Linux Audio

Check our new training course

Loading...
v3.5.6
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (pte)
 29		pgtable_page_ctor(pte);
 30	return pte;
 31}
 32
 33static int __init setup_userpte(char *arg)
 34{
 35	if (!arg)
 36		return -EINVAL;
 37
 38	/*
 39	 * "userpte=nohigh" disables allocation of user pagetables in
 40	 * high memory.
 41	 */
 42	if (strcmp(arg, "nohigh") == 0)
 43		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 44	else
 45		return -EINVAL;
 46	return 0;
 47}
 48early_param("userpte", setup_userpte);
 49
 50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 51{
 52	pgtable_page_dtor(pte);
 53	paravirt_release_pte(page_to_pfn(pte));
 54	tlb_remove_page(tlb, pte);
 55}
 56
 57#if PAGETABLE_LEVELS > 2
 58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 59{
 60	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 61	tlb_remove_page(tlb, virt_to_page(pmd));
 62}
 63
 64#if PAGETABLE_LEVELS > 3
 65void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 66{
 67	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 68	tlb_remove_page(tlb, virt_to_page(pud));
 69}
 70#endif	/* PAGETABLE_LEVELS > 3 */
 71#endif	/* PAGETABLE_LEVELS > 2 */
 72
 73static inline void pgd_list_add(pgd_t *pgd)
 74{
 75	struct page *page = virt_to_page(pgd);
 76
 77	list_add(&page->lru, &pgd_list);
 78}
 79
 80static inline void pgd_list_del(pgd_t *pgd)
 81{
 82	struct page *page = virt_to_page(pgd);
 83
 84	list_del(&page->lru);
 85}
 86
 87#define UNSHARED_PTRS_PER_PGD				\
 88	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 89
 90
 91static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 92{
 93	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
 94	virt_to_page(pgd)->index = (pgoff_t)mm;
 95}
 96
 97struct mm_struct *pgd_page_get_mm(struct page *page)
 98{
 99	return (struct mm_struct *)page->index;
100}
101
102static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103{
104	/* If the pgd points to a shared pagetable level (either the
105	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106	   references from swapper_pg_dir. */
107	if (PAGETABLE_LEVELS == 2 ||
108	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109	    PAGETABLE_LEVELS == 4) {
110		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112				KERNEL_PGD_PTRS);
113	}
114
115	/* list required to sync kernel mapping updates */
116	if (!SHARED_KERNEL_PMD) {
117		pgd_set_mm(pgd, mm);
118		pgd_list_add(pgd);
119	}
120}
121
122static void pgd_dtor(pgd_t *pgd)
123{
124	if (SHARED_KERNEL_PMD)
125		return;
126
127	spin_lock(&pgd_lock);
128	pgd_list_del(pgd);
129	spin_unlock(&pgd_lock);
130}
131
132/*
133 * List of all pgd's needed for non-PAE so it can invalidate entries
134 * in both cached and uncached pgd's; not needed for PAE since the
135 * kernel pmd is shared. If PAE were not to share the pmd a similar
136 * tactic would be needed. This is essentially codepath-based locking
137 * against pageattr.c; it is the unique case in which a valid change
138 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139 * vmalloc faults work because attached pagetables are never freed.
140 * -- wli
141 */
142
143#ifdef CONFIG_X86_PAE
144/*
145 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146 * updating the top-level pagetable entries to guarantee the
147 * processor notices the update.  Since this is expensive, and
148 * all 4 top-level entries are used almost immediately in a
149 * new process's life, we just pre-populate them here.
150 *
151 * Also, if we're in a paravirt environment where the kernel pmd is
152 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153 * and initialize the kernel pmds here.
154 */
155#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
156
157void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158{
159	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161	/* Note: almost everything apart from _PAGE_PRESENT is
162	   reserved at the pmd (PDPT) level. */
163	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165	/*
166	 * According to Intel App note "TLBs, Paging-Structure Caches,
167	 * and Their Invalidation", April 2007, document 317080-001,
168	 * section 8.1: in PAE mode we explicitly have to flush the
169	 * TLB via cr3 if the top-level pgd is changed...
170	 */
171	flush_tlb_mm(mm);
172}
173#else  /* !CONFIG_X86_PAE */
174
175/* No need to prepopulate any pagetable entries in non-PAE modes. */
176#define PREALLOCATED_PMDS	0
177
178#endif	/* CONFIG_X86_PAE */
179
180static void free_pmds(pmd_t *pmds[])
181{
182	int i;
183
184	for(i = 0; i < PREALLOCATED_PMDS; i++)
185		if (pmds[i])
186			free_page((unsigned long)pmds[i]);
187}
188
189static int preallocate_pmds(pmd_t *pmds[])
190{
191	int i;
192	bool failed = false;
193
194	for(i = 0; i < PREALLOCATED_PMDS; i++) {
195		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196		if (pmd == NULL)
197			failed = true;
198		pmds[i] = pmd;
199	}
200
201	if (failed) {
202		free_pmds(pmds);
203		return -ENOMEM;
204	}
205
206	return 0;
207}
208
209/*
210 * Mop up any pmd pages which may still be attached to the pgd.
211 * Normally they will be freed by munmap/exit_mmap, but any pmd we
212 * preallocate which never got a corresponding vma will need to be
213 * freed manually.
214 */
215static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216{
217	int i;
218
219	for(i = 0; i < PREALLOCATED_PMDS; i++) {
220		pgd_t pgd = pgdp[i];
221
222		if (pgd_val(pgd) != 0) {
223			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224
225			pgdp[i] = native_make_pgd(0);
226
227			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228			pmd_free(mm, pmd);
229		}
230	}
231}
232
233static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234{
235	pud_t *pud;
236	unsigned long addr;
237	int i;
238
239	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240		return;
241
242	pud = pud_offset(pgd, 0);
243
244 	for (addr = i = 0; i < PREALLOCATED_PMDS;
245	     i++, pud++, addr += PUD_SIZE) {
246		pmd_t *pmd = pmds[i];
247
248		if (i >= KERNEL_PGD_BOUNDARY)
249			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250			       sizeof(pmd_t) * PTRS_PER_PMD);
251
252		pud_populate(mm, pud, pmd);
253	}
254}
255
256pgd_t *pgd_alloc(struct mm_struct *mm)
257{
258	pgd_t *pgd;
259	pmd_t *pmds[PREALLOCATED_PMDS];
260
261	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262
263	if (pgd == NULL)
264		goto out;
265
266	mm->pgd = pgd;
267
268	if (preallocate_pmds(pmds) != 0)
269		goto out_free_pgd;
270
271	if (paravirt_pgd_alloc(mm) != 0)
272		goto out_free_pmds;
273
274	/*
275	 * Make sure that pre-populating the pmds is atomic with
276	 * respect to anything walking the pgd_list, so that they
277	 * never see a partially populated pgd.
278	 */
279	spin_lock(&pgd_lock);
280
281	pgd_ctor(mm, pgd);
282	pgd_prepopulate_pmd(mm, pgd, pmds);
283
284	spin_unlock(&pgd_lock);
285
286	return pgd;
287
288out_free_pmds:
289	free_pmds(pmds);
290out_free_pgd:
291	free_page((unsigned long)pgd);
292out:
293	return NULL;
294}
295
296void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297{
298	pgd_mop_up_pmds(mm, pgd);
299	pgd_dtor(pgd);
300	paravirt_pgd_free(mm, pgd);
301	free_page((unsigned long)pgd);
302}
303
304int ptep_set_access_flags(struct vm_area_struct *vma,
305			  unsigned long address, pte_t *ptep,
306			  pte_t entry, int dirty)
307{
308	int changed = !pte_same(*ptep, entry);
309
310	if (changed && dirty) {
311		*ptep = entry;
312		pte_update_defer(vma->vm_mm, address, ptep);
313		flush_tlb_page(vma, address);
314	}
315
316	return changed;
317}
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320int pmdp_set_access_flags(struct vm_area_struct *vma,
321			  unsigned long address, pmd_t *pmdp,
322			  pmd_t entry, int dirty)
323{
324	int changed = !pmd_same(*pmdp, entry);
325
326	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
327
328	if (changed && dirty) {
329		*pmdp = entry;
330		pmd_update_defer(vma->vm_mm, address, pmdp);
331		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
332	}
333
334	return changed;
335}
336#endif
337
338int ptep_test_and_clear_young(struct vm_area_struct *vma,
339			      unsigned long addr, pte_t *ptep)
340{
341	int ret = 0;
342
343	if (pte_young(*ptep))
344		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
345					 (unsigned long *) &ptep->pte);
346
347	if (ret)
348		pte_update(vma->vm_mm, addr, ptep);
349
350	return ret;
351}
352
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354int pmdp_test_and_clear_young(struct vm_area_struct *vma,
355			      unsigned long addr, pmd_t *pmdp)
356{
357	int ret = 0;
358
359	if (pmd_young(*pmdp))
360		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
361					 (unsigned long *)pmdp);
362
363	if (ret)
364		pmd_update(vma->vm_mm, addr, pmdp);
365
366	return ret;
367}
368#endif
369
370int ptep_clear_flush_young(struct vm_area_struct *vma,
371			   unsigned long address, pte_t *ptep)
372{
373	int young;
374
375	young = ptep_test_and_clear_young(vma, address, ptep);
376	if (young)
377		flush_tlb_page(vma, address);
378
379	return young;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_clear_flush_young(struct vm_area_struct *vma,
384			   unsigned long address, pmd_t *pmdp)
385{
386	int young;
387
388	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
389
390	young = pmdp_test_and_clear_young(vma, address, pmdp);
391	if (young)
392		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
393
394	return young;
395}
396
397void pmdp_splitting_flush(struct vm_area_struct *vma,
398			  unsigned long address, pmd_t *pmdp)
399{
400	int set;
401	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
402	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
403				(unsigned long *)pmdp);
404	if (set) {
405		pmd_update(vma->vm_mm, address, pmdp);
406		/* need tlb flush only to serialize against gup-fast */
407		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
408	}
409}
410#endif
411
412/**
413 * reserve_top_address - reserves a hole in the top of kernel address space
414 * @reserve - size of hole to reserve
415 *
416 * Can be used to relocate the fixmap area and poke a hole in the top
417 * of kernel address space to make room for a hypervisor.
418 */
419void __init reserve_top_address(unsigned long reserve)
420{
421#ifdef CONFIG_X86_32
422	BUG_ON(fixmaps_set > 0);
423	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
424	       (int)-reserve);
425	__FIXADDR_TOP = -reserve - PAGE_SIZE;
426#endif
427}
428
429int fixmaps_set;
430
431void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
432{
433	unsigned long address = __fix_to_virt(idx);
434
435	if (idx >= __end_of_fixed_addresses) {
436		BUG();
437		return;
438	}
439	set_pte_vaddr(address, pte);
440	fixmaps_set++;
441}
442
443void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
444		       pgprot_t flags)
445{
446	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
447}
v3.1
  1#include <linux/mm.h>
  2#include <linux/gfp.h>
  3#include <asm/pgalloc.h>
  4#include <asm/pgtable.h>
  5#include <asm/tlb.h>
  6#include <asm/fixmap.h>
  7
  8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  9
 10#ifdef CONFIG_HIGHPTE
 11#define PGALLOC_USER_GFP __GFP_HIGHMEM
 12#else
 13#define PGALLOC_USER_GFP 0
 14#endif
 15
 16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 17
 18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 19{
 20	return (pte_t *)__get_free_page(PGALLOC_GFP);
 21}
 22
 23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 24{
 25	struct page *pte;
 26
 27	pte = alloc_pages(__userpte_alloc_gfp, 0);
 28	if (pte)
 29		pgtable_page_ctor(pte);
 30	return pte;
 31}
 32
 33static int __init setup_userpte(char *arg)
 34{
 35	if (!arg)
 36		return -EINVAL;
 37
 38	/*
 39	 * "userpte=nohigh" disables allocation of user pagetables in
 40	 * high memory.
 41	 */
 42	if (strcmp(arg, "nohigh") == 0)
 43		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 44	else
 45		return -EINVAL;
 46	return 0;
 47}
 48early_param("userpte", setup_userpte);
 49
 50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 51{
 52	pgtable_page_dtor(pte);
 53	paravirt_release_pte(page_to_pfn(pte));
 54	tlb_remove_page(tlb, pte);
 55}
 56
 57#if PAGETABLE_LEVELS > 2
 58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 59{
 60	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 61	tlb_remove_page(tlb, virt_to_page(pmd));
 62}
 63
 64#if PAGETABLE_LEVELS > 3
 65void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 66{
 67	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 68	tlb_remove_page(tlb, virt_to_page(pud));
 69}
 70#endif	/* PAGETABLE_LEVELS > 3 */
 71#endif	/* PAGETABLE_LEVELS > 2 */
 72
 73static inline void pgd_list_add(pgd_t *pgd)
 74{
 75	struct page *page = virt_to_page(pgd);
 76
 77	list_add(&page->lru, &pgd_list);
 78}
 79
 80static inline void pgd_list_del(pgd_t *pgd)
 81{
 82	struct page *page = virt_to_page(pgd);
 83
 84	list_del(&page->lru);
 85}
 86
 87#define UNSHARED_PTRS_PER_PGD				\
 88	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 89
 90
 91static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 92{
 93	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
 94	virt_to_page(pgd)->index = (pgoff_t)mm;
 95}
 96
 97struct mm_struct *pgd_page_get_mm(struct page *page)
 98{
 99	return (struct mm_struct *)page->index;
100}
101
102static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103{
104	/* If the pgd points to a shared pagetable level (either the
105	   ptes in non-PAE, or shared PMD in PAE), then just copy the
106	   references from swapper_pg_dir. */
107	if (PAGETABLE_LEVELS == 2 ||
108	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109	    PAGETABLE_LEVELS == 4) {
110		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112				KERNEL_PGD_PTRS);
113	}
114
115	/* list required to sync kernel mapping updates */
116	if (!SHARED_KERNEL_PMD) {
117		pgd_set_mm(pgd, mm);
118		pgd_list_add(pgd);
119	}
120}
121
122static void pgd_dtor(pgd_t *pgd)
123{
124	if (SHARED_KERNEL_PMD)
125		return;
126
127	spin_lock(&pgd_lock);
128	pgd_list_del(pgd);
129	spin_unlock(&pgd_lock);
130}
131
132/*
133 * List of all pgd's needed for non-PAE so it can invalidate entries
134 * in both cached and uncached pgd's; not needed for PAE since the
135 * kernel pmd is shared. If PAE were not to share the pmd a similar
136 * tactic would be needed. This is essentially codepath-based locking
137 * against pageattr.c; it is the unique case in which a valid change
138 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
139 * vmalloc faults work because attached pagetables are never freed.
140 * -- wli
141 */
142
143#ifdef CONFIG_X86_PAE
144/*
145 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
146 * updating the top-level pagetable entries to guarantee the
147 * processor notices the update.  Since this is expensive, and
148 * all 4 top-level entries are used almost immediately in a
149 * new process's life, we just pre-populate them here.
150 *
151 * Also, if we're in a paravirt environment where the kernel pmd is
152 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
153 * and initialize the kernel pmds here.
154 */
155#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
156
157void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
158{
159	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
160
161	/* Note: almost everything apart from _PAGE_PRESENT is
162	   reserved at the pmd (PDPT) level. */
163	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
164
165	/*
166	 * According to Intel App note "TLBs, Paging-Structure Caches,
167	 * and Their Invalidation", April 2007, document 317080-001,
168	 * section 8.1: in PAE mode we explicitly have to flush the
169	 * TLB via cr3 if the top-level pgd is changed...
170	 */
171	flush_tlb_mm(mm);
172}
173#else  /* !CONFIG_X86_PAE */
174
175/* No need to prepopulate any pagetable entries in non-PAE modes. */
176#define PREALLOCATED_PMDS	0
177
178#endif	/* CONFIG_X86_PAE */
179
180static void free_pmds(pmd_t *pmds[])
181{
182	int i;
183
184	for(i = 0; i < PREALLOCATED_PMDS; i++)
185		if (pmds[i])
186			free_page((unsigned long)pmds[i]);
187}
188
189static int preallocate_pmds(pmd_t *pmds[])
190{
191	int i;
192	bool failed = false;
193
194	for(i = 0; i < PREALLOCATED_PMDS; i++) {
195		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
196		if (pmd == NULL)
197			failed = true;
198		pmds[i] = pmd;
199	}
200
201	if (failed) {
202		free_pmds(pmds);
203		return -ENOMEM;
204	}
205
206	return 0;
207}
208
209/*
210 * Mop up any pmd pages which may still be attached to the pgd.
211 * Normally they will be freed by munmap/exit_mmap, but any pmd we
212 * preallocate which never got a corresponding vma will need to be
213 * freed manually.
214 */
215static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
216{
217	int i;
218
219	for(i = 0; i < PREALLOCATED_PMDS; i++) {
220		pgd_t pgd = pgdp[i];
221
222		if (pgd_val(pgd) != 0) {
223			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
224
225			pgdp[i] = native_make_pgd(0);
226
227			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
228			pmd_free(mm, pmd);
229		}
230	}
231}
232
233static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
234{
235	pud_t *pud;
236	unsigned long addr;
237	int i;
238
239	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
240		return;
241
242	pud = pud_offset(pgd, 0);
243
244 	for (addr = i = 0; i < PREALLOCATED_PMDS;
245	     i++, pud++, addr += PUD_SIZE) {
246		pmd_t *pmd = pmds[i];
247
248		if (i >= KERNEL_PGD_BOUNDARY)
249			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
250			       sizeof(pmd_t) * PTRS_PER_PMD);
251
252		pud_populate(mm, pud, pmd);
253	}
254}
255
256pgd_t *pgd_alloc(struct mm_struct *mm)
257{
258	pgd_t *pgd;
259	pmd_t *pmds[PREALLOCATED_PMDS];
260
261	pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
262
263	if (pgd == NULL)
264		goto out;
265
266	mm->pgd = pgd;
267
268	if (preallocate_pmds(pmds) != 0)
269		goto out_free_pgd;
270
271	if (paravirt_pgd_alloc(mm) != 0)
272		goto out_free_pmds;
273
274	/*
275	 * Make sure that pre-populating the pmds is atomic with
276	 * respect to anything walking the pgd_list, so that they
277	 * never see a partially populated pgd.
278	 */
279	spin_lock(&pgd_lock);
280
281	pgd_ctor(mm, pgd);
282	pgd_prepopulate_pmd(mm, pgd, pmds);
283
284	spin_unlock(&pgd_lock);
285
286	return pgd;
287
288out_free_pmds:
289	free_pmds(pmds);
290out_free_pgd:
291	free_page((unsigned long)pgd);
292out:
293	return NULL;
294}
295
296void pgd_free(struct mm_struct *mm, pgd_t *pgd)
297{
298	pgd_mop_up_pmds(mm, pgd);
299	pgd_dtor(pgd);
300	paravirt_pgd_free(mm, pgd);
301	free_page((unsigned long)pgd);
302}
303
304int ptep_set_access_flags(struct vm_area_struct *vma,
305			  unsigned long address, pte_t *ptep,
306			  pte_t entry, int dirty)
307{
308	int changed = !pte_same(*ptep, entry);
309
310	if (changed && dirty) {
311		*ptep = entry;
312		pte_update_defer(vma->vm_mm, address, ptep);
313		flush_tlb_page(vma, address);
314	}
315
316	return changed;
317}
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320int pmdp_set_access_flags(struct vm_area_struct *vma,
321			  unsigned long address, pmd_t *pmdp,
322			  pmd_t entry, int dirty)
323{
324	int changed = !pmd_same(*pmdp, entry);
325
326	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
327
328	if (changed && dirty) {
329		*pmdp = entry;
330		pmd_update_defer(vma->vm_mm, address, pmdp);
331		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
332	}
333
334	return changed;
335}
336#endif
337
338int ptep_test_and_clear_young(struct vm_area_struct *vma,
339			      unsigned long addr, pte_t *ptep)
340{
341	int ret = 0;
342
343	if (pte_young(*ptep))
344		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
345					 (unsigned long *) &ptep->pte);
346
347	if (ret)
348		pte_update(vma->vm_mm, addr, ptep);
349
350	return ret;
351}
352
353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
354int pmdp_test_and_clear_young(struct vm_area_struct *vma,
355			      unsigned long addr, pmd_t *pmdp)
356{
357	int ret = 0;
358
359	if (pmd_young(*pmdp))
360		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
361					 (unsigned long *)pmdp);
362
363	if (ret)
364		pmd_update(vma->vm_mm, addr, pmdp);
365
366	return ret;
367}
368#endif
369
370int ptep_clear_flush_young(struct vm_area_struct *vma,
371			   unsigned long address, pte_t *ptep)
372{
373	int young;
374
375	young = ptep_test_and_clear_young(vma, address, ptep);
376	if (young)
377		flush_tlb_page(vma, address);
378
379	return young;
380}
381
382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
383int pmdp_clear_flush_young(struct vm_area_struct *vma,
384			   unsigned long address, pmd_t *pmdp)
385{
386	int young;
387
388	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
389
390	young = pmdp_test_and_clear_young(vma, address, pmdp);
391	if (young)
392		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
393
394	return young;
395}
396
397void pmdp_splitting_flush(struct vm_area_struct *vma,
398			  unsigned long address, pmd_t *pmdp)
399{
400	int set;
401	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
402	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
403				(unsigned long *)pmdp);
404	if (set) {
405		pmd_update(vma->vm_mm, address, pmdp);
406		/* need tlb flush only to serialize against gup-fast */
407		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
408	}
409}
410#endif
411
412/**
413 * reserve_top_address - reserves a hole in the top of kernel address space
414 * @reserve - size of hole to reserve
415 *
416 * Can be used to relocate the fixmap area and poke a hole in the top
417 * of kernel address space to make room for a hypervisor.
418 */
419void __init reserve_top_address(unsigned long reserve)
420{
421#ifdef CONFIG_X86_32
422	BUG_ON(fixmaps_set > 0);
423	printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
424	       (int)-reserve);
425	__FIXADDR_TOP = -reserve - PAGE_SIZE;
426#endif
427}
428
429int fixmaps_set;
430
431void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
432{
433	unsigned long address = __fix_to_virt(idx);
434
435	if (idx >= __end_of_fixed_addresses) {
436		BUG();
437		return;
438	}
439	set_pte_vaddr(address, pte);
440	fixmaps_set++;
441}
442
443void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
444		       pgprot_t flags)
445{
446	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
447}