Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
 
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35/*
  36 * fill ring buffer with silence
  37 * runtime->silence_start: starting pointer to silence area
  38 * runtime->silence_filled: size filled with silence
  39 * runtime->silence_threshold: threshold from application
  40 * runtime->silence_size: maximal size from application
  41 *
  42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  43 */
  44void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  45{
  46	struct snd_pcm_runtime *runtime = substream->runtime;
  47	snd_pcm_uframes_t frames, ofs, transfer;
 
  48
  49	if (runtime->silence_size < runtime->boundary) {
  50		snd_pcm_sframes_t noise_dist, n;
  51		if (runtime->silence_start != runtime->control->appl_ptr) {
  52			n = runtime->control->appl_ptr - runtime->silence_start;
  53			if (n < 0)
  54				n += runtime->boundary;
  55			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  56				runtime->silence_filled -= n;
  57			else
  58				runtime->silence_filled = 0;
  59			runtime->silence_start = runtime->control->appl_ptr;
  60		}
  61		if (runtime->silence_filled >= runtime->buffer_size)
  62			return;
  63		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  64		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  65			return;
  66		frames = runtime->silence_threshold - noise_dist;
  67		if (frames > runtime->silence_size)
  68			frames = runtime->silence_size;
  69	} else {
  70		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  71			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  72			if (avail > runtime->buffer_size)
  73				avail = runtime->buffer_size;
  74			runtime->silence_filled = avail > 0 ? avail : 0;
  75			runtime->silence_start = (runtime->status->hw_ptr +
  76						  runtime->silence_filled) %
  77						 runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78		} else {
  79			ofs = runtime->status->hw_ptr;
  80			frames = new_hw_ptr - ofs;
  81			if ((snd_pcm_sframes_t)frames < 0)
  82				frames += runtime->boundary;
  83			runtime->silence_filled -= frames;
  84			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  85				runtime->silence_filled = 0;
  86				runtime->silence_start = new_hw_ptr;
  87			} else {
  88				runtime->silence_start = ofs;
  89			}
  90		}
 
 
 
 
  91		frames = runtime->buffer_size - runtime->silence_filled;
  92	}
  93	if (snd_BUG_ON(frames > runtime->buffer_size))
  94		return;
  95	if (frames == 0)
  96		return;
  97	ofs = runtime->silence_start % runtime->buffer_size;
  98	while (frames > 0) {
  99		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 100		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 101		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 102			if (substream->ops->silence) {
 103				int err;
 104				err = substream->ops->silence(substream, -1, ofs, transfer);
 105				snd_BUG_ON(err < 0);
 106			} else {
 107				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 108				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 109			}
 110		} else {
 111			unsigned int c;
 112			unsigned int channels = runtime->channels;
 113			if (substream->ops->silence) {
 114				for (c = 0; c < channels; ++c) {
 115					int err;
 116					err = substream->ops->silence(substream, c, ofs, transfer);
 117					snd_BUG_ON(err < 0);
 118				}
 119			} else {
 120				size_t dma_csize = runtime->dma_bytes / channels;
 121				for (c = 0; c < channels; ++c) {
 122					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 123					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 124				}
 125			}
 126		}
 127		runtime->silence_filled += transfer;
 128		frames -= transfer;
 129		ofs = 0;
 130	}
 
 131}
 132
 133#ifdef CONFIG_SND_DEBUG
 134void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 135			   char *name, size_t len)
 136{
 137	snprintf(name, len, "pcmC%dD%d%c:%d",
 138		 substream->pcm->card->number,
 139		 substream->pcm->device,
 140		 substream->stream ? 'c' : 'p',
 141		 substream->number);
 142}
 143EXPORT_SYMBOL(snd_pcm_debug_name);
 144#endif
 145
 146#define XRUN_DEBUG_BASIC	(1<<0)
 147#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 148#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 149#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 150#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 151#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 152#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167static void xrun(struct snd_pcm_substream *substream)
 
 168{
 169	struct snd_pcm_runtime *runtime = substream->runtime;
 170
 171	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 172		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 
 
 173	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 174	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 175		char name[16];
 176		snd_pcm_debug_name(substream, name, sizeof(name));
 177		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 178		dump_stack_on_xrun(substream);
 179	}
 180}
 181
 182#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 183#define hw_ptr_error(substream, fmt, args...)				\
 184	do {								\
 
 185		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 186			xrun_log_show(substream);			\
 187			pr_err_ratelimited("ALSA: PCM: " fmt, ##args);	\
 188			dump_stack_on_xrun(substream);			\
 189		}							\
 190	} while (0)
 191
 192#define XRUN_LOG_CNT	10
 193
 194struct hwptr_log_entry {
 195	unsigned int in_interrupt;
 196	unsigned long jiffies;
 197	snd_pcm_uframes_t pos;
 198	snd_pcm_uframes_t period_size;
 199	snd_pcm_uframes_t buffer_size;
 200	snd_pcm_uframes_t old_hw_ptr;
 201	snd_pcm_uframes_t hw_ptr_base;
 202};
 203
 204struct snd_pcm_hwptr_log {
 205	unsigned int idx;
 206	unsigned int hit: 1;
 207	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 208};
 209
 210static void xrun_log(struct snd_pcm_substream *substream,
 211		     snd_pcm_uframes_t pos, int in_interrupt)
 212{
 213	struct snd_pcm_runtime *runtime = substream->runtime;
 214	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 215	struct hwptr_log_entry *entry;
 216
 217	if (log == NULL) {
 218		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 219		if (log == NULL)
 220			return;
 221		runtime->hwptr_log = log;
 222	} else {
 223		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 224			return;
 225	}
 226	entry = &log->entries[log->idx];
 227	entry->in_interrupt = in_interrupt;
 228	entry->jiffies = jiffies;
 229	entry->pos = pos;
 230	entry->period_size = runtime->period_size;
 231	entry->buffer_size = runtime->buffer_size;
 232	entry->old_hw_ptr = runtime->status->hw_ptr;
 233	entry->hw_ptr_base = runtime->hw_ptr_base;
 234	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 235}
 236
 237static void xrun_log_show(struct snd_pcm_substream *substream)
 238{
 239	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 240	struct hwptr_log_entry *entry;
 241	char name[16];
 242	unsigned int idx;
 243	int cnt;
 244
 245	if (log == NULL)
 246		return;
 247	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 248		return;
 249	snd_pcm_debug_name(substream, name, sizeof(name));
 250	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 251		entry = &log->entries[idx];
 252		if (entry->period_size == 0)
 253			break;
 254		pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 255			   "hwptr=%ld/%ld\n",
 256			   name, entry->in_interrupt ? "[Q] " : "",
 257			   entry->jiffies,
 258			   (unsigned long)entry->pos,
 259			   (unsigned long)entry->period_size,
 260			   (unsigned long)entry->buffer_size,
 261			   (unsigned long)entry->old_hw_ptr,
 262			   (unsigned long)entry->hw_ptr_base);
 263		idx++;
 264		idx %= XRUN_LOG_CNT;
 265	}
 266	log->hit = 1;
 267}
 268
 269#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 270
 271#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 272#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 273#define xrun_log_show(substream)	do { } while (0)
 274
 275#endif
 276
 277int snd_pcm_update_state(struct snd_pcm_substream *substream,
 278			 struct snd_pcm_runtime *runtime)
 279{
 280	snd_pcm_uframes_t avail;
 281
 282	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 283		avail = snd_pcm_playback_avail(runtime);
 284	else
 285		avail = snd_pcm_capture_avail(runtime);
 286	if (avail > runtime->avail_max)
 287		runtime->avail_max = avail;
 288	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 289		if (avail >= runtime->buffer_size) {
 290			snd_pcm_drain_done(substream);
 291			return -EPIPE;
 292		}
 293	} else {
 294		if (avail >= runtime->stop_threshold) {
 295			xrun(substream);
 296			return -EPIPE;
 297		}
 298	}
 299	if (runtime->twake) {
 300		if (avail >= runtime->twake)
 301			wake_up(&runtime->tsleep);
 302	} else if (avail >= runtime->control->avail_min)
 303		wake_up(&runtime->sleep);
 304	return 0;
 305}
 306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 308				  unsigned int in_interrupt)
 309{
 310	struct snd_pcm_runtime *runtime = substream->runtime;
 311	snd_pcm_uframes_t pos;
 312	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 313	snd_pcm_sframes_t hdelta, delta;
 314	unsigned long jdelta;
 315	unsigned long curr_jiffies;
 316	struct timespec curr_tstamp;
 317	struct timespec audio_tstamp;
 318	int crossed_boundary = 0;
 319
 320	old_hw_ptr = runtime->status->hw_ptr;
 321
 322	/*
 323	 * group pointer, time and jiffies reads to allow for more
 324	 * accurate correlations/corrections.
 325	 * The values are stored at the end of this routine after
 326	 * corrections for hw_ptr position
 327	 */
 328	pos = substream->ops->pointer(substream);
 329	curr_jiffies = jiffies;
 330	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 331		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 332
 333		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
 334			(substream->ops->wall_clock))
 335			substream->ops->wall_clock(substream, &audio_tstamp);
 
 
 
 
 
 
 
 336	}
 337
 338	if (pos == SNDRV_PCM_POS_XRUN) {
 339		xrun(substream);
 340		return -EPIPE;
 341	}
 342	if (pos >= runtime->buffer_size) {
 343		if (printk_ratelimit()) {
 344			char name[16];
 345			snd_pcm_debug_name(substream, name, sizeof(name));
 346			xrun_log_show(substream);
 347			pcm_err(substream->pcm,
 348				"BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 349				name, pos, runtime->buffer_size,
 350				runtime->period_size);
 351		}
 352		pos = 0;
 353	}
 354	pos -= pos % runtime->min_align;
 355	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 356		xrun_log(substream, pos, in_interrupt);
 357	hw_base = runtime->hw_ptr_base;
 358	new_hw_ptr = hw_base + pos;
 359	if (in_interrupt) {
 360		/* we know that one period was processed */
 361		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 362		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 363		if (delta > new_hw_ptr) {
 364			/* check for double acknowledged interrupts */
 365			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 366			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 367				hw_base += runtime->buffer_size;
 368				if (hw_base >= runtime->boundary) {
 369					hw_base = 0;
 370					crossed_boundary++;
 371				}
 372				new_hw_ptr = hw_base + pos;
 373				goto __delta;
 374			}
 375		}
 376	}
 377	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 378	/* pointer crosses the end of the ring buffer */
 379	if (new_hw_ptr < old_hw_ptr) {
 380		hw_base += runtime->buffer_size;
 381		if (hw_base >= runtime->boundary) {
 382			hw_base = 0;
 383			crossed_boundary++;
 384		}
 385		new_hw_ptr = hw_base + pos;
 386	}
 387      __delta:
 388	delta = new_hw_ptr - old_hw_ptr;
 389	if (delta < 0)
 390		delta += runtime->boundary;
 391	if (xrun_debug(substream, in_interrupt ?
 392			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 393		char name[16];
 394		snd_pcm_debug_name(substream, name, sizeof(name));
 395		pcm_dbg(substream->pcm,
 396			"%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
 397			   in_interrupt ? "period" : "hwptr",
 398			   name,
 399			   (unsigned int)pos,
 400			   (unsigned int)runtime->period_size,
 401			   (unsigned int)runtime->buffer_size,
 402			   (unsigned long)delta,
 403			   (unsigned long)old_hw_ptr,
 404			   (unsigned long)new_hw_ptr,
 405			   (unsigned long)runtime->hw_ptr_base);
 406	}
 407
 408	if (runtime->no_period_wakeup) {
 409		snd_pcm_sframes_t xrun_threshold;
 410		/*
 411		 * Without regular period interrupts, we have to check
 412		 * the elapsed time to detect xruns.
 413		 */
 414		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 415		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 416			goto no_delta_check;
 417		hdelta = jdelta - delta * HZ / runtime->rate;
 418		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 419		while (hdelta > xrun_threshold) {
 420			delta += runtime->buffer_size;
 421			hw_base += runtime->buffer_size;
 422			if (hw_base >= runtime->boundary) {
 423				hw_base = 0;
 424				crossed_boundary++;
 425			}
 426			new_hw_ptr = hw_base + pos;
 427			hdelta -= runtime->hw_ptr_buffer_jiffies;
 428		}
 429		goto no_delta_check;
 430	}
 431
 432	/* something must be really wrong */
 433	if (delta >= runtime->buffer_size + runtime->period_size) {
 434		hw_ptr_error(substream,
 435			       "Unexpected hw_pointer value %s"
 436			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 437			       "old_hw_ptr=%ld)\n",
 438				     in_interrupt ? "[Q] " : "[P]",
 439				     substream->stream, (long)pos,
 440				     (long)new_hw_ptr, (long)old_hw_ptr);
 441		return 0;
 442	}
 443
 444	/* Do jiffies check only in xrun_debug mode */
 445	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 446		goto no_jiffies_check;
 447
 448	/* Skip the jiffies check for hardwares with BATCH flag.
 449	 * Such hardware usually just increases the position at each IRQ,
 450	 * thus it can't give any strange position.
 451	 */
 452	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 453		goto no_jiffies_check;
 454	hdelta = delta;
 455	if (hdelta < runtime->delay)
 456		goto no_jiffies_check;
 457	hdelta -= runtime->delay;
 458	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 459	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 460		delta = jdelta /
 461			(((runtime->period_size * HZ) / runtime->rate)
 462								+ HZ/100);
 463		/* move new_hw_ptr according jiffies not pos variable */
 464		new_hw_ptr = old_hw_ptr;
 465		hw_base = delta;
 466		/* use loop to avoid checks for delta overflows */
 467		/* the delta value is small or zero in most cases */
 468		while (delta > 0) {
 469			new_hw_ptr += runtime->period_size;
 470			if (new_hw_ptr >= runtime->boundary) {
 471				new_hw_ptr -= runtime->boundary;
 472				crossed_boundary--;
 473			}
 474			delta--;
 475		}
 476		/* align hw_base to buffer_size */
 477		hw_ptr_error(substream,
 478			     "hw_ptr skipping! %s"
 479			     "(pos=%ld, delta=%ld, period=%ld, "
 480			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 481			     in_interrupt ? "[Q] " : "",
 482			     (long)pos, (long)hdelta,
 483			     (long)runtime->period_size, jdelta,
 484			     ((hdelta * HZ) / runtime->rate), hw_base,
 485			     (unsigned long)old_hw_ptr,
 486			     (unsigned long)new_hw_ptr);
 487		/* reset values to proper state */
 488		delta = 0;
 489		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 490	}
 491 no_jiffies_check:
 492	if (delta > runtime->period_size + runtime->period_size / 2) {
 493		hw_ptr_error(substream,
 494			     "Lost interrupts? %s"
 495			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 496			     "old_hw_ptr=%ld)\n",
 497			     in_interrupt ? "[Q] " : "",
 498			     substream->stream, (long)delta,
 499			     (long)new_hw_ptr,
 500			     (long)old_hw_ptr);
 501	}
 502
 503 no_delta_check:
 504	if (runtime->status->hw_ptr == new_hw_ptr)
 
 
 505		return 0;
 
 506
 507	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 508	    runtime->silence_size > 0)
 509		snd_pcm_playback_silence(substream, new_hw_ptr);
 510
 511	if (in_interrupt) {
 512		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 513		if (delta < 0)
 514			delta += runtime->boundary;
 515		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 516		runtime->hw_ptr_interrupt += delta;
 517		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 518			runtime->hw_ptr_interrupt -= runtime->boundary;
 519	}
 520	runtime->hw_ptr_base = hw_base;
 521	runtime->status->hw_ptr = new_hw_ptr;
 522	runtime->hw_ptr_jiffies = curr_jiffies;
 523	if (crossed_boundary) {
 524		snd_BUG_ON(crossed_boundary != 1);
 525		runtime->hw_ptr_wrap += runtime->boundary;
 526	}
 527	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 528		runtime->status->tstamp = curr_tstamp;
 529
 530		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
 531			/*
 532			 * no wall clock available, provide audio timestamp
 533			 * derived from pointer position+delay
 534			 */
 535			u64 audio_frames, audio_nsecs;
 536
 537			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 538				audio_frames = runtime->hw_ptr_wrap
 539					+ runtime->status->hw_ptr
 540					- runtime->delay;
 541			else
 542				audio_frames = runtime->hw_ptr_wrap
 543					+ runtime->status->hw_ptr
 544					+ runtime->delay;
 545			audio_nsecs = div_u64(audio_frames * 1000000000LL,
 546					runtime->rate);
 547			audio_tstamp = ns_to_timespec(audio_nsecs);
 548		}
 549		runtime->status->audio_tstamp = audio_tstamp;
 550	}
 551
 552	return snd_pcm_update_state(substream, runtime);
 553}
 554
 555/* CAUTION: call it with irq disabled */
 556int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 557{
 558	return snd_pcm_update_hw_ptr0(substream, 0);
 559}
 560
 561/**
 562 * snd_pcm_set_ops - set the PCM operators
 563 * @pcm: the pcm instance
 564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 565 * @ops: the operator table
 566 *
 567 * Sets the given PCM operators to the pcm instance.
 568 */
 569void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 570		     const struct snd_pcm_ops *ops)
 571{
 572	struct snd_pcm_str *stream = &pcm->streams[direction];
 573	struct snd_pcm_substream *substream;
 574	
 575	for (substream = stream->substream; substream != NULL; substream = substream->next)
 576		substream->ops = ops;
 577}
 578
 579EXPORT_SYMBOL(snd_pcm_set_ops);
 580
 581/**
 582 * snd_pcm_sync - set the PCM sync id
 583 * @substream: the pcm substream
 584 *
 585 * Sets the PCM sync identifier for the card.
 586 */
 587void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 588{
 589	struct snd_pcm_runtime *runtime = substream->runtime;
 590	
 591	runtime->sync.id32[0] = substream->pcm->card->number;
 592	runtime->sync.id32[1] = -1;
 593	runtime->sync.id32[2] = -1;
 594	runtime->sync.id32[3] = -1;
 595}
 596
 597EXPORT_SYMBOL(snd_pcm_set_sync);
 598
 599/*
 600 *  Standard ioctl routine
 601 */
 602
 603static inline unsigned int div32(unsigned int a, unsigned int b, 
 604				 unsigned int *r)
 605{
 606	if (b == 0) {
 607		*r = 0;
 608		return UINT_MAX;
 609	}
 610	*r = a % b;
 611	return a / b;
 612}
 613
 614static inline unsigned int div_down(unsigned int a, unsigned int b)
 615{
 616	if (b == 0)
 617		return UINT_MAX;
 618	return a / b;
 619}
 620
 621static inline unsigned int div_up(unsigned int a, unsigned int b)
 622{
 623	unsigned int r;
 624	unsigned int q;
 625	if (b == 0)
 626		return UINT_MAX;
 627	q = div32(a, b, &r);
 628	if (r)
 629		++q;
 630	return q;
 631}
 632
 633static inline unsigned int mul(unsigned int a, unsigned int b)
 634{
 635	if (a == 0)
 636		return 0;
 637	if (div_down(UINT_MAX, a) < b)
 638		return UINT_MAX;
 639	return a * b;
 640}
 641
 642static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 643				    unsigned int c, unsigned int *r)
 644{
 645	u_int64_t n = (u_int64_t) a * b;
 646	if (c == 0) {
 647		snd_BUG_ON(!n);
 648		*r = 0;
 649		return UINT_MAX;
 650	}
 651	n = div_u64_rem(n, c, r);
 652	if (n >= UINT_MAX) {
 653		*r = 0;
 654		return UINT_MAX;
 655	}
 656	return n;
 657}
 658
 659/**
 660 * snd_interval_refine - refine the interval value of configurator
 661 * @i: the interval value to refine
 662 * @v: the interval value to refer to
 663 *
 664 * Refines the interval value with the reference value.
 665 * The interval is changed to the range satisfying both intervals.
 666 * The interval status (min, max, integer, etc.) are evaluated.
 667 *
 668 * Return: Positive if the value is changed, zero if it's not changed, or a
 669 * negative error code.
 670 */
 671int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 672{
 673	int changed = 0;
 674	if (snd_BUG_ON(snd_interval_empty(i)))
 675		return -EINVAL;
 676	if (i->min < v->min) {
 677		i->min = v->min;
 678		i->openmin = v->openmin;
 679		changed = 1;
 680	} else if (i->min == v->min && !i->openmin && v->openmin) {
 681		i->openmin = 1;
 682		changed = 1;
 683	}
 684	if (i->max > v->max) {
 685		i->max = v->max;
 686		i->openmax = v->openmax;
 687		changed = 1;
 688	} else if (i->max == v->max && !i->openmax && v->openmax) {
 689		i->openmax = 1;
 690		changed = 1;
 691	}
 692	if (!i->integer && v->integer) {
 693		i->integer = 1;
 694		changed = 1;
 695	}
 696	if (i->integer) {
 697		if (i->openmin) {
 698			i->min++;
 699			i->openmin = 0;
 700		}
 701		if (i->openmax) {
 702			i->max--;
 703			i->openmax = 0;
 704		}
 705	} else if (!i->openmin && !i->openmax && i->min == i->max)
 706		i->integer = 1;
 707	if (snd_interval_checkempty(i)) {
 708		snd_interval_none(i);
 709		return -EINVAL;
 710	}
 711	return changed;
 712}
 713
 714EXPORT_SYMBOL(snd_interval_refine);
 715
 716static int snd_interval_refine_first(struct snd_interval *i)
 717{
 
 
 718	if (snd_BUG_ON(snd_interval_empty(i)))
 719		return -EINVAL;
 720	if (snd_interval_single(i))
 721		return 0;
 722	i->max = i->min;
 723	i->openmax = i->openmin;
 724	if (i->openmax)
 725		i->max++;
 
 
 726	return 1;
 727}
 728
 729static int snd_interval_refine_last(struct snd_interval *i)
 730{
 
 
 731	if (snd_BUG_ON(snd_interval_empty(i)))
 732		return -EINVAL;
 733	if (snd_interval_single(i))
 734		return 0;
 735	i->min = i->max;
 736	i->openmin = i->openmax;
 737	if (i->openmin)
 738		i->min--;
 
 
 739	return 1;
 740}
 741
 742void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 743{
 744	if (a->empty || b->empty) {
 745		snd_interval_none(c);
 746		return;
 747	}
 748	c->empty = 0;
 749	c->min = mul(a->min, b->min);
 750	c->openmin = (a->openmin || b->openmin);
 751	c->max = mul(a->max,  b->max);
 752	c->openmax = (a->openmax || b->openmax);
 753	c->integer = (a->integer && b->integer);
 754}
 755
 756/**
 757 * snd_interval_div - refine the interval value with division
 758 * @a: dividend
 759 * @b: divisor
 760 * @c: quotient
 761 *
 762 * c = a / b
 763 *
 764 * Returns non-zero if the value is changed, zero if not changed.
 765 */
 766void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 767{
 768	unsigned int r;
 769	if (a->empty || b->empty) {
 770		snd_interval_none(c);
 771		return;
 772	}
 773	c->empty = 0;
 774	c->min = div32(a->min, b->max, &r);
 775	c->openmin = (r || a->openmin || b->openmax);
 776	if (b->min > 0) {
 777		c->max = div32(a->max, b->min, &r);
 778		if (r) {
 779			c->max++;
 780			c->openmax = 1;
 781		} else
 782			c->openmax = (a->openmax || b->openmin);
 783	} else {
 784		c->max = UINT_MAX;
 785		c->openmax = 0;
 786	}
 787	c->integer = 0;
 788}
 789
 790/**
 791 * snd_interval_muldivk - refine the interval value
 792 * @a: dividend 1
 793 * @b: dividend 2
 794 * @k: divisor (as integer)
 795 * @c: result
 796  *
 797 * c = a * b / k
 798 *
 799 * Returns non-zero if the value is changed, zero if not changed.
 800 */
 801void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 802		      unsigned int k, struct snd_interval *c)
 803{
 804	unsigned int r;
 805	if (a->empty || b->empty) {
 806		snd_interval_none(c);
 807		return;
 808	}
 809	c->empty = 0;
 810	c->min = muldiv32(a->min, b->min, k, &r);
 811	c->openmin = (r || a->openmin || b->openmin);
 812	c->max = muldiv32(a->max, b->max, k, &r);
 813	if (r) {
 814		c->max++;
 815		c->openmax = 1;
 816	} else
 817		c->openmax = (a->openmax || b->openmax);
 818	c->integer = 0;
 819}
 820
 821/**
 822 * snd_interval_mulkdiv - refine the interval value
 823 * @a: dividend 1
 824 * @k: dividend 2 (as integer)
 825 * @b: divisor
 826 * @c: result
 827 *
 828 * c = a * k / b
 829 *
 830 * Returns non-zero if the value is changed, zero if not changed.
 831 */
 832void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 833		      const struct snd_interval *b, struct snd_interval *c)
 834{
 835	unsigned int r;
 836	if (a->empty || b->empty) {
 837		snd_interval_none(c);
 838		return;
 839	}
 840	c->empty = 0;
 841	c->min = muldiv32(a->min, k, b->max, &r);
 842	c->openmin = (r || a->openmin || b->openmax);
 843	if (b->min > 0) {
 844		c->max = muldiv32(a->max, k, b->min, &r);
 845		if (r) {
 846			c->max++;
 847			c->openmax = 1;
 848		} else
 849			c->openmax = (a->openmax || b->openmin);
 850	} else {
 851		c->max = UINT_MAX;
 852		c->openmax = 0;
 853	}
 854	c->integer = 0;
 855}
 856
 857/* ---- */
 858
 859
 860/**
 861 * snd_interval_ratnum - refine the interval value
 862 * @i: interval to refine
 863 * @rats_count: number of ratnum_t 
 864 * @rats: ratnum_t array
 865 * @nump: pointer to store the resultant numerator
 866 * @denp: pointer to store the resultant denominator
 867 *
 868 * Return: Positive if the value is changed, zero if it's not changed, or a
 869 * negative error code.
 870 */
 871int snd_interval_ratnum(struct snd_interval *i,
 872			unsigned int rats_count, struct snd_ratnum *rats,
 873			unsigned int *nump, unsigned int *denp)
 874{
 875	unsigned int best_num, best_den;
 876	int best_diff;
 877	unsigned int k;
 878	struct snd_interval t;
 879	int err;
 880	unsigned int result_num, result_den;
 881	int result_diff;
 882
 883	best_num = best_den = best_diff = 0;
 884	for (k = 0; k < rats_count; ++k) {
 885		unsigned int num = rats[k].num;
 886		unsigned int den;
 887		unsigned int q = i->min;
 888		int diff;
 889		if (q == 0)
 890			q = 1;
 891		den = div_up(num, q);
 892		if (den < rats[k].den_min)
 893			continue;
 894		if (den > rats[k].den_max)
 895			den = rats[k].den_max;
 896		else {
 897			unsigned int r;
 898			r = (den - rats[k].den_min) % rats[k].den_step;
 899			if (r != 0)
 900				den -= r;
 901		}
 902		diff = num - q * den;
 903		if (diff < 0)
 904			diff = -diff;
 905		if (best_num == 0 ||
 906		    diff * best_den < best_diff * den) {
 907			best_diff = diff;
 908			best_den = den;
 909			best_num = num;
 910		}
 911	}
 912	if (best_den == 0) {
 913		i->empty = 1;
 914		return -EINVAL;
 915	}
 916	t.min = div_down(best_num, best_den);
 917	t.openmin = !!(best_num % best_den);
 918	
 919	result_num = best_num;
 920	result_diff = best_diff;
 921	result_den = best_den;
 922	best_num = best_den = best_diff = 0;
 923	for (k = 0; k < rats_count; ++k) {
 924		unsigned int num = rats[k].num;
 925		unsigned int den;
 926		unsigned int q = i->max;
 927		int diff;
 928		if (q == 0) {
 929			i->empty = 1;
 930			return -EINVAL;
 931		}
 932		den = div_down(num, q);
 933		if (den > rats[k].den_max)
 934			continue;
 935		if (den < rats[k].den_min)
 936			den = rats[k].den_min;
 937		else {
 938			unsigned int r;
 939			r = (den - rats[k].den_min) % rats[k].den_step;
 940			if (r != 0)
 941				den += rats[k].den_step - r;
 942		}
 943		diff = q * den - num;
 944		if (diff < 0)
 945			diff = -diff;
 946		if (best_num == 0 ||
 947		    diff * best_den < best_diff * den) {
 948			best_diff = diff;
 949			best_den = den;
 950			best_num = num;
 951		}
 952	}
 953	if (best_den == 0) {
 954		i->empty = 1;
 955		return -EINVAL;
 956	}
 957	t.max = div_up(best_num, best_den);
 958	t.openmax = !!(best_num % best_den);
 959	t.integer = 0;
 960	err = snd_interval_refine(i, &t);
 961	if (err < 0)
 962		return err;
 963
 964	if (snd_interval_single(i)) {
 965		if (best_diff * result_den < result_diff * best_den) {
 966			result_num = best_num;
 967			result_den = best_den;
 968		}
 969		if (nump)
 970			*nump = result_num;
 971		if (denp)
 972			*denp = result_den;
 973	}
 974	return err;
 975}
 976
 977EXPORT_SYMBOL(snd_interval_ratnum);
 978
 979/**
 980 * snd_interval_ratden - refine the interval value
 981 * @i: interval to refine
 982 * @rats_count: number of struct ratden
 983 * @rats: struct ratden array
 984 * @nump: pointer to store the resultant numerator
 985 * @denp: pointer to store the resultant denominator
 986 *
 987 * Return: Positive if the value is changed, zero if it's not changed, or a
 988 * negative error code.
 989 */
 990static int snd_interval_ratden(struct snd_interval *i,
 991			       unsigned int rats_count, struct snd_ratden *rats,
 
 992			       unsigned int *nump, unsigned int *denp)
 993{
 994	unsigned int best_num, best_diff, best_den;
 995	unsigned int k;
 996	struct snd_interval t;
 997	int err;
 998
 999	best_num = best_den = best_diff = 0;
1000	for (k = 0; k < rats_count; ++k) {
1001		unsigned int num;
1002		unsigned int den = rats[k].den;
1003		unsigned int q = i->min;
1004		int diff;
1005		num = mul(q, den);
1006		if (num > rats[k].num_max)
1007			continue;
1008		if (num < rats[k].num_min)
1009			num = rats[k].num_max;
1010		else {
1011			unsigned int r;
1012			r = (num - rats[k].num_min) % rats[k].num_step;
1013			if (r != 0)
1014				num += rats[k].num_step - r;
1015		}
1016		diff = num - q * den;
1017		if (best_num == 0 ||
1018		    diff * best_den < best_diff * den) {
1019			best_diff = diff;
1020			best_den = den;
1021			best_num = num;
1022		}
1023	}
1024	if (best_den == 0) {
1025		i->empty = 1;
1026		return -EINVAL;
1027	}
1028	t.min = div_down(best_num, best_den);
1029	t.openmin = !!(best_num % best_den);
1030	
1031	best_num = best_den = best_diff = 0;
1032	for (k = 0; k < rats_count; ++k) {
1033		unsigned int num;
1034		unsigned int den = rats[k].den;
1035		unsigned int q = i->max;
1036		int diff;
1037		num = mul(q, den);
1038		if (num < rats[k].num_min)
1039			continue;
1040		if (num > rats[k].num_max)
1041			num = rats[k].num_max;
1042		else {
1043			unsigned int r;
1044			r = (num - rats[k].num_min) % rats[k].num_step;
1045			if (r != 0)
1046				num -= r;
1047		}
1048		diff = q * den - num;
1049		if (best_num == 0 ||
1050		    diff * best_den < best_diff * den) {
1051			best_diff = diff;
1052			best_den = den;
1053			best_num = num;
1054		}
1055	}
1056	if (best_den == 0) {
1057		i->empty = 1;
1058		return -EINVAL;
1059	}
1060	t.max = div_up(best_num, best_den);
1061	t.openmax = !!(best_num % best_den);
1062	t.integer = 0;
1063	err = snd_interval_refine(i, &t);
1064	if (err < 0)
1065		return err;
1066
1067	if (snd_interval_single(i)) {
1068		if (nump)
1069			*nump = best_num;
1070		if (denp)
1071			*denp = best_den;
1072	}
1073	return err;
1074}
1075
1076/**
1077 * snd_interval_list - refine the interval value from the list
1078 * @i: the interval value to refine
1079 * @count: the number of elements in the list
1080 * @list: the value list
1081 * @mask: the bit-mask to evaluate
1082 *
1083 * Refines the interval value from the list.
1084 * When mask is non-zero, only the elements corresponding to bit 1 are
1085 * evaluated.
1086 *
1087 * Return: Positive if the value is changed, zero if it's not changed, or a
1088 * negative error code.
1089 */
1090int snd_interval_list(struct snd_interval *i, unsigned int count,
1091		      const unsigned int *list, unsigned int mask)
1092{
1093        unsigned int k;
1094	struct snd_interval list_range;
1095
1096	if (!count) {
1097		i->empty = 1;
1098		return -EINVAL;
1099	}
1100	snd_interval_any(&list_range);
1101	list_range.min = UINT_MAX;
1102	list_range.max = 0;
1103        for (k = 0; k < count; k++) {
1104		if (mask && !(mask & (1 << k)))
1105			continue;
1106		if (!snd_interval_test(i, list[k]))
1107			continue;
1108		list_range.min = min(list_range.min, list[k]);
1109		list_range.max = max(list_range.max, list[k]);
1110        }
1111	return snd_interval_refine(i, &list_range);
1112}
1113
1114EXPORT_SYMBOL(snd_interval_list);
1115
1116static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117{
1118	unsigned int n;
1119	int changed = 0;
1120	n = (i->min - min) % step;
1121	if (n != 0 || i->openmin) {
1122		i->min += step - n;
 
1123		changed = 1;
1124	}
1125	n = (i->max - min) % step;
1126	if (n != 0 || i->openmax) {
1127		i->max -= n;
 
1128		changed = 1;
1129	}
1130	if (snd_interval_checkempty(i)) {
1131		i->empty = 1;
1132		return -EINVAL;
1133	}
1134	return changed;
1135}
1136
1137/* Info constraints helpers */
1138
1139/**
1140 * snd_pcm_hw_rule_add - add the hw-constraint rule
1141 * @runtime: the pcm runtime instance
1142 * @cond: condition bits
1143 * @var: the variable to evaluate
1144 * @func: the evaluation function
1145 * @private: the private data pointer passed to function
1146 * @dep: the dependent variables
1147 *
1148 * Return: Zero if successful, or a negative error code on failure.
1149 */
1150int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151			int var,
1152			snd_pcm_hw_rule_func_t func, void *private,
1153			int dep, ...)
1154{
1155	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156	struct snd_pcm_hw_rule *c;
1157	unsigned int k;
1158	va_list args;
1159	va_start(args, dep);
1160	if (constrs->rules_num >= constrs->rules_all) {
1161		struct snd_pcm_hw_rule *new;
1162		unsigned int new_rules = constrs->rules_all + 16;
1163		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
 
1164		if (!new) {
1165			va_end(args);
1166			return -ENOMEM;
1167		}
1168		if (constrs->rules) {
1169			memcpy(new, constrs->rules,
1170			       constrs->rules_num * sizeof(*c));
1171			kfree(constrs->rules);
1172		}
1173		constrs->rules = new;
1174		constrs->rules_all = new_rules;
1175	}
1176	c = &constrs->rules[constrs->rules_num];
1177	c->cond = cond;
1178	c->func = func;
1179	c->var = var;
1180	c->private = private;
1181	k = 0;
1182	while (1) {
1183		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184			va_end(args);
1185			return -EINVAL;
1186		}
1187		c->deps[k++] = dep;
1188		if (dep < 0)
1189			break;
1190		dep = va_arg(args, int);
1191	}
1192	constrs->rules_num++;
1193	va_end(args);
1194	return 0;
1195}
1196
1197EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198
1199/**
1200 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201 * @runtime: PCM runtime instance
1202 * @var: hw_params variable to apply the mask
1203 * @mask: the bitmap mask
1204 *
1205 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206 *
1207 * Return: Zero if successful, or a negative error code on failure.
1208 */
1209int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210			       u_int32_t mask)
1211{
1212	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213	struct snd_mask *maskp = constrs_mask(constrs, var);
1214	*maskp->bits &= mask;
1215	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216	if (*maskp->bits == 0)
1217		return -EINVAL;
1218	return 0;
1219}
1220
1221/**
1222 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223 * @runtime: PCM runtime instance
1224 * @var: hw_params variable to apply the mask
1225 * @mask: the 64bit bitmap mask
1226 *
1227 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228 *
1229 * Return: Zero if successful, or a negative error code on failure.
1230 */
1231int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232				 u_int64_t mask)
1233{
1234	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235	struct snd_mask *maskp = constrs_mask(constrs, var);
1236	maskp->bits[0] &= (u_int32_t)mask;
1237	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239	if (! maskp->bits[0] && ! maskp->bits[1])
1240		return -EINVAL;
1241	return 0;
1242}
1243EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1244
1245/**
1246 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247 * @runtime: PCM runtime instance
1248 * @var: hw_params variable to apply the integer constraint
1249 *
1250 * Apply the constraint of integer to an interval parameter.
1251 *
1252 * Return: Positive if the value is changed, zero if it's not changed, or a
1253 * negative error code.
1254 */
1255int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256{
1257	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258	return snd_interval_setinteger(constrs_interval(constrs, var));
1259}
1260
1261EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262
1263/**
1264 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265 * @runtime: PCM runtime instance
1266 * @var: hw_params variable to apply the range
1267 * @min: the minimal value
1268 * @max: the maximal value
1269 * 
1270 * Apply the min/max range constraint to an interval parameter.
1271 *
1272 * Return: Positive if the value is changed, zero if it's not changed, or a
1273 * negative error code.
1274 */
1275int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276				 unsigned int min, unsigned int max)
1277{
1278	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279	struct snd_interval t;
1280	t.min = min;
1281	t.max = max;
1282	t.openmin = t.openmax = 0;
1283	t.integer = 0;
1284	return snd_interval_refine(constrs_interval(constrs, var), &t);
1285}
1286
1287EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288
1289static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290				struct snd_pcm_hw_rule *rule)
1291{
1292	struct snd_pcm_hw_constraint_list *list = rule->private;
1293	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294}		
1295
1296
1297/**
1298 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299 * @runtime: PCM runtime instance
1300 * @cond: condition bits
1301 * @var: hw_params variable to apply the list constraint
1302 * @l: list
1303 * 
1304 * Apply the list of constraints to an interval parameter.
1305 *
1306 * Return: Zero if successful, or a negative error code on failure.
1307 */
1308int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309			       unsigned int cond,
1310			       snd_pcm_hw_param_t var,
1311			       const struct snd_pcm_hw_constraint_list *l)
1312{
1313	return snd_pcm_hw_rule_add(runtime, cond, var,
1314				   snd_pcm_hw_rule_list, (void *)l,
1315				   var, -1);
1316}
1317
1318EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321				   struct snd_pcm_hw_rule *rule)
1322{
1323	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324	unsigned int num = 0, den = 0;
1325	int err;
1326	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327				  r->nrats, r->rats, &num, &den);
1328	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329		params->rate_num = num;
1330		params->rate_den = den;
1331	}
1332	return err;
1333}
1334
1335/**
1336 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337 * @runtime: PCM runtime instance
1338 * @cond: condition bits
1339 * @var: hw_params variable to apply the ratnums constraint
1340 * @r: struct snd_ratnums constriants
1341 *
1342 * Return: Zero if successful, or a negative error code on failure.
1343 */
1344int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1345				  unsigned int cond,
1346				  snd_pcm_hw_param_t var,
1347				  struct snd_pcm_hw_constraint_ratnums *r)
1348{
1349	return snd_pcm_hw_rule_add(runtime, cond, var,
1350				   snd_pcm_hw_rule_ratnums, r,
1351				   var, -1);
1352}
1353
1354EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355
1356static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357				   struct snd_pcm_hw_rule *rule)
1358{
1359	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360	unsigned int num = 0, den = 0;
1361	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362				  r->nrats, r->rats, &num, &den);
1363	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364		params->rate_num = num;
1365		params->rate_den = den;
1366	}
1367	return err;
1368}
1369
1370/**
1371 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372 * @runtime: PCM runtime instance
1373 * @cond: condition bits
1374 * @var: hw_params variable to apply the ratdens constraint
1375 * @r: struct snd_ratdens constriants
1376 *
1377 * Return: Zero if successful, or a negative error code on failure.
1378 */
1379int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1380				  unsigned int cond,
1381				  snd_pcm_hw_param_t var,
1382				  struct snd_pcm_hw_constraint_ratdens *r)
1383{
1384	return snd_pcm_hw_rule_add(runtime, cond, var,
1385				   snd_pcm_hw_rule_ratdens, r,
1386				   var, -1);
1387}
1388
1389EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392				  struct snd_pcm_hw_rule *rule)
1393{
1394	unsigned int l = (unsigned long) rule->private;
1395	int width = l & 0xffff;
1396	unsigned int msbits = l >> 16;
1397	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398	if (snd_interval_single(i) && snd_interval_value(i) == width)
1399		params->msbits = msbits;
 
 
 
 
 
 
 
1400	return 0;
1401}
1402
1403/**
1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405 * @runtime: PCM runtime instance
1406 * @cond: condition bits
1407 * @width: sample bits width
1408 * @msbits: msbits width
1409 *
 
 
 
 
 
1410 * Return: Zero if successful, or a negative error code on failure.
1411 */
1412int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1413				 unsigned int cond,
1414				 unsigned int width,
1415				 unsigned int msbits)
1416{
1417	unsigned long l = (msbits << 16) | width;
1418	return snd_pcm_hw_rule_add(runtime, cond, -1,
1419				    snd_pcm_hw_rule_msbits,
1420				    (void*) l,
1421				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422}
1423
1424EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427				struct snd_pcm_hw_rule *rule)
1428{
1429	unsigned long step = (unsigned long) rule->private;
1430	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431}
1432
1433/**
1434 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435 * @runtime: PCM runtime instance
1436 * @cond: condition bits
1437 * @var: hw_params variable to apply the step constraint
1438 * @step: step size
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443			       unsigned int cond,
1444			       snd_pcm_hw_param_t var,
1445			       unsigned long step)
1446{
1447	return snd_pcm_hw_rule_add(runtime, cond, var, 
1448				   snd_pcm_hw_rule_step, (void *) step,
1449				   var, -1);
1450}
1451
1452EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455{
1456	static unsigned int pow2_sizes[] = {
1457		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461	};
1462	return snd_interval_list(hw_param_interval(params, rule->var),
1463				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464}		
1465
1466/**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475			       unsigned int cond,
1476			       snd_pcm_hw_param_t var)
1477{
1478	return snd_pcm_hw_rule_add(runtime, cond, var, 
1479				   snd_pcm_hw_rule_pow2, NULL,
1480				   var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486					   struct snd_pcm_hw_rule *rule)
1487{
1488	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489	struct snd_interval *rate;
1490
1491	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492	return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503			       unsigned int base_rate)
1504{
1505	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506				   SNDRV_PCM_HW_PARAM_RATE,
1507				   snd_pcm_hw_rule_noresample_func,
1508				   (void *)(uintptr_t)base_rate,
1509				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514				  snd_pcm_hw_param_t var)
1515{
1516	if (hw_is_mask(var)) {
1517		snd_mask_any(hw_param_mask(params, var));
1518		params->cmask |= 1 << var;
1519		params->rmask |= 1 << var;
1520		return;
1521	}
1522	if (hw_is_interval(var)) {
1523		snd_interval_any(hw_param_interval(params, var));
1524		params->cmask |= 1 << var;
1525		params->rmask |= 1 << var;
1526		return;
1527	}
1528	snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533	unsigned int k;
1534	memset(params, 0, sizeof(*params));
1535	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536		_snd_pcm_hw_param_any(params, k);
1537	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538		_snd_pcm_hw_param_any(params, k);
1539	params->info = ~0U;
1540}
1541
1542EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544/**
1545 * snd_pcm_hw_param_value - return @params field @var value
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Return: The value for field @var if it's fixed in configuration space
1551 * defined by @params. -%EINVAL otherwise.
1552 */
1553int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554			   snd_pcm_hw_param_t var, int *dir)
1555{
1556	if (hw_is_mask(var)) {
1557		const struct snd_mask *mask = hw_param_mask_c(params, var);
1558		if (!snd_mask_single(mask))
1559			return -EINVAL;
1560		if (dir)
1561			*dir = 0;
1562		return snd_mask_value(mask);
1563	}
1564	if (hw_is_interval(var)) {
1565		const struct snd_interval *i = hw_param_interval_c(params, var);
1566		if (!snd_interval_single(i))
1567			return -EINVAL;
1568		if (dir)
1569			*dir = i->openmin;
1570		return snd_interval_value(i);
1571	}
1572	return -EINVAL;
1573}
1574
1575EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578				snd_pcm_hw_param_t var)
1579{
1580	if (hw_is_mask(var)) {
1581		snd_mask_none(hw_param_mask(params, var));
1582		params->cmask |= 1 << var;
1583		params->rmask |= 1 << var;
1584	} else if (hw_is_interval(var)) {
1585		snd_interval_none(hw_param_interval(params, var));
1586		params->cmask |= 1 << var;
1587		params->rmask |= 1 << var;
1588	} else {
1589		snd_BUG();
1590	}
1591}
1592
1593EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596				   snd_pcm_hw_param_t var)
1597{
1598	int changed;
1599	if (hw_is_mask(var))
1600		changed = snd_mask_refine_first(hw_param_mask(params, var));
1601	else if (hw_is_interval(var))
1602		changed = snd_interval_refine_first(hw_param_interval(params, var));
1603	else
1604		return -EINVAL;
1605	if (changed) {
1606		params->cmask |= 1 << var;
1607		params->rmask |= 1 << var;
1608	}
1609	return changed;
1610}
1611
1612
1613/**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626			   struct snd_pcm_hw_params *params, 
1627			   snd_pcm_hw_param_t var, int *dir)
1628{
1629	int changed = _snd_pcm_hw_param_first(params, var);
1630	if (changed < 0)
1631		return changed;
1632	if (params->rmask) {
1633		int err = snd_pcm_hw_refine(pcm, params);
1634		if (snd_BUG_ON(err < 0))
1635			return err;
1636	}
1637	return snd_pcm_hw_param_value(params, var, dir);
1638}
1639
1640EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643				  snd_pcm_hw_param_t var)
1644{
1645	int changed;
1646	if (hw_is_mask(var))
1647		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648	else if (hw_is_interval(var))
1649		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650	else
1651		return -EINVAL;
1652	if (changed) {
1653		params->cmask |= 1 << var;
1654		params->rmask |= 1 << var;
1655	}
1656	return changed;
1657}
1658
1659
1660/**
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1666 *
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1669 *
1670 * Return: The maximum, or a negative error code on failure.
1671 */
1672int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673			  struct snd_pcm_hw_params *params,
1674			  snd_pcm_hw_param_t var, int *dir)
1675{
1676	int changed = _snd_pcm_hw_param_last(params, var);
1677	if (changed < 0)
1678		return changed;
1679	if (params->rmask) {
1680		int err = snd_pcm_hw_refine(pcm, params);
1681		if (snd_BUG_ON(err < 0))
1682			return err;
1683	}
1684	return snd_pcm_hw_param_value(params, var, dir);
1685}
1686
1687EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689/**
1690 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691 * @pcm: PCM instance
1692 * @params: the hw_params instance
1693 *
1694 * Choose one configuration from configuration space defined by @params.
1695 * The configuration chosen is that obtained fixing in this order:
1696 * first access, first format, first subformat, min channels,
1697 * min rate, min period time, max buffer size, min tick time
1698 *
1699 * Return: Zero if successful, or a negative error code on failure.
 
1700 */
1701int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702			     struct snd_pcm_hw_params *params)
1703{
1704	static int vars[] = {
1705		SNDRV_PCM_HW_PARAM_ACCESS,
1706		SNDRV_PCM_HW_PARAM_FORMAT,
1707		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708		SNDRV_PCM_HW_PARAM_CHANNELS,
1709		SNDRV_PCM_HW_PARAM_RATE,
1710		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712		SNDRV_PCM_HW_PARAM_TICK_TIME,
1713		-1
1714	};
1715	int err, *v;
1716
1717	for (v = vars; *v != -1; v++) {
1718		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720		else
1721			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722		if (snd_BUG_ON(err < 0))
1723			return err;
 
1724	}
1725	return 0;
1726}
 
1727
1728static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729				   void *arg)
1730{
1731	struct snd_pcm_runtime *runtime = substream->runtime;
1732	unsigned long flags;
1733	snd_pcm_stream_lock_irqsave(substream, flags);
1734	if (snd_pcm_running(substream) &&
1735	    snd_pcm_update_hw_ptr(substream) >= 0)
1736		runtime->status->hw_ptr %= runtime->buffer_size;
1737	else {
1738		runtime->status->hw_ptr = 0;
1739		runtime->hw_ptr_wrap = 0;
1740	}
1741	snd_pcm_stream_unlock_irqrestore(substream, flags);
1742	return 0;
1743}
1744
1745static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746					  void *arg)
1747{
1748	struct snd_pcm_channel_info *info = arg;
1749	struct snd_pcm_runtime *runtime = substream->runtime;
1750	int width;
1751	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752		info->offset = -1;
1753		return 0;
1754	}
1755	width = snd_pcm_format_physical_width(runtime->format);
1756	if (width < 0)
1757		return width;
1758	info->offset = 0;
1759	switch (runtime->access) {
1760	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762		info->first = info->channel * width;
1763		info->step = runtime->channels * width;
1764		break;
1765	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767	{
1768		size_t size = runtime->dma_bytes / runtime->channels;
1769		info->first = info->channel * size * 8;
1770		info->step = width;
1771		break;
1772	}
1773	default:
1774		snd_BUG();
1775		break;
1776	}
1777	return 0;
1778}
1779
1780static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781				       void *arg)
1782{
1783	struct snd_pcm_hw_params *params = arg;
1784	snd_pcm_format_t format;
1785	int channels, width;
 
1786
1787	params->fifo_size = substream->runtime->hw.fifo_size;
1788	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789		format = params_format(params);
1790		channels = params_channels(params);
1791		width = snd_pcm_format_physical_width(format);
1792		params->fifo_size /= width * channels;
 
1793	}
1794	return 0;
1795}
1796
1797/**
1798 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799 * @substream: the pcm substream instance
1800 * @cmd: ioctl command
1801 * @arg: ioctl argument
1802 *
1803 * Processes the generic ioctl commands for PCM.
1804 * Can be passed as the ioctl callback for PCM ops.
1805 *
1806 * Return: Zero if successful, or a negative error code on failure.
1807 */
1808int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809		      unsigned int cmd, void *arg)
1810{
1811	switch (cmd) {
1812	case SNDRV_PCM_IOCTL1_INFO:
1813		return 0;
1814	case SNDRV_PCM_IOCTL1_RESET:
1815		return snd_pcm_lib_ioctl_reset(substream, arg);
1816	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820	}
1821	return -ENXIO;
1822}
1823
1824EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825
1826/**
1827 * snd_pcm_period_elapsed - update the pcm status for the next period
1828 * @substream: the pcm substream instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829 *
1830 * This function is called from the interrupt handler when the
1831 * PCM has processed the period size.  It will update the current
1832 * pointer, wake up sleepers, etc.
1833 *
1834 * Even if more than one periods have elapsed since the last call, you
1835 * have to call this only once.
 
 
 
1836 */
1837void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838{
1839	struct snd_pcm_runtime *runtime;
1840	unsigned long flags;
1841
1842	if (PCM_RUNTIME_CHECK(substream))
1843		return;
1844	runtime = substream->runtime;
1845
1846	if (runtime->transfer_ack_begin)
1847		runtime->transfer_ack_begin(substream);
1848
1849	snd_pcm_stream_lock_irqsave(substream, flags);
1850	if (!snd_pcm_running(substream) ||
1851	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852		goto _end;
1853
 
1854	if (substream->timer_running)
1855		snd_timer_interrupt(substream->timer, 1);
 
1856 _end:
1857	snd_pcm_stream_unlock_irqrestore(substream, flags);
1858	if (runtime->transfer_ack_end)
1859		runtime->transfer_ack_end(substream);
1860	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861}
 
1862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864
1865/*
1866 * Wait until avail_min data becomes available
1867 * Returns a negative error code if any error occurs during operation.
1868 * The available space is stored on availp.  When err = 0 and avail = 0
1869 * on the capture stream, it indicates the stream is in DRAINING state.
1870 */
1871static int wait_for_avail(struct snd_pcm_substream *substream,
1872			      snd_pcm_uframes_t *availp)
1873{
1874	struct snd_pcm_runtime *runtime = substream->runtime;
1875	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876	wait_queue_t wait;
1877	int err = 0;
1878	snd_pcm_uframes_t avail = 0;
1879	long wait_time, tout;
1880
1881	init_waitqueue_entry(&wait, current);
1882	set_current_state(TASK_INTERRUPTIBLE);
1883	add_wait_queue(&runtime->tsleep, &wait);
1884
1885	if (runtime->no_period_wakeup)
1886		wait_time = MAX_SCHEDULE_TIMEOUT;
1887	else {
1888		wait_time = 10;
1889		if (runtime->rate) {
1890			long t = runtime->period_size * 2 / runtime->rate;
1891			wait_time = max(t, wait_time);
 
 
 
 
 
 
1892		}
1893		wait_time = msecs_to_jiffies(wait_time * 1000);
1894	}
1895
1896	for (;;) {
1897		if (signal_pending(current)) {
1898			err = -ERESTARTSYS;
1899			break;
1900		}
1901
1902		/*
1903		 * We need to check if space became available already
1904		 * (and thus the wakeup happened already) first to close
1905		 * the race of space already having become available.
1906		 * This check must happen after been added to the waitqueue
1907		 * and having current state be INTERRUPTIBLE.
1908		 */
1909		if (is_playback)
1910			avail = snd_pcm_playback_avail(runtime);
1911		else
1912			avail = snd_pcm_capture_avail(runtime);
1913		if (avail >= runtime->twake)
1914			break;
1915		snd_pcm_stream_unlock_irq(substream);
1916
1917		tout = schedule_timeout(wait_time);
1918
1919		snd_pcm_stream_lock_irq(substream);
1920		set_current_state(TASK_INTERRUPTIBLE);
1921		switch (runtime->status->state) {
1922		case SNDRV_PCM_STATE_SUSPENDED:
1923			err = -ESTRPIPE;
1924			goto _endloop;
1925		case SNDRV_PCM_STATE_XRUN:
1926			err = -EPIPE;
1927			goto _endloop;
1928		case SNDRV_PCM_STATE_DRAINING:
1929			if (is_playback)
1930				err = -EPIPE;
1931			else 
1932				avail = 0; /* indicate draining */
1933			goto _endloop;
1934		case SNDRV_PCM_STATE_OPEN:
1935		case SNDRV_PCM_STATE_SETUP:
1936		case SNDRV_PCM_STATE_DISCONNECTED:
1937			err = -EBADFD;
1938			goto _endloop;
1939		case SNDRV_PCM_STATE_PAUSED:
1940			continue;
1941		}
1942		if (!tout) {
1943			pcm_dbg(substream->pcm,
1944				"%s write error (DMA or IRQ trouble?)\n",
1945				is_playback ? "playback" : "capture");
1946			err = -EIO;
1947			break;
1948		}
1949	}
1950 _endloop:
1951	set_current_state(TASK_RUNNING);
1952	remove_wait_queue(&runtime->tsleep, &wait);
1953	*availp = avail;
1954	return err;
1955}
1956	
1957static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1958				      unsigned int hwoff,
1959				      unsigned long data, unsigned int off,
1960				      snd_pcm_uframes_t frames)
 
 
 
 
 
 
 
1961{
1962	struct snd_pcm_runtime *runtime = substream->runtime;
1963	int err;
1964	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1965	if (substream->ops->copy) {
1966		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1967			return err;
1968	} else {
1969		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1970		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1971			return -EFAULT;
1972	}
 
1973	return 0;
1974}
1975 
1976typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1977			  unsigned long data, unsigned int off,
1978			  snd_pcm_uframes_t size);
1979
1980static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1981					    unsigned long data,
1982					    snd_pcm_uframes_t size,
1983					    int nonblock,
1984					    transfer_f transfer)
1985{
1986	struct snd_pcm_runtime *runtime = substream->runtime;
1987	snd_pcm_uframes_t xfer = 0;
1988	snd_pcm_uframes_t offset = 0;
1989	snd_pcm_uframes_t avail;
1990	int err = 0;
1991
1992	if (size == 0)
1993		return 0;
 
 
 
 
 
 
 
 
 
1994
1995	snd_pcm_stream_lock_irq(substream);
1996	switch (runtime->status->state) {
1997	case SNDRV_PCM_STATE_PREPARED:
1998	case SNDRV_PCM_STATE_RUNNING:
1999	case SNDRV_PCM_STATE_PAUSED:
2000		break;
2001	case SNDRV_PCM_STATE_XRUN:
2002		err = -EPIPE;
2003		goto _end_unlock;
2004	case SNDRV_PCM_STATE_SUSPENDED:
2005		err = -ESTRPIPE;
2006		goto _end_unlock;
2007	default:
2008		err = -EBADFD;
2009		goto _end_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010	}
2011
2012	runtime->twake = runtime->control->avail_min ? : 1;
2013	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2014		snd_pcm_update_hw_ptr(substream);
2015	avail = snd_pcm_playback_avail(runtime);
2016	while (size > 0) {
2017		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2018		snd_pcm_uframes_t cont;
2019		if (!avail) {
2020			if (nonblock) {
2021				err = -EAGAIN;
2022				goto _end_unlock;
2023			}
2024			runtime->twake = min_t(snd_pcm_uframes_t, size,
2025					runtime->control->avail_min ? : 1);
2026			err = wait_for_avail(substream, &avail);
2027			if (err < 0)
2028				goto _end_unlock;
2029		}
2030		frames = size > avail ? avail : size;
2031		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2032		if (frames > cont)
2033			frames = cont;
2034		if (snd_BUG_ON(!frames)) {
2035			runtime->twake = 0;
2036			snd_pcm_stream_unlock_irq(substream);
2037			return -EINVAL;
2038		}
2039		appl_ptr = runtime->control->appl_ptr;
2040		appl_ofs = appl_ptr % runtime->buffer_size;
2041		snd_pcm_stream_unlock_irq(substream);
2042		err = transfer(substream, appl_ofs, data, offset, frames);
2043		snd_pcm_stream_lock_irq(substream);
2044		if (err < 0)
2045			goto _end_unlock;
2046		switch (runtime->status->state) {
2047		case SNDRV_PCM_STATE_XRUN:
2048			err = -EPIPE;
2049			goto _end_unlock;
2050		case SNDRV_PCM_STATE_SUSPENDED:
2051			err = -ESTRPIPE;
2052			goto _end_unlock;
2053		default:
2054			break;
2055		}
2056		appl_ptr += frames;
2057		if (appl_ptr >= runtime->boundary)
2058			appl_ptr -= runtime->boundary;
2059		runtime->control->appl_ptr = appl_ptr;
2060		if (substream->ops->ack)
2061			substream->ops->ack(substream);
2062
2063		offset += frames;
2064		size -= frames;
2065		xfer += frames;
2066		avail -= frames;
2067		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2068		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2069			err = snd_pcm_start(substream);
2070			if (err < 0)
2071				goto _end_unlock;
2072		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073	}
2074 _end_unlock:
2075	runtime->twake = 0;
2076	if (xfer > 0 && err >= 0)
2077		snd_pcm_update_state(substream, runtime);
2078	snd_pcm_stream_unlock_irq(substream);
2079	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
 
 
 
 
 
 
 
 
 
 
2080}
2081
2082/* sanity-check for read/write methods */
2083static int pcm_sanity_check(struct snd_pcm_substream *substream)
2084{
2085	struct snd_pcm_runtime *runtime;
2086	if (PCM_RUNTIME_CHECK(substream))
2087		return -ENXIO;
2088	runtime = substream->runtime;
2089	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2090		return -EINVAL;
2091	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2092		return -EBADFD;
2093	return 0;
2094}
2095
2096snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2097{
2098	struct snd_pcm_runtime *runtime;
2099	int nonblock;
2100	int err;
2101
2102	err = pcm_sanity_check(substream);
2103	if (err < 0)
2104		return err;
2105	runtime = substream->runtime;
2106	nonblock = !!(substream->f_flags & O_NONBLOCK);
2107
2108	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2109	    runtime->channels > 1)
2110		return -EINVAL;
2111	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2112				  snd_pcm_lib_write_transfer);
2113}
2114
2115EXPORT_SYMBOL(snd_pcm_lib_write);
2116
2117static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2118				       unsigned int hwoff,
2119				       unsigned long data, unsigned int off,
2120				       snd_pcm_uframes_t frames)
2121{
2122	struct snd_pcm_runtime *runtime = substream->runtime;
2123	int err;
2124	void __user **bufs = (void __user **)data;
2125	int channels = runtime->channels;
2126	int c;
2127	if (substream->ops->copy) {
2128		if (snd_BUG_ON(!substream->ops->silence))
2129			return -EINVAL;
2130		for (c = 0; c < channels; ++c, ++bufs) {
2131			if (*bufs == NULL) {
2132				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2133					return err;
2134			} else {
2135				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2136				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2137					return err;
2138			}
 
 
 
 
2139		}
2140	} else {
2141		/* default transfer behaviour */
2142		size_t dma_csize = runtime->dma_bytes / channels;
2143		for (c = 0; c < channels; ++c, ++bufs) {
2144			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2145			if (*bufs == NULL) {
2146				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2147			} else {
2148				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2149				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2150					return -EFAULT;
2151			}
2152		}
2153	}
 
 
 
2154	return 0;
2155}
2156 
2157snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2158				     void __user **bufs,
2159				     snd_pcm_uframes_t frames)
 
2160{
2161	struct snd_pcm_runtime *runtime;
2162	int nonblock;
 
 
 
 
 
 
2163	int err;
2164
2165	err = pcm_sanity_check(substream);
2166	if (err < 0)
2167		return err;
2168	runtime = substream->runtime;
2169	nonblock = !!(substream->f_flags & O_NONBLOCK);
2170
2171	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2172		return -EINVAL;
2173	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2174				  nonblock, snd_pcm_lib_writev_transfer);
2175}
2176
2177EXPORT_SYMBOL(snd_pcm_lib_writev);
2178
2179static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2180				     unsigned int hwoff,
2181				     unsigned long data, unsigned int off,
2182				     snd_pcm_uframes_t frames)
2183{
2184	struct snd_pcm_runtime *runtime = substream->runtime;
2185	int err;
2186	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2187	if (substream->ops->copy) {
2188		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2189			return err;
2190	} else {
2191		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2192		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2193			return -EFAULT;
2194	}
2195	return 0;
2196}
2197
2198static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2199					   unsigned long data,
2200					   snd_pcm_uframes_t size,
2201					   int nonblock,
2202					   transfer_f transfer)
2203{
2204	struct snd_pcm_runtime *runtime = substream->runtime;
2205	snd_pcm_uframes_t xfer = 0;
2206	snd_pcm_uframes_t offset = 0;
2207	snd_pcm_uframes_t avail;
2208	int err = 0;
 
2209
2210	if (size == 0)
2211		return 0;
2212
 
 
2213	snd_pcm_stream_lock_irq(substream);
2214	switch (runtime->status->state) {
2215	case SNDRV_PCM_STATE_PREPARED:
2216		if (size >= runtime->start_threshold) {
2217			err = snd_pcm_start(substream);
2218			if (err < 0)
2219				goto _end_unlock;
2220		}
2221		break;
2222	case SNDRV_PCM_STATE_DRAINING:
2223	case SNDRV_PCM_STATE_RUNNING:
2224	case SNDRV_PCM_STATE_PAUSED:
2225		break;
2226	case SNDRV_PCM_STATE_XRUN:
2227		err = -EPIPE;
2228		goto _end_unlock;
2229	case SNDRV_PCM_STATE_SUSPENDED:
2230		err = -ESTRPIPE;
2231		goto _end_unlock;
2232	default:
2233		err = -EBADFD;
2234		goto _end_unlock;
2235	}
2236
2237	runtime->twake = runtime->control->avail_min ? : 1;
2238	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2239		snd_pcm_update_hw_ptr(substream);
2240	avail = snd_pcm_capture_avail(runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241	while (size > 0) {
2242		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2243		snd_pcm_uframes_t cont;
2244		if (!avail) {
2245			if (runtime->status->state ==
2246			    SNDRV_PCM_STATE_DRAINING) {
2247				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2248				goto _end_unlock;
2249			}
2250			if (nonblock) {
2251				err = -EAGAIN;
2252				goto _end_unlock;
2253			}
2254			runtime->twake = min_t(snd_pcm_uframes_t, size,
2255					runtime->control->avail_min ? : 1);
2256			err = wait_for_avail(substream, &avail);
2257			if (err < 0)
2258				goto _end_unlock;
2259			if (!avail)
2260				continue; /* draining */
2261		}
2262		frames = size > avail ? avail : size;
2263		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
 
 
2264		if (frames > cont)
2265			frames = cont;
2266		if (snd_BUG_ON(!frames)) {
2267			runtime->twake = 0;
2268			snd_pcm_stream_unlock_irq(substream);
2269			return -EINVAL;
 
 
 
2270		}
2271		appl_ptr = runtime->control->appl_ptr;
2272		appl_ofs = appl_ptr % runtime->buffer_size;
2273		snd_pcm_stream_unlock_irq(substream);
2274		err = transfer(substream, appl_ofs, data, offset, frames);
 
 
 
 
 
2275		snd_pcm_stream_lock_irq(substream);
 
2276		if (err < 0)
2277			goto _end_unlock;
2278		switch (runtime->status->state) {
2279		case SNDRV_PCM_STATE_XRUN:
2280			err = -EPIPE;
2281			goto _end_unlock;
2282		case SNDRV_PCM_STATE_SUSPENDED:
2283			err = -ESTRPIPE;
2284			goto _end_unlock;
2285		default:
2286			break;
2287		}
2288		appl_ptr += frames;
2289		if (appl_ptr >= runtime->boundary)
2290			appl_ptr -= runtime->boundary;
2291		runtime->control->appl_ptr = appl_ptr;
2292		if (substream->ops->ack)
2293			substream->ops->ack(substream);
2294
2295		offset += frames;
2296		size -= frames;
2297		xfer += frames;
2298		avail -= frames;
 
 
 
 
 
 
 
2299	}
2300 _end_unlock:
2301	runtime->twake = 0;
2302	if (xfer > 0 && err >= 0)
2303		snd_pcm_update_state(substream, runtime);
2304	snd_pcm_stream_unlock_irq(substream);
2305	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2306}
2307
2308snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2309{
2310	struct snd_pcm_runtime *runtime;
2311	int nonblock;
2312	int err;
2313	
2314	err = pcm_sanity_check(substream);
2315	if (err < 0)
2316		return err;
2317	runtime = substream->runtime;
2318	nonblock = !!(substream->f_flags & O_NONBLOCK);
2319	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2320		return -EINVAL;
2321	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2322}
2323
2324EXPORT_SYMBOL(snd_pcm_lib_read);
2325
2326static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2327				      unsigned int hwoff,
2328				      unsigned long data, unsigned int off,
2329				      snd_pcm_uframes_t frames)
2330{
2331	struct snd_pcm_runtime *runtime = substream->runtime;
2332	int err;
2333	void __user **bufs = (void __user **)data;
2334	int channels = runtime->channels;
2335	int c;
2336	if (substream->ops->copy) {
2337		for (c = 0; c < channels; ++c, ++bufs) {
2338			char __user *buf;
2339			if (*bufs == NULL)
2340				continue;
2341			buf = *bufs + samples_to_bytes(runtime, off);
2342			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2343				return err;
2344		}
2345	} else {
2346		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2347		for (c = 0; c < channels; ++c, ++bufs) {
2348			char *hwbuf;
2349			char __user *buf;
2350			if (*bufs == NULL)
2351				continue;
2352
2353			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354			buf = *bufs + samples_to_bytes(runtime, off);
2355			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2356				return -EFAULT;
2357		}
2358	}
2359	return 0;
2360}
2361 
2362snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2363				    void __user **bufs,
2364				    snd_pcm_uframes_t frames)
2365{
2366	struct snd_pcm_runtime *runtime;
2367	int nonblock;
2368	int err;
2369
2370	err = pcm_sanity_check(substream);
2371	if (err < 0)
2372		return err;
2373	runtime = substream->runtime;
2374	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375		return -EBADFD;
2376
2377	nonblock = !!(substream->f_flags & O_NONBLOCK);
2378	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2379		return -EINVAL;
2380	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2381}
2382
2383EXPORT_SYMBOL(snd_pcm_lib_readv);
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391	{ .channels = 1,
2392	  .map = { SNDRV_CHMAP_MONO } },
2393	{ .channels = 2,
2394	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395	{ .channels = 4,
2396	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398	{ .channels = 6,
2399	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402	{ .channels = 8,
2403	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407	{ }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413	{ .channels = 1,
2414	  .map = { SNDRV_CHMAP_MONO } },
2415	{ .channels = 2,
2416	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417	{ .channels = 4,
2418	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420	{ .channels = 6,
2421	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424	{ .channels = 8,
2425	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429	{ }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435	if (ch > info->max_channels)
2436		return false;
2437	return !info->channel_mask || (info->channel_mask & (1U << ch));
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441			      struct snd_ctl_elem_info *uinfo)
2442{
2443	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446	uinfo->count = 0;
2447	uinfo->count = info->max_channels;
2448	uinfo->value.integer.min = 0;
2449	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2450	return 0;
2451}
2452
2453/* get callback for channel map ctl element
2454 * stores the channel position firstly matching with the current channels
2455 */
2456static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2457			     struct snd_ctl_elem_value *ucontrol)
2458{
2459	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2460	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2461	struct snd_pcm_substream *substream;
2462	const struct snd_pcm_chmap_elem *map;
2463
2464	if (snd_BUG_ON(!info->chmap))
2465		return -EINVAL;
2466	substream = snd_pcm_chmap_substream(info, idx);
2467	if (!substream)
2468		return -ENODEV;
2469	memset(ucontrol->value.integer.value, 0,
2470	       sizeof(ucontrol->value.integer.value));
2471	if (!substream->runtime)
2472		return 0; /* no channels set */
2473	for (map = info->chmap; map->channels; map++) {
2474		int i;
2475		if (map->channels == substream->runtime->channels &&
2476		    valid_chmap_channels(info, map->channels)) {
2477			for (i = 0; i < map->channels; i++)
2478				ucontrol->value.integer.value[i] = map->map[i];
2479			return 0;
2480		}
2481	}
2482	return -EINVAL;
2483}
2484
2485/* tlv callback for channel map ctl element
2486 * expands the pre-defined channel maps in a form of TLV
2487 */
2488static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2489			     unsigned int size, unsigned int __user *tlv)
2490{
2491	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492	const struct snd_pcm_chmap_elem *map;
2493	unsigned int __user *dst;
2494	int c, count = 0;
2495
2496	if (snd_BUG_ON(!info->chmap))
2497		return -EINVAL;
2498	if (size < 8)
2499		return -ENOMEM;
2500	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2501		return -EFAULT;
2502	size -= 8;
2503	dst = tlv + 2;
2504	for (map = info->chmap; map->channels; map++) {
2505		int chs_bytes = map->channels * 4;
2506		if (!valid_chmap_channels(info, map->channels))
2507			continue;
2508		if (size < 8)
2509			return -ENOMEM;
2510		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2511		    put_user(chs_bytes, dst + 1))
2512			return -EFAULT;
2513		dst += 2;
2514		size -= 8;
2515		count += 8;
2516		if (size < chs_bytes)
2517			return -ENOMEM;
2518		size -= chs_bytes;
2519		count += chs_bytes;
2520		for (c = 0; c < map->channels; c++) {
2521			if (put_user(map->map[c], dst))
2522				return -EFAULT;
2523			dst++;
2524		}
2525	}
2526	if (put_user(count, tlv + 1))
2527		return -EFAULT;
2528	return 0;
2529}
2530
2531static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2532{
2533	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2534	info->pcm->streams[info->stream].chmap_kctl = NULL;
2535	kfree(info);
2536}
2537
2538/**
2539 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2540 * @pcm: the assigned PCM instance
2541 * @stream: stream direction
2542 * @chmap: channel map elements (for query)
2543 * @max_channels: the max number of channels for the stream
2544 * @private_value: the value passed to each kcontrol's private_value field
2545 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2546 *
2547 * Create channel-mapping control elements assigned to the given PCM stream(s).
2548 * Return: Zero if successful, or a negative error value.
2549 */
2550int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2551			   const struct snd_pcm_chmap_elem *chmap,
2552			   int max_channels,
2553			   unsigned long private_value,
2554			   struct snd_pcm_chmap **info_ret)
2555{
2556	struct snd_pcm_chmap *info;
2557	struct snd_kcontrol_new knew = {
2558		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2559		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2560			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2561			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2562		.info = pcm_chmap_ctl_info,
2563		.get = pcm_chmap_ctl_get,
2564		.tlv.c = pcm_chmap_ctl_tlv,
2565	};
2566	int err;
2567
 
 
2568	info = kzalloc(sizeof(*info), GFP_KERNEL);
2569	if (!info)
2570		return -ENOMEM;
2571	info->pcm = pcm;
2572	info->stream = stream;
2573	info->chmap = chmap;
2574	info->max_channels = max_channels;
2575	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2576		knew.name = "Playback Channel Map";
2577	else
2578		knew.name = "Capture Channel Map";
2579	knew.device = pcm->device;
2580	knew.count = pcm->streams[stream].substream_count;
2581	knew.private_value = private_value;
2582	info->kctl = snd_ctl_new1(&knew, info);
2583	if (!info->kctl) {
2584		kfree(info);
2585		return -ENOMEM;
2586	}
2587	info->kctl->private_free = pcm_chmap_ctl_private_free;
2588	err = snd_ctl_add(pcm->card, info->kctl);
2589	if (err < 0)
2590		return err;
2591	pcm->streams[stream].chmap_kctl = info->kctl;
2592	if (info_ret)
2593		*info_ret = info;
2594	return 0;
2595}
2596EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36
  37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
  38				       snd_pcm_uframes_t ptr,
  39				       snd_pcm_uframes_t new_ptr)
  40{
  41	snd_pcm_sframes_t delta;
  42
  43	delta = new_ptr - ptr;
  44	if (delta == 0)
  45		return;
  46	if (delta < 0)
  47		delta += runtime->boundary;
  48	if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
  49		runtime->silence_filled -= delta;
  50	else
  51		runtime->silence_filled = 0;
  52	runtime->silence_start = new_ptr;
  53}
  54
  55/*
  56 * fill ring buffer with silence
  57 * runtime->silence_start: starting pointer to silence area
  58 * runtime->silence_filled: size filled with silence
  59 * runtime->silence_threshold: threshold from application
  60 * runtime->silence_size: maximal size from application
  61 *
  62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  63 */
  64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  65{
  66	struct snd_pcm_runtime *runtime = substream->runtime;
  67	snd_pcm_uframes_t frames, ofs, transfer;
  68	int err;
  69
  70	if (runtime->silence_size < runtime->boundary) {
  71		snd_pcm_sframes_t noise_dist;
  72		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  73		update_silence_vars(runtime, runtime->silence_start, appl_ptr);
  74		/* initialization outside pointer updates */
  75		if (new_hw_ptr == ULONG_MAX)
  76			new_hw_ptr = runtime->status->hw_ptr;
  77		/* get hw_avail with the boundary crossing */
  78		noise_dist = appl_ptr - new_hw_ptr;
  79		if (noise_dist < 0)
  80			noise_dist += runtime->boundary;
  81		/* total noise distance */
  82		noise_dist += runtime->silence_filled;
 
 
  83		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  84			return;
  85		frames = runtime->silence_threshold - noise_dist;
  86		if (frames > runtime->silence_size)
  87			frames = runtime->silence_size;
  88	} else {
  89		/*
  90		 * This filling mode aims at free-running mode (used for example by dmix),
  91		 * which doesn't update the application pointer.
  92		 */
  93		snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
  94		if (new_hw_ptr == ULONG_MAX) {
  95			/*
  96			 * Initialization, fill the whole unused buffer with silence.
  97			 *
  98			 * Usually, this is entered while stopped, before data is queued,
  99			 * so both pointers are expected to be zero.
 100			 */
 101			snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
 102			if (avail < 0)
 103				avail += runtime->boundary;
 104			/*
 105			 * In free-running mode, appl_ptr will be zero even while running,
 106			 * so we end up with a huge number. There is no useful way to
 107			 * handle this, so we just clear the whole buffer.
 108			 */
 109			runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
 110			runtime->silence_start = hw_ptr;
 111		} else {
 112			/* Silence the just played area immediately */
 113			update_silence_vars(runtime, hw_ptr, new_hw_ptr);
 
 
 
 
 
 
 
 
 
 114		}
 115		/*
 116		 * In this mode, silence_filled actually includes the valid
 117		 * sample data from the user.
 118		 */
 119		frames = runtime->buffer_size - runtime->silence_filled;
 120	}
 121	if (snd_BUG_ON(frames > runtime->buffer_size))
 122		return;
 123	if (frames == 0)
 124		return;
 125	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
 126	do {
 127		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 128		err = fill_silence_frames(substream, ofs, transfer);
 129		snd_BUG_ON(err < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130		runtime->silence_filled += transfer;
 131		frames -= transfer;
 132		ofs = 0;
 133	} while (frames > 0);
 134	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 135}
 136
 137#ifdef CONFIG_SND_DEBUG
 138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 139			   char *name, size_t len)
 140{
 141	snprintf(name, len, "pcmC%dD%d%c:%d",
 142		 substream->pcm->card->number,
 143		 substream->pcm->device,
 144		 substream->stream ? 'c' : 'p',
 145		 substream->number);
 146}
 147EXPORT_SYMBOL(snd_pcm_debug_name);
 148#endif
 149
 150#define XRUN_DEBUG_BASIC	(1<<0)
 151#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 152#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 
 
 
 
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167/* call with stream lock held */
 168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 169{
 170	struct snd_pcm_runtime *runtime = substream->runtime;
 171
 172	trace_xrun(substream);
 173	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 174		struct timespec64 tstamp;
 175
 176		snd_pcm_gettime(runtime, &tstamp);
 177		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 178		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 179	}
 180	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 181	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 182		char name[16];
 183		snd_pcm_debug_name(substream, name, sizeof(name));
 184		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 185		dump_stack_on_xrun(substream);
 186	}
 187}
 188
 189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 191	do {								\
 192		trace_hw_ptr_error(substream, reason);	\
 193		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 194			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 195					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 196			dump_stack_on_xrun(substream);			\
 197		}							\
 198	} while (0)
 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 201
 202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 
 
 203
 204#endif
 205
 206int snd_pcm_update_state(struct snd_pcm_substream *substream,
 207			 struct snd_pcm_runtime *runtime)
 208{
 209	snd_pcm_uframes_t avail;
 210
 211	avail = snd_pcm_avail(substream);
 
 
 
 212	if (avail > runtime->avail_max)
 213		runtime->avail_max = avail;
 214	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 215		if (avail >= runtime->buffer_size) {
 216			snd_pcm_drain_done(substream);
 217			return -EPIPE;
 218		}
 219	} else {
 220		if (avail >= runtime->stop_threshold) {
 221			__snd_pcm_xrun(substream);
 222			return -EPIPE;
 223		}
 224	}
 225	if (runtime->twake) {
 226		if (avail >= runtime->twake)
 227			wake_up(&runtime->tsleep);
 228	} else if (avail >= runtime->control->avail_min)
 229		wake_up(&runtime->sleep);
 230	return 0;
 231}
 232
 233static void update_audio_tstamp(struct snd_pcm_substream *substream,
 234				struct timespec64 *curr_tstamp,
 235				struct timespec64 *audio_tstamp)
 236{
 237	struct snd_pcm_runtime *runtime = substream->runtime;
 238	u64 audio_frames, audio_nsecs;
 239	struct timespec64 driver_tstamp;
 240
 241	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 242		return;
 243
 244	if (!(substream->ops->get_time_info) ||
 245		(runtime->audio_tstamp_report.actual_type ==
 246			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 247
 248		/*
 249		 * provide audio timestamp derived from pointer position
 250		 * add delay only if requested
 251		 */
 252
 253		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 254
 255		if (runtime->audio_tstamp_config.report_delay) {
 256			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 257				audio_frames -=  runtime->delay;
 258			else
 259				audio_frames +=  runtime->delay;
 260		}
 261		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 262				runtime->rate);
 263		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 264	}
 265
 266	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 267	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 268		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 269		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 270		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 271		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 272	}
 273
 274
 275	/*
 276	 * re-take a driver timestamp to let apps detect if the reference tstamp
 277	 * read by low-level hardware was provided with a delay
 278	 */
 279	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 280	runtime->driver_tstamp = driver_tstamp;
 281}
 282
 283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 284				  unsigned int in_interrupt)
 285{
 286	struct snd_pcm_runtime *runtime = substream->runtime;
 287	snd_pcm_uframes_t pos;
 288	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 289	snd_pcm_sframes_t hdelta, delta;
 290	unsigned long jdelta;
 291	unsigned long curr_jiffies;
 292	struct timespec64 curr_tstamp;
 293	struct timespec64 audio_tstamp;
 294	int crossed_boundary = 0;
 295
 296	old_hw_ptr = runtime->status->hw_ptr;
 297
 298	/*
 299	 * group pointer, time and jiffies reads to allow for more
 300	 * accurate correlations/corrections.
 301	 * The values are stored at the end of this routine after
 302	 * corrections for hw_ptr position
 303	 */
 304	pos = substream->ops->pointer(substream);
 305	curr_jiffies = jiffies;
 306	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 307		if ((substream->ops->get_time_info) &&
 308			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 309			substream->ops->get_time_info(substream, &curr_tstamp,
 310						&audio_tstamp,
 311						&runtime->audio_tstamp_config,
 312						&runtime->audio_tstamp_report);
 313
 314			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 315			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 316				snd_pcm_gettime(runtime, &curr_tstamp);
 317		} else
 318			snd_pcm_gettime(runtime, &curr_tstamp);
 319	}
 320
 321	if (pos == SNDRV_PCM_POS_XRUN) {
 322		__snd_pcm_xrun(substream);
 323		return -EPIPE;
 324	}
 325	if (pos >= runtime->buffer_size) {
 326		if (printk_ratelimit()) {
 327			char name[16];
 328			snd_pcm_debug_name(substream, name, sizeof(name));
 
 329			pcm_err(substream->pcm,
 330				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 331				name, pos, runtime->buffer_size,
 332				runtime->period_size);
 333		}
 334		pos = 0;
 335	}
 336	pos -= pos % runtime->min_align;
 337	trace_hwptr(substream, pos, in_interrupt);
 
 338	hw_base = runtime->hw_ptr_base;
 339	new_hw_ptr = hw_base + pos;
 340	if (in_interrupt) {
 341		/* we know that one period was processed */
 342		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 343		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 344		if (delta > new_hw_ptr) {
 345			/* check for double acknowledged interrupts */
 346			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 347			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 348				hw_base += runtime->buffer_size;
 349				if (hw_base >= runtime->boundary) {
 350					hw_base = 0;
 351					crossed_boundary++;
 352				}
 353				new_hw_ptr = hw_base + pos;
 354				goto __delta;
 355			}
 356		}
 357	}
 358	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 359	/* pointer crosses the end of the ring buffer */
 360	if (new_hw_ptr < old_hw_ptr) {
 361		hw_base += runtime->buffer_size;
 362		if (hw_base >= runtime->boundary) {
 363			hw_base = 0;
 364			crossed_boundary++;
 365		}
 366		new_hw_ptr = hw_base + pos;
 367	}
 368      __delta:
 369	delta = new_hw_ptr - old_hw_ptr;
 370	if (delta < 0)
 371		delta += runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	if (runtime->no_period_wakeup) {
 374		snd_pcm_sframes_t xrun_threshold;
 375		/*
 376		 * Without regular period interrupts, we have to check
 377		 * the elapsed time to detect xruns.
 378		 */
 379		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 380		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 381			goto no_delta_check;
 382		hdelta = jdelta - delta * HZ / runtime->rate;
 383		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 384		while (hdelta > xrun_threshold) {
 385			delta += runtime->buffer_size;
 386			hw_base += runtime->buffer_size;
 387			if (hw_base >= runtime->boundary) {
 388				hw_base = 0;
 389				crossed_boundary++;
 390			}
 391			new_hw_ptr = hw_base + pos;
 392			hdelta -= runtime->hw_ptr_buffer_jiffies;
 393		}
 394		goto no_delta_check;
 395	}
 396
 397	/* something must be really wrong */
 398	if (delta >= runtime->buffer_size + runtime->period_size) {
 399		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 400			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 401			     substream->stream, (long)pos,
 402			     (long)new_hw_ptr, (long)old_hw_ptr);
 
 
 
 403		return 0;
 404	}
 405
 406	/* Do jiffies check only in xrun_debug mode */
 407	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 408		goto no_jiffies_check;
 409
 410	/* Skip the jiffies check for hardwares with BATCH flag.
 411	 * Such hardware usually just increases the position at each IRQ,
 412	 * thus it can't give any strange position.
 413	 */
 414	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 415		goto no_jiffies_check;
 416	hdelta = delta;
 417	if (hdelta < runtime->delay)
 418		goto no_jiffies_check;
 419	hdelta -= runtime->delay;
 420	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 421	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 422		delta = jdelta /
 423			(((runtime->period_size * HZ) / runtime->rate)
 424								+ HZ/100);
 425		/* move new_hw_ptr according jiffies not pos variable */
 426		new_hw_ptr = old_hw_ptr;
 427		hw_base = delta;
 428		/* use loop to avoid checks for delta overflows */
 429		/* the delta value is small or zero in most cases */
 430		while (delta > 0) {
 431			new_hw_ptr += runtime->period_size;
 432			if (new_hw_ptr >= runtime->boundary) {
 433				new_hw_ptr -= runtime->boundary;
 434				crossed_boundary--;
 435			}
 436			delta--;
 437		}
 438		/* align hw_base to buffer_size */
 439		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 440			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 
 
 
 441			     (long)pos, (long)hdelta,
 442			     (long)runtime->period_size, jdelta,
 443			     ((hdelta * HZ) / runtime->rate), hw_base,
 444			     (unsigned long)old_hw_ptr,
 445			     (unsigned long)new_hw_ptr);
 446		/* reset values to proper state */
 447		delta = 0;
 448		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 449	}
 450 no_jiffies_check:
 451	if (delta > runtime->period_size + runtime->period_size / 2) {
 452		hw_ptr_error(substream, in_interrupt,
 453			     "Lost interrupts?",
 454			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 
 
 455			     substream->stream, (long)delta,
 456			     (long)new_hw_ptr,
 457			     (long)old_hw_ptr);
 458	}
 459
 460 no_delta_check:
 461	if (runtime->status->hw_ptr == new_hw_ptr) {
 462		runtime->hw_ptr_jiffies = curr_jiffies;
 463		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 464		return 0;
 465	}
 466
 467	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 468	    runtime->silence_size > 0)
 469		snd_pcm_playback_silence(substream, new_hw_ptr);
 470
 471	if (in_interrupt) {
 472		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 473		if (delta < 0)
 474			delta += runtime->boundary;
 475		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 476		runtime->hw_ptr_interrupt += delta;
 477		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 478			runtime->hw_ptr_interrupt -= runtime->boundary;
 479	}
 480	runtime->hw_ptr_base = hw_base;
 481	runtime->status->hw_ptr = new_hw_ptr;
 482	runtime->hw_ptr_jiffies = curr_jiffies;
 483	if (crossed_boundary) {
 484		snd_BUG_ON(crossed_boundary != 1);
 485		runtime->hw_ptr_wrap += runtime->boundary;
 486	}
 
 
 487
 488	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489
 490	return snd_pcm_update_state(substream, runtime);
 491}
 492
 493/* CAUTION: call it with irq disabled */
 494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 495{
 496	return snd_pcm_update_hw_ptr0(substream, 0);
 497}
 498
 499/**
 500 * snd_pcm_set_ops - set the PCM operators
 501 * @pcm: the pcm instance
 502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 503 * @ops: the operator table
 504 *
 505 * Sets the given PCM operators to the pcm instance.
 506 */
 507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 508		     const struct snd_pcm_ops *ops)
 509{
 510	struct snd_pcm_str *stream = &pcm->streams[direction];
 511	struct snd_pcm_substream *substream;
 512	
 513	for (substream = stream->substream; substream != NULL; substream = substream->next)
 514		substream->ops = ops;
 515}
 
 516EXPORT_SYMBOL(snd_pcm_set_ops);
 517
 518/**
 519 * snd_pcm_set_sync - set the PCM sync id
 520 * @substream: the pcm substream
 521 *
 522 * Sets the PCM sync identifier for the card.
 523 */
 524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 525{
 526	struct snd_pcm_runtime *runtime = substream->runtime;
 527	
 528	runtime->sync.id32[0] = substream->pcm->card->number;
 529	runtime->sync.id32[1] = -1;
 530	runtime->sync.id32[2] = -1;
 531	runtime->sync.id32[3] = -1;
 532}
 
 533EXPORT_SYMBOL(snd_pcm_set_sync);
 534
 535/*
 536 *  Standard ioctl routine
 537 */
 538
 539static inline unsigned int div32(unsigned int a, unsigned int b, 
 540				 unsigned int *r)
 541{
 542	if (b == 0) {
 543		*r = 0;
 544		return UINT_MAX;
 545	}
 546	*r = a % b;
 547	return a / b;
 548}
 549
 550static inline unsigned int div_down(unsigned int a, unsigned int b)
 551{
 552	if (b == 0)
 553		return UINT_MAX;
 554	return a / b;
 555}
 556
 557static inline unsigned int div_up(unsigned int a, unsigned int b)
 558{
 559	unsigned int r;
 560	unsigned int q;
 561	if (b == 0)
 562		return UINT_MAX;
 563	q = div32(a, b, &r);
 564	if (r)
 565		++q;
 566	return q;
 567}
 568
 569static inline unsigned int mul(unsigned int a, unsigned int b)
 570{
 571	if (a == 0)
 572		return 0;
 573	if (div_down(UINT_MAX, a) < b)
 574		return UINT_MAX;
 575	return a * b;
 576}
 577
 578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 579				    unsigned int c, unsigned int *r)
 580{
 581	u_int64_t n = (u_int64_t) a * b;
 582	if (c == 0) {
 
 583		*r = 0;
 584		return UINT_MAX;
 585	}
 586	n = div_u64_rem(n, c, r);
 587	if (n >= UINT_MAX) {
 588		*r = 0;
 589		return UINT_MAX;
 590	}
 591	return n;
 592}
 593
 594/**
 595 * snd_interval_refine - refine the interval value of configurator
 596 * @i: the interval value to refine
 597 * @v: the interval value to refer to
 598 *
 599 * Refines the interval value with the reference value.
 600 * The interval is changed to the range satisfying both intervals.
 601 * The interval status (min, max, integer, etc.) are evaluated.
 602 *
 603 * Return: Positive if the value is changed, zero if it's not changed, or a
 604 * negative error code.
 605 */
 606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 607{
 608	int changed = 0;
 609	if (snd_BUG_ON(snd_interval_empty(i)))
 610		return -EINVAL;
 611	if (i->min < v->min) {
 612		i->min = v->min;
 613		i->openmin = v->openmin;
 614		changed = 1;
 615	} else if (i->min == v->min && !i->openmin && v->openmin) {
 616		i->openmin = 1;
 617		changed = 1;
 618	}
 619	if (i->max > v->max) {
 620		i->max = v->max;
 621		i->openmax = v->openmax;
 622		changed = 1;
 623	} else if (i->max == v->max && !i->openmax && v->openmax) {
 624		i->openmax = 1;
 625		changed = 1;
 626	}
 627	if (!i->integer && v->integer) {
 628		i->integer = 1;
 629		changed = 1;
 630	}
 631	if (i->integer) {
 632		if (i->openmin) {
 633			i->min++;
 634			i->openmin = 0;
 635		}
 636		if (i->openmax) {
 637			i->max--;
 638			i->openmax = 0;
 639		}
 640	} else if (!i->openmin && !i->openmax && i->min == i->max)
 641		i->integer = 1;
 642	if (snd_interval_checkempty(i)) {
 643		snd_interval_none(i);
 644		return -EINVAL;
 645	}
 646	return changed;
 647}
 
 648EXPORT_SYMBOL(snd_interval_refine);
 649
 650static int snd_interval_refine_first(struct snd_interval *i)
 651{
 652	const unsigned int last_max = i->max;
 653
 654	if (snd_BUG_ON(snd_interval_empty(i)))
 655		return -EINVAL;
 656	if (snd_interval_single(i))
 657		return 0;
 658	i->max = i->min;
 659	if (i->openmin)
 
 660		i->max++;
 661	/* only exclude max value if also excluded before refine */
 662	i->openmax = (i->openmax && i->max >= last_max);
 663	return 1;
 664}
 665
 666static int snd_interval_refine_last(struct snd_interval *i)
 667{
 668	const unsigned int last_min = i->min;
 669
 670	if (snd_BUG_ON(snd_interval_empty(i)))
 671		return -EINVAL;
 672	if (snd_interval_single(i))
 673		return 0;
 674	i->min = i->max;
 675	if (i->openmax)
 
 676		i->min--;
 677	/* only exclude min value if also excluded before refine */
 678	i->openmin = (i->openmin && i->min <= last_min);
 679	return 1;
 680}
 681
 682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 683{
 684	if (a->empty || b->empty) {
 685		snd_interval_none(c);
 686		return;
 687	}
 688	c->empty = 0;
 689	c->min = mul(a->min, b->min);
 690	c->openmin = (a->openmin || b->openmin);
 691	c->max = mul(a->max,  b->max);
 692	c->openmax = (a->openmax || b->openmax);
 693	c->integer = (a->integer && b->integer);
 694}
 695
 696/**
 697 * snd_interval_div - refine the interval value with division
 698 * @a: dividend
 699 * @b: divisor
 700 * @c: quotient
 701 *
 702 * c = a / b
 703 *
 704 * Returns non-zero if the value is changed, zero if not changed.
 705 */
 706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 707{
 708	unsigned int r;
 709	if (a->empty || b->empty) {
 710		snd_interval_none(c);
 711		return;
 712	}
 713	c->empty = 0;
 714	c->min = div32(a->min, b->max, &r);
 715	c->openmin = (r || a->openmin || b->openmax);
 716	if (b->min > 0) {
 717		c->max = div32(a->max, b->min, &r);
 718		if (r) {
 719			c->max++;
 720			c->openmax = 1;
 721		} else
 722			c->openmax = (a->openmax || b->openmin);
 723	} else {
 724		c->max = UINT_MAX;
 725		c->openmax = 0;
 726	}
 727	c->integer = 0;
 728}
 729
 730/**
 731 * snd_interval_muldivk - refine the interval value
 732 * @a: dividend 1
 733 * @b: dividend 2
 734 * @k: divisor (as integer)
 735 * @c: result
 736  *
 737 * c = a * b / k
 738 *
 739 * Returns non-zero if the value is changed, zero if not changed.
 740 */
 741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 742		      unsigned int k, struct snd_interval *c)
 743{
 744	unsigned int r;
 745	if (a->empty || b->empty) {
 746		snd_interval_none(c);
 747		return;
 748	}
 749	c->empty = 0;
 750	c->min = muldiv32(a->min, b->min, k, &r);
 751	c->openmin = (r || a->openmin || b->openmin);
 752	c->max = muldiv32(a->max, b->max, k, &r);
 753	if (r) {
 754		c->max++;
 755		c->openmax = 1;
 756	} else
 757		c->openmax = (a->openmax || b->openmax);
 758	c->integer = 0;
 759}
 760
 761/**
 762 * snd_interval_mulkdiv - refine the interval value
 763 * @a: dividend 1
 764 * @k: dividend 2 (as integer)
 765 * @b: divisor
 766 * @c: result
 767 *
 768 * c = a * k / b
 769 *
 770 * Returns non-zero if the value is changed, zero if not changed.
 771 */
 772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 773		      const struct snd_interval *b, struct snd_interval *c)
 774{
 775	unsigned int r;
 776	if (a->empty || b->empty) {
 777		snd_interval_none(c);
 778		return;
 779	}
 780	c->empty = 0;
 781	c->min = muldiv32(a->min, k, b->max, &r);
 782	c->openmin = (r || a->openmin || b->openmax);
 783	if (b->min > 0) {
 784		c->max = muldiv32(a->max, k, b->min, &r);
 785		if (r) {
 786			c->max++;
 787			c->openmax = 1;
 788		} else
 789			c->openmax = (a->openmax || b->openmin);
 790	} else {
 791		c->max = UINT_MAX;
 792		c->openmax = 0;
 793	}
 794	c->integer = 0;
 795}
 796
 797/* ---- */
 798
 799
 800/**
 801 * snd_interval_ratnum - refine the interval value
 802 * @i: interval to refine
 803 * @rats_count: number of ratnum_t 
 804 * @rats: ratnum_t array
 805 * @nump: pointer to store the resultant numerator
 806 * @denp: pointer to store the resultant denominator
 807 *
 808 * Return: Positive if the value is changed, zero if it's not changed, or a
 809 * negative error code.
 810 */
 811int snd_interval_ratnum(struct snd_interval *i,
 812			unsigned int rats_count, const struct snd_ratnum *rats,
 813			unsigned int *nump, unsigned int *denp)
 814{
 815	unsigned int best_num, best_den;
 816	int best_diff;
 817	unsigned int k;
 818	struct snd_interval t;
 819	int err;
 820	unsigned int result_num, result_den;
 821	int result_diff;
 822
 823	best_num = best_den = best_diff = 0;
 824	for (k = 0; k < rats_count; ++k) {
 825		unsigned int num = rats[k].num;
 826		unsigned int den;
 827		unsigned int q = i->min;
 828		int diff;
 829		if (q == 0)
 830			q = 1;
 831		den = div_up(num, q);
 832		if (den < rats[k].den_min)
 833			continue;
 834		if (den > rats[k].den_max)
 835			den = rats[k].den_max;
 836		else {
 837			unsigned int r;
 838			r = (den - rats[k].den_min) % rats[k].den_step;
 839			if (r != 0)
 840				den -= r;
 841		}
 842		diff = num - q * den;
 843		if (diff < 0)
 844			diff = -diff;
 845		if (best_num == 0 ||
 846		    diff * best_den < best_diff * den) {
 847			best_diff = diff;
 848			best_den = den;
 849			best_num = num;
 850		}
 851	}
 852	if (best_den == 0) {
 853		i->empty = 1;
 854		return -EINVAL;
 855	}
 856	t.min = div_down(best_num, best_den);
 857	t.openmin = !!(best_num % best_den);
 858	
 859	result_num = best_num;
 860	result_diff = best_diff;
 861	result_den = best_den;
 862	best_num = best_den = best_diff = 0;
 863	for (k = 0; k < rats_count; ++k) {
 864		unsigned int num = rats[k].num;
 865		unsigned int den;
 866		unsigned int q = i->max;
 867		int diff;
 868		if (q == 0) {
 869			i->empty = 1;
 870			return -EINVAL;
 871		}
 872		den = div_down(num, q);
 873		if (den > rats[k].den_max)
 874			continue;
 875		if (den < rats[k].den_min)
 876			den = rats[k].den_min;
 877		else {
 878			unsigned int r;
 879			r = (den - rats[k].den_min) % rats[k].den_step;
 880			if (r != 0)
 881				den += rats[k].den_step - r;
 882		}
 883		diff = q * den - num;
 884		if (diff < 0)
 885			diff = -diff;
 886		if (best_num == 0 ||
 887		    diff * best_den < best_diff * den) {
 888			best_diff = diff;
 889			best_den = den;
 890			best_num = num;
 891		}
 892	}
 893	if (best_den == 0) {
 894		i->empty = 1;
 895		return -EINVAL;
 896	}
 897	t.max = div_up(best_num, best_den);
 898	t.openmax = !!(best_num % best_den);
 899	t.integer = 0;
 900	err = snd_interval_refine(i, &t);
 901	if (err < 0)
 902		return err;
 903
 904	if (snd_interval_single(i)) {
 905		if (best_diff * result_den < result_diff * best_den) {
 906			result_num = best_num;
 907			result_den = best_den;
 908		}
 909		if (nump)
 910			*nump = result_num;
 911		if (denp)
 912			*denp = result_den;
 913	}
 914	return err;
 915}
 
 916EXPORT_SYMBOL(snd_interval_ratnum);
 917
 918/**
 919 * snd_interval_ratden - refine the interval value
 920 * @i: interval to refine
 921 * @rats_count: number of struct ratden
 922 * @rats: struct ratden array
 923 * @nump: pointer to store the resultant numerator
 924 * @denp: pointer to store the resultant denominator
 925 *
 926 * Return: Positive if the value is changed, zero if it's not changed, or a
 927 * negative error code.
 928 */
 929static int snd_interval_ratden(struct snd_interval *i,
 930			       unsigned int rats_count,
 931			       const struct snd_ratden *rats,
 932			       unsigned int *nump, unsigned int *denp)
 933{
 934	unsigned int best_num, best_diff, best_den;
 935	unsigned int k;
 936	struct snd_interval t;
 937	int err;
 938
 939	best_num = best_den = best_diff = 0;
 940	for (k = 0; k < rats_count; ++k) {
 941		unsigned int num;
 942		unsigned int den = rats[k].den;
 943		unsigned int q = i->min;
 944		int diff;
 945		num = mul(q, den);
 946		if (num > rats[k].num_max)
 947			continue;
 948		if (num < rats[k].num_min)
 949			num = rats[k].num_max;
 950		else {
 951			unsigned int r;
 952			r = (num - rats[k].num_min) % rats[k].num_step;
 953			if (r != 0)
 954				num += rats[k].num_step - r;
 955		}
 956		diff = num - q * den;
 957		if (best_num == 0 ||
 958		    diff * best_den < best_diff * den) {
 959			best_diff = diff;
 960			best_den = den;
 961			best_num = num;
 962		}
 963	}
 964	if (best_den == 0) {
 965		i->empty = 1;
 966		return -EINVAL;
 967	}
 968	t.min = div_down(best_num, best_den);
 969	t.openmin = !!(best_num % best_den);
 970	
 971	best_num = best_den = best_diff = 0;
 972	for (k = 0; k < rats_count; ++k) {
 973		unsigned int num;
 974		unsigned int den = rats[k].den;
 975		unsigned int q = i->max;
 976		int diff;
 977		num = mul(q, den);
 978		if (num < rats[k].num_min)
 979			continue;
 980		if (num > rats[k].num_max)
 981			num = rats[k].num_max;
 982		else {
 983			unsigned int r;
 984			r = (num - rats[k].num_min) % rats[k].num_step;
 985			if (r != 0)
 986				num -= r;
 987		}
 988		diff = q * den - num;
 989		if (best_num == 0 ||
 990		    diff * best_den < best_diff * den) {
 991			best_diff = diff;
 992			best_den = den;
 993			best_num = num;
 994		}
 995	}
 996	if (best_den == 0) {
 997		i->empty = 1;
 998		return -EINVAL;
 999	}
1000	t.max = div_up(best_num, best_den);
1001	t.openmax = !!(best_num % best_den);
1002	t.integer = 0;
1003	err = snd_interval_refine(i, &t);
1004	if (err < 0)
1005		return err;
1006
1007	if (snd_interval_single(i)) {
1008		if (nump)
1009			*nump = best_num;
1010		if (denp)
1011			*denp = best_den;
1012	}
1013	return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031		      const unsigned int *list, unsigned int mask)
1032{
1033        unsigned int k;
1034	struct snd_interval list_range;
1035
1036	if (!count) {
1037		i->empty = 1;
1038		return -EINVAL;
1039	}
1040	snd_interval_any(&list_range);
1041	list_range.min = UINT_MAX;
1042	list_range.max = 0;
1043        for (k = 0; k < count; k++) {
1044		if (mask && !(mask & (1 << k)))
1045			continue;
1046		if (!snd_interval_test(i, list[k]))
1047			continue;
1048		list_range.min = min(list_range.min, list[k]);
1049		list_range.max = max(list_range.max, list[k]);
1050        }
1051	return snd_interval_refine(i, &list_range);
1052}
 
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070			const struct snd_interval *ranges, unsigned int mask)
1071{
1072	unsigned int k;
1073	struct snd_interval range_union;
1074	struct snd_interval range;
1075
1076	if (!count) {
1077		snd_interval_none(i);
1078		return -EINVAL;
1079	}
1080	snd_interval_any(&range_union);
1081	range_union.min = UINT_MAX;
1082	range_union.max = 0;
1083	for (k = 0; k < count; k++) {
1084		if (mask && !(mask & (1 << k)))
1085			continue;
1086		snd_interval_copy(&range, &ranges[k]);
1087		if (snd_interval_refine(&range, i) < 0)
1088			continue;
1089		if (snd_interval_empty(&range))
1090			continue;
1091
1092		if (range.min < range_union.min) {
1093			range_union.min = range.min;
1094			range_union.openmin = 1;
1095		}
1096		if (range.min == range_union.min && !range.openmin)
1097			range_union.openmin = 0;
1098		if (range.max > range_union.max) {
1099			range_union.max = range.max;
1100			range_union.openmax = 1;
1101		}
1102		if (range.max == range_union.max && !range.openmax)
1103			range_union.openmax = 0;
1104	}
1105	return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111	unsigned int n;
1112	int changed = 0;
1113	n = i->min % step;
1114	if (n != 0 || i->openmin) {
1115		i->min += step - n;
1116		i->openmin = 0;
1117		changed = 1;
1118	}
1119	n = i->max % step;
1120	if (n != 0 || i->openmax) {
1121		i->max -= n;
1122		i->openmax = 0;
1123		changed = 1;
1124	}
1125	if (snd_interval_checkempty(i)) {
1126		i->empty = 1;
1127		return -EINVAL;
1128	}
1129	return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146			int var,
1147			snd_pcm_hw_rule_func_t func, void *private,
1148			int dep, ...)
1149{
1150	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151	struct snd_pcm_hw_rule *c;
1152	unsigned int k;
1153	va_list args;
1154	va_start(args, dep);
1155	if (constrs->rules_num >= constrs->rules_all) {
1156		struct snd_pcm_hw_rule *new;
1157		unsigned int new_rules = constrs->rules_all + 16;
1158		new = krealloc_array(constrs->rules, new_rules,
1159				     sizeof(*c), GFP_KERNEL);
1160		if (!new) {
1161			va_end(args);
1162			return -ENOMEM;
1163		}
 
 
 
 
 
1164		constrs->rules = new;
1165		constrs->rules_all = new_rules;
1166	}
1167	c = &constrs->rules[constrs->rules_num];
1168	c->cond = cond;
1169	c->func = func;
1170	c->var = var;
1171	c->private = private;
1172	k = 0;
1173	while (1) {
1174		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175			va_end(args);
1176			return -EINVAL;
1177		}
1178		c->deps[k++] = dep;
1179		if (dep < 0)
1180			break;
1181		dep = va_arg(args, int);
1182	}
1183	constrs->rules_num++;
1184	va_end(args);
1185	return 0;
1186}
 
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200			       u_int32_t mask)
1201{
1202	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203	struct snd_mask *maskp = constrs_mask(constrs, var);
1204	*maskp->bits &= mask;
1205	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206	if (*maskp->bits == 0)
1207		return -EINVAL;
1208	return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222				 u_int64_t mask)
1223{
1224	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225	struct snd_mask *maskp = constrs_mask(constrs, var);
1226	maskp->bits[0] &= (u_int32_t)mask;
1227	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229	if (! maskp->bits[0] && ! maskp->bits[1])
1230		return -EINVAL;
1231	return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248	return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
 
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 * 
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265				 unsigned int min, unsigned int max)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	struct snd_interval t;
1269	t.min = min;
1270	t.max = max;
1271	t.openmin = t.openmax = 0;
1272	t.integer = 0;
1273	return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
 
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278				struct snd_pcm_hw_rule *rule)
1279{
1280	struct snd_pcm_hw_constraint_list *list = rule->private;
1281	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}		
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 * 
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297			       unsigned int cond,
1298			       snd_pcm_hw_param_t var,
1299			       const struct snd_pcm_hw_constraint_list *l)
1300{
1301	return snd_pcm_hw_rule_add(runtime, cond, var,
1302				   snd_pcm_hw_rule_list, (void *)l,
1303				   var, -1);
1304}
 
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308				  struct snd_pcm_hw_rule *rule)
1309{
1310	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311	return snd_interval_ranges(hw_param_interval(params, rule->var),
1312				   r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328				 unsigned int cond,
1329				 snd_pcm_hw_param_t var,
1330				 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332	return snd_pcm_hw_rule_add(runtime, cond, var,
1333				   snd_pcm_hw_rule_ranges, (void *)r,
1334				   var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339				   struct snd_pcm_hw_rule *rule)
1340{
1341	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342	unsigned int num = 0, den = 0;
1343	int err;
1344	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345				  r->nrats, r->rats, &num, &den);
1346	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347		params->rate_num = num;
1348		params->rate_den = den;
1349	}
1350	return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1363				  unsigned int cond,
1364				  snd_pcm_hw_param_t var,
1365				  const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367	return snd_pcm_hw_rule_add(runtime, cond, var,
1368				   snd_pcm_hw_rule_ratnums, (void *)r,
1369				   var, -1);
1370}
 
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374				   struct snd_pcm_hw_rule *rule)
1375{
1376	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377	unsigned int num = 0, den = 0;
1378	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379				  r->nrats, r->rats, &num, &den);
1380	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381		params->rate_num = num;
1382		params->rate_den = den;
1383	}
1384	return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1397				  unsigned int cond,
1398				  snd_pcm_hw_param_t var,
1399				  const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401	return snd_pcm_hw_rule_add(runtime, cond, var,
1402				   snd_pcm_hw_rule_ratdens, (void *)r,
1403				   var, -1);
1404}
 
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408				  struct snd_pcm_hw_rule *rule)
1409{
1410	unsigned int l = (unsigned long) rule->private;
1411	int width = l & 0xffff;
1412	unsigned int msbits = l >> 16;
1413	const struct snd_interval *i =
1414		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416	if (!snd_interval_single(i))
1417		return 0;
1418
1419	if ((snd_interval_value(i) == width) ||
1420	    (width == 0 && snd_interval_value(i) > msbits))
1421		params->msbits = min_not_zero(params->msbits, msbits);
1422
1423	return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1441				 unsigned int cond,
1442				 unsigned int width,
1443				 unsigned int msbits)
1444{
1445	unsigned long l = (msbits << 16) | width;
1446	return snd_pcm_hw_rule_add(runtime, cond, -1,
1447				    snd_pcm_hw_rule_msbits,
1448				    (void*) l,
1449				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
 
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454				struct snd_pcm_hw_rule *rule)
1455{
1456	unsigned long step = (unsigned long) rule->private;
1457	return snd_interval_step(hw_param_interval(params, rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470			       unsigned int cond,
1471			       snd_pcm_hw_param_t var,
1472			       unsigned long step)
1473{
1474	return snd_pcm_hw_rule_add(runtime, cond, var, 
1475				   snd_pcm_hw_rule_step, (void *) step,
1476				   var, -1);
1477}
 
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482	static const unsigned int pow2_sizes[] = {
1483		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487	};
1488	return snd_interval_list(hw_param_interval(params, rule->var),
1489				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}		
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501			       unsigned int cond,
1502			       snd_pcm_hw_param_t var)
1503{
1504	return snd_pcm_hw_rule_add(runtime, cond, var, 
1505				   snd_pcm_hw_rule_pow2, NULL,
1506				   var, -1);
1507}
 
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511					   struct snd_pcm_hw_rule *rule)
1512{
1513	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514	struct snd_interval *rate;
1515
1516	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517	return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528			       unsigned int base_rate)
1529{
1530	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531				   SNDRV_PCM_HW_PARAM_RATE,
1532				   snd_pcm_hw_rule_noresample_func,
1533				   (void *)(uintptr_t)base_rate,
1534				   SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539				  snd_pcm_hw_param_t var)
1540{
1541	if (hw_is_mask(var)) {
1542		snd_mask_any(hw_param_mask(params, var));
1543		params->cmask |= 1 << var;
1544		params->rmask |= 1 << var;
1545		return;
1546	}
1547	if (hw_is_interval(var)) {
1548		snd_interval_any(hw_param_interval(params, var));
1549		params->cmask |= 1 << var;
1550		params->rmask |= 1 << var;
1551		return;
1552	}
1553	snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558	unsigned int k;
1559	memset(params, 0, sizeof(*params));
1560	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561		_snd_pcm_hw_param_any(params, k);
1562	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563		_snd_pcm_hw_param_any(params, k);
1564	params->info = ~0U;
1565}
 
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578			   snd_pcm_hw_param_t var, int *dir)
1579{
1580	if (hw_is_mask(var)) {
1581		const struct snd_mask *mask = hw_param_mask_c(params, var);
1582		if (!snd_mask_single(mask))
1583			return -EINVAL;
1584		if (dir)
1585			*dir = 0;
1586		return snd_mask_value(mask);
1587	}
1588	if (hw_is_interval(var)) {
1589		const struct snd_interval *i = hw_param_interval_c(params, var);
1590		if (!snd_interval_single(i))
1591			return -EINVAL;
1592		if (dir)
1593			*dir = i->openmin;
1594		return snd_interval_value(i);
1595	}
1596	return -EINVAL;
1597}
 
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601				snd_pcm_hw_param_t var)
1602{
1603	if (hw_is_mask(var)) {
1604		snd_mask_none(hw_param_mask(params, var));
1605		params->cmask |= 1 << var;
1606		params->rmask |= 1 << var;
1607	} else if (hw_is_interval(var)) {
1608		snd_interval_none(hw_param_interval(params, var));
1609		params->cmask |= 1 << var;
1610		params->rmask |= 1 << var;
1611	} else {
1612		snd_BUG();
1613	}
1614}
 
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618				   snd_pcm_hw_param_t var)
1619{
1620	int changed;
1621	if (hw_is_mask(var))
1622		changed = snd_mask_refine_first(hw_param_mask(params, var));
1623	else if (hw_is_interval(var))
1624		changed = snd_interval_refine_first(hw_param_interval(params, var));
1625	else
1626		return -EINVAL;
1627	if (changed > 0) {
1628		params->cmask |= 1 << var;
1629		params->rmask |= 1 << var;
1630	}
1631	return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1648			   struct snd_pcm_hw_params *params, 
1649			   snd_pcm_hw_param_t var, int *dir)
1650{
1651	int changed = _snd_pcm_hw_param_first(params, var);
1652	if (changed < 0)
1653		return changed;
1654	if (params->rmask) {
1655		int err = snd_pcm_hw_refine(pcm, params);
1656		if (err < 0)
1657			return err;
1658	}
1659	return snd_pcm_hw_param_value(params, var, dir);
1660}
 
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664				  snd_pcm_hw_param_t var)
1665{
1666	int changed;
1667	if (hw_is_mask(var))
1668		changed = snd_mask_refine_last(hw_param_mask(params, var));
1669	else if (hw_is_interval(var))
1670		changed = snd_interval_refine_last(hw_param_interval(params, var));
1671	else
1672		return -EINVAL;
1673	if (changed > 0) {
1674		params->cmask |= 1 << var;
1675		params->rmask |= 1 << var;
1676	}
1677	return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1694			  struct snd_pcm_hw_params *params,
1695			  snd_pcm_hw_param_t var, int *dir)
1696{
1697	int changed = _snd_pcm_hw_param_last(params, var);
1698	if (changed < 0)
1699		return changed;
1700	if (params->rmask) {
1701		int err = snd_pcm_hw_refine(pcm, params);
1702		if (err < 0)
1703			return err;
1704	}
1705	return snd_pcm_hw_param_value(params, var, dir);
1706}
 
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709/**
1710 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711 * @p: hardware parameters
 
 
 
 
 
 
1712 *
1713 * Return: The number of bits per sample based on the format,
1714 * subformat and msbits the specified hw params has.
1715 */
1716int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
 
1717{
1718	snd_pcm_subformat_t subformat = params_subformat(p);
1719	snd_pcm_format_t format = params_format(p);
1720
1721	switch (format) {
1722	case SNDRV_PCM_FORMAT_S32_LE:
1723	case SNDRV_PCM_FORMAT_U32_LE:
1724	case SNDRV_PCM_FORMAT_S32_BE:
1725	case SNDRV_PCM_FORMAT_U32_BE:
1726		switch (subformat) {
1727		case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728			return 20;
1729		case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730			return 24;
1731		case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732		case SNDRV_PCM_SUBFORMAT_STD:
1733		default:
1734			break;
1735		}
1736		fallthrough;
1737	default:
1738		return snd_pcm_format_width(format);
1739	}
 
1740}
1741EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744				   void *arg)
1745{
1746	struct snd_pcm_runtime *runtime = substream->runtime;
1747
1748	guard(pcm_stream_lock_irqsave)(substream);
1749	if (snd_pcm_running(substream) &&
1750	    snd_pcm_update_hw_ptr(substream) >= 0)
1751		runtime->status->hw_ptr %= runtime->buffer_size;
1752	else {
1753		runtime->status->hw_ptr = 0;
1754		runtime->hw_ptr_wrap = 0;
1755	}
 
1756	return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1760					  void *arg)
1761{
1762	struct snd_pcm_channel_info *info = arg;
1763	struct snd_pcm_runtime *runtime = substream->runtime;
1764	int width;
1765	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1766		info->offset = -1;
1767		return 0;
1768	}
1769	width = snd_pcm_format_physical_width(runtime->format);
1770	if (width < 0)
1771		return width;
1772	info->offset = 0;
1773	switch (runtime->access) {
1774	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1775	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1776		info->first = info->channel * width;
1777		info->step = runtime->channels * width;
1778		break;
1779	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1780	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1781	{
1782		size_t size = runtime->dma_bytes / runtime->channels;
1783		info->first = info->channel * size * 8;
1784		info->step = width;
1785		break;
1786	}
1787	default:
1788		snd_BUG();
1789		break;
1790	}
1791	return 0;
1792}
1793
1794static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1795				       void *arg)
1796{
1797	struct snd_pcm_hw_params *params = arg;
1798	snd_pcm_format_t format;
1799	int channels;
1800	ssize_t frame_size;
1801
1802	params->fifo_size = substream->runtime->hw.fifo_size;
1803	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1804		format = params_format(params);
1805		channels = params_channels(params);
1806		frame_size = snd_pcm_format_size(format, channels);
1807		if (frame_size > 0)
1808			params->fifo_size /= frame_size;
1809	}
1810	return 0;
1811}
1812
1813/**
1814 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1815 * @substream: the pcm substream instance
1816 * @cmd: ioctl command
1817 * @arg: ioctl argument
1818 *
1819 * Processes the generic ioctl commands for PCM.
1820 * Can be passed as the ioctl callback for PCM ops.
1821 *
1822 * Return: Zero if successful, or a negative error code on failure.
1823 */
1824int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1825		      unsigned int cmd, void *arg)
1826{
1827	switch (cmd) {
 
 
1828	case SNDRV_PCM_IOCTL1_RESET:
1829		return snd_pcm_lib_ioctl_reset(substream, arg);
1830	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1831		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1832	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1833		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1834	}
1835	return -ENXIO;
1836}
 
1837EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1838
1839/**
1840 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1841 *						under acquired lock of PCM substream.
1842 * @substream: the instance of pcm substream.
1843 *
1844 * This function is called when the batch of audio data frames as the same size as the period of
1845 * buffer is already processed in audio data transmission.
1846 *
1847 * The call of function updates the status of runtime with the latest position of audio data
1848 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1849 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1850 * substream according to configured threshold.
1851 *
1852 * The function is intended to use for the case that PCM driver operates audio data frames under
1853 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1854 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1855 * since lock of PCM substream should be acquired in advance.
1856 *
1857 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1858 * function:
 
1859 *
1860 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1861 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1862 * - .get_time_info - to retrieve audio time stamp if needed.
1863 *
1864 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1865 */
1866void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1867{
1868	struct snd_pcm_runtime *runtime;
 
1869
1870	if (PCM_RUNTIME_CHECK(substream))
1871		return;
1872	runtime = substream->runtime;
1873
 
 
 
 
1874	if (!snd_pcm_running(substream) ||
1875	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1876		goto _end;
1877
1878#ifdef CONFIG_SND_PCM_TIMER
1879	if (substream->timer_running)
1880		snd_timer_interrupt(substream->timer, 1);
1881#endif
1882 _end:
1883	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
 
 
 
1884}
1885EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1886
1887/**
1888 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1889 *			      PCM substream.
1890 * @substream: the instance of PCM substream.
1891 *
1892 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1893 * acquiring lock of PCM substream voluntarily.
1894 *
1895 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1896 * the batch of audio data frames as the same size as the period of buffer is already processed in
1897 * audio data transmission.
1898 */
1899void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1900{
1901	if (snd_BUG_ON(!substream))
1902		return;
1903
1904	guard(pcm_stream_lock_irqsave)(substream);
1905	snd_pcm_period_elapsed_under_stream_lock(substream);
1906}
1907EXPORT_SYMBOL(snd_pcm_period_elapsed);
1908
1909/*
1910 * Wait until avail_min data becomes available
1911 * Returns a negative error code if any error occurs during operation.
1912 * The available space is stored on availp.  When err = 0 and avail = 0
1913 * on the capture stream, it indicates the stream is in DRAINING state.
1914 */
1915static int wait_for_avail(struct snd_pcm_substream *substream,
1916			      snd_pcm_uframes_t *availp)
1917{
1918	struct snd_pcm_runtime *runtime = substream->runtime;
1919	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1920	wait_queue_entry_t wait;
1921	int err = 0;
1922	snd_pcm_uframes_t avail = 0;
1923	long wait_time, tout;
1924
1925	init_waitqueue_entry(&wait, current);
1926	set_current_state(TASK_INTERRUPTIBLE);
1927	add_wait_queue(&runtime->tsleep, &wait);
1928
1929	if (runtime->no_period_wakeup)
1930		wait_time = MAX_SCHEDULE_TIMEOUT;
1931	else {
1932		/* use wait time from substream if available */
1933		if (substream->wait_time) {
1934			wait_time = substream->wait_time;
1935		} else {
1936			wait_time = 100;
1937
1938			if (runtime->rate) {
1939				long t = runtime->buffer_size * 1100 / runtime->rate;
1940				wait_time = max(t, wait_time);
1941			}
1942		}
1943		wait_time = msecs_to_jiffies(wait_time);
1944	}
1945
1946	for (;;) {
1947		if (signal_pending(current)) {
1948			err = -ERESTARTSYS;
1949			break;
1950		}
1951
1952		/*
1953		 * We need to check if space became available already
1954		 * (and thus the wakeup happened already) first to close
1955		 * the race of space already having become available.
1956		 * This check must happen after been added to the waitqueue
1957		 * and having current state be INTERRUPTIBLE.
1958		 */
1959		avail = snd_pcm_avail(substream);
 
 
 
1960		if (avail >= runtime->twake)
1961			break;
1962		snd_pcm_stream_unlock_irq(substream);
1963
1964		tout = schedule_timeout(wait_time);
1965
1966		snd_pcm_stream_lock_irq(substream);
1967		set_current_state(TASK_INTERRUPTIBLE);
1968		switch (runtime->state) {
1969		case SNDRV_PCM_STATE_SUSPENDED:
1970			err = -ESTRPIPE;
1971			goto _endloop;
1972		case SNDRV_PCM_STATE_XRUN:
1973			err = -EPIPE;
1974			goto _endloop;
1975		case SNDRV_PCM_STATE_DRAINING:
1976			if (is_playback)
1977				err = -EPIPE;
1978			else 
1979				avail = 0; /* indicate draining */
1980			goto _endloop;
1981		case SNDRV_PCM_STATE_OPEN:
1982		case SNDRV_PCM_STATE_SETUP:
1983		case SNDRV_PCM_STATE_DISCONNECTED:
1984			err = -EBADFD;
1985			goto _endloop;
1986		case SNDRV_PCM_STATE_PAUSED:
1987			continue;
1988		}
1989		if (!tout) {
1990			pcm_dbg(substream->pcm,
1991				"%s timeout (DMA or IRQ trouble?)\n",
1992				is_playback ? "playback write" : "capture read");
1993			err = -EIO;
1994			break;
1995		}
1996	}
1997 _endloop:
1998	set_current_state(TASK_RUNNING);
1999	remove_wait_queue(&runtime->tsleep, &wait);
2000	*availp = avail;
2001	return err;
2002}
2003	
2004typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2005			      int channel, unsigned long hwoff,
2006			      struct iov_iter *iter, unsigned long bytes);
2007
2008typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2009			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2010			  bool);
2011
2012/* calculate the target DMA-buffer position to be written/read */
2013static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2014			   int channel, unsigned long hwoff)
2015{
2016	return runtime->dma_area + hwoff +
2017		channel * (runtime->dma_bytes / runtime->channels);
2018}
2019
2020/* default copy ops for write; used for both interleaved and non- modes */
2021static int default_write_copy(struct snd_pcm_substream *substream,
2022			      int channel, unsigned long hwoff,
2023			      struct iov_iter *iter, unsigned long bytes)
2024{
2025	if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2026			   bytes, iter) != bytes)
2027		return -EFAULT;
2028	return 0;
2029}
2030
2031/* fill silence instead of copy data; called as a transfer helper
2032 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2033 * a NULL buffer is passed
2034 */
2035static int fill_silence(struct snd_pcm_substream *substream, int channel,
2036			unsigned long hwoff, struct iov_iter *iter,
2037			unsigned long bytes)
 
 
2038{
2039	struct snd_pcm_runtime *runtime = substream->runtime;
 
 
 
 
2040
2041	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2042		return 0;
2043	if (substream->ops->fill_silence)
2044		return substream->ops->fill_silence(substream, channel,
2045						    hwoff, bytes);
2046
2047	snd_pcm_format_set_silence(runtime->format,
2048				   get_dma_ptr(runtime, channel, hwoff),
2049				   bytes_to_samples(runtime, bytes));
2050	return 0;
2051}
2052
2053/* default copy ops for read; used for both interleaved and non- modes */
2054static int default_read_copy(struct snd_pcm_substream *substream,
2055			     int channel, unsigned long hwoff,
2056			     struct iov_iter *iter, unsigned long bytes)
2057{
2058	if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2059			 bytes, iter) != bytes)
2060		return -EFAULT;
2061	return 0;
2062}
2063
2064/* call transfer with the filled iov_iter */
2065static int do_transfer(struct snd_pcm_substream *substream, int c,
2066		       unsigned long hwoff, void *data, unsigned long bytes,
2067		       pcm_transfer_f transfer, bool in_kernel)
2068{
2069	struct iov_iter iter;
2070	int err, type;
2071
2072	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2073		type = ITER_SOURCE;
2074	else
2075		type = ITER_DEST;
2076
2077	if (in_kernel) {
2078		struct kvec kvec = { data, bytes };
2079
2080		iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2081		return transfer(substream, c, hwoff, &iter, bytes);
2082	}
2083
2084	err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2085	if (err)
2086		return err;
2087	return transfer(substream, c, hwoff, &iter, bytes);
2088}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089
2090/* call transfer function with the converted pointers and sizes;
2091 * for interleaved mode, it's one shot for all samples
2092 */
2093static int interleaved_copy(struct snd_pcm_substream *substream,
2094			    snd_pcm_uframes_t hwoff, void *data,
2095			    snd_pcm_uframes_t off,
2096			    snd_pcm_uframes_t frames,
2097			    pcm_transfer_f transfer,
2098			    bool in_kernel)
2099{
2100	struct snd_pcm_runtime *runtime = substream->runtime;
2101
2102	/* convert to bytes */
2103	hwoff = frames_to_bytes(runtime, hwoff);
2104	off = frames_to_bytes(runtime, off);
2105	frames = frames_to_bytes(runtime, frames);
2106
2107	return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2108			   in_kernel);
2109}
2110
2111/* call transfer function with the converted pointers and sizes for each
2112 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2113 */
2114static int noninterleaved_copy(struct snd_pcm_substream *substream,
2115			       snd_pcm_uframes_t hwoff, void *data,
2116			       snd_pcm_uframes_t off,
2117			       snd_pcm_uframes_t frames,
2118			       pcm_transfer_f transfer,
2119			       bool in_kernel)
2120{
2121	struct snd_pcm_runtime *runtime = substream->runtime;
2122	int channels = runtime->channels;
2123	void **bufs = data;
2124	int c, err;
2125
2126	/* convert to bytes; note that it's not frames_to_bytes() here.
2127	 * in non-interleaved mode, we copy for each channel, thus
2128	 * each copy is n_samples bytes x channels = whole frames.
2129	 */
2130	off = samples_to_bytes(runtime, off);
2131	frames = samples_to_bytes(runtime, frames);
2132	hwoff = samples_to_bytes(runtime, hwoff);
2133	for (c = 0; c < channels; ++c, ++bufs) {
2134		if (!data || !*bufs)
2135			err = fill_silence(substream, c, hwoff, NULL, frames);
2136		else
2137			err = do_transfer(substream, c, hwoff, *bufs + off,
2138					  frames, transfer, in_kernel);
2139		if (err < 0)
2140			return err;
2141	}
2142	return 0;
2143}
2144
2145/* fill silence on the given buffer position;
2146 * called from snd_pcm_playback_silence()
2147 */
2148static int fill_silence_frames(struct snd_pcm_substream *substream,
2149			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2150{
2151	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2152	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2153		return interleaved_copy(substream, off, NULL, 0, frames,
2154					fill_silence, true);
2155	else
2156		return noninterleaved_copy(substream, off, NULL, 0, frames,
2157					   fill_silence, true);
2158}
2159
2160/* sanity-check for read/write methods */
2161static int pcm_sanity_check(struct snd_pcm_substream *substream)
2162{
2163	struct snd_pcm_runtime *runtime;
2164	if (PCM_RUNTIME_CHECK(substream))
2165		return -ENXIO;
2166	runtime = substream->runtime;
2167	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2168		return -EINVAL;
2169	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2170		return -EBADFD;
2171	return 0;
2172}
2173
2174static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2175{
2176	switch (runtime->state) {
2177	case SNDRV_PCM_STATE_PREPARED:
2178	case SNDRV_PCM_STATE_RUNNING:
2179	case SNDRV_PCM_STATE_PAUSED:
2180		return 0;
2181	case SNDRV_PCM_STATE_XRUN:
2182		return -EPIPE;
2183	case SNDRV_PCM_STATE_SUSPENDED:
2184		return -ESTRPIPE;
2185	default:
2186		return -EBADFD;
2187	}
 
 
 
2188}
2189
2190/* update to the given appl_ptr and call ack callback if needed;
2191 * when an error is returned, take back to the original value
2192 */
2193int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2194			   snd_pcm_uframes_t appl_ptr)
 
2195{
2196	struct snd_pcm_runtime *runtime = substream->runtime;
2197	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2198	snd_pcm_sframes_t diff;
2199	int ret;
2200
2201	if (old_appl_ptr == appl_ptr)
2202		return 0;
2203
2204	if (appl_ptr >= runtime->boundary)
2205		return -EINVAL;
2206	/*
2207	 * check if a rewind is requested by the application
2208	 */
2209	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2210		diff = appl_ptr - old_appl_ptr;
2211		if (diff >= 0) {
2212			if (diff > runtime->buffer_size)
2213				return -EINVAL;
2214		} else {
2215			if (runtime->boundary + diff > runtime->buffer_size)
2216				return -EINVAL;
2217		}
2218	}
2219
2220	runtime->control->appl_ptr = appl_ptr;
2221	if (substream->ops->ack) {
2222		ret = substream->ops->ack(substream);
2223		if (ret < 0) {
2224			runtime->control->appl_ptr = old_appl_ptr;
2225			if (ret == -EPIPE)
2226				__snd_pcm_xrun(substream);
2227			return ret;
 
 
2228		}
2229	}
2230
2231	trace_applptr(substream, old_appl_ptr, appl_ptr);
2232
2233	return 0;
2234}
2235
2236/* the common loop for read/write data */
2237snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2238				     void *data, bool interleaved,
2239				     snd_pcm_uframes_t size, bool in_kernel)
2240{
2241	struct snd_pcm_runtime *runtime = substream->runtime;
2242	snd_pcm_uframes_t xfer = 0;
2243	snd_pcm_uframes_t offset = 0;
2244	snd_pcm_uframes_t avail;
2245	pcm_copy_f writer;
2246	pcm_transfer_f transfer;
2247	bool nonblock;
2248	bool is_playback;
2249	int err;
2250
2251	err = pcm_sanity_check(substream);
2252	if (err < 0)
2253		return err;
 
 
 
 
 
 
 
 
2254
2255	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2256	if (interleaved) {
2257		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2258		    runtime->channels > 1)
2259			return -EINVAL;
2260		writer = interleaved_copy;
 
 
 
 
 
 
 
2261	} else {
2262		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2263			return -EINVAL;
2264		writer = noninterleaved_copy;
2265	}
 
 
2266
2267	if (!data) {
2268		if (is_playback)
2269			transfer = fill_silence;
2270		else
2271			return -EINVAL;
2272	} else {
2273		if (substream->ops->copy)
2274			transfer = substream->ops->copy;
2275		else
2276			transfer = is_playback ?
2277				default_write_copy : default_read_copy;
2278	}
2279
2280	if (size == 0)
2281		return 0;
2282
2283	nonblock = !!(substream->f_flags & O_NONBLOCK);
2284
2285	snd_pcm_stream_lock_irq(substream);
2286	err = pcm_accessible_state(runtime);
2287	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288		goto _end_unlock;
 
2289
2290	runtime->twake = runtime->control->avail_min ? : 1;
2291	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2292		snd_pcm_update_hw_ptr(substream);
2293
2294	/*
2295	 * If size < start_threshold, wait indefinitely. Another
2296	 * thread may start capture
2297	 */
2298	if (!is_playback &&
2299	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2300	    size >= runtime->start_threshold) {
2301		err = snd_pcm_start(substream);
2302		if (err < 0)
2303			goto _end_unlock;
2304	}
2305
2306	avail = snd_pcm_avail(substream);
2307
2308	while (size > 0) {
2309		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2310		snd_pcm_uframes_t cont;
2311		if (!avail) {
2312			if (!is_playback &&
2313			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2314				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2315				goto _end_unlock;
2316			}
2317			if (nonblock) {
2318				err = -EAGAIN;
2319				goto _end_unlock;
2320			}
2321			runtime->twake = min_t(snd_pcm_uframes_t, size,
2322					runtime->control->avail_min ? : 1);
2323			err = wait_for_avail(substream, &avail);
2324			if (err < 0)
2325				goto _end_unlock;
2326			if (!avail)
2327				continue; /* draining */
2328		}
2329		frames = size > avail ? avail : size;
2330		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2331		appl_ofs = appl_ptr % runtime->buffer_size;
2332		cont = runtime->buffer_size - appl_ofs;
2333		if (frames > cont)
2334			frames = cont;
2335		if (snd_BUG_ON(!frames)) {
2336			err = -EINVAL;
2337			goto _end_unlock;
2338		}
2339		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2340			err = -EBUSY;
2341			goto _end_unlock;
2342		}
 
 
2343		snd_pcm_stream_unlock_irq(substream);
2344		if (!is_playback)
2345			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2346		err = writer(substream, appl_ofs, data, offset, frames,
2347			     transfer, in_kernel);
2348		if (is_playback)
2349			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2350		snd_pcm_stream_lock_irq(substream);
2351		atomic_dec(&runtime->buffer_accessing);
2352		if (err < 0)
2353			goto _end_unlock;
2354		err = pcm_accessible_state(runtime);
2355		if (err < 0)
 
 
 
 
2356			goto _end_unlock;
 
 
 
2357		appl_ptr += frames;
2358		if (appl_ptr >= runtime->boundary)
2359			appl_ptr -= runtime->boundary;
2360		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2361		if (err < 0)
2362			goto _end_unlock;
2363
2364		offset += frames;
2365		size -= frames;
2366		xfer += frames;
2367		avail -= frames;
2368		if (is_playback &&
2369		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2370		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2371			err = snd_pcm_start(substream);
2372			if (err < 0)
2373				goto _end_unlock;
2374		}
2375	}
2376 _end_unlock:
2377	runtime->twake = 0;
2378	if (xfer > 0 && err >= 0)
2379		snd_pcm_update_state(substream, runtime);
2380	snd_pcm_stream_unlock_irq(substream);
2381	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2382}
2383EXPORT_SYMBOL(__snd_pcm_lib_xfer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391	{ .channels = 1,
2392	  .map = { SNDRV_CHMAP_MONO } },
2393	{ .channels = 2,
2394	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395	{ .channels = 4,
2396	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398	{ .channels = 6,
2399	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402	{ .channels = 8,
2403	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407	{ }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413	{ .channels = 1,
2414	  .map = { SNDRV_CHMAP_MONO } },
2415	{ .channels = 2,
2416	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417	{ .channels = 4,
2418	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420	{ .channels = 6,
2421	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424	{ .channels = 8,
2425	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429	{ }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435	if (ch > info->max_channels)
2436		return false;
2437	return !info->channel_mask || (info->channel_mask & (1U << ch));
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441			      struct snd_ctl_elem_info *uinfo)
2442{
2443	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 
2446	uinfo->count = info->max_channels;
2447	uinfo->value.integer.min = 0;
2448	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449	return 0;
2450}
2451
2452/* get callback for channel map ctl element
2453 * stores the channel position firstly matching with the current channels
2454 */
2455static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456			     struct snd_ctl_elem_value *ucontrol)
2457{
2458	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460	struct snd_pcm_substream *substream;
2461	const struct snd_pcm_chmap_elem *map;
2462
2463	if (!info->chmap)
2464		return -EINVAL;
2465	substream = snd_pcm_chmap_substream(info, idx);
2466	if (!substream)
2467		return -ENODEV;
2468	memset(ucontrol->value.integer.value, 0,
2469	       sizeof(long) * info->max_channels);
2470	if (!substream->runtime)
2471		return 0; /* no channels set */
2472	for (map = info->chmap; map->channels; map++) {
2473		int i;
2474		if (map->channels == substream->runtime->channels &&
2475		    valid_chmap_channels(info, map->channels)) {
2476			for (i = 0; i < map->channels; i++)
2477				ucontrol->value.integer.value[i] = map->map[i];
2478			return 0;
2479		}
2480	}
2481	return -EINVAL;
2482}
2483
2484/* tlv callback for channel map ctl element
2485 * expands the pre-defined channel maps in a form of TLV
2486 */
2487static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488			     unsigned int size, unsigned int __user *tlv)
2489{
2490	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491	const struct snd_pcm_chmap_elem *map;
2492	unsigned int __user *dst;
2493	int c, count = 0;
2494
2495	if (!info->chmap)
2496		return -EINVAL;
2497	if (size < 8)
2498		return -ENOMEM;
2499	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500		return -EFAULT;
2501	size -= 8;
2502	dst = tlv + 2;
2503	for (map = info->chmap; map->channels; map++) {
2504		int chs_bytes = map->channels * 4;
2505		if (!valid_chmap_channels(info, map->channels))
2506			continue;
2507		if (size < 8)
2508			return -ENOMEM;
2509		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510		    put_user(chs_bytes, dst + 1))
2511			return -EFAULT;
2512		dst += 2;
2513		size -= 8;
2514		count += 8;
2515		if (size < chs_bytes)
2516			return -ENOMEM;
2517		size -= chs_bytes;
2518		count += chs_bytes;
2519		for (c = 0; c < map->channels; c++) {
2520			if (put_user(map->map[c], dst))
2521				return -EFAULT;
2522			dst++;
2523		}
2524	}
2525	if (put_user(count, tlv + 1))
2526		return -EFAULT;
2527	return 0;
2528}
2529
2530static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2531{
2532	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533	info->pcm->streams[info->stream].chmap_kctl = NULL;
2534	kfree(info);
2535}
2536
2537/**
2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539 * @pcm: the assigned PCM instance
2540 * @stream: stream direction
2541 * @chmap: channel map elements (for query)
2542 * @max_channels: the max number of channels for the stream
2543 * @private_value: the value passed to each kcontrol's private_value field
2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 *
2546 * Create channel-mapping control elements assigned to the given PCM stream(s).
2547 * Return: Zero if successful, or a negative error value.
2548 */
2549int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550			   const struct snd_pcm_chmap_elem *chmap,
2551			   int max_channels,
2552			   unsigned long private_value,
2553			   struct snd_pcm_chmap **info_ret)
2554{
2555	struct snd_pcm_chmap *info;
2556	struct snd_kcontrol_new knew = {
2557		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2559			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561		.info = pcm_chmap_ctl_info,
2562		.get = pcm_chmap_ctl_get,
2563		.tlv.c = pcm_chmap_ctl_tlv,
2564	};
2565	int err;
2566
2567	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2568		return -EBUSY;
2569	info = kzalloc(sizeof(*info), GFP_KERNEL);
2570	if (!info)
2571		return -ENOMEM;
2572	info->pcm = pcm;
2573	info->stream = stream;
2574	info->chmap = chmap;
2575	info->max_channels = max_channels;
2576	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2577		knew.name = "Playback Channel Map";
2578	else
2579		knew.name = "Capture Channel Map";
2580	knew.device = pcm->device;
2581	knew.count = pcm->streams[stream].substream_count;
2582	knew.private_value = private_value;
2583	info->kctl = snd_ctl_new1(&knew, info);
2584	if (!info->kctl) {
2585		kfree(info);
2586		return -ENOMEM;
2587	}
2588	info->kctl->private_free = pcm_chmap_ctl_private_free;
2589	err = snd_ctl_add(pcm->card, info->kctl);
2590	if (err < 0)
2591		return err;
2592	pcm->streams[stream].chmap_kctl = info->kctl;
2593	if (info_ret)
2594		*info_ret = info;
2595	return 0;
2596}
2597EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);