Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 | ######################################################################## # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions # # Copyright (c) 2013, Intel Corporation # # Authors: # Erdinc Ozturk <erdinc.ozturk@intel.com> # Vinodh Gopal <vinodh.gopal@intel.com> # James Guilford <james.guilford@intel.com> # Tim Chen <tim.c.chen@linux.intel.com> # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ######################################################################## # Function API: # UINT16 crc_t10dif_pcl( # UINT16 init_crc, //initial CRC value, 16 bits # const unsigned char *buf, //buffer pointer to calculate CRC on # UINT64 len //buffer length in bytes (64-bit data) # ); # # Reference paper titled "Fast CRC Computation for Generic # Polynomials Using PCLMULQDQ Instruction" # URL: http://www.intel.com/content/dam/www/public/us/en/documents # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf # # #include <linux/linkage.h> .text #define arg1 %rdi #define arg2 %rsi #define arg3 %rdx #define arg1_low32 %edi ENTRY(crc_t10dif_pcl) .align 16 # adjust the 16-bit initial_crc value, scale it to 32 bits shl $16, arg1_low32 # Allocate Stack Space mov %rsp, %rcx sub $16*2, %rsp # align stack to 16 byte boundary and $~(0x10 - 1), %rsp # check if smaller than 256 cmp $256, arg3 # for sizes less than 128, we can't fold 64B at a time... jl _less_than_128 # load the initial crc value movd arg1_low32, %xmm10 # initial crc # crc value does not need to be byte-reflected, but it needs # to be moved to the high part of the register. # because data will be byte-reflected and will align with # initial crc at correct place. pslldq $12, %xmm10 movdqa SHUF_MASK(%rip), %xmm11 # receive the initial 64B data, xor the initial crc value movdqu 16*0(arg2), %xmm0 movdqu 16*1(arg2), %xmm1 movdqu 16*2(arg2), %xmm2 movdqu 16*3(arg2), %xmm3 movdqu 16*4(arg2), %xmm4 movdqu 16*5(arg2), %xmm5 movdqu 16*6(arg2), %xmm6 movdqu 16*7(arg2), %xmm7 pshufb %xmm11, %xmm0 # XOR the initial_crc value pxor %xmm10, %xmm0 pshufb %xmm11, %xmm1 pshufb %xmm11, %xmm2 pshufb %xmm11, %xmm3 pshufb %xmm11, %xmm4 pshufb %xmm11, %xmm5 pshufb %xmm11, %xmm6 pshufb %xmm11, %xmm7 movdqa rk3(%rip), %xmm10 #xmm10 has rk3 and rk4 #imm value of pclmulqdq instruction #will determine which constant to use ################################################################# # we subtract 256 instead of 128 to save one instruction from the loop sub $256, arg3 # at this section of the code, there is 64*x+y (0<=y<64) bytes of # buffer. The _fold_64_B_loop will fold 64B at a time # until we have 64+y Bytes of buffer # fold 64B at a time. This section of the code folds 4 xmm # registers in parallel _fold_64_B_loop: # update the buffer pointer add $128, arg2 # buf += 64# movdqu 16*0(arg2), %xmm9 movdqu 16*1(arg2), %xmm12 pshufb %xmm11, %xmm9 pshufb %xmm11, %xmm12 movdqa %xmm0, %xmm8 movdqa %xmm1, %xmm13 pclmulqdq $0x0 , %xmm10, %xmm0 pclmulqdq $0x11, %xmm10, %xmm8 pclmulqdq $0x0 , %xmm10, %xmm1 pclmulqdq $0x11, %xmm10, %xmm13 pxor %xmm9 , %xmm0 xorps %xmm8 , %xmm0 pxor %xmm12, %xmm1 xorps %xmm13, %xmm1 movdqu 16*2(arg2), %xmm9 movdqu 16*3(arg2), %xmm12 pshufb %xmm11, %xmm9 pshufb %xmm11, %xmm12 movdqa %xmm2, %xmm8 movdqa %xmm3, %xmm13 pclmulqdq $0x0, %xmm10, %xmm2 pclmulqdq $0x11, %xmm10, %xmm8 pclmulqdq $0x0, %xmm10, %xmm3 pclmulqdq $0x11, %xmm10, %xmm13 pxor %xmm9 , %xmm2 xorps %xmm8 , %xmm2 pxor %xmm12, %xmm3 xorps %xmm13, %xmm3 movdqu 16*4(arg2), %xmm9 movdqu 16*5(arg2), %xmm12 pshufb %xmm11, %xmm9 pshufb %xmm11, %xmm12 movdqa %xmm4, %xmm8 movdqa %xmm5, %xmm13 pclmulqdq $0x0, %xmm10, %xmm4 pclmulqdq $0x11, %xmm10, %xmm8 pclmulqdq $0x0, %xmm10, %xmm5 pclmulqdq $0x11, %xmm10, %xmm13 pxor %xmm9 , %xmm4 xorps %xmm8 , %xmm4 pxor %xmm12, %xmm5 xorps %xmm13, %xmm5 movdqu 16*6(arg2), %xmm9 movdqu 16*7(arg2), %xmm12 pshufb %xmm11, %xmm9 pshufb %xmm11, %xmm12 movdqa %xmm6 , %xmm8 movdqa %xmm7 , %xmm13 pclmulqdq $0x0 , %xmm10, %xmm6 pclmulqdq $0x11, %xmm10, %xmm8 pclmulqdq $0x0 , %xmm10, %xmm7 pclmulqdq $0x11, %xmm10, %xmm13 pxor %xmm9 , %xmm6 xorps %xmm8 , %xmm6 pxor %xmm12, %xmm7 xorps %xmm13, %xmm7 sub $128, arg3 # check if there is another 64B in the buffer to be able to fold jge _fold_64_B_loop ################################################################## add $128, arg2 # at this point, the buffer pointer is pointing at the last y Bytes # of the buffer the 64B of folded data is in 4 of the xmm # registers: xmm0, xmm1, xmm2, xmm3 # fold the 8 xmm registers to 1 xmm register with different constants movdqa rk9(%rip), %xmm10 movdqa %xmm0, %xmm8 pclmulqdq $0x11, %xmm10, %xmm0 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 xorps %xmm0, %xmm7 movdqa rk11(%rip), %xmm10 movdqa %xmm1, %xmm8 pclmulqdq $0x11, %xmm10, %xmm1 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 xorps %xmm1, %xmm7 movdqa rk13(%rip), %xmm10 movdqa %xmm2, %xmm8 pclmulqdq $0x11, %xmm10, %xmm2 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 pxor %xmm2, %xmm7 movdqa rk15(%rip), %xmm10 movdqa %xmm3, %xmm8 pclmulqdq $0x11, %xmm10, %xmm3 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 xorps %xmm3, %xmm7 movdqa rk17(%rip), %xmm10 movdqa %xmm4, %xmm8 pclmulqdq $0x11, %xmm10, %xmm4 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 pxor %xmm4, %xmm7 movdqa rk19(%rip), %xmm10 movdqa %xmm5, %xmm8 pclmulqdq $0x11, %xmm10, %xmm5 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 xorps %xmm5, %xmm7 movdqa rk1(%rip), %xmm10 #xmm10 has rk1 and rk2 #imm value of pclmulqdq instruction #will determine which constant to use movdqa %xmm6, %xmm8 pclmulqdq $0x11, %xmm10, %xmm6 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 pxor %xmm6, %xmm7 # instead of 64, we add 48 to the loop counter to save 1 instruction # from the loop instead of a cmp instruction, we use the negative # flag with the jl instruction add $128-16, arg3 jl _final_reduction_for_128 # now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 # and the rest is in memory. We can fold 16 bytes at a time if y>=16 # continue folding 16B at a time _16B_reduction_loop: movdqa %xmm7, %xmm8 pclmulqdq $0x11, %xmm10, %xmm7 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 movdqu (arg2), %xmm0 pshufb %xmm11, %xmm0 pxor %xmm0 , %xmm7 add $16, arg2 sub $16, arg3 # instead of a cmp instruction, we utilize the flags with the # jge instruction equivalent of: cmp arg3, 16-16 # check if there is any more 16B in the buffer to be able to fold jge _16B_reduction_loop #now we have 16+z bytes left to reduce, where 0<= z < 16. #first, we reduce the data in the xmm7 register _final_reduction_for_128: # check if any more data to fold. If not, compute the CRC of # the final 128 bits add $16, arg3 je _128_done # here we are getting data that is less than 16 bytes. # since we know that there was data before the pointer, we can # offset the input pointer before the actual point, to receive # exactly 16 bytes. after that the registers need to be adjusted. _get_last_two_xmms: movdqa %xmm7, %xmm2 movdqu -16(arg2, arg3), %xmm1 pshufb %xmm11, %xmm1 # get rid of the extra data that was loaded before # load the shift constant lea pshufb_shf_table+16(%rip), %rax sub arg3, %rax movdqu (%rax), %xmm0 # shift xmm2 to the left by arg3 bytes pshufb %xmm0, %xmm2 # shift xmm7 to the right by 16-arg3 bytes pxor mask1(%rip), %xmm0 pshufb %xmm0, %xmm7 pblendvb %xmm2, %xmm1 #xmm0 is implicit # fold 16 Bytes movdqa %xmm1, %xmm2 movdqa %xmm7, %xmm8 pclmulqdq $0x11, %xmm10, %xmm7 pclmulqdq $0x0 , %xmm10, %xmm8 pxor %xmm8, %xmm7 pxor %xmm2, %xmm7 _128_done: # compute crc of a 128-bit value movdqa rk5(%rip), %xmm10 # rk5 and rk6 in xmm10 movdqa %xmm7, %xmm0 #64b fold pclmulqdq $0x1, %xmm10, %xmm7 pslldq $8 , %xmm0 pxor %xmm0, %xmm7 #32b fold movdqa %xmm7, %xmm0 pand mask2(%rip), %xmm0 psrldq $12, %xmm7 pclmulqdq $0x10, %xmm10, %xmm7 pxor %xmm0, %xmm7 #barrett reduction _barrett: movdqa rk7(%rip), %xmm10 # rk7 and rk8 in xmm10 movdqa %xmm7, %xmm0 pclmulqdq $0x01, %xmm10, %xmm7 pslldq $4, %xmm7 pclmulqdq $0x11, %xmm10, %xmm7 pslldq $4, %xmm7 pxor %xmm0, %xmm7 pextrd $1, %xmm7, %eax _cleanup: # scale the result back to 16 bits shr $16, %eax mov %rcx, %rsp ret ######################################################################## .align 16 _less_than_128: # check if there is enough buffer to be able to fold 16B at a time cmp $32, arg3 jl _less_than_32 movdqa SHUF_MASK(%rip), %xmm11 # now if there is, load the constants movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10 movd arg1_low32, %xmm0 # get the initial crc value pslldq $12, %xmm0 # align it to its correct place movdqu (arg2), %xmm7 # load the plaintext pshufb %xmm11, %xmm7 # byte-reflect the plaintext pxor %xmm0, %xmm7 # update the buffer pointer add $16, arg2 # update the counter. subtract 32 instead of 16 to save one # instruction from the loop sub $32, arg3 jmp _16B_reduction_loop .align 16 _less_than_32: # mov initial crc to the return value. this is necessary for # zero-length buffers. mov arg1_low32, %eax test arg3, arg3 je _cleanup movdqa SHUF_MASK(%rip), %xmm11 movd arg1_low32, %xmm0 # get the initial crc value pslldq $12, %xmm0 # align it to its correct place cmp $16, arg3 je _exact_16_left jl _less_than_16_left movdqu (arg2), %xmm7 # load the plaintext pshufb %xmm11, %xmm7 # byte-reflect the plaintext pxor %xmm0 , %xmm7 # xor the initial crc value add $16, arg2 sub $16, arg3 movdqa rk1(%rip), %xmm10 # rk1 and rk2 in xmm10 jmp _get_last_two_xmms .align 16 _less_than_16_left: # use stack space to load data less than 16 bytes, zero-out # the 16B in memory first. pxor %xmm1, %xmm1 mov %rsp, %r11 movdqa %xmm1, (%r11) cmp $4, arg3 jl _only_less_than_4 # backup the counter value mov arg3, %r9 cmp $8, arg3 jl _less_than_8_left # load 8 Bytes mov (arg2), %rax mov %rax, (%r11) add $8, %r11 sub $8, arg3 add $8, arg2 _less_than_8_left: cmp $4, arg3 jl _less_than_4_left # load 4 Bytes mov (arg2), %eax mov %eax, (%r11) add $4, %r11 sub $4, arg3 add $4, arg2 _less_than_4_left: cmp $2, arg3 jl _less_than_2_left # load 2 Bytes mov (arg2), %ax mov %ax, (%r11) add $2, %r11 sub $2, arg3 add $2, arg2 _less_than_2_left: cmp $1, arg3 jl _zero_left # load 1 Byte mov (arg2), %al mov %al, (%r11) _zero_left: movdqa (%rsp), %xmm7 pshufb %xmm11, %xmm7 pxor %xmm0 , %xmm7 # xor the initial crc value # shl r9, 4 lea pshufb_shf_table+16(%rip), %rax sub %r9, %rax movdqu (%rax), %xmm0 pxor mask1(%rip), %xmm0 pshufb %xmm0, %xmm7 jmp _128_done .align 16 _exact_16_left: movdqu (arg2), %xmm7 pshufb %xmm11, %xmm7 pxor %xmm0 , %xmm7 # xor the initial crc value jmp _128_done _only_less_than_4: cmp $3, arg3 jl _only_less_than_3 # load 3 Bytes mov (arg2), %al mov %al, (%r11) mov 1(arg2), %al mov %al, 1(%r11) mov 2(arg2), %al mov %al, 2(%r11) movdqa (%rsp), %xmm7 pshufb %xmm11, %xmm7 pxor %xmm0 , %xmm7 # xor the initial crc value psrldq $5, %xmm7 jmp _barrett _only_less_than_3: cmp $2, arg3 jl _only_less_than_2 # load 2 Bytes mov (arg2), %al mov %al, (%r11) mov 1(arg2), %al mov %al, 1(%r11) movdqa (%rsp), %xmm7 pshufb %xmm11, %xmm7 pxor %xmm0 , %xmm7 # xor the initial crc value psrldq $6, %xmm7 jmp _barrett _only_less_than_2: # load 1 Byte mov (arg2), %al mov %al, (%r11) movdqa (%rsp), %xmm7 pshufb %xmm11, %xmm7 pxor %xmm0 , %xmm7 # xor the initial crc value psrldq $7, %xmm7 jmp _barrett ENDPROC(crc_t10dif_pcl) .data # precomputed constants # these constants are precomputed from the poly: # 0x8bb70000 (0x8bb7 scaled to 32 bits) .align 16 # Q = 0x18BB70000 # rk1 = 2^(32*3) mod Q << 32 # rk2 = 2^(32*5) mod Q << 32 # rk3 = 2^(32*15) mod Q << 32 # rk4 = 2^(32*17) mod Q << 32 # rk5 = 2^(32*3) mod Q << 32 # rk6 = 2^(32*2) mod Q << 32 # rk7 = floor(2^64/Q) # rk8 = Q rk1: .quad 0x2d56000000000000 rk2: .quad 0x06df000000000000 rk3: .quad 0x9d9d000000000000 rk4: .quad 0x7cf5000000000000 rk5: .quad 0x2d56000000000000 rk6: .quad 0x1368000000000000 rk7: .quad 0x00000001f65a57f8 rk8: .quad 0x000000018bb70000 rk9: .quad 0xceae000000000000 rk10: .quad 0xbfd6000000000000 rk11: .quad 0x1e16000000000000 rk12: .quad 0x713c000000000000 rk13: .quad 0xf7f9000000000000 rk14: .quad 0x80a6000000000000 rk15: .quad 0x044c000000000000 rk16: .quad 0xe658000000000000 rk17: .quad 0xad18000000000000 rk18: .quad 0xa497000000000000 rk19: .quad 0x6ee3000000000000 rk20: .quad 0xe7b5000000000000 mask1: .octa 0x80808080808080808080808080808080 mask2: .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F pshufb_shf_table: # use these values for shift constants for the pshufb instruction # different alignments result in values as shown: # DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 # DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 # DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 # DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 # DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 # DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 # DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 # DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 # DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 # DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 # DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 # DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 # DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 # DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 # DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 .octa 0x8f8e8d8c8b8a89888786858483828100 .octa 0x000e0d0c0b0a09080706050403020100 |