Linux Audio

Check our new training course

Loading...
v3.5.6
  1#include "audit.h"
  2#include <linux/fsnotify_backend.h>
  3#include <linux/namei.h>
  4#include <linux/mount.h>
  5#include <linux/kthread.h>
  6#include <linux/slab.h>
  7
  8struct audit_tree;
  9struct audit_chunk;
 10
 11struct audit_tree {
 12	atomic_t count;
 13	int goner;
 14	struct audit_chunk *root;
 15	struct list_head chunks;
 16	struct list_head rules;
 17	struct list_head list;
 18	struct list_head same_root;
 19	struct rcu_head head;
 20	char pathname[];
 21};
 22
 23struct audit_chunk {
 24	struct list_head hash;
 25	struct fsnotify_mark mark;
 26	struct list_head trees;		/* with root here */
 27	int dead;
 28	int count;
 29	atomic_long_t refs;
 30	struct rcu_head head;
 31	struct node {
 32		struct list_head list;
 33		struct audit_tree *owner;
 34		unsigned index;		/* index; upper bit indicates 'will prune' */
 35	} owners[];
 36};
 37
 38static LIST_HEAD(tree_list);
 39static LIST_HEAD(prune_list);
 40
 41/*
 42 * One struct chunk is attached to each inode of interest.
 43 * We replace struct chunk on tagging/untagging.
 44 * Rules have pointer to struct audit_tree.
 45 * Rules have struct list_head rlist forming a list of rules over
 46 * the same tree.
 47 * References to struct chunk are collected at audit_inode{,_child}()
 48 * time and used in AUDIT_TREE rule matching.
 49 * These references are dropped at the same time we are calling
 50 * audit_free_names(), etc.
 51 *
 52 * Cyclic lists galore:
 53 * tree.chunks anchors chunk.owners[].list			hash_lock
 54 * tree.rules anchors rule.rlist				audit_filter_mutex
 55 * chunk.trees anchors tree.same_root				hash_lock
 56 * chunk.hash is a hash with middle bits of watch.inode as
 57 * a hash function.						RCU, hash_lock
 58 *
 59 * tree is refcounted; one reference for "some rules on rules_list refer to
 60 * it", one for each chunk with pointer to it.
 61 *
 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 63 * of watch contributes 1 to .refs).
 64 *
 65 * node.index allows to get from node.list to containing chunk.
 66 * MSB of that sucker is stolen to mark taggings that we might have to
 67 * revert - several operations have very unpleasant cleanup logics and
 68 * that makes a difference.  Some.
 69 */
 70
 71static struct fsnotify_group *audit_tree_group;
 72
 73static struct audit_tree *alloc_tree(const char *s)
 74{
 75	struct audit_tree *tree;
 76
 77	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 78	if (tree) {
 79		atomic_set(&tree->count, 1);
 80		tree->goner = 0;
 81		INIT_LIST_HEAD(&tree->chunks);
 82		INIT_LIST_HEAD(&tree->rules);
 83		INIT_LIST_HEAD(&tree->list);
 84		INIT_LIST_HEAD(&tree->same_root);
 85		tree->root = NULL;
 86		strcpy(tree->pathname, s);
 87	}
 88	return tree;
 89}
 90
 91static inline void get_tree(struct audit_tree *tree)
 92{
 93	atomic_inc(&tree->count);
 94}
 95
 96static inline void put_tree(struct audit_tree *tree)
 97{
 98	if (atomic_dec_and_test(&tree->count))
 99		kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105	return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110	int i;
111
112	for (i = 0; i < chunk->count; i++) {
113		if (chunk->owners[i].owner)
114			put_tree(chunk->owners[i].owner);
115	}
116	kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121	if (atomic_long_dec_and_test(&chunk->refs))
122		free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128	audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134	call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139	struct audit_chunk *chunk;
140	size_t size;
141	int i;
142
143	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144	chunk = kzalloc(size, GFP_KERNEL);
145	if (!chunk)
146		return NULL;
147
148	INIT_LIST_HEAD(&chunk->hash);
149	INIT_LIST_HEAD(&chunk->trees);
150	chunk->count = count;
151	atomic_long_set(&chunk->refs, 1);
152	for (i = 0; i < count; i++) {
153		INIT_LIST_HEAD(&chunk->owners[i].list);
154		chunk->owners[i].index = i;
155	}
156	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157	return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167	return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173	struct fsnotify_mark *entry = &chunk->mark;
174	struct list_head *list;
175
176	if (!entry->i.inode)
177		return;
178	list = chunk_hash(entry->i.inode);
179	list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185	struct list_head *list = chunk_hash(inode);
186	struct audit_chunk *p;
187
188	list_for_each_entry_rcu(p, list, hash) {
189		/* mark.inode may have gone NULL, but who cares? */
190		if (p->mark.i.inode == inode) {
191			atomic_long_inc(&p->refs);
192			return p;
193		}
194	}
195	return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200	int n;
201	for (n = 0; n < chunk->count; n++)
202		if (chunk->owners[n].owner == tree)
203			return 1;
204	return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211	int index = p->index & ~(1U<<31);
212	p -= index;
213	return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218	struct audit_chunk *chunk = find_chunk(p);
219	struct fsnotify_mark *entry = &chunk->mark;
220	struct audit_chunk *new = NULL;
221	struct audit_tree *owner;
222	int size = chunk->count - 1;
223	int i, j;
224
225	fsnotify_get_mark(entry);
226
227	spin_unlock(&hash_lock);
228
229	if (size)
230		new = alloc_chunk(size);
231
232	spin_lock(&entry->lock);
233	if (chunk->dead || !entry->i.inode) {
234		spin_unlock(&entry->lock);
235		if (new)
236			free_chunk(new);
237		goto out;
238	}
239
240	owner = p->owner;
241
242	if (!size) {
243		chunk->dead = 1;
244		spin_lock(&hash_lock);
245		list_del_init(&chunk->trees);
246		if (owner->root == chunk)
247			owner->root = NULL;
248		list_del_init(&p->list);
249		list_del_rcu(&chunk->hash);
250		spin_unlock(&hash_lock);
251		spin_unlock(&entry->lock);
252		fsnotify_destroy_mark(entry);
 
253		goto out;
254	}
255
256	if (!new)
257		goto Fallback;
258
259	fsnotify_duplicate_mark(&new->mark, entry);
260	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261		fsnotify_put_mark(&new->mark);
262		goto Fallback;
263	}
264
265	chunk->dead = 1;
266	spin_lock(&hash_lock);
267	list_replace_init(&chunk->trees, &new->trees);
268	if (owner->root == chunk) {
269		list_del_init(&owner->same_root);
270		owner->root = NULL;
271	}
272
273	for (i = j = 0; j <= size; i++, j++) {
274		struct audit_tree *s;
275		if (&chunk->owners[j] == p) {
276			list_del_init(&p->list);
277			i--;
278			continue;
279		}
280		s = chunk->owners[j].owner;
281		new->owners[i].owner = s;
282		new->owners[i].index = chunk->owners[j].index - j + i;
283		if (!s) /* result of earlier fallback */
284			continue;
285		get_tree(s);
286		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287	}
288
289	list_replace_rcu(&chunk->hash, &new->hash);
290	list_for_each_entry(owner, &new->trees, same_root)
291		owner->root = new;
292	spin_unlock(&hash_lock);
293	spin_unlock(&entry->lock);
294	fsnotify_destroy_mark(entry);
 
295	goto out;
296
297Fallback:
298	// do the best we can
299	spin_lock(&hash_lock);
300	if (owner->root == chunk) {
301		list_del_init(&owner->same_root);
302		owner->root = NULL;
303	}
304	list_del_init(&p->list);
305	p->owner = NULL;
306	put_tree(owner);
307	spin_unlock(&hash_lock);
308	spin_unlock(&entry->lock);
309out:
310	fsnotify_put_mark(entry);
311	spin_lock(&hash_lock);
312}
313
314static int create_chunk(struct inode *inode, struct audit_tree *tree)
315{
316	struct fsnotify_mark *entry;
317	struct audit_chunk *chunk = alloc_chunk(1);
318	if (!chunk)
319		return -ENOMEM;
320
321	entry = &chunk->mark;
322	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
323		fsnotify_put_mark(entry);
324		return -ENOSPC;
325	}
326
327	spin_lock(&entry->lock);
328	spin_lock(&hash_lock);
329	if (tree->goner) {
330		spin_unlock(&hash_lock);
331		chunk->dead = 1;
332		spin_unlock(&entry->lock);
333		fsnotify_get_mark(entry);
334		fsnotify_destroy_mark(entry);
335		fsnotify_put_mark(entry);
336		return 0;
337	}
338	chunk->owners[0].index = (1U << 31);
339	chunk->owners[0].owner = tree;
340	get_tree(tree);
341	list_add(&chunk->owners[0].list, &tree->chunks);
342	if (!tree->root) {
343		tree->root = chunk;
344		list_add(&tree->same_root, &chunk->trees);
345	}
346	insert_hash(chunk);
347	spin_unlock(&hash_lock);
348	spin_unlock(&entry->lock);
349	return 0;
350}
351
352/* the first tagged inode becomes root of tree */
353static int tag_chunk(struct inode *inode, struct audit_tree *tree)
354{
355	struct fsnotify_mark *old_entry, *chunk_entry;
356	struct audit_tree *owner;
357	struct audit_chunk *chunk, *old;
358	struct node *p;
359	int n;
360
361	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
362	if (!old_entry)
363		return create_chunk(inode, tree);
364
365	old = container_of(old_entry, struct audit_chunk, mark);
366
367	/* are we already there? */
368	spin_lock(&hash_lock);
369	for (n = 0; n < old->count; n++) {
370		if (old->owners[n].owner == tree) {
371			spin_unlock(&hash_lock);
372			fsnotify_put_mark(old_entry);
373			return 0;
374		}
375	}
376	spin_unlock(&hash_lock);
377
378	chunk = alloc_chunk(old->count + 1);
379	if (!chunk) {
380		fsnotify_put_mark(old_entry);
381		return -ENOMEM;
382	}
383
384	chunk_entry = &chunk->mark;
385
386	spin_lock(&old_entry->lock);
387	if (!old_entry->i.inode) {
388		/* old_entry is being shot, lets just lie */
389		spin_unlock(&old_entry->lock);
390		fsnotify_put_mark(old_entry);
391		free_chunk(chunk);
392		return -ENOENT;
393	}
394
395	fsnotify_duplicate_mark(chunk_entry, old_entry);
396	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
397		spin_unlock(&old_entry->lock);
398		fsnotify_put_mark(chunk_entry);
399		fsnotify_put_mark(old_entry);
400		return -ENOSPC;
401	}
402
403	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
404	spin_lock(&chunk_entry->lock);
405	spin_lock(&hash_lock);
406
407	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
408	if (tree->goner) {
409		spin_unlock(&hash_lock);
410		chunk->dead = 1;
411		spin_unlock(&chunk_entry->lock);
412		spin_unlock(&old_entry->lock);
413
414		fsnotify_get_mark(chunk_entry);
415		fsnotify_destroy_mark(chunk_entry);
416
417		fsnotify_put_mark(chunk_entry);
418		fsnotify_put_mark(old_entry);
419		return 0;
420	}
421	list_replace_init(&old->trees, &chunk->trees);
422	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423		struct audit_tree *s = old->owners[n].owner;
424		p->owner = s;
425		p->index = old->owners[n].index;
426		if (!s) /* result of fallback in untag */
427			continue;
428		get_tree(s);
429		list_replace_init(&old->owners[n].list, &p->list);
430	}
431	p->index = (chunk->count - 1) | (1U<<31);
432	p->owner = tree;
433	get_tree(tree);
434	list_add(&p->list, &tree->chunks);
435	list_replace_rcu(&old->hash, &chunk->hash);
436	list_for_each_entry(owner, &chunk->trees, same_root)
437		owner->root = chunk;
438	old->dead = 1;
439	if (!tree->root) {
440		tree->root = chunk;
441		list_add(&tree->same_root, &chunk->trees);
442	}
443	spin_unlock(&hash_lock);
444	spin_unlock(&chunk_entry->lock);
445	spin_unlock(&old_entry->lock);
446	fsnotify_destroy_mark(old_entry);
447	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
 
448	return 0;
449}
450
451static void kill_rules(struct audit_tree *tree)
452{
453	struct audit_krule *rule, *next;
454	struct audit_entry *entry;
455	struct audit_buffer *ab;
456
457	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
458		entry = container_of(rule, struct audit_entry, rule);
459
460		list_del_init(&rule->rlist);
461		if (rule->tree) {
462			/* not a half-baked one */
463			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
464			audit_log_format(ab, "op=");
465			audit_log_string(ab, "remove rule");
466			audit_log_format(ab, " dir=");
467			audit_log_untrustedstring(ab, rule->tree->pathname);
468			audit_log_key(ab, rule->filterkey);
469			audit_log_format(ab, " list=%d res=1", rule->listnr);
470			audit_log_end(ab);
471			rule->tree = NULL;
472			list_del_rcu(&entry->list);
473			list_del(&entry->rule.list);
474			call_rcu(&entry->rcu, audit_free_rule_rcu);
475		}
476	}
477}
478
479/*
480 * finish killing struct audit_tree
481 */
482static void prune_one(struct audit_tree *victim)
483{
484	spin_lock(&hash_lock);
485	while (!list_empty(&victim->chunks)) {
486		struct node *p;
487
488		p = list_entry(victim->chunks.next, struct node, list);
489
490		untag_chunk(p);
491	}
492	spin_unlock(&hash_lock);
493	put_tree(victim);
494}
495
496/* trim the uncommitted chunks from tree */
497
498static void trim_marked(struct audit_tree *tree)
499{
500	struct list_head *p, *q;
501	spin_lock(&hash_lock);
502	if (tree->goner) {
503		spin_unlock(&hash_lock);
504		return;
505	}
506	/* reorder */
507	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
508		struct node *node = list_entry(p, struct node, list);
509		q = p->next;
510		if (node->index & (1U<<31)) {
511			list_del_init(p);
512			list_add(p, &tree->chunks);
513		}
514	}
515
516	while (!list_empty(&tree->chunks)) {
517		struct node *node;
518
519		node = list_entry(tree->chunks.next, struct node, list);
520
521		/* have we run out of marked? */
522		if (!(node->index & (1U<<31)))
523			break;
524
525		untag_chunk(node);
526	}
527	if (!tree->root && !tree->goner) {
528		tree->goner = 1;
529		spin_unlock(&hash_lock);
530		mutex_lock(&audit_filter_mutex);
531		kill_rules(tree);
532		list_del_init(&tree->list);
533		mutex_unlock(&audit_filter_mutex);
534		prune_one(tree);
535	} else {
536		spin_unlock(&hash_lock);
537	}
538}
539
540static void audit_schedule_prune(void);
541
542/* called with audit_filter_mutex */
543int audit_remove_tree_rule(struct audit_krule *rule)
544{
545	struct audit_tree *tree;
546	tree = rule->tree;
547	if (tree) {
548		spin_lock(&hash_lock);
549		list_del_init(&rule->rlist);
550		if (list_empty(&tree->rules) && !tree->goner) {
551			tree->root = NULL;
552			list_del_init(&tree->same_root);
553			tree->goner = 1;
554			list_move(&tree->list, &prune_list);
555			rule->tree = NULL;
556			spin_unlock(&hash_lock);
557			audit_schedule_prune();
558			return 1;
559		}
560		rule->tree = NULL;
561		spin_unlock(&hash_lock);
562		return 1;
563	}
564	return 0;
565}
566
567static int compare_root(struct vfsmount *mnt, void *arg)
568{
569	return mnt->mnt_root->d_inode == arg;
570}
571
572void audit_trim_trees(void)
573{
574	struct list_head cursor;
575
576	mutex_lock(&audit_filter_mutex);
577	list_add(&cursor, &tree_list);
578	while (cursor.next != &tree_list) {
579		struct audit_tree *tree;
580		struct path path;
581		struct vfsmount *root_mnt;
582		struct node *node;
583		int err;
584
585		tree = container_of(cursor.next, struct audit_tree, list);
586		get_tree(tree);
587		list_del(&cursor);
588		list_add(&cursor, &tree->list);
589		mutex_unlock(&audit_filter_mutex);
590
591		err = kern_path(tree->pathname, 0, &path);
592		if (err)
593			goto skip_it;
594
595		root_mnt = collect_mounts(&path);
596		path_put(&path);
597		if (!root_mnt)
598			goto skip_it;
599
600		spin_lock(&hash_lock);
601		list_for_each_entry(node, &tree->chunks, list) {
602			struct audit_chunk *chunk = find_chunk(node);
603			/* this could be NULL if the watch is dying else where... */
604			struct inode *inode = chunk->mark.i.inode;
605			node->index |= 1U<<31;
606			if (iterate_mounts(compare_root, inode, root_mnt))
607				node->index &= ~(1U<<31);
608		}
609		spin_unlock(&hash_lock);
610		trim_marked(tree);
611		put_tree(tree);
612		drop_collected_mounts(root_mnt);
613skip_it:
614		mutex_lock(&audit_filter_mutex);
615	}
616	list_del(&cursor);
617	mutex_unlock(&audit_filter_mutex);
618}
619
620int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
621{
622
623	if (pathname[0] != '/' ||
624	    rule->listnr != AUDIT_FILTER_EXIT ||
625	    op != Audit_equal ||
626	    rule->inode_f || rule->watch || rule->tree)
627		return -EINVAL;
628	rule->tree = alloc_tree(pathname);
629	if (!rule->tree)
630		return -ENOMEM;
631	return 0;
632}
633
634void audit_put_tree(struct audit_tree *tree)
635{
636	put_tree(tree);
637}
638
639static int tag_mount(struct vfsmount *mnt, void *arg)
640{
641	return tag_chunk(mnt->mnt_root->d_inode, arg);
642}
643
644/* called with audit_filter_mutex */
645int audit_add_tree_rule(struct audit_krule *rule)
646{
647	struct audit_tree *seed = rule->tree, *tree;
648	struct path path;
649	struct vfsmount *mnt;
650	int err;
651
652	list_for_each_entry(tree, &tree_list, list) {
653		if (!strcmp(seed->pathname, tree->pathname)) {
654			put_tree(seed);
655			rule->tree = tree;
656			list_add(&rule->rlist, &tree->rules);
657			return 0;
658		}
659	}
660	tree = seed;
661	list_add(&tree->list, &tree_list);
662	list_add(&rule->rlist, &tree->rules);
663	/* do not set rule->tree yet */
664	mutex_unlock(&audit_filter_mutex);
665
666	err = kern_path(tree->pathname, 0, &path);
667	if (err)
668		goto Err;
669	mnt = collect_mounts(&path);
670	path_put(&path);
671	if (!mnt) {
672		err = -ENOMEM;
673		goto Err;
674	}
675
676	get_tree(tree);
677	err = iterate_mounts(tag_mount, tree, mnt);
678	drop_collected_mounts(mnt);
679
680	if (!err) {
681		struct node *node;
682		spin_lock(&hash_lock);
683		list_for_each_entry(node, &tree->chunks, list)
684			node->index &= ~(1U<<31);
685		spin_unlock(&hash_lock);
686	} else {
687		trim_marked(tree);
688		goto Err;
689	}
690
691	mutex_lock(&audit_filter_mutex);
692	if (list_empty(&rule->rlist)) {
693		put_tree(tree);
694		return -ENOENT;
695	}
696	rule->tree = tree;
697	put_tree(tree);
698
699	return 0;
700Err:
701	mutex_lock(&audit_filter_mutex);
702	list_del_init(&tree->list);
703	list_del_init(&tree->rules);
704	put_tree(tree);
705	return err;
706}
707
708int audit_tag_tree(char *old, char *new)
709{
710	struct list_head cursor, barrier;
711	int failed = 0;
712	struct path path1, path2;
713	struct vfsmount *tagged;
714	int err;
715
716	err = kern_path(new, 0, &path2);
717	if (err)
718		return err;
719	tagged = collect_mounts(&path2);
720	path_put(&path2);
721	if (!tagged)
722		return -ENOMEM;
723
724	err = kern_path(old, 0, &path1);
725	if (err) {
726		drop_collected_mounts(tagged);
727		return err;
728	}
729
730	mutex_lock(&audit_filter_mutex);
731	list_add(&barrier, &tree_list);
732	list_add(&cursor, &barrier);
733
734	while (cursor.next != &tree_list) {
735		struct audit_tree *tree;
736		int good_one = 0;
737
738		tree = container_of(cursor.next, struct audit_tree, list);
739		get_tree(tree);
740		list_del(&cursor);
741		list_add(&cursor, &tree->list);
742		mutex_unlock(&audit_filter_mutex);
743
744		err = kern_path(tree->pathname, 0, &path2);
745		if (!err) {
746			good_one = path_is_under(&path1, &path2);
747			path_put(&path2);
748		}
749
750		if (!good_one) {
751			put_tree(tree);
752			mutex_lock(&audit_filter_mutex);
753			continue;
754		}
755
756		failed = iterate_mounts(tag_mount, tree, tagged);
757		if (failed) {
758			put_tree(tree);
759			mutex_lock(&audit_filter_mutex);
760			break;
761		}
762
763		mutex_lock(&audit_filter_mutex);
764		spin_lock(&hash_lock);
765		if (!tree->goner) {
766			list_del(&tree->list);
767			list_add(&tree->list, &tree_list);
768		}
769		spin_unlock(&hash_lock);
770		put_tree(tree);
771	}
772
773	while (barrier.prev != &tree_list) {
774		struct audit_tree *tree;
775
776		tree = container_of(barrier.prev, struct audit_tree, list);
777		get_tree(tree);
778		list_del(&tree->list);
779		list_add(&tree->list, &barrier);
780		mutex_unlock(&audit_filter_mutex);
781
782		if (!failed) {
783			struct node *node;
784			spin_lock(&hash_lock);
785			list_for_each_entry(node, &tree->chunks, list)
786				node->index &= ~(1U<<31);
787			spin_unlock(&hash_lock);
788		} else {
789			trim_marked(tree);
790		}
791
792		put_tree(tree);
793		mutex_lock(&audit_filter_mutex);
794	}
795	list_del(&barrier);
796	list_del(&cursor);
797	mutex_unlock(&audit_filter_mutex);
798	path_put(&path1);
799	drop_collected_mounts(tagged);
800	return failed;
801}
802
803/*
804 * That gets run when evict_chunk() ends up needing to kill audit_tree.
805 * Runs from a separate thread.
806 */
807static int prune_tree_thread(void *unused)
808{
809	mutex_lock(&audit_cmd_mutex);
810	mutex_lock(&audit_filter_mutex);
811
812	while (!list_empty(&prune_list)) {
813		struct audit_tree *victim;
814
815		victim = list_entry(prune_list.next, struct audit_tree, list);
816		list_del_init(&victim->list);
817
818		mutex_unlock(&audit_filter_mutex);
819
820		prune_one(victim);
821
822		mutex_lock(&audit_filter_mutex);
823	}
824
825	mutex_unlock(&audit_filter_mutex);
826	mutex_unlock(&audit_cmd_mutex);
827	return 0;
828}
829
830static void audit_schedule_prune(void)
831{
832	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
833}
834
835/*
836 * ... and that one is done if evict_chunk() decides to delay until the end
837 * of syscall.  Runs synchronously.
838 */
839void audit_kill_trees(struct list_head *list)
840{
841	mutex_lock(&audit_cmd_mutex);
842	mutex_lock(&audit_filter_mutex);
843
844	while (!list_empty(list)) {
845		struct audit_tree *victim;
846
847		victim = list_entry(list->next, struct audit_tree, list);
848		kill_rules(victim);
849		list_del_init(&victim->list);
850
851		mutex_unlock(&audit_filter_mutex);
852
853		prune_one(victim);
854
855		mutex_lock(&audit_filter_mutex);
856	}
857
858	mutex_unlock(&audit_filter_mutex);
859	mutex_unlock(&audit_cmd_mutex);
860}
861
862/*
863 *  Here comes the stuff asynchronous to auditctl operations
864 */
865
866static void evict_chunk(struct audit_chunk *chunk)
867{
868	struct audit_tree *owner;
869	struct list_head *postponed = audit_killed_trees();
870	int need_prune = 0;
871	int n;
872
873	if (chunk->dead)
874		return;
875
876	chunk->dead = 1;
877	mutex_lock(&audit_filter_mutex);
878	spin_lock(&hash_lock);
879	while (!list_empty(&chunk->trees)) {
880		owner = list_entry(chunk->trees.next,
881				   struct audit_tree, same_root);
882		owner->goner = 1;
883		owner->root = NULL;
884		list_del_init(&owner->same_root);
885		spin_unlock(&hash_lock);
886		if (!postponed) {
887			kill_rules(owner);
888			list_move(&owner->list, &prune_list);
889			need_prune = 1;
890		} else {
891			list_move(&owner->list, postponed);
892		}
893		spin_lock(&hash_lock);
894	}
895	list_del_rcu(&chunk->hash);
896	for (n = 0; n < chunk->count; n++)
897		list_del_init(&chunk->owners[n].list);
898	spin_unlock(&hash_lock);
899	if (need_prune)
900		audit_schedule_prune();
901	mutex_unlock(&audit_filter_mutex);
902}
903
904static int audit_tree_handle_event(struct fsnotify_group *group,
905				   struct fsnotify_mark *inode_mark,
906				   struct fsnotify_mark *vfsmonut_mark,
907				   struct fsnotify_event *event)
908{
909	BUG();
910	return -EOPNOTSUPP;
911}
912
913static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
914{
915	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
916
917	evict_chunk(chunk);
918	fsnotify_put_mark(entry);
919}
920
921static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
922				  struct fsnotify_mark *inode_mark,
923				  struct fsnotify_mark *vfsmount_mark,
924				  __u32 mask, void *data, int data_type)
925{
926	return false;
927}
928
929static const struct fsnotify_ops audit_tree_ops = {
930	.handle_event = audit_tree_handle_event,
931	.should_send_event = audit_tree_send_event,
932	.free_group_priv = NULL,
933	.free_event_priv = NULL,
934	.freeing_mark = audit_tree_freeing_mark,
935};
936
937static int __init audit_tree_init(void)
938{
939	int i;
940
941	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
942	if (IS_ERR(audit_tree_group))
943		audit_panic("cannot initialize fsnotify group for rectree watches");
944
945	for (i = 0; i < HASH_SIZE; i++)
946		INIT_LIST_HEAD(&chunk_hash_heads[i]);
947
948	return 0;
949}
950__initcall(audit_tree_init);
v3.1
  1#include "audit.h"
  2#include <linux/fsnotify_backend.h>
  3#include <linux/namei.h>
  4#include <linux/mount.h>
  5#include <linux/kthread.h>
  6#include <linux/slab.h>
  7
  8struct audit_tree;
  9struct audit_chunk;
 10
 11struct audit_tree {
 12	atomic_t count;
 13	int goner;
 14	struct audit_chunk *root;
 15	struct list_head chunks;
 16	struct list_head rules;
 17	struct list_head list;
 18	struct list_head same_root;
 19	struct rcu_head head;
 20	char pathname[];
 21};
 22
 23struct audit_chunk {
 24	struct list_head hash;
 25	struct fsnotify_mark mark;
 26	struct list_head trees;		/* with root here */
 27	int dead;
 28	int count;
 29	atomic_long_t refs;
 30	struct rcu_head head;
 31	struct node {
 32		struct list_head list;
 33		struct audit_tree *owner;
 34		unsigned index;		/* index; upper bit indicates 'will prune' */
 35	} owners[];
 36};
 37
 38static LIST_HEAD(tree_list);
 39static LIST_HEAD(prune_list);
 40
 41/*
 42 * One struct chunk is attached to each inode of interest.
 43 * We replace struct chunk on tagging/untagging.
 44 * Rules have pointer to struct audit_tree.
 45 * Rules have struct list_head rlist forming a list of rules over
 46 * the same tree.
 47 * References to struct chunk are collected at audit_inode{,_child}()
 48 * time and used in AUDIT_TREE rule matching.
 49 * These references are dropped at the same time we are calling
 50 * audit_free_names(), etc.
 51 *
 52 * Cyclic lists galore:
 53 * tree.chunks anchors chunk.owners[].list			hash_lock
 54 * tree.rules anchors rule.rlist				audit_filter_mutex
 55 * chunk.trees anchors tree.same_root				hash_lock
 56 * chunk.hash is a hash with middle bits of watch.inode as
 57 * a hash function.						RCU, hash_lock
 58 *
 59 * tree is refcounted; one reference for "some rules on rules_list refer to
 60 * it", one for each chunk with pointer to it.
 61 *
 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 63 * of watch contributes 1 to .refs).
 64 *
 65 * node.index allows to get from node.list to containing chunk.
 66 * MSB of that sucker is stolen to mark taggings that we might have to
 67 * revert - several operations have very unpleasant cleanup logics and
 68 * that makes a difference.  Some.
 69 */
 70
 71static struct fsnotify_group *audit_tree_group;
 72
 73static struct audit_tree *alloc_tree(const char *s)
 74{
 75	struct audit_tree *tree;
 76
 77	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 78	if (tree) {
 79		atomic_set(&tree->count, 1);
 80		tree->goner = 0;
 81		INIT_LIST_HEAD(&tree->chunks);
 82		INIT_LIST_HEAD(&tree->rules);
 83		INIT_LIST_HEAD(&tree->list);
 84		INIT_LIST_HEAD(&tree->same_root);
 85		tree->root = NULL;
 86		strcpy(tree->pathname, s);
 87	}
 88	return tree;
 89}
 90
 91static inline void get_tree(struct audit_tree *tree)
 92{
 93	atomic_inc(&tree->count);
 94}
 95
 96static inline void put_tree(struct audit_tree *tree)
 97{
 98	if (atomic_dec_and_test(&tree->count))
 99		kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105	return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110	int i;
111
112	for (i = 0; i < chunk->count; i++) {
113		if (chunk->owners[i].owner)
114			put_tree(chunk->owners[i].owner);
115	}
116	kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121	if (atomic_long_dec_and_test(&chunk->refs))
122		free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128	audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134	call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139	struct audit_chunk *chunk;
140	size_t size;
141	int i;
142
143	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144	chunk = kzalloc(size, GFP_KERNEL);
145	if (!chunk)
146		return NULL;
147
148	INIT_LIST_HEAD(&chunk->hash);
149	INIT_LIST_HEAD(&chunk->trees);
150	chunk->count = count;
151	atomic_long_set(&chunk->refs, 1);
152	for (i = 0; i < count; i++) {
153		INIT_LIST_HEAD(&chunk->owners[i].list);
154		chunk->owners[i].index = i;
155	}
156	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157	return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167	return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173	struct fsnotify_mark *entry = &chunk->mark;
174	struct list_head *list;
175
176	if (!entry->i.inode)
177		return;
178	list = chunk_hash(entry->i.inode);
179	list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185	struct list_head *list = chunk_hash(inode);
186	struct audit_chunk *p;
187
188	list_for_each_entry_rcu(p, list, hash) {
189		/* mark.inode may have gone NULL, but who cares? */
190		if (p->mark.i.inode == inode) {
191			atomic_long_inc(&p->refs);
192			return p;
193		}
194	}
195	return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200	int n;
201	for (n = 0; n < chunk->count; n++)
202		if (chunk->owners[n].owner == tree)
203			return 1;
204	return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211	int index = p->index & ~(1U<<31);
212	p -= index;
213	return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218	struct audit_chunk *chunk = find_chunk(p);
219	struct fsnotify_mark *entry = &chunk->mark;
220	struct audit_chunk *new = NULL;
221	struct audit_tree *owner;
222	int size = chunk->count - 1;
223	int i, j;
224
225	fsnotify_get_mark(entry);
226
227	spin_unlock(&hash_lock);
228
229	if (size)
230		new = alloc_chunk(size);
231
232	spin_lock(&entry->lock);
233	if (chunk->dead || !entry->i.inode) {
234		spin_unlock(&entry->lock);
235		if (new)
236			free_chunk(new);
237		goto out;
238	}
239
240	owner = p->owner;
241
242	if (!size) {
243		chunk->dead = 1;
244		spin_lock(&hash_lock);
245		list_del_init(&chunk->trees);
246		if (owner->root == chunk)
247			owner->root = NULL;
248		list_del_init(&p->list);
249		list_del_rcu(&chunk->hash);
250		spin_unlock(&hash_lock);
251		spin_unlock(&entry->lock);
252		fsnotify_destroy_mark(entry);
253		fsnotify_put_mark(entry);
254		goto out;
255	}
256
257	if (!new)
258		goto Fallback;
259
260	fsnotify_duplicate_mark(&new->mark, entry);
261	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
262		free_chunk(new);
263		goto Fallback;
264	}
265
266	chunk->dead = 1;
267	spin_lock(&hash_lock);
268	list_replace_init(&chunk->trees, &new->trees);
269	if (owner->root == chunk) {
270		list_del_init(&owner->same_root);
271		owner->root = NULL;
272	}
273
274	for (i = j = 0; j <= size; i++, j++) {
275		struct audit_tree *s;
276		if (&chunk->owners[j] == p) {
277			list_del_init(&p->list);
278			i--;
279			continue;
280		}
281		s = chunk->owners[j].owner;
282		new->owners[i].owner = s;
283		new->owners[i].index = chunk->owners[j].index - j + i;
284		if (!s) /* result of earlier fallback */
285			continue;
286		get_tree(s);
287		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
288	}
289
290	list_replace_rcu(&chunk->hash, &new->hash);
291	list_for_each_entry(owner, &new->trees, same_root)
292		owner->root = new;
293	spin_unlock(&hash_lock);
294	spin_unlock(&entry->lock);
295	fsnotify_destroy_mark(entry);
296	fsnotify_put_mark(entry);
297	goto out;
298
299Fallback:
300	// do the best we can
301	spin_lock(&hash_lock);
302	if (owner->root == chunk) {
303		list_del_init(&owner->same_root);
304		owner->root = NULL;
305	}
306	list_del_init(&p->list);
307	p->owner = NULL;
308	put_tree(owner);
309	spin_unlock(&hash_lock);
310	spin_unlock(&entry->lock);
311out:
312	fsnotify_put_mark(entry);
313	spin_lock(&hash_lock);
314}
315
316static int create_chunk(struct inode *inode, struct audit_tree *tree)
317{
318	struct fsnotify_mark *entry;
319	struct audit_chunk *chunk = alloc_chunk(1);
320	if (!chunk)
321		return -ENOMEM;
322
323	entry = &chunk->mark;
324	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
325		free_chunk(chunk);
326		return -ENOSPC;
327	}
328
329	spin_lock(&entry->lock);
330	spin_lock(&hash_lock);
331	if (tree->goner) {
332		spin_unlock(&hash_lock);
333		chunk->dead = 1;
334		spin_unlock(&entry->lock);
 
335		fsnotify_destroy_mark(entry);
336		fsnotify_put_mark(entry);
337		return 0;
338	}
339	chunk->owners[0].index = (1U << 31);
340	chunk->owners[0].owner = tree;
341	get_tree(tree);
342	list_add(&chunk->owners[0].list, &tree->chunks);
343	if (!tree->root) {
344		tree->root = chunk;
345		list_add(&tree->same_root, &chunk->trees);
346	}
347	insert_hash(chunk);
348	spin_unlock(&hash_lock);
349	spin_unlock(&entry->lock);
350	return 0;
351}
352
353/* the first tagged inode becomes root of tree */
354static int tag_chunk(struct inode *inode, struct audit_tree *tree)
355{
356	struct fsnotify_mark *old_entry, *chunk_entry;
357	struct audit_tree *owner;
358	struct audit_chunk *chunk, *old;
359	struct node *p;
360	int n;
361
362	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363	if (!old_entry)
364		return create_chunk(inode, tree);
365
366	old = container_of(old_entry, struct audit_chunk, mark);
367
368	/* are we already there? */
369	spin_lock(&hash_lock);
370	for (n = 0; n < old->count; n++) {
371		if (old->owners[n].owner == tree) {
372			spin_unlock(&hash_lock);
373			fsnotify_put_mark(old_entry);
374			return 0;
375		}
376	}
377	spin_unlock(&hash_lock);
378
379	chunk = alloc_chunk(old->count + 1);
380	if (!chunk) {
381		fsnotify_put_mark(old_entry);
382		return -ENOMEM;
383	}
384
385	chunk_entry = &chunk->mark;
386
387	spin_lock(&old_entry->lock);
388	if (!old_entry->i.inode) {
389		/* old_entry is being shot, lets just lie */
390		spin_unlock(&old_entry->lock);
391		fsnotify_put_mark(old_entry);
392		free_chunk(chunk);
393		return -ENOENT;
394	}
395
396	fsnotify_duplicate_mark(chunk_entry, old_entry);
397	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398		spin_unlock(&old_entry->lock);
399		free_chunk(chunk);
400		fsnotify_put_mark(old_entry);
401		return -ENOSPC;
402	}
403
404	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405	spin_lock(&chunk_entry->lock);
406	spin_lock(&hash_lock);
407
408	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409	if (tree->goner) {
410		spin_unlock(&hash_lock);
411		chunk->dead = 1;
412		spin_unlock(&chunk_entry->lock);
413		spin_unlock(&old_entry->lock);
414
 
415		fsnotify_destroy_mark(chunk_entry);
416
417		fsnotify_put_mark(chunk_entry);
418		fsnotify_put_mark(old_entry);
419		return 0;
420	}
421	list_replace_init(&old->trees, &chunk->trees);
422	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423		struct audit_tree *s = old->owners[n].owner;
424		p->owner = s;
425		p->index = old->owners[n].index;
426		if (!s) /* result of fallback in untag */
427			continue;
428		get_tree(s);
429		list_replace_init(&old->owners[n].list, &p->list);
430	}
431	p->index = (chunk->count - 1) | (1U<<31);
432	p->owner = tree;
433	get_tree(tree);
434	list_add(&p->list, &tree->chunks);
435	list_replace_rcu(&old->hash, &chunk->hash);
436	list_for_each_entry(owner, &chunk->trees, same_root)
437		owner->root = chunk;
438	old->dead = 1;
439	if (!tree->root) {
440		tree->root = chunk;
441		list_add(&tree->same_root, &chunk->trees);
442	}
443	spin_unlock(&hash_lock);
444	spin_unlock(&chunk_entry->lock);
445	spin_unlock(&old_entry->lock);
446	fsnotify_destroy_mark(old_entry);
447	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
448	fsnotify_put_mark(old_entry); /* and kill it */
449	return 0;
450}
451
452static void kill_rules(struct audit_tree *tree)
453{
454	struct audit_krule *rule, *next;
455	struct audit_entry *entry;
456	struct audit_buffer *ab;
457
458	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
459		entry = container_of(rule, struct audit_entry, rule);
460
461		list_del_init(&rule->rlist);
462		if (rule->tree) {
463			/* not a half-baked one */
464			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
465			audit_log_format(ab, "op=");
466			audit_log_string(ab, "remove rule");
467			audit_log_format(ab, " dir=");
468			audit_log_untrustedstring(ab, rule->tree->pathname);
469			audit_log_key(ab, rule->filterkey);
470			audit_log_format(ab, " list=%d res=1", rule->listnr);
471			audit_log_end(ab);
472			rule->tree = NULL;
473			list_del_rcu(&entry->list);
474			list_del(&entry->rule.list);
475			call_rcu(&entry->rcu, audit_free_rule_rcu);
476		}
477	}
478}
479
480/*
481 * finish killing struct audit_tree
482 */
483static void prune_one(struct audit_tree *victim)
484{
485	spin_lock(&hash_lock);
486	while (!list_empty(&victim->chunks)) {
487		struct node *p;
488
489		p = list_entry(victim->chunks.next, struct node, list);
490
491		untag_chunk(p);
492	}
493	spin_unlock(&hash_lock);
494	put_tree(victim);
495}
496
497/* trim the uncommitted chunks from tree */
498
499static void trim_marked(struct audit_tree *tree)
500{
501	struct list_head *p, *q;
502	spin_lock(&hash_lock);
503	if (tree->goner) {
504		spin_unlock(&hash_lock);
505		return;
506	}
507	/* reorder */
508	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
509		struct node *node = list_entry(p, struct node, list);
510		q = p->next;
511		if (node->index & (1U<<31)) {
512			list_del_init(p);
513			list_add(p, &tree->chunks);
514		}
515	}
516
517	while (!list_empty(&tree->chunks)) {
518		struct node *node;
519
520		node = list_entry(tree->chunks.next, struct node, list);
521
522		/* have we run out of marked? */
523		if (!(node->index & (1U<<31)))
524			break;
525
526		untag_chunk(node);
527	}
528	if (!tree->root && !tree->goner) {
529		tree->goner = 1;
530		spin_unlock(&hash_lock);
531		mutex_lock(&audit_filter_mutex);
532		kill_rules(tree);
533		list_del_init(&tree->list);
534		mutex_unlock(&audit_filter_mutex);
535		prune_one(tree);
536	} else {
537		spin_unlock(&hash_lock);
538	}
539}
540
541static void audit_schedule_prune(void);
542
543/* called with audit_filter_mutex */
544int audit_remove_tree_rule(struct audit_krule *rule)
545{
546	struct audit_tree *tree;
547	tree = rule->tree;
548	if (tree) {
549		spin_lock(&hash_lock);
550		list_del_init(&rule->rlist);
551		if (list_empty(&tree->rules) && !tree->goner) {
552			tree->root = NULL;
553			list_del_init(&tree->same_root);
554			tree->goner = 1;
555			list_move(&tree->list, &prune_list);
556			rule->tree = NULL;
557			spin_unlock(&hash_lock);
558			audit_schedule_prune();
559			return 1;
560		}
561		rule->tree = NULL;
562		spin_unlock(&hash_lock);
563		return 1;
564	}
565	return 0;
566}
567
568static int compare_root(struct vfsmount *mnt, void *arg)
569{
570	return mnt->mnt_root->d_inode == arg;
571}
572
573void audit_trim_trees(void)
574{
575	struct list_head cursor;
576
577	mutex_lock(&audit_filter_mutex);
578	list_add(&cursor, &tree_list);
579	while (cursor.next != &tree_list) {
580		struct audit_tree *tree;
581		struct path path;
582		struct vfsmount *root_mnt;
583		struct node *node;
584		int err;
585
586		tree = container_of(cursor.next, struct audit_tree, list);
587		get_tree(tree);
588		list_del(&cursor);
589		list_add(&cursor, &tree->list);
590		mutex_unlock(&audit_filter_mutex);
591
592		err = kern_path(tree->pathname, 0, &path);
593		if (err)
594			goto skip_it;
595
596		root_mnt = collect_mounts(&path);
597		path_put(&path);
598		if (!root_mnt)
599			goto skip_it;
600
601		spin_lock(&hash_lock);
602		list_for_each_entry(node, &tree->chunks, list) {
603			struct audit_chunk *chunk = find_chunk(node);
604			/* this could be NULL if the watch is dying else where... */
605			struct inode *inode = chunk->mark.i.inode;
606			node->index |= 1U<<31;
607			if (iterate_mounts(compare_root, inode, root_mnt))
608				node->index &= ~(1U<<31);
609		}
610		spin_unlock(&hash_lock);
611		trim_marked(tree);
612		put_tree(tree);
613		drop_collected_mounts(root_mnt);
614skip_it:
615		mutex_lock(&audit_filter_mutex);
616	}
617	list_del(&cursor);
618	mutex_unlock(&audit_filter_mutex);
619}
620
621int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
622{
623
624	if (pathname[0] != '/' ||
625	    rule->listnr != AUDIT_FILTER_EXIT ||
626	    op != Audit_equal ||
627	    rule->inode_f || rule->watch || rule->tree)
628		return -EINVAL;
629	rule->tree = alloc_tree(pathname);
630	if (!rule->tree)
631		return -ENOMEM;
632	return 0;
633}
634
635void audit_put_tree(struct audit_tree *tree)
636{
637	put_tree(tree);
638}
639
640static int tag_mount(struct vfsmount *mnt, void *arg)
641{
642	return tag_chunk(mnt->mnt_root->d_inode, arg);
643}
644
645/* called with audit_filter_mutex */
646int audit_add_tree_rule(struct audit_krule *rule)
647{
648	struct audit_tree *seed = rule->tree, *tree;
649	struct path path;
650	struct vfsmount *mnt;
651	int err;
652
653	list_for_each_entry(tree, &tree_list, list) {
654		if (!strcmp(seed->pathname, tree->pathname)) {
655			put_tree(seed);
656			rule->tree = tree;
657			list_add(&rule->rlist, &tree->rules);
658			return 0;
659		}
660	}
661	tree = seed;
662	list_add(&tree->list, &tree_list);
663	list_add(&rule->rlist, &tree->rules);
664	/* do not set rule->tree yet */
665	mutex_unlock(&audit_filter_mutex);
666
667	err = kern_path(tree->pathname, 0, &path);
668	if (err)
669		goto Err;
670	mnt = collect_mounts(&path);
671	path_put(&path);
672	if (!mnt) {
673		err = -ENOMEM;
674		goto Err;
675	}
676
677	get_tree(tree);
678	err = iterate_mounts(tag_mount, tree, mnt);
679	drop_collected_mounts(mnt);
680
681	if (!err) {
682		struct node *node;
683		spin_lock(&hash_lock);
684		list_for_each_entry(node, &tree->chunks, list)
685			node->index &= ~(1U<<31);
686		spin_unlock(&hash_lock);
687	} else {
688		trim_marked(tree);
689		goto Err;
690	}
691
692	mutex_lock(&audit_filter_mutex);
693	if (list_empty(&rule->rlist)) {
694		put_tree(tree);
695		return -ENOENT;
696	}
697	rule->tree = tree;
698	put_tree(tree);
699
700	return 0;
701Err:
702	mutex_lock(&audit_filter_mutex);
703	list_del_init(&tree->list);
704	list_del_init(&tree->rules);
705	put_tree(tree);
706	return err;
707}
708
709int audit_tag_tree(char *old, char *new)
710{
711	struct list_head cursor, barrier;
712	int failed = 0;
713	struct path path1, path2;
714	struct vfsmount *tagged;
715	int err;
716
717	err = kern_path(new, 0, &path2);
718	if (err)
719		return err;
720	tagged = collect_mounts(&path2);
721	path_put(&path2);
722	if (!tagged)
723		return -ENOMEM;
724
725	err = kern_path(old, 0, &path1);
726	if (err) {
727		drop_collected_mounts(tagged);
728		return err;
729	}
730
731	mutex_lock(&audit_filter_mutex);
732	list_add(&barrier, &tree_list);
733	list_add(&cursor, &barrier);
734
735	while (cursor.next != &tree_list) {
736		struct audit_tree *tree;
737		int good_one = 0;
738
739		tree = container_of(cursor.next, struct audit_tree, list);
740		get_tree(tree);
741		list_del(&cursor);
742		list_add(&cursor, &tree->list);
743		mutex_unlock(&audit_filter_mutex);
744
745		err = kern_path(tree->pathname, 0, &path2);
746		if (!err) {
747			good_one = path_is_under(&path1, &path2);
748			path_put(&path2);
749		}
750
751		if (!good_one) {
752			put_tree(tree);
753			mutex_lock(&audit_filter_mutex);
754			continue;
755		}
756
757		failed = iterate_mounts(tag_mount, tree, tagged);
758		if (failed) {
759			put_tree(tree);
760			mutex_lock(&audit_filter_mutex);
761			break;
762		}
763
764		mutex_lock(&audit_filter_mutex);
765		spin_lock(&hash_lock);
766		if (!tree->goner) {
767			list_del(&tree->list);
768			list_add(&tree->list, &tree_list);
769		}
770		spin_unlock(&hash_lock);
771		put_tree(tree);
772	}
773
774	while (barrier.prev != &tree_list) {
775		struct audit_tree *tree;
776
777		tree = container_of(barrier.prev, struct audit_tree, list);
778		get_tree(tree);
779		list_del(&tree->list);
780		list_add(&tree->list, &barrier);
781		mutex_unlock(&audit_filter_mutex);
782
783		if (!failed) {
784			struct node *node;
785			spin_lock(&hash_lock);
786			list_for_each_entry(node, &tree->chunks, list)
787				node->index &= ~(1U<<31);
788			spin_unlock(&hash_lock);
789		} else {
790			trim_marked(tree);
791		}
792
793		put_tree(tree);
794		mutex_lock(&audit_filter_mutex);
795	}
796	list_del(&barrier);
797	list_del(&cursor);
798	mutex_unlock(&audit_filter_mutex);
799	path_put(&path1);
800	drop_collected_mounts(tagged);
801	return failed;
802}
803
804/*
805 * That gets run when evict_chunk() ends up needing to kill audit_tree.
806 * Runs from a separate thread.
807 */
808static int prune_tree_thread(void *unused)
809{
810	mutex_lock(&audit_cmd_mutex);
811	mutex_lock(&audit_filter_mutex);
812
813	while (!list_empty(&prune_list)) {
814		struct audit_tree *victim;
815
816		victim = list_entry(prune_list.next, struct audit_tree, list);
817		list_del_init(&victim->list);
818
819		mutex_unlock(&audit_filter_mutex);
820
821		prune_one(victim);
822
823		mutex_lock(&audit_filter_mutex);
824	}
825
826	mutex_unlock(&audit_filter_mutex);
827	mutex_unlock(&audit_cmd_mutex);
828	return 0;
829}
830
831static void audit_schedule_prune(void)
832{
833	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
834}
835
836/*
837 * ... and that one is done if evict_chunk() decides to delay until the end
838 * of syscall.  Runs synchronously.
839 */
840void audit_kill_trees(struct list_head *list)
841{
842	mutex_lock(&audit_cmd_mutex);
843	mutex_lock(&audit_filter_mutex);
844
845	while (!list_empty(list)) {
846		struct audit_tree *victim;
847
848		victim = list_entry(list->next, struct audit_tree, list);
849		kill_rules(victim);
850		list_del_init(&victim->list);
851
852		mutex_unlock(&audit_filter_mutex);
853
854		prune_one(victim);
855
856		mutex_lock(&audit_filter_mutex);
857	}
858
859	mutex_unlock(&audit_filter_mutex);
860	mutex_unlock(&audit_cmd_mutex);
861}
862
863/*
864 *  Here comes the stuff asynchronous to auditctl operations
865 */
866
867static void evict_chunk(struct audit_chunk *chunk)
868{
869	struct audit_tree *owner;
870	struct list_head *postponed = audit_killed_trees();
871	int need_prune = 0;
872	int n;
873
874	if (chunk->dead)
875		return;
876
877	chunk->dead = 1;
878	mutex_lock(&audit_filter_mutex);
879	spin_lock(&hash_lock);
880	while (!list_empty(&chunk->trees)) {
881		owner = list_entry(chunk->trees.next,
882				   struct audit_tree, same_root);
883		owner->goner = 1;
884		owner->root = NULL;
885		list_del_init(&owner->same_root);
886		spin_unlock(&hash_lock);
887		if (!postponed) {
888			kill_rules(owner);
889			list_move(&owner->list, &prune_list);
890			need_prune = 1;
891		} else {
892			list_move(&owner->list, postponed);
893		}
894		spin_lock(&hash_lock);
895	}
896	list_del_rcu(&chunk->hash);
897	for (n = 0; n < chunk->count; n++)
898		list_del_init(&chunk->owners[n].list);
899	spin_unlock(&hash_lock);
900	if (need_prune)
901		audit_schedule_prune();
902	mutex_unlock(&audit_filter_mutex);
903}
904
905static int audit_tree_handle_event(struct fsnotify_group *group,
906				   struct fsnotify_mark *inode_mark,
907				   struct fsnotify_mark *vfsmonut_mark,
908				   struct fsnotify_event *event)
909{
910	BUG();
911	return -EOPNOTSUPP;
912}
913
914static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
915{
916	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
917
918	evict_chunk(chunk);
919	fsnotify_put_mark(entry);
920}
921
922static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
923				  struct fsnotify_mark *inode_mark,
924				  struct fsnotify_mark *vfsmount_mark,
925				  __u32 mask, void *data, int data_type)
926{
927	return false;
928}
929
930static const struct fsnotify_ops audit_tree_ops = {
931	.handle_event = audit_tree_handle_event,
932	.should_send_event = audit_tree_send_event,
933	.free_group_priv = NULL,
934	.free_event_priv = NULL,
935	.freeing_mark = audit_tree_freeing_mark,
936};
937
938static int __init audit_tree_init(void)
939{
940	int i;
941
942	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
943	if (IS_ERR(audit_tree_group))
944		audit_panic("cannot initialize fsnotify group for rectree watches");
945
946	for (i = 0; i < HASH_SIZE; i++)
947		INIT_LIST_HEAD(&chunk_hash_heads[i]);
948
949	return 0;
950}
951__initcall(audit_tree_init);