	case AUDIT_MQ_NOTIFY: {
1497		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498				context->mq_notify.mqdes,
1499				context->mq_notify.sigev_signo);
1500		break; }
1501	case AUDIT_MQ_GETSETATTR: {
1502		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503		audit_log_format(ab,
1504			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505			"mq_curmsgs=%ld ",
1506			context->mq_getsetattr.mqdes,
1507			attr->mq_flags, attr->mq_maxmsg,
1508			attr->mq_msgsize, attr->mq_curmsgs);
1509		break; }
1510	case AUDIT_CAPSET: {
1511		audit_log_format(ab, "pid=%d", context->capset.pid);
1512		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515		break; }
1516	case AUDIT_MMAP: {
1517		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518				 context->mmap.flags);
1519		break; }
1520	}
1521	audit_log_end(ab);
1522}
1523
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525			   int record_num, int *call_panic)
1526{
1527	struct audit_buffer *ab;
1528	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529	if (!ab)
1530		return; /* audit_panic has been called */
1531
1532	audit_log_format(ab, "item=%d", record_num);
1533
1534	if (n->name) {
1535		switch (n->name_len) {
1536		case AUDIT_NAME_FULL:
1537			/* log the full path */
1538			audit_log_format(ab, " name=");
1539			audit_log_untrustedstring(ab, n->name);
1540			break;
1541		case 0:
1542			/* name was specified as a relative path and the
1543			 * directory component is the cwd */
1544			audit_log_d_path(ab, " name=", &context->pwd);
1545			break;
1546		default:
1547			/* log the name's directory component */
1548			audit_log_format(ab, " name=");
1549			audit_log_n_untrustedstring(ab, n->name,
1550						    n->name_len);
1551		}
1552	} else
1553		audit_log_format(ab, " name=(null)");
1554
1555	if (n->ino != (unsigned long)-1) {
1556		audit_log_format(ab, " inode=%lu"
1557				 " dev=%02x:%02x mode=%#ho"
1558				 " ouid=%u ogid=%u rdev=%02x:%02x",
1559				 n->ino,
1560				 MAJOR(n->dev),
1561				 MINOR(n->dev),
1562				 n->mode,
1563				 n->uid,
1564				 n->gid,
1565				 MAJOR(n->rdev),
1566				 MINOR(n->rdev));
1567	}
1568	if (n->osid != 0) {
1569		char *ctx = NULL;
1570		u32 len;
1571		if (security_secid_to_secctx(
1572			n->osid, &ctx, &len)) {
1573			audit_log_format(ab, " osid=%u", n->osid);
1574			*call_panic = 2;
1575		} else {
1576			audit_log_format(ab, " obj=%s", ctx);
1577			security_release_secctx(ctx, len);
1578		}
1579	}
1580
1581	audit_log_fcaps(ab, n);
1582
1583	audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587{
1588	const struct cred *cred;
1589	int i, call_panic = 0;
1590	struct audit_buffer *ab;
1591	struct audit_aux_data *aux;
1592	const char *tty;
1593	struct audit_names *n;
1594
1595	/* tsk == current */
1596	context->pid = tsk->pid;
1597	if (!context->ppid)
1598		context->ppid = sys_getppid();
1599	cred = current_cred();
1600	context->uid   = cred->uid;
1601	context->gid   = cred->gid;
1602	context->euid  = cred->euid;
1603	context->suid  = cred->suid;
1604	context->fsuid = cred->fsuid;
1605	context->egid  = cred->egid;
1606	context->sgid  = cred->sgid;
1607	context->fsgid = cred->fsgid;
1608	context->personality = tsk->personality;
1609
1610	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611	if (!ab)
1612		return;		/* audit_panic has been called */
1613	audit_log_format(ab, "arch=%x syscall=%d",
1614			 context->arch, context->major);
1615	if (context->personality != PER_LINUX)
1616		audit_log_format(ab, " per=%lx", context->personality);
1617	if (context->return_valid)
1618		audit_log_format(ab, " success=%s exit=%ld",
1619				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620				 context->return_code);
1621
1622	spin_lock_irq(&tsk->sighand->siglock);
1623	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624		tty = tsk->signal->tty->name;
1625	else
1626		tty = "(none)";
1627	spin_unlock_irq(&tsk->sighand->siglock);
1628
1629	audit_log_format(ab,
1630		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632		  " euid=%u suid=%u fsuid=%u"
1633		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634		  context->argv[0],
1635		  context->argv[1],
1636		  context->argv[2],
1637		  context->argv[3],
1638		  context->name_count,
1639		  context->ppid,
1640		  context->pid,
1641		  tsk->loginuid,
1642		  context->uid,
1643		  context->gid,
1644		  context->euid, context->suid, context->fsuid,
1645		  context->egid, context->sgid, context->fsgid, tty,
1646		  tsk->sessionid);
1647
1648
1649	audit_log_task_info(ab, tsk);
1650	audit_log_key(ab, context->filterkey);
1651	audit_log_end(ab);
1652
1653	for (aux = context->aux; aux; aux = aux->next) {
1654
1655		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656		if (!ab)
1657			continue; /* audit_panic has been called */
1658
1659		switch (aux->type) {
1660
1661		case AUDIT_EXECVE: {
1662			struct audit_aux_data_execve *axi = (void *)aux;
1663			audit_log_execve_info(context, &ab, axi);
1664			break; }
1665
1666		case AUDIT_BPRM_FCAPS: {
1667			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678			break; }
1679
1680		}
1681		audit_log_end(ab);
1682	}
1683
1684	if (context->type)
1685		show_special(context, &call_panic);
1686
1687	if (context->fds[0] >= 0) {
1688		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689		if (ab) {
1690			audit_log_format(ab, "fd0=%d fd1=%d",
1691					context->fds[0], context->fds[1]);
1692			audit_log_end(ab);
1693		}
1694	}
1695
1696	if (context->sockaddr_len) {
1697		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698		if (ab) {
1699			audit_log_format(ab, "saddr=");
1700			audit_log_n_hex(ab, (void *)context->sockaddr,
1701					context->sockaddr_len);
1702			audit_log_end(ab);
1703		}
1704	}
1705
1706	for (aux = context->aux_pids; aux; aux = aux->next) {
1707		struct audit_aux_data_pids *axs = (void *)aux;
1708
1709		for (i = 0; i < axs->pid_count; i++)
1710			if (audit_log_pid_context(context, axs->target_pid[i],
1711						  axs->target_auid[i],
1712						  axs->target_uid[i],
1713						  axs->target_sessionid[i],
1714						  axs->target_sid[i],
1715						  axs->target_comm[i]))
1716				call_panic = 1;
1717	}
1718
1719	if (context->target_pid &&
1720	    audit_log_pid_context(context, context->target_pid,
1721				  context->target_auid, context->target_uid,
1722				  context->target_sessionid,
1723				  context->target_sid, context->target_comm))
1724			call_panic = 1;
1725
1726	if (context->pwd.dentry && context->pwd.mnt) {
1727		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728		if (ab) {
1729			audit_log_d_path(ab, " cwd=", &context->pwd);
1730			audit_log_end(ab);
1731		}
1732	}
 
 
 
 
 
 
1733
1734	i = 0;
1735	list_for_each_entry(n, &context->names_list, list)
1736		audit_log_name(context, n, i++, &call_panic);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737
1738	/* Send end of event record to help user space know we are finished */
1739	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740	if (ab)
1741		audit_log_end(ab);
1742	if (call_panic)
1743		audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754	struct audit_context *context;
1755
1756	context = audit_get_context(tsk, 0, 0);
1757	if (!context)
1758		return;
1759
1760	/* Check for system calls that do not go through the exit
1761	 * function (e.g., exit_group), then free context block.
1762	 * We use GFP_ATOMIC here because we might be doing this
1763	 * in the context of the idle thread */
1764	/* that can happen only if we are called from do_exit() */
1765	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766		audit_log_exit(context, tsk);
1767	if (!list_empty(&context->killed_trees))
1768		audit_kill_trees(&context->killed_trees);
1769
1770	audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry.  This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built.  If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791			 unsigned long a1, unsigned long a2,
1792			 unsigned long a3, unsigned long a4)
1793{
1794	struct task_struct *tsk = current;
1795	struct audit_context *context = tsk->audit_context;
1796	enum audit_state     state;
1797
1798	if (!context)
1799		return;
1800
1801	/*
1802	 * This happens only on certain architectures that make system
1803	 * calls in kernel_thread via the entry.S interface, instead of
1804	 * with direct calls.  (If you are porting to a new
1805	 * architecture, hitting this condition can indicate that you
1806	 * got the _exit/_leave calls backward in entry.S.)
1807	 *
1808	 * i386     no
1809	 * x86_64   no
1810	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1811	 *
1812	 * This also happens with vm86 emulation in a non-nested manner
1813	 * (entries without exits), so this case must be caught.
1814	 */
1815	if (context->in_syscall) {
1816		struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819		printk(KERN_ERR
1820		       "audit(:%d) pid=%d in syscall=%d;"
1821		       " entering syscall=%d\n",
1822		       context->serial, tsk->pid, context->major, major);
1823#endif
1824		newctx = audit_alloc_context(context->state);
1825		if (newctx) {
1826			newctx->previous   = context;
1827			context		   = newctx;
1828			tsk->audit_context = newctx;
1829		} else	{
1830			/* If we can't alloc a new context, the best we
1831			 * can do is to leak memory (any pending putname
1832			 * will be lost).  The only other alternative is
1833			 * to abandon auditing. */
1834			audit_zero_context(context, context->state);
1835		}
1836	}
1837	BUG_ON(context->in_syscall || context->name_count);
1838
1839	if (!audit_enabled)
1840		return;
1841
1842	context->arch	    = arch;
1843	context->major      = major;
1844	context->argv[0]    = a1;
1845	context->argv[1]    = a2;
1846	context->argv[2]    = a3;
1847	context->argv[3]    = a4;
1848
1849	state = context->state;
1850	context->dummy = !audit_n_rules;
1851	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852		context->prio = 0;
1853		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854	}
1855	if (state == AUDIT_DISABLED)
1856		return;
1857
1858	context->serial     = 0;
1859	context->ctime      = CURRENT_TIME;
1860	context->in_syscall = 1;
1861	context->current_state  = state;
1862	context->ppid       = 0;
1863}
1864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call.  If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information.  In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878	struct task_struct *tsk = current;
1879	struct audit_context *context;
1880
1881	if (success)
1882		success = AUDITSC_SUCCESS;
1883	else
1884		success = AUDITSC_FAILURE;
1885
1886	context = audit_get_context(tsk, success, return_code);
1887	if (!context)
1888		return;
1889
1890	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891		audit_log_exit(context, tsk);
1892
1893	context->in_syscall = 0;
1894	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896	if (!list_empty(&context->killed_trees))
1897		audit_kill_trees(&context->killed_trees);
1898
1899	if (context->previous) {
1900		struct audit_context *new_context = context->previous;
1901		context->previous  = NULL;
1902		audit_free_context(context);
1903		tsk->audit_context = new_context;
1904	} else {
1905		audit_free_names(context);
1906		unroll_tree_refs(context, NULL, 0);
1907		audit_free_aux(context);
1908		context->aux = NULL;
1909		context->aux_pids = NULL;
1910		context->target_pid = 0;
1911		context->target_sid = 0;
1912		context->sockaddr_len = 0;
1913		context->type = 0;
1914		context->fds[0] = -1;
1915		if (context->state != AUDIT_RECORD_CONTEXT) {
1916			kfree(context->filterkey);
1917			context->filterkey = NULL;
1918		}
1919		tsk->audit_context = context;
1920	}
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926	struct audit_context *context;
1927	struct audit_tree_refs *p;
1928	struct audit_chunk *chunk;
1929	int count;
1930	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931		return;
1932	context = current->audit_context;
1933	p = context->trees;
1934	count = context->tree_count;
1935	rcu_read_lock();
1936	chunk = audit_tree_lookup(inode);
1937	rcu_read_unlock();
1938	if (!chunk)
1939		return;
1940	if (likely(put_tree_ref(context, chunk)))
1941		return;
1942	if (unlikely(!grow_tree_refs(context))) {
1943		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944		audit_set_auditable(context);
1945		audit_put_chunk(chunk);
1946		unroll_tree_refs(context, p, count);
1947		return;
1948	}
1949	put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956	struct audit_context *context;
1957	struct audit_tree_refs *p;
1958	const struct dentry *d, *parent;
1959	struct audit_chunk *drop;
1960	unsigned long seq;
1961	int count;
1962
1963	context = current->audit_context;
1964	p = context->trees;
1965	count = context->tree_count;
1966retry:
1967	drop = NULL;
1968	d = dentry;
1969	rcu_read_lock();
1970	seq = read_seqbegin(&rename_lock);
1971	for(;;) {
1972		struct inode *inode = d->d_inode;
1973		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974			struct audit_chunk *chunk;
1975			chunk = audit_tree_lookup(inode);
1976			if (chunk) {
1977				if (unlikely(!put_tree_ref(context, chunk))) {
1978					drop = chunk;
1979					break;
1980				}
1981			}
1982		}
1983		parent = d->d_parent;
1984		if (parent == d)
1985			break;
1986		d = parent;
1987	}
1988	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1989		rcu_read_unlock();
1990		if (!drop) {
1991			/* just a race with rename */
1992			unroll_tree_refs(context, p, count);
1993			goto retry;
1994		}
1995		audit_put_chunk(drop);
1996		if (grow_tree_refs(context)) {
1997			/* OK, got more space */
1998			unroll_tree_refs(context, p, count);
1999			goto retry;
2000		}
2001		/* too bad */
2002		printk(KERN_WARNING
2003			"out of memory, audit has lost a tree reference\n");
2004		unroll_tree_refs(context, p, count);
2005		audit_set_auditable(context);
2006		return;
2007	}
2008	rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
2013{
2014	struct audit_names *aname;
2015
2016	if (context->name_count < AUDIT_NAMES) {
2017		aname = &context->preallocated_names[context->name_count];
2018		memset(aname, 0, sizeof(*aname));
2019	} else {
2020		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021		if (!aname)
2022			return NULL;
2023		aname->should_free = true;
2024	}
2025
2026	aname->ino = (unsigned long)-1;
2027	list_add_tail(&aname->list, &context->names_list);
2028
2029	context->name_count++;
2030#if AUDIT_DEBUG
2031	context->ino_count++;
2032#endif
2033	return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045	struct audit_context *context = current->audit_context;
2046	struct audit_names *n;
 
 
2047
2048	if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051		       __FILE__, __LINE__, context->serial, name);
2052		dump_stack();
2053#endif
2054		return;
2055	}
2056
2057	n = audit_alloc_name(context);
2058	if (!n)
2059		return;
2060
2061	n->name = name;
2062	n->name_len = AUDIT_NAME_FULL;
2063	n->name_put = true;
2064
2065	if (!context->pwd.dentry)
2066		get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078	struct audit_context *context = current->audit_context;
2079
2080	BUG_ON(!context);
2081	if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084		       __FILE__, __LINE__, context->serial, name);
2085		if (context->name_count) {
2086			struct audit_names *n;
2087			int i;
2088
2089			list_for_each_entry(n, &context->names_list, list)
2090				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091				       n->name, n->name ?: "(null)");
2092			}
 
2093#endif
2094		__putname(name);
2095	}
2096#if AUDIT_DEBUG
2097	else {
2098		++context->put_count;
2099		if (context->put_count > context->name_count) {
2100			printk(KERN_ERR "%s:%d(:%d): major=%d"
2101			       " in_syscall=%d putname(%p) name_count=%d"
2102			       " put_count=%d\n",
2103			       __FILE__, __LINE__,
2104			       context->serial, context->major,
2105			       context->in_syscall, name, context->name_count,
2106			       context->put_count);
2107			dump_stack();
2108		}
2109	}
2110#endif
2111}
2112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115	struct cpu_vfs_cap_data caps;
2116	int rc;
2117
 
 
 
 
 
2118	if (!dentry)
2119		return 0;
2120
2121	rc = get_vfs_caps_from_disk(dentry, &caps);
2122	if (rc)
2123		return rc;
2124
2125	name->fcap.permitted = caps.permitted;
2126	name->fcap.inheritable = caps.inheritable;
2127	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129
2130	return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136			     const struct inode *inode)
2137{
2138	name->ino   = inode->i_ino;
2139	name->dev   = inode->i_sb->s_dev;
2140	name->mode  = inode->i_mode;
2141	name->uid   = inode->i_uid;
2142	name->gid   = inode->i_gid;
2143	name->rdev  = inode->i_rdev;
2144	security_inode_getsecid(inode, &name->osid);
2145	audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
2156{
 
2157	struct audit_context *context = current->audit_context;
2158	const struct inode *inode = dentry->d_inode;
2159	struct audit_names *n;
2160
2161	if (!context->in_syscall)
2162		return;
2163
2164	list_for_each_entry_reverse(n, &context->names_list, list) {
2165		if (n->name && (n->name == name))
2166			goto out;
 
 
 
 
 
 
 
 
 
 
 
2167	}
2168
2169	/* unable to find the name from a previous getname() */
2170	n = audit_alloc_name(context);
2171	if (!n)
2172		return;
2173out:
2174	handle_path(dentry);
2175	audit_copy_inode(n, dentry, inode);
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created.  Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192			 const struct inode *parent)
2193{
 
2194	struct audit_context *context = current->audit_context;
2195	const char *found_parent = NULL, *found_child = NULL;
2196	const struct inode *inode = dentry->d_inode;
2197	const char *dname = dentry->d_name.name;
2198	struct audit_names *n;
2199	int dirlen = 0;
2200
2201	if (!context->in_syscall)
2202		return;
2203
2204	if (inode)
2205		handle_one(inode);
2206
2207	/* parent is more likely, look for it first */
2208	list_for_each_entry(n, &context->names_list, list) {
 
 
2209		if (!n->name)
2210			continue;
2211
2212		if (n->ino == parent->i_ino &&
2213		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214			n->name_len = dirlen; /* update parent data in place */
2215			found_parent = n->name;
2216			goto add_names;
2217		}
2218	}
2219
2220	/* no matching parent, look for matching child */
2221	list_for_each_entry(n, &context->names_list, list) {
 
 
2222		if (!n->name)
2223			continue;
2224
2225		/* strcmp() is the more likely scenario */
2226		if (!strcmp(dname, n->name) ||
2227		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228			if (inode)
2229				audit_copy_inode(n, NULL, inode);
2230			else
2231				n->ino = (unsigned long)-1;
2232			found_child = n->name;
2233			goto add_names;
2234		}
2235	}
2236
2237add_names:
2238	if (!found_parent) {
2239		n = audit_alloc_name(context);
2240		if (!n)
2241			return;
2242		audit_copy_inode(n, NULL, parent);
 
 
2243	}
2244
2245	if (!found_child) {
2246		n = audit_alloc_name(context);
2247		if (!n)
2248			return;
 
2249
2250		/* Re-use the name belonging to the slot for a matching parent
2251		 * directory. All names for this context are relinquished in
2252		 * audit_free_names() */
2253		if (found_parent) {
2254			n->name = found_parent;
2255			n->name_len = AUDIT_NAME_FULL;
2256			/* don't call __putname() */
2257			n->name_put = false;
 
 
2258		}
2259
2260		if (inode)
2261			audit_copy_inode(n, NULL, inode);
 
 
2262	}
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275		       struct timespec *t, unsigned int *serial)
2276{
2277	if (!ctx->in_syscall)
2278		return 0;
2279	if (!ctx->serial)
2280		ctx->serial = audit_serial();
2281	t->tv_sec  = ctx->ctime.tv_sec;
2282	t->tv_nsec = ctx->ctime.tv_nsec;
2283	*serial    = ctx->serial;
2284	if (!ctx->prio) {
2285		ctx->prio = 1;
2286		ctx->current_state = AUDIT_RECORD_CONTEXT;
2287	}
2288	return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
 
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304	struct task_struct *task = current;
2305	struct audit_context *context = task->audit_context;
2306	unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309	if (task->loginuid != -1)
2310		return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312	if (!capable(CAP_AUDIT_CONTROL))
2313		return -EPERM;
2314#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316	sessionid = atomic_inc_return(&session_id);
2317	if (context && context->in_syscall) {
2318		struct audit_buffer *ab;
2319
2320		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321		if (ab) {
2322			audit_log_format(ab, "login pid=%d uid=%u "
2323				"old auid=%u new auid=%u"
2324				" old ses=%u new ses=%u",
2325				task->pid, task_uid(task),
2326				task->loginuid, loginuid,
2327				task->sessionid, sessionid);
2328			audit_log_end(ab);
2329		}
2330	}
2331	task->sessionid = sessionid;
2332	task->loginuid = loginuid;
2333	return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345	struct audit_context *context = current->audit_context;
2346
2347	if (attr)
2348		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349	else
2350		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352	context->mq_open.oflag = oflag;
2353	context->mq_open.mode = mode;
2354
2355	context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367			const struct timespec *abs_timeout)
2368{
2369	struct audit_context *context = current->audit_context;
2370	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372	if (abs_timeout)
2373		memcpy(p, abs_timeout, sizeof(struct timespec));
2374	else
2375		memset(p, 0, sizeof(struct timespec));
2376
2377	context->mq_sendrecv.mqdes = mqdes;
2378	context->mq_sendrecv.msg_len = msg_len;
2379	context->mq_sendrecv.msg_prio = msg_prio;
2380
2381	context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393	struct audit_context *context = current->audit_context;
2394
2395	if (notification)
2396		context->mq_notify.sigev_signo = notification->sigev_signo;
2397	else
2398		context->mq_notify.sigev_signo = 0;
2399
2400	context->mq_notify.mqdes = mqdes;
2401	context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412	struct audit_context *context = current->audit_context;
2413	context->mq_getsetattr.mqdes = mqdes;
2414	context->mq_getsetattr.mqstat = *mqstat;
2415	context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425	struct audit_context *context = current->audit_context;
2426	context->ipc.uid = ipcp->uid;
2427	context->ipc.gid = ipcp->gid;
2428	context->ipc.mode = ipcp->mode;
2429	context->ipc.has_perm = 0;
2430	security_ipc_getsecid(ipcp, &context->ipc.osid);
2431	context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445	struct audit_context *context = current->audit_context;
2446
2447	context->ipc.qbytes = qbytes;
2448	context->ipc.perm_uid = uid;
2449	context->ipc.perm_gid = gid;
2450	context->ipc.perm_mode = mode;
2451	context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456	struct audit_aux_data_execve *ax;
2457	struct audit_context *context = current->audit_context;
2458
 
 
 
2459	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460	if (!ax)
2461		return -ENOMEM;
2462
2463	ax->argc = bprm->argc;
2464	ax->envc = bprm->envc;
2465	ax->mm = bprm->mm;
2466	ax->d.type = AUDIT_EXECVE;
2467	ax->d.next = context->aux;
2468	context->aux = (void *)ax;
2469	return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481	struct audit_context *context = current->audit_context;
2482
 
 
 
2483	context->type = AUDIT_SOCKETCALL;
2484	context->socketcall.nargs = nargs;
2485	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496	struct audit_context *context = current->audit_context;
2497	context->fds[0] = fd1;
2498	context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510	struct audit_context *context = current->audit_context;
2511
 
 
 
2512	if (!context->sockaddr) {
2513		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514		if (!p)
2515			return -ENOMEM;
2516		context->sockaddr = p;
2517	}
2518
2519	context->sockaddr_len = len;
2520	memcpy(context->sockaddr, a, len);
2521	return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526	struct audit_context *context = current->audit_context;
2527
2528	context->target_pid = t->pid;
2529	context->target_auid = audit_get_loginuid(t);
2530	context->target_uid = task_uid(t);
2531	context->target_sessionid = audit_get_sessionid(t);
2532	security_task_getsecid(t, &context->target_sid);
2533	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546	struct audit_aux_data_pids *axp;
2547	struct task_struct *tsk = current;
2548	struct audit_context *ctx = tsk->audit_context;
2549	uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551	if (audit_pid && t->tgid == audit_pid) {
2552		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553			audit_sig_pid = tsk->pid;
2554			if (tsk->loginuid != -1)
2555				audit_sig_uid = tsk->loginuid;
2556			else
2557				audit_sig_uid = uid;
2558			security_task_getsecid(tsk, &audit_sig_sid);
2559		}
2560		if (!audit_signals || audit_dummy_context())
2561			return 0;
2562	}
2563
2564	/* optimize the common case by putting first signal recipient directly
2565	 * in audit_context */
2566	if (!ctx->target_pid) {
2567		ctx->target_pid = t->tgid;
2568		ctx->target_auid = audit_get_loginuid(t);
2569		ctx->target_uid = t_uid;
2570		ctx->target_sessionid = audit_get_sessionid(t);
2571		security_task_getsecid(t, &ctx->target_sid);
2572		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573		return 0;
2574	}
2575
2576	axp = (void *)ctx->aux_pids;
2577	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579		if (!axp)
2580			return -ENOMEM;
2581
2582		axp->d.type = AUDIT_OBJ_PID;
2583		axp->d.next = ctx->aux_pids;
2584		ctx->aux_pids = (void *)axp;
2585	}
2586	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588	axp->target_pid[axp->pid_count] = t->tgid;
2589	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590	axp->target_uid[axp->pid_count] = t_uid;
2591	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594	axp->pid_count++;
2595
2596	return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611			   const struct cred *new, const struct cred *old)
2612{
2613	struct audit_aux_data_bprm_fcaps *ax;
2614	struct audit_context *context = current->audit_context;
2615	struct cpu_vfs_cap_data vcaps;
2616	struct dentry *dentry;
2617
2618	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619	if (!ax)
2620		return -ENOMEM;
2621
2622	ax->d.type = AUDIT_BPRM_FCAPS;
2623	ax->d.next = context->aux;
2624	context->aux = (void *)ax;
2625
2626	dentry = dget(bprm->file->f_dentry);
2627	get_vfs_caps_from_disk(dentry, &vcaps);
2628	dput(dentry);
2629
2630	ax->fcap.permitted = vcaps.permitted;
2631	ax->fcap.inheritable = vcaps.inheritable;
2632	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635	ax->old_pcap.permitted   = old->cap_permitted;
2636	ax->old_pcap.inheritable = old->cap_inheritable;
2637	ax->old_pcap.effective   = old->cap_effective;
2638
2639	ax->new_pcap.permitted   = new->cap_permitted;
2640	ax->new_pcap.inheritable = new->cap_inheritable;
2641	ax->new_pcap.effective   = new->cap_effective;
2642	return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655		       const struct cred *new, const struct cred *old)
2656{
2657	struct audit_context *context = current->audit_context;
2658	context->capset.pid = pid;
2659	context->capset.cap.effective   = new->cap_effective;
2660	context->capset.cap.inheritable = new->cap_effective;
2661	context->capset.cap.permitted   = new->cap_permitted;
2662	context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667	struct audit_context *context = current->audit_context;
2668	context->mmap.fd = fd;
2669	context->mmap.flags = flags;
2670	context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674{
2675	uid_t auid, uid;
2676	gid_t gid;
2677	unsigned int sessionid;
2678
2679	auid = audit_get_loginuid(current);
2680	sessionid = audit_get_sessionid(current);
2681	current_uid_gid(&uid, &gid);
2682
2683	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684			 auid, uid, gid, sessionid);
2685	audit_log_task_context(ab);
2686	audit_log_format(ab, " pid=%d comm=", current->pid);
2687	audit_log_untrustedstring(ab, current->comm);
2688	audit_log_format(ab, " reason=");
2689	audit_log_string(ab, reason);
2690	audit_log_format(ab, " sig=%ld", signr);
2691}
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701	struct audit_buffer *ab;
 
 
 
 
2702
2703	if (!audit_enabled)
2704		return;
2705
2706	if (signr == SIGQUIT)	/* don't care for those */
2707		return;
2708
2709	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710	audit_log_abend(ab, "memory violation", signr);
2711	audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
2715{
2716	struct audit_buffer *ab;
2717
2718	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719	audit_log_abend(ab, "seccomp", signr);
2720	audit_log_format(ab, " syscall=%ld", syscall);
2721	audit_log_format(ab, " compat=%d", is_compat_task());
2722	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723	audit_log_format(ab, " code=0x%x", code);
 
 
 
 
2724	audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729	struct audit_context *ctx = current->audit_context;
2730	if (likely(!ctx || !ctx->in_syscall))
2731		return NULL;
2732	return &ctx->killed_trees;
2733}
v3.1
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
 
  70
  71#include "audit.h"
  72
 
 
 
 
 
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
 
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90	kernel_cap_t		permitted;
  91	kernel_cap_t		inheritable;
  92	union {
  93		unsigned int	fE;		/* effective bit of a file capability */
  94		kernel_cap_t	effective;	/* effective set of a process */
  95	};
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 
 104	const char	*name;
 105	int		name_len;	/* number of name's characters to log */
 106	unsigned	name_put;	/* call __putname() for this name */
 107	unsigned long	ino;
 108	dev_t		dev;
 109	umode_t		mode;
 110	uid_t		uid;
 111	gid_t		gid;
 112	dev_t		rdev;
 113	u32		osid;
 114	struct audit_cap_data fcap;
 115	unsigned int	fcap_ver;
 
 
 
 
 
 
 
 
 116};
 117
 118struct audit_aux_data {
 119	struct audit_aux_data	*next;
 120	int			type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM	0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS	16
 127
 128struct audit_aux_data_execve {
 129	struct audit_aux_data	d;
 130	int argc;
 131	int envc;
 132	struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136	struct audit_aux_data	d;
 137	pid_t			target_pid[AUDIT_AUX_PIDS];
 138	uid_t			target_auid[AUDIT_AUX_PIDS];
 139	uid_t			target_uid[AUDIT_AUX_PIDS];
 140	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 141	u32			target_sid[AUDIT_AUX_PIDS];
 142	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143	int			pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147	struct audit_aux_data	d;
 148	struct audit_cap_data	fcap;
 149	unsigned int		fcap_ver;
 150	struct audit_cap_data	old_pcap;
 151	struct audit_cap_data	new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155	struct audit_aux_data	d;
 156	pid_t			pid;
 157	struct audit_cap_data	cap;
 158};
 159
 160struct audit_tree_refs {
 161	struct audit_tree_refs *next;
 162	struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167	int		    dummy;	/* must be the first element */
 168	int		    in_syscall;	/* 1 if task is in a syscall */
 169	enum audit_state    state, current_state;
 170	unsigned int	    serial;     /* serial number for record */
 171	int		    major;      /* syscall number */
 172	struct timespec	    ctime;      /* time of syscall entry */
 173	unsigned long	    argv[4];    /* syscall arguments */
 174	long		    return_code;/* syscall return code */
 175	u64		    prio;
 176	int		    return_valid; /* return code is valid */
 177	int		    name_count;
 178	struct audit_names  names[AUDIT_NAMES];
 
 
 
 
 
 
 
 
 
 179	char *		    filterkey;	/* key for rule that triggered record */
 180	struct path	    pwd;
 181	struct audit_context *previous; /* For nested syscalls */
 182	struct audit_aux_data *aux;
 183	struct audit_aux_data *aux_pids;
 184	struct sockaddr_storage *sockaddr;
 185	size_t sockaddr_len;
 186				/* Save things to print about task_struct */
 187	pid_t		    pid, ppid;
 188	uid_t		    uid, euid, suid, fsuid;
 189	gid_t		    gid, egid, sgid, fsgid;
 190	unsigned long	    personality;
 191	int		    arch;
 192
 193	pid_t		    target_pid;
 194	uid_t		    target_auid;
 195	uid_t		    target_uid;
 196	unsigned int	    target_sessionid;
 197	u32		    target_sid;
 198	char		    target_comm[TASK_COMM_LEN];
 199
 200	struct audit_tree_refs *trees, *first_trees;
 201	struct list_head killed_trees;
 202	int tree_count;
 203
 204	int type;
 205	union {
 206		struct {
 207			int nargs;
 208			long args[6];
 209		} socketcall;
 210		struct {
 211			uid_t			uid;
 212			gid_t			gid;
 213			mode_t			mode;
 214			u32			osid;
 215			int			has_perm;
 216			uid_t			perm_uid;
 217			gid_t			perm_gid;
 218			mode_t			perm_mode;
 219			unsigned long		qbytes;
 220		} ipc;
 221		struct {
 222			mqd_t			mqdes;
 223			struct mq_attr 		mqstat;
 224		} mq_getsetattr;
 225		struct {
 226			mqd_t			mqdes;
 227			int			sigev_signo;
 228		} mq_notify;
 229		struct {
 230			mqd_t			mqdes;
 231			size_t			msg_len;
 232			unsigned int		msg_prio;
 233			struct timespec		abs_timeout;
 234		} mq_sendrecv;
 235		struct {
 236			int			oflag;
 237			mode_t			mode;
 238			struct mq_attr		attr;
 239		} mq_open;
 240		struct {
 241			pid_t			pid;
 242			struct audit_cap_data	cap;
 243		} capset;
 244		struct {
 245			int			fd;
 246			int			flags;
 247		} mmap;
 248	};
 249	int fds[2];
 250
 251#if AUDIT_DEBUG
 252	int		    put_count;
 253	int		    ino_count;
 254#endif
 255};
 256
 257static inline int open_arg(int flags, int mask)
 258{
 259	int n = ACC_MODE(flags);
 260	if (flags & (O_TRUNC | O_CREAT))
 261		n |= AUDIT_PERM_WRITE;
 262	return n & mask;
 263}
 264
 265static int audit_match_perm(struct audit_context *ctx, int mask)
 266{
 267	unsigned n;
 268	if (unlikely(!ctx))
 269		return 0;
 270	n = ctx->major;
 271
 272	switch (audit_classify_syscall(ctx->arch, n)) {
 273	case 0:	/* native */
 274		if ((mask & AUDIT_PERM_WRITE) &&
 275		     audit_match_class(AUDIT_CLASS_WRITE, n))
 276			return 1;
 277		if ((mask & AUDIT_PERM_READ) &&
 278		     audit_match_class(AUDIT_CLASS_READ, n))
 279			return 1;
 280		if ((mask & AUDIT_PERM_ATTR) &&
 281		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 282			return 1;
 283		return 0;
 284	case 1: /* 32bit on biarch */
 285		if ((mask & AUDIT_PERM_WRITE) &&
 286		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 287			return 1;
 288		if ((mask & AUDIT_PERM_READ) &&
 289		     audit_match_class(AUDIT_CLASS_READ_32, n))
 290			return 1;
 291		if ((mask & AUDIT_PERM_ATTR) &&
 292		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 293			return 1;
 294		return 0;
 295	case 2: /* open */
 296		return mask & ACC_MODE(ctx->argv[1]);
 297	case 3: /* openat */
 298		return mask & ACC_MODE(ctx->argv[2]);
 299	case 4: /* socketcall */
 300		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 301	case 5: /* execve */
 302		return mask & AUDIT_PERM_EXEC;
 303	default:
 304		return 0;
 305	}
 306}
 307
 308static int audit_match_filetype(struct audit_context *ctx, int which)
 309{
 310	unsigned index = which & ~S_IFMT;
 311	mode_t mode = which & S_IFMT;
 312
 313	if (unlikely(!ctx))
 314		return 0;
 315
 316	if (index >= ctx->name_count)
 317		return 0;
 318	if (ctx->names[index].ino == -1)
 319		return 0;
 320	if ((ctx->names[index].mode ^ mode) & S_IFMT)
 321		return 0;
 322	return 1;
 323}
 324
 325/*
 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 327 * ->first_trees points to its beginning, ->trees - to the current end of data.
 328 * ->tree_count is the number of free entries in array pointed to by ->trees.
 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 330 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 331 * it's going to remain 1-element for almost any setup) until we free context itself.
 332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 333 */
 334
 335#ifdef CONFIG_AUDIT_TREE
 336static void audit_set_auditable(struct audit_context *ctx)
 337{
 338	if (!ctx->prio) {
 339		ctx->prio = 1;
 340		ctx->current_state = AUDIT_RECORD_CONTEXT;
 341	}
 342}
 343
 344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 345{
 346	struct audit_tree_refs *p = ctx->trees;
 347	int left = ctx->tree_count;
 348	if (likely(left)) {
 349		p->c[--left] = chunk;
 350		ctx->tree_count = left;
 351		return 1;
 352	}
 353	if (!p)
 354		return 0;
 355	p = p->next;
 356	if (p) {
 357		p->c[30] = chunk;
 358		ctx->trees = p;
 359		ctx->tree_count = 30;
 360		return 1;
 361	}
 362	return 0;
 363}
 364
 365static int grow_tree_refs(struct audit_context *ctx)
 366{
 367	struct audit_tree_refs *p = ctx->trees;
 368	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 369	if (!ctx->trees) {
 370		ctx->trees = p;
 371		return 0;
 372	}
 373	if (p)
 374		p->next = ctx->trees;
 375	else
 376		ctx->first_trees = ctx->trees;
 377	ctx->tree_count = 31;
 378	return 1;
 379}
 380#endif
 381
 382static void unroll_tree_refs(struct audit_context *ctx,
 383		      struct audit_tree_refs *p, int count)
 384{
 385#ifdef CONFIG_AUDIT_TREE
 386	struct audit_tree_refs *q;
 387	int n;
 388	if (!p) {
 389		/* we started with empty chain */
 390		p = ctx->first_trees;
 391		count = 31;
 392		/* if the very first allocation has failed, nothing to do */
 393		if (!p)
 394			return;
 395	}
 396	n = count;
 397	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 398		while (n--) {
 399			audit_put_chunk(q->c[n]);
 400			q->c[n] = NULL;
 401		}
 402	}
 403	while (n-- > ctx->tree_count) {
 404		audit_put_chunk(q->c[n]);
 405		q->c[n] = NULL;
 406	}
 407	ctx->trees = p;
 408	ctx->tree_count = count;
 409#endif
 410}
 411
 412static void free_tree_refs(struct audit_context *ctx)
 413{
 414	struct audit_tree_refs *p, *q;
 415	for (p = ctx->first_trees; p; p = q) {
 416		q = p->next;
 417		kfree(p);
 418	}
 419}
 420
 421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 422{
 423#ifdef CONFIG_AUDIT_TREE
 424	struct audit_tree_refs *p;
 425	int n;
 426	if (!tree)
 427		return 0;
 428	/* full ones */
 429	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 430		for (n = 0; n < 31; n++)
 431			if (audit_tree_match(p->c[n], tree))
 432				return 1;
 433	}
 434	/* partial */
 435	if (p) {
 436		for (n = ctx->tree_count; n < 31; n++)
 437			if (audit_tree_match(p->c[n], tree))
 438				return 1;
 439	}
 440#endif
 441	return 0;
 442}
 443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444/* Determine if any context name data matches a rule's watch data */
 445/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 446 * otherwise.
 447 *
 448 * If task_creation is true, this is an explicit indication that we are
 449 * filtering a task rule at task creation time.  This and tsk == current are
 450 * the only situations where tsk->cred may be accessed without an rcu read lock.
 451 */
 452static int audit_filter_rules(struct task_struct *tsk,
 453			      struct audit_krule *rule,
 454			      struct audit_context *ctx,
 455			      struct audit_names *name,
 456			      enum audit_state *state,
 457			      bool task_creation)
 458{
 459	const struct cred *cred;
 460	int i, j, need_sid = 1;
 461	u32 sid;
 462
 463	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 464
 465	for (i = 0; i < rule->field_count; i++) {
 466		struct audit_field *f = &rule->fields[i];
 
 467		int result = 0;
 468
 469		switch (f->type) {
 470		case AUDIT_PID:
 471			result = audit_comparator(tsk->pid, f->op, f->val);
 472			break;
 473		case AUDIT_PPID:
 474			if (ctx) {
 475				if (!ctx->ppid)
 476					ctx->ppid = sys_getppid();
 477				result = audit_comparator(ctx->ppid, f->op, f->val);
 478			}
 479			break;
 480		case AUDIT_UID:
 481			result = audit_comparator(cred->uid, f->op, f->val);
 482			break;
 483		case AUDIT_EUID:
 484			result = audit_comparator(cred->euid, f->op, f->val);
 485			break;
 486		case AUDIT_SUID:
 487			result = audit_comparator(cred->suid, f->op, f->val);
 488			break;
 489		case AUDIT_FSUID:
 490			result = audit_comparator(cred->fsuid, f->op, f->val);
 491			break;
 492		case AUDIT_GID:
 493			result = audit_comparator(cred->gid, f->op, f->val);
 494			break;
 495		case AUDIT_EGID:
 496			result = audit_comparator(cred->egid, f->op, f->val);
 497			break;
 498		case AUDIT_SGID:
 499			result = audit_comparator(cred->sgid, f->op, f->val);
 500			break;
 501		case AUDIT_FSGID:
 502			result = audit_comparator(cred->fsgid, f->op, f->val);
 503			break;
 504		case AUDIT_PERS:
 505			result = audit_comparator(tsk->personality, f->op, f->val);
 506			break;
 507		case AUDIT_ARCH:
 508			if (ctx)
 509				result = audit_comparator(ctx->arch, f->op, f->val);
 510			break;
 511
 512		case AUDIT_EXIT:
 513			if (ctx && ctx->return_valid)
 514				result = audit_comparator(ctx->return_code, f->op, f->val);
 515			break;
 516		case AUDIT_SUCCESS:
 517			if (ctx && ctx->return_valid) {
 518				if (f->val)
 519					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 520				else
 521					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 522			}
 523			break;
 524		case AUDIT_DEVMAJOR:
 525			if (name)
 526				result = audit_comparator(MAJOR(name->dev),
 527							  f->op, f->val);
 528			else if (ctx) {
 529				for (j = 0; j < ctx->name_count; j++) {
 530					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
 
 
 531						++result;
 532						break;
 533					}
 534				}
 535			}
 536			break;
 537		case AUDIT_DEVMINOR:
 538			if (name)
 539				result = audit_comparator(MINOR(name->dev),
 540							  f->op, f->val);
 541			else if (ctx) {
 542				for (j = 0; j < ctx->name_count; j++) {
 543					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 
 
 544						++result;
 545						break;
 546					}
 547				}
 548			}
 549			break;
 550		case AUDIT_INODE:
 551			if (name)
 552				result = (name->ino == f->val);
 553			else if (ctx) {
 554				for (j = 0; j < ctx->name_count; j++) {
 555					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_WATCH:
 563			if (name)
 564				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 565			break;
 566		case AUDIT_DIR:
 567			if (ctx)
 568				result = match_tree_refs(ctx, rule->tree);
 569			break;
 570		case AUDIT_LOGINUID:
 571			result = 0;
 572			if (ctx)
 573				result = audit_comparator(tsk->loginuid, f->op, f->val);
 574			break;
 575		case AUDIT_SUBJ_USER:
 576		case AUDIT_SUBJ_ROLE:
 577		case AUDIT_SUBJ_TYPE:
 578		case AUDIT_SUBJ_SEN:
 579		case AUDIT_SUBJ_CLR:
 580			/* NOTE: this may return negative values indicating
 581			   a temporary error.  We simply treat this as a
 582			   match for now to avoid losing information that
 583			   may be wanted.   An error message will also be
 584			   logged upon error */
 585			if (f->lsm_rule) {
 586				if (need_sid) {
 587					security_task_getsecid(tsk, &sid);
 588					need_sid = 0;
 589				}
 590				result = security_audit_rule_match(sid, f->type,
 591				                                  f->op,
 592				                                  f->lsm_rule,
 593				                                  ctx);
 594			}
 595			break;
 596		case AUDIT_OBJ_USER:
 597		case AUDIT_OBJ_ROLE:
 598		case AUDIT_OBJ_TYPE:
 599		case AUDIT_OBJ_LEV_LOW:
 600		case AUDIT_OBJ_LEV_HIGH:
 601			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 602			   also applies here */
 603			if (f->lsm_rule) {
 604				/* Find files that match */
 605				if (name) {
 606					result = security_audit_rule_match(
 607					           name->osid, f->type, f->op,
 608					           f->lsm_rule, ctx);
 609				} else if (ctx) {
 610					for (j = 0; j < ctx->name_count; j++) {
 611						if (security_audit_rule_match(
 612						      ctx->names[j].osid,
 613						      f->type, f->op,
 614						      f->lsm_rule, ctx)) {
 615							++result;
 616							break;
 617						}
 618					}
 619				}
 620				/* Find ipc objects that match */
 621				if (!ctx || ctx->type != AUDIT_IPC)
 622					break;
 623				if (security_audit_rule_match(ctx->ipc.osid,
 624							      f->type, f->op,
 625							      f->lsm_rule, ctx))
 626					++result;
 627			}
 628			break;
 629		case AUDIT_ARG0:
 630		case AUDIT_ARG1:
 631		case AUDIT_ARG2:
 632		case AUDIT_ARG3:
 633			if (ctx)
 634				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 635			break;
 636		case AUDIT_FILTERKEY:
 637			/* ignore this field for filtering */
 638			result = 1;
 639			break;
 640		case AUDIT_PERM:
 641			result = audit_match_perm(ctx, f->val);
 642			break;
 643		case AUDIT_FILETYPE:
 644			result = audit_match_filetype(ctx, f->val);
 645			break;
 
 
 
 646		}
 647
 648		if (!result)
 649			return 0;
 650	}
 651
 652	if (ctx) {
 653		if (rule->prio <= ctx->prio)
 654			return 0;
 655		if (rule->filterkey) {
 656			kfree(ctx->filterkey);
 657			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 658		}
 659		ctx->prio = rule->prio;
 660	}
 661	switch (rule->action) {
 662	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 663	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 664	}
 665	return 1;
 666}
 667
 668/* At process creation time, we can determine if system-call auditing is
 669 * completely disabled for this task.  Since we only have the task
 670 * structure at this point, we can only check uid and gid.
 671 */
 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 673{
 674	struct audit_entry *e;
 675	enum audit_state   state;
 676
 677	rcu_read_lock();
 678	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 679		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 680				       &state, true)) {
 681			if (state == AUDIT_RECORD_CONTEXT)
 682				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 683			rcu_read_unlock();
 684			return state;
 685		}
 686	}
 687	rcu_read_unlock();
 688	return AUDIT_BUILD_CONTEXT;
 689}
 690
 691/* At syscall entry and exit time, this filter is called if the
 692 * audit_state is not low enough that auditing cannot take place, but is
 693 * also not high enough that we already know we have to write an audit
 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 695 */
 696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 697					     struct audit_context *ctx,
 698					     struct list_head *list)
 699{
 700	struct audit_entry *e;
 701	enum audit_state state;
 702
 703	if (audit_pid && tsk->tgid == audit_pid)
 704		return AUDIT_DISABLED;
 705
 706	rcu_read_lock();
 707	if (!list_empty(list)) {
 708		int word = AUDIT_WORD(ctx->major);
 709		int bit  = AUDIT_BIT(ctx->major);
 710
 711		list_for_each_entry_rcu(e, list, list) {
 712			if ((e->rule.mask[word] & bit) == bit &&
 713			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 714					       &state, false)) {
 715				rcu_read_unlock();
 716				ctx->current_state = state;
 717				return state;
 718			}
 719		}
 720	}
 721	rcu_read_unlock();
 722	return AUDIT_BUILD_CONTEXT;
 723}
 724
 725/* At syscall exit time, this filter is called if any audit_names[] have been
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * collected during syscall processing.  We only check rules in sublists at hash
 727 * buckets applicable to the inode numbers in audit_names[].
 728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 729 */
 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 731{
 732	int i;
 733	struct audit_entry *e;
 734	enum audit_state state;
 735
 736	if (audit_pid && tsk->tgid == audit_pid)
 737		return;
 738
 739	rcu_read_lock();
 740	for (i = 0; i < ctx->name_count; i++) {
 741		int word = AUDIT_WORD(ctx->major);
 742		int bit  = AUDIT_BIT(ctx->major);
 743		struct audit_names *n = &ctx->names[i];
 744		int h = audit_hash_ino((u32)n->ino);
 745		struct list_head *list = &audit_inode_hash[h];
 746
 747		if (list_empty(list))
 748			continue;
 749
 750		list_for_each_entry_rcu(e, list, list) {
 751			if ((e->rule.mask[word] & bit) == bit &&
 752			    audit_filter_rules(tsk, &e->rule, ctx, n,
 753				    	       &state, false)) {
 754				rcu_read_unlock();
 755				ctx->current_state = state;
 756				return;
 757			}
 758		}
 759	}
 760	rcu_read_unlock();
 761}
 762
 763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 764						      int return_valid,
 765						      long return_code)
 766{
 767	struct audit_context *context = tsk->audit_context;
 768
 769	if (likely(!context))
 770		return NULL;
 771	context->return_valid = return_valid;
 772
 773	/*
 774	 * we need to fix up the return code in the audit logs if the actual
 775	 * return codes are later going to be fixed up by the arch specific
 776	 * signal handlers
 777	 *
 778	 * This is actually a test for:
 779	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 780	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 781	 *
 782	 * but is faster than a bunch of ||
 783	 */
 784	if (unlikely(return_code <= -ERESTARTSYS) &&
 785	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 786	    (return_code != -ENOIOCTLCMD))
 787		context->return_code = -EINTR;
 788	else
 789		context->return_code  = return_code;
 790
 791	if (context->in_syscall && !context->dummy) {
 792		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 793		audit_filter_inodes(tsk, context);
 794	}
 795
 796	tsk->audit_context = NULL;
 797	return context;
 798}
 799
 800static inline void audit_free_names(struct audit_context *context)
 801{
 802	int i;
 803
 804#if AUDIT_DEBUG == 2
 805	if (context->put_count + context->ino_count != context->name_count) {
 806		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 807		       " name_count=%d put_count=%d"
 808		       " ino_count=%d [NOT freeing]\n",
 809		       __FILE__, __LINE__,
 810		       context->serial, context->major, context->in_syscall,
 811		       context->name_count, context->put_count,
 812		       context->ino_count);
 813		for (i = 0; i < context->name_count; i++) {
 814			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 815			       context->names[i].name,
 816			       context->names[i].name ?: "(null)");
 817		}
 818		dump_stack();
 819		return;
 820	}
 821#endif
 822#if AUDIT_DEBUG
 823	context->put_count  = 0;
 824	context->ino_count  = 0;
 825#endif
 826
 827	for (i = 0; i < context->name_count; i++) {
 828		if (context->names[i].name && context->names[i].name_put)
 829			__putname(context->names[i].name);
 
 
 
 830	}
 831	context->name_count = 0;
 832	path_put(&context->pwd);
 833	context->pwd.dentry = NULL;
 834	context->pwd.mnt = NULL;
 835}
 836
 837static inline void audit_free_aux(struct audit_context *context)
 838{
 839	struct audit_aux_data *aux;
 840
 841	while ((aux = context->aux)) {
 842		context->aux = aux->next;
 843		kfree(aux);
 844	}
 845	while ((aux = context->aux_pids)) {
 846		context->aux_pids = aux->next;
 847		kfree(aux);
 848	}
 849}
 850
 851static inline void audit_zero_context(struct audit_context *context,
 852				      enum audit_state state)
 853{
 854	memset(context, 0, sizeof(*context));
 855	context->state      = state;
 856	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 857}
 858
 859static inline struct audit_context *audit_alloc_context(enum audit_state state)
 860{
 861	struct audit_context *context;
 862
 863	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 864		return NULL;
 865	audit_zero_context(context, state);
 866	INIT_LIST_HEAD(&context->killed_trees);
 
 867	return context;
 868}
 869
 870/**
 871 * audit_alloc - allocate an audit context block for a task
 872 * @tsk: task
 873 *
 874 * Filter on the task information and allocate a per-task audit context
 875 * if necessary.  Doing so turns on system call auditing for the
 876 * specified task.  This is called from copy_process, so no lock is
 877 * needed.
 878 */
 879int audit_alloc(struct task_struct *tsk)
 880{
 881	struct audit_context *context;
 882	enum audit_state     state;
 883	char *key = NULL;
 884
 885	if (likely(!audit_ever_enabled))
 886		return 0; /* Return if not auditing. */
 887
 888	state = audit_filter_task(tsk, &key);
 889	if (likely(state == AUDIT_DISABLED))
 890		return 0;
 891
 892	if (!(context = audit_alloc_context(state))) {
 893		kfree(key);
 894		audit_log_lost("out of memory in audit_alloc");
 895		return -ENOMEM;
 896	}
 897	context->filterkey = key;
 898
 899	tsk->audit_context  = context;
 900	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 901	return 0;
 902}
 903
 904static inline void audit_free_context(struct audit_context *context)
 905{
 906	struct audit_context *previous;
 907	int		     count = 0;
 908
 909	do {
 910		previous = context->previous;
 911		if (previous || (count &&  count < 10)) {
 912			++count;
 913			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 914			       " freeing multiple contexts (%d)\n",
 915			       context->serial, context->major,
 916			       context->name_count, count);
 917		}
 918		audit_free_names(context);
 919		unroll_tree_refs(context, NULL, 0);
 920		free_tree_refs(context);
 921		audit_free_aux(context);
 922		kfree(context->filterkey);
 923		kfree(context->sockaddr);
 924		kfree(context);
 925		context  = previous;
 926	} while (context);
 927	if (count >= 10)
 928		printk(KERN_ERR "audit: freed %d contexts\n", count);
 929}
 930
 931void audit_log_task_context(struct audit_buffer *ab)
 932{
 933	char *ctx = NULL;
 934	unsigned len;
 935	int error;
 936	u32 sid;
 937
 938	security_task_getsecid(current, &sid);
 939	if (!sid)
 940		return;
 941
 942	error = security_secid_to_secctx(sid, &ctx, &len);
 943	if (error) {
 944		if (error != -EINVAL)
 945			goto error_path;
 946		return;
 947	}
 948
 949	audit_log_format(ab, " subj=%s", ctx);
 950	security_release_secctx(ctx, len);
 951	return;
 952
 953error_path:
 954	audit_panic("error in audit_log_task_context");
 955	return;
 956}
 957
 958EXPORT_SYMBOL(audit_log_task_context);
 959
 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 961{
 962	char name[sizeof(tsk->comm)];
 963	struct mm_struct *mm = tsk->mm;
 964	struct vm_area_struct *vma;
 965
 966	/* tsk == current */
 967
 968	get_task_comm(name, tsk);
 969	audit_log_format(ab, " comm=");
 970	audit_log_untrustedstring(ab, name);
 971
 972	if (mm) {
 973		down_read(&mm->mmap_sem);
 974		vma = mm->mmap;
 975		while (vma) {
 976			if ((vma->vm_flags & VM_EXECUTABLE) &&
 977			    vma->vm_file) {
 978				audit_log_d_path(ab, "exe=",
 979						 &vma->vm_file->f_path);
 980				break;
 981			}
 982			vma = vma->vm_next;
 983		}
 984		up_read(&mm->mmap_sem);
 985	}
 986	audit_log_task_context(ab);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 uid_t auid, uid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003			 uid, sessionid);
1004	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005		audit_log_format(ab, " obj=(none)");
1006		rc = 1;
1007	} else {
1008		audit_log_format(ab, " obj=%s", ctx);
1009		security_release_secctx(ctx, len);
1010	}
1011	audit_log_format(ab, " ocomm=");
1012	audit_log_untrustedstring(ab, comm);
1013	audit_log_end(ab);
1014
1015	return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030					struct audit_buffer **ab,
1031					int arg_num,
1032					size_t *len_sent,
1033					const char __user *p,
1034					char *buf)
1035{
1036	char arg_num_len_buf[12];
1037	const char __user *tmp_p = p;
1038	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040	size_t len, len_left, to_send;
1041	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042	unsigned int i, has_cntl = 0, too_long = 0;
1043	int ret;
1044
1045	/* strnlen_user includes the null we don't want to send */
1046	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048	/*
1049	 * We just created this mm, if we can't find the strings
1050	 * we just copied into it something is _very_ wrong. Similar
1051	 * for strings that are too long, we should not have created
1052	 * any.
1053	 */
1054	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055		WARN_ON(1);
1056		send_sig(SIGKILL, current, 0);
1057		return -1;
1058	}
1059
1060	/* walk the whole argument looking for non-ascii chars */
1061	do {
1062		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063			to_send = MAX_EXECVE_AUDIT_LEN;
1064		else
1065			to_send = len_left;
1066		ret = copy_from_user(buf, tmp_p, to_send);
1067		/*
1068		 * There is no reason for this copy to be short. We just
1069		 * copied them here, and the mm hasn't been exposed to user-
1070		 * space yet.
1071		 */
1072		if (ret) {
1073			WARN_ON(1);
1074			send_sig(SIGKILL, current, 0);
1075			return -1;
1076		}
1077		buf[to_send] = '\0';
1078		has_cntl = audit_string_contains_control(buf, to_send);
1079		if (has_cntl) {
1080			/*
1081			 * hex messages get logged as 2 bytes, so we can only
1082			 * send half as much in each message
1083			 */
1084			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085			break;
1086		}
1087		len_left -= to_send;
1088		tmp_p += to_send;
1089	} while (len_left > 0);
1090
1091	len_left = len;
1092
1093	if (len > max_execve_audit_len)
1094		too_long = 1;
1095
1096	/* rewalk the argument actually logging the message */
1097	for (i = 0; len_left > 0; i++) {
1098		int room_left;
1099
1100		if (len_left > max_execve_audit_len)
1101			to_send = max_execve_audit_len;
1102		else
1103			to_send = len_left;
1104
1105		/* do we have space left to send this argument in this ab? */
1106		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107		if (has_cntl)
1108			room_left -= (to_send * 2);
1109		else
1110			room_left -= to_send;
1111		if (room_left < 0) {
1112			*len_sent = 0;
1113			audit_log_end(*ab);
1114			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115			if (!*ab)
1116				return 0;
1117		}
1118
1119		/*
1120		 * first record needs to say how long the original string was
1121		 * so we can be sure nothing was lost.
1122		 */
1123		if ((i == 0) && (too_long))
1124			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125					 has_cntl ? 2*len : len);
1126
1127		/*
1128		 * normally arguments are small enough to fit and we already
1129		 * filled buf above when we checked for control characters
1130		 * so don't bother with another copy_from_user
1131		 */
1132		if (len >= max_execve_audit_len)
1133			ret = copy_from_user(buf, p, to_send);
1134		else
1135			ret = 0;
1136		if (ret) {
1137			WARN_ON(1);
1138			send_sig(SIGKILL, current, 0);
1139			return -1;
1140		}
1141		buf[to_send] = '\0';
1142
1143		/* actually log it */
1144		audit_log_format(*ab, " a%d", arg_num);
1145		if (too_long)
1146			audit_log_format(*ab, "[%d]", i);
1147		audit_log_format(*ab, "=");
1148		if (has_cntl)
1149			audit_log_n_hex(*ab, buf, to_send);
1150		else
1151			audit_log_string(*ab, buf);
1152
1153		p += to_send;
1154		len_left -= to_send;
1155		*len_sent += arg_num_len;
1156		if (has_cntl)
1157			*len_sent += to_send * 2;
1158		else
1159			*len_sent += to_send;
1160	}
1161	/* include the null we didn't log */
1162	return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166				  struct audit_buffer **ab,
1167				  struct audit_aux_data_execve *axi)
1168{
1169	int i;
1170	size_t len, len_sent = 0;
1171	const char __user *p;
1172	char *buf;
1173
1174	if (axi->mm != current->mm)
1175		return; /* execve failed, no additional info */
1176
1177	p = (const char __user *)axi->mm->arg_start;
1178
1179	audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181	/*
1182	 * we need some kernel buffer to hold the userspace args.  Just
1183	 * allocate one big one rather than allocating one of the right size
1184	 * for every single argument inside audit_log_single_execve_arg()
1185	 * should be <8k allocation so should be pretty safe.
1186	 */
1187	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188	if (!buf) {
1189		audit_panic("out of memory for argv string\n");
1190		return;
1191	}
1192
1193	for (i = 0; i < axi->argc; i++) {
1194		len = audit_log_single_execve_arg(context, ab, i,
1195						  &len_sent, p, buf);
1196		if (len <= 0)
1197			break;
1198		p += len;
1199	}
1200	kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205	int i;
1206
1207	audit_log_format(ab, " %s=", prefix);
1208	CAP_FOR_EACH_U32(i) {
1209		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210	}
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215	kernel_cap_t *perm = &name->fcap.permitted;
1216	kernel_cap_t *inh = &name->fcap.inheritable;
1217	int log = 0;
1218
1219	if (!cap_isclear(*perm)) {
1220		audit_log_cap(ab, "cap_fp", perm);
1221		log = 1;
1222	}
1223	if (!cap_isclear(*inh)) {
1224		audit_log_cap(ab, "cap_fi", inh);
1225		log = 1;
1226	}
1227
1228	if (log)
1229		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234	struct audit_buffer *ab;
1235	int i;
1236
1237	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238	if (!ab)
1239		return;
1240
1241	switch (context->type) {
1242	case AUDIT_SOCKETCALL: {
1243		int nargs = context->socketcall.nargs;
1244		audit_log_format(ab, "nargs=%d", nargs);
1245		for (i = 0; i < nargs; i++)
1246			audit_log_format(ab, " a%d=%lx", i,
1247				context->socketcall.args[i]);
1248		break; }
1249	case AUDIT_IPC: {
1250		u32 osid = context->ipc.osid;
1251
1252		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254		if (osid) {
1255			char *ctx = NULL;
1256			u32 len;
1257			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258				audit_log_format(ab, " osid=%u", osid);
1259				*call_panic = 1;
1260			} else {
1261				audit_log_format(ab, " obj=%s", ctx);
1262				security_release_secctx(ctx, len);
1263			}
1264		}
1265		if (context->ipc.has_perm) {
1266			audit_log_end(ab);
1267			ab = audit_log_start(context, GFP_KERNEL,
1268					     AUDIT_IPC_SET_PERM);
1269			audit_log_format(ab,
1270				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271				context->ipc.qbytes,
1272				context->ipc.perm_uid,
1273				context->ipc.perm_gid,
1274				context->ipc.perm_mode);
1275			if (!ab)
1276				return;
1277		}
1278		break; }
1279	case AUDIT_MQ_OPEN: {
1280		audit_log_format(ab,
1281			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282			"mq_msgsize=%ld mq_curmsgs=%ld",
1283			context->mq_open.oflag, context->mq_open.mode,
1284			context->mq_open.attr.mq_flags,
1285			context->mq_open.attr.mq_maxmsg,
1286			context->mq_open.attr.mq_msgsize,
1287			context->mq_open.attr.mq_curmsgs);
1288		break; }
1289	case AUDIT_MQ_SENDRECV: {
1290		audit_log_format(ab,
1291			"mqdes=%d msg_len=%zd msg_prio=%u "
1292			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293			context->mq_sendrecv.mqdes,
1294			context->mq_sendrecv.msg_len,
1295			context->mq_sendrecv.msg_prio,
1296			context->mq_sendrecv.abs_timeout.tv_sec,
1297			context->mq_sendrecv.abs_timeout.tv_nsec);
1298		break; }
1299	case AUDIT_MQ_NOTIFY: {
1300		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301				context->mq_notify.mqdes,
1302				context->mq_notify.sigev_signo);
1303		break; }
1304	case AUDIT_MQ_GETSETATTR: {
1305		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306		audit_log_format(ab,
1307			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308			"mq_curmsgs=%ld ",
1309			context->mq_getsetattr.mqdes,
1310			attr->mq_flags, attr->mq_maxmsg,
1311			attr->mq_msgsize, attr->mq_curmsgs);
1312		break; }
1313	case AUDIT_CAPSET: {
1314		audit_log_format(ab, "pid=%d", context->capset.pid);
1315		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318		break; }
1319	case AUDIT_MMAP: {
1320		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321				 context->mmap.flags);
1322		break; }
1323	}
1324	audit_log_end(ab);
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329	const struct cred *cred;
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	const char *tty;
 
1334
1335	/* tsk == current */
1336	context->pid = tsk->pid;
1337	if (!context->ppid)
1338		context->ppid = sys_getppid();
1339	cred = current_cred();
1340	context->uid   = cred->uid;
1341	context->gid   = cred->gid;
1342	context->euid  = cred->euid;
1343	context->suid  = cred->suid;
1344	context->fsuid = cred->fsuid;
1345	context->egid  = cred->egid;
1346	context->sgid  = cred->sgid;
1347	context->fsgid = cred->fsgid;
1348	context->personality = tsk->personality;
1349
1350	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351	if (!ab)
1352		return;		/* audit_panic has been called */
1353	audit_log_format(ab, "arch=%x syscall=%d",
1354			 context->arch, context->major);
1355	if (context->personality != PER_LINUX)
1356		audit_log_format(ab, " per=%lx", context->personality);
1357	if (context->return_valid)
1358		audit_log_format(ab, " success=%s exit=%ld",
1359				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360				 context->return_code);
1361
1362	spin_lock_irq(&tsk->sighand->siglock);
1363	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364		tty = tsk->signal->tty->name;
1365	else
1366		tty = "(none)";
1367	spin_unlock_irq(&tsk->sighand->siglock);
1368
1369	audit_log_format(ab,
1370		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372		  " euid=%u suid=%u fsuid=%u"
1373		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374		  context->argv[0],
1375		  context->argv[1],
1376		  context->argv[2],
1377		  context->argv[3],
1378		  context->name_count,
1379		  context->ppid,
1380		  context->pid,
1381		  tsk->loginuid,
1382		  context->uid,
1383		  context->gid,
1384		  context->euid, context->suid, context->fsuid,
1385		  context->egid, context->sgid, context->fsgid, tty,
1386		  tsk->sessionid);
1387
1388
1389	audit_log_task_info(ab, tsk);
1390	audit_log_key(ab, context->filterkey);
1391	audit_log_end(ab);
1392
1393	for (aux = context->aux; aux; aux = aux->next) {
1394
1395		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396		if (!ab)
1397			continue; /* audit_panic has been called */
1398
1399		switch (aux->type) {
1400
1401		case AUDIT_EXECVE: {
1402			struct audit_aux_data_execve *axi = (void *)aux;
1403			audit_log_execve_info(context, &ab, axi);
1404			break; }
1405
1406		case AUDIT_BPRM_FCAPS: {
1407			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418			break; }
1419
1420		}
1421		audit_log_end(ab);
1422	}
1423
1424	if (context->type)
1425		show_special(context, &call_panic);
1426
1427	if (context->fds[0] >= 0) {
1428		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429		if (ab) {
1430			audit_log_format(ab, "fd0=%d fd1=%d",
1431					context->fds[0], context->fds[1]);
1432			audit_log_end(ab);
1433		}
1434	}
1435
1436	if (context->sockaddr_len) {
1437		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438		if (ab) {
1439			audit_log_format(ab, "saddr=");
1440			audit_log_n_hex(ab, (void *)context->sockaddr,
1441					context->sockaddr_len);
1442			audit_log_end(ab);
1443		}
1444	}
1445
1446	for (aux = context->aux_pids; aux; aux = aux->next) {
1447		struct audit_aux_data_pids *axs = (void *)aux;
1448
1449		for (i = 0; i < axs->pid_count; i++)
1450			if (audit_log_pid_context(context, axs->target_pid[i],
1451						  axs->target_auid[i],
1452						  axs->target_uid[i],
1453						  axs->target_sessionid[i],
1454						  axs->target_sid[i],
1455						  axs->target_comm[i]))
1456				call_panic = 1;
1457	}
1458
1459	if (context->target_pid &&
1460	    audit_log_pid_context(context, context->target_pid,
1461				  context->target_auid, context->target_uid,
1462				  context->target_sessionid,
1463				  context->target_sid, context->target_comm))
1464			call_panic = 1;
1465
1466	if (context->pwd.dentry && context->pwd.mnt) {
1467		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468		if (ab) {
1469			audit_log_d_path(ab, "cwd=", &context->pwd);
1470			audit_log_end(ab);
1471		}
1472	}
1473	for (i = 0; i < context->name_count; i++) {
1474		struct audit_names *n = &context->names[i];
1475
1476		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477		if (!ab)
1478			continue; /* audit_panic has been called */
1479
1480		audit_log_format(ab, "item=%d", i);
1481
1482		if (n->name) {
1483			switch(n->name_len) {
1484			case AUDIT_NAME_FULL:
1485				/* log the full path */
1486				audit_log_format(ab, " name=");
1487				audit_log_untrustedstring(ab, n->name);
1488				break;
1489			case 0:
1490				/* name was specified as a relative path and the
1491				 * directory component is the cwd */
1492				audit_log_d_path(ab, "name=", &context->pwd);
1493				break;
1494			default:
1495				/* log the name's directory component */
1496				audit_log_format(ab, " name=");
1497				audit_log_n_untrustedstring(ab, n->name,
1498							    n->name_len);
1499			}
1500		} else
1501			audit_log_format(ab, " name=(null)");
1502
1503		if (n->ino != (unsigned long)-1) {
1504			audit_log_format(ab, " inode=%lu"
1505					 " dev=%02x:%02x mode=%#o"
1506					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507					 n->ino,
1508					 MAJOR(n->dev),
1509					 MINOR(n->dev),
1510					 n->mode,
1511					 n->uid,
1512					 n->gid,
1513					 MAJOR(n->rdev),
1514					 MINOR(n->rdev));
1515		}
1516		if (n->osid != 0) {
1517			char *ctx = NULL;
1518			u32 len;
1519			if (security_secid_to_secctx(
1520				n->osid, &ctx, &len)) {
1521				audit_log_format(ab, " osid=%u", n->osid);
1522				call_panic = 2;
1523			} else {
1524				audit_log_format(ab, " obj=%s", ctx);
1525				security_release_secctx(ctx, len);
1526			}
1527		}
1528
1529		audit_log_fcaps(ab, n);
1530
1531		audit_log_end(ab);
1532	}
1533
1534	/* Send end of event record to help user space know we are finished */
1535	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536	if (ab)
1537		audit_log_end(ab);
1538	if (call_panic)
1539		audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550	struct audit_context *context;
1551
1552	context = audit_get_context(tsk, 0, 0);
1553	if (likely(!context))
1554		return;
1555
1556	/* Check for system calls that do not go through the exit
1557	 * function (e.g., exit_group), then free context block.
1558	 * We use GFP_ATOMIC here because we might be doing this
1559	 * in the context of the idle thread */
1560	/* that can happen only if we are called from do_exit() */
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
1565
1566	audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry.  This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built.  If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587			 unsigned long a1, unsigned long a2,
1588			 unsigned long a3, unsigned long a4)
1589{
1590	struct task_struct *tsk = current;
1591	struct audit_context *context = tsk->audit_context;
1592	enum audit_state     state;
1593
1594	if (unlikely(!context))
1595		return;
1596
1597	/*
1598	 * This happens only on certain architectures that make system
1599	 * calls in kernel_thread via the entry.S interface, instead of
1600	 * with direct calls.  (If you are porting to a new
1601	 * architecture, hitting this condition can indicate that you
1602	 * got the _exit/_leave calls backward in entry.S.)
1603	 *
1604	 * i386     no
1605	 * x86_64   no
1606	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607	 *
1608	 * This also happens with vm86 emulation in a non-nested manner
1609	 * (entries without exits), so this case must be caught.
1610	 */
1611	if (context->in_syscall) {
1612		struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615		printk(KERN_ERR
1616		       "audit(:%d) pid=%d in syscall=%d;"
1617		       " entering syscall=%d\n",
1618		       context->serial, tsk->pid, context->major, major);
1619#endif
1620		newctx = audit_alloc_context(context->state);
1621		if (newctx) {
1622			newctx->previous   = context;
1623			context		   = newctx;
1624			tsk->audit_context = newctx;
1625		} else	{
1626			/* If we can't alloc a new context, the best we
1627			 * can do is to leak memory (any pending putname
1628			 * will be lost).  The only other alternative is
1629			 * to abandon auditing. */
1630			audit_zero_context(context, context->state);
1631		}
1632	}
1633	BUG_ON(context->in_syscall || context->name_count);
1634
1635	if (!audit_enabled)
1636		return;
1637
1638	context->arch	    = arch;
1639	context->major      = major;
1640	context->argv[0]    = a1;
1641	context->argv[1]    = a2;
1642	context->argv[2]    = a3;
1643	context->argv[3]    = a4;
1644
1645	state = context->state;
1646	context->dummy = !audit_n_rules;
1647	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648		context->prio = 0;
1649		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650	}
1651	if (likely(state == AUDIT_DISABLED))
1652		return;
1653
1654	context->serial     = 0;
1655	context->ctime      = CURRENT_TIME;
1656	context->in_syscall = 1;
1657	context->current_state  = state;
1658	context->ppid       = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663	struct audit_context *ctx = current->audit_context;
1664	struct audit_context *p = child->audit_context;
1665	if (!p || !ctx)
1666		return;
1667	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668		return;
1669	p->arch = ctx->arch;
1670	p->major = ctx->major;
1671	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672	p->ctime = ctx->ctime;
1673	p->dummy = ctx->dummy;
1674	p->in_syscall = ctx->in_syscall;
1675	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676	p->ppid = current->pid;
1677	p->prio = ctx->prio;
1678	p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call.  If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information.  In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694	struct task_struct *tsk = current;
1695	struct audit_context *context;
1696
1697	context = audit_get_context(tsk, valid, return_code);
 
 
 
1698
1699	if (likely(!context))
 
1700		return;
1701
1702	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703		audit_log_exit(context, tsk);
1704
1705	context->in_syscall = 0;
1706	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708	if (!list_empty(&context->killed_trees))
1709		audit_kill_trees(&context->killed_trees);
1710
1711	if (context->previous) {
1712		struct audit_context *new_context = context->previous;
1713		context->previous  = NULL;
1714		audit_free_context(context);
1715		tsk->audit_context = new_context;
1716	} else {
1717		audit_free_names(context);
1718		unroll_tree_refs(context, NULL, 0);
1719		audit_free_aux(context);
1720		context->aux = NULL;
1721		context->aux_pids = NULL;
1722		context->target_pid = 0;
1723		context->target_sid = 0;
1724		context->sockaddr_len = 0;
1725		context->type = 0;
1726		context->fds[0] = -1;
1727		if (context->state != AUDIT_RECORD_CONTEXT) {
1728			kfree(context->filterkey);
1729			context->filterkey = NULL;
1730		}
1731		tsk->audit_context = context;
1732	}
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738	struct audit_context *context;
1739	struct audit_tree_refs *p;
1740	struct audit_chunk *chunk;
1741	int count;
1742	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743		return;
1744	context = current->audit_context;
1745	p = context->trees;
1746	count = context->tree_count;
1747	rcu_read_lock();
1748	chunk = audit_tree_lookup(inode);
1749	rcu_read_unlock();
1750	if (!chunk)
1751		return;
1752	if (likely(put_tree_ref(context, chunk)))
1753		return;
1754	if (unlikely(!grow_tree_refs(context))) {
1755		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756		audit_set_auditable(context);
1757		audit_put_chunk(chunk);
1758		unroll_tree_refs(context, p, count);
1759		return;
1760	}
1761	put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768	struct audit_context *context;
1769	struct audit_tree_refs *p;
1770	const struct dentry *d, *parent;
1771	struct audit_chunk *drop;
1772	unsigned long seq;
1773	int count;
1774
1775	context = current->audit_context;
1776	p = context->trees;
1777	count = context->tree_count;
1778retry:
1779	drop = NULL;
1780	d = dentry;
1781	rcu_read_lock();
1782	seq = read_seqbegin(&rename_lock);
1783	for(;;) {
1784		struct inode *inode = d->d_inode;
1785		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786			struct audit_chunk *chunk;
1787			chunk = audit_tree_lookup(inode);
1788			if (chunk) {
1789				if (unlikely(!put_tree_ref(context, chunk))) {
1790					drop = chunk;
1791					break;
1792				}
1793			}
1794		}
1795		parent = d->d_parent;
1796		if (parent == d)
1797			break;
1798		d = parent;
1799	}
1800	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801		rcu_read_unlock();
1802		if (!drop) {
1803			/* just a race with rename */
1804			unroll_tree_refs(context, p, count);
1805			goto retry;
1806		}
1807		audit_put_chunk(drop);
1808		if (grow_tree_refs(context)) {
1809			/* OK, got more space */
1810			unroll_tree_refs(context, p, count);
1811			goto retry;
1812		}
1813		/* too bad */
1814		printk(KERN_WARNING
1815			"out of memory, audit has lost a tree reference\n");
1816		unroll_tree_refs(context, p, count);
1817		audit_set_auditable(context);
1818		return;
1819	}
1820	rcu_read_unlock();
1821#endif
1822}
1823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833	struct audit_context *context = current->audit_context;
1834
1835	if (IS_ERR(name) || !name)
1836		return;
1837
1838	if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841		       __FILE__, __LINE__, context->serial, name);
1842		dump_stack();
1843#endif
1844		return;
1845	}
1846	BUG_ON(context->name_count >= AUDIT_NAMES);
1847	context->names[context->name_count].name = name;
1848	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849	context->names[context->name_count].name_put = 1;
1850	context->names[context->name_count].ino  = (unsigned long)-1;
1851	context->names[context->name_count].osid = 0;
1852	++context->name_count;
 
 
1853	if (!context->pwd.dentry)
1854		get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866	struct audit_context *context = current->audit_context;
1867
1868	BUG_ON(!context);
1869	if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872		       __FILE__, __LINE__, context->serial, name);
1873		if (context->name_count) {
 
1874			int i;
1875			for (i = 0; i < context->name_count; i++)
 
1876				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877				       context->names[i].name,
1878				       context->names[i].name ?: "(null)");
1879		}
1880#endif
1881		__putname(name);
1882	}
1883#if AUDIT_DEBUG
1884	else {
1885		++context->put_count;
1886		if (context->put_count > context->name_count) {
1887			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888			       " in_syscall=%d putname(%p) name_count=%d"
1889			       " put_count=%d\n",
1890			       __FILE__, __LINE__,
1891			       context->serial, context->major,
1892			       context->in_syscall, name, context->name_count,
1893			       context->put_count);
1894			dump_stack();
1895		}
1896	}
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901				const struct inode *inode)
1902{
1903	if (context->name_count >= AUDIT_NAMES) {
1904		if (inode)
1905			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906			       "dev=%02x:%02x, inode=%lu\n",
1907			       MAJOR(inode->i_sb->s_dev),
1908			       MINOR(inode->i_sb->s_dev),
1909			       inode->i_ino);
1910
1911		else
1912			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913		return 1;
1914	}
1915	context->name_count++;
1916#if AUDIT_DEBUG
1917	context->ino_count++;
1918#endif
1919	return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925	struct cpu_vfs_cap_data caps;
1926	int rc;
1927
1928	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930	name->fcap.fE = 0;
1931	name->fcap_ver = 0;
1932
1933	if (!dentry)
1934		return 0;
1935
1936	rc = get_vfs_caps_from_disk(dentry, &caps);
1937	if (rc)
1938		return rc;
1939
1940	name->fcap.permitted = caps.permitted;
1941	name->fcap.inheritable = caps.inheritable;
1942	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945	return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951			     const struct inode *inode)
1952{
1953	name->ino   = inode->i_ino;
1954	name->dev   = inode->i_sb->s_dev;
1955	name->mode  = inode->i_mode;
1956	name->uid   = inode->i_uid;
1957	name->gid   = inode->i_gid;
1958	name->rdev  = inode->i_rdev;
1959	security_inode_getsecid(inode, &name->osid);
1960	audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
1971{
1972	int idx;
1973	struct audit_context *context = current->audit_context;
1974	const struct inode *inode = dentry->d_inode;
 
1975
1976	if (!context->in_syscall)
1977		return;
1978	if (context->name_count
1979	    && context->names[context->name_count-1].name
1980	    && context->names[context->name_count-1].name == name)
1981		idx = context->name_count - 1;
1982	else if (context->name_count > 1
1983		 && context->names[context->name_count-2].name
1984		 && context->names[context->name_count-2].name == name)
1985		idx = context->name_count - 2;
1986	else {
1987		/* FIXME: how much do we care about inodes that have no
1988		 * associated name? */
1989		if (audit_inc_name_count(context, inode))
1990			return;
1991		idx = context->name_count - 1;
1992		context->names[idx].name = NULL;
1993	}
 
 
 
 
 
 
1994	handle_path(dentry);
1995	audit_copy_inode(&context->names[idx], dentry, inode);
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created.  Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012			 const struct inode *parent)
2013{
2014	int idx;
2015	struct audit_context *context = current->audit_context;
2016	const char *found_parent = NULL, *found_child = NULL;
2017	const struct inode *inode = dentry->d_inode;
2018	const char *dname = dentry->d_name.name;
 
2019	int dirlen = 0;
2020
2021	if (!context->in_syscall)
2022		return;
2023
2024	if (inode)
2025		handle_one(inode);
2026
2027	/* parent is more likely, look for it first */
2028	for (idx = 0; idx < context->name_count; idx++) {
2029		struct audit_names *n = &context->names[idx];
2030
2031		if (!n->name)
2032			continue;
2033
2034		if (n->ino == parent->i_ino &&
2035		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036			n->name_len = dirlen; /* update parent data in place */
2037			found_parent = n->name;
2038			goto add_names;
2039		}
2040	}
2041
2042	/* no matching parent, look for matching child */
2043	for (idx = 0; idx < context->name_count; idx++) {
2044		struct audit_names *n = &context->names[idx];
2045
2046		if (!n->name)
2047			continue;
2048
2049		/* strcmp() is the more likely scenario */
2050		if (!strcmp(dname, n->name) ||
2051		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052			if (inode)
2053				audit_copy_inode(n, NULL, inode);
2054			else
2055				n->ino = (unsigned long)-1;
2056			found_child = n->name;
2057			goto add_names;
2058		}
2059	}
2060
2061add_names:
2062	if (!found_parent) {
2063		if (audit_inc_name_count(context, parent))
 
2064			return;
2065		idx = context->name_count - 1;
2066		context->names[idx].name = NULL;
2067		audit_copy_inode(&context->names[idx], NULL, parent);
2068	}
2069
2070	if (!found_child) {
2071		if (audit_inc_name_count(context, inode))
 
2072			return;
2073		idx = context->name_count - 1;
2074
2075		/* Re-use the name belonging to the slot for a matching parent
2076		 * directory. All names for this context are relinquished in
2077		 * audit_free_names() */
2078		if (found_parent) {
2079			context->names[idx].name = found_parent;
2080			context->names[idx].name_len = AUDIT_NAME_FULL;
2081			/* don't call __putname() */
2082			context->names[idx].name_put = 0;
2083		} else {
2084			context->names[idx].name = NULL;
2085		}
2086
2087		if (inode)
2088			audit_copy_inode(&context->names[idx], NULL, inode);
2089		else
2090			context->names[idx].ino = (unsigned long)-1;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104		       struct timespec *t, unsigned int *serial)
2105{
2106	if (!ctx->in_syscall)
2107		return 0;
2108	if (!ctx->serial)
2109		ctx->serial = audit_serial();
2110	t->tv_sec  = ctx->ctime.tv_sec;
2111	t->tv_nsec = ctx->ctime.tv_nsec;
2112	*serial    = ctx->serial;
2113	if (!ctx->prio) {
2114		ctx->prio = 1;
2115		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116	}
2117	return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134	unsigned int sessionid = atomic_inc_return(&session_id);
2135	struct audit_context *context = task->audit_context;
 
2136
 
 
 
 
 
 
 
 
 
2137	if (context && context->in_syscall) {
2138		struct audit_buffer *ab;
2139
2140		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141		if (ab) {
2142			audit_log_format(ab, "login pid=%d uid=%u "
2143				"old auid=%u new auid=%u"
2144				" old ses=%u new ses=%u",
2145				task->pid, task_uid(task),
2146				task->loginuid, loginuid,
2147				task->sessionid, sessionid);
2148			audit_log_end(ab);
2149		}
2150	}
2151	task->sessionid = sessionid;
2152	task->loginuid = loginuid;
2153	return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165	struct audit_context *context = current->audit_context;
2166
2167	if (attr)
2168		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169	else
2170		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172	context->mq_open.oflag = oflag;
2173	context->mq_open.mode = mode;
2174
2175	context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187			const struct timespec *abs_timeout)
2188{
2189	struct audit_context *context = current->audit_context;
2190	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192	if (abs_timeout)
2193		memcpy(p, abs_timeout, sizeof(struct timespec));
2194	else
2195		memset(p, 0, sizeof(struct timespec));
2196
2197	context->mq_sendrecv.mqdes = mqdes;
2198	context->mq_sendrecv.msg_len = msg_len;
2199	context->mq_sendrecv.msg_prio = msg_prio;
2200
2201	context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (notification)
2216		context->mq_notify.sigev_signo = notification->sigev_signo;
2217	else
2218		context->mq_notify.sigev_signo = 0;
2219
2220	context->mq_notify.mqdes = mqdes;
2221	context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232	struct audit_context *context = current->audit_context;
2233	context->mq_getsetattr.mqdes = mqdes;
2234	context->mq_getsetattr.mqstat = *mqstat;
2235	context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245	struct audit_context *context = current->audit_context;
2246	context->ipc.uid = ipcp->uid;
2247	context->ipc.gid = ipcp->gid;
2248	context->ipc.mode = ipcp->mode;
2249	context->ipc.has_perm = 0;
2250	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251	context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265	struct audit_context *context = current->audit_context;
2266
2267	context->ipc.qbytes = qbytes;
2268	context->ipc.perm_uid = uid;
2269	context->ipc.perm_gid = gid;
2270	context->ipc.perm_mode = mode;
2271	context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276	struct audit_aux_data_execve *ax;
2277	struct audit_context *context = current->audit_context;
2278
2279	if (likely(!audit_enabled || !context || context->dummy))
2280		return 0;
2281
2282	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283	if (!ax)
2284		return -ENOMEM;
2285
2286	ax->argc = bprm->argc;
2287	ax->envc = bprm->envc;
2288	ax->mm = bprm->mm;
2289	ax->d.type = AUDIT_EXECVE;
2290	ax->d.next = context->aux;
2291	context->aux = (void *)ax;
2292	return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304	struct audit_context *context = current->audit_context;
2305
2306	if (likely(!context || context->dummy))
2307		return;
2308
2309	context->type = AUDIT_SOCKETCALL;
2310	context->socketcall.nargs = nargs;
2311	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322	struct audit_context *context = current->audit_context;
2323	context->fds[0] = fd1;
2324	context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336	struct audit_context *context = current->audit_context;
2337
2338	if (likely(!context || context->dummy))
2339		return 0;
2340
2341	if (!context->sockaddr) {
2342		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343		if (!p)
2344			return -ENOMEM;
2345		context->sockaddr = p;
2346	}
2347
2348	context->sockaddr_len = len;
2349	memcpy(context->sockaddr, a, len);
2350	return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355	struct audit_context *context = current->audit_context;
2356
2357	context->target_pid = t->pid;
2358	context->target_auid = audit_get_loginuid(t);
2359	context->target_uid = task_uid(t);
2360	context->target_sessionid = audit_get_sessionid(t);
2361	security_task_getsecid(t, &context->target_sid);
2362	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375	struct audit_aux_data_pids *axp;
2376	struct task_struct *tsk = current;
2377	struct audit_context *ctx = tsk->audit_context;
2378	uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380	if (audit_pid && t->tgid == audit_pid) {
2381		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382			audit_sig_pid = tsk->pid;
2383			if (tsk->loginuid != -1)
2384				audit_sig_uid = tsk->loginuid;
2385			else
2386				audit_sig_uid = uid;
2387			security_task_getsecid(tsk, &audit_sig_sid);
2388		}
2389		if (!audit_signals || audit_dummy_context())
2390			return 0;
2391	}
2392
2393	/* optimize the common case by putting first signal recipient directly
2394	 * in audit_context */
2395	if (!ctx->target_pid) {
2396		ctx->target_pid = t->tgid;
2397		ctx->target_auid = audit_get_loginuid(t);
2398		ctx->target_uid = t_uid;
2399		ctx->target_sessionid = audit_get_sessionid(t);
2400		security_task_getsecid(t, &ctx->target_sid);
2401		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402		return 0;
2403	}
2404
2405	axp = (void *)ctx->aux_pids;
2406	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408		if (!axp)
2409			return -ENOMEM;
2410
2411		axp->d.type = AUDIT_OBJ_PID;
2412		axp->d.next = ctx->aux_pids;
2413		ctx->aux_pids = (void *)axp;
2414	}
2415	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417	axp->target_pid[axp->pid_count] = t->tgid;
2418	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419	axp->target_uid[axp->pid_count] = t_uid;
2420	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423	axp->pid_count++;
2424
2425	return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440			   const struct cred *new, const struct cred *old)
2441{
2442	struct audit_aux_data_bprm_fcaps *ax;
2443	struct audit_context *context = current->audit_context;
2444	struct cpu_vfs_cap_data vcaps;
2445	struct dentry *dentry;
2446
2447	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448	if (!ax)
2449		return -ENOMEM;
2450
2451	ax->d.type = AUDIT_BPRM_FCAPS;
2452	ax->d.next = context->aux;
2453	context->aux = (void *)ax;
2454
2455	dentry = dget(bprm->file->f_dentry);
2456	get_vfs_caps_from_disk(dentry, &vcaps);
2457	dput(dentry);
2458
2459	ax->fcap.permitted = vcaps.permitted;
2460	ax->fcap.inheritable = vcaps.inheritable;
2461	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464	ax->old_pcap.permitted   = old->cap_permitted;
2465	ax->old_pcap.inheritable = old->cap_inheritable;
2466	ax->old_pcap.effective   = old->cap_effective;
2467
2468	ax->new_pcap.permitted   = new->cap_permitted;
2469	ax->new_pcap.inheritable = new->cap_inheritable;
2470	ax->new_pcap.effective   = new->cap_effective;
2471	return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484		       const struct cred *new, const struct cred *old)
2485{
2486	struct audit_context *context = current->audit_context;
2487	context->capset.pid = pid;
2488	context->capset.cap.effective   = new->cap_effective;
2489	context->capset.cap.inheritable = new->cap_effective;
2490	context->capset.cap.permitted   = new->cap_permitted;
2491	context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496	struct audit_context *context = current->audit_context;
2497	context->mmap.fd = fd;
2498	context->mmap.flags = flags;
2499	context->type = AUDIT_MMAP;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511	struct audit_buffer *ab;
2512	u32 sid;
2513	uid_t auid = audit_get_loginuid(current), uid;
2514	gid_t gid;
2515	unsigned int sessionid = audit_get_sessionid(current);
2516
2517	if (!audit_enabled)
2518		return;
2519
2520	if (signr == SIGQUIT)	/* don't care for those */
2521		return;
2522
2523	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524	current_uid_gid(&uid, &gid);
2525	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526			 auid, uid, gid, sessionid);
2527	security_task_getsecid(current, &sid);
2528	if (sid) {
2529		char *ctx = NULL;
2530		u32 len;
2531
2532		if (security_secid_to_secctx(sid, &ctx, &len))
2533			audit_log_format(ab, " ssid=%u", sid);
2534		else {
2535			audit_log_format(ab, " subj=%s", ctx);
2536			security_release_secctx(ctx, len);
2537		}
2538	}
2539	audit_log_format(ab, " pid=%d comm=", current->pid);
2540	audit_log_untrustedstring(ab, current->comm);
2541	audit_log_format(ab, " sig=%ld", signr);
2542	audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547	struct audit_context *ctx = current->audit_context;
2548	if (likely(!ctx || !ctx->in_syscall))
2549		return NULL;
2550	return &ctx->killed_trees;
2551}