Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | /* * Kernel Debugger Architecture Independent Stack Traceback * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. */ #include <linux/ctype.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/kdb.h> #include <linux/nmi.h> #include "kdb_private.h" static void kdb_show_stack(struct task_struct *p, void *addr) { int old_lvl = console_loglevel; console_loglevel = 15; kdb_trap_printk++; kdb_set_current_task(p); if (addr) { show_stack((struct task_struct *)p, addr); } else if (kdb_current_regs) { #ifdef CONFIG_X86 show_stack(p, &kdb_current_regs->sp); #else show_stack(p, NULL); #endif } else { show_stack(p, NULL); } console_loglevel = old_lvl; kdb_trap_printk--; } /* * kdb_bt * * This function implements the 'bt' command. Print a stack * traceback. * * bt [<address-expression>] (addr-exp is for alternate stacks) * btp <pid> Kernel stack for <pid> * btt <address-expression> Kernel stack for task structure at * <address-expression> * bta [DRSTCZEUIMA] All useful processes, optionally * filtered by state * btc [<cpu>] The current process on one cpu, * default is all cpus * * bt <address-expression> refers to a address on the stack, that location * is assumed to contain a return address. * * btt <address-expression> refers to the address of a struct task. * * Inputs: * argc argument count * argv argument vector * Outputs: * None. * Returns: * zero for success, a kdb diagnostic if error * Locking: * none. * Remarks: * Backtrack works best when the code uses frame pointers. But even * without frame pointers we should get a reasonable trace. * * mds comes in handy when examining the stack to do a manual traceback or * to get a starting point for bt <address-expression>. */ static int kdb_bt1(struct task_struct *p, unsigned long mask, int argcount, int btaprompt) { char buffer[2]; if (kdb_getarea(buffer[0], (unsigned long)p) || kdb_getarea(buffer[0], (unsigned long)(p+1)-1)) return KDB_BADADDR; if (!kdb_task_state(p, mask)) return 0; kdb_printf("Stack traceback for pid %d\n", p->pid); kdb_ps1(p); kdb_show_stack(p, NULL); if (btaprompt) { kdb_getstr(buffer, sizeof(buffer), "Enter <q> to end, <cr> to continue:"); if (buffer[0] == 'q') { kdb_printf("\n"); return 1; } } touch_nmi_watchdog(); return 0; } int kdb_bt(int argc, const char **argv) { int diag; int argcount = 5; int btaprompt = 1; int nextarg; unsigned long addr; long offset; /* Prompt after each proc in bta */ kdbgetintenv("BTAPROMPT", &btaprompt); if (strcmp(argv[0], "bta") == 0) { struct task_struct *g, *p; unsigned long cpu; unsigned long mask = kdb_task_state_string(argc ? argv[1] : NULL); if (argc == 0) kdb_ps_suppressed(); /* Run the active tasks first */ for_each_online_cpu(cpu) { p = kdb_curr_task(cpu); if (kdb_bt1(p, mask, argcount, btaprompt)) return 0; } /* Now the inactive tasks */ kdb_do_each_thread(g, p) { if (KDB_FLAG(CMD_INTERRUPT)) return 0; if (task_curr(p)) continue; if (kdb_bt1(p, mask, argcount, btaprompt)) return 0; } kdb_while_each_thread(g, p); } else if (strcmp(argv[0], "btp") == 0) { struct task_struct *p; unsigned long pid; if (argc != 1) return KDB_ARGCOUNT; diag = kdbgetularg((char *)argv[1], &pid); if (diag) return diag; p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) { kdb_set_current_task(p); return kdb_bt1(p, ~0UL, argcount, 0); } kdb_printf("No process with pid == %ld found\n", pid); return 0; } else if (strcmp(argv[0], "btt") == 0) { if (argc != 1) return KDB_ARGCOUNT; diag = kdbgetularg((char *)argv[1], &addr); if (diag) return diag; kdb_set_current_task((struct task_struct *)addr); return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0); } else if (strcmp(argv[0], "btc") == 0) { unsigned long cpu = ~0; struct task_struct *save_current_task = kdb_current_task; char buf[80]; if (argc > 1) return KDB_ARGCOUNT; if (argc == 1) { diag = kdbgetularg((char *)argv[1], &cpu); if (diag) return diag; } /* Recursive use of kdb_parse, do not use argv after * this point */ argv = NULL; if (cpu != ~0) { if (cpu >= num_possible_cpus() || !cpu_online(cpu)) { kdb_printf("no process for cpu %ld\n", cpu); return 0; } sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); kdb_parse(buf); return 0; } kdb_printf("btc: cpu status: "); kdb_parse("cpu\n"); for_each_online_cpu(cpu) { sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu)); kdb_parse(buf); touch_nmi_watchdog(); } kdb_set_current_task(save_current_task); return 0; } else { if (argc) { nextarg = 1; diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); if (diag) return diag; kdb_show_stack(kdb_current_task, (void *)addr); return 0; } else { return kdb_bt1(kdb_current_task, ~0UL, argcount, 0); } } /* NOTREACHED */ return 0; } |