Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | /* * PowerPC64 Segment Translation Support. * * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com * Copyright (c) 2001 Dave Engebretsen * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/memblock.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/mmu_context.h> #include <asm/paca.h> #include <asm/cputable.h> #include <asm/prom.h> struct stab_entry { unsigned long esid_data; unsigned long vsid_data; }; #define NR_STAB_CACHE_ENTRIES 8 static DEFINE_PER_CPU(long, stab_cache_ptr); static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache); /* * Create a segment table entry for the given esid/vsid pair. */ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) { unsigned long esid_data, vsid_data; unsigned long entry, group, old_esid, castout_entry, i; unsigned int global_entry; struct stab_entry *ste, *castout_ste; unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET; vsid_data = vsid << STE_VSID_SHIFT; esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V; if (! kernel_segment) esid_data |= STE_ESID_KS; /* Search the primary group first. */ global_entry = (esid & 0x1f) << 3; ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); /* Find an empty entry, if one exists. */ for (group = 0; group < 2; group++) { for (entry = 0; entry < 8; entry++, ste++) { if (!(ste->esid_data & STE_ESID_V)) { ste->vsid_data = vsid_data; eieio(); ste->esid_data = esid_data; return (global_entry | entry); } } /* Now search the secondary group. */ global_entry = ((~esid) & 0x1f) << 3; ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); } /* * Could not find empty entry, pick one with a round robin selection. * Search all entries in the two groups. */ castout_entry = get_paca()->stab_rr; for (i = 0; i < 16; i++) { if (castout_entry < 8) { global_entry = (esid & 0x1f) << 3; ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); castout_ste = ste + castout_entry; } else { global_entry = ((~esid) & 0x1f) << 3; ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); castout_ste = ste + (castout_entry - 8); } /* Dont cast out the first kernel segment */ if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET) break; castout_entry = (castout_entry + 1) & 0xf; } get_paca()->stab_rr = (castout_entry + 1) & 0xf; /* Modify the old entry to the new value. */ /* Force previous translations to complete. DRENG */ asm volatile("isync" : : : "memory"); old_esid = castout_ste->esid_data >> SID_SHIFT; castout_ste->esid_data = 0; /* Invalidate old entry */ asm volatile("sync" : : : "memory"); /* Order update */ castout_ste->vsid_data = vsid_data; eieio(); /* Order update */ castout_ste->esid_data = esid_data; asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT)); /* Ensure completion of slbie */ asm volatile("sync" : : : "memory"); return (global_entry | (castout_entry & 0x7)); } /* * Allocate a segment table entry for the given ea and mm */ static int __ste_allocate(unsigned long ea, struct mm_struct *mm) { unsigned long vsid; unsigned char stab_entry; unsigned long offset; /* Kernel or user address? */ if (is_kernel_addr(ea)) { vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M); } else { if ((ea >= TASK_SIZE_USER64) || (! mm)) return 1; vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M); } stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid); if (!is_kernel_addr(ea)) { offset = __get_cpu_var(stab_cache_ptr); if (offset < NR_STAB_CACHE_ENTRIES) __get_cpu_var(stab_cache[offset++]) = stab_entry; else offset = NR_STAB_CACHE_ENTRIES+1; __get_cpu_var(stab_cache_ptr) = offset; /* Order update */ asm volatile("sync":::"memory"); } return 0; } int ste_allocate(unsigned long ea) { return __ste_allocate(ea, current->mm); } /* * Do the segment table work for a context switch: flush all user * entries from the table, then preload some probably useful entries * for the new task */ void switch_stab(struct task_struct *tsk, struct mm_struct *mm) { struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr; struct stab_entry *ste; unsigned long offset; unsigned long pc = KSTK_EIP(tsk); unsigned long stack = KSTK_ESP(tsk); unsigned long unmapped_base; /* Force previous translations to complete. DRENG */ asm volatile("isync" : : : "memory"); /* * We need interrupts hard-disabled here, not just soft-disabled, * so that a PMU interrupt can't occur, which might try to access * user memory (to get a stack trace) and possible cause an STAB miss * which would update the stab_cache/stab_cache_ptr per-cpu variables. */ hard_irq_disable(); offset = __get_cpu_var(stab_cache_ptr); if (offset <= NR_STAB_CACHE_ENTRIES) { int i; for (i = 0; i < offset; i++) { ste = stab + __get_cpu_var(stab_cache[i]); ste->esid_data = 0; /* invalidate entry */ } } else { unsigned long entry; /* Invalidate all entries. */ ste = stab; /* Never flush the first entry. */ ste += 1; for (entry = 1; entry < (HW_PAGE_SIZE / sizeof(struct stab_entry)); entry++, ste++) { unsigned long ea; ea = ste->esid_data & ESID_MASK; if (!is_kernel_addr(ea)) { ste->esid_data = 0; } } } asm volatile("sync; slbia; sync":::"memory"); __get_cpu_var(stab_cache_ptr) = 0; /* Now preload some entries for the new task */ if (test_tsk_thread_flag(tsk, TIF_32BIT)) unmapped_base = TASK_UNMAPPED_BASE_USER32; else unmapped_base = TASK_UNMAPPED_BASE_USER64; __ste_allocate(pc, mm); if (GET_ESID(pc) == GET_ESID(stack)) return; __ste_allocate(stack, mm); if ((GET_ESID(pc) == GET_ESID(unmapped_base)) || (GET_ESID(stack) == GET_ESID(unmapped_base))) return; __ste_allocate(unmapped_base, mm); /* Order update */ asm volatile("sync" : : : "memory"); } /* * Allocate segment tables for secondary CPUs. These must all go in * the first (bolted) segment, so that do_stab_bolted won't get a * recursive segment miss on the segment table itself. */ void __init stabs_alloc(void) { int cpu; if (mmu_has_feature(MMU_FTR_SLB)) return; for_each_possible_cpu(cpu) { unsigned long newstab; if (cpu == 0) continue; /* stab for CPU 0 is statically allocated */ newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE, 1<<SID_SHIFT); newstab = (unsigned long)__va(newstab); memset((void *)newstab, 0, HW_PAGE_SIZE); paca[cpu].stab_addr = newstab; paca[cpu].stab_real = __pa(newstab); printk(KERN_INFO "Segment table for CPU %d at 0x%llx " "virtual, 0x%llx absolute\n", cpu, paca[cpu].stab_addr, paca[cpu].stab_real); } } /* * Build an entry for the base kernel segment and put it into * the segment table or SLB. All other segment table or SLB * entries are faulted in. */ void stab_initialize(unsigned long stab) { unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M); unsigned long stabreal; asm volatile("isync; slbia; isync":::"memory"); make_ste(stab, GET_ESID(PAGE_OFFSET), vsid); /* Order update */ asm volatile("sync":::"memory"); /* Set ASR */ stabreal = get_paca()->stab_real | 0x1ul; mtspr(SPRN_ASR, stabreal); } |