Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * linux/fs/nfs/write.c
   3 *
   4 * Write file data over NFS.
   5 *
   6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/slab.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/file.h>
  14#include <linux/writeback.h>
  15#include <linux/swap.h>
  16#include <linux/migrate.h>
  17
  18#include <linux/sunrpc/clnt.h>
  19#include <linux/nfs_fs.h>
  20#include <linux/nfs_mount.h>
  21#include <linux/nfs_page.h>
  22#include <linux/backing-dev.h>
  23#include <linux/export.h>
  24
  25#include <asm/uaccess.h>
  26
  27#include "delegation.h"
  28#include "internal.h"
  29#include "iostat.h"
  30#include "nfs4_fs.h"
  31#include "fscache.h"
  32#include "pnfs.h"
  33
  34#define NFSDBG_FACILITY		NFSDBG_PAGECACHE
  35
  36#define MIN_POOL_WRITE		(32)
  37#define MIN_POOL_COMMIT		(4)
  38
  39/*
  40 * Local function declarations
  41 */
 
 
  42static void nfs_redirty_request(struct nfs_page *req);
  43static const struct rpc_call_ops nfs_write_common_ops;
 
  44static const struct rpc_call_ops nfs_commit_ops;
  45static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
  46static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
  47
  48static struct kmem_cache *nfs_wdata_cachep;
  49static mempool_t *nfs_wdata_mempool;
  50static struct kmem_cache *nfs_cdata_cachep;
  51static mempool_t *nfs_commit_mempool;
  52
  53struct nfs_commit_data *nfs_commitdata_alloc(void)
  54{
  55	struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  56
  57	if (p) {
  58		memset(p, 0, sizeof(*p));
  59		INIT_LIST_HEAD(&p->pages);
  60	}
  61	return p;
  62}
  63EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  64
  65void nfs_commit_free(struct nfs_commit_data *p)
  66{
 
 
  67	mempool_free(p, nfs_commit_mempool);
  68}
  69EXPORT_SYMBOL_GPL(nfs_commit_free);
  70
  71struct nfs_write_header *nfs_writehdr_alloc(void)
  72{
  73	struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  74
  75	if (p) {
  76		struct nfs_pgio_header *hdr = &p->header;
  77
  78		memset(p, 0, sizeof(*p));
  79		INIT_LIST_HEAD(&hdr->pages);
  80		INIT_LIST_HEAD(&hdr->rpc_list);
  81		spin_lock_init(&hdr->lock);
  82		atomic_set(&hdr->refcnt, 0);
  83		hdr->verf = &p->verf;
 
 
 
 
 
 
  84	}
  85	return p;
  86}
  87
  88static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
  89						  unsigned int pagecount)
  90{
  91	struct nfs_write_data *data, *prealloc;
  92
  93	prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
  94	if (prealloc->header == NULL)
  95		data = prealloc;
  96	else
  97		data = kzalloc(sizeof(*data), GFP_KERNEL);
  98	if (!data)
  99		goto out;
 100
 101	if (nfs_pgarray_set(&data->pages, pagecount)) {
 102		data->header = hdr;
 103		atomic_inc(&hdr->refcnt);
 104	} else {
 105		if (data != prealloc)
 106			kfree(data);
 107		data = NULL;
 108	}
 109out:
 110	return data;
 111}
 112
 113void nfs_writehdr_free(struct nfs_pgio_header *hdr)
 114{
 115	struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
 116	mempool_free(whdr, nfs_wdata_mempool);
 117}
 118
 119void nfs_writedata_release(struct nfs_write_data *wdata)
 120{
 121	struct nfs_pgio_header *hdr = wdata->header;
 122	struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
 123
 124	put_nfs_open_context(wdata->args.context);
 125	if (wdata->pages.pagevec != wdata->pages.page_array)
 126		kfree(wdata->pages.pagevec);
 127	if (wdata != &write_header->rpc_data)
 128		kfree(wdata);
 129	else
 130		wdata->header = NULL;
 131	if (atomic_dec_and_test(&hdr->refcnt))
 132		hdr->completion_ops->completion(hdr);
 133}
 134
 135static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
 136{
 137	ctx->error = error;
 138	smp_wmb();
 139	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 140}
 141
 142static struct nfs_page *nfs_page_find_request_locked(struct page *page)
 143{
 144	struct nfs_page *req = NULL;
 145
 146	if (PagePrivate(page)) {
 147		req = (struct nfs_page *)page_private(page);
 148		if (req != NULL)
 149			kref_get(&req->wb_kref);
 150	}
 151	return req;
 152}
 153
 154static struct nfs_page *nfs_page_find_request(struct page *page)
 155{
 156	struct inode *inode = page->mapping->host;
 157	struct nfs_page *req = NULL;
 158
 159	spin_lock(&inode->i_lock);
 160	req = nfs_page_find_request_locked(page);
 161	spin_unlock(&inode->i_lock);
 162	return req;
 163}
 164
 165/* Adjust the file length if we're writing beyond the end */
 166static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
 167{
 168	struct inode *inode = page->mapping->host;
 169	loff_t end, i_size;
 170	pgoff_t end_index;
 171
 172	spin_lock(&inode->i_lock);
 173	i_size = i_size_read(inode);
 174	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
 175	if (i_size > 0 && page->index < end_index)
 176		goto out;
 177	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
 178	if (i_size >= end)
 179		goto out;
 180	i_size_write(inode, end);
 181	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
 182out:
 183	spin_unlock(&inode->i_lock);
 184}
 185
 186/* A writeback failed: mark the page as bad, and invalidate the page cache */
 187static void nfs_set_pageerror(struct page *page)
 188{
 189	SetPageError(page);
 190	nfs_zap_mapping(page->mapping->host, page->mapping);
 191}
 192
 193/* We can set the PG_uptodate flag if we see that a write request
 194 * covers the full page.
 195 */
 196static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
 197{
 198	if (PageUptodate(page))
 199		return;
 200	if (base != 0)
 201		return;
 202	if (count != nfs_page_length(page))
 203		return;
 204	SetPageUptodate(page);
 205}
 206
 207static int wb_priority(struct writeback_control *wbc)
 208{
 209	if (wbc->for_reclaim)
 210		return FLUSH_HIGHPRI | FLUSH_STABLE;
 211	if (wbc->for_kupdate || wbc->for_background)
 212		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
 213	return FLUSH_COND_STABLE;
 214}
 215
 216/*
 217 * NFS congestion control
 218 */
 219
 220int nfs_congestion_kb;
 221
 222#define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
 223#define NFS_CONGESTION_OFF_THRESH	\
 224	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
 225
 226static int nfs_set_page_writeback(struct page *page)
 227{
 228	int ret = test_set_page_writeback(page);
 229
 230	if (!ret) {
 231		struct inode *inode = page->mapping->host;
 232		struct nfs_server *nfss = NFS_SERVER(inode);
 233
 
 234		if (atomic_long_inc_return(&nfss->writeback) >
 235				NFS_CONGESTION_ON_THRESH) {
 236			set_bdi_congested(&nfss->backing_dev_info,
 237						BLK_RW_ASYNC);
 238		}
 239	}
 240	return ret;
 241}
 242
 243static void nfs_end_page_writeback(struct page *page)
 244{
 245	struct inode *inode = page->mapping->host;
 246	struct nfs_server *nfss = NFS_SERVER(inode);
 247
 248	end_page_writeback(page);
 
 249	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
 250		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
 251}
 252
 253static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
 254{
 255	struct inode *inode = page->mapping->host;
 256	struct nfs_page *req;
 257	int ret;
 258
 259	spin_lock(&inode->i_lock);
 260	for (;;) {
 261		req = nfs_page_find_request_locked(page);
 262		if (req == NULL)
 263			break;
 264		if (nfs_lock_request(req))
 265			break;
 266		/* Note: If we hold the page lock, as is the case in nfs_writepage,
 267		 *	 then the call to nfs_lock_request() will always
 268		 *	 succeed provided that someone hasn't already marked the
 269		 *	 request as dirty (in which case we don't care).
 270		 */
 271		spin_unlock(&inode->i_lock);
 272		if (!nonblock)
 273			ret = nfs_wait_on_request(req);
 274		else
 275			ret = -EAGAIN;
 276		nfs_release_request(req);
 277		if (ret != 0)
 278			return ERR_PTR(ret);
 279		spin_lock(&inode->i_lock);
 280	}
 281	spin_unlock(&inode->i_lock);
 282	return req;
 283}
 284
 285/*
 286 * Find an associated nfs write request, and prepare to flush it out
 287 * May return an error if the user signalled nfs_wait_on_request().
 288 */
 289static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
 290				struct page *page, bool nonblock)
 291{
 292	struct nfs_page *req;
 293	int ret = 0;
 294
 295	req = nfs_find_and_lock_request(page, nonblock);
 296	if (!req)
 297		goto out;
 298	ret = PTR_ERR(req);
 299	if (IS_ERR(req))
 300		goto out;
 301
 302	ret = nfs_set_page_writeback(page);
 303	BUG_ON(ret != 0);
 304	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
 305
 306	if (!nfs_pageio_add_request(pgio, req)) {
 307		nfs_redirty_request(req);
 308		ret = pgio->pg_error;
 309	}
 310out:
 311	return ret;
 312}
 313
 314static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
 315{
 316	struct inode *inode = page->mapping->host;
 317	int ret;
 318
 319	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
 320	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
 321
 322	nfs_pageio_cond_complete(pgio, page->index);
 323	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
 324	if (ret == -EAGAIN) {
 325		redirty_page_for_writepage(wbc, page);
 326		ret = 0;
 327	}
 328	return ret;
 329}
 330
 331/*
 332 * Write an mmapped page to the server.
 333 */
 334static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
 335{
 336	struct nfs_pageio_descriptor pgio;
 337	int err;
 338
 339	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc),
 340			      &nfs_async_write_completion_ops);
 341	err = nfs_do_writepage(page, wbc, &pgio);
 342	nfs_pageio_complete(&pgio);
 343	if (err < 0)
 344		return err;
 345	if (pgio.pg_error < 0)
 346		return pgio.pg_error;
 347	return 0;
 348}
 349
 350int nfs_writepage(struct page *page, struct writeback_control *wbc)
 351{
 352	int ret;
 353
 354	ret = nfs_writepage_locked(page, wbc);
 355	unlock_page(page);
 356	return ret;
 357}
 358
 359static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
 360{
 361	int ret;
 362
 363	ret = nfs_do_writepage(page, wbc, data);
 364	unlock_page(page);
 365	return ret;
 366}
 367
 368int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 369{
 370	struct inode *inode = mapping->host;
 371	unsigned long *bitlock = &NFS_I(inode)->flags;
 372	struct nfs_pageio_descriptor pgio;
 373	int err;
 374
 375	/* Stop dirtying of new pages while we sync */
 376	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
 377			nfs_wait_bit_killable, TASK_KILLABLE);
 378	if (err)
 379		goto out_err;
 380
 381	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
 382
 383	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc),
 384			      &nfs_async_write_completion_ops);
 385	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
 386	nfs_pageio_complete(&pgio);
 387
 388	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
 389	smp_mb__after_clear_bit();
 390	wake_up_bit(bitlock, NFS_INO_FLUSHING);
 391
 392	if (err < 0)
 393		goto out_err;
 394	err = pgio.pg_error;
 395	if (err < 0)
 396		goto out_err;
 397	return 0;
 398out_err:
 399	return err;
 400}
 401
 402/*
 403 * Insert a write request into an inode
 404 */
 405static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
 406{
 407	struct nfs_inode *nfsi = NFS_I(inode);
 
 
 
 
 
 408
 409	/* Lock the request! */
 410	nfs_lock_request(req);
 411
 412	spin_lock(&inode->i_lock);
 
 
 413	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
 414		inode->i_version++;
 415	set_bit(PG_MAPPED, &req->wb_flags);
 416	SetPagePrivate(req->wb_page);
 417	set_page_private(req->wb_page, (unsigned long)req);
 418	nfsi->npages++;
 419	kref_get(&req->wb_kref);
 
 
 420	spin_unlock(&inode->i_lock);
 
 
 
 421}
 422
 423/*
 424 * Remove a write request from an inode
 425 */
 426static void nfs_inode_remove_request(struct nfs_page *req)
 427{
 428	struct inode *inode = req->wb_context->dentry->d_inode;
 429	struct nfs_inode *nfsi = NFS_I(inode);
 430
 431	BUG_ON (!NFS_WBACK_BUSY(req));
 432
 433	spin_lock(&inode->i_lock);
 434	set_page_private(req->wb_page, 0);
 435	ClearPagePrivate(req->wb_page);
 436	clear_bit(PG_MAPPED, &req->wb_flags);
 
 437	nfsi->npages--;
 438	spin_unlock(&inode->i_lock);
 439	nfs_release_request(req);
 440}
 441
 442static void
 443nfs_mark_request_dirty(struct nfs_page *req)
 444{
 445	__set_page_dirty_nobuffers(req->wb_page);
 
 446}
 447
 448#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 449/**
 450 * nfs_request_add_commit_list - add request to a commit list
 451 * @req: pointer to a struct nfs_page
 452 * @dst: commit list head
 453 * @cinfo: holds list lock and accounting info
 454 *
 455 * This sets the PG_CLEAN bit, updates the cinfo count of
 456 * number of outstanding requests requiring a commit as well as
 457 * the MM page stats.
 458 *
 459 * The caller must _not_ hold the cinfo->lock, but must be
 460 * holding the nfs_page lock.
 461 */
 462void
 463nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
 464			    struct nfs_commit_info *cinfo)
 465{
 466	set_bit(PG_CLEAN, &(req)->wb_flags);
 467	spin_lock(cinfo->lock);
 468	nfs_list_add_request(req, dst);
 469	cinfo->mds->ncommit++;
 470	spin_unlock(cinfo->lock);
 471	if (!cinfo->dreq) {
 472		inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
 473		inc_bdi_stat(req->wb_page->mapping->backing_dev_info,
 474			     BDI_RECLAIMABLE);
 475		__mark_inode_dirty(req->wb_context->dentry->d_inode,
 476				   I_DIRTY_DATASYNC);
 477	}
 478}
 479EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
 480
 481/**
 482 * nfs_request_remove_commit_list - Remove request from a commit list
 483 * @req: pointer to a nfs_page
 484 * @cinfo: holds list lock and accounting info
 485 *
 486 * This clears the PG_CLEAN bit, and updates the cinfo's count of
 487 * number of outstanding requests requiring a commit
 488 * It does not update the MM page stats.
 489 *
 490 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
 491 */
 492void
 493nfs_request_remove_commit_list(struct nfs_page *req,
 494			       struct nfs_commit_info *cinfo)
 495{
 496	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
 497		return;
 498	nfs_list_remove_request(req);
 499	cinfo->mds->ncommit--;
 500}
 501EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
 502
 503static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
 504				      struct inode *inode)
 505{
 506	cinfo->lock = &inode->i_lock;
 507	cinfo->mds = &NFS_I(inode)->commit_info;
 508	cinfo->ds = pnfs_get_ds_info(inode);
 509	cinfo->dreq = NULL;
 510	cinfo->completion_ops = &nfs_commit_completion_ops;
 511}
 512
 513void nfs_init_cinfo(struct nfs_commit_info *cinfo,
 514		    struct inode *inode,
 515		    struct nfs_direct_req *dreq)
 516{
 517	if (dreq)
 518		nfs_init_cinfo_from_dreq(cinfo, dreq);
 519	else
 520		nfs_init_cinfo_from_inode(cinfo, inode);
 521}
 522EXPORT_SYMBOL_GPL(nfs_init_cinfo);
 523
 524/*
 525 * Add a request to the inode's commit list.
 526 */
 527void
 528nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
 529			struct nfs_commit_info *cinfo)
 530{
 531	if (pnfs_mark_request_commit(req, lseg, cinfo))
 532		return;
 533	nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
 534}
 535
 536static void
 537nfs_clear_page_commit(struct page *page)
 538{
 539	dec_zone_page_state(page, NR_UNSTABLE_NFS);
 540	dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 541}
 542
 543static void
 544nfs_clear_request_commit(struct nfs_page *req)
 545{
 546	if (test_bit(PG_CLEAN, &req->wb_flags)) {
 547		struct inode *inode = req->wb_context->dentry->d_inode;
 548		struct nfs_commit_info cinfo;
 549
 550		nfs_init_cinfo_from_inode(&cinfo, inode);
 551		if (!pnfs_clear_request_commit(req, &cinfo)) {
 552			spin_lock(cinfo.lock);
 553			nfs_request_remove_commit_list(req, &cinfo);
 554			spin_unlock(cinfo.lock);
 555		}
 556		nfs_clear_page_commit(req->wb_page);
 557	}
 
 558}
 559
 560static inline
 561int nfs_write_need_commit(struct nfs_write_data *data)
 562{
 563	if (data->verf.committed == NFS_DATA_SYNC)
 564		return data->header->lseg == NULL;
 565	return data->verf.committed != NFS_FILE_SYNC;
 566}
 567
 568#else
 569static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
 570				      struct inode *inode)
 571{
 572}
 573
 574void nfs_init_cinfo(struct nfs_commit_info *cinfo,
 575		    struct inode *inode,
 576		    struct nfs_direct_req *dreq)
 577{
 
 
 
 
 
 
 
 
 
 578}
 579
 580void
 581nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
 582			struct nfs_commit_info *cinfo)
 583{
 584}
 585
 586static void
 587nfs_clear_request_commit(struct nfs_page *req)
 588{
 
 589}
 590
 591static inline
 592int nfs_write_need_commit(struct nfs_write_data *data)
 593{
 594	return 0;
 595}
 596
 597#endif
 598
 599static void nfs_write_completion(struct nfs_pgio_header *hdr)
 600{
 601	struct nfs_commit_info cinfo;
 602	unsigned long bytes = 0;
 603
 604	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 605		goto out;
 606	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
 607	while (!list_empty(&hdr->pages)) {
 608		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 609
 610		bytes += req->wb_bytes;
 611		nfs_list_remove_request(req);
 612		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
 613		    (hdr->good_bytes < bytes)) {
 614			nfs_set_pageerror(req->wb_page);
 615			nfs_context_set_write_error(req->wb_context, hdr->error);
 616			goto remove_req;
 617		}
 618		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 619			nfs_mark_request_dirty(req);
 620			goto next;
 621		}
 622		if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 623			memcpy(&req->wb_verf, hdr->verf, sizeof(req->wb_verf));
 624			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 625			goto next;
 626		}
 627remove_req:
 628		nfs_inode_remove_request(req);
 629next:
 630		nfs_unlock_request(req);
 631		nfs_end_page_writeback(req->wb_page);
 632		nfs_release_request(req);
 633	}
 634out:
 635	hdr->release(hdr);
 636}
 
 637
 638#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 639static unsigned long
 640nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
 641{
 642	return cinfo->mds->ncommit;
 643}
 644
 645/* cinfo->lock held by caller */
 646int
 647nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
 648		     struct nfs_commit_info *cinfo, int max)
 649{
 650	struct nfs_page *req, *tmp;
 651	int ret = 0;
 652
 653	list_for_each_entry_safe(req, tmp, src, wb_list) {
 654		if (!nfs_lock_request(req))
 655			continue;
 656		kref_get(&req->wb_kref);
 657		if (cond_resched_lock(cinfo->lock))
 658			list_safe_reset_next(req, tmp, wb_list);
 659		nfs_request_remove_commit_list(req, cinfo);
 660		nfs_list_add_request(req, dst);
 661		ret++;
 662		if ((ret == max) && !cinfo->dreq)
 663			break;
 664	}
 665	return ret;
 666}
 667
 668/*
 669 * nfs_scan_commit - Scan an inode for commit requests
 670 * @inode: NFS inode to scan
 671 * @dst: mds destination list
 672 * @cinfo: mds and ds lists of reqs ready to commit
 
 673 *
 674 * Moves requests from the inode's 'commit' request list.
 675 * The requests are *not* checked to ensure that they form a contiguous set.
 676 */
 677int
 678nfs_scan_commit(struct inode *inode, struct list_head *dst,
 679		struct nfs_commit_info *cinfo)
 680{
 681	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683	spin_lock(cinfo->lock);
 684	if (cinfo->mds->ncommit > 0) {
 685		const int max = INT_MAX;
 686
 687		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
 688					   cinfo, max);
 689		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
 690	}
 691	spin_unlock(cinfo->lock);
 692	return ret;
 693}
 694
 695#else
 696static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
 697{
 698	return 0;
 699}
 700
 701int nfs_scan_commit(struct inode *inode, struct list_head *dst,
 702		    struct nfs_commit_info *cinfo)
 703{
 704	return 0;
 705}
 706#endif
 707
 708/*
 709 * Search for an existing write request, and attempt to update
 710 * it to reflect a new dirty region on a given page.
 711 *
 712 * If the attempt fails, then the existing request is flushed out
 713 * to disk.
 714 */
 715static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
 716		struct page *page,
 717		unsigned int offset,
 718		unsigned int bytes)
 719{
 720	struct nfs_page *req;
 721	unsigned int rqend;
 722	unsigned int end;
 723	int error;
 724
 725	if (!PagePrivate(page))
 726		return NULL;
 727
 728	end = offset + bytes;
 729	spin_lock(&inode->i_lock);
 730
 731	for (;;) {
 732		req = nfs_page_find_request_locked(page);
 733		if (req == NULL)
 734			goto out_unlock;
 735
 736		rqend = req->wb_offset + req->wb_bytes;
 737		/*
 738		 * Tell the caller to flush out the request if
 739		 * the offsets are non-contiguous.
 740		 * Note: nfs_flush_incompatible() will already
 741		 * have flushed out requests having wrong owners.
 742		 */
 743		if (offset > rqend
 744		    || end < req->wb_offset)
 745			goto out_flushme;
 746
 747		if (nfs_lock_request(req))
 748			break;
 749
 750		/* The request is locked, so wait and then retry */
 751		spin_unlock(&inode->i_lock);
 752		error = nfs_wait_on_request(req);
 753		nfs_release_request(req);
 754		if (error != 0)
 755			goto out_err;
 756		spin_lock(&inode->i_lock);
 757	}
 758
 
 
 
 
 
 
 
 759	/* Okay, the request matches. Update the region */
 760	if (offset < req->wb_offset) {
 761		req->wb_offset = offset;
 762		req->wb_pgbase = offset;
 763	}
 764	if (end > rqend)
 765		req->wb_bytes = end - req->wb_offset;
 766	else
 767		req->wb_bytes = rqend - req->wb_offset;
 768out_unlock:
 769	spin_unlock(&inode->i_lock);
 770	if (req)
 771		nfs_clear_request_commit(req);
 772	return req;
 773out_flushme:
 774	spin_unlock(&inode->i_lock);
 775	nfs_release_request(req);
 776	error = nfs_wb_page(inode, page);
 777out_err:
 778	return ERR_PTR(error);
 779}
 780
 781/*
 782 * Try to update an existing write request, or create one if there is none.
 783 *
 784 * Note: Should always be called with the Page Lock held to prevent races
 785 * if we have to add a new request. Also assumes that the caller has
 786 * already called nfs_flush_incompatible() if necessary.
 787 */
 788static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
 789		struct page *page, unsigned int offset, unsigned int bytes)
 790{
 791	struct inode *inode = page->mapping->host;
 792	struct nfs_page	*req;
 
 793
 794	req = nfs_try_to_update_request(inode, page, offset, bytes);
 795	if (req != NULL)
 796		goto out;
 797	req = nfs_create_request(ctx, inode, page, offset, bytes);
 798	if (IS_ERR(req))
 799		goto out;
 800	nfs_inode_add_request(inode, req);
 
 
 
 
 801out:
 802	return req;
 803}
 804
 805static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
 806		unsigned int offset, unsigned int count)
 807{
 808	struct nfs_page	*req;
 809
 810	req = nfs_setup_write_request(ctx, page, offset, count);
 811	if (IS_ERR(req))
 812		return PTR_ERR(req);
 813	/* Update file length */
 814	nfs_grow_file(page, offset, count);
 815	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
 816	nfs_mark_request_dirty(req);
 817	nfs_unlock_and_release_request(req);
 818	return 0;
 819}
 820
 821int nfs_flush_incompatible(struct file *file, struct page *page)
 822{
 823	struct nfs_open_context *ctx = nfs_file_open_context(file);
 824	struct nfs_page	*req;
 825	int do_flush, status;
 826	/*
 827	 * Look for a request corresponding to this page. If there
 828	 * is one, and it belongs to another file, we flush it out
 829	 * before we try to copy anything into the page. Do this
 830	 * due to the lack of an ACCESS-type call in NFSv2.
 831	 * Also do the same if we find a request from an existing
 832	 * dropped page.
 833	 */
 834	do {
 835		req = nfs_page_find_request(page);
 836		if (req == NULL)
 837			return 0;
 838		do_flush = req->wb_page != page || req->wb_context != ctx ||
 839			req->wb_lock_context->lockowner != current->files ||
 840			req->wb_lock_context->pid != current->tgid;
 841		nfs_release_request(req);
 842		if (!do_flush)
 843			return 0;
 844		status = nfs_wb_page(page->mapping->host, page);
 845	} while (status == 0);
 846	return status;
 847}
 848
 849/*
 850 * If the page cache is marked as unsafe or invalid, then we can't rely on
 851 * the PageUptodate() flag. In this case, we will need to turn off
 852 * write optimisations that depend on the page contents being correct.
 853 */
 854static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
 855{
 856	if (nfs_have_delegated_attributes(inode))
 857		goto out;
 858	if (NFS_I(inode)->cache_validity & NFS_INO_REVAL_PAGECACHE)
 859		return false;
 860out:
 861	return PageUptodate(page) != 0;
 862}
 863
 864/*
 865 * Update and possibly write a cached page of an NFS file.
 866 *
 867 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
 868 * things with a page scheduled for an RPC call (e.g. invalidate it).
 869 */
 870int nfs_updatepage(struct file *file, struct page *page,
 871		unsigned int offset, unsigned int count)
 872{
 873	struct nfs_open_context *ctx = nfs_file_open_context(file);
 874	struct inode	*inode = page->mapping->host;
 875	int		status = 0;
 876
 877	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
 878
 879	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
 880		file->f_path.dentry->d_parent->d_name.name,
 881		file->f_path.dentry->d_name.name, count,
 882		(long long)(page_offset(page) + offset));
 883
 884	/* If we're not using byte range locks, and we know the page
 885	 * is up to date, it may be more efficient to extend the write
 886	 * to cover the entire page in order to avoid fragmentation
 887	 * inefficiencies.
 888	 */
 889	if (nfs_write_pageuptodate(page, inode) &&
 890			inode->i_flock == NULL &&
 891			!(file->f_flags & O_DSYNC)) {
 892		count = max(count + offset, nfs_page_length(page));
 893		offset = 0;
 894	}
 895
 896	status = nfs_writepage_setup(ctx, page, offset, count);
 897	if (status < 0)
 898		nfs_set_pageerror(page);
 899	else
 900		__set_page_dirty_nobuffers(page);
 901
 902	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
 903			status, (long long)i_size_read(inode));
 904	return status;
 905}
 906
 
 
 
 
 
 
 
 
 
 
 
 907static int flush_task_priority(int how)
 908{
 909	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
 910		case FLUSH_HIGHPRI:
 911			return RPC_PRIORITY_HIGH;
 912		case FLUSH_LOWPRI:
 913			return RPC_PRIORITY_LOW;
 914	}
 915	return RPC_PRIORITY_NORMAL;
 916}
 917
 918int nfs_initiate_write(struct rpc_clnt *clnt,
 919		       struct nfs_write_data *data,
 920		       const struct rpc_call_ops *call_ops,
 921		       int how, int flags)
 922{
 923	struct inode *inode = data->header->inode;
 924	int priority = flush_task_priority(how);
 925	struct rpc_task *task;
 926	struct rpc_message msg = {
 927		.rpc_argp = &data->args,
 928		.rpc_resp = &data->res,
 929		.rpc_cred = data->header->cred,
 930	};
 931	struct rpc_task_setup task_setup_data = {
 932		.rpc_client = clnt,
 933		.task = &data->task,
 934		.rpc_message = &msg,
 935		.callback_ops = call_ops,
 936		.callback_data = data,
 937		.workqueue = nfsiod_workqueue,
 938		.flags = RPC_TASK_ASYNC | flags,
 939		.priority = priority,
 940	};
 941	int ret = 0;
 942
 943	/* Set up the initial task struct.  */
 944	NFS_PROTO(inode)->write_setup(data, &msg);
 945
 946	dprintk("NFS: %5u initiated write call "
 947		"(req %s/%lld, %u bytes @ offset %llu)\n",
 948		data->task.tk_pid,
 949		inode->i_sb->s_id,
 950		(long long)NFS_FILEID(inode),
 951		data->args.count,
 952		(unsigned long long)data->args.offset);
 953
 954	task = rpc_run_task(&task_setup_data);
 955	if (IS_ERR(task)) {
 956		ret = PTR_ERR(task);
 957		goto out;
 958	}
 959	if (how & FLUSH_SYNC) {
 960		ret = rpc_wait_for_completion_task(task);
 961		if (ret == 0)
 962			ret = task->tk_status;
 963	}
 964	rpc_put_task(task);
 965out:
 966	return ret;
 967}
 968EXPORT_SYMBOL_GPL(nfs_initiate_write);
 969
 970/*
 971 * Set up the argument/result storage required for the RPC call.
 972 */
 973static void nfs_write_rpcsetup(struct nfs_write_data *data,
 
 974		unsigned int count, unsigned int offset,
 975		int how, struct nfs_commit_info *cinfo)
 976{
 977	struct nfs_page *req = data->header->req;
 978
 979	/* Set up the RPC argument and reply structs
 980	 * NB: take care not to mess about with data->commit et al. */
 981
 982	data->args.fh     = NFS_FH(data->header->inode);
 
 
 
 
 983	data->args.offset = req_offset(req) + offset;
 984	/* pnfs_set_layoutcommit needs this */
 985	data->mds_offset = data->args.offset;
 986	data->args.pgbase = req->wb_pgbase + offset;
 987	data->args.pages  = data->pages.pagevec;
 988	data->args.count  = count;
 989	data->args.context = get_nfs_open_context(req->wb_context);
 990	data->args.lock_context = req->wb_lock_context;
 991	data->args.stable  = NFS_UNSTABLE;
 992	switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
 993	case 0:
 994		break;
 995	case FLUSH_COND_STABLE:
 996		if (nfs_reqs_to_commit(cinfo))
 997			break;
 998	default:
 999		data->args.stable = NFS_FILE_SYNC;
1000	}
1001
1002	data->res.fattr   = &data->fattr;
1003	data->res.count   = count;
1004	data->res.verf    = &data->verf;
1005	nfs_fattr_init(&data->fattr);
1006}
1007
1008static int nfs_do_write(struct nfs_write_data *data,
1009		const struct rpc_call_ops *call_ops,
1010		int how)
1011{
1012	struct inode *inode = data->header->inode;
1013
1014	return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
1015}
1016
1017static int nfs_do_multiple_writes(struct list_head *head,
1018		const struct rpc_call_ops *call_ops,
1019		int how)
1020{
1021	struct nfs_write_data *data;
1022	int ret = 0;
1023
1024	while (!list_empty(head)) {
1025		int ret2;
1026
1027		data = list_first_entry(head, struct nfs_write_data, list);
1028		list_del_init(&data->list);
1029		
1030		ret2 = nfs_do_write(data, call_ops, how);
1031		 if (ret == 0)
1032			 ret = ret2;
1033	}
1034	return ret;
1035}
1036
1037/* If a nfs_flush_* function fails, it should remove reqs from @head and
1038 * call this on each, which will prepare them to be retried on next
1039 * writeback using standard nfs.
1040 */
1041static void nfs_redirty_request(struct nfs_page *req)
1042{
1043	nfs_mark_request_dirty(req);
1044	nfs_unlock_request(req);
1045	nfs_end_page_writeback(req->wb_page);
1046	nfs_release_request(req);
1047}
1048
1049static void nfs_async_write_error(struct list_head *head)
1050{
1051	struct nfs_page	*req;
1052
1053	while (!list_empty(head)) {
1054		req = nfs_list_entry(head->next);
1055		nfs_list_remove_request(req);
1056		nfs_redirty_request(req);
1057	}
1058}
1059
1060static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1061	.error_cleanup = nfs_async_write_error,
1062	.completion = nfs_write_completion,
1063};
1064
1065static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
1066		struct nfs_pgio_header *hdr)
1067{
1068	set_bit(NFS_IOHDR_REDO, &hdr->flags);
1069	while (!list_empty(&hdr->rpc_list)) {
1070		struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
1071				struct nfs_write_data, list);
1072		list_del(&data->list);
1073		nfs_writedata_release(data);
1074	}
1075	desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1076}
1077
1078/*
1079 * Generate multiple small requests to write out a single
1080 * contiguous dirty area on one page.
1081 */
1082static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
1083			   struct nfs_pgio_header *hdr)
1084{
1085	struct nfs_page *req = hdr->req;
1086	struct page *page = req->wb_page;
1087	struct nfs_write_data *data;
1088	size_t wsize = desc->pg_bsize, nbytes;
1089	unsigned int offset;
1090	int requests = 0;
1091	struct nfs_commit_info cinfo;
1092
1093	nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1094
1095	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1096	    (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
1097	     desc->pg_count > wsize))
1098		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1099
1100
1101	offset = 0;
1102	nbytes = desc->pg_count;
1103	do {
1104		size_t len = min(nbytes, wsize);
1105
1106		data = nfs_writedata_alloc(hdr, 1);
1107		if (!data) {
1108			nfs_flush_error(desc, hdr);
1109			return -ENOMEM;
1110		}
1111		data->pages.pagevec[0] = page;
1112		nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
1113		list_add(&data->list, &hdr->rpc_list);
1114		requests++;
1115		nbytes -= len;
1116		offset += len;
1117	} while (nbytes != 0);
1118	nfs_list_remove_request(req);
1119	nfs_list_add_request(req, &hdr->pages);
1120	desc->pg_rpc_callops = &nfs_write_common_ops;
1121	return 0;
 
 
 
 
 
 
 
 
1122}
1123
1124/*
1125 * Create an RPC task for the given write request and kick it.
1126 * The page must have been locked by the caller.
1127 *
1128 * It may happen that the page we're passed is not marked dirty.
1129 * This is the case if nfs_updatepage detects a conflicting request
1130 * that has been written but not committed.
1131 */
1132static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
1133			 struct nfs_pgio_header *hdr)
1134{
1135	struct nfs_page		*req;
1136	struct page		**pages;
1137	struct nfs_write_data	*data;
1138	struct list_head *head = &desc->pg_list;
1139	struct nfs_commit_info cinfo;
1140
1141	data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
1142							   desc->pg_count));
1143	if (!data) {
1144		nfs_flush_error(desc, hdr);
1145		return -ENOMEM;
 
 
 
 
 
1146	}
1147
1148	nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1149	pages = data->pages.pagevec;
1150	while (!list_empty(head)) {
1151		req = nfs_list_entry(head->next);
1152		nfs_list_remove_request(req);
1153		nfs_list_add_request(req, &hdr->pages);
 
1154		*pages++ = req->wb_page;
1155	}
 
1156
1157	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1158	    (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
1159		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1160
1161	/* Set up the argument struct */
1162	nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
1163	list_add(&data->list, &hdr->rpc_list);
1164	desc->pg_rpc_callops = &nfs_write_common_ops;
1165	return 0;
 
1166}
1167
1168int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
1169		      struct nfs_pgio_header *hdr)
1170{
1171	if (desc->pg_bsize < PAGE_CACHE_SIZE)
1172		return nfs_flush_multi(desc, hdr);
1173	return nfs_flush_one(desc, hdr);
1174}
1175
1176static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1177{
1178	struct nfs_write_header *whdr;
1179	struct nfs_pgio_header *hdr;
1180	int ret;
1181
1182	whdr = nfs_writehdr_alloc();
1183	if (!whdr) {
1184		desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1185		return -ENOMEM;
1186	}
1187	hdr = &whdr->header;
1188	nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
1189	atomic_inc(&hdr->refcnt);
1190	ret = nfs_generic_flush(desc, hdr);
1191	if (ret == 0)
1192		ret = nfs_do_multiple_writes(&hdr->rpc_list,
1193					     desc->pg_rpc_callops,
1194					     desc->pg_ioflags);
1195	if (atomic_dec_and_test(&hdr->refcnt))
1196		hdr->completion_ops->completion(hdr);
1197	return ret;
1198}
1199
1200static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1201	.pg_test = nfs_generic_pg_test,
1202	.pg_doio = nfs_generic_pg_writepages,
1203};
1204
1205void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1206			       struct inode *inode, int ioflags,
1207			       const struct nfs_pgio_completion_ops *compl_ops)
1208{
1209	nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
1210				NFS_SERVER(inode)->wsize, ioflags);
1211}
1212
1213void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1214{
1215	pgio->pg_ops = &nfs_pageio_write_ops;
1216	pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1217}
1218EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1219
1220void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1221			   struct inode *inode, int ioflags,
1222			   const struct nfs_pgio_completion_ops *compl_ops)
1223{
1224	if (!pnfs_pageio_init_write(pgio, inode, ioflags, compl_ops))
1225		nfs_pageio_init_write_mds(pgio, inode, ioflags, compl_ops);
1226}
1227
1228void nfs_write_prepare(struct rpc_task *task, void *calldata)
 
 
 
1229{
1230	struct nfs_write_data *data = calldata;
1231	NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232}
1233
1234void nfs_commit_prepare(struct rpc_task *task, void *calldata)
 
1235{
1236	struct nfs_commit_data *data = calldata;
1237
1238	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
 
 
 
 
1239}
 
 
 
 
 
 
 
 
 
1240
1241/*
1242 * Handle a write reply that flushes a whole page.
1243 *
1244 * FIXME: There is an inherent race with invalidate_inode_pages and
1245 *	  writebacks since the page->count is kept > 1 for as long
1246 *	  as the page has a write request pending.
1247 */
1248static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
1249{
1250	struct nfs_write_data	*data = calldata;
1251
1252	nfs_writeback_done(task, data);
1253}
1254
1255static void nfs_writeback_release_common(void *calldata)
1256{
1257	struct nfs_write_data	*data = calldata;
1258	struct nfs_pgio_header *hdr = data->header;
1259	int status = data->task.tk_status;
1260
1261	if ((status >= 0) && nfs_write_need_commit(data)) {
1262		spin_lock(&hdr->lock);
1263		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
1264			; /* Do nothing */
1265		else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
1266			memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
1267		else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
1268			set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
1269		spin_unlock(&hdr->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270	}
1271	nfs_writedata_release(data);
1272}
1273
1274static const struct rpc_call_ops nfs_write_common_ops = {
 
1275	.rpc_call_prepare = nfs_write_prepare,
1276	.rpc_call_done = nfs_writeback_done_common,
1277	.rpc_release = nfs_writeback_release_common,
 
1278};
1279
1280
1281/*
1282 * This function is called when the WRITE call is complete.
1283 */
1284void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1285{
1286	struct nfs_writeargs	*argp = &data->args;
1287	struct nfs_writeres	*resp = &data->res;
1288	struct inode		*inode = data->header->inode;
1289	int status;
1290
1291	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1292		task->tk_pid, task->tk_status);
1293
1294	/*
1295	 * ->write_done will attempt to use post-op attributes to detect
1296	 * conflicting writes by other clients.  A strict interpretation
1297	 * of close-to-open would allow us to continue caching even if
1298	 * another writer had changed the file, but some applications
1299	 * depend on tighter cache coherency when writing.
1300	 */
1301	status = NFS_PROTO(inode)->write_done(task, data);
1302	if (status != 0)
1303		return;
1304	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1305
1306#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1307	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1308		/* We tried a write call, but the server did not
1309		 * commit data to stable storage even though we
1310		 * requested it.
1311		 * Note: There is a known bug in Tru64 < 5.0 in which
1312		 *	 the server reports NFS_DATA_SYNC, but performs
1313		 *	 NFS_FILE_SYNC. We therefore implement this checking
1314		 *	 as a dprintk() in order to avoid filling syslog.
1315		 */
1316		static unsigned long    complain;
1317
1318		/* Note this will print the MDS for a DS write */
1319		if (time_before(complain, jiffies)) {
1320			dprintk("NFS:       faulty NFS server %s:"
1321				" (committed = %d) != (stable = %d)\n",
1322				NFS_SERVER(inode)->nfs_client->cl_hostname,
1323				resp->verf->committed, argp->stable);
1324			complain = jiffies + 300 * HZ;
1325		}
1326	}
1327#endif
1328	if (task->tk_status < 0)
1329		nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
1330	else if (resp->count < argp->count) {
1331		static unsigned long    complain;
1332
1333		/* This a short write! */
1334		nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
1335
1336		/* Has the server at least made some progress? */
1337		if (resp->count == 0) {
1338			if (time_before(complain, jiffies)) {
1339				printk(KERN_WARNING
1340				       "NFS: Server wrote zero bytes, expected %u.\n",
1341				       argp->count);
1342				complain = jiffies + 300 * HZ;
 
 
 
 
 
 
 
1343			}
1344			nfs_set_pgio_error(data->header, -EIO, argp->offset);
1345			task->tk_status = -EIO;
1346			return;
1347		}
1348		/* Was this an NFSv2 write or an NFSv3 stable write? */
1349		if (resp->verf->committed != NFS_UNSTABLE) {
1350			/* Resend from where the server left off */
1351			data->mds_offset += resp->count;
1352			argp->offset += resp->count;
1353			argp->pgbase += resp->count;
1354			argp->count -= resp->count;
1355		} else {
1356			/* Resend as a stable write in order to avoid
1357			 * headaches in the case of a server crash.
1358			 */
1359			argp->stable = NFS_FILE_SYNC;
1360		}
1361		rpc_restart_call_prepare(task);
 
1362	}
 
1363}
1364
1365
1366#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1367static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1368{
1369	int ret;
1370
1371	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1372		return 1;
1373	if (!may_wait)
1374		return 0;
1375	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1376				NFS_INO_COMMIT,
1377				nfs_wait_bit_killable,
1378				TASK_KILLABLE);
1379	return (ret < 0) ? ret : 1;
1380}
1381
1382static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1383{
1384	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1385	smp_mb__after_clear_bit();
1386	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1387}
 
1388
1389void nfs_commitdata_release(struct nfs_commit_data *data)
1390{
1391	put_nfs_open_context(data->context);
1392	nfs_commit_free(data);
 
 
 
1393}
1394EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1395
1396int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1397			const struct rpc_call_ops *call_ops,
1398			int how, int flags)
1399{
1400	struct rpc_task *task;
1401	int priority = flush_task_priority(how);
1402	struct rpc_message msg = {
1403		.rpc_argp = &data->args,
1404		.rpc_resp = &data->res,
1405		.rpc_cred = data->cred,
1406	};
1407	struct rpc_task_setup task_setup_data = {
1408		.task = &data->task,
1409		.rpc_client = clnt,
1410		.rpc_message = &msg,
1411		.callback_ops = call_ops,
1412		.callback_data = data,
1413		.workqueue = nfsiod_workqueue,
1414		.flags = RPC_TASK_ASYNC | flags,
1415		.priority = priority,
1416	};
1417	/* Set up the initial task struct.  */
1418	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1419
1420	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1421
1422	task = rpc_run_task(&task_setup_data);
1423	if (IS_ERR(task))
1424		return PTR_ERR(task);
1425	if (how & FLUSH_SYNC)
1426		rpc_wait_for_completion_task(task);
1427	rpc_put_task(task);
1428	return 0;
1429}
1430EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1431
1432/*
1433 * Set up the argument/result storage required for the RPC call.
1434 */
1435void nfs_init_commit(struct nfs_commit_data *data,
1436		     struct list_head *head,
1437		     struct pnfs_layout_segment *lseg,
1438		     struct nfs_commit_info *cinfo)
1439{
1440	struct nfs_page *first = nfs_list_entry(head->next);
1441	struct inode *inode = first->wb_context->dentry->d_inode;
1442
1443	/* Set up the RPC argument and reply structs
1444	 * NB: take care not to mess about with data->commit et al. */
1445
1446	list_splice_init(head, &data->pages);
1447
1448	data->inode	  = inode;
1449	data->cred	  = first->wb_context->cred;
1450	data->lseg	  = lseg; /* reference transferred */
1451	data->mds_ops     = &nfs_commit_ops;
1452	data->completion_ops = cinfo->completion_ops;
1453	data->dreq	  = cinfo->dreq;
1454
1455	data->args.fh     = NFS_FH(data->inode);
1456	/* Note: we always request a commit of the entire inode */
1457	data->args.offset = 0;
1458	data->args.count  = 0;
1459	data->context     = get_nfs_open_context(first->wb_context);
 
1460	data->res.fattr   = &data->fattr;
1461	data->res.verf    = &data->verf;
1462	nfs_fattr_init(&data->fattr);
1463}
1464EXPORT_SYMBOL_GPL(nfs_init_commit);
1465
1466void nfs_retry_commit(struct list_head *page_list,
1467		      struct pnfs_layout_segment *lseg,
1468		      struct nfs_commit_info *cinfo)
1469{
1470	struct nfs_page *req;
1471
1472	while (!list_empty(page_list)) {
1473		req = nfs_list_entry(page_list->next);
1474		nfs_list_remove_request(req);
1475		nfs_mark_request_commit(req, lseg, cinfo);
1476		if (!cinfo->dreq) {
1477			dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1478			dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1479				     BDI_RECLAIMABLE);
1480		}
1481		nfs_unlock_and_release_request(req);
1482	}
1483}
1484EXPORT_SYMBOL_GPL(nfs_retry_commit);
1485
1486/*
1487 * Commit dirty pages
1488 */
1489static int
1490nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1491		struct nfs_commit_info *cinfo)
1492{
1493	struct nfs_commit_data	*data;
1494
1495	data = nfs_commitdata_alloc();
1496
1497	if (!data)
1498		goto out_bad;
1499
1500	/* Set up the argument struct */
1501	nfs_init_commit(data, head, NULL, cinfo);
1502	atomic_inc(&cinfo->mds->rpcs_out);
1503	return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
1504				   how, 0);
1505 out_bad:
1506	nfs_retry_commit(head, NULL, cinfo);
1507	cinfo->completion_ops->error_cleanup(NFS_I(inode));
1508	return -ENOMEM;
1509}
1510
1511/*
1512 * COMMIT call returned
1513 */
1514static void nfs_commit_done(struct rpc_task *task, void *calldata)
1515{
1516	struct nfs_commit_data	*data = calldata;
1517
1518        dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1519                                task->tk_pid, task->tk_status);
1520
1521	/* Call the NFS version-specific code */
1522	NFS_PROTO(data->inode)->commit_done(task, data);
1523}
1524
1525static void nfs_commit_release_pages(struct nfs_commit_data *data)
1526{
1527	struct nfs_page	*req;
1528	int status = data->task.tk_status;
1529	struct nfs_commit_info cinfo;
1530
1531	while (!list_empty(&data->pages)) {
1532		req = nfs_list_entry(data->pages.next);
1533		nfs_list_remove_request(req);
1534		nfs_clear_page_commit(req->wb_page);
1535
1536		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1537			req->wb_context->dentry->d_sb->s_id,
1538			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1539			req->wb_bytes,
1540			(long long)req_offset(req));
1541		if (status < 0) {
1542			nfs_context_set_write_error(req->wb_context, status);
1543			nfs_inode_remove_request(req);
1544			dprintk(", error = %d\n", status);
1545			goto next;
1546		}
1547
1548		/* Okay, COMMIT succeeded, apparently. Check the verifier
1549		 * returned by the server against all stored verfs. */
1550		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1551			/* We have a match */
1552			nfs_inode_remove_request(req);
1553			dprintk(" OK\n");
1554			goto next;
1555		}
1556		/* We have a mismatch. Write the page again */
1557		dprintk(" mismatch\n");
1558		nfs_mark_request_dirty(req);
1559	next:
1560		nfs_unlock_and_release_request(req);
1561	}
1562	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1563	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
1564		nfs_commit_clear_lock(NFS_I(data->inode));
1565}
 
1566
1567static void nfs_commit_release(void *calldata)
1568{
1569	struct nfs_commit_data *data = calldata;
1570
1571	data->completion_ops->completion(data);
 
1572	nfs_commitdata_release(calldata);
1573}
1574
1575static const struct rpc_call_ops nfs_commit_ops = {
1576	.rpc_call_prepare = nfs_commit_prepare,
 
 
1577	.rpc_call_done = nfs_commit_done,
1578	.rpc_release = nfs_commit_release,
1579};
1580
1581static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1582	.completion = nfs_commit_release_pages,
1583	.error_cleanup = nfs_commit_clear_lock,
1584};
1585
1586int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1587			    int how, struct nfs_commit_info *cinfo)
1588{
1589	int status;
1590
1591	status = pnfs_commit_list(inode, head, how, cinfo);
1592	if (status == PNFS_NOT_ATTEMPTED)
1593		status = nfs_commit_list(inode, head, how, cinfo);
1594	return status;
1595}
1596
1597int nfs_commit_inode(struct inode *inode, int how)
1598{
1599	LIST_HEAD(head);
1600	struct nfs_commit_info cinfo;
1601	int may_wait = how & FLUSH_SYNC;
1602	int res;
1603
1604	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1605	if (res <= 0)
1606		goto out_mark_dirty;
1607	nfs_init_cinfo_from_inode(&cinfo, inode);
1608	res = nfs_scan_commit(inode, &head, &cinfo);
1609	if (res) {
1610		int error;
1611
1612		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
 
 
1613		if (error < 0)
1614			return error;
1615		if (!may_wait)
1616			goto out_mark_dirty;
1617		error = wait_on_bit(&NFS_I(inode)->flags,
1618				NFS_INO_COMMIT,
1619				nfs_wait_bit_killable,
1620				TASK_KILLABLE);
1621		if (error < 0)
1622			return error;
1623	} else
1624		nfs_commit_clear_lock(NFS_I(inode));
1625	return res;
1626	/* Note: If we exit without ensuring that the commit is complete,
1627	 * we must mark the inode as dirty. Otherwise, future calls to
1628	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1629	 * that the data is on the disk.
1630	 */
1631out_mark_dirty:
1632	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1633	return res;
1634}
1635
1636static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1637{
1638	struct nfs_inode *nfsi = NFS_I(inode);
1639	int flags = FLUSH_SYNC;
1640	int ret = 0;
1641
1642	/* no commits means nothing needs to be done */
1643	if (!nfsi->commit_info.ncommit)
1644		return ret;
1645
1646	if (wbc->sync_mode == WB_SYNC_NONE) {
1647		/* Don't commit yet if this is a non-blocking flush and there
1648		 * are a lot of outstanding writes for this mapping.
1649		 */
1650		if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
1651			goto out_mark_dirty;
1652
1653		/* don't wait for the COMMIT response */
1654		flags = 0;
1655	}
1656
1657	ret = nfs_commit_inode(inode, flags);
1658	if (ret >= 0) {
1659		if (wbc->sync_mode == WB_SYNC_NONE) {
1660			if (ret < wbc->nr_to_write)
1661				wbc->nr_to_write -= ret;
1662			else
1663				wbc->nr_to_write = 0;
1664		}
1665		return 0;
1666	}
1667out_mark_dirty:
1668	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1669	return ret;
1670}
1671#else
1672static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1673{
1674	return 0;
1675}
1676#endif
1677
1678int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1679{
1680	int ret;
1681
1682	ret = nfs_commit_unstable_pages(inode, wbc);
1683	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1684		int status;
1685		bool sync = true;
1686
1687		if (wbc->sync_mode == WB_SYNC_NONE)
1688			sync = false;
1689
1690		status = pnfs_layoutcommit_inode(inode, sync);
1691		if (status < 0)
1692			return status;
1693	}
1694	return ret;
1695}
1696
1697/*
1698 * flush the inode to disk.
1699 */
1700int nfs_wb_all(struct inode *inode)
1701{
1702	struct writeback_control wbc = {
1703		.sync_mode = WB_SYNC_ALL,
1704		.nr_to_write = LONG_MAX,
1705		.range_start = 0,
1706		.range_end = LLONG_MAX,
1707	};
1708
1709	return sync_inode(inode, &wbc);
1710}
1711
1712int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1713{
1714	struct nfs_page *req;
1715	int ret = 0;
1716
1717	BUG_ON(!PageLocked(page));
1718	for (;;) {
1719		wait_on_page_writeback(page);
1720		req = nfs_page_find_request(page);
1721		if (req == NULL)
1722			break;
1723		if (nfs_lock_request(req)) {
1724			nfs_clear_request_commit(req);
1725			nfs_inode_remove_request(req);
1726			/*
1727			 * In case nfs_inode_remove_request has marked the
1728			 * page as being dirty
1729			 */
1730			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1731			nfs_unlock_and_release_request(req);
1732			break;
1733		}
1734		ret = nfs_wait_on_request(req);
1735		nfs_release_request(req);
1736		if (ret < 0)
1737			break;
1738	}
1739	return ret;
1740}
1741
1742/*
1743 * Write back all requests on one page - we do this before reading it.
1744 */
1745int nfs_wb_page(struct inode *inode, struct page *page)
1746{
1747	loff_t range_start = page_offset(page);
1748	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1749	struct writeback_control wbc = {
1750		.sync_mode = WB_SYNC_ALL,
1751		.nr_to_write = 0,
1752		.range_start = range_start,
1753		.range_end = range_end,
1754	};
1755	int ret;
1756
1757	for (;;) {
1758		wait_on_page_writeback(page);
1759		if (clear_page_dirty_for_io(page)) {
1760			ret = nfs_writepage_locked(page, &wbc);
1761			if (ret < 0)
1762				goto out_error;
1763			continue;
1764		}
1765		if (!PagePrivate(page))
1766			break;
1767		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1768		if (ret < 0)
1769			goto out_error;
1770	}
1771	return 0;
1772out_error:
1773	return ret;
1774}
1775
1776#ifdef CONFIG_MIGRATION
1777int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1778		struct page *page, enum migrate_mode mode)
1779{
1780	/*
1781	 * If PagePrivate is set, then the page is currently associated with
1782	 * an in-progress read or write request. Don't try to migrate it.
1783	 *
1784	 * FIXME: we could do this in principle, but we'll need a way to ensure
1785	 *        that we can safely release the inode reference while holding
1786	 *        the page lock.
1787	 */
1788	if (PagePrivate(page))
1789		return -EBUSY;
1790
1791	nfs_fscache_release_page(page, GFP_KERNEL);
1792
1793	return migrate_page(mapping, newpage, page, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794}
1795#endif
1796
1797int __init nfs_init_writepagecache(void)
1798{
1799	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1800					     sizeof(struct nfs_write_header),
1801					     0, SLAB_HWCACHE_ALIGN,
1802					     NULL);
1803	if (nfs_wdata_cachep == NULL)
1804		return -ENOMEM;
1805
1806	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1807						     nfs_wdata_cachep);
1808	if (nfs_wdata_mempool == NULL)
1809		goto out_destroy_write_cache;
1810
1811	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
1812					     sizeof(struct nfs_commit_data),
1813					     0, SLAB_HWCACHE_ALIGN,
1814					     NULL);
1815	if (nfs_cdata_cachep == NULL)
1816		goto out_destroy_write_mempool;
1817
1818	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1819						      nfs_wdata_cachep);
1820	if (nfs_commit_mempool == NULL)
1821		goto out_destroy_commit_cache;
1822
1823	/*
1824	 * NFS congestion size, scale with available memory.
1825	 *
1826	 *  64MB:    8192k
1827	 * 128MB:   11585k
1828	 * 256MB:   16384k
1829	 * 512MB:   23170k
1830	 *   1GB:   32768k
1831	 *   2GB:   46340k
1832	 *   4GB:   65536k
1833	 *   8GB:   92681k
1834	 *  16GB:  131072k
1835	 *
1836	 * This allows larger machines to have larger/more transfers.
1837	 * Limit the default to 256M
1838	 */
1839	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1840	if (nfs_congestion_kb > 256*1024)
1841		nfs_congestion_kb = 256*1024;
1842
1843	return 0;
1844
1845out_destroy_commit_cache:
1846	kmem_cache_destroy(nfs_cdata_cachep);
1847out_destroy_write_mempool:
1848	mempool_destroy(nfs_wdata_mempool);
1849out_destroy_write_cache:
1850	kmem_cache_destroy(nfs_wdata_cachep);
1851	return -ENOMEM;
1852}
1853
1854void nfs_destroy_writepagecache(void)
1855{
1856	mempool_destroy(nfs_commit_mempool);
1857	kmem_cache_destroy(nfs_cdata_cachep);
1858	mempool_destroy(nfs_wdata_mempool);
1859	kmem_cache_destroy(nfs_wdata_cachep);
1860}
1861
v3.1
   1/*
   2 * linux/fs/nfs/write.c
   3 *
   4 * Write file data over NFS.
   5 *
   6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/slab.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/file.h>
  14#include <linux/writeback.h>
  15#include <linux/swap.h>
  16#include <linux/migrate.h>
  17
  18#include <linux/sunrpc/clnt.h>
  19#include <linux/nfs_fs.h>
  20#include <linux/nfs_mount.h>
  21#include <linux/nfs_page.h>
  22#include <linux/backing-dev.h>
 
  23
  24#include <asm/uaccess.h>
  25
  26#include "delegation.h"
  27#include "internal.h"
  28#include "iostat.h"
  29#include "nfs4_fs.h"
  30#include "fscache.h"
  31#include "pnfs.h"
  32
  33#define NFSDBG_FACILITY		NFSDBG_PAGECACHE
  34
  35#define MIN_POOL_WRITE		(32)
  36#define MIN_POOL_COMMIT		(4)
  37
  38/*
  39 * Local function declarations
  40 */
  41static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  42				  struct inode *inode, int ioflags);
  43static void nfs_redirty_request(struct nfs_page *req);
  44static const struct rpc_call_ops nfs_write_partial_ops;
  45static const struct rpc_call_ops nfs_write_full_ops;
  46static const struct rpc_call_ops nfs_commit_ops;
 
 
  47
  48static struct kmem_cache *nfs_wdata_cachep;
  49static mempool_t *nfs_wdata_mempool;
 
  50static mempool_t *nfs_commit_mempool;
  51
  52struct nfs_write_data *nfs_commitdata_alloc(void)
  53{
  54	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  55
  56	if (p) {
  57		memset(p, 0, sizeof(*p));
  58		INIT_LIST_HEAD(&p->pages);
  59	}
  60	return p;
  61}
  62EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  63
  64void nfs_commit_free(struct nfs_write_data *p)
  65{
  66	if (p && (p->pagevec != &p->page_array[0]))
  67		kfree(p->pagevec);
  68	mempool_free(p, nfs_commit_mempool);
  69}
  70EXPORT_SYMBOL_GPL(nfs_commit_free);
  71
  72struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  73{
  74	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  75
  76	if (p) {
 
 
  77		memset(p, 0, sizeof(*p));
  78		INIT_LIST_HEAD(&p->pages);
  79		p->npages = pagecount;
  80		if (pagecount <= ARRAY_SIZE(p->page_array))
  81			p->pagevec = p->page_array;
  82		else {
  83			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  84			if (!p->pagevec) {
  85				mempool_free(p, nfs_wdata_mempool);
  86				p = NULL;
  87			}
  88		}
  89	}
  90	return p;
  91}
  92
  93void nfs_writedata_free(struct nfs_write_data *p)
 
  94{
  95	if (p && (p->pagevec != &p->page_array[0]))
  96		kfree(p->pagevec);
  97	mempool_free(p, nfs_wdata_mempool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98}
  99
 100void nfs_writedata_release(struct nfs_write_data *wdata)
 101{
 102	put_lseg(wdata->lseg);
 
 
 103	put_nfs_open_context(wdata->args.context);
 104	nfs_writedata_free(wdata);
 
 
 
 
 
 
 
 105}
 106
 107static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
 108{
 109	ctx->error = error;
 110	smp_wmb();
 111	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 112}
 113
 114static struct nfs_page *nfs_page_find_request_locked(struct page *page)
 115{
 116	struct nfs_page *req = NULL;
 117
 118	if (PagePrivate(page)) {
 119		req = (struct nfs_page *)page_private(page);
 120		if (req != NULL)
 121			kref_get(&req->wb_kref);
 122	}
 123	return req;
 124}
 125
 126static struct nfs_page *nfs_page_find_request(struct page *page)
 127{
 128	struct inode *inode = page->mapping->host;
 129	struct nfs_page *req = NULL;
 130
 131	spin_lock(&inode->i_lock);
 132	req = nfs_page_find_request_locked(page);
 133	spin_unlock(&inode->i_lock);
 134	return req;
 135}
 136
 137/* Adjust the file length if we're writing beyond the end */
 138static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
 139{
 140	struct inode *inode = page->mapping->host;
 141	loff_t end, i_size;
 142	pgoff_t end_index;
 143
 144	spin_lock(&inode->i_lock);
 145	i_size = i_size_read(inode);
 146	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
 147	if (i_size > 0 && page->index < end_index)
 148		goto out;
 149	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
 150	if (i_size >= end)
 151		goto out;
 152	i_size_write(inode, end);
 153	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
 154out:
 155	spin_unlock(&inode->i_lock);
 156}
 157
 158/* A writeback failed: mark the page as bad, and invalidate the page cache */
 159static void nfs_set_pageerror(struct page *page)
 160{
 161	SetPageError(page);
 162	nfs_zap_mapping(page->mapping->host, page->mapping);
 163}
 164
 165/* We can set the PG_uptodate flag if we see that a write request
 166 * covers the full page.
 167 */
 168static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
 169{
 170	if (PageUptodate(page))
 171		return;
 172	if (base != 0)
 173		return;
 174	if (count != nfs_page_length(page))
 175		return;
 176	SetPageUptodate(page);
 177}
 178
 179static int wb_priority(struct writeback_control *wbc)
 180{
 181	if (wbc->for_reclaim)
 182		return FLUSH_HIGHPRI | FLUSH_STABLE;
 183	if (wbc->for_kupdate || wbc->for_background)
 184		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
 185	return FLUSH_COND_STABLE;
 186}
 187
 188/*
 189 * NFS congestion control
 190 */
 191
 192int nfs_congestion_kb;
 193
 194#define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
 195#define NFS_CONGESTION_OFF_THRESH	\
 196	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
 197
 198static int nfs_set_page_writeback(struct page *page)
 199{
 200	int ret = test_set_page_writeback(page);
 201
 202	if (!ret) {
 203		struct inode *inode = page->mapping->host;
 204		struct nfs_server *nfss = NFS_SERVER(inode);
 205
 206		page_cache_get(page);
 207		if (atomic_long_inc_return(&nfss->writeback) >
 208				NFS_CONGESTION_ON_THRESH) {
 209			set_bdi_congested(&nfss->backing_dev_info,
 210						BLK_RW_ASYNC);
 211		}
 212	}
 213	return ret;
 214}
 215
 216static void nfs_end_page_writeback(struct page *page)
 217{
 218	struct inode *inode = page->mapping->host;
 219	struct nfs_server *nfss = NFS_SERVER(inode);
 220
 221	end_page_writeback(page);
 222	page_cache_release(page);
 223	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
 224		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
 225}
 226
 227static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
 228{
 229	struct inode *inode = page->mapping->host;
 230	struct nfs_page *req;
 231	int ret;
 232
 233	spin_lock(&inode->i_lock);
 234	for (;;) {
 235		req = nfs_page_find_request_locked(page);
 236		if (req == NULL)
 237			break;
 238		if (nfs_set_page_tag_locked(req))
 239			break;
 240		/* Note: If we hold the page lock, as is the case in nfs_writepage,
 241		 *	 then the call to nfs_set_page_tag_locked() will always
 242		 *	 succeed provided that someone hasn't already marked the
 243		 *	 request as dirty (in which case we don't care).
 244		 */
 245		spin_unlock(&inode->i_lock);
 246		if (!nonblock)
 247			ret = nfs_wait_on_request(req);
 248		else
 249			ret = -EAGAIN;
 250		nfs_release_request(req);
 251		if (ret != 0)
 252			return ERR_PTR(ret);
 253		spin_lock(&inode->i_lock);
 254	}
 255	spin_unlock(&inode->i_lock);
 256	return req;
 257}
 258
 259/*
 260 * Find an associated nfs write request, and prepare to flush it out
 261 * May return an error if the user signalled nfs_wait_on_request().
 262 */
 263static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
 264				struct page *page, bool nonblock)
 265{
 266	struct nfs_page *req;
 267	int ret = 0;
 268
 269	req = nfs_find_and_lock_request(page, nonblock);
 270	if (!req)
 271		goto out;
 272	ret = PTR_ERR(req);
 273	if (IS_ERR(req))
 274		goto out;
 275
 276	ret = nfs_set_page_writeback(page);
 277	BUG_ON(ret != 0);
 278	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
 279
 280	if (!nfs_pageio_add_request(pgio, req)) {
 281		nfs_redirty_request(req);
 282		ret = pgio->pg_error;
 283	}
 284out:
 285	return ret;
 286}
 287
 288static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
 289{
 290	struct inode *inode = page->mapping->host;
 291	int ret;
 292
 293	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
 294	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
 295
 296	nfs_pageio_cond_complete(pgio, page->index);
 297	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
 298	if (ret == -EAGAIN) {
 299		redirty_page_for_writepage(wbc, page);
 300		ret = 0;
 301	}
 302	return ret;
 303}
 304
 305/*
 306 * Write an mmapped page to the server.
 307 */
 308static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
 309{
 310	struct nfs_pageio_descriptor pgio;
 311	int err;
 312
 313	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
 
 314	err = nfs_do_writepage(page, wbc, &pgio);
 315	nfs_pageio_complete(&pgio);
 316	if (err < 0)
 317		return err;
 318	if (pgio.pg_error < 0)
 319		return pgio.pg_error;
 320	return 0;
 321}
 322
 323int nfs_writepage(struct page *page, struct writeback_control *wbc)
 324{
 325	int ret;
 326
 327	ret = nfs_writepage_locked(page, wbc);
 328	unlock_page(page);
 329	return ret;
 330}
 331
 332static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
 333{
 334	int ret;
 335
 336	ret = nfs_do_writepage(page, wbc, data);
 337	unlock_page(page);
 338	return ret;
 339}
 340
 341int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 342{
 343	struct inode *inode = mapping->host;
 344	unsigned long *bitlock = &NFS_I(inode)->flags;
 345	struct nfs_pageio_descriptor pgio;
 346	int err;
 347
 348	/* Stop dirtying of new pages while we sync */
 349	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
 350			nfs_wait_bit_killable, TASK_KILLABLE);
 351	if (err)
 352		goto out_err;
 353
 354	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
 355
 356	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
 
 357	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
 358	nfs_pageio_complete(&pgio);
 359
 360	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
 361	smp_mb__after_clear_bit();
 362	wake_up_bit(bitlock, NFS_INO_FLUSHING);
 363
 364	if (err < 0)
 365		goto out_err;
 366	err = pgio.pg_error;
 367	if (err < 0)
 368		goto out_err;
 369	return 0;
 370out_err:
 371	return err;
 372}
 373
 374/*
 375 * Insert a write request into an inode
 376 */
 377static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
 378{
 379	struct nfs_inode *nfsi = NFS_I(inode);
 380	int error;
 381
 382	error = radix_tree_preload(GFP_NOFS);
 383	if (error != 0)
 384		goto out;
 385
 386	/* Lock the request! */
 387	nfs_lock_request_dontget(req);
 388
 389	spin_lock(&inode->i_lock);
 390	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
 391	BUG_ON(error);
 392	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
 393		nfsi->change_attr++;
 394	set_bit(PG_MAPPED, &req->wb_flags);
 395	SetPagePrivate(req->wb_page);
 396	set_page_private(req->wb_page, (unsigned long)req);
 397	nfsi->npages++;
 398	kref_get(&req->wb_kref);
 399	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
 400				NFS_PAGE_TAG_LOCKED);
 401	spin_unlock(&inode->i_lock);
 402	radix_tree_preload_end();
 403out:
 404	return error;
 405}
 406
 407/*
 408 * Remove a write request from an inode
 409 */
 410static void nfs_inode_remove_request(struct nfs_page *req)
 411{
 412	struct inode *inode = req->wb_context->dentry->d_inode;
 413	struct nfs_inode *nfsi = NFS_I(inode);
 414
 415	BUG_ON (!NFS_WBACK_BUSY(req));
 416
 417	spin_lock(&inode->i_lock);
 418	set_page_private(req->wb_page, 0);
 419	ClearPagePrivate(req->wb_page);
 420	clear_bit(PG_MAPPED, &req->wb_flags);
 421	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
 422	nfsi->npages--;
 423	spin_unlock(&inode->i_lock);
 424	nfs_release_request(req);
 425}
 426
 427static void
 428nfs_mark_request_dirty(struct nfs_page *req)
 429{
 430	__set_page_dirty_nobuffers(req->wb_page);
 431	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
 432}
 433
 434#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435/*
 436 * Add a request to the inode's commit list.
 437 */
 
 
 
 
 
 
 
 
 
 438static void
 439nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
 440{
 441	struct inode *inode = req->wb_context->dentry->d_inode;
 442	struct nfs_inode *nfsi = NFS_I(inode);
 443
 444	spin_lock(&inode->i_lock);
 445	set_bit(PG_CLEAN, &(req)->wb_flags);
 446	radix_tree_tag_set(&nfsi->nfs_page_tree,
 447			req->wb_index,
 448			NFS_PAGE_TAG_COMMIT);
 449	nfsi->ncommit++;
 450	spin_unlock(&inode->i_lock);
 451	pnfs_mark_request_commit(req, lseg);
 452	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
 453	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
 454	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 455}
 456
 457static int
 458nfs_clear_request_commit(struct nfs_page *req)
 459{
 460	struct page *page = req->wb_page;
 461
 462	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
 463		dec_zone_page_state(page, NR_UNSTABLE_NFS);
 464		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
 465		return 1;
 
 
 
 
 
 466	}
 467	return 0;
 468}
 469
 470static inline
 471int nfs_write_need_commit(struct nfs_write_data *data)
 472{
 473	if (data->verf.committed == NFS_DATA_SYNC)
 474		return data->lseg == NULL;
 475	else
 476		return data->verf.committed != NFS_FILE_SYNC;
 
 
 
 
 
 477}
 478
 479static inline
 480int nfs_reschedule_unstable_write(struct nfs_page *req,
 481				  struct nfs_write_data *data)
 482{
 483	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
 484		nfs_mark_request_commit(req, data->lseg);
 485		return 1;
 486	}
 487	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
 488		nfs_mark_request_dirty(req);
 489		return 1;
 490	}
 491	return 0;
 492}
 493#else
 494static inline void
 495nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
 
 496{
 497}
 498
 499static inline int
 500nfs_clear_request_commit(struct nfs_page *req)
 501{
 502	return 0;
 503}
 504
 505static inline
 506int nfs_write_need_commit(struct nfs_write_data *data)
 507{
 508	return 0;
 509}
 510
 511static inline
 512int nfs_reschedule_unstable_write(struct nfs_page *req,
 513				  struct nfs_write_data *data)
 514{
 515	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516}
 517#endif
 518
 519#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 520static int
 521nfs_need_commit(struct nfs_inode *nfsi)
 522{
 523	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524}
 525
 526/*
 527 * nfs_scan_commit - Scan an inode for commit requests
 528 * @inode: NFS inode to scan
 529 * @dst: destination list
 530 * @idx_start: lower bound of page->index to scan.
 531 * @npages: idx_start + npages sets the upper bound to scan.
 532 *
 533 * Moves requests from the inode's 'commit' request list.
 534 * The requests are *not* checked to ensure that they form a contiguous set.
 535 */
 536static int
 537nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
 
 538{
 539	struct nfs_inode *nfsi = NFS_I(inode);
 540	int ret;
 541
 542	if (!nfs_need_commit(nfsi))
 543		return 0;
 544
 545	spin_lock(&inode->i_lock);
 546	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
 547	if (ret > 0)
 548		nfsi->ncommit -= ret;
 549	spin_unlock(&inode->i_lock);
 550
 551	if (nfs_need_commit(NFS_I(inode)))
 552		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 553
 
 
 
 
 
 
 
 
 
 554	return ret;
 555}
 
 556#else
 557static inline int nfs_need_commit(struct nfs_inode *nfsi)
 558{
 559	return 0;
 560}
 561
 562static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
 
 563{
 564	return 0;
 565}
 566#endif
 567
 568/*
 569 * Search for an existing write request, and attempt to update
 570 * it to reflect a new dirty region on a given page.
 571 *
 572 * If the attempt fails, then the existing request is flushed out
 573 * to disk.
 574 */
 575static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
 576		struct page *page,
 577		unsigned int offset,
 578		unsigned int bytes)
 579{
 580	struct nfs_page *req;
 581	unsigned int rqend;
 582	unsigned int end;
 583	int error;
 584
 585	if (!PagePrivate(page))
 586		return NULL;
 587
 588	end = offset + bytes;
 589	spin_lock(&inode->i_lock);
 590
 591	for (;;) {
 592		req = nfs_page_find_request_locked(page);
 593		if (req == NULL)
 594			goto out_unlock;
 595
 596		rqend = req->wb_offset + req->wb_bytes;
 597		/*
 598		 * Tell the caller to flush out the request if
 599		 * the offsets are non-contiguous.
 600		 * Note: nfs_flush_incompatible() will already
 601		 * have flushed out requests having wrong owners.
 602		 */
 603		if (offset > rqend
 604		    || end < req->wb_offset)
 605			goto out_flushme;
 606
 607		if (nfs_set_page_tag_locked(req))
 608			break;
 609
 610		/* The request is locked, so wait and then retry */
 611		spin_unlock(&inode->i_lock);
 612		error = nfs_wait_on_request(req);
 613		nfs_release_request(req);
 614		if (error != 0)
 615			goto out_err;
 616		spin_lock(&inode->i_lock);
 617	}
 618
 619	if (nfs_clear_request_commit(req) &&
 620	    radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
 621				 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
 622		NFS_I(inode)->ncommit--;
 623		pnfs_clear_request_commit(req);
 624	}
 625
 626	/* Okay, the request matches. Update the region */
 627	if (offset < req->wb_offset) {
 628		req->wb_offset = offset;
 629		req->wb_pgbase = offset;
 630	}
 631	if (end > rqend)
 632		req->wb_bytes = end - req->wb_offset;
 633	else
 634		req->wb_bytes = rqend - req->wb_offset;
 635out_unlock:
 636	spin_unlock(&inode->i_lock);
 
 
 637	return req;
 638out_flushme:
 639	spin_unlock(&inode->i_lock);
 640	nfs_release_request(req);
 641	error = nfs_wb_page(inode, page);
 642out_err:
 643	return ERR_PTR(error);
 644}
 645
 646/*
 647 * Try to update an existing write request, or create one if there is none.
 648 *
 649 * Note: Should always be called with the Page Lock held to prevent races
 650 * if we have to add a new request. Also assumes that the caller has
 651 * already called nfs_flush_incompatible() if necessary.
 652 */
 653static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
 654		struct page *page, unsigned int offset, unsigned int bytes)
 655{
 656	struct inode *inode = page->mapping->host;
 657	struct nfs_page	*req;
 658	int error;
 659
 660	req = nfs_try_to_update_request(inode, page, offset, bytes);
 661	if (req != NULL)
 662		goto out;
 663	req = nfs_create_request(ctx, inode, page, offset, bytes);
 664	if (IS_ERR(req))
 665		goto out;
 666	error = nfs_inode_add_request(inode, req);
 667	if (error != 0) {
 668		nfs_release_request(req);
 669		req = ERR_PTR(error);
 670	}
 671out:
 672	return req;
 673}
 674
 675static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
 676		unsigned int offset, unsigned int count)
 677{
 678	struct nfs_page	*req;
 679
 680	req = nfs_setup_write_request(ctx, page, offset, count);
 681	if (IS_ERR(req))
 682		return PTR_ERR(req);
 683	/* Update file length */
 684	nfs_grow_file(page, offset, count);
 685	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
 686	nfs_mark_request_dirty(req);
 687	nfs_clear_page_tag_locked(req);
 688	return 0;
 689}
 690
 691int nfs_flush_incompatible(struct file *file, struct page *page)
 692{
 693	struct nfs_open_context *ctx = nfs_file_open_context(file);
 694	struct nfs_page	*req;
 695	int do_flush, status;
 696	/*
 697	 * Look for a request corresponding to this page. If there
 698	 * is one, and it belongs to another file, we flush it out
 699	 * before we try to copy anything into the page. Do this
 700	 * due to the lack of an ACCESS-type call in NFSv2.
 701	 * Also do the same if we find a request from an existing
 702	 * dropped page.
 703	 */
 704	do {
 705		req = nfs_page_find_request(page);
 706		if (req == NULL)
 707			return 0;
 708		do_flush = req->wb_page != page || req->wb_context != ctx ||
 709			req->wb_lock_context->lockowner != current->files ||
 710			req->wb_lock_context->pid != current->tgid;
 711		nfs_release_request(req);
 712		if (!do_flush)
 713			return 0;
 714		status = nfs_wb_page(page->mapping->host, page);
 715	} while (status == 0);
 716	return status;
 717}
 718
 719/*
 720 * If the page cache is marked as unsafe or invalid, then we can't rely on
 721 * the PageUptodate() flag. In this case, we will need to turn off
 722 * write optimisations that depend on the page contents being correct.
 723 */
 724static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
 725{
 726	return PageUptodate(page) &&
 727		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
 
 
 
 
 728}
 729
 730/*
 731 * Update and possibly write a cached page of an NFS file.
 732 *
 733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
 734 * things with a page scheduled for an RPC call (e.g. invalidate it).
 735 */
 736int nfs_updatepage(struct file *file, struct page *page,
 737		unsigned int offset, unsigned int count)
 738{
 739	struct nfs_open_context *ctx = nfs_file_open_context(file);
 740	struct inode	*inode = page->mapping->host;
 741	int		status = 0;
 742
 743	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
 744
 745	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
 746		file->f_path.dentry->d_parent->d_name.name,
 747		file->f_path.dentry->d_name.name, count,
 748		(long long)(page_offset(page) + offset));
 749
 750	/* If we're not using byte range locks, and we know the page
 751	 * is up to date, it may be more efficient to extend the write
 752	 * to cover the entire page in order to avoid fragmentation
 753	 * inefficiencies.
 754	 */
 755	if (nfs_write_pageuptodate(page, inode) &&
 756			inode->i_flock == NULL &&
 757			!(file->f_flags & O_DSYNC)) {
 758		count = max(count + offset, nfs_page_length(page));
 759		offset = 0;
 760	}
 761
 762	status = nfs_writepage_setup(ctx, page, offset, count);
 763	if (status < 0)
 764		nfs_set_pageerror(page);
 
 
 765
 766	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
 767			status, (long long)i_size_read(inode));
 768	return status;
 769}
 770
 771static void nfs_writepage_release(struct nfs_page *req,
 772				  struct nfs_write_data *data)
 773{
 774	struct page *page = req->wb_page;
 775
 776	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
 777		nfs_inode_remove_request(req);
 778	nfs_clear_page_tag_locked(req);
 779	nfs_end_page_writeback(page);
 780}
 781
 782static int flush_task_priority(int how)
 783{
 784	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
 785		case FLUSH_HIGHPRI:
 786			return RPC_PRIORITY_HIGH;
 787		case FLUSH_LOWPRI:
 788			return RPC_PRIORITY_LOW;
 789	}
 790	return RPC_PRIORITY_NORMAL;
 791}
 792
 793int nfs_initiate_write(struct nfs_write_data *data,
 794		       struct rpc_clnt *clnt,
 795		       const struct rpc_call_ops *call_ops,
 796		       int how)
 797{
 798	struct inode *inode = data->inode;
 799	int priority = flush_task_priority(how);
 800	struct rpc_task *task;
 801	struct rpc_message msg = {
 802		.rpc_argp = &data->args,
 803		.rpc_resp = &data->res,
 804		.rpc_cred = data->cred,
 805	};
 806	struct rpc_task_setup task_setup_data = {
 807		.rpc_client = clnt,
 808		.task = &data->task,
 809		.rpc_message = &msg,
 810		.callback_ops = call_ops,
 811		.callback_data = data,
 812		.workqueue = nfsiod_workqueue,
 813		.flags = RPC_TASK_ASYNC,
 814		.priority = priority,
 815	};
 816	int ret = 0;
 817
 818	/* Set up the initial task struct.  */
 819	NFS_PROTO(inode)->write_setup(data, &msg);
 820
 821	dprintk("NFS: %5u initiated write call "
 822		"(req %s/%lld, %u bytes @ offset %llu)\n",
 823		data->task.tk_pid,
 824		inode->i_sb->s_id,
 825		(long long)NFS_FILEID(inode),
 826		data->args.count,
 827		(unsigned long long)data->args.offset);
 828
 829	task = rpc_run_task(&task_setup_data);
 830	if (IS_ERR(task)) {
 831		ret = PTR_ERR(task);
 832		goto out;
 833	}
 834	if (how & FLUSH_SYNC) {
 835		ret = rpc_wait_for_completion_task(task);
 836		if (ret == 0)
 837			ret = task->tk_status;
 838	}
 839	rpc_put_task(task);
 840out:
 841	return ret;
 842}
 843EXPORT_SYMBOL_GPL(nfs_initiate_write);
 844
 845/*
 846 * Set up the argument/result storage required for the RPC call.
 847 */
 848static void nfs_write_rpcsetup(struct nfs_page *req,
 849		struct nfs_write_data *data,
 850		unsigned int count, unsigned int offset,
 851		int how)
 852{
 853	struct inode *inode = req->wb_context->dentry->d_inode;
 854
 855	/* Set up the RPC argument and reply structs
 856	 * NB: take care not to mess about with data->commit et al. */
 857
 858	data->req = req;
 859	data->inode = inode = req->wb_context->dentry->d_inode;
 860	data->cred = req->wb_context->cred;
 861
 862	data->args.fh     = NFS_FH(inode);
 863	data->args.offset = req_offset(req) + offset;
 864	/* pnfs_set_layoutcommit needs this */
 865	data->mds_offset = data->args.offset;
 866	data->args.pgbase = req->wb_pgbase + offset;
 867	data->args.pages  = data->pagevec;
 868	data->args.count  = count;
 869	data->args.context = get_nfs_open_context(req->wb_context);
 870	data->args.lock_context = req->wb_lock_context;
 871	data->args.stable  = NFS_UNSTABLE;
 872	switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
 873	case 0:
 874		break;
 875	case FLUSH_COND_STABLE:
 876		if (nfs_need_commit(NFS_I(inode)))
 877			break;
 878	default:
 879		data->args.stable = NFS_FILE_SYNC;
 880	}
 881
 882	data->res.fattr   = &data->fattr;
 883	data->res.count   = count;
 884	data->res.verf    = &data->verf;
 885	nfs_fattr_init(&data->fattr);
 886}
 887
 888static int nfs_do_write(struct nfs_write_data *data,
 889		const struct rpc_call_ops *call_ops,
 890		int how)
 891{
 892	struct inode *inode = data->args.context->dentry->d_inode;
 893
 894	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
 895}
 896
 897static int nfs_do_multiple_writes(struct list_head *head,
 898		const struct rpc_call_ops *call_ops,
 899		int how)
 900{
 901	struct nfs_write_data *data;
 902	int ret = 0;
 903
 904	while (!list_empty(head)) {
 905		int ret2;
 906
 907		data = list_entry(head->next, struct nfs_write_data, list);
 908		list_del_init(&data->list);
 909		
 910		ret2 = nfs_do_write(data, call_ops, how);
 911		 if (ret == 0)
 912			 ret = ret2;
 913	}
 914	return ret;
 915}
 916
 917/* If a nfs_flush_* function fails, it should remove reqs from @head and
 918 * call this on each, which will prepare them to be retried on next
 919 * writeback using standard nfs.
 920 */
 921static void nfs_redirty_request(struct nfs_page *req)
 922{
 923	struct page *page = req->wb_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925	nfs_mark_request_dirty(req);
 926	nfs_clear_page_tag_locked(req);
 927	nfs_end_page_writeback(page);
 
 
 
 
 
 
 
 
 928}
 929
 930/*
 931 * Generate multiple small requests to write out a single
 932 * contiguous dirty area on one page.
 933 */
 934static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
 
 935{
 936	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
 937	struct page *page = req->wb_page;
 938	struct nfs_write_data *data;
 939	size_t wsize = desc->pg_bsize, nbytes;
 940	unsigned int offset;
 941	int requests = 0;
 942	int ret = 0;
 943
 944	nfs_list_remove_request(req);
 945
 946	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
 947	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
 948	     desc->pg_count > wsize))
 949		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
 950
 951
 952	offset = 0;
 953	nbytes = desc->pg_count;
 954	do {
 955		size_t len = min(nbytes, wsize);
 956
 957		data = nfs_writedata_alloc(1);
 958		if (!data)
 959			goto out_bad;
 960		data->pagevec[0] = page;
 961		nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
 962		list_add(&data->list, res);
 
 
 963		requests++;
 964		nbytes -= len;
 965		offset += len;
 966	} while (nbytes != 0);
 967	atomic_set(&req->wb_complete, requests);
 968	desc->pg_rpc_callops = &nfs_write_partial_ops;
 969	return ret;
 970
 971out_bad:
 972	while (!list_empty(res)) {
 973		data = list_entry(res->next, struct nfs_write_data, list);
 974		list_del(&data->list);
 975		nfs_writedata_free(data);
 976	}
 977	nfs_redirty_request(req);
 978	return -ENOMEM;
 979}
 980
 981/*
 982 * Create an RPC task for the given write request and kick it.
 983 * The page must have been locked by the caller.
 984 *
 985 * It may happen that the page we're passed is not marked dirty.
 986 * This is the case if nfs_updatepage detects a conflicting request
 987 * that has been written but not committed.
 988 */
 989static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
 
 990{
 991	struct nfs_page		*req;
 992	struct page		**pages;
 993	struct nfs_write_data	*data;
 994	struct list_head *head = &desc->pg_list;
 995	int ret = 0;
 996
 997	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
 998						      desc->pg_count));
 999	if (!data) {
1000		while (!list_empty(head)) {
1001			req = nfs_list_entry(head->next);
1002			nfs_list_remove_request(req);
1003			nfs_redirty_request(req);
1004		}
1005		ret = -ENOMEM;
1006		goto out;
1007	}
1008	pages = data->pagevec;
 
 
1009	while (!list_empty(head)) {
1010		req = nfs_list_entry(head->next);
1011		nfs_list_remove_request(req);
1012		nfs_list_add_request(req, &data->pages);
1013		ClearPageError(req->wb_page);
1014		*pages++ = req->wb_page;
1015	}
1016	req = nfs_list_entry(data->pages.next);
1017
1018	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1019	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1020		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1021
1022	/* Set up the argument struct */
1023	nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1024	list_add(&data->list, res);
1025	desc->pg_rpc_callops = &nfs_write_full_ops;
1026out:
1027	return ret;
1028}
1029
1030int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
 
1031{
1032	if (desc->pg_bsize < PAGE_CACHE_SIZE)
1033		return nfs_flush_multi(desc, head);
1034	return nfs_flush_one(desc, head);
1035}
1036
1037static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1038{
1039	LIST_HEAD(head);
 
1040	int ret;
1041
1042	ret = nfs_generic_flush(desc, &head);
 
 
 
 
 
 
 
 
1043	if (ret == 0)
1044		ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1045				desc->pg_ioflags);
 
 
 
1046	return ret;
1047}
1048
1049static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1050	.pg_test = nfs_generic_pg_test,
1051	.pg_doio = nfs_generic_pg_writepages,
1052};
1053
1054static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1055				  struct inode *inode, int ioflags)
 
1056{
1057	nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1058				NFS_SERVER(inode)->wsize, ioflags);
1059}
1060
1061void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1062{
1063	pgio->pg_ops = &nfs_pageio_write_ops;
1064	pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1065}
1066EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1067
1068static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1069				  struct inode *inode, int ioflags)
 
1070{
1071	if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1072		nfs_pageio_init_write_mds(pgio, inode, ioflags);
1073}
1074
1075/*
1076 * Handle a write reply that flushed part of a page.
1077 */
1078static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1079{
1080	struct nfs_write_data	*data = calldata;
1081
1082	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1083		task->tk_pid,
1084		data->req->wb_context->dentry->d_inode->i_sb->s_id,
1085		(long long)
1086		  NFS_FILEID(data->req->wb_context->dentry->d_inode),
1087		data->req->wb_bytes, (long long)req_offset(data->req));
1088
1089	nfs_writeback_done(task, data);
1090}
1091
1092static void nfs_writeback_release_partial(void *calldata)
1093{
1094	struct nfs_write_data	*data = calldata;
1095	struct nfs_page		*req = data->req;
1096	struct page		*page = req->wb_page;
1097	int status = data->task.tk_status;
1098
1099	if (status < 0) {
1100		nfs_set_pageerror(page);
1101		nfs_context_set_write_error(req->wb_context, status);
1102		dprintk(", error = %d\n", status);
1103		goto out;
1104	}
1105
1106	if (nfs_write_need_commit(data)) {
1107		struct inode *inode = page->mapping->host;
1108
1109		spin_lock(&inode->i_lock);
1110		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1111			/* Do nothing we need to resend the writes */
1112		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1113			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1114			dprintk(" defer commit\n");
1115		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1116			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1117			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1118			dprintk(" server reboot detected\n");
1119		}
1120		spin_unlock(&inode->i_lock);
1121	} else
1122		dprintk(" OK\n");
1123
1124out:
1125	if (atomic_dec_and_test(&req->wb_complete))
1126		nfs_writepage_release(req, data);
1127	nfs_writedata_release(calldata);
1128}
1129
1130#if defined(CONFIG_NFS_V4_1)
1131void nfs_write_prepare(struct rpc_task *task, void *calldata)
1132{
1133	struct nfs_write_data *data = calldata;
1134
1135	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1136				&data->args.seq_args,
1137				&data->res.seq_res, 1, task))
1138		return;
1139	rpc_call_start(task);
1140}
1141#endif /* CONFIG_NFS_V4_1 */
1142
1143static const struct rpc_call_ops nfs_write_partial_ops = {
1144#if defined(CONFIG_NFS_V4_1)
1145	.rpc_call_prepare = nfs_write_prepare,
1146#endif /* CONFIG_NFS_V4_1 */
1147	.rpc_call_done = nfs_writeback_done_partial,
1148	.rpc_release = nfs_writeback_release_partial,
1149};
1150
1151/*
1152 * Handle a write reply that flushes a whole page.
1153 *
1154 * FIXME: There is an inherent race with invalidate_inode_pages and
1155 *	  writebacks since the page->count is kept > 1 for as long
1156 *	  as the page has a write request pending.
1157 */
1158static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1159{
1160	struct nfs_write_data	*data = calldata;
1161
1162	nfs_writeback_done(task, data);
1163}
1164
1165static void nfs_writeback_release_full(void *calldata)
1166{
1167	struct nfs_write_data	*data = calldata;
 
1168	int status = data->task.tk_status;
1169
1170	/* Update attributes as result of writeback. */
1171	while (!list_empty(&data->pages)) {
1172		struct nfs_page *req = nfs_list_entry(data->pages.next);
1173		struct page *page = req->wb_page;
1174
1175		nfs_list_remove_request(req);
1176
1177		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1178			data->task.tk_pid,
1179			req->wb_context->dentry->d_inode->i_sb->s_id,
1180			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1181			req->wb_bytes,
1182			(long long)req_offset(req));
1183
1184		if (status < 0) {
1185			nfs_set_pageerror(page);
1186			nfs_context_set_write_error(req->wb_context, status);
1187			dprintk(", error = %d\n", status);
1188			goto remove_request;
1189		}
1190
1191		if (nfs_write_need_commit(data)) {
1192			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1193			nfs_mark_request_commit(req, data->lseg);
1194			dprintk(" marked for commit\n");
1195			goto next;
1196		}
1197		dprintk(" OK\n");
1198remove_request:
1199		nfs_inode_remove_request(req);
1200	next:
1201		nfs_clear_page_tag_locked(req);
1202		nfs_end_page_writeback(page);
1203	}
1204	nfs_writedata_release(calldata);
1205}
1206
1207static const struct rpc_call_ops nfs_write_full_ops = {
1208#if defined(CONFIG_NFS_V4_1)
1209	.rpc_call_prepare = nfs_write_prepare,
1210#endif /* CONFIG_NFS_V4_1 */
1211	.rpc_call_done = nfs_writeback_done_full,
1212	.rpc_release = nfs_writeback_release_full,
1213};
1214
1215
1216/*
1217 * This function is called when the WRITE call is complete.
1218 */
1219void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1220{
1221	struct nfs_writeargs	*argp = &data->args;
1222	struct nfs_writeres	*resp = &data->res;
1223	struct nfs_server	*server = NFS_SERVER(data->inode);
1224	int status;
1225
1226	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1227		task->tk_pid, task->tk_status);
1228
1229	/*
1230	 * ->write_done will attempt to use post-op attributes to detect
1231	 * conflicting writes by other clients.  A strict interpretation
1232	 * of close-to-open would allow us to continue caching even if
1233	 * another writer had changed the file, but some applications
1234	 * depend on tighter cache coherency when writing.
1235	 */
1236	status = NFS_PROTO(data->inode)->write_done(task, data);
1237	if (status != 0)
1238		return;
1239	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1240
1241#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1242	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1243		/* We tried a write call, but the server did not
1244		 * commit data to stable storage even though we
1245		 * requested it.
1246		 * Note: There is a known bug in Tru64 < 5.0 in which
1247		 *	 the server reports NFS_DATA_SYNC, but performs
1248		 *	 NFS_FILE_SYNC. We therefore implement this checking
1249		 *	 as a dprintk() in order to avoid filling syslog.
1250		 */
1251		static unsigned long    complain;
1252
1253		/* Note this will print the MDS for a DS write */
1254		if (time_before(complain, jiffies)) {
1255			dprintk("NFS:       faulty NFS server %s:"
1256				" (committed = %d) != (stable = %d)\n",
1257				server->nfs_client->cl_hostname,
1258				resp->verf->committed, argp->stable);
1259			complain = jiffies + 300 * HZ;
1260		}
1261	}
1262#endif
1263	/* Is this a short write? */
1264	if (task->tk_status >= 0 && resp->count < argp->count) {
 
1265		static unsigned long    complain;
1266
1267		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
 
1268
1269		/* Has the server at least made some progress? */
1270		if (resp->count != 0) {
1271			/* Was this an NFSv2 write or an NFSv3 stable write? */
1272			if (resp->verf->committed != NFS_UNSTABLE) {
1273				/* Resend from where the server left off */
1274				data->mds_offset += resp->count;
1275				argp->offset += resp->count;
1276				argp->pgbase += resp->count;
1277				argp->count -= resp->count;
1278			} else {
1279				/* Resend as a stable write in order to avoid
1280				 * headaches in the case of a server crash.
1281				 */
1282				argp->stable = NFS_FILE_SYNC;
1283			}
1284			nfs_restart_rpc(task, server->nfs_client);
 
1285			return;
1286		}
1287		if (time_before(complain, jiffies)) {
1288			printk(KERN_WARNING
1289			       "NFS: Server wrote zero bytes, expected %u.\n",
1290					argp->count);
1291			complain = jiffies + 300 * HZ;
 
 
 
 
 
 
 
1292		}
1293		/* Can't do anything about it except throw an error. */
1294		task->tk_status = -EIO;
1295	}
1296	return;
1297}
1298
1299
1300#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1301static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1302{
1303	int ret;
1304
1305	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1306		return 1;
1307	if (!may_wait)
1308		return 0;
1309	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1310				NFS_INO_COMMIT,
1311				nfs_wait_bit_killable,
1312				TASK_KILLABLE);
1313	return (ret < 0) ? ret : 1;
1314}
1315
1316void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1317{
1318	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1319	smp_mb__after_clear_bit();
1320	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1321}
1322EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1323
1324void nfs_commitdata_release(void *data)
1325{
1326	struct nfs_write_data *wdata = data;
1327
1328	put_lseg(wdata->lseg);
1329	put_nfs_open_context(wdata->args.context);
1330	nfs_commit_free(wdata);
1331}
1332EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1333
1334int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1335			const struct rpc_call_ops *call_ops,
1336			int how)
1337{
1338	struct rpc_task *task;
1339	int priority = flush_task_priority(how);
1340	struct rpc_message msg = {
1341		.rpc_argp = &data->args,
1342		.rpc_resp = &data->res,
1343		.rpc_cred = data->cred,
1344	};
1345	struct rpc_task_setup task_setup_data = {
1346		.task = &data->task,
1347		.rpc_client = clnt,
1348		.rpc_message = &msg,
1349		.callback_ops = call_ops,
1350		.callback_data = data,
1351		.workqueue = nfsiod_workqueue,
1352		.flags = RPC_TASK_ASYNC,
1353		.priority = priority,
1354	};
1355	/* Set up the initial task struct.  */
1356	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1357
1358	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1359
1360	task = rpc_run_task(&task_setup_data);
1361	if (IS_ERR(task))
1362		return PTR_ERR(task);
1363	if (how & FLUSH_SYNC)
1364		rpc_wait_for_completion_task(task);
1365	rpc_put_task(task);
1366	return 0;
1367}
1368EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1369
1370/*
1371 * Set up the argument/result storage required for the RPC call.
1372 */
1373void nfs_init_commit(struct nfs_write_data *data,
1374			    struct list_head *head,
1375			    struct pnfs_layout_segment *lseg)
 
1376{
1377	struct nfs_page *first = nfs_list_entry(head->next);
1378	struct inode *inode = first->wb_context->dentry->d_inode;
1379
1380	/* Set up the RPC argument and reply structs
1381	 * NB: take care not to mess about with data->commit et al. */
1382
1383	list_splice_init(head, &data->pages);
1384
1385	data->inode	  = inode;
1386	data->cred	  = first->wb_context->cred;
1387	data->lseg	  = lseg; /* reference transferred */
1388	data->mds_ops     = &nfs_commit_ops;
 
 
1389
1390	data->args.fh     = NFS_FH(data->inode);
1391	/* Note: we always request a commit of the entire inode */
1392	data->args.offset = 0;
1393	data->args.count  = 0;
1394	data->args.context = get_nfs_open_context(first->wb_context);
1395	data->res.count   = 0;
1396	data->res.fattr   = &data->fattr;
1397	data->res.verf    = &data->verf;
1398	nfs_fattr_init(&data->fattr);
1399}
1400EXPORT_SYMBOL_GPL(nfs_init_commit);
1401
1402void nfs_retry_commit(struct list_head *page_list,
1403		      struct pnfs_layout_segment *lseg)
 
1404{
1405	struct nfs_page *req;
1406
1407	while (!list_empty(page_list)) {
1408		req = nfs_list_entry(page_list->next);
1409		nfs_list_remove_request(req);
1410		nfs_mark_request_commit(req, lseg);
1411		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1412		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1413			     BDI_RECLAIMABLE);
1414		nfs_clear_page_tag_locked(req);
 
 
1415	}
1416}
1417EXPORT_SYMBOL_GPL(nfs_retry_commit);
1418
1419/*
1420 * Commit dirty pages
1421 */
1422static int
1423nfs_commit_list(struct inode *inode, struct list_head *head, int how)
 
1424{
1425	struct nfs_write_data	*data;
1426
1427	data = nfs_commitdata_alloc();
1428
1429	if (!data)
1430		goto out_bad;
1431
1432	/* Set up the argument struct */
1433	nfs_init_commit(data, head, NULL);
1434	return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
 
 
1435 out_bad:
1436	nfs_retry_commit(head, NULL);
1437	nfs_commit_clear_lock(NFS_I(inode));
1438	return -ENOMEM;
1439}
1440
1441/*
1442 * COMMIT call returned
1443 */
1444static void nfs_commit_done(struct rpc_task *task, void *calldata)
1445{
1446	struct nfs_write_data	*data = calldata;
1447
1448        dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1449                                task->tk_pid, task->tk_status);
1450
1451	/* Call the NFS version-specific code */
1452	NFS_PROTO(data->inode)->commit_done(task, data);
1453}
1454
1455void nfs_commit_release_pages(struct nfs_write_data *data)
1456{
1457	struct nfs_page	*req;
1458	int status = data->task.tk_status;
 
1459
1460	while (!list_empty(&data->pages)) {
1461		req = nfs_list_entry(data->pages.next);
1462		nfs_list_remove_request(req);
1463		nfs_clear_request_commit(req);
1464
1465		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1466			req->wb_context->dentry->d_sb->s_id,
1467			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1468			req->wb_bytes,
1469			(long long)req_offset(req));
1470		if (status < 0) {
1471			nfs_context_set_write_error(req->wb_context, status);
1472			nfs_inode_remove_request(req);
1473			dprintk(", error = %d\n", status);
1474			goto next;
1475		}
1476
1477		/* Okay, COMMIT succeeded, apparently. Check the verifier
1478		 * returned by the server against all stored verfs. */
1479		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1480			/* We have a match */
1481			nfs_inode_remove_request(req);
1482			dprintk(" OK\n");
1483			goto next;
1484		}
1485		/* We have a mismatch. Write the page again */
1486		dprintk(" mismatch\n");
1487		nfs_mark_request_dirty(req);
1488	next:
1489		nfs_clear_page_tag_locked(req);
1490	}
 
 
 
1491}
1492EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1493
1494static void nfs_commit_release(void *calldata)
1495{
1496	struct nfs_write_data *data = calldata;
1497
1498	nfs_commit_release_pages(data);
1499	nfs_commit_clear_lock(NFS_I(data->inode));
1500	nfs_commitdata_release(calldata);
1501}
1502
1503static const struct rpc_call_ops nfs_commit_ops = {
1504#if defined(CONFIG_NFS_V4_1)
1505	.rpc_call_prepare = nfs_write_prepare,
1506#endif /* CONFIG_NFS_V4_1 */
1507	.rpc_call_done = nfs_commit_done,
1508	.rpc_release = nfs_commit_release,
1509};
1510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511int nfs_commit_inode(struct inode *inode, int how)
1512{
1513	LIST_HEAD(head);
 
1514	int may_wait = how & FLUSH_SYNC;
1515	int res;
1516
1517	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1518	if (res <= 0)
1519		goto out_mark_dirty;
1520	res = nfs_scan_commit(inode, &head, 0, 0);
 
1521	if (res) {
1522		int error;
1523
1524		error = pnfs_commit_list(inode, &head, how);
1525		if (error == PNFS_NOT_ATTEMPTED)
1526			error = nfs_commit_list(inode, &head, how);
1527		if (error < 0)
1528			return error;
1529		if (!may_wait)
1530			goto out_mark_dirty;
1531		error = wait_on_bit(&NFS_I(inode)->flags,
1532				NFS_INO_COMMIT,
1533				nfs_wait_bit_killable,
1534				TASK_KILLABLE);
1535		if (error < 0)
1536			return error;
1537	} else
1538		nfs_commit_clear_lock(NFS_I(inode));
1539	return res;
1540	/* Note: If we exit without ensuring that the commit is complete,
1541	 * we must mark the inode as dirty. Otherwise, future calls to
1542	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1543	 * that the data is on the disk.
1544	 */
1545out_mark_dirty:
1546	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1547	return res;
1548}
1549
1550static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1551{
1552	struct nfs_inode *nfsi = NFS_I(inode);
1553	int flags = FLUSH_SYNC;
1554	int ret = 0;
1555
 
 
 
 
1556	if (wbc->sync_mode == WB_SYNC_NONE) {
1557		/* Don't commit yet if this is a non-blocking flush and there
1558		 * are a lot of outstanding writes for this mapping.
1559		 */
1560		if (nfsi->ncommit <= (nfsi->npages >> 1))
1561			goto out_mark_dirty;
1562
1563		/* don't wait for the COMMIT response */
1564		flags = 0;
1565	}
1566
1567	ret = nfs_commit_inode(inode, flags);
1568	if (ret >= 0) {
1569		if (wbc->sync_mode == WB_SYNC_NONE) {
1570			if (ret < wbc->nr_to_write)
1571				wbc->nr_to_write -= ret;
1572			else
1573				wbc->nr_to_write = 0;
1574		}
1575		return 0;
1576	}
1577out_mark_dirty:
1578	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1579	return ret;
1580}
1581#else
1582static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1583{
1584	return 0;
1585}
1586#endif
1587
1588int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1589{
1590	int ret;
1591
1592	ret = nfs_commit_unstable_pages(inode, wbc);
1593	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1594		int status;
1595		bool sync = true;
1596
1597		if (wbc->sync_mode == WB_SYNC_NONE)
1598			sync = false;
1599
1600		status = pnfs_layoutcommit_inode(inode, sync);
1601		if (status < 0)
1602			return status;
1603	}
1604	return ret;
1605}
1606
1607/*
1608 * flush the inode to disk.
1609 */
1610int nfs_wb_all(struct inode *inode)
1611{
1612	struct writeback_control wbc = {
1613		.sync_mode = WB_SYNC_ALL,
1614		.nr_to_write = LONG_MAX,
1615		.range_start = 0,
1616		.range_end = LLONG_MAX,
1617	};
1618
1619	return sync_inode(inode, &wbc);
1620}
1621
1622int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1623{
1624	struct nfs_page *req;
1625	int ret = 0;
1626
1627	BUG_ON(!PageLocked(page));
1628	for (;;) {
1629		wait_on_page_writeback(page);
1630		req = nfs_page_find_request(page);
1631		if (req == NULL)
1632			break;
1633		if (nfs_lock_request_dontget(req)) {
 
1634			nfs_inode_remove_request(req);
1635			/*
1636			 * In case nfs_inode_remove_request has marked the
1637			 * page as being dirty
1638			 */
1639			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1640			nfs_unlock_request(req);
1641			break;
1642		}
1643		ret = nfs_wait_on_request(req);
1644		nfs_release_request(req);
1645		if (ret < 0)
1646			break;
1647	}
1648	return ret;
1649}
1650
1651/*
1652 * Write back all requests on one page - we do this before reading it.
1653 */
1654int nfs_wb_page(struct inode *inode, struct page *page)
1655{
1656	loff_t range_start = page_offset(page);
1657	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1658	struct writeback_control wbc = {
1659		.sync_mode = WB_SYNC_ALL,
1660		.nr_to_write = 0,
1661		.range_start = range_start,
1662		.range_end = range_end,
1663	};
1664	int ret;
1665
1666	for (;;) {
1667		wait_on_page_writeback(page);
1668		if (clear_page_dirty_for_io(page)) {
1669			ret = nfs_writepage_locked(page, &wbc);
1670			if (ret < 0)
1671				goto out_error;
1672			continue;
1673		}
1674		if (!PagePrivate(page))
1675			break;
1676		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1677		if (ret < 0)
1678			goto out_error;
1679	}
1680	return 0;
1681out_error:
1682	return ret;
1683}
1684
1685#ifdef CONFIG_MIGRATION
1686int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1687		struct page *page)
1688{
1689	struct nfs_page *req;
1690	int ret;
 
 
 
 
 
 
 
 
1691
1692	nfs_fscache_release_page(page, GFP_KERNEL);
1693
1694	req = nfs_find_and_lock_request(page, false);
1695	ret = PTR_ERR(req);
1696	if (IS_ERR(req))
1697		goto out;
1698
1699	ret = migrate_page(mapping, newpage, page);
1700	if (!req)
1701		goto out;
1702	if (ret)
1703		goto out_unlock;
1704	page_cache_get(newpage);
1705	spin_lock(&mapping->host->i_lock);
1706	req->wb_page = newpage;
1707	SetPagePrivate(newpage);
1708	set_page_private(newpage, (unsigned long)req);
1709	ClearPagePrivate(page);
1710	set_page_private(page, 0);
1711	spin_unlock(&mapping->host->i_lock);
1712	page_cache_release(page);
1713out_unlock:
1714	nfs_clear_page_tag_locked(req);
1715out:
1716	return ret;
1717}
1718#endif
1719
1720int __init nfs_init_writepagecache(void)
1721{
1722	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1723					     sizeof(struct nfs_write_data),
1724					     0, SLAB_HWCACHE_ALIGN,
1725					     NULL);
1726	if (nfs_wdata_cachep == NULL)
1727		return -ENOMEM;
1728
1729	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1730						     nfs_wdata_cachep);
1731	if (nfs_wdata_mempool == NULL)
1732		return -ENOMEM;
 
 
 
 
 
 
 
1733
1734	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1735						      nfs_wdata_cachep);
1736	if (nfs_commit_mempool == NULL)
1737		return -ENOMEM;
1738
1739	/*
1740	 * NFS congestion size, scale with available memory.
1741	 *
1742	 *  64MB:    8192k
1743	 * 128MB:   11585k
1744	 * 256MB:   16384k
1745	 * 512MB:   23170k
1746	 *   1GB:   32768k
1747	 *   2GB:   46340k
1748	 *   4GB:   65536k
1749	 *   8GB:   92681k
1750	 *  16GB:  131072k
1751	 *
1752	 * This allows larger machines to have larger/more transfers.
1753	 * Limit the default to 256M
1754	 */
1755	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1756	if (nfs_congestion_kb > 256*1024)
1757		nfs_congestion_kb = 256*1024;
1758
1759	return 0;
 
 
 
 
 
 
 
 
1760}
1761
1762void nfs_destroy_writepagecache(void)
1763{
1764	mempool_destroy(nfs_commit_mempool);
 
1765	mempool_destroy(nfs_wdata_mempool);
1766	kmem_cache_destroy(nfs_wdata_cachep);
1767}
1768