Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | /* * linux/arch/unicore32/include/asm/dma-mapping.h * * Code specific to PKUnity SoC and UniCore ISA * * Copyright (C) 2001-2010 GUAN Xue-tao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __UNICORE_DMA_MAPPING_H__ #define __UNICORE_DMA_MAPPING_H__ #ifdef __KERNEL__ #include <linux/mm_types.h> #include <linux/scatterlist.h> #include <linux/swiotlb.h> #include <asm-generic/dma-coherent.h> #include <asm/memory.h> #include <asm/cacheflush.h> extern struct dma_map_ops swiotlb_dma_map_ops; static inline struct dma_map_ops *get_dma_ops(struct device *dev) { return &swiotlb_dma_map_ops; } static inline int dma_supported(struct device *dev, u64 mask) { struct dma_map_ops *dma_ops = get_dma_ops(dev); if (unlikely(dma_ops == NULL)) return 0; return dma_ops->dma_supported(dev, mask); } static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { struct dma_map_ops *dma_ops = get_dma_ops(dev); if (dma_ops->mapping_error) return dma_ops->mapping_error(dev, dma_addr); return 0; } #include <asm-generic/dma-mapping-common.h> static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size) { if (dev && dev->dma_mask) return addr + size - 1 <= *dev->dma_mask; return 1; } static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return paddr; } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr) { return daddr; } static inline void dma_mark_clean(void *addr, size_t size) {} static inline int dma_set_mask(struct device *dev, u64 dma_mask) { if (!dev->dma_mask || !dma_supported(dev, dma_mask)) return -EIO; *dev->dma_mask = dma_mask; return 0; } #define dma_alloc_coherent(d,s,h,f) dma_alloc_attrs(d,s,h,f,NULL) static inline void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, struct dma_attrs *attrs) { struct dma_map_ops *dma_ops = get_dma_ops(dev); return dma_ops->alloc(dev, size, dma_handle, flag, attrs); } #define dma_free_coherent(d,s,c,h) dma_free_attrs(d,s,c,h,NULL) static inline void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, struct dma_attrs *attrs) { struct dma_map_ops *dma_ops = get_dma_ops(dev); dma_ops->free(dev, size, cpu_addr, dma_handle, attrs); } #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f) #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h) static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; switch (direction) { case DMA_NONE: BUG(); case DMA_FROM_DEVICE: case DMA_BIDIRECTIONAL: /* writeback and invalidate */ __cpuc_dma_flush_range(start, end); break; case DMA_TO_DEVICE: /* writeback only */ __cpuc_dma_clean_range(start, end); break; } } #endif /* __KERNEL__ */ #endif |