Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | /* * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. * Portions based on net/core/datagram.c and copyrighted by their authors. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution in the * file called COPYING. */ /* * This code allows the net stack to make use of a DMA engine for * skb to iovec copies. */ #include <linux/dmaengine.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <net/tcp.h> /* for memcpy_toiovec */ #include <asm/io.h> #include <asm/uaccess.h> static int num_pages_spanned(struct iovec *iov) { return ((PAGE_ALIGN((unsigned long)iov->iov_base + iov->iov_len) - ((unsigned long)iov->iov_base & PAGE_MASK)) >> PAGE_SHIFT); } /* * Pin down all the iovec pages needed for len bytes. * Return a struct dma_pinned_list to keep track of pages pinned down. * * We are allocating a single chunk of memory, and then carving it up into * 3 sections, the latter 2 whose size depends on the number of iovecs and the * total number of pages, respectively. */ struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len) { struct dma_pinned_list *local_list; struct page **pages; int i; int ret; int nr_iovecs = 0; int iovec_len_used = 0; int iovec_pages_used = 0; /* don't pin down non-user-based iovecs */ if (segment_eq(get_fs(), KERNEL_DS)) return NULL; /* determine how many iovecs/pages there are, up front */ do { iovec_len_used += iov[nr_iovecs].iov_len; iovec_pages_used += num_pages_spanned(&iov[nr_iovecs]); nr_iovecs++; } while (iovec_len_used < len); /* single kmalloc for pinned list, page_list[], and the page arrays */ local_list = kmalloc(sizeof(*local_list) + (nr_iovecs * sizeof (struct dma_page_list)) + (iovec_pages_used * sizeof (struct page*)), GFP_KERNEL); if (!local_list) goto out; /* list of pages starts right after the page list array */ pages = (struct page **) &local_list->page_list[nr_iovecs]; local_list->nr_iovecs = 0; for (i = 0; i < nr_iovecs; i++) { struct dma_page_list *page_list = &local_list->page_list[i]; len -= iov[i].iov_len; if (!access_ok(VERIFY_WRITE, iov[i].iov_base, iov[i].iov_len)) goto unpin; page_list->nr_pages = num_pages_spanned(&iov[i]); page_list->base_address = iov[i].iov_base; page_list->pages = pages; pages += page_list->nr_pages; /* pin pages down */ down_read(¤t->mm->mmap_sem); ret = get_user_pages( current, current->mm, (unsigned long) iov[i].iov_base, page_list->nr_pages, 1, /* write */ 0, /* force */ page_list->pages, NULL); up_read(¤t->mm->mmap_sem); if (ret != page_list->nr_pages) goto unpin; local_list->nr_iovecs = i + 1; } return local_list; unpin: dma_unpin_iovec_pages(local_list); out: return NULL; } void dma_unpin_iovec_pages(struct dma_pinned_list *pinned_list) { int i, j; if (!pinned_list) return; for (i = 0; i < pinned_list->nr_iovecs; i++) { struct dma_page_list *page_list = &pinned_list->page_list[i]; for (j = 0; j < page_list->nr_pages; j++) { set_page_dirty_lock(page_list->pages[j]); page_cache_release(page_list->pages[j]); } } kfree(pinned_list); } /* * We have already pinned down the pages we will be using in the iovecs. * Each entry in iov array has corresponding entry in pinned_list->page_list. * Using array indexing to keep iov[] and page_list[] in sync. * Initial elements in iov array's iov->iov_len will be 0 if already copied into * by another call. * iov array length remaining guaranteed to be bigger than len. */ dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len) { int iov_byte_offset; int copy; dma_cookie_t dma_cookie = 0; int iovec_idx; int page_idx; if (!chan) return memcpy_toiovec(iov, kdata, len); iovec_idx = 0; while (iovec_idx < pinned_list->nr_iovecs) { struct dma_page_list *page_list; /* skip already used-up iovecs */ while (!iov[iovec_idx].iov_len) iovec_idx++; page_list = &pinned_list->page_list[iovec_idx]; iov_byte_offset = ((unsigned long)iov[iovec_idx].iov_base & ~PAGE_MASK); page_idx = (((unsigned long)iov[iovec_idx].iov_base & PAGE_MASK) - ((unsigned long)page_list->base_address & PAGE_MASK)) >> PAGE_SHIFT; /* break up copies to not cross page boundary */ while (iov[iovec_idx].iov_len) { copy = min_t(int, PAGE_SIZE - iov_byte_offset, len); copy = min_t(int, copy, iov[iovec_idx].iov_len); dma_cookie = dma_async_memcpy_buf_to_pg(chan, page_list->pages[page_idx], iov_byte_offset, kdata, copy); /* poll for a descriptor slot */ if (unlikely(dma_cookie < 0)) { dma_async_issue_pending(chan); continue; } len -= copy; iov[iovec_idx].iov_len -= copy; iov[iovec_idx].iov_base += copy; if (!len) return dma_cookie; kdata += copy; iov_byte_offset = 0; page_idx++; } iovec_idx++; } /* really bad if we ever run out of iovecs */ BUG(); return -EFAULT; } dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, struct dma_pinned_list *pinned_list, struct page *page, unsigned int offset, size_t len) { int iov_byte_offset; int copy; dma_cookie_t dma_cookie = 0; int iovec_idx; int page_idx; int err; /* this needs as-yet-unimplemented buf-to-buff, so punt. */ /* TODO: use dma for this */ if (!chan || !pinned_list) { u8 *vaddr = kmap(page); err = memcpy_toiovec(iov, vaddr + offset, len); kunmap(page); return err; } iovec_idx = 0; while (iovec_idx < pinned_list->nr_iovecs) { struct dma_page_list *page_list; /* skip already used-up iovecs */ while (!iov[iovec_idx].iov_len) iovec_idx++; page_list = &pinned_list->page_list[iovec_idx]; iov_byte_offset = ((unsigned long)iov[iovec_idx].iov_base & ~PAGE_MASK); page_idx = (((unsigned long)iov[iovec_idx].iov_base & PAGE_MASK) - ((unsigned long)page_list->base_address & PAGE_MASK)) >> PAGE_SHIFT; /* break up copies to not cross page boundary */ while (iov[iovec_idx].iov_len) { copy = min_t(int, PAGE_SIZE - iov_byte_offset, len); copy = min_t(int, copy, iov[iovec_idx].iov_len); dma_cookie = dma_async_memcpy_pg_to_pg(chan, page_list->pages[page_idx], iov_byte_offset, page, offset, copy); /* poll for a descriptor slot */ if (unlikely(dma_cookie < 0)) { dma_async_issue_pending(chan); continue; } len -= copy; iov[iovec_idx].iov_len -= copy; iov[iovec_idx].iov_base += copy; if (!len) return dma_cookie; offset += copy; iov_byte_offset = 0; page_idx++; } iovec_idx++; } /* really bad if we ever run out of iovecs */ BUG(); return -EFAULT; } |