Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
 
   8#include <linux/mm.h>
 
 
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/security.h>
  27#include <linux/backing-dev.h>
  28#include <linux/mutex.h>
  29#include <linux/capability.h>
  30#include <linux/syscalls.h>
  31#include <linux/memcontrol.h>
  32#include <linux/poll.h>
  33#include <linux/oom.h>
  34#include <linux/frontswap.h>
  35#include <linux/swapfile.h>
  36#include <linux/export.h>
 
 
 
 
 
 
  37
  38#include <asm/pgtable.h>
  39#include <asm/tlbflush.h>
  40#include <linux/swapops.h>
  41#include <linux/page_cgroup.h>
 
 
  42
  43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  44				 unsigned char);
  45static void free_swap_count_continuations(struct swap_info_struct *);
  46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  47
  48DEFINE_SPINLOCK(swap_lock);
  49static unsigned int nr_swapfiles;
  50atomic_long_t nr_swap_pages;
 
 
 
 
 
 
  51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  52long total_swap_pages;
  53static int least_priority;
  54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
 
 
 
  55
  56static const char Bad_file[] = "Bad swap file entry ";
  57static const char Unused_file[] = "Unused swap file entry ";
  58static const char Bad_offset[] = "Bad swap offset entry ";
  59static const char Unused_offset[] = "Unused swap offset entry ";
  60
  61struct swap_list_t swap_list = {-1, -1};
 
 
 
 
  62
  63struct swap_info_struct *swap_info[MAX_SWAPFILES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65static DEFINE_MUTEX(swapon_mutex);
  66
  67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  68/* Activity counter to indicate that a swapon or swapoff has occurred */
  69static atomic_t proc_poll_event = ATOMIC_INIT(0);
  70
 
 
 
 
 
 
 
 
 
 
  71static inline unsigned char swap_count(unsigned char ent)
  72{
  73	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
  74}
  75
 
 
 
 
 
 
 
 
 
 
  76/* returns 1 if swap entry is freed */
  77static int
  78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  79{
  80	swp_entry_t entry = swp_entry(si->type, offset);
  81	struct page *page;
  82	int ret = 0;
  83
  84	page = find_get_page(swap_address_space(entry), entry.val);
  85	if (!page)
  86		return 0;
  87	/*
  88	 * This function is called from scan_swap_map() and it's called
  89	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  90	 * We have to use trylock for avoiding deadlock. This is a special
  91	 * case and you should use try_to_free_swap() with explicit lock_page()
  92	 * in usual operations.
  93	 */
  94	if (trylock_page(page)) {
  95		ret = try_to_free_swap(page);
  96		unlock_page(page);
 
 
 
  97	}
  98	page_cache_release(page);
  99	return ret;
 100}
 101
 
 
 
 
 
 
 
 
 
 
 
 
 102/*
 103 * swapon tell device that all the old swap contents can be discarded,
 104 * to allow the swap device to optimize its wear-levelling.
 105 */
 106static int discard_swap(struct swap_info_struct *si)
 107{
 108	struct swap_extent *se;
 109	sector_t start_block;
 110	sector_t nr_blocks;
 111	int err = 0;
 112
 113	/* Do not discard the swap header page! */
 114	se = &si->first_swap_extent;
 115	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 116	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 117	if (nr_blocks) {
 118		err = blkdev_issue_discard(si->bdev, start_block,
 119				nr_blocks, GFP_KERNEL, 0);
 120		if (err)
 121			return err;
 122		cond_resched();
 123	}
 124
 125	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 126		start_block = se->start_block << (PAGE_SHIFT - 9);
 127		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 128
 129		err = blkdev_issue_discard(si->bdev, start_block,
 130				nr_blocks, GFP_KERNEL, 0);
 131		if (err)
 132			break;
 133
 134		cond_resched();
 135	}
 136	return err;		/* That will often be -EOPNOTSUPP */
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * swap allocation tell device that a cluster of swap can now be discarded,
 141 * to allow the swap device to optimize its wear-levelling.
 142 */
 143static void discard_swap_cluster(struct swap_info_struct *si,
 144				 pgoff_t start_page, pgoff_t nr_pages)
 145{
 146	struct swap_extent *se = si->curr_swap_extent;
 147	int found_extent = 0;
 148
 149	while (nr_pages) {
 150		struct list_head *lh;
 151
 152		if (se->start_page <= start_page &&
 153		    start_page < se->start_page + se->nr_pages) {
 154			pgoff_t offset = start_page - se->start_page;
 155			sector_t start_block = se->start_block + offset;
 156			sector_t nr_blocks = se->nr_pages - offset;
 157
 158			if (nr_blocks > nr_pages)
 159				nr_blocks = nr_pages;
 160			start_page += nr_blocks;
 161			nr_pages -= nr_blocks;
 162
 163			if (!found_extent++)
 164				si->curr_swap_extent = se;
 165
 166			start_block <<= PAGE_SHIFT - 9;
 167			nr_blocks <<= PAGE_SHIFT - 9;
 168			if (blkdev_issue_discard(si->bdev, start_block,
 169				    nr_blocks, GFP_NOIO, 0))
 170				break;
 171		}
 172
 173		lh = se->list.next;
 174		se = list_entry(lh, struct swap_extent, list);
 175	}
 176}
 177
 
 
 
 
 
 178#define SWAPFILE_CLUSTER	256
 
 
 
 
 
 
 
 179#define LATENCY_LIMIT		256
 180
 181static inline void cluster_set_flag(struct swap_cluster_info *info,
 182	unsigned int flag)
 183{
 184	info->flags = flag;
 185}
 186
 187static inline unsigned int cluster_count(struct swap_cluster_info *info)
 188{
 189	return info->data;
 190}
 191
 192static inline void cluster_set_count(struct swap_cluster_info *info,
 193				     unsigned int c)
 194{
 195	info->data = c;
 196}
 197
 198static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 199					 unsigned int c, unsigned int f)
 200{
 201	info->flags = f;
 202	info->data = c;
 203}
 204
 205static inline unsigned int cluster_next(struct swap_cluster_info *info)
 206{
 207	return info->data;
 208}
 209
 210static inline void cluster_set_next(struct swap_cluster_info *info,
 211				    unsigned int n)
 212{
 213	info->data = n;
 214}
 215
 216static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 217					 unsigned int n, unsigned int f)
 218{
 219	info->flags = f;
 220	info->data = n;
 221}
 222
 223static inline bool cluster_is_free(struct swap_cluster_info *info)
 224{
 225	return info->flags & CLUSTER_FLAG_FREE;
 226}
 227
 228static inline bool cluster_is_null(struct swap_cluster_info *info)
 229{
 230	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 231}
 232
 233static inline void cluster_set_null(struct swap_cluster_info *info)
 234{
 235	info->flags = CLUSTER_FLAG_NEXT_NULL;
 236	info->data = 0;
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239/* Add a cluster to discard list and schedule it to do discard */
 240static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 241		unsigned int idx)
 242{
 243	/*
 244	 * If scan_swap_map() can't find a free cluster, it will check
 245	 * si->swap_map directly. To make sure the discarding cluster isn't
 246	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 247	 * will be cleared after discard
 248	 */
 249	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 250			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 251
 252	if (cluster_is_null(&si->discard_cluster_head)) {
 253		cluster_set_next_flag(&si->discard_cluster_head,
 254						idx, 0);
 255		cluster_set_next_flag(&si->discard_cluster_tail,
 256						idx, 0);
 257	} else {
 258		unsigned int tail = cluster_next(&si->discard_cluster_tail);
 259		cluster_set_next(&si->cluster_info[tail], idx);
 260		cluster_set_next_flag(&si->discard_cluster_tail,
 261						idx, 0);
 262	}
 263
 264	schedule_work(&si->discard_work);
 265}
 266
 
 
 
 
 
 
 
 
 267/*
 268 * Doing discard actually. After a cluster discard is finished, the cluster
 269 * will be added to free cluster list. caller should hold si->lock.
 270*/
 271static void swap_do_scheduled_discard(struct swap_info_struct *si)
 272{
 273	struct swap_cluster_info *info;
 274	unsigned int idx;
 275
 276	info = si->cluster_info;
 277
 278	while (!cluster_is_null(&si->discard_cluster_head)) {
 279		idx = cluster_next(&si->discard_cluster_head);
 280
 281		cluster_set_next_flag(&si->discard_cluster_head,
 282						cluster_next(&info[idx]), 0);
 283		if (cluster_next(&si->discard_cluster_tail) == idx) {
 284			cluster_set_null(&si->discard_cluster_head);
 285			cluster_set_null(&si->discard_cluster_tail);
 286		}
 287		spin_unlock(&si->lock);
 288
 289		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 290				SWAPFILE_CLUSTER);
 291
 292		spin_lock(&si->lock);
 293		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
 294		if (cluster_is_null(&si->free_cluster_head)) {
 295			cluster_set_next_flag(&si->free_cluster_head,
 296						idx, 0);
 297			cluster_set_next_flag(&si->free_cluster_tail,
 298						idx, 0);
 299		} else {
 300			unsigned int tail;
 301
 302			tail = cluster_next(&si->free_cluster_tail);
 303			cluster_set_next(&info[tail], idx);
 304			cluster_set_next_flag(&si->free_cluster_tail,
 305						idx, 0);
 306		}
 307		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 308				0, SWAPFILE_CLUSTER);
 
 309	}
 310}
 311
 312static void swap_discard_work(struct work_struct *work)
 313{
 314	struct swap_info_struct *si;
 315
 316	si = container_of(work, struct swap_info_struct, discard_work);
 317
 318	spin_lock(&si->lock);
 319	swap_do_scheduled_discard(si);
 320	spin_unlock(&si->lock);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323/*
 324 * The cluster corresponding to page_nr will be used. The cluster will be
 325 * removed from free cluster list and its usage counter will be increased.
 326 */
 327static void inc_cluster_info_page(struct swap_info_struct *p,
 328	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 329{
 330	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 331
 332	if (!cluster_info)
 333		return;
 334	if (cluster_is_free(&cluster_info[idx])) {
 335		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
 336		cluster_set_next_flag(&p->free_cluster_head,
 337			cluster_next(&cluster_info[idx]), 0);
 338		if (cluster_next(&p->free_cluster_tail) == idx) {
 339			cluster_set_null(&p->free_cluster_tail);
 340			cluster_set_null(&p->free_cluster_head);
 341		}
 342		cluster_set_count_flag(&cluster_info[idx], 0, 0);
 343	}
 344
 345	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 346	cluster_set_count(&cluster_info[idx],
 347		cluster_count(&cluster_info[idx]) + 1);
 348}
 349
 350/*
 351 * The cluster corresponding to page_nr decreases one usage. If the usage
 352 * counter becomes 0, which means no page in the cluster is in using, we can
 353 * optionally discard the cluster and add it to free cluster list.
 354 */
 355static void dec_cluster_info_page(struct swap_info_struct *p,
 356	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 357{
 358	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 359
 360	if (!cluster_info)
 361		return;
 362
 363	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 364	cluster_set_count(&cluster_info[idx],
 365		cluster_count(&cluster_info[idx]) - 1);
 366
 367	if (cluster_count(&cluster_info[idx]) == 0) {
 368		/*
 369		 * If the swap is discardable, prepare discard the cluster
 370		 * instead of free it immediately. The cluster will be freed
 371		 * after discard.
 372		 */
 373		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 374				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 375			swap_cluster_schedule_discard(p, idx);
 376			return;
 377		}
 378
 379		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 380		if (cluster_is_null(&p->free_cluster_head)) {
 381			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
 382			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 383		} else {
 384			unsigned int tail = cluster_next(&p->free_cluster_tail);
 385			cluster_set_next(&cluster_info[tail], idx);
 386			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 387		}
 388	}
 389}
 390
 391/*
 392 * It's possible scan_swap_map() uses a free cluster in the middle of free
 393 * cluster list. Avoiding such abuse to avoid list corruption.
 394 */
 395static bool
 396scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 397	unsigned long offset)
 398{
 399	struct percpu_cluster *percpu_cluster;
 400	bool conflict;
 401
 402	offset /= SWAPFILE_CLUSTER;
 403	conflict = !cluster_is_null(&si->free_cluster_head) &&
 404		offset != cluster_next(&si->free_cluster_head) &&
 405		cluster_is_free(&si->cluster_info[offset]);
 406
 407	if (!conflict)
 408		return false;
 409
 410	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 411	cluster_set_null(&percpu_cluster->index);
 412	return true;
 413}
 414
 415/*
 416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 417 * might involve allocating a new cluster for current CPU too.
 418 */
 419static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 420	unsigned long *offset, unsigned long *scan_base)
 421{
 422	struct percpu_cluster *cluster;
 423	bool found_free;
 424	unsigned long tmp;
 425
 426new_cluster:
 427	cluster = this_cpu_ptr(si->percpu_cluster);
 428	if (cluster_is_null(&cluster->index)) {
 429		if (!cluster_is_null(&si->free_cluster_head)) {
 430			cluster->index = si->free_cluster_head;
 431			cluster->next = cluster_next(&cluster->index) *
 432					SWAPFILE_CLUSTER;
 433		} else if (!cluster_is_null(&si->discard_cluster_head)) {
 434			/*
 435			 * we don't have free cluster but have some clusters in
 436			 * discarding, do discard now and reclaim them
 
 437			 */
 438			swap_do_scheduled_discard(si);
 439			*scan_base = *offset = si->cluster_next;
 
 440			goto new_cluster;
 441		} else
 442			return;
 443	}
 444
 445	found_free = false;
 446
 447	/*
 448	 * Other CPUs can use our cluster if they can't find a free cluster,
 449	 * check if there is still free entry in the cluster
 450	 */
 451	tmp = cluster->next;
 452	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
 453	       SWAPFILE_CLUSTER) {
 454		if (!si->swap_map[tmp]) {
 455			found_free = true;
 456			break;
 
 
 
 457		}
 458		tmp++;
 459	}
 460	if (!found_free) {
 461		cluster_set_null(&cluster->index);
 462		goto new_cluster;
 463	}
 464	cluster->next = tmp + 1;
 465	*offset = tmp;
 466	*scan_base = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469static unsigned long scan_swap_map(struct swap_info_struct *si,
 470				   unsigned char usage)
 471{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472	unsigned long offset;
 473	unsigned long scan_base;
 474	unsigned long last_in_cluster = 0;
 475	int latency_ration = LATENCY_LIMIT;
 
 
 476
 477	/*
 478	 * We try to cluster swap pages by allocating them sequentially
 479	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 480	 * way, however, we resort to first-free allocation, starting
 481	 * a new cluster.  This prevents us from scattering swap pages
 482	 * all over the entire swap partition, so that we reduce
 483	 * overall disk seek times between swap pages.  -- sct
 484	 * But we do now try to find an empty cluster.  -Andrea
 485	 * And we let swap pages go all over an SSD partition.  Hugh
 486	 */
 487
 488	si->flags += SWP_SCANNING;
 489	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 
 490
 491	/* SSD algorithm */
 492	if (si->cluster_info) {
 493		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 494		goto checks;
 495	}
 496
 497	if (unlikely(!si->cluster_nr--)) {
 498		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 499			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 500			goto checks;
 501		}
 502
 503		spin_unlock(&si->lock);
 504
 505		/*
 506		 * If seek is expensive, start searching for new cluster from
 507		 * start of partition, to minimize the span of allocated swap.
 508		 * But if seek is cheap, search from our current position, so
 509		 * that swap is allocated from all over the partition: if the
 510		 * Flash Translation Layer only remaps within limited zones,
 511		 * we don't want to wear out the first zone too quickly.
 512		 */
 513		if (!(si->flags & SWP_SOLIDSTATE))
 514			scan_base = offset = si->lowest_bit;
 515		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 516
 517		/* Locate the first empty (unaligned) cluster */
 518		for (; last_in_cluster <= si->highest_bit; offset++) {
 519			if (si->swap_map[offset])
 520				last_in_cluster = offset + SWAPFILE_CLUSTER;
 521			else if (offset == last_in_cluster) {
 522				spin_lock(&si->lock);
 523				offset -= SWAPFILE_CLUSTER - 1;
 524				si->cluster_next = offset;
 525				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 526				goto checks;
 527			}
 528			if (unlikely(--latency_ration < 0)) {
 529				cond_resched();
 530				latency_ration = LATENCY_LIMIT;
 531			}
 532		}
 533
 534		offset = si->lowest_bit;
 535		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 536
 537		/* Locate the first empty (unaligned) cluster */
 538		for (; last_in_cluster < scan_base; offset++) {
 539			if (si->swap_map[offset])
 540				last_in_cluster = offset + SWAPFILE_CLUSTER;
 541			else if (offset == last_in_cluster) {
 542				spin_lock(&si->lock);
 543				offset -= SWAPFILE_CLUSTER - 1;
 544				si->cluster_next = offset;
 545				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 546				goto checks;
 547			}
 548			if (unlikely(--latency_ration < 0)) {
 549				cond_resched();
 550				latency_ration = LATENCY_LIMIT;
 551			}
 552		}
 553
 554		offset = scan_base;
 555		spin_lock(&si->lock);
 556		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 557	}
 558
 559checks:
 560	if (si->cluster_info) {
 561		while (scan_swap_map_ssd_cluster_conflict(si, offset))
 562			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 
 
 
 
 
 
 563	}
 564	if (!(si->flags & SWP_WRITEOK))
 565		goto no_page;
 566	if (!si->highest_bit)
 567		goto no_page;
 568	if (offset > si->highest_bit)
 569		scan_base = offset = si->lowest_bit;
 570
 
 571	/* reuse swap entry of cache-only swap if not busy. */
 572	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 573		int swap_was_freed;
 
 574		spin_unlock(&si->lock);
 575		swap_was_freed = __try_to_reclaim_swap(si, offset);
 576		spin_lock(&si->lock);
 577		/* entry was freed successfully, try to use this again */
 578		if (swap_was_freed)
 579			goto checks;
 580		goto scan; /* check next one */
 581	}
 582
 583	if (si->swap_map[offset])
 584		goto scan;
 585
 586	if (offset == si->lowest_bit)
 587		si->lowest_bit++;
 588	if (offset == si->highest_bit)
 589		si->highest_bit--;
 590	si->inuse_pages++;
 591	if (si->inuse_pages == si->pages) {
 592		si->lowest_bit = si->max;
 593		si->highest_bit = 0;
 594	}
 595	si->swap_map[offset] = usage;
 596	inc_cluster_info_page(si, si->cluster_info, offset);
 597	si->cluster_next = offset + 1;
 598	si->flags -= SWP_SCANNING;
 599
 600	return offset;
 
 601
 602scan:
 603	spin_unlock(&si->lock);
 604	while (++offset <= si->highest_bit) {
 605		if (!si->swap_map[offset]) {
 606			spin_lock(&si->lock);
 607			goto checks;
 608		}
 609		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 610			spin_lock(&si->lock);
 
 
 
 
 
 
 
 
 
 
 611			goto checks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612		}
 
 
 
 
 
 
 
 
 
 
 613		if (unlikely(--latency_ration < 0)) {
 614			cond_resched();
 615			latency_ration = LATENCY_LIMIT;
 
 616		}
 
 
 617	}
 618	offset = si->lowest_bit;
 619	while (offset < scan_base) {
 620		if (!si->swap_map[offset]) {
 621			spin_lock(&si->lock);
 622			goto checks;
 623		}
 624		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 625			spin_lock(&si->lock);
 626			goto checks;
 627		}
 628		if (unlikely(--latency_ration < 0)) {
 629			cond_resched();
 630			latency_ration = LATENCY_LIMIT;
 
 631		}
 
 
 632		offset++;
 633	}
 634	spin_lock(&si->lock);
 635
 636no_page:
 637	si->flags -= SWP_SCANNING;
 638	return 0;
 639}
 640
 641swp_entry_t get_swap_page(void)
 642{
 643	struct swap_info_struct *si;
 644	pgoff_t offset;
 645	int type, next;
 646	int wrapped = 0;
 647	int hp_index;
 648
 649	spin_lock(&swap_lock);
 650	if (atomic_long_read(&nr_swap_pages) <= 0)
 651		goto noswap;
 652	atomic_long_dec(&nr_swap_pages);
 653
 654	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 655		hp_index = atomic_xchg(&highest_priority_index, -1);
 656		/*
 657		 * highest_priority_index records current highest priority swap
 658		 * type which just frees swap entries. If its priority is
 659		 * higher than that of swap_list.next swap type, we use it.  It
 660		 * isn't protected by swap_lock, so it can be an invalid value
 661		 * if the corresponding swap type is swapoff. We double check
 662		 * the flags here. It's even possible the swap type is swapoff
 663		 * and swapon again and its priority is changed. In such rare
 664		 * case, low prority swap type might be used, but eventually
 665		 * high priority swap will be used after several rounds of
 666		 * swap.
 667		 */
 668		if (hp_index != -1 && hp_index != type &&
 669		    swap_info[type]->prio < swap_info[hp_index]->prio &&
 670		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
 671			type = hp_index;
 672			swap_list.next = type;
 673		}
 674
 675		si = swap_info[type];
 676		next = si->next;
 677		if (next < 0 ||
 678		    (!wrapped && si->prio != swap_info[next]->prio)) {
 679			next = swap_list.head;
 680			wrapped++;
 681		}
 682
 683		spin_lock(&si->lock);
 684		if (!si->highest_bit) {
 685			spin_unlock(&si->lock);
 686			continue;
 687		}
 688		if (!(si->flags & SWP_WRITEOK)) {
 689			spin_unlock(&si->lock);
 690			continue;
 691		}
 
 692
 693		swap_list.next = next;
 
 694
 695		spin_unlock(&swap_lock);
 696		/* This is called for allocating swap entry for cache */
 697		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 698		spin_unlock(&si->lock);
 699		if (offset)
 700			return swp_entry(type, offset);
 701		spin_lock(&swap_lock);
 702		next = swap_list.next;
 703	}
 704
 705	atomic_long_inc(&nr_swap_pages);
 706noswap:
 707	spin_unlock(&swap_lock);
 708	return (swp_entry_t) {0};
 
 
 709}
 710
 711/* The only caller of this function is now suspend routine */
 712swp_entry_t get_swap_page_of_type(int type)
 713{
 714	struct swap_info_struct *si;
 715	pgoff_t offset;
 
 
 
 716
 717	si = swap_info[type];
 718	spin_lock(&si->lock);
 719	if (si && (si->flags & SWP_WRITEOK)) {
 720		atomic_long_dec(&nr_swap_pages);
 721		/* This is called for allocating swap entry, not cache */
 722		offset = scan_swap_map(si, 1);
 723		if (offset) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724			spin_unlock(&si->lock);
 725			return swp_entry(type, offset);
 726		}
 727		atomic_long_inc(&nr_swap_pages);
 728	}
 729	spin_unlock(&si->lock);
 730	return (swp_entry_t) {0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 732
 733static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 734{
 735	struct swap_info_struct *p;
 736	unsigned long offset, type;
 737
 738	if (!entry.val)
 739		goto out;
 740	type = swp_type(entry);
 741	if (type >= nr_swapfiles)
 742		goto bad_nofile;
 743	p = swap_info[type];
 744	if (!(p->flags & SWP_USED))
 745		goto bad_device;
 746	offset = swp_offset(entry);
 747	if (offset >= p->max)
 748		goto bad_offset;
 749	if (!p->swap_map[offset])
 750		goto bad_free;
 751	spin_lock(&p->lock);
 752	return p;
 753
 754bad_free:
 755	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
 756	goto out;
 757bad_offset:
 758	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
 759	goto out;
 760bad_device:
 761	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
 762	goto out;
 763bad_nofile:
 764	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
 765out:
 766	return NULL;
 767}
 768
 769/*
 770 * This swap type frees swap entry, check if it is the highest priority swap
 771 * type which just frees swap entry. get_swap_page() uses
 772 * highest_priority_index to search highest priority swap type. The
 773 * swap_info_struct.lock can't protect us if there are multiple swap types
 774 * active, so we use atomic_cmpxchg.
 775 */
 776static void set_highest_priority_index(int type)
 777{
 778	int old_hp_index, new_hp_index;
 779
 780	do {
 781		old_hp_index = atomic_read(&highest_priority_index);
 782		if (old_hp_index != -1 &&
 783			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
 784			break;
 785		new_hp_index = type;
 786	} while (atomic_cmpxchg(&highest_priority_index,
 787		old_hp_index, new_hp_index) != old_hp_index);
 
 788}
 789
 790static unsigned char swap_entry_free(struct swap_info_struct *p,
 791				     swp_entry_t entry, unsigned char usage)
 
 792{
 793	unsigned long offset = swp_offset(entry);
 794	unsigned char count;
 795	unsigned char has_cache;
 796
 797	count = p->swap_map[offset];
 
 798	has_cache = count & SWAP_HAS_CACHE;
 799	count &= ~SWAP_HAS_CACHE;
 800
 801	if (usage == SWAP_HAS_CACHE) {
 802		VM_BUG_ON(!has_cache);
 803		has_cache = 0;
 804	} else if (count == SWAP_MAP_SHMEM) {
 805		/*
 806		 * Or we could insist on shmem.c using a special
 807		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 808		 */
 809		count = 0;
 810	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 811		if (count == COUNT_CONTINUED) {
 812			if (swap_count_continued(p, offset, count))
 813				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 814			else
 815				count = SWAP_MAP_MAX;
 816		} else
 817			count--;
 818	}
 819
 820	if (!count)
 821		mem_cgroup_uncharge_swap(entry);
 822
 823	usage = count | has_cache;
 824	p->swap_map[offset] = usage;
 
 
 
 825
 826	/* free if no reference */
 827	if (!usage) {
 828		dec_cluster_info_page(p, p->cluster_info, offset);
 829		if (offset < p->lowest_bit)
 830			p->lowest_bit = offset;
 831		if (offset > p->highest_bit)
 832			p->highest_bit = offset;
 833		set_highest_priority_index(p->type);
 834		atomic_long_inc(&nr_swap_pages);
 835		p->inuse_pages--;
 836		frontswap_invalidate_page(p->type, offset);
 837		if (p->flags & SWP_BLKDEV) {
 838			struct gendisk *disk = p->bdev->bd_disk;
 839			if (disk->fops->swap_slot_free_notify)
 840				disk->fops->swap_slot_free_notify(p->bdev,
 841								  offset);
 842		}
 843	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844
 845	return usage;
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * Caller has made sure that the swap device corresponding to entry
 850 * is still around or has not been recycled.
 851 */
 852void swap_free(swp_entry_t entry)
 853{
 854	struct swap_info_struct *p;
 855
 856	p = swap_info_get(entry);
 857	if (p) {
 858		swap_entry_free(p, entry, 1);
 859		spin_unlock(&p->lock);
 860	}
 861}
 862
 863/*
 864 * Called after dropping swapcache to decrease refcnt to swap entries.
 865 */
 866void swapcache_free(swp_entry_t entry, struct page *page)
 867{
 868	struct swap_info_struct *p;
 869	unsigned char count;
 
 
 
 
 
 
 870
 871	p = swap_info_get(entry);
 872	if (p) {
 873		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 874		if (page)
 875			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 876		spin_unlock(&p->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878}
 879
 880/*
 881 * How many references to page are currently swapped out?
 882 * This does not give an exact answer when swap count is continued,
 883 * but does include the high COUNT_CONTINUED flag to allow for that.
 884 */
 885int page_swapcount(struct page *page)
 886{
 887	int count = 0;
 888	struct swap_info_struct *p;
 889	swp_entry_t entry;
 890
 891	entry.val = page_private(page);
 892	p = swap_info_get(entry);
 893	if (p) {
 894		count = swap_count(p->swap_map[swp_offset(entry)]);
 895		spin_unlock(&p->lock);
 896	}
 897	return count;
 898}
 899
 900/*
 901 * We can write to an anon page without COW if there are no other references
 902 * to it.  And as a side-effect, free up its swap: because the old content
 903 * on disk will never be read, and seeking back there to write new content
 904 * later would only waste time away from clustering.
 905 */
 906int reuse_swap_page(struct page *page)
 907{
 908	int count;
 
 
 
 
 
 909
 910	VM_BUG_ON_PAGE(!PageLocked(page), page);
 911	if (unlikely(PageKsm(page)))
 912		return 0;
 913	count = page_mapcount(page);
 914	if (count <= 1 && PageSwapCache(page)) {
 915		count += page_swapcount(page);
 916		if (count == 1 && !PageWriteback(page)) {
 917			delete_from_swap_cache(page);
 918			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919		}
 920	}
 921	return count <= 1;
 
 
 922}
 923
 924/*
 925 * If swap is getting full, or if there are no more mappings of this page,
 926 * then try_to_free_swap is called to free its swap space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927 */
 928int try_to_free_swap(struct page *page)
 929{
 930	VM_BUG_ON_PAGE(!PageLocked(page), page);
 931
 932	if (!PageSwapCache(page))
 933		return 0;
 934	if (PageWriteback(page))
 935		return 0;
 936	if (page_swapcount(page))
 937		return 0;
 938
 939	/*
 940	 * Once hibernation has begun to create its image of memory,
 941	 * there's a danger that one of the calls to try_to_free_swap()
 942	 * - most probably a call from __try_to_reclaim_swap() while
 943	 * hibernation is allocating its own swap pages for the image,
 944	 * but conceivably even a call from memory reclaim - will free
 945	 * the swap from a page which has already been recorded in the
 946	 * image as a clean swapcache page, and then reuse its swap for
 947	 * another page of the image.  On waking from hibernation, the
 948	 * original page might be freed under memory pressure, then
 949	 * later read back in from swap, now with the wrong data.
 950	 *
 951	 * Hibernation suspends storage while it is writing the image
 952	 * to disk so check that here.
 953	 */
 954	if (pm_suspended_storage())
 955		return 0;
 956
 957	delete_from_swap_cache(page);
 958	SetPageDirty(page);
 959	return 1;
 960}
 961
 962/*
 963 * Free the swap entry like above, but also try to
 964 * free the page cache entry if it is the last user.
 965 */
 966int free_swap_and_cache(swp_entry_t entry)
 967{
 968	struct swap_info_struct *p;
 969	struct page *page = NULL;
 970
 971	if (non_swap_entry(entry))
 972		return 1;
 973
 974	p = swap_info_get(entry);
 975	if (p) {
 976		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 977			page = find_get_page(swap_address_space(entry),
 978						entry.val);
 979			if (page && !trylock_page(page)) {
 980				page_cache_release(page);
 981				page = NULL;
 982			}
 983		}
 984		spin_unlock(&p->lock);
 985	}
 986	if (page) {
 987		/*
 988		 * Not mapped elsewhere, or swap space full? Free it!
 989		 * Also recheck PageSwapCache now page is locked (above).
 990		 */
 991		if (PageSwapCache(page) && !PageWriteback(page) &&
 992				(!page_mapped(page) || vm_swap_full())) {
 993			delete_from_swap_cache(page);
 994			SetPageDirty(page);
 995		}
 996		unlock_page(page);
 997		page_cache_release(page);
 
 
 
 
 
 998	}
 999	return p != NULL;
1000}
1001
1002#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003/*
1004 * Find the swap type that corresponds to given device (if any).
1005 *
1006 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1007 * from 0, in which the swap header is expected to be located.
1008 *
1009 * This is needed for the suspend to disk (aka swsusp).
1010 */
1011int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1012{
1013	struct block_device *bdev = NULL;
1014	int type;
1015
1016	if (device)
1017		bdev = bdget(device);
1018
1019	spin_lock(&swap_lock);
1020	for (type = 0; type < nr_swapfiles; type++) {
1021		struct swap_info_struct *sis = swap_info[type];
1022
1023		if (!(sis->flags & SWP_WRITEOK))
1024			continue;
1025
1026		if (!bdev) {
1027			if (bdev_p)
1028				*bdev_p = bdgrab(sis->bdev);
1029
1030			spin_unlock(&swap_lock);
1031			return type;
1032		}
1033		if (bdev == sis->bdev) {
1034			struct swap_extent *se = &sis->first_swap_extent;
1035
1036			if (se->start_block == offset) {
1037				if (bdev_p)
1038					*bdev_p = bdgrab(sis->bdev);
1039
1040				spin_unlock(&swap_lock);
1041				bdput(bdev);
1042				return type;
1043			}
1044		}
1045	}
1046	spin_unlock(&swap_lock);
1047	if (bdev)
1048		bdput(bdev);
 
 
 
 
 
 
 
 
1049
 
 
 
 
 
 
 
1050	return -ENODEV;
1051}
1052
1053/*
1054 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1055 * corresponding to given index in swap_info (swap type).
1056 */
1057sector_t swapdev_block(int type, pgoff_t offset)
1058{
1059	struct block_device *bdev;
 
1060
1061	if ((unsigned int)type >= nr_swapfiles)
1062		return 0;
1063	if (!(swap_info[type]->flags & SWP_WRITEOK))
1064		return 0;
1065	return map_swap_entry(swp_entry(type, offset), &bdev);
1066}
1067
1068/*
1069 * Return either the total number of swap pages of given type, or the number
1070 * of free pages of that type (depending on @free)
1071 *
1072 * This is needed for software suspend
1073 */
1074unsigned int count_swap_pages(int type, int free)
1075{
1076	unsigned int n = 0;
1077
1078	spin_lock(&swap_lock);
1079	if ((unsigned int)type < nr_swapfiles) {
1080		struct swap_info_struct *sis = swap_info[type];
1081
1082		spin_lock(&sis->lock);
1083		if (sis->flags & SWP_WRITEOK) {
1084			n = sis->pages;
1085			if (free)
1086				n -= sis->inuse_pages;
1087		}
1088		spin_unlock(&sis->lock);
1089	}
1090	spin_unlock(&swap_lock);
1091	return n;
1092}
1093#endif /* CONFIG_HIBERNATION */
1094
1095static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1096{
1097#ifdef CONFIG_MEM_SOFT_DIRTY
1098	/*
1099	 * When pte keeps soft dirty bit the pte generated
1100	 * from swap entry does not has it, still it's same
1101	 * pte from logical point of view.
1102	 */
1103	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1104	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1105#else
1106	return pte_same(pte, swp_pte);
1107#endif
1108}
1109
1110/*
1111 * No need to decide whether this PTE shares the swap entry with others,
1112 * just let do_wp_page work it out if a write is requested later - to
1113 * force COW, vm_page_prot omits write permission from any private vma.
1114 */
1115static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1116		unsigned long addr, swp_entry_t entry, struct page *page)
1117{
1118	struct page *swapcache;
1119	struct mem_cgroup *memcg;
1120	spinlock_t *ptl;
1121	pte_t *pte;
 
1122	int ret = 1;
1123
1124	swapcache = page;
1125	page = ksm_might_need_to_copy(page, vma, addr);
1126	if (unlikely(!page))
1127		return -ENOMEM;
1128
1129	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1130					 GFP_KERNEL, &memcg)) {
1131		ret = -ENOMEM;
1132		goto out_nolock;
1133	}
1134
 
 
 
 
1135	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1136	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1137		mem_cgroup_cancel_charge_swapin(memcg);
1138		ret = 0;
1139		goto out;
1140	}
1141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1143	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1144	get_page(page);
1145	set_pte_at(vma->vm_mm, addr, pte,
1146		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1147	if (page == swapcache)
1148		page_add_anon_rmap(page, vma, addr);
1149	else /* ksm created a completely new copy */
1150		page_add_new_anon_rmap(page, vma, addr);
1151	mem_cgroup_commit_charge_swapin(page, memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	swap_free(entry);
1153	/*
1154	 * Move the page to the active list so it is not
1155	 * immediately swapped out again after swapon.
1156	 */
1157	activate_page(page);
1158out:
1159	pte_unmap_unlock(pte, ptl);
1160out_nolock:
1161	if (page != swapcache) {
1162		unlock_page(page);
1163		put_page(page);
1164	}
1165	return ret;
1166}
1167
1168static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1169				unsigned long addr, unsigned long end,
1170				swp_entry_t entry, struct page *page)
1171{
1172	pte_t swp_pte = swp_entry_to_pte(entry);
1173	pte_t *pte;
1174	int ret = 0;
1175
1176	/*
1177	 * We don't actually need pte lock while scanning for swp_pte: since
1178	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1179	 * page table while we're scanning; though it could get zapped, and on
1180	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1181	 * of unmatched parts which look like swp_pte, so unuse_pte must
1182	 * recheck under pte lock.  Scanning without pte lock lets it be
1183	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1184	 */
1185	pte = pte_offset_map(pmd, addr);
1186	do {
1187		/*
1188		 * swapoff spends a _lot_ of time in this loop!
1189		 * Test inline before going to call unuse_pte.
1190		 */
1191		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1192			pte_unmap(pte);
1193			ret = unuse_pte(vma, pmd, addr, entry, page);
1194			if (ret)
1195				goto out;
1196			pte = pte_offset_map(pmd, addr);
 
 
1197		}
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199	pte_unmap(pte - 1);
1200out:
1201	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1205				unsigned long addr, unsigned long end,
1206				swp_entry_t entry, struct page *page)
1207{
1208	pmd_t *pmd;
1209	unsigned long next;
1210	int ret;
1211
1212	pmd = pmd_offset(pud, addr);
1213	do {
 
1214		next = pmd_addr_end(addr, end);
1215		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1216			continue;
1217		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1218		if (ret)
1219			return ret;
1220	} while (pmd++, addr = next, addr != end);
1221	return 0;
1222}
1223
1224static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1225				unsigned long addr, unsigned long end,
1226				swp_entry_t entry, struct page *page)
1227{
1228	pud_t *pud;
1229	unsigned long next;
1230	int ret;
1231
1232	pud = pud_offset(pgd, addr);
1233	do {
1234		next = pud_addr_end(addr, end);
1235		if (pud_none_or_clear_bad(pud))
1236			continue;
1237		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1238		if (ret)
1239			return ret;
1240	} while (pud++, addr = next, addr != end);
1241	return 0;
1242}
1243
1244static int unuse_vma(struct vm_area_struct *vma,
1245				swp_entry_t entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246{
1247	pgd_t *pgd;
1248	unsigned long addr, end, next;
1249	int ret;
1250
1251	if (page_anon_vma(page)) {
1252		addr = page_address_in_vma(page, vma);
1253		if (addr == -EFAULT)
1254			return 0;
1255		else
1256			end = addr + PAGE_SIZE;
1257	} else {
1258		addr = vma->vm_start;
1259		end = vma->vm_end;
1260	}
1261
1262	pgd = pgd_offset(vma->vm_mm, addr);
1263	do {
1264		next = pgd_addr_end(addr, end);
1265		if (pgd_none_or_clear_bad(pgd))
1266			continue;
1267		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1268		if (ret)
1269			return ret;
1270	} while (pgd++, addr = next, addr != end);
1271	return 0;
1272}
1273
1274static int unuse_mm(struct mm_struct *mm,
1275				swp_entry_t entry, struct page *page)
1276{
1277	struct vm_area_struct *vma;
1278	int ret = 0;
 
1279
1280	if (!down_read_trylock(&mm->mmap_sem)) {
1281		/*
1282		 * Activate page so shrink_inactive_list is unlikely to unmap
1283		 * its ptes while lock is dropped, so swapoff can make progress.
1284		 */
1285		activate_page(page);
1286		unlock_page(page);
1287		down_read(&mm->mmap_sem);
1288		lock_page(page);
1289	}
1290	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1291		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1292			break;
1293	}
1294	up_read(&mm->mmap_sem);
1295	return (ret < 0)? ret: 0;
1296}
1297
1298/*
1299 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1300 * from current position to next entry still in use.
1301 * Recycle to start on reaching the end, returning 0 when empty.
1302 */
1303static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1304					unsigned int prev, bool frontswap)
1305{
1306	unsigned int max = si->max;
1307	unsigned int i = prev;
1308	unsigned char count;
1309
1310	/*
1311	 * No need for swap_lock here: we're just looking
1312	 * for whether an entry is in use, not modifying it; false
1313	 * hits are okay, and sys_swapoff() has already prevented new
1314	 * allocations from this area (while holding swap_lock).
1315	 */
1316	for (;;) {
1317		if (++i >= max) {
1318			if (!prev) {
1319				i = 0;
1320				break;
1321			}
1322			/*
1323			 * No entries in use at top of swap_map,
1324			 * loop back to start and recheck there.
1325			 */
1326			max = prev + 1;
1327			prev = 0;
1328			i = 1;
1329		}
1330		if (frontswap) {
1331			if (frontswap_test(si, i))
1332				break;
1333			else
1334				continue;
1335		}
1336		count = ACCESS_ONCE(si->swap_map[i]);
1337		if (count && swap_count(count) != SWAP_MAP_BAD)
1338			break;
 
 
1339	}
 
 
 
 
1340	return i;
1341}
1342
1343/*
1344 * We completely avoid races by reading each swap page in advance,
1345 * and then search for the process using it.  All the necessary
1346 * page table adjustments can then be made atomically.
1347 *
1348 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1349 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1350 */
1351int try_to_unuse(unsigned int type, bool frontswap,
1352		 unsigned long pages_to_unuse)
1353{
 
 
 
 
1354	struct swap_info_struct *si = swap_info[type];
1355	struct mm_struct *start_mm;
1356	volatile unsigned char *swap_map; /* swap_map is accessed without
1357					   * locking. Mark it as volatile
1358					   * to prevent compiler doing
1359					   * something odd.
1360					   */
1361	unsigned char swcount;
1362	struct page *page;
1363	swp_entry_t entry;
1364	unsigned int i = 0;
1365	int retval = 0;
1366
1367	/*
1368	 * When searching mms for an entry, a good strategy is to
1369	 * start at the first mm we freed the previous entry from
1370	 * (though actually we don't notice whether we or coincidence
1371	 * freed the entry).  Initialize this start_mm with a hold.
1372	 *
1373	 * A simpler strategy would be to start at the last mm we
1374	 * freed the previous entry from; but that would take less
1375	 * advantage of mmlist ordering, which clusters forked mms
1376	 * together, child after parent.  If we race with dup_mmap(), we
1377	 * prefer to resolve parent before child, lest we miss entries
1378	 * duplicated after we scanned child: using last mm would invert
1379	 * that.
1380	 */
1381	start_mm = &init_mm;
1382	atomic_inc(&init_mm.mm_users);
1383
1384	/*
1385	 * Keep on scanning until all entries have gone.  Usually,
1386	 * one pass through swap_map is enough, but not necessarily:
1387	 * there are races when an instance of an entry might be missed.
1388	 */
1389	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1390		if (signal_pending(current)) {
1391			retval = -EINTR;
1392			break;
1393		}
1394
1395		/*
1396		 * Get a page for the entry, using the existing swap
1397		 * cache page if there is one.  Otherwise, get a clean
1398		 * page and read the swap into it.
1399		 */
1400		swap_map = &si->swap_map[i];
1401		entry = swp_entry(type, i);
1402		page = read_swap_cache_async(entry,
1403					GFP_HIGHUSER_MOVABLE, NULL, 0);
1404		if (!page) {
1405			/*
1406			 * Either swap_duplicate() failed because entry
1407			 * has been freed independently, and will not be
1408			 * reused since sys_swapoff() already disabled
1409			 * allocation from here, or alloc_page() failed.
1410			 */
1411			swcount = *swap_map;
1412			/*
1413			 * We don't hold lock here, so the swap entry could be
1414			 * SWAP_MAP_BAD (when the cluster is discarding).
1415			 * Instead of fail out, We can just skip the swap
1416			 * entry because swapoff will wait for discarding
1417			 * finish anyway.
1418			 */
1419			if (!swcount || swcount == SWAP_MAP_BAD)
1420				continue;
1421			retval = -ENOMEM;
1422			break;
1423		}
1424
1425		/*
1426		 * Don't hold on to start_mm if it looks like exiting.
1427		 */
1428		if (atomic_read(&start_mm->mm_users) == 1) {
1429			mmput(start_mm);
1430			start_mm = &init_mm;
1431			atomic_inc(&init_mm.mm_users);
1432		}
1433
1434		/*
1435		 * Wait for and lock page.  When do_swap_page races with
1436		 * try_to_unuse, do_swap_page can handle the fault much
1437		 * faster than try_to_unuse can locate the entry.  This
1438		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1439		 * defer to do_swap_page in such a case - in some tests,
1440		 * do_swap_page and try_to_unuse repeatedly compete.
1441		 */
1442		wait_on_page_locked(page);
1443		wait_on_page_writeback(page);
1444		lock_page(page);
1445		wait_on_page_writeback(page);
1446
1447		/*
1448		 * Remove all references to entry.
1449		 */
1450		swcount = *swap_map;
1451		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1452			retval = shmem_unuse(entry, page);
1453			/* page has already been unlocked and released */
1454			if (retval < 0)
1455				break;
1456			continue;
1457		}
1458		if (swap_count(swcount) && start_mm != &init_mm)
1459			retval = unuse_mm(start_mm, entry, page);
1460
1461		if (swap_count(*swap_map)) {
1462			int set_start_mm = (*swap_map >= swcount);
1463			struct list_head *p = &start_mm->mmlist;
1464			struct mm_struct *new_start_mm = start_mm;
1465			struct mm_struct *prev_mm = start_mm;
1466			struct mm_struct *mm;
1467
1468			atomic_inc(&new_start_mm->mm_users);
1469			atomic_inc(&prev_mm->mm_users);
1470			spin_lock(&mmlist_lock);
1471			while (swap_count(*swap_map) && !retval &&
1472					(p = p->next) != &start_mm->mmlist) {
1473				mm = list_entry(p, struct mm_struct, mmlist);
1474				if (!atomic_inc_not_zero(&mm->mm_users))
1475					continue;
1476				spin_unlock(&mmlist_lock);
1477				mmput(prev_mm);
1478				prev_mm = mm;
1479
1480				cond_resched();
1481
1482				swcount = *swap_map;
1483				if (!swap_count(swcount)) /* any usage ? */
1484					;
1485				else if (mm == &init_mm)
1486					set_start_mm = 1;
1487				else
1488					retval = unuse_mm(mm, entry, page);
1489
1490				if (set_start_mm && *swap_map < swcount) {
1491					mmput(new_start_mm);
1492					atomic_inc(&mm->mm_users);
1493					new_start_mm = mm;
1494					set_start_mm = 0;
1495				}
1496				spin_lock(&mmlist_lock);
1497			}
1498			spin_unlock(&mmlist_lock);
1499			mmput(prev_mm);
1500			mmput(start_mm);
1501			start_mm = new_start_mm;
1502		}
1503		if (retval) {
1504			unlock_page(page);
1505			page_cache_release(page);
1506			break;
1507		}
1508
1509		/*
1510		 * If a reference remains (rare), we would like to leave
1511		 * the page in the swap cache; but try_to_unmap could
1512		 * then re-duplicate the entry once we drop page lock,
1513		 * so we might loop indefinitely; also, that page could
1514		 * not be swapped out to other storage meanwhile.  So:
1515		 * delete from cache even if there's another reference,
1516		 * after ensuring that the data has been saved to disk -
1517		 * since if the reference remains (rarer), it will be
1518		 * read from disk into another page.  Splitting into two
1519		 * pages would be incorrect if swap supported "shared
1520		 * private" pages, but they are handled by tmpfs files.
1521		 *
1522		 * Given how unuse_vma() targets one particular offset
1523		 * in an anon_vma, once the anon_vma has been determined,
1524		 * this splitting happens to be just what is needed to
1525		 * handle where KSM pages have been swapped out: re-reading
1526		 * is unnecessarily slow, but we can fix that later on.
1527		 */
1528		if (swap_count(*swap_map) &&
1529		     PageDirty(page) && PageSwapCache(page)) {
1530			struct writeback_control wbc = {
1531				.sync_mode = WB_SYNC_NONE,
1532			};
1533
1534			swap_writepage(page, &wbc);
1535			lock_page(page);
1536			wait_on_page_writeback(page);
1537		}
1538
1539		/*
1540		 * It is conceivable that a racing task removed this page from
1541		 * swap cache just before we acquired the page lock at the top,
1542		 * or while we dropped it in unuse_mm().  The page might even
1543		 * be back in swap cache on another swap area: that we must not
1544		 * delete, since it may not have been written out to swap yet.
1545		 */
1546		if (PageSwapCache(page) &&
1547		    likely(page_private(page) == entry.val))
1548			delete_from_swap_cache(page);
1549
1550		/*
1551		 * So we could skip searching mms once swap count went
1552		 * to 1, we did not mark any present ptes as dirty: must
1553		 * mark page dirty so shrink_page_list will preserve it.
1554		 */
1555		SetPageDirty(page);
1556		unlock_page(page);
1557		page_cache_release(page);
1558
1559		/*
1560		 * Make sure that we aren't completely killing
1561		 * interactive performance.
1562		 */
1563		cond_resched();
1564		if (frontswap && pages_to_unuse > 0) {
1565			if (!--pages_to_unuse)
1566				break;
1567		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568	}
1569
1570	mmput(start_mm);
1571	return retval;
 
 
 
 
 
1572}
1573
1574/*
1575 * After a successful try_to_unuse, if no swap is now in use, we know
1576 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1577 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1578 * added to the mmlist just after page_duplicate - before would be racy.
1579 */
1580static void drain_mmlist(void)
1581{
1582	struct list_head *p, *next;
1583	unsigned int type;
1584
1585	for (type = 0; type < nr_swapfiles; type++)
1586		if (swap_info[type]->inuse_pages)
1587			return;
1588	spin_lock(&mmlist_lock);
1589	list_for_each_safe(p, next, &init_mm.mmlist)
1590		list_del_init(p);
1591	spin_unlock(&mmlist_lock);
1592}
1593
1594/*
1595 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1596 * corresponds to page offset for the specified swap entry.
1597 * Note that the type of this function is sector_t, but it returns page offset
1598 * into the bdev, not sector offset.
1599 */
1600static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1601{
1602	struct swap_info_struct *sis;
1603	struct swap_extent *start_se;
1604	struct swap_extent *se;
1605	pgoff_t offset;
1606
1607	sis = swap_info[swp_type(entry)];
1608	*bdev = sis->bdev;
1609
1610	offset = swp_offset(entry);
1611	start_se = sis->curr_swap_extent;
1612	se = start_se;
1613
1614	for ( ; ; ) {
1615		struct list_head *lh;
1616
1617		if (se->start_page <= offset &&
1618				offset < (se->start_page + se->nr_pages)) {
1619			return se->start_block + (offset - se->start_page);
1620		}
1621		lh = se->list.next;
1622		se = list_entry(lh, struct swap_extent, list);
1623		sis->curr_swap_extent = se;
1624		BUG_ON(se == start_se);		/* It *must* be present */
1625	}
1626}
1627
1628/*
1629 * Returns the page offset into bdev for the specified page's swap entry.
1630 */
1631sector_t map_swap_page(struct page *page, struct block_device **bdev)
1632{
1633	swp_entry_t entry;
1634	entry.val = page_private(page);
1635	return map_swap_entry(entry, bdev);
1636}
1637
1638/*
1639 * Free all of a swapdev's extent information
1640 */
1641static void destroy_swap_extents(struct swap_info_struct *sis)
1642{
1643	while (!list_empty(&sis->first_swap_extent.list)) {
1644		struct swap_extent *se;
 
1645
1646		se = list_entry(sis->first_swap_extent.list.next,
1647				struct swap_extent, list);
1648		list_del(&se->list);
1649		kfree(se);
1650	}
1651
1652	if (sis->flags & SWP_FILE) {
1653		struct file *swap_file = sis->swap_file;
1654		struct address_space *mapping = swap_file->f_mapping;
1655
1656		sis->flags &= ~SWP_FILE;
1657		mapping->a_ops->swap_deactivate(swap_file);
 
1658	}
1659}
1660
1661/*
1662 * Add a block range (and the corresponding page range) into this swapdev's
1663 * extent list.  The extent list is kept sorted in page order.
1664 *
1665 * This function rather assumes that it is called in ascending page order.
1666 */
1667int
1668add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1669		unsigned long nr_pages, sector_t start_block)
1670{
 
1671	struct swap_extent *se;
1672	struct swap_extent *new_se;
1673	struct list_head *lh;
1674
1675	if (start_page == 0) {
1676		se = &sis->first_swap_extent;
1677		sis->curr_swap_extent = se;
1678		se->start_page = 0;
1679		se->nr_pages = nr_pages;
1680		se->start_block = start_block;
1681		return 1;
1682	} else {
1683		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1684		se = list_entry(lh, struct swap_extent, list);
 
1685		BUG_ON(se->start_page + se->nr_pages != start_page);
1686		if (se->start_block + se->nr_pages == start_block) {
1687			/* Merge it */
1688			se->nr_pages += nr_pages;
1689			return 0;
1690		}
1691	}
1692
1693	/*
1694	 * No merge.  Insert a new extent, preserving ordering.
1695	 */
1696	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1697	if (new_se == NULL)
1698		return -ENOMEM;
1699	new_se->start_page = start_page;
1700	new_se->nr_pages = nr_pages;
1701	new_se->start_block = start_block;
1702
1703	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
1704	return 1;
1705}
 
1706
1707/*
1708 * A `swap extent' is a simple thing which maps a contiguous range of pages
1709 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1710 * is built at swapon time and is then used at swap_writepage/swap_readpage
1711 * time for locating where on disk a page belongs.
1712 *
1713 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1714 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1715 * swap files identically.
1716 *
1717 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1718 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1719 * swapfiles are handled *identically* after swapon time.
1720 *
1721 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1722 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1723 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1724 * requirements, they are simply tossed out - we will never use those blocks
1725 * for swapping.
1726 *
1727 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1728 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1729 * which will scribble on the fs.
1730 *
1731 * The amount of disk space which a single swap extent represents varies.
1732 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1733 * extents in the list.  To avoid much list walking, we cache the previous
1734 * search location in `curr_swap_extent', and start new searches from there.
1735 * This is extremely effective.  The average number of iterations in
1736 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1737 */
1738static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1739{
1740	struct file *swap_file = sis->swap_file;
1741	struct address_space *mapping = swap_file->f_mapping;
1742	struct inode *inode = mapping->host;
1743	int ret;
1744
1745	if (S_ISBLK(inode->i_mode)) {
1746		ret = add_swap_extent(sis, 0, sis->max, 0);
1747		*span = sis->pages;
1748		return ret;
1749	}
1750
1751	if (mapping->a_ops->swap_activate) {
1752		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1753		if (!ret) {
1754			sis->flags |= SWP_FILE;
1755			ret = add_swap_extent(sis, 0, sis->max, 0);
1756			*span = sis->pages;
 
 
 
1757		}
1758		return ret;
1759	}
1760
1761	return generic_swapfile_activate(sis, swap_file, span);
1762}
1763
1764static void _enable_swap_info(struct swap_info_struct *p, int prio,
1765				unsigned char *swap_map,
1766				struct swap_cluster_info *cluster_info)
 
 
 
 
 
 
 
 
 
 
 
 
1767{
1768	int i, prev;
1769
1770	if (prio >= 0)
1771		p->prio = prio;
1772	else
1773		p->prio = --least_priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774	p->swap_map = swap_map;
1775	p->cluster_info = cluster_info;
 
 
 
 
1776	p->flags |= SWP_WRITEOK;
1777	atomic_long_add(p->pages, &nr_swap_pages);
1778	total_swap_pages += p->pages;
1779
1780	/* insert swap space into swap_list: */
1781	prev = -1;
1782	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1783		if (p->prio >= swap_info[i]->prio)
1784			break;
1785		prev = i;
1786	}
1787	p->next = i;
1788	if (prev < 0)
1789		swap_list.head = swap_list.next = p->type;
1790	else
1791		swap_info[prev]->next = p->type;
 
 
 
 
1792}
1793
1794static void enable_swap_info(struct swap_info_struct *p, int prio,
1795				unsigned char *swap_map,
1796				struct swap_cluster_info *cluster_info,
1797				unsigned long *frontswap_map)
1798{
1799	frontswap_init(p->type, frontswap_map);
1800	spin_lock(&swap_lock);
1801	spin_lock(&p->lock);
1802	 _enable_swap_info(p, prio, swap_map, cluster_info);
 
 
 
 
 
 
 
 
 
1803	spin_unlock(&p->lock);
1804	spin_unlock(&swap_lock);
1805}
1806
1807static void reinsert_swap_info(struct swap_info_struct *p)
1808{
1809	spin_lock(&swap_lock);
1810	spin_lock(&p->lock);
1811	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
 
1812	spin_unlock(&p->lock);
1813	spin_unlock(&swap_lock);
1814}
1815
 
 
 
 
 
 
 
 
 
 
 
1816SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1817{
1818	struct swap_info_struct *p = NULL;
1819	unsigned char *swap_map;
1820	struct swap_cluster_info *cluster_info;
1821	unsigned long *frontswap_map;
1822	struct file *swap_file, *victim;
1823	struct address_space *mapping;
1824	struct inode *inode;
1825	struct filename *pathname;
1826	int i, type, prev;
1827	int err;
1828	unsigned int old_block_size;
1829
1830	if (!capable(CAP_SYS_ADMIN))
1831		return -EPERM;
1832
1833	BUG_ON(!current->mm);
1834
1835	pathname = getname(specialfile);
1836	if (IS_ERR(pathname))
1837		return PTR_ERR(pathname);
1838
1839	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1840	err = PTR_ERR(victim);
1841	if (IS_ERR(victim))
1842		goto out;
1843
1844	mapping = victim->f_mapping;
1845	prev = -1;
1846	spin_lock(&swap_lock);
1847	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1848		p = swap_info[type];
1849		if (p->flags & SWP_WRITEOK) {
1850			if (p->swap_file->f_mapping == mapping)
 
1851				break;
 
1852		}
1853		prev = type;
1854	}
1855	if (type < 0) {
1856		err = -EINVAL;
1857		spin_unlock(&swap_lock);
1858		goto out_dput;
1859	}
1860	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1861		vm_unacct_memory(p->pages);
1862	else {
1863		err = -ENOMEM;
1864		spin_unlock(&swap_lock);
1865		goto out_dput;
1866	}
1867	if (prev < 0)
1868		swap_list.head = p->next;
1869	else
1870		swap_info[prev]->next = p->next;
1871	if (type == swap_list.next) {
1872		/* just pick something that's safe... */
1873		swap_list.next = swap_list.head;
1874	}
1875	spin_lock(&p->lock);
 
1876	if (p->prio < 0) {
1877		for (i = p->next; i >= 0; i = swap_info[i]->next)
1878			swap_info[i]->prio = p->prio--;
 
 
 
 
 
 
 
 
 
1879		least_priority++;
1880	}
 
1881	atomic_long_sub(p->pages, &nr_swap_pages);
1882	total_swap_pages -= p->pages;
1883	p->flags &= ~SWP_WRITEOK;
1884	spin_unlock(&p->lock);
1885	spin_unlock(&swap_lock);
1886
 
 
1887	set_current_oom_origin();
1888	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1889	clear_current_oom_origin();
1890
1891	if (err) {
1892		/* re-insert swap space back into swap_list */
1893		reinsert_swap_info(p);
 
1894		goto out_dput;
1895	}
1896
 
 
 
 
 
 
 
 
 
 
 
 
 
1897	flush_work(&p->discard_work);
1898
1899	destroy_swap_extents(p);
1900	if (p->flags & SWP_CONTINUED)
1901		free_swap_count_continuations(p);
1902
 
 
 
1903	mutex_lock(&swapon_mutex);
1904	spin_lock(&swap_lock);
1905	spin_lock(&p->lock);
1906	drain_mmlist();
1907
1908	/* wait for anyone still in scan_swap_map */
1909	p->highest_bit = 0;		/* cuts scans short */
1910	while (p->flags >= SWP_SCANNING) {
1911		spin_unlock(&p->lock);
1912		spin_unlock(&swap_lock);
1913		schedule_timeout_uninterruptible(1);
1914		spin_lock(&swap_lock);
1915		spin_lock(&p->lock);
1916	}
1917
1918	swap_file = p->swap_file;
1919	old_block_size = p->old_block_size;
1920	p->swap_file = NULL;
1921	p->max = 0;
1922	swap_map = p->swap_map;
1923	p->swap_map = NULL;
1924	cluster_info = p->cluster_info;
1925	p->cluster_info = NULL;
1926	frontswap_map = frontswap_map_get(p);
1927	spin_unlock(&p->lock);
1928	spin_unlock(&swap_lock);
1929	frontswap_invalidate_area(type);
1930	frontswap_map_set(p, NULL);
1931	mutex_unlock(&swapon_mutex);
1932	free_percpu(p->percpu_cluster);
1933	p->percpu_cluster = NULL;
 
 
1934	vfree(swap_map);
1935	vfree(cluster_info);
1936	vfree(frontswap_map);
1937	/* Destroy swap account information */
1938	swap_cgroup_swapoff(type);
 
1939
1940	inode = mapping->host;
1941	if (S_ISBLK(inode->i_mode)) {
1942		struct block_device *bdev = I_BDEV(inode);
1943		set_blocksize(bdev, old_block_size);
1944		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1945	} else {
1946		mutex_lock(&inode->i_mutex);
1947		inode->i_flags &= ~S_SWAPFILE;
1948		mutex_unlock(&inode->i_mutex);
1949	}
 
 
 
 
1950	filp_close(swap_file, NULL);
1951
1952	/*
1953	 * Clear the SWP_USED flag after all resources are freed so that swapon
1954	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1955	 * not hold p->lock after we cleared its SWP_WRITEOK.
1956	 */
1957	spin_lock(&swap_lock);
1958	p->flags = 0;
1959	spin_unlock(&swap_lock);
1960
1961	err = 0;
1962	atomic_inc(&proc_poll_event);
1963	wake_up_interruptible(&proc_poll_wait);
1964
1965out_dput:
1966	filp_close(victim, NULL);
1967out:
1968	putname(pathname);
1969	return err;
1970}
1971
1972#ifdef CONFIG_PROC_FS
1973static unsigned swaps_poll(struct file *file, poll_table *wait)
1974{
1975	struct seq_file *seq = file->private_data;
1976
1977	poll_wait(file, &proc_poll_wait, wait);
1978
1979	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1980		seq->poll_event = atomic_read(&proc_poll_event);
1981		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1982	}
1983
1984	return POLLIN | POLLRDNORM;
1985}
1986
1987/* iterator */
1988static void *swap_start(struct seq_file *swap, loff_t *pos)
1989{
1990	struct swap_info_struct *si;
1991	int type;
1992	loff_t l = *pos;
1993
1994	mutex_lock(&swapon_mutex);
1995
1996	if (!l)
1997		return SEQ_START_TOKEN;
1998
1999	for (type = 0; type < nr_swapfiles; type++) {
2000		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2001		si = swap_info[type];
2002		if (!(si->flags & SWP_USED) || !si->swap_map)
2003			continue;
2004		if (!--l)
2005			return si;
2006	}
2007
2008	return NULL;
2009}
2010
2011static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2012{
2013	struct swap_info_struct *si = v;
2014	int type;
2015
2016	if (v == SEQ_START_TOKEN)
2017		type = 0;
2018	else
2019		type = si->type + 1;
2020
2021	for (; type < nr_swapfiles; type++) {
2022		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2023		si = swap_info[type];
2024		if (!(si->flags & SWP_USED) || !si->swap_map)
2025			continue;
2026		++*pos;
2027		return si;
2028	}
2029
2030	return NULL;
2031}
2032
2033static void swap_stop(struct seq_file *swap, void *v)
2034{
2035	mutex_unlock(&swapon_mutex);
2036}
2037
2038static int swap_show(struct seq_file *swap, void *v)
2039{
2040	struct swap_info_struct *si = v;
2041	struct file *file;
2042	int len;
 
2043
2044	if (si == SEQ_START_TOKEN) {
2045		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2046		return 0;
2047	}
2048
 
 
 
2049	file = si->swap_file;
2050	len = seq_path(swap, &file->f_path, " \t\n\\");
2051	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2052			len < 40 ? 40 - len : 1, " ",
2053			S_ISBLK(file_inode(file)->i_mode) ?
2054				"partition" : "file\t",
2055			si->pages << (PAGE_SHIFT - 10),
2056			si->inuse_pages << (PAGE_SHIFT - 10),
2057			si->prio);
2058	return 0;
2059}
2060
2061static const struct seq_operations swaps_op = {
2062	.start =	swap_start,
2063	.next =		swap_next,
2064	.stop =		swap_stop,
2065	.show =		swap_show
2066};
2067
2068static int swaps_open(struct inode *inode, struct file *file)
2069{
2070	struct seq_file *seq;
2071	int ret;
2072
2073	ret = seq_open(file, &swaps_op);
2074	if (ret)
2075		return ret;
2076
2077	seq = file->private_data;
2078	seq->poll_event = atomic_read(&proc_poll_event);
2079	return 0;
2080}
2081
2082static const struct file_operations proc_swaps_operations = {
2083	.open		= swaps_open,
2084	.read		= seq_read,
2085	.llseek		= seq_lseek,
2086	.release	= seq_release,
2087	.poll		= swaps_poll,
 
2088};
2089
2090static int __init procswaps_init(void)
2091{
2092	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2093	return 0;
2094}
2095__initcall(procswaps_init);
2096#endif /* CONFIG_PROC_FS */
2097
2098#ifdef MAX_SWAPFILES_CHECK
2099static int __init max_swapfiles_check(void)
2100{
2101	MAX_SWAPFILES_CHECK();
2102	return 0;
2103}
2104late_initcall(max_swapfiles_check);
2105#endif
2106
2107static struct swap_info_struct *alloc_swap_info(void)
2108{
2109	struct swap_info_struct *p;
 
2110	unsigned int type;
 
2111
2112	p = kzalloc(sizeof(*p), GFP_KERNEL);
2113	if (!p)
2114		return ERR_PTR(-ENOMEM);
2115
 
 
 
 
 
 
2116	spin_lock(&swap_lock);
2117	for (type = 0; type < nr_swapfiles; type++) {
2118		if (!(swap_info[type]->flags & SWP_USED))
2119			break;
2120	}
2121	if (type >= MAX_SWAPFILES) {
2122		spin_unlock(&swap_lock);
2123		kfree(p);
 
2124		return ERR_PTR(-EPERM);
2125	}
2126	if (type >= nr_swapfiles) {
2127		p->type = type;
2128		swap_info[type] = p;
2129		/*
2130		 * Write swap_info[type] before nr_swapfiles, in case a
2131		 * racing procfs swap_start() or swap_next() is reading them.
2132		 * (We never shrink nr_swapfiles, we never free this entry.)
2133		 */
2134		smp_wmb();
2135		nr_swapfiles++;
2136	} else {
2137		kfree(p);
2138		p = swap_info[type];
2139		/*
2140		 * Do not memset this entry: a racing procfs swap_next()
2141		 * would be relying on p->type to remain valid.
2142		 */
2143	}
2144	INIT_LIST_HEAD(&p->first_swap_extent.list);
 
 
 
2145	p->flags = SWP_USED;
2146	p->next = -1;
2147	spin_unlock(&swap_lock);
 
 
 
 
2148	spin_lock_init(&p->lock);
 
 
2149
2150	return p;
2151}
2152
2153static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2154{
2155	int error;
2156
2157	if (S_ISBLK(inode->i_mode)) {
2158		p->bdev = bdgrab(I_BDEV(inode));
2159		error = blkdev_get(p->bdev,
2160				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2161				   sys_swapon);
2162		if (error < 0) {
2163			p->bdev = NULL;
2164			return -EINVAL;
2165		}
 
2166		p->old_block_size = block_size(p->bdev);
2167		error = set_blocksize(p->bdev, PAGE_SIZE);
2168		if (error < 0)
2169			return error;
 
 
 
 
 
 
 
2170		p->flags |= SWP_BLKDEV;
2171	} else if (S_ISREG(inode->i_mode)) {
2172		p->bdev = inode->i_sb->s_bdev;
2173		mutex_lock(&inode->i_mutex);
2174		if (IS_SWAPFILE(inode))
2175			return -EBUSY;
2176	} else
2177		return -EINVAL;
2178
2179	return 0;
2180}
2181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182static unsigned long read_swap_header(struct swap_info_struct *p,
2183					union swap_header *swap_header,
2184					struct inode *inode)
2185{
2186	int i;
2187	unsigned long maxpages;
2188	unsigned long swapfilepages;
2189	unsigned long last_page;
2190
2191	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2192		pr_err("Unable to find swap-space signature\n");
2193		return 0;
2194	}
2195
2196	/* swap partition endianess hack... */
2197	if (swab32(swap_header->info.version) == 1) {
2198		swab32s(&swap_header->info.version);
2199		swab32s(&swap_header->info.last_page);
2200		swab32s(&swap_header->info.nr_badpages);
 
 
2201		for (i = 0; i < swap_header->info.nr_badpages; i++)
2202			swab32s(&swap_header->info.badpages[i]);
2203	}
2204	/* Check the swap header's sub-version */
2205	if (swap_header->info.version != 1) {
2206		pr_warn("Unable to handle swap header version %d\n",
2207			swap_header->info.version);
2208		return 0;
2209	}
2210
2211	p->lowest_bit  = 1;
2212	p->cluster_next = 1;
2213	p->cluster_nr = 0;
2214
2215	/*
2216	 * Find out how many pages are allowed for a single swap
2217	 * device. There are two limiting factors: 1) the number
2218	 * of bits for the swap offset in the swp_entry_t type, and
2219	 * 2) the number of bits in the swap pte as defined by the
2220	 * different architectures. In order to find the
2221	 * largest possible bit mask, a swap entry with swap type 0
2222	 * and swap offset ~0UL is created, encoded to a swap pte,
2223	 * decoded to a swp_entry_t again, and finally the swap
2224	 * offset is extracted. This will mask all the bits from
2225	 * the initial ~0UL mask that can't be encoded in either
2226	 * the swp_entry_t or the architecture definition of a
2227	 * swap pte.
2228	 */
2229	maxpages = swp_offset(pte_to_swp_entry(
2230			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2231	last_page = swap_header->info.last_page;
 
 
 
 
2232	if (last_page > maxpages) {
2233		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2234			maxpages << (PAGE_SHIFT - 10),
2235			last_page << (PAGE_SHIFT - 10));
2236	}
2237	if (maxpages > last_page) {
2238		maxpages = last_page + 1;
2239		/* p->max is an unsigned int: don't overflow it */
2240		if ((unsigned int)maxpages == 0)
2241			maxpages = UINT_MAX;
2242	}
2243	p->highest_bit = maxpages - 1;
2244
2245	if (!maxpages)
2246		return 0;
2247	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2248	if (swapfilepages && maxpages > swapfilepages) {
2249		pr_warn("Swap area shorter than signature indicates\n");
2250		return 0;
2251	}
2252	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2253		return 0;
2254	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2255		return 0;
2256
2257	return maxpages;
2258}
2259
 
 
 
 
 
 
 
2260static int setup_swap_map_and_extents(struct swap_info_struct *p,
2261					union swap_header *swap_header,
2262					unsigned char *swap_map,
2263					struct swap_cluster_info *cluster_info,
2264					unsigned long maxpages,
2265					sector_t *span)
2266{
2267	int i;
2268	unsigned int nr_good_pages;
2269	int nr_extents;
2270	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2271	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
 
2272
2273	nr_good_pages = maxpages - 1;	/* omit header page */
2274
2275	cluster_set_null(&p->free_cluster_head);
2276	cluster_set_null(&p->free_cluster_tail);
2277	cluster_set_null(&p->discard_cluster_head);
2278	cluster_set_null(&p->discard_cluster_tail);
2279
2280	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2281		unsigned int page_nr = swap_header->info.badpages[i];
2282		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2283			return -EINVAL;
2284		if (page_nr < maxpages) {
2285			swap_map[page_nr] = SWAP_MAP_BAD;
2286			nr_good_pages--;
2287			/*
2288			 * Haven't marked the cluster free yet, no list
2289			 * operation involved
2290			 */
2291			inc_cluster_info_page(p, cluster_info, page_nr);
2292		}
2293	}
2294
2295	/* Haven't marked the cluster free yet, no list operation involved */
2296	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2297		inc_cluster_info_page(p, cluster_info, i);
2298
2299	if (nr_good_pages) {
2300		swap_map[0] = SWAP_MAP_BAD;
2301		/*
2302		 * Not mark the cluster free yet, no list
2303		 * operation involved
2304		 */
2305		inc_cluster_info_page(p, cluster_info, 0);
2306		p->max = maxpages;
2307		p->pages = nr_good_pages;
2308		nr_extents = setup_swap_extents(p, span);
2309		if (nr_extents < 0)
2310			return nr_extents;
2311		nr_good_pages = p->pages;
2312	}
2313	if (!nr_good_pages) {
2314		pr_warn("Empty swap-file\n");
2315		return -EINVAL;
2316	}
2317
2318	if (!cluster_info)
2319		return nr_extents;
2320
2321	for (i = 0; i < nr_clusters; i++) {
2322		if (!cluster_count(&cluster_info[idx])) {
 
 
 
 
 
 
 
 
 
 
 
2323			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2324			if (cluster_is_null(&p->free_cluster_head)) {
2325				cluster_set_next_flag(&p->free_cluster_head,
2326								idx, 0);
2327				cluster_set_next_flag(&p->free_cluster_tail,
2328								idx, 0);
2329			} else {
2330				unsigned int tail;
2331
2332				tail = cluster_next(&p->free_cluster_tail);
2333				cluster_set_next(&cluster_info[tail], idx);
2334				cluster_set_next_flag(&p->free_cluster_tail,
2335								idx, 0);
2336			}
2337		}
2338		idx++;
2339		if (idx == nr_clusters)
2340			idx = 0;
2341	}
2342	return nr_extents;
2343}
2344
2345/*
2346 * Helper to sys_swapon determining if a given swap
2347 * backing device queue supports DISCARD operations.
2348 */
2349static bool swap_discardable(struct swap_info_struct *si)
2350{
2351	struct request_queue *q = bdev_get_queue(si->bdev);
2352
2353	if (!q || !blk_queue_discard(q))
2354		return false;
2355
2356	return true;
2357}
2358
2359SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2360{
2361	struct swap_info_struct *p;
2362	struct filename *name;
2363	struct file *swap_file = NULL;
2364	struct address_space *mapping;
2365	int i;
2366	int prio;
2367	int error;
2368	union swap_header *swap_header;
2369	int nr_extents;
2370	sector_t span;
2371	unsigned long maxpages;
2372	unsigned char *swap_map = NULL;
2373	struct swap_cluster_info *cluster_info = NULL;
2374	unsigned long *frontswap_map = NULL;
2375	struct page *page = NULL;
2376	struct inode *inode = NULL;
 
2377
2378	if (swap_flags & ~SWAP_FLAGS_VALID)
2379		return -EINVAL;
2380
2381	if (!capable(CAP_SYS_ADMIN))
2382		return -EPERM;
2383
 
 
 
2384	p = alloc_swap_info();
2385	if (IS_ERR(p))
2386		return PTR_ERR(p);
2387
2388	INIT_WORK(&p->discard_work, swap_discard_work);
2389
2390	name = getname(specialfile);
2391	if (IS_ERR(name)) {
2392		error = PTR_ERR(name);
2393		name = NULL;
2394		goto bad_swap;
2395	}
2396	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2397	if (IS_ERR(swap_file)) {
2398		error = PTR_ERR(swap_file);
2399		swap_file = NULL;
2400		goto bad_swap;
2401	}
2402
2403	p->swap_file = swap_file;
2404	mapping = swap_file->f_mapping;
2405
2406	for (i = 0; i < nr_swapfiles; i++) {
2407		struct swap_info_struct *q = swap_info[i];
2408
2409		if (q == p || !q->swap_file)
2410			continue;
2411		if (mapping == q->swap_file->f_mapping) {
2412			error = -EBUSY;
2413			goto bad_swap;
2414		}
2415	}
2416
2417	inode = mapping->host;
2418	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2419	error = claim_swapfile(p, inode);
2420	if (unlikely(error))
2421		goto bad_swap;
2422
 
 
 
 
 
 
 
 
 
 
2423	/*
2424	 * Read the swap header.
2425	 */
2426	if (!mapping->a_ops->readpage) {
2427		error = -EINVAL;
2428		goto bad_swap;
2429	}
2430	page = read_mapping_page(mapping, 0, swap_file);
2431	if (IS_ERR(page)) {
2432		error = PTR_ERR(page);
2433		goto bad_swap;
2434	}
2435	swap_header = kmap(page);
2436
2437	maxpages = read_swap_header(p, swap_header, inode);
2438	if (unlikely(!maxpages)) {
2439		error = -EINVAL;
2440		goto bad_swap;
2441	}
2442
2443	/* OK, set up the swap map and apply the bad block list */
2444	swap_map = vzalloc(maxpages);
2445	if (!swap_map) {
2446		error = -ENOMEM;
2447		goto bad_swap;
2448	}
2449	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 
 
 
 
 
 
 
 
 
 
2450		p->flags |= SWP_SOLIDSTATE;
 
 
 
 
 
2451		/*
2452		 * select a random position to start with to help wear leveling
2453		 * SSD
2454		 */
2455		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
 
 
 
 
2456
2457		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2458			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2459		if (!cluster_info) {
2460			error = -ENOMEM;
2461			goto bad_swap;
2462		}
 
 
 
 
2463		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2464		if (!p->percpu_cluster) {
2465			error = -ENOMEM;
2466			goto bad_swap;
2467		}
2468		for_each_possible_cpu(i) {
2469			struct percpu_cluster *cluster;
2470			cluster = per_cpu_ptr(p->percpu_cluster, i);
2471			cluster_set_null(&cluster->index);
2472		}
 
 
 
2473	}
2474
2475	error = swap_cgroup_swapon(p->type, maxpages);
2476	if (error)
2477		goto bad_swap;
2478
2479	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2480		cluster_info, maxpages, &span);
2481	if (unlikely(nr_extents < 0)) {
2482		error = nr_extents;
2483		goto bad_swap;
2484	}
2485	/* frontswap enabled? set up bit-per-page map for frontswap */
2486	if (frontswap_enabled)
2487		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2488
2489	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
 
2490		/*
2491		 * When discard is enabled for swap with no particular
2492		 * policy flagged, we set all swap discard flags here in
2493		 * order to sustain backward compatibility with older
2494		 * swapon(8) releases.
2495		 */
2496		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2497			     SWP_PAGE_DISCARD);
2498
2499		/*
2500		 * By flagging sys_swapon, a sysadmin can tell us to
2501		 * either do single-time area discards only, or to just
2502		 * perform discards for released swap page-clusters.
2503		 * Now it's time to adjust the p->flags accordingly.
2504		 */
2505		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2506			p->flags &= ~SWP_PAGE_DISCARD;
2507		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2508			p->flags &= ~SWP_AREA_DISCARD;
2509
2510		/* issue a swapon-time discard if it's still required */
2511		if (p->flags & SWP_AREA_DISCARD) {
2512			int err = discard_swap(p);
2513			if (unlikely(err))
2514				pr_err("swapon: discard_swap(%p): %d\n",
2515					p, err);
2516		}
2517	}
2518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519	mutex_lock(&swapon_mutex);
2520	prio = -1;
2521	if (swap_flags & SWAP_FLAG_PREFER)
2522		prio =
2523		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2524	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2525
2526	pr_info("Adding %uk swap on %s.  "
2527			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2528		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2529		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2530		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2531		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2532		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2533		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2534		(frontswap_map) ? "FS" : "");
2535
2536	mutex_unlock(&swapon_mutex);
2537	atomic_inc(&proc_poll_event);
2538	wake_up_interruptible(&proc_poll_wait);
2539
2540	if (S_ISREG(inode->i_mode))
2541		inode->i_flags |= S_SWAPFILE;
2542	error = 0;
2543	goto out;
 
 
 
 
 
 
2544bad_swap:
2545	free_percpu(p->percpu_cluster);
2546	p->percpu_cluster = NULL;
2547	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 
 
2548		set_blocksize(p->bdev, p->old_block_size);
2549		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
2550	}
 
2551	destroy_swap_extents(p);
2552	swap_cgroup_swapoff(p->type);
2553	spin_lock(&swap_lock);
2554	p->swap_file = NULL;
2555	p->flags = 0;
2556	spin_unlock(&swap_lock);
2557	vfree(swap_map);
2558	vfree(cluster_info);
2559	if (swap_file) {
2560		if (inode && S_ISREG(inode->i_mode)) {
2561			mutex_unlock(&inode->i_mutex);
2562			inode = NULL;
2563		}
2564		filp_close(swap_file, NULL);
2565	}
2566out:
2567	if (page && !IS_ERR(page)) {
2568		kunmap(page);
2569		page_cache_release(page);
2570	}
2571	if (name)
2572		putname(name);
2573	if (inode && S_ISREG(inode->i_mode))
2574		mutex_unlock(&inode->i_mutex);
 
 
2575	return error;
2576}
2577
2578void si_swapinfo(struct sysinfo *val)
2579{
2580	unsigned int type;
2581	unsigned long nr_to_be_unused = 0;
2582
2583	spin_lock(&swap_lock);
2584	for (type = 0; type < nr_swapfiles; type++) {
2585		struct swap_info_struct *si = swap_info[type];
2586
2587		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2588			nr_to_be_unused += si->inuse_pages;
2589	}
2590	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2591	val->totalswap = total_swap_pages + nr_to_be_unused;
2592	spin_unlock(&swap_lock);
2593}
2594
2595/*
2596 * Verify that a swap entry is valid and increment its swap map count.
2597 *
2598 * Returns error code in following case.
2599 * - success -> 0
2600 * - swp_entry is invalid -> EINVAL
2601 * - swp_entry is migration entry -> EINVAL
2602 * - swap-cache reference is requested but there is already one. -> EEXIST
2603 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2604 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2605 */
2606static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2607{
2608	struct swap_info_struct *p;
2609	unsigned long offset, type;
 
2610	unsigned char count;
2611	unsigned char has_cache;
2612	int err = -EINVAL;
2613
2614	if (non_swap_entry(entry))
2615		goto out;
2616
2617	type = swp_type(entry);
2618	if (type >= nr_swapfiles)
2619		goto bad_file;
2620	p = swap_info[type];
2621	offset = swp_offset(entry);
2622
2623	spin_lock(&p->lock);
2624	if (unlikely(offset >= p->max))
2625		goto unlock_out;
2626
2627	count = p->swap_map[offset];
2628
2629	/*
2630	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2631	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2632	 */
2633	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2634		err = -ENOENT;
2635		goto unlock_out;
2636	}
2637
2638	has_cache = count & SWAP_HAS_CACHE;
2639	count &= ~SWAP_HAS_CACHE;
2640	err = 0;
2641
2642	if (usage == SWAP_HAS_CACHE) {
2643
2644		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2645		if (!has_cache && count)
2646			has_cache = SWAP_HAS_CACHE;
2647		else if (has_cache)		/* someone else added cache */
2648			err = -EEXIST;
2649		else				/* no users remaining */
2650			err = -ENOENT;
2651
2652	} else if (count || has_cache) {
2653
2654		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2655			count += usage;
2656		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2657			err = -EINVAL;
2658		else if (swap_count_continued(p, offset, count))
2659			count = COUNT_CONTINUED;
2660		else
2661			err = -ENOMEM;
2662	} else
2663		err = -ENOENT;			/* unused swap entry */
2664
2665	p->swap_map[offset] = count | has_cache;
 
2666
2667unlock_out:
2668	spin_unlock(&p->lock);
2669out:
2670	return err;
2671
2672bad_file:
2673	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2674	goto out;
2675}
2676
2677/*
2678 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2679 * (in which case its reference count is never incremented).
2680 */
2681void swap_shmem_alloc(swp_entry_t entry)
2682{
2683	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2684}
2685
2686/*
2687 * Increase reference count of swap entry by 1.
2688 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2689 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2690 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2691 * might occur if a page table entry has got corrupted.
2692 */
2693int swap_duplicate(swp_entry_t entry)
2694{
2695	int err = 0;
2696
2697	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2698		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2699	return err;
2700}
2701
2702/*
2703 * @entry: swap entry for which we allocate swap cache.
2704 *
2705 * Called when allocating swap cache for existing swap entry,
2706 * This can return error codes. Returns 0 at success.
2707 * -EBUSY means there is a swap cache.
2708 * Note: return code is different from swap_duplicate().
2709 */
2710int swapcache_prepare(swp_entry_t entry)
2711{
2712	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2713}
2714
2715struct swap_info_struct *page_swap_info(struct page *page)
2716{
2717	swp_entry_t swap = { .val = page_private(page) };
2718	BUG_ON(!PageSwapCache(page));
2719	return swap_info[swp_type(swap)];
 
 
 
 
 
 
 
 
 
 
 
2720}
2721
2722/*
2723 * out-of-line __page_file_ methods to avoid include hell.
2724 */
2725struct address_space *__page_file_mapping(struct page *page)
2726{
2727	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2728	return page_swap_info(page)->swap_file->f_mapping;
2729}
2730EXPORT_SYMBOL_GPL(__page_file_mapping);
2731
2732pgoff_t __page_file_index(struct page *page)
2733{
2734	swp_entry_t swap = { .val = page_private(page) };
2735	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2736	return swp_offset(swap);
2737}
2738EXPORT_SYMBOL_GPL(__page_file_index);
2739
2740/*
2741 * add_swap_count_continuation - called when a swap count is duplicated
2742 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2743 * page of the original vmalloc'ed swap_map, to hold the continuation count
2744 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2745 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2746 *
2747 * These continuation pages are seldom referenced: the common paths all work
2748 * on the original swap_map, only referring to a continuation page when the
2749 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2750 *
2751 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2752 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2753 * can be called after dropping locks.
2754 */
2755int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2756{
2757	struct swap_info_struct *si;
 
2758	struct page *head;
2759	struct page *page;
2760	struct page *list_page;
2761	pgoff_t offset;
2762	unsigned char count;
 
2763
2764	/*
2765	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2766	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2767	 */
2768	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2769
2770	si = swap_info_get(entry);
2771	if (!si) {
2772		/*
2773		 * An acceptable race has occurred since the failing
2774		 * __swap_duplicate(): the swap entry has been freed,
2775		 * perhaps even the whole swap_map cleared for swapoff.
2776		 */
2777		goto outer;
2778	}
 
2779
2780	offset = swp_offset(entry);
2781	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 
 
 
2782
2783	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2784		/*
2785		 * The higher the swap count, the more likely it is that tasks
2786		 * will race to add swap count continuation: we need to avoid
2787		 * over-provisioning.
2788		 */
2789		goto out;
2790	}
2791
2792	if (!page) {
2793		spin_unlock(&si->lock);
2794		return -ENOMEM;
2795	}
2796
2797	/*
2798	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2799	 * no architecture is using highmem pages for kernel page tables: so it
2800	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2801	 */
2802	head = vmalloc_to_page(si->swap_map + offset);
2803	offset &= ~PAGE_MASK;
2804
 
2805	/*
2806	 * Page allocation does not initialize the page's lru field,
2807	 * but it does always reset its private field.
2808	 */
2809	if (!page_private(head)) {
2810		BUG_ON(count & COUNT_CONTINUED);
2811		INIT_LIST_HEAD(&head->lru);
2812		set_page_private(head, SWP_CONTINUED);
2813		si->flags |= SWP_CONTINUED;
2814	}
2815
2816	list_for_each_entry(list_page, &head->lru, lru) {
2817		unsigned char *map;
2818
2819		/*
2820		 * If the previous map said no continuation, but we've found
2821		 * a continuation page, free our allocation and use this one.
2822		 */
2823		if (!(count & COUNT_CONTINUED))
2824			goto out;
2825
2826		map = kmap_atomic(list_page) + offset;
2827		count = *map;
2828		kunmap_atomic(map);
2829
2830		/*
2831		 * If this continuation count now has some space in it,
2832		 * free our allocation and use this one.
2833		 */
2834		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2835			goto out;
2836	}
2837
2838	list_add_tail(&page->lru, &head->lru);
2839	page = NULL;			/* now it's attached, don't free it */
 
 
2840out:
 
2841	spin_unlock(&si->lock);
 
2842outer:
2843	if (page)
2844		__free_page(page);
2845	return 0;
2846}
2847
2848/*
2849 * swap_count_continued - when the original swap_map count is incremented
2850 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2851 * into, carry if so, or else fail until a new continuation page is allocated;
2852 * when the original swap_map count is decremented from 0 with continuation,
2853 * borrow from the continuation and report whether it still holds more.
2854 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 
2855 */
2856static bool swap_count_continued(struct swap_info_struct *si,
2857				 pgoff_t offset, unsigned char count)
2858{
2859	struct page *head;
2860	struct page *page;
2861	unsigned char *map;
 
2862
2863	head = vmalloc_to_page(si->swap_map + offset);
2864	if (page_private(head) != SWP_CONTINUED) {
2865		BUG_ON(count & COUNT_CONTINUED);
2866		return false;		/* need to add count continuation */
2867	}
2868
 
2869	offset &= ~PAGE_MASK;
2870	page = list_entry(head->lru.next, struct page, lru);
2871	map = kmap_atomic(page) + offset;
2872
2873	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2874		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2875
2876	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2877		/*
2878		 * Think of how you add 1 to 999
2879		 */
2880		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2881			kunmap_atomic(map);
2882			page = list_entry(page->lru.next, struct page, lru);
2883			BUG_ON(page == head);
2884			map = kmap_atomic(page) + offset;
2885		}
2886		if (*map == SWAP_CONT_MAX) {
2887			kunmap_atomic(map);
2888			page = list_entry(page->lru.next, struct page, lru);
2889			if (page == head)
2890				return false;	/* add count continuation */
2891			map = kmap_atomic(page) + offset;
 
 
2892init_map:		*map = 0;		/* we didn't zero the page */
2893		}
2894		*map += 1;
2895		kunmap_atomic(map);
2896		page = list_entry(page->lru.prev, struct page, lru);
2897		while (page != head) {
2898			map = kmap_atomic(page) + offset;
2899			*map = COUNT_CONTINUED;
2900			kunmap_atomic(map);
2901			page = list_entry(page->lru.prev, struct page, lru);
2902		}
2903		return true;			/* incremented */
2904
2905	} else {				/* decrementing */
2906		/*
2907		 * Think of how you subtract 1 from 1000
2908		 */
2909		BUG_ON(count != COUNT_CONTINUED);
2910		while (*map == COUNT_CONTINUED) {
2911			kunmap_atomic(map);
2912			page = list_entry(page->lru.next, struct page, lru);
2913			BUG_ON(page == head);
2914			map = kmap_atomic(page) + offset;
2915		}
2916		BUG_ON(*map == 0);
2917		*map -= 1;
2918		if (*map == 0)
2919			count = 0;
2920		kunmap_atomic(map);
2921		page = list_entry(page->lru.prev, struct page, lru);
2922		while (page != head) {
2923			map = kmap_atomic(page) + offset;
2924			*map = SWAP_CONT_MAX | count;
2925			count = COUNT_CONTINUED;
2926			kunmap_atomic(map);
2927			page = list_entry(page->lru.prev, struct page, lru);
2928		}
2929		return count == COUNT_CONTINUED;
2930	}
 
 
 
2931}
2932
2933/*
2934 * free_swap_count_continuations - swapoff free all the continuation pages
2935 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2936 */
2937static void free_swap_count_continuations(struct swap_info_struct *si)
2938{
2939	pgoff_t offset;
2940
2941	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2942		struct page *head;
2943		head = vmalloc_to_page(si->swap_map + offset);
2944		if (page_private(head)) {
2945			struct list_head *this, *next;
2946			list_for_each_safe(this, next, &head->lru) {
2947				struct page *page;
2948				page = list_entry(this, struct page, lru);
2949				list_del(this);
2950				__free_page(page);
2951			}
2952		}
2953	}
2954}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
 
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
 
  56
  57static DEFINE_SPINLOCK(swap_lock);
  58static unsigned int nr_swapfiles;
  59atomic_long_t nr_swap_pages;
  60/*
  61 * Some modules use swappable objects and may try to swap them out under
  62 * memory pressure (via the shrinker). Before doing so, they may wish to
  63 * check to see if any swap space is available.
  64 */
  65EXPORT_SYMBOL_GPL(nr_swap_pages);
  66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  67long total_swap_pages;
  68static int least_priority = -1;
  69unsigned long swapfile_maximum_size;
  70#ifdef CONFIG_MIGRATION
  71bool swap_migration_ad_supported;
  72#endif	/* CONFIG_MIGRATION */
  73
  74static const char Bad_file[] = "Bad swap file entry ";
  75static const char Unused_file[] = "Unused swap file entry ";
  76static const char Bad_offset[] = "Bad swap offset entry ";
  77static const char Unused_offset[] = "Unused swap offset entry ";
  78
  79/*
  80 * all active swap_info_structs
  81 * protected with swap_lock, and ordered by priority.
  82 */
  83static PLIST_HEAD(swap_active_head);
  84
  85/*
  86 * all available (active, not full) swap_info_structs
  87 * protected with swap_avail_lock, ordered by priority.
  88 * This is used by folio_alloc_swap() instead of swap_active_head
  89 * because swap_active_head includes all swap_info_structs,
  90 * but folio_alloc_swap() doesn't need to look at full ones.
  91 * This uses its own lock instead of swap_lock because when a
  92 * swap_info_struct changes between not-full/full, it needs to
  93 * add/remove itself to/from this list, but the swap_info_struct->lock
  94 * is held and the locking order requires swap_lock to be taken
  95 * before any swap_info_struct->lock.
  96 */
  97static struct plist_head *swap_avail_heads;
  98static DEFINE_SPINLOCK(swap_avail_lock);
  99
 100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 101
 102static DEFINE_MUTEX(swapon_mutex);
 103
 104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 105/* Activity counter to indicate that a swapon or swapoff has occurred */
 106static atomic_t proc_poll_event = ATOMIC_INIT(0);
 107
 108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 109
 110static struct swap_info_struct *swap_type_to_swap_info(int type)
 111{
 112	if (type >= MAX_SWAPFILES)
 113		return NULL;
 114
 115	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 116}
 117
 118static inline unsigned char swap_count(unsigned char ent)
 119{
 120	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 121}
 122
 123/* Reclaim the swap entry anyway if possible */
 124#define TTRS_ANYWAY		0x1
 125/*
 126 * Reclaim the swap entry if there are no more mappings of the
 127 * corresponding page
 128 */
 129#define TTRS_UNMAPPED		0x2
 130/* Reclaim the swap entry if swap is getting full*/
 131#define TTRS_FULL		0x4
 132
 133/* returns 1 if swap entry is freed */
 134static int __try_to_reclaim_swap(struct swap_info_struct *si,
 135				 unsigned long offset, unsigned long flags)
 136{
 137	swp_entry_t entry = swp_entry(si->type, offset);
 138	struct folio *folio;
 139	int ret = 0;
 140
 141	folio = filemap_get_folio(swap_address_space(entry), offset);
 142	if (IS_ERR(folio))
 143		return 0;
 144	/*
 145	 * When this function is called from scan_swap_map_slots() and it's
 146	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 147	 * here. We have to use trylock for avoiding deadlock. This is a special
 148	 * case and you should use folio_free_swap() with explicit folio_lock()
 149	 * in usual operations.
 150	 */
 151	if (folio_trylock(folio)) {
 152		if ((flags & TTRS_ANYWAY) ||
 153		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 154		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
 155			ret = folio_free_swap(folio);
 156		folio_unlock(folio);
 157	}
 158	folio_put(folio);
 159	return ret;
 160}
 161
 162static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 163{
 164	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 165	return rb_entry(rb, struct swap_extent, rb_node);
 166}
 167
 168static inline struct swap_extent *next_se(struct swap_extent *se)
 169{
 170	struct rb_node *rb = rb_next(&se->rb_node);
 171	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 172}
 173
 174/*
 175 * swapon tell device that all the old swap contents can be discarded,
 176 * to allow the swap device to optimize its wear-levelling.
 177 */
 178static int discard_swap(struct swap_info_struct *si)
 179{
 180	struct swap_extent *se;
 181	sector_t start_block;
 182	sector_t nr_blocks;
 183	int err = 0;
 184
 185	/* Do not discard the swap header page! */
 186	se = first_se(si);
 187	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 188	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 189	if (nr_blocks) {
 190		err = blkdev_issue_discard(si->bdev, start_block,
 191				nr_blocks, GFP_KERNEL);
 192		if (err)
 193			return err;
 194		cond_resched();
 195	}
 196
 197	for (se = next_se(se); se; se = next_se(se)) {
 198		start_block = se->start_block << (PAGE_SHIFT - 9);
 199		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 200
 201		err = blkdev_issue_discard(si->bdev, start_block,
 202				nr_blocks, GFP_KERNEL);
 203		if (err)
 204			break;
 205
 206		cond_resched();
 207	}
 208	return err;		/* That will often be -EOPNOTSUPP */
 209}
 210
 211static struct swap_extent *
 212offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 213{
 214	struct swap_extent *se;
 215	struct rb_node *rb;
 216
 217	rb = sis->swap_extent_root.rb_node;
 218	while (rb) {
 219		se = rb_entry(rb, struct swap_extent, rb_node);
 220		if (offset < se->start_page)
 221			rb = rb->rb_left;
 222		else if (offset >= se->start_page + se->nr_pages)
 223			rb = rb->rb_right;
 224		else
 225			return se;
 226	}
 227	/* It *must* be present */
 228	BUG();
 229}
 230
 231sector_t swap_folio_sector(struct folio *folio)
 232{
 233	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 234	struct swap_extent *se;
 235	sector_t sector;
 236	pgoff_t offset;
 237
 238	offset = swp_offset(folio->swap);
 239	se = offset_to_swap_extent(sis, offset);
 240	sector = se->start_block + (offset - se->start_page);
 241	return sector << (PAGE_SHIFT - 9);
 242}
 243
 244/*
 245 * swap allocation tell device that a cluster of swap can now be discarded,
 246 * to allow the swap device to optimize its wear-levelling.
 247 */
 248static void discard_swap_cluster(struct swap_info_struct *si,
 249				 pgoff_t start_page, pgoff_t nr_pages)
 250{
 251	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 252
 253	while (nr_pages) {
 254		pgoff_t offset = start_page - se->start_page;
 255		sector_t start_block = se->start_block + offset;
 256		sector_t nr_blocks = se->nr_pages - offset;
 257
 258		if (nr_blocks > nr_pages)
 259			nr_blocks = nr_pages;
 260		start_page += nr_blocks;
 261		nr_pages -= nr_blocks;
 262
 263		start_block <<= PAGE_SHIFT - 9;
 264		nr_blocks <<= PAGE_SHIFT - 9;
 265		if (blkdev_issue_discard(si->bdev, start_block,
 266					nr_blocks, GFP_NOIO))
 267			break;
 
 
 
 
 
 
 
 
 268
 269		se = next_se(se);
 
 270	}
 271}
 272
 273#ifdef CONFIG_THP_SWAP
 274#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 275
 276#define swap_entry_size(size)	(size)
 277#else
 278#define SWAPFILE_CLUSTER	256
 279
 280/*
 281 * Define swap_entry_size() as constant to let compiler to optimize
 282 * out some code if !CONFIG_THP_SWAP
 283 */
 284#define swap_entry_size(size)	1
 285#endif
 286#define LATENCY_LIMIT		256
 287
 288static inline void cluster_set_flag(struct swap_cluster_info *info,
 289	unsigned int flag)
 290{
 291	info->flags = flag;
 292}
 293
 294static inline unsigned int cluster_count(struct swap_cluster_info *info)
 295{
 296	return info->data;
 297}
 298
 299static inline void cluster_set_count(struct swap_cluster_info *info,
 300				     unsigned int c)
 301{
 302	info->data = c;
 303}
 304
 305static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 306					 unsigned int c, unsigned int f)
 307{
 308	info->flags = f;
 309	info->data = c;
 310}
 311
 312static inline unsigned int cluster_next(struct swap_cluster_info *info)
 313{
 314	return info->data;
 315}
 316
 317static inline void cluster_set_next(struct swap_cluster_info *info,
 318				    unsigned int n)
 319{
 320	info->data = n;
 321}
 322
 323static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 324					 unsigned int n, unsigned int f)
 325{
 326	info->flags = f;
 327	info->data = n;
 328}
 329
 330static inline bool cluster_is_free(struct swap_cluster_info *info)
 331{
 332	return info->flags & CLUSTER_FLAG_FREE;
 333}
 334
 335static inline bool cluster_is_null(struct swap_cluster_info *info)
 336{
 337	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 338}
 339
 340static inline void cluster_set_null(struct swap_cluster_info *info)
 341{
 342	info->flags = CLUSTER_FLAG_NEXT_NULL;
 343	info->data = 0;
 344}
 345
 346static inline bool cluster_is_huge(struct swap_cluster_info *info)
 347{
 348	if (IS_ENABLED(CONFIG_THP_SWAP))
 349		return info->flags & CLUSTER_FLAG_HUGE;
 350	return false;
 351}
 352
 353static inline void cluster_clear_huge(struct swap_cluster_info *info)
 354{
 355	info->flags &= ~CLUSTER_FLAG_HUGE;
 356}
 357
 358static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 359						     unsigned long offset)
 360{
 361	struct swap_cluster_info *ci;
 362
 363	ci = si->cluster_info;
 364	if (ci) {
 365		ci += offset / SWAPFILE_CLUSTER;
 366		spin_lock(&ci->lock);
 367	}
 368	return ci;
 369}
 370
 371static inline void unlock_cluster(struct swap_cluster_info *ci)
 372{
 373	if (ci)
 374		spin_unlock(&ci->lock);
 375}
 376
 377/*
 378 * Determine the locking method in use for this device.  Return
 379 * swap_cluster_info if SSD-style cluster-based locking is in place.
 380 */
 381static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 382		struct swap_info_struct *si, unsigned long offset)
 383{
 384	struct swap_cluster_info *ci;
 385
 386	/* Try to use fine-grained SSD-style locking if available: */
 387	ci = lock_cluster(si, offset);
 388	/* Otherwise, fall back to traditional, coarse locking: */
 389	if (!ci)
 390		spin_lock(&si->lock);
 391
 392	return ci;
 393}
 394
 395static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 396					       struct swap_cluster_info *ci)
 397{
 398	if (ci)
 399		unlock_cluster(ci);
 400	else
 401		spin_unlock(&si->lock);
 402}
 403
 404static inline bool cluster_list_empty(struct swap_cluster_list *list)
 405{
 406	return cluster_is_null(&list->head);
 407}
 408
 409static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 410{
 411	return cluster_next(&list->head);
 412}
 413
 414static void cluster_list_init(struct swap_cluster_list *list)
 415{
 416	cluster_set_null(&list->head);
 417	cluster_set_null(&list->tail);
 418}
 419
 420static void cluster_list_add_tail(struct swap_cluster_list *list,
 421				  struct swap_cluster_info *ci,
 422				  unsigned int idx)
 423{
 424	if (cluster_list_empty(list)) {
 425		cluster_set_next_flag(&list->head, idx, 0);
 426		cluster_set_next_flag(&list->tail, idx, 0);
 427	} else {
 428		struct swap_cluster_info *ci_tail;
 429		unsigned int tail = cluster_next(&list->tail);
 430
 431		/*
 432		 * Nested cluster lock, but both cluster locks are
 433		 * only acquired when we held swap_info_struct->lock
 434		 */
 435		ci_tail = ci + tail;
 436		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 437		cluster_set_next(ci_tail, idx);
 438		spin_unlock(&ci_tail->lock);
 439		cluster_set_next_flag(&list->tail, idx, 0);
 440	}
 441}
 442
 443static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 444					   struct swap_cluster_info *ci)
 445{
 446	unsigned int idx;
 447
 448	idx = cluster_next(&list->head);
 449	if (cluster_next(&list->tail) == idx) {
 450		cluster_set_null(&list->head);
 451		cluster_set_null(&list->tail);
 452	} else
 453		cluster_set_next_flag(&list->head,
 454				      cluster_next(&ci[idx]), 0);
 455
 456	return idx;
 457}
 458
 459/* Add a cluster to discard list and schedule it to do discard */
 460static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 461		unsigned int idx)
 462{
 463	/*
 464	 * If scan_swap_map_slots() can't find a free cluster, it will check
 465	 * si->swap_map directly. To make sure the discarding cluster isn't
 466	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 467	 * It will be cleared after discard
 468	 */
 469	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 470			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 471
 472	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 
 
 
 
 
 
 
 
 
 
 473
 474	schedule_work(&si->discard_work);
 475}
 476
 477static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 478{
 479	struct swap_cluster_info *ci = si->cluster_info;
 480
 481	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 482	cluster_list_add_tail(&si->free_clusters, ci, idx);
 483}
 484
 485/*
 486 * Doing discard actually. After a cluster discard is finished, the cluster
 487 * will be added to free cluster list. caller should hold si->lock.
 488*/
 489static void swap_do_scheduled_discard(struct swap_info_struct *si)
 490{
 491	struct swap_cluster_info *info, *ci;
 492	unsigned int idx;
 493
 494	info = si->cluster_info;
 495
 496	while (!cluster_list_empty(&si->discard_clusters)) {
 497		idx = cluster_list_del_first(&si->discard_clusters, info);
 
 
 
 
 
 
 
 498		spin_unlock(&si->lock);
 499
 500		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 501				SWAPFILE_CLUSTER);
 502
 503		spin_lock(&si->lock);
 504		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 505		__free_cluster(si, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 506		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 507				0, SWAPFILE_CLUSTER);
 508		unlock_cluster(ci);
 509	}
 510}
 511
 512static void swap_discard_work(struct work_struct *work)
 513{
 514	struct swap_info_struct *si;
 515
 516	si = container_of(work, struct swap_info_struct, discard_work);
 517
 518	spin_lock(&si->lock);
 519	swap_do_scheduled_discard(si);
 520	spin_unlock(&si->lock);
 521}
 522
 523static void swap_users_ref_free(struct percpu_ref *ref)
 524{
 525	struct swap_info_struct *si;
 526
 527	si = container_of(ref, struct swap_info_struct, users);
 528	complete(&si->comp);
 529}
 530
 531static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info;
 534
 535	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 536	cluster_list_del_first(&si->free_clusters, ci);
 537	cluster_set_count_flag(ci + idx, 0, 0);
 538}
 539
 540static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 541{
 542	struct swap_cluster_info *ci = si->cluster_info + idx;
 543
 544	VM_BUG_ON(cluster_count(ci) != 0);
 545	/*
 546	 * If the swap is discardable, prepare discard the cluster
 547	 * instead of free it immediately. The cluster will be freed
 548	 * after discard.
 549	 */
 550	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 551	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 552		swap_cluster_schedule_discard(si, idx);
 553		return;
 554	}
 555
 556	__free_cluster(si, idx);
 557}
 558
 559/*
 560 * The cluster corresponding to page_nr will be used. The cluster will be
 561 * removed from free cluster list and its usage counter will be increased.
 562 */
 563static void inc_cluster_info_page(struct swap_info_struct *p,
 564	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 565{
 566	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 567
 568	if (!cluster_info)
 569		return;
 570	if (cluster_is_free(&cluster_info[idx]))
 571		alloc_cluster(p, idx);
 
 
 
 
 
 
 
 
 572
 573	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 574	cluster_set_count(&cluster_info[idx],
 575		cluster_count(&cluster_info[idx]) + 1);
 576}
 577
 578/*
 579 * The cluster corresponding to page_nr decreases one usage. If the usage
 580 * counter becomes 0, which means no page in the cluster is in using, we can
 581 * optionally discard the cluster and add it to free cluster list.
 582 */
 583static void dec_cluster_info_page(struct swap_info_struct *p,
 584	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 585{
 586	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 587
 588	if (!cluster_info)
 589		return;
 590
 591	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 592	cluster_set_count(&cluster_info[idx],
 593		cluster_count(&cluster_info[idx]) - 1);
 594
 595	if (cluster_count(&cluster_info[idx]) == 0)
 596		free_cluster(p, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597}
 598
 599/*
 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 601 * cluster list. Avoiding such abuse to avoid list corruption.
 602 */
 603static bool
 604scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 605	unsigned long offset)
 606{
 607	struct percpu_cluster *percpu_cluster;
 608	bool conflict;
 609
 610	offset /= SWAPFILE_CLUSTER;
 611	conflict = !cluster_list_empty(&si->free_clusters) &&
 612		offset != cluster_list_first(&si->free_clusters) &&
 613		cluster_is_free(&si->cluster_info[offset]);
 614
 615	if (!conflict)
 616		return false;
 617
 618	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 619	cluster_set_null(&percpu_cluster->index);
 620	return true;
 621}
 622
 623/*
 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 625 * might involve allocating a new cluster for current CPU too.
 626 */
 627static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 628	unsigned long *offset, unsigned long *scan_base)
 629{
 630	struct percpu_cluster *cluster;
 631	struct swap_cluster_info *ci;
 632	unsigned long tmp, max;
 633
 634new_cluster:
 635	cluster = this_cpu_ptr(si->percpu_cluster);
 636	if (cluster_is_null(&cluster->index)) {
 637		if (!cluster_list_empty(&si->free_clusters)) {
 638			cluster->index = si->free_clusters.head;
 639			cluster->next = cluster_next(&cluster->index) *
 640					SWAPFILE_CLUSTER;
 641		} else if (!cluster_list_empty(&si->discard_clusters)) {
 642			/*
 643			 * we don't have free cluster but have some clusters in
 644			 * discarding, do discard now and reclaim them, then
 645			 * reread cluster_next_cpu since we dropped si->lock
 646			 */
 647			swap_do_scheduled_discard(si);
 648			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 649			*offset = *scan_base;
 650			goto new_cluster;
 651		} else
 652			return false;
 653	}
 654
 
 
 655	/*
 656	 * Other CPUs can use our cluster if they can't find a free cluster,
 657	 * check if there is still free entry in the cluster
 658	 */
 659	tmp = cluster->next;
 660	max = min_t(unsigned long, si->max,
 661		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 662	if (tmp < max) {
 663		ci = lock_cluster(si, tmp);
 664		while (tmp < max) {
 665			if (!si->swap_map[tmp])
 666				break;
 667			tmp++;
 668		}
 669		unlock_cluster(ci);
 670	}
 671	if (tmp >= max) {
 672		cluster_set_null(&cluster->index);
 673		goto new_cluster;
 674	}
 675	cluster->next = tmp + 1;
 676	*offset = tmp;
 677	*scan_base = tmp;
 678	return true;
 679}
 680
 681static void __del_from_avail_list(struct swap_info_struct *p)
 682{
 683	int nid;
 684
 685	assert_spin_locked(&p->lock);
 686	for_each_node(nid)
 687		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 688}
 689
 690static void del_from_avail_list(struct swap_info_struct *p)
 691{
 692	spin_lock(&swap_avail_lock);
 693	__del_from_avail_list(p);
 694	spin_unlock(&swap_avail_lock);
 695}
 696
 697static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 698			     unsigned int nr_entries)
 699{
 700	unsigned int end = offset + nr_entries - 1;
 701
 702	if (offset == si->lowest_bit)
 703		si->lowest_bit += nr_entries;
 704	if (end == si->highest_bit)
 705		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 706	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 707	if (si->inuse_pages == si->pages) {
 708		si->lowest_bit = si->max;
 709		si->highest_bit = 0;
 710		del_from_avail_list(si);
 711	}
 712}
 713
 714static void add_to_avail_list(struct swap_info_struct *p)
 715{
 716	int nid;
 717
 718	spin_lock(&swap_avail_lock);
 719	for_each_node(nid)
 720		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 721	spin_unlock(&swap_avail_lock);
 722}
 723
 724static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 725			    unsigned int nr_entries)
 726{
 727	unsigned long begin = offset;
 728	unsigned long end = offset + nr_entries - 1;
 729	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 730
 731	if (offset < si->lowest_bit)
 732		si->lowest_bit = offset;
 733	if (end > si->highest_bit) {
 734		bool was_full = !si->highest_bit;
 735
 736		WRITE_ONCE(si->highest_bit, end);
 737		if (was_full && (si->flags & SWP_WRITEOK))
 738			add_to_avail_list(si);
 739	}
 740	if (si->flags & SWP_BLKDEV)
 741		swap_slot_free_notify =
 742			si->bdev->bd_disk->fops->swap_slot_free_notify;
 743	else
 744		swap_slot_free_notify = NULL;
 745	while (offset <= end) {
 746		arch_swap_invalidate_page(si->type, offset);
 747		if (swap_slot_free_notify)
 748			swap_slot_free_notify(si->bdev, offset);
 749		offset++;
 750	}
 751	clear_shadow_from_swap_cache(si->type, begin, end);
 752
 753	/*
 754	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
 755	 * only after the above cleanups are done.
 756	 */
 757	smp_wmb();
 758	atomic_long_add(nr_entries, &nr_swap_pages);
 759	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
 760}
 761
 762static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 
 763{
 764	unsigned long prev;
 765
 766	if (!(si->flags & SWP_SOLIDSTATE)) {
 767		si->cluster_next = next;
 768		return;
 769	}
 770
 771	prev = this_cpu_read(*si->cluster_next_cpu);
 772	/*
 773	 * Cross the swap address space size aligned trunk, choose
 774	 * another trunk randomly to avoid lock contention on swap
 775	 * address space if possible.
 776	 */
 777	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 778	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 779		/* No free swap slots available */
 780		if (si->highest_bit <= si->lowest_bit)
 781			return;
 782		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
 783		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 784		next = max_t(unsigned int, next, si->lowest_bit);
 785	}
 786	this_cpu_write(*si->cluster_next_cpu, next);
 787}
 788
 789static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 790					     unsigned long offset)
 791{
 792	if (data_race(!si->swap_map[offset])) {
 793		spin_lock(&si->lock);
 794		return true;
 795	}
 796
 797	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 798		spin_lock(&si->lock);
 799		return true;
 800	}
 801
 802	return false;
 803}
 804
 805static int scan_swap_map_slots(struct swap_info_struct *si,
 806			       unsigned char usage, int nr,
 807			       swp_entry_t slots[])
 808{
 809	struct swap_cluster_info *ci;
 810	unsigned long offset;
 811	unsigned long scan_base;
 812	unsigned long last_in_cluster = 0;
 813	int latency_ration = LATENCY_LIMIT;
 814	int n_ret = 0;
 815	bool scanned_many = false;
 816
 817	/*
 818	 * We try to cluster swap pages by allocating them sequentially
 819	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 820	 * way, however, we resort to first-free allocation, starting
 821	 * a new cluster.  This prevents us from scattering swap pages
 822	 * all over the entire swap partition, so that we reduce
 823	 * overall disk seek times between swap pages.  -- sct
 824	 * But we do now try to find an empty cluster.  -Andrea
 825	 * And we let swap pages go all over an SSD partition.  Hugh
 826	 */
 827
 828	si->flags += SWP_SCANNING;
 829	/*
 830	 * Use percpu scan base for SSD to reduce lock contention on
 831	 * cluster and swap cache.  For HDD, sequential access is more
 832	 * important.
 833	 */
 834	if (si->flags & SWP_SOLIDSTATE)
 835		scan_base = this_cpu_read(*si->cluster_next_cpu);
 836	else
 837		scan_base = si->cluster_next;
 838	offset = scan_base;
 839
 840	/* SSD algorithm */
 841	if (si->cluster_info) {
 842		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 843			goto scan;
 844	} else if (unlikely(!si->cluster_nr--)) {
 
 
 845		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 846			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 847			goto checks;
 848		}
 849
 850		spin_unlock(&si->lock);
 851
 852		/*
 853		 * If seek is expensive, start searching for new cluster from
 854		 * start of partition, to minimize the span of allocated swap.
 855		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 856		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 
 
 857		 */
 858		scan_base = offset = si->lowest_bit;
 
 859		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 860
 861		/* Locate the first empty (unaligned) cluster */
 862		for (; last_in_cluster <= si->highest_bit; offset++) {
 863			if (si->swap_map[offset])
 864				last_in_cluster = offset + SWAPFILE_CLUSTER;
 865			else if (offset == last_in_cluster) {
 866				spin_lock(&si->lock);
 867				offset -= SWAPFILE_CLUSTER - 1;
 868				si->cluster_next = offset;
 869				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 870				goto checks;
 871			}
 872			if (unlikely(--latency_ration < 0)) {
 873				cond_resched();
 874				latency_ration = LATENCY_LIMIT;
 875			}
 876		}
 877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878		offset = scan_base;
 879		spin_lock(&si->lock);
 880		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 881	}
 882
 883checks:
 884	if (si->cluster_info) {
 885		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 886		/* take a break if we already got some slots */
 887			if (n_ret)
 888				goto done;
 889			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 890							&scan_base))
 891				goto scan;
 892		}
 893	}
 894	if (!(si->flags & SWP_WRITEOK))
 895		goto no_page;
 896	if (!si->highest_bit)
 897		goto no_page;
 898	if (offset > si->highest_bit)
 899		scan_base = offset = si->lowest_bit;
 900
 901	ci = lock_cluster(si, offset);
 902	/* reuse swap entry of cache-only swap if not busy. */
 903	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 904		int swap_was_freed;
 905		unlock_cluster(ci);
 906		spin_unlock(&si->lock);
 907		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 908		spin_lock(&si->lock);
 909		/* entry was freed successfully, try to use this again */
 910		if (swap_was_freed)
 911			goto checks;
 912		goto scan; /* check next one */
 913	}
 914
 915	if (si->swap_map[offset]) {
 916		unlock_cluster(ci);
 917		if (!n_ret)
 918			goto scan;
 919		else
 920			goto done;
 
 
 
 
 
 921	}
 922	WRITE_ONCE(si->swap_map[offset], usage);
 923	inc_cluster_info_page(si, si->cluster_info, offset);
 924	unlock_cluster(ci);
 
 925
 926	swap_range_alloc(si, offset, 1);
 927	slots[n_ret++] = swp_entry(si->type, offset);
 928
 929	/* got enough slots or reach max slots? */
 930	if ((n_ret == nr) || (offset >= si->highest_bit))
 931		goto done;
 932
 933	/* search for next available slot */
 934
 935	/* time to take a break? */
 936	if (unlikely(--latency_ration < 0)) {
 937		if (n_ret)
 938			goto done;
 939		spin_unlock(&si->lock);
 940		cond_resched();
 941		spin_lock(&si->lock);
 942		latency_ration = LATENCY_LIMIT;
 943	}
 944
 945	/* try to get more slots in cluster */
 946	if (si->cluster_info) {
 947		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 948			goto checks;
 949	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 950		/* non-ssd case, still more slots in cluster? */
 951		--si->cluster_nr;
 952		goto checks;
 953	}
 954
 955	/*
 956	 * Even if there's no free clusters available (fragmented),
 957	 * try to scan a little more quickly with lock held unless we
 958	 * have scanned too many slots already.
 959	 */
 960	if (!scanned_many) {
 961		unsigned long scan_limit;
 962
 963		if (offset < scan_base)
 964			scan_limit = scan_base;
 965		else
 966			scan_limit = si->highest_bit;
 967		for (; offset <= scan_limit && --latency_ration > 0;
 968		     offset++) {
 969			if (!si->swap_map[offset])
 970				goto checks;
 971		}
 972	}
 973
 974done:
 975	set_cluster_next(si, offset + 1);
 976	si->flags -= SWP_SCANNING;
 977	return n_ret;
 978
 979scan:
 980	spin_unlock(&si->lock);
 981	while (++offset <= READ_ONCE(si->highest_bit)) {
 982		if (unlikely(--latency_ration < 0)) {
 983			cond_resched();
 984			latency_ration = LATENCY_LIMIT;
 985			scanned_many = true;
 986		}
 987		if (swap_offset_available_and_locked(si, offset))
 988			goto checks;
 989	}
 990	offset = si->lowest_bit;
 991	while (offset < scan_base) {
 
 
 
 
 
 
 
 
 992		if (unlikely(--latency_ration < 0)) {
 993			cond_resched();
 994			latency_ration = LATENCY_LIMIT;
 995			scanned_many = true;
 996		}
 997		if (swap_offset_available_and_locked(si, offset))
 998			goto checks;
 999		offset++;
1000	}
1001	spin_lock(&si->lock);
1002
1003no_page:
1004	si->flags -= SWP_SCANNING;
1005	return n_ret;
1006}
1007
1008static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1009{
1010	unsigned long idx;
1011	struct swap_cluster_info *ci;
1012	unsigned long offset;
 
 
 
 
 
 
 
1013
1014	/*
1015	 * Should not even be attempting cluster allocations when huge
1016	 * page swap is disabled.  Warn and fail the allocation.
1017	 */
1018	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1019		VM_WARN_ON_ONCE(1);
1020		return 0;
1021	}
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (cluster_list_empty(&si->free_clusters))
1024		return 0;
 
 
 
 
 
1025
1026	idx = cluster_list_first(&si->free_clusters);
1027	offset = idx * SWAPFILE_CLUSTER;
1028	ci = lock_cluster(si, offset);
1029	alloc_cluster(si, idx);
1030	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1031
1032	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1033	unlock_cluster(ci);
1034	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1035	*slot = swp_entry(si->type, offset);
1036
1037	return 1;
1038}
1039
1040static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1041{
1042	unsigned long offset = idx * SWAPFILE_CLUSTER;
1043	struct swap_cluster_info *ci;
 
 
 
 
 
1044
1045	ci = lock_cluster(si, offset);
1046	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1047	cluster_set_count_flag(ci, 0, 0);
1048	free_cluster(si, idx);
1049	unlock_cluster(ci);
1050	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1051}
1052
1053int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
 
1054{
1055	unsigned long size = swap_entry_size(entry_size);
1056	struct swap_info_struct *si, *next;
1057	long avail_pgs;
1058	int n_ret = 0;
1059	int node;
1060
1061	/* Only single cluster request supported */
1062	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1063
1064	spin_lock(&swap_avail_lock);
1065
1066	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1067	if (avail_pgs <= 0) {
1068		spin_unlock(&swap_avail_lock);
1069		goto noswap;
1070	}
1071
1072	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1073
1074	atomic_long_sub(n_goal * size, &nr_swap_pages);
1075
1076start_over:
1077	node = numa_node_id();
1078	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1079		/* requeue si to after same-priority siblings */
1080		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1081		spin_unlock(&swap_avail_lock);
1082		spin_lock(&si->lock);
1083		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1084			spin_lock(&swap_avail_lock);
1085			if (plist_node_empty(&si->avail_lists[node])) {
1086				spin_unlock(&si->lock);
1087				goto nextsi;
1088			}
1089			WARN(!si->highest_bit,
1090			     "swap_info %d in list but !highest_bit\n",
1091			     si->type);
1092			WARN(!(si->flags & SWP_WRITEOK),
1093			     "swap_info %d in list but !SWP_WRITEOK\n",
1094			     si->type);
1095			__del_from_avail_list(si);
1096			spin_unlock(&si->lock);
1097			goto nextsi;
1098		}
1099		if (size == SWAPFILE_CLUSTER) {
1100			if (si->flags & SWP_BLKDEV)
1101				n_ret = swap_alloc_cluster(si, swp_entries);
1102		} else
1103			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1104						    n_goal, swp_entries);
1105		spin_unlock(&si->lock);
1106		if (n_ret || size == SWAPFILE_CLUSTER)
1107			goto check_out;
1108		cond_resched();
1109
1110		spin_lock(&swap_avail_lock);
1111nextsi:
1112		/*
1113		 * if we got here, it's likely that si was almost full before,
1114		 * and since scan_swap_map_slots() can drop the si->lock,
1115		 * multiple callers probably all tried to get a page from the
1116		 * same si and it filled up before we could get one; or, the si
1117		 * filled up between us dropping swap_avail_lock and taking
1118		 * si->lock. Since we dropped the swap_avail_lock, the
1119		 * swap_avail_head list may have been modified; so if next is
1120		 * still in the swap_avail_head list then try it, otherwise
1121		 * start over if we have not gotten any slots.
1122		 */
1123		if (plist_node_empty(&next->avail_lists[node]))
1124			goto start_over;
1125	}
1126
1127	spin_unlock(&swap_avail_lock);
1128
1129check_out:
1130	if (n_ret < n_goal)
1131		atomic_long_add((long)(n_goal - n_ret) * size,
1132				&nr_swap_pages);
1133noswap:
1134	return n_ret;
1135}
1136
1137static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1138{
1139	struct swap_info_struct *p;
1140	unsigned long offset;
1141
1142	if (!entry.val)
1143		goto out;
1144	p = swp_swap_info(entry);
1145	if (!p)
1146		goto bad_nofile;
1147	if (data_race(!(p->flags & SWP_USED)))
 
1148		goto bad_device;
1149	offset = swp_offset(entry);
1150	if (offset >= p->max)
1151		goto bad_offset;
1152	if (data_race(!p->swap_map[swp_offset(entry)]))
1153		goto bad_free;
 
1154	return p;
1155
1156bad_free:
1157	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1158	goto out;
1159bad_offset:
1160	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1161	goto out;
1162bad_device:
1163	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1164	goto out;
1165bad_nofile:
1166	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1167out:
1168	return NULL;
1169}
1170
1171static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172					struct swap_info_struct *q)
 
 
 
 
 
 
1173{
1174	struct swap_info_struct *p;
1175
1176	p = _swap_info_get(entry);
1177
1178	if (p != q) {
1179		if (q != NULL)
1180			spin_unlock(&q->lock);
1181		if (p != NULL)
1182			spin_lock(&p->lock);
1183	}
1184	return p;
1185}
1186
1187static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188					      unsigned long offset,
1189					      unsigned char usage)
1190{
 
1191	unsigned char count;
1192	unsigned char has_cache;
1193
1194	count = p->swap_map[offset];
1195
1196	has_cache = count & SWAP_HAS_CACHE;
1197	count &= ~SWAP_HAS_CACHE;
1198
1199	if (usage == SWAP_HAS_CACHE) {
1200		VM_BUG_ON(!has_cache);
1201		has_cache = 0;
1202	} else if (count == SWAP_MAP_SHMEM) {
1203		/*
1204		 * Or we could insist on shmem.c using a special
1205		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1206		 */
1207		count = 0;
1208	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209		if (count == COUNT_CONTINUED) {
1210			if (swap_count_continued(p, offset, count))
1211				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212			else
1213				count = SWAP_MAP_MAX;
1214		} else
1215			count--;
1216	}
1217
 
 
 
1218	usage = count | has_cache;
1219	if (usage)
1220		WRITE_ONCE(p->swap_map[offset], usage);
1221	else
1222		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223
1224	return usage;
1225}
1226
1227/*
1228 * When we get a swap entry, if there aren't some other ways to
1229 * prevent swapoff, such as the folio in swap cache is locked, page
1230 * table lock is held, etc., the swap entry may become invalid because
1231 * of swapoff.  Then, we need to enclose all swap related functions
1232 * with get_swap_device() and put_swap_device(), unless the swap
1233 * functions call get/put_swap_device() by themselves.
1234 *
1235 * Note that when only holding the PTL, swapoff might succeed immediately
1236 * after freeing a swap entry. Therefore, immediately after
1237 * __swap_entry_free(), the swap info might become stale and should not
1238 * be touched without a prior get_swap_device().
1239 *
1240 * Check whether swap entry is valid in the swap device.  If so,
1241 * return pointer to swap_info_struct, and keep the swap entry valid
1242 * via preventing the swap device from being swapoff, until
1243 * put_swap_device() is called.  Otherwise return NULL.
1244 *
1245 * Notice that swapoff or swapoff+swapon can still happen before the
1246 * percpu_ref_tryget_live() in get_swap_device() or after the
1247 * percpu_ref_put() in put_swap_device() if there isn't any other way
1248 * to prevent swapoff.  The caller must be prepared for that.  For
1249 * example, the following situation is possible.
1250 *
1251 *   CPU1				CPU2
1252 *   do_swap_page()
1253 *     ...				swapoff+swapon
1254 *     __read_swap_cache_async()
1255 *       swapcache_prepare()
1256 *         __swap_duplicate()
1257 *           // check swap_map
1258 *     // verify PTE not changed
1259 *
1260 * In __swap_duplicate(), the swap_map need to be checked before
1261 * changing partly because the specified swap entry may be for another
1262 * swap device which has been swapoff.  And in do_swap_page(), after
1263 * the page is read from the swap device, the PTE is verified not
1264 * changed with the page table locked to check whether the swap device
1265 * has been swapoff or swapoff+swapon.
1266 */
1267struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268{
1269	struct swap_info_struct *si;
1270	unsigned long offset;
1271
1272	if (!entry.val)
1273		goto out;
1274	si = swp_swap_info(entry);
1275	if (!si)
1276		goto bad_nofile;
1277	if (!percpu_ref_tryget_live(&si->users))
1278		goto out;
1279	/*
1280	 * Guarantee the si->users are checked before accessing other
1281	 * fields of swap_info_struct.
1282	 *
1283	 * Paired with the spin_unlock() after setup_swap_info() in
1284	 * enable_swap_info().
1285	 */
1286	smp_rmb();
1287	offset = swp_offset(entry);
1288	if (offset >= si->max)
1289		goto put_out;
1290
1291	return si;
1292bad_nofile:
1293	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294out:
1295	return NULL;
1296put_out:
1297	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1298	percpu_ref_put(&si->users);
1299	return NULL;
1300}
1301
1302static unsigned char __swap_entry_free(struct swap_info_struct *p,
1303				       swp_entry_t entry)
1304{
1305	struct swap_cluster_info *ci;
1306	unsigned long offset = swp_offset(entry);
1307	unsigned char usage;
1308
1309	ci = lock_cluster_or_swap_info(p, offset);
1310	usage = __swap_entry_free_locked(p, offset, 1);
1311	unlock_cluster_or_swap_info(p, ci);
1312	if (!usage)
1313		free_swap_slot(entry);
1314
1315	return usage;
1316}
1317
1318static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1319{
1320	struct swap_cluster_info *ci;
1321	unsigned long offset = swp_offset(entry);
1322	unsigned char count;
1323
1324	ci = lock_cluster(p, offset);
1325	count = p->swap_map[offset];
1326	VM_BUG_ON(count != SWAP_HAS_CACHE);
1327	p->swap_map[offset] = 0;
1328	dec_cluster_info_page(p, p->cluster_info, offset);
1329	unlock_cluster(ci);
1330
1331	mem_cgroup_uncharge_swap(entry, 1);
1332	swap_range_free(p, offset, 1);
1333}
1334
1335/*
1336 * Caller has made sure that the swap device corresponding to entry
1337 * is still around or has not been recycled.
1338 */
1339void swap_free(swp_entry_t entry)
1340{
1341	struct swap_info_struct *p;
1342
1343	p = _swap_info_get(entry);
1344	if (p)
1345		__swap_entry_free(p, entry);
 
 
1346}
1347
1348/*
1349 * Called after dropping swapcache to decrease refcnt to swap entries.
1350 */
1351void put_swap_folio(struct folio *folio, swp_entry_t entry)
1352{
1353	unsigned long offset = swp_offset(entry);
1354	unsigned long idx = offset / SWAPFILE_CLUSTER;
1355	struct swap_cluster_info *ci;
1356	struct swap_info_struct *si;
1357	unsigned char *map;
1358	unsigned int i, free_entries = 0;
1359	unsigned char val;
1360	int size = swap_entry_size(folio_nr_pages(folio));
1361
1362	si = _swap_info_get(entry);
1363	if (!si)
1364		return;
1365
1366	ci = lock_cluster_or_swap_info(si, offset);
1367	if (size == SWAPFILE_CLUSTER) {
1368		VM_BUG_ON(!cluster_is_huge(ci));
1369		map = si->swap_map + offset;
1370		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1371			val = map[i];
1372			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1373			if (val == SWAP_HAS_CACHE)
1374				free_entries++;
1375		}
1376		cluster_clear_huge(ci);
1377		if (free_entries == SWAPFILE_CLUSTER) {
1378			unlock_cluster_or_swap_info(si, ci);
1379			spin_lock(&si->lock);
1380			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1381			swap_free_cluster(si, idx);
1382			spin_unlock(&si->lock);
1383			return;
1384		}
1385	}
1386	for (i = 0; i < size; i++, entry.val++) {
1387		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1388			unlock_cluster_or_swap_info(si, ci);
1389			free_swap_slot(entry);
1390			if (i == size - 1)
1391				return;
1392			lock_cluster_or_swap_info(si, offset);
1393		}
1394	}
1395	unlock_cluster_or_swap_info(si, ci);
1396}
1397
1398#ifdef CONFIG_THP_SWAP
1399int split_swap_cluster(swp_entry_t entry)
1400{
1401	struct swap_info_struct *si;
1402	struct swap_cluster_info *ci;
1403	unsigned long offset = swp_offset(entry);
1404
1405	si = _swap_info_get(entry);
1406	if (!si)
1407		return -EBUSY;
1408	ci = lock_cluster(si, offset);
1409	cluster_clear_huge(ci);
1410	unlock_cluster(ci);
1411	return 0;
1412}
1413#endif
1414
1415static int swp_entry_cmp(const void *ent1, const void *ent2)
1416{
1417	const swp_entry_t *e1 = ent1, *e2 = ent2;
1418
1419	return (int)swp_type(*e1) - (int)swp_type(*e2);
1420}
1421
1422void swapcache_free_entries(swp_entry_t *entries, int n)
1423{
1424	struct swap_info_struct *p, *prev;
1425	int i;
1426
1427	if (n <= 0)
1428		return;
1429
1430	prev = NULL;
1431	p = NULL;
1432
1433	/*
1434	 * Sort swap entries by swap device, so each lock is only taken once.
1435	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1436	 * so low that it isn't necessary to optimize further.
1437	 */
1438	if (nr_swapfiles > 1)
1439		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1440	for (i = 0; i < n; ++i) {
1441		p = swap_info_get_cont(entries[i], prev);
1442		if (p)
1443			swap_entry_free(p, entries[i]);
1444		prev = p;
1445	}
1446	if (p)
1447		spin_unlock(&p->lock);
1448}
1449
1450int __swap_count(swp_entry_t entry)
1451{
1452	struct swap_info_struct *si = swp_swap_info(entry);
1453	pgoff_t offset = swp_offset(entry);
1454
1455	return swap_count(si->swap_map[offset]);
1456}
1457
1458/*
1459 * How many references to @entry are currently swapped out?
1460 * This does not give an exact answer when swap count is continued,
1461 * but does include the high COUNT_CONTINUED flag to allow for that.
1462 */
1463int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1464{
1465	pgoff_t offset = swp_offset(entry);
1466	struct swap_cluster_info *ci;
1467	int count;
1468
1469	ci = lock_cluster_or_swap_info(si, offset);
1470	count = swap_count(si->swap_map[offset]);
1471	unlock_cluster_or_swap_info(si, ci);
 
 
 
1472	return count;
1473}
1474
1475/*
1476 * How many references to @entry are currently swapped out?
1477 * This considers COUNT_CONTINUED so it returns exact answer.
 
 
1478 */
1479int swp_swapcount(swp_entry_t entry)
1480{
1481	int count, tmp_count, n;
1482	struct swap_info_struct *p;
1483	struct swap_cluster_info *ci;
1484	struct page *page;
1485	pgoff_t offset;
1486	unsigned char *map;
1487
1488	p = _swap_info_get(entry);
1489	if (!p)
1490		return 0;
1491
1492	offset = swp_offset(entry);
1493
1494	ci = lock_cluster_or_swap_info(p, offset);
1495
1496	count = swap_count(p->swap_map[offset]);
1497	if (!(count & COUNT_CONTINUED))
1498		goto out;
1499
1500	count &= ~COUNT_CONTINUED;
1501	n = SWAP_MAP_MAX + 1;
1502
1503	page = vmalloc_to_page(p->swap_map + offset);
1504	offset &= ~PAGE_MASK;
1505	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506
1507	do {
1508		page = list_next_entry(page, lru);
1509		map = kmap_local_page(page);
1510		tmp_count = map[offset];
1511		kunmap_local(map);
1512
1513		count += (tmp_count & ~COUNT_CONTINUED) * n;
1514		n *= (SWAP_CONT_MAX + 1);
1515	} while (tmp_count & COUNT_CONTINUED);
1516out:
1517	unlock_cluster_or_swap_info(p, ci);
1518	return count;
1519}
1520
1521static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522					 swp_entry_t entry)
1523{
1524	struct swap_cluster_info *ci;
1525	unsigned char *map = si->swap_map;
1526	unsigned long roffset = swp_offset(entry);
1527	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528	int i;
1529	bool ret = false;
1530
1531	ci = lock_cluster_or_swap_info(si, offset);
1532	if (!ci || !cluster_is_huge(ci)) {
1533		if (swap_count(map[roffset]))
1534			ret = true;
1535		goto unlock_out;
1536	}
1537	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1538		if (swap_count(map[offset + i])) {
1539			ret = true;
1540			break;
1541		}
1542	}
1543unlock_out:
1544	unlock_cluster_or_swap_info(si, ci);
1545	return ret;
1546}
1547
1548static bool folio_swapped(struct folio *folio)
1549{
1550	swp_entry_t entry = folio->swap;
1551	struct swap_info_struct *si = _swap_info_get(entry);
1552
1553	if (!si)
1554		return false;
1555
1556	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1557		return swap_swapcount(si, entry) != 0;
1558
1559	return swap_page_trans_huge_swapped(si, entry);
1560}
1561
1562/**
1563 * folio_free_swap() - Free the swap space used for this folio.
1564 * @folio: The folio to remove.
1565 *
1566 * If swap is getting full, or if there are no more mappings of this folio,
1567 * then call folio_free_swap to free its swap space.
1568 *
1569 * Return: true if we were able to release the swap space.
1570 */
1571bool folio_free_swap(struct folio *folio)
1572{
1573	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1574
1575	if (!folio_test_swapcache(folio))
1576		return false;
1577	if (folio_test_writeback(folio))
1578		return false;
1579	if (folio_swapped(folio))
1580		return false;
1581
1582	/*
1583	 * Once hibernation has begun to create its image of memory,
1584	 * there's a danger that one of the calls to folio_free_swap()
1585	 * - most probably a call from __try_to_reclaim_swap() while
1586	 * hibernation is allocating its own swap pages for the image,
1587	 * but conceivably even a call from memory reclaim - will free
1588	 * the swap from a folio which has already been recorded in the
1589	 * image as a clean swapcache folio, and then reuse its swap for
1590	 * another page of the image.  On waking from hibernation, the
1591	 * original folio might be freed under memory pressure, then
1592	 * later read back in from swap, now with the wrong data.
1593	 *
1594	 * Hibernation suspends storage while it is writing the image
1595	 * to disk so check that here.
1596	 */
1597	if (pm_suspended_storage())
1598		return false;
1599
1600	delete_from_swap_cache(folio);
1601	folio_set_dirty(folio);
1602	return true;
1603}
1604
1605/*
1606 * Free the swap entry like above, but also try to
1607 * free the page cache entry if it is the last user.
1608 */
1609int free_swap_and_cache(swp_entry_t entry)
1610{
1611	struct swap_info_struct *p;
1612	unsigned char count;
1613
1614	if (non_swap_entry(entry))
1615		return 1;
1616
1617	p = get_swap_device(entry);
1618	if (p) {
1619		if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1620			put_swap_device(p);
1621			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622		}
1623
1624		count = __swap_entry_free(p, entry);
1625		if (count == SWAP_HAS_CACHE &&
1626		    !swap_page_trans_huge_swapped(p, entry))
1627			__try_to_reclaim_swap(p, swp_offset(entry),
1628					      TTRS_UNMAPPED | TTRS_FULL);
1629		put_swap_device(p);
1630	}
1631	return p != NULL;
1632}
1633
1634#ifdef CONFIG_HIBERNATION
1635
1636swp_entry_t get_swap_page_of_type(int type)
1637{
1638	struct swap_info_struct *si = swap_type_to_swap_info(type);
1639	swp_entry_t entry = {0};
1640
1641	if (!si)
1642		goto fail;
1643
1644	/* This is called for allocating swap entry, not cache */
1645	spin_lock(&si->lock);
1646	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647		atomic_long_dec(&nr_swap_pages);
1648	spin_unlock(&si->lock);
1649fail:
1650	return entry;
1651}
1652
1653/*
1654 * Find the swap type that corresponds to given device (if any).
1655 *
1656 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657 * from 0, in which the swap header is expected to be located.
1658 *
1659 * This is needed for the suspend to disk (aka swsusp).
1660 */
1661int swap_type_of(dev_t device, sector_t offset)
1662{
 
1663	int type;
1664
1665	if (!device)
1666		return -1;
1667
1668	spin_lock(&swap_lock);
1669	for (type = 0; type < nr_swapfiles; type++) {
1670		struct swap_info_struct *sis = swap_info[type];
1671
1672		if (!(sis->flags & SWP_WRITEOK))
1673			continue;
1674
1675		if (device == sis->bdev->bd_dev) {
1676			struct swap_extent *se = first_se(sis);
 
 
 
 
 
 
 
1677
1678			if (se->start_block == offset) {
 
 
 
1679				spin_unlock(&swap_lock);
 
1680				return type;
1681			}
1682		}
1683	}
1684	spin_unlock(&swap_lock);
1685	return -ENODEV;
1686}
1687
1688int find_first_swap(dev_t *device)
1689{
1690	int type;
1691
1692	spin_lock(&swap_lock);
1693	for (type = 0; type < nr_swapfiles; type++) {
1694		struct swap_info_struct *sis = swap_info[type];
1695
1696		if (!(sis->flags & SWP_WRITEOK))
1697			continue;
1698		*device = sis->bdev->bd_dev;
1699		spin_unlock(&swap_lock);
1700		return type;
1701	}
1702	spin_unlock(&swap_lock);
1703	return -ENODEV;
1704}
1705
1706/*
1707 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708 * corresponding to given index in swap_info (swap type).
1709 */
1710sector_t swapdev_block(int type, pgoff_t offset)
1711{
1712	struct swap_info_struct *si = swap_type_to_swap_info(type);
1713	struct swap_extent *se;
1714
1715	if (!si || !(si->flags & SWP_WRITEOK))
1716		return 0;
1717	se = offset_to_swap_extent(si, offset);
1718	return se->start_block + (offset - se->start_page);
 
1719}
1720
1721/*
1722 * Return either the total number of swap pages of given type, or the number
1723 * of free pages of that type (depending on @free)
1724 *
1725 * This is needed for software suspend
1726 */
1727unsigned int count_swap_pages(int type, int free)
1728{
1729	unsigned int n = 0;
1730
1731	spin_lock(&swap_lock);
1732	if ((unsigned int)type < nr_swapfiles) {
1733		struct swap_info_struct *sis = swap_info[type];
1734
1735		spin_lock(&sis->lock);
1736		if (sis->flags & SWP_WRITEOK) {
1737			n = sis->pages;
1738			if (free)
1739				n -= sis->inuse_pages;
1740		}
1741		spin_unlock(&sis->lock);
1742	}
1743	spin_unlock(&swap_lock);
1744	return n;
1745}
1746#endif /* CONFIG_HIBERNATION */
1747
1748static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749{
1750	return pte_same(pte_swp_clear_flags(pte), swp_pte);
 
 
 
 
 
 
 
 
 
 
1751}
1752
1753/*
1754 * No need to decide whether this PTE shares the swap entry with others,
1755 * just let do_wp_page work it out if a write is requested later - to
1756 * force COW, vm_page_prot omits write permission from any private vma.
1757 */
1758static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759		unsigned long addr, swp_entry_t entry, struct folio *folio)
1760{
1761	struct page *page;
1762	struct folio *swapcache;
1763	spinlock_t *ptl;
1764	pte_t *pte, new_pte, old_pte;
1765	bool hwpoisoned = false;
1766	int ret = 1;
1767
1768	swapcache = folio;
1769	folio = ksm_might_need_to_copy(folio, vma, addr);
1770	if (unlikely(!folio))
1771		return -ENOMEM;
1772	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1773		hwpoisoned = true;
1774		folio = swapcache;
 
 
1775	}
1776
1777	page = folio_file_page(folio, swp_offset(entry));
1778	if (PageHWPoison(page))
1779		hwpoisoned = true;
1780
1781	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1782	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1783						swp_entry_to_pte(entry)))) {
1784		ret = 0;
1785		goto out;
1786	}
1787
1788	old_pte = ptep_get(pte);
1789
1790	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1791		swp_entry_t swp_entry;
1792
1793		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794		if (hwpoisoned) {
1795			swp_entry = make_hwpoison_entry(page);
1796		} else {
1797			swp_entry = make_poisoned_swp_entry();
1798		}
1799		new_pte = swp_entry_to_pte(swp_entry);
1800		ret = 0;
1801		goto setpte;
1802	}
1803
1804	/*
1805	 * Some architectures may have to restore extra metadata to the page
1806	 * when reading from swap. This metadata may be indexed by swap entry
1807	 * so this must be called before swap_free().
1808	 */
1809	arch_swap_restore(entry, folio);
1810
1811	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1812	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1813	folio_get(folio);
1814	if (folio == swapcache) {
1815		rmap_t rmap_flags = RMAP_NONE;
1816
1817		/*
1818		 * See do_swap_page(): writeback would be problematic.
1819		 * However, we do a folio_wait_writeback() just before this
1820		 * call and have the folio locked.
1821		 */
1822		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1823		if (pte_swp_exclusive(old_pte))
1824			rmap_flags |= RMAP_EXCLUSIVE;
1825
1826		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1827	} else { /* ksm created a completely new copy */
1828		folio_add_new_anon_rmap(folio, vma, addr);
1829		folio_add_lru_vma(folio, vma);
1830	}
1831	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1832	if (pte_swp_soft_dirty(old_pte))
1833		new_pte = pte_mksoft_dirty(new_pte);
1834	if (pte_swp_uffd_wp(old_pte))
1835		new_pte = pte_mkuffd_wp(new_pte);
1836setpte:
1837	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1838	swap_free(entry);
 
 
 
 
 
1839out:
1840	if (pte)
1841		pte_unmap_unlock(pte, ptl);
1842	if (folio != swapcache) {
1843		folio_unlock(folio);
1844		folio_put(folio);
1845	}
1846	return ret;
1847}
1848
1849static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1850			unsigned long addr, unsigned long end,
1851			unsigned int type)
1852{
1853	pte_t *pte = NULL;
1854	struct swap_info_struct *si;
 
1855
1856	si = swap_info[type];
 
 
 
 
 
 
 
 
 
1857	do {
1858		struct folio *folio;
1859		unsigned long offset;
1860		unsigned char swp_count;
1861		swp_entry_t entry;
1862		int ret;
1863		pte_t ptent;
1864
1865		if (!pte++) {
 
1866			pte = pte_offset_map(pmd, addr);
1867			if (!pte)
1868				break;
1869		}
1870
1871		ptent = ptep_get_lockless(pte);
1872
1873		if (!is_swap_pte(ptent))
1874			continue;
1875
1876		entry = pte_to_swp_entry(ptent);
1877		if (swp_type(entry) != type)
1878			continue;
1879
1880		offset = swp_offset(entry);
1881		pte_unmap(pte);
1882		pte = NULL;
1883
1884		folio = swap_cache_get_folio(entry, vma, addr);
1885		if (!folio) {
1886			struct page *page;
1887			struct vm_fault vmf = {
1888				.vma = vma,
1889				.address = addr,
1890				.real_address = addr,
1891				.pmd = pmd,
1892			};
1893
1894			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1895						&vmf);
1896			if (page)
1897				folio = page_folio(page);
1898		}
1899		if (!folio) {
1900			swp_count = READ_ONCE(si->swap_map[offset]);
1901			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1902				continue;
1903			return -ENOMEM;
1904		}
1905
1906		folio_lock(folio);
1907		folio_wait_writeback(folio);
1908		ret = unuse_pte(vma, pmd, addr, entry, folio);
1909		if (ret < 0) {
1910			folio_unlock(folio);
1911			folio_put(folio);
1912			return ret;
1913		}
1914
1915		folio_free_swap(folio);
1916		folio_unlock(folio);
1917		folio_put(folio);
1918	} while (addr += PAGE_SIZE, addr != end);
1919
1920	if (pte)
1921		pte_unmap(pte);
1922	return 0;
1923}
1924
1925static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1926				unsigned long addr, unsigned long end,
1927				unsigned int type)
1928{
1929	pmd_t *pmd;
1930	unsigned long next;
1931	int ret;
1932
1933	pmd = pmd_offset(pud, addr);
1934	do {
1935		cond_resched();
1936		next = pmd_addr_end(addr, end);
1937		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
1938		if (ret)
1939			return ret;
1940	} while (pmd++, addr = next, addr != end);
1941	return 0;
1942}
1943
1944static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1945				unsigned long addr, unsigned long end,
1946				unsigned int type)
1947{
1948	pud_t *pud;
1949	unsigned long next;
1950	int ret;
1951
1952	pud = pud_offset(p4d, addr);
1953	do {
1954		next = pud_addr_end(addr, end);
1955		if (pud_none_or_clear_bad(pud))
1956			continue;
1957		ret = unuse_pmd_range(vma, pud, addr, next, type);
1958		if (ret)
1959			return ret;
1960	} while (pud++, addr = next, addr != end);
1961	return 0;
1962}
1963
1964static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1965				unsigned long addr, unsigned long end,
1966				unsigned int type)
1967{
1968	p4d_t *p4d;
1969	unsigned long next;
1970	int ret;
1971
1972	p4d = p4d_offset(pgd, addr);
1973	do {
1974		next = p4d_addr_end(addr, end);
1975		if (p4d_none_or_clear_bad(p4d))
1976			continue;
1977		ret = unuse_pud_range(vma, p4d, addr, next, type);
1978		if (ret)
1979			return ret;
1980	} while (p4d++, addr = next, addr != end);
1981	return 0;
1982}
1983
1984static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1985{
1986	pgd_t *pgd;
1987	unsigned long addr, end, next;
1988	int ret;
1989
1990	addr = vma->vm_start;
1991	end = vma->vm_end;
 
 
 
 
 
 
 
 
1992
1993	pgd = pgd_offset(vma->vm_mm, addr);
1994	do {
1995		next = pgd_addr_end(addr, end);
1996		if (pgd_none_or_clear_bad(pgd))
1997			continue;
1998		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1999		if (ret)
2000			return ret;
2001	} while (pgd++, addr = next, addr != end);
2002	return 0;
2003}
2004
2005static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
2006{
2007	struct vm_area_struct *vma;
2008	int ret = 0;
2009	VMA_ITERATOR(vmi, mm, 0);
2010
2011	mmap_read_lock(mm);
2012	for_each_vma(vmi, vma) {
2013		if (vma->anon_vma) {
2014			ret = unuse_vma(vma, type);
2015			if (ret)
2016				break;
2017		}
2018
2019		cond_resched();
 
 
 
 
2020	}
2021	mmap_read_unlock(mm);
2022	return ret;
2023}
2024
2025/*
2026 * Scan swap_map from current position to next entry still in use.
2027 * Return 0 if there are no inuse entries after prev till end of
2028 * the map.
2029 */
2030static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2031					unsigned int prev)
2032{
2033	unsigned int i;
 
2034	unsigned char count;
2035
2036	/*
2037	 * No need for swap_lock here: we're just looking
2038	 * for whether an entry is in use, not modifying it; false
2039	 * hits are okay, and sys_swapoff() has already prevented new
2040	 * allocations from this area (while holding swap_lock).
2041	 */
2042	for (i = prev + 1; i < si->max; i++) {
2043		count = READ_ONCE(si->swap_map[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044		if (count && swap_count(count) != SWAP_MAP_BAD)
2045			break;
2046		if ((i % LATENCY_LIMIT) == 0)
2047			cond_resched();
2048	}
2049
2050	if (i == si->max)
2051		i = 0;
2052
2053	return i;
2054}
2055
2056static int try_to_unuse(unsigned int type)
 
 
 
 
 
 
 
 
 
2057{
2058	struct mm_struct *prev_mm;
2059	struct mm_struct *mm;
2060	struct list_head *p;
2061	int retval = 0;
2062	struct swap_info_struct *si = swap_info[type];
2063	struct folio *folio;
 
 
 
 
 
 
 
2064	swp_entry_t entry;
2065	unsigned int i;
 
2066
2067	if (!READ_ONCE(si->inuse_pages))
2068		goto success;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069
2070retry:
2071	retval = shmem_unuse(type);
2072	if (retval)
2073		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074
2075	prev_mm = &init_mm;
2076	mmget(prev_mm);
 
 
 
 
 
 
2077
2078	spin_lock(&mmlist_lock);
2079	p = &init_mm.mmlist;
2080	while (READ_ONCE(si->inuse_pages) &&
2081	       !signal_pending(current) &&
2082	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2083
2084		mm = list_entry(p, struct mm_struct, mmlist);
2085		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2086			continue;
2087		spin_unlock(&mmlist_lock);
2088		mmput(prev_mm);
2089		prev_mm = mm;
2090		retval = unuse_mm(mm, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091		if (retval) {
2092			mmput(prev_mm);
2093			return retval;
 
2094		}
2095
2096		/*
2097		 * Make sure that we aren't completely killing
2098		 * interactive performance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099		 */
2100		cond_resched();
2101		spin_lock(&mmlist_lock);
2102	}
2103	spin_unlock(&mmlist_lock);
 
2104
2105	mmput(prev_mm);
 
 
 
2106
2107	i = 0;
2108	while (READ_ONCE(si->inuse_pages) &&
2109	       !signal_pending(current) &&
2110	       (i = find_next_to_unuse(si, i)) != 0) {
 
 
 
 
 
 
2111
2112		entry = swp_entry(type, i);
2113		folio = filemap_get_folio(swap_address_space(entry), i);
2114		if (IS_ERR(folio))
2115			continue;
 
 
 
 
2116
2117		/*
2118		 * It is conceivable that a racing task removed this folio from
2119		 * swap cache just before we acquired the page lock. The folio
2120		 * might even be back in swap cache on another swap area. But
2121		 * that is okay, folio_free_swap() only removes stale folios.
2122		 */
2123		folio_lock(folio);
2124		folio_wait_writeback(folio);
2125		folio_free_swap(folio);
2126		folio_unlock(folio);
2127		folio_put(folio);
2128	}
2129
2130	/*
2131	 * Lets check again to see if there are still swap entries in the map.
2132	 * If yes, we would need to do retry the unuse logic again.
2133	 * Under global memory pressure, swap entries can be reinserted back
2134	 * into process space after the mmlist loop above passes over them.
2135	 *
2136	 * Limit the number of retries? No: when mmget_not_zero()
2137	 * above fails, that mm is likely to be freeing swap from
2138	 * exit_mmap(), which proceeds at its own independent pace;
2139	 * and even shmem_writepage() could have been preempted after
2140	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2141	 * and robust (though cpu-intensive) just to keep retrying.
2142	 */
2143	if (READ_ONCE(si->inuse_pages)) {
2144		if (!signal_pending(current))
2145			goto retry;
2146		return -EINTR;
2147	}
2148
2149success:
2150	/*
2151	 * Make sure that further cleanups after try_to_unuse() returns happen
2152	 * after swap_range_free() reduces si->inuse_pages to 0.
2153	 */
2154	smp_mb();
2155	return 0;
2156}
2157
2158/*
2159 * After a successful try_to_unuse, if no swap is now in use, we know
2160 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2161 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2162 * added to the mmlist just after page_duplicate - before would be racy.
2163 */
2164static void drain_mmlist(void)
2165{
2166	struct list_head *p, *next;
2167	unsigned int type;
2168
2169	for (type = 0; type < nr_swapfiles; type++)
2170		if (swap_info[type]->inuse_pages)
2171			return;
2172	spin_lock(&mmlist_lock);
2173	list_for_each_safe(p, next, &init_mm.mmlist)
2174		list_del_init(p);
2175	spin_unlock(&mmlist_lock);
2176}
2177
2178/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179 * Free all of a swapdev's extent information
2180 */
2181static void destroy_swap_extents(struct swap_info_struct *sis)
2182{
2183	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2184		struct rb_node *rb = sis->swap_extent_root.rb_node;
2185		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2186
2187		rb_erase(rb, &sis->swap_extent_root);
 
 
2188		kfree(se);
2189	}
2190
2191	if (sis->flags & SWP_ACTIVATED) {
2192		struct file *swap_file = sis->swap_file;
2193		struct address_space *mapping = swap_file->f_mapping;
2194
2195		sis->flags &= ~SWP_ACTIVATED;
2196		if (mapping->a_ops->swap_deactivate)
2197			mapping->a_ops->swap_deactivate(swap_file);
2198	}
2199}
2200
2201/*
2202 * Add a block range (and the corresponding page range) into this swapdev's
2203 * extent tree.
2204 *
2205 * This function rather assumes that it is called in ascending page order.
2206 */
2207int
2208add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2209		unsigned long nr_pages, sector_t start_block)
2210{
2211	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2212	struct swap_extent *se;
2213	struct swap_extent *new_se;
 
2214
2215	/*
2216	 * place the new node at the right most since the
2217	 * function is called in ascending page order.
2218	 */
2219	while (*link) {
2220		parent = *link;
2221		link = &parent->rb_right;
2222	}
2223
2224	if (parent) {
2225		se = rb_entry(parent, struct swap_extent, rb_node);
2226		BUG_ON(se->start_page + se->nr_pages != start_page);
2227		if (se->start_block + se->nr_pages == start_block) {
2228			/* Merge it */
2229			se->nr_pages += nr_pages;
2230			return 0;
2231		}
2232	}
2233
2234	/* No merge, insert a new extent. */
 
 
2235	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2236	if (new_se == NULL)
2237		return -ENOMEM;
2238	new_se->start_page = start_page;
2239	new_se->nr_pages = nr_pages;
2240	new_se->start_block = start_block;
2241
2242	rb_link_node(&new_se->rb_node, parent, link);
2243	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2244	return 1;
2245}
2246EXPORT_SYMBOL_GPL(add_swap_extent);
2247
2248/*
2249 * A `swap extent' is a simple thing which maps a contiguous range of pages
2250 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2251 * built at swapon time and is then used at swap_writepage/swap_read_folio
2252 * time for locating where on disk a page belongs.
2253 *
2254 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2255 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2256 * swap files identically.
2257 *
2258 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2259 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2260 * swapfiles are handled *identically* after swapon time.
2261 *
2262 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2263 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2264 * blocks are found which do not fall within the PAGE_SIZE alignment
2265 * requirements, they are simply tossed out - we will never use those blocks
2266 * for swapping.
2267 *
2268 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2269 * prevents users from writing to the swap device, which will corrupt memory.
 
2270 *
2271 * The amount of disk space which a single swap extent represents varies.
2272 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2273 * extents in the rbtree. - akpm.
 
 
 
2274 */
2275static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2276{
2277	struct file *swap_file = sis->swap_file;
2278	struct address_space *mapping = swap_file->f_mapping;
2279	struct inode *inode = mapping->host;
2280	int ret;
2281
2282	if (S_ISBLK(inode->i_mode)) {
2283		ret = add_swap_extent(sis, 0, sis->max, 0);
2284		*span = sis->pages;
2285		return ret;
2286	}
2287
2288	if (mapping->a_ops->swap_activate) {
2289		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2290		if (ret < 0)
2291			return ret;
2292		sis->flags |= SWP_ACTIVATED;
2293		if ((sis->flags & SWP_FS_OPS) &&
2294		    sio_pool_init() != 0) {
2295			destroy_swap_extents(sis);
2296			return -ENOMEM;
2297		}
2298		return ret;
2299	}
2300
2301	return generic_swapfile_activate(sis, swap_file, span);
2302}
2303
2304static int swap_node(struct swap_info_struct *p)
2305{
2306	struct block_device *bdev;
2307
2308	if (p->bdev)
2309		bdev = p->bdev;
2310	else
2311		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2312
2313	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2314}
2315
2316static void setup_swap_info(struct swap_info_struct *p, int prio,
2317			    unsigned char *swap_map,
2318			    struct swap_cluster_info *cluster_info)
2319{
2320	int i;
2321
2322	if (prio >= 0)
2323		p->prio = prio;
2324	else
2325		p->prio = --least_priority;
2326	/*
2327	 * the plist prio is negated because plist ordering is
2328	 * low-to-high, while swap ordering is high-to-low
2329	 */
2330	p->list.prio = -p->prio;
2331	for_each_node(i) {
2332		if (p->prio >= 0)
2333			p->avail_lists[i].prio = -p->prio;
2334		else {
2335			if (swap_node(p) == i)
2336				p->avail_lists[i].prio = 1;
2337			else
2338				p->avail_lists[i].prio = -p->prio;
2339		}
2340	}
2341	p->swap_map = swap_map;
2342	p->cluster_info = cluster_info;
2343}
2344
2345static void _enable_swap_info(struct swap_info_struct *p)
2346{
2347	p->flags |= SWP_WRITEOK;
2348	atomic_long_add(p->pages, &nr_swap_pages);
2349	total_swap_pages += p->pages;
2350
2351	assert_spin_locked(&swap_lock);
2352	/*
2353	 * both lists are plists, and thus priority ordered.
2354	 * swap_active_head needs to be priority ordered for swapoff(),
2355	 * which on removal of any swap_info_struct with an auto-assigned
2356	 * (i.e. negative) priority increments the auto-assigned priority
2357	 * of any lower-priority swap_info_structs.
2358	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2359	 * which allocates swap pages from the highest available priority
2360	 * swap_info_struct.
2361	 */
2362	plist_add(&p->list, &swap_active_head);
2363
2364	/* add to available list iff swap device is not full */
2365	if (p->highest_bit)
2366		add_to_avail_list(p);
2367}
2368
2369static void enable_swap_info(struct swap_info_struct *p, int prio,
2370				unsigned char *swap_map,
2371				struct swap_cluster_info *cluster_info)
 
2372{
 
2373	spin_lock(&swap_lock);
2374	spin_lock(&p->lock);
2375	setup_swap_info(p, prio, swap_map, cluster_info);
2376	spin_unlock(&p->lock);
2377	spin_unlock(&swap_lock);
2378	/*
2379	 * Finished initializing swap device, now it's safe to reference it.
2380	 */
2381	percpu_ref_resurrect(&p->users);
2382	spin_lock(&swap_lock);
2383	spin_lock(&p->lock);
2384	_enable_swap_info(p);
2385	spin_unlock(&p->lock);
2386	spin_unlock(&swap_lock);
2387}
2388
2389static void reinsert_swap_info(struct swap_info_struct *p)
2390{
2391	spin_lock(&swap_lock);
2392	spin_lock(&p->lock);
2393	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2394	_enable_swap_info(p);
2395	spin_unlock(&p->lock);
2396	spin_unlock(&swap_lock);
2397}
2398
2399bool has_usable_swap(void)
2400{
2401	bool ret = true;
2402
2403	spin_lock(&swap_lock);
2404	if (plist_head_empty(&swap_active_head))
2405		ret = false;
2406	spin_unlock(&swap_lock);
2407	return ret;
2408}
2409
2410SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2411{
2412	struct swap_info_struct *p = NULL;
2413	unsigned char *swap_map;
2414	struct swap_cluster_info *cluster_info;
 
2415	struct file *swap_file, *victim;
2416	struct address_space *mapping;
2417	struct inode *inode;
2418	struct filename *pathname;
2419	int err, found = 0;
 
2420	unsigned int old_block_size;
2421
2422	if (!capable(CAP_SYS_ADMIN))
2423		return -EPERM;
2424
2425	BUG_ON(!current->mm);
2426
2427	pathname = getname(specialfile);
2428	if (IS_ERR(pathname))
2429		return PTR_ERR(pathname);
2430
2431	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2432	err = PTR_ERR(victim);
2433	if (IS_ERR(victim))
2434		goto out;
2435
2436	mapping = victim->f_mapping;
 
2437	spin_lock(&swap_lock);
2438	plist_for_each_entry(p, &swap_active_head, list) {
 
2439		if (p->flags & SWP_WRITEOK) {
2440			if (p->swap_file->f_mapping == mapping) {
2441				found = 1;
2442				break;
2443			}
2444		}
 
2445	}
2446	if (!found) {
2447		err = -EINVAL;
2448		spin_unlock(&swap_lock);
2449		goto out_dput;
2450	}
2451	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2452		vm_unacct_memory(p->pages);
2453	else {
2454		err = -ENOMEM;
2455		spin_unlock(&swap_lock);
2456		goto out_dput;
2457	}
 
 
 
 
 
 
 
 
2458	spin_lock(&p->lock);
2459	del_from_avail_list(p);
2460	if (p->prio < 0) {
2461		struct swap_info_struct *si = p;
2462		int nid;
2463
2464		plist_for_each_entry_continue(si, &swap_active_head, list) {
2465			si->prio++;
2466			si->list.prio--;
2467			for_each_node(nid) {
2468				if (si->avail_lists[nid].prio != 1)
2469					si->avail_lists[nid].prio--;
2470			}
2471		}
2472		least_priority++;
2473	}
2474	plist_del(&p->list, &swap_active_head);
2475	atomic_long_sub(p->pages, &nr_swap_pages);
2476	total_swap_pages -= p->pages;
2477	p->flags &= ~SWP_WRITEOK;
2478	spin_unlock(&p->lock);
2479	spin_unlock(&swap_lock);
2480
2481	disable_swap_slots_cache_lock();
2482
2483	set_current_oom_origin();
2484	err = try_to_unuse(p->type);
2485	clear_current_oom_origin();
2486
2487	if (err) {
2488		/* re-insert swap space back into swap_list */
2489		reinsert_swap_info(p);
2490		reenable_swap_slots_cache_unlock();
2491		goto out_dput;
2492	}
2493
2494	reenable_swap_slots_cache_unlock();
2495
2496	/*
2497	 * Wait for swap operations protected by get/put_swap_device()
2498	 * to complete.
2499	 *
2500	 * We need synchronize_rcu() here to protect the accessing to
2501	 * the swap cache data structure.
2502	 */
2503	percpu_ref_kill(&p->users);
2504	synchronize_rcu();
2505	wait_for_completion(&p->comp);
2506
2507	flush_work(&p->discard_work);
2508
2509	destroy_swap_extents(p);
2510	if (p->flags & SWP_CONTINUED)
2511		free_swap_count_continuations(p);
2512
2513	if (!p->bdev || !bdev_nonrot(p->bdev))
2514		atomic_dec(&nr_rotate_swap);
2515
2516	mutex_lock(&swapon_mutex);
2517	spin_lock(&swap_lock);
2518	spin_lock(&p->lock);
2519	drain_mmlist();
2520
2521	/* wait for anyone still in scan_swap_map_slots */
2522	p->highest_bit = 0;		/* cuts scans short */
2523	while (p->flags >= SWP_SCANNING) {
2524		spin_unlock(&p->lock);
2525		spin_unlock(&swap_lock);
2526		schedule_timeout_uninterruptible(1);
2527		spin_lock(&swap_lock);
2528		spin_lock(&p->lock);
2529	}
2530
2531	swap_file = p->swap_file;
2532	old_block_size = p->old_block_size;
2533	p->swap_file = NULL;
2534	p->max = 0;
2535	swap_map = p->swap_map;
2536	p->swap_map = NULL;
2537	cluster_info = p->cluster_info;
2538	p->cluster_info = NULL;
 
2539	spin_unlock(&p->lock);
2540	spin_unlock(&swap_lock);
2541	arch_swap_invalidate_area(p->type);
2542	zswap_swapoff(p->type);
2543	mutex_unlock(&swapon_mutex);
2544	free_percpu(p->percpu_cluster);
2545	p->percpu_cluster = NULL;
2546	free_percpu(p->cluster_next_cpu);
2547	p->cluster_next_cpu = NULL;
2548	vfree(swap_map);
2549	kvfree(cluster_info);
 
2550	/* Destroy swap account information */
2551	swap_cgroup_swapoff(p->type);
2552	exit_swap_address_space(p->type);
2553
2554	inode = mapping->host;
2555	if (p->bdev_file) {
2556		set_blocksize(p->bdev, old_block_size);
2557		fput(p->bdev_file);
2558		p->bdev_file = NULL;
 
 
 
 
2559	}
2560
2561	inode_lock(inode);
2562	inode->i_flags &= ~S_SWAPFILE;
2563	inode_unlock(inode);
2564	filp_close(swap_file, NULL);
2565
2566	/*
2567	 * Clear the SWP_USED flag after all resources are freed so that swapon
2568	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2569	 * not hold p->lock after we cleared its SWP_WRITEOK.
2570	 */
2571	spin_lock(&swap_lock);
2572	p->flags = 0;
2573	spin_unlock(&swap_lock);
2574
2575	err = 0;
2576	atomic_inc(&proc_poll_event);
2577	wake_up_interruptible(&proc_poll_wait);
2578
2579out_dput:
2580	filp_close(victim, NULL);
2581out:
2582	putname(pathname);
2583	return err;
2584}
2585
2586#ifdef CONFIG_PROC_FS
2587static __poll_t swaps_poll(struct file *file, poll_table *wait)
2588{
2589	struct seq_file *seq = file->private_data;
2590
2591	poll_wait(file, &proc_poll_wait, wait);
2592
2593	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2594		seq->poll_event = atomic_read(&proc_poll_event);
2595		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2596	}
2597
2598	return EPOLLIN | EPOLLRDNORM;
2599}
2600
2601/* iterator */
2602static void *swap_start(struct seq_file *swap, loff_t *pos)
2603{
2604	struct swap_info_struct *si;
2605	int type;
2606	loff_t l = *pos;
2607
2608	mutex_lock(&swapon_mutex);
2609
2610	if (!l)
2611		return SEQ_START_TOKEN;
2612
2613	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2614		if (!(si->flags & SWP_USED) || !si->swap_map)
2615			continue;
2616		if (!--l)
2617			return si;
2618	}
2619
2620	return NULL;
2621}
2622
2623static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2624{
2625	struct swap_info_struct *si = v;
2626	int type;
2627
2628	if (v == SEQ_START_TOKEN)
2629		type = 0;
2630	else
2631		type = si->type + 1;
2632
2633	++(*pos);
2634	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2635		if (!(si->flags & SWP_USED) || !si->swap_map)
2636			continue;
 
2637		return si;
2638	}
2639
2640	return NULL;
2641}
2642
2643static void swap_stop(struct seq_file *swap, void *v)
2644{
2645	mutex_unlock(&swapon_mutex);
2646}
2647
2648static int swap_show(struct seq_file *swap, void *v)
2649{
2650	struct swap_info_struct *si = v;
2651	struct file *file;
2652	int len;
2653	unsigned long bytes, inuse;
2654
2655	if (si == SEQ_START_TOKEN) {
2656		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2657		return 0;
2658	}
2659
2660	bytes = K(si->pages);
2661	inuse = K(READ_ONCE(si->inuse_pages));
2662
2663	file = si->swap_file;
2664	len = seq_file_path(swap, file, " \t\n\\");
2665	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2666			len < 40 ? 40 - len : 1, " ",
2667			S_ISBLK(file_inode(file)->i_mode) ?
2668				"partition" : "file\t",
2669			bytes, bytes < 10000000 ? "\t" : "",
2670			inuse, inuse < 10000000 ? "\t" : "",
2671			si->prio);
2672	return 0;
2673}
2674
2675static const struct seq_operations swaps_op = {
2676	.start =	swap_start,
2677	.next =		swap_next,
2678	.stop =		swap_stop,
2679	.show =		swap_show
2680};
2681
2682static int swaps_open(struct inode *inode, struct file *file)
2683{
2684	struct seq_file *seq;
2685	int ret;
2686
2687	ret = seq_open(file, &swaps_op);
2688	if (ret)
2689		return ret;
2690
2691	seq = file->private_data;
2692	seq->poll_event = atomic_read(&proc_poll_event);
2693	return 0;
2694}
2695
2696static const struct proc_ops swaps_proc_ops = {
2697	.proc_flags	= PROC_ENTRY_PERMANENT,
2698	.proc_open	= swaps_open,
2699	.proc_read	= seq_read,
2700	.proc_lseek	= seq_lseek,
2701	.proc_release	= seq_release,
2702	.proc_poll	= swaps_poll,
2703};
2704
2705static int __init procswaps_init(void)
2706{
2707	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2708	return 0;
2709}
2710__initcall(procswaps_init);
2711#endif /* CONFIG_PROC_FS */
2712
2713#ifdef MAX_SWAPFILES_CHECK
2714static int __init max_swapfiles_check(void)
2715{
2716	MAX_SWAPFILES_CHECK();
2717	return 0;
2718}
2719late_initcall(max_swapfiles_check);
2720#endif
2721
2722static struct swap_info_struct *alloc_swap_info(void)
2723{
2724	struct swap_info_struct *p;
2725	struct swap_info_struct *defer = NULL;
2726	unsigned int type;
2727	int i;
2728
2729	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2730	if (!p)
2731		return ERR_PTR(-ENOMEM);
2732
2733	if (percpu_ref_init(&p->users, swap_users_ref_free,
2734			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2735		kvfree(p);
2736		return ERR_PTR(-ENOMEM);
2737	}
2738
2739	spin_lock(&swap_lock);
2740	for (type = 0; type < nr_swapfiles; type++) {
2741		if (!(swap_info[type]->flags & SWP_USED))
2742			break;
2743	}
2744	if (type >= MAX_SWAPFILES) {
2745		spin_unlock(&swap_lock);
2746		percpu_ref_exit(&p->users);
2747		kvfree(p);
2748		return ERR_PTR(-EPERM);
2749	}
2750	if (type >= nr_swapfiles) {
2751		p->type = type;
 
2752		/*
2753		 * Publish the swap_info_struct after initializing it.
2754		 * Note that kvzalloc() above zeroes all its fields.
 
2755		 */
2756		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2757		nr_swapfiles++;
2758	} else {
2759		defer = p;
2760		p = swap_info[type];
2761		/*
2762		 * Do not memset this entry: a racing procfs swap_next()
2763		 * would be relying on p->type to remain valid.
2764		 */
2765	}
2766	p->swap_extent_root = RB_ROOT;
2767	plist_node_init(&p->list, 0);
2768	for_each_node(i)
2769		plist_node_init(&p->avail_lists[i], 0);
2770	p->flags = SWP_USED;
 
2771	spin_unlock(&swap_lock);
2772	if (defer) {
2773		percpu_ref_exit(&defer->users);
2774		kvfree(defer);
2775	}
2776	spin_lock_init(&p->lock);
2777	spin_lock_init(&p->cont_lock);
2778	init_completion(&p->comp);
2779
2780	return p;
2781}
2782
2783static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2784{
2785	int error;
2786
2787	if (S_ISBLK(inode->i_mode)) {
2788		p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2789				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2790		if (IS_ERR(p->bdev_file)) {
2791			error = PTR_ERR(p->bdev_file);
2792			p->bdev_file = NULL;
2793			return error;
 
2794		}
2795		p->bdev = file_bdev(p->bdev_file);
2796		p->old_block_size = block_size(p->bdev);
2797		error = set_blocksize(p->bdev, PAGE_SIZE);
2798		if (error < 0)
2799			return error;
2800		/*
2801		 * Zoned block devices contain zones that have a sequential
2802		 * write only restriction.  Hence zoned block devices are not
2803		 * suitable for swapping.  Disallow them here.
2804		 */
2805		if (bdev_is_zoned(p->bdev))
2806			return -EINVAL;
2807		p->flags |= SWP_BLKDEV;
2808	} else if (S_ISREG(inode->i_mode)) {
2809		p->bdev = inode->i_sb->s_bdev;
2810	}
 
 
 
 
2811
2812	return 0;
2813}
2814
2815
2816/*
2817 * Find out how many pages are allowed for a single swap device. There
2818 * are two limiting factors:
2819 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2820 * 2) the number of bits in the swap pte, as defined by the different
2821 * architectures.
2822 *
2823 * In order to find the largest possible bit mask, a swap entry with
2824 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2825 * decoded to a swp_entry_t again, and finally the swap offset is
2826 * extracted.
2827 *
2828 * This will mask all the bits from the initial ~0UL mask that can't
2829 * be encoded in either the swp_entry_t or the architecture definition
2830 * of a swap pte.
2831 */
2832unsigned long generic_max_swapfile_size(void)
2833{
2834	return swp_offset(pte_to_swp_entry(
2835			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2836}
2837
2838/* Can be overridden by an architecture for additional checks. */
2839__weak unsigned long arch_max_swapfile_size(void)
2840{
2841	return generic_max_swapfile_size();
2842}
2843
2844static unsigned long read_swap_header(struct swap_info_struct *p,
2845					union swap_header *swap_header,
2846					struct inode *inode)
2847{
2848	int i;
2849	unsigned long maxpages;
2850	unsigned long swapfilepages;
2851	unsigned long last_page;
2852
2853	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2854		pr_err("Unable to find swap-space signature\n");
2855		return 0;
2856	}
2857
2858	/* swap partition endianness hack... */
2859	if (swab32(swap_header->info.version) == 1) {
2860		swab32s(&swap_header->info.version);
2861		swab32s(&swap_header->info.last_page);
2862		swab32s(&swap_header->info.nr_badpages);
2863		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2864			return 0;
2865		for (i = 0; i < swap_header->info.nr_badpages; i++)
2866			swab32s(&swap_header->info.badpages[i]);
2867	}
2868	/* Check the swap header's sub-version */
2869	if (swap_header->info.version != 1) {
2870		pr_warn("Unable to handle swap header version %d\n",
2871			swap_header->info.version);
2872		return 0;
2873	}
2874
2875	p->lowest_bit  = 1;
2876	p->cluster_next = 1;
2877	p->cluster_nr = 0;
2878
2879	maxpages = swapfile_maximum_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880	last_page = swap_header->info.last_page;
2881	if (!last_page) {
2882		pr_warn("Empty swap-file\n");
2883		return 0;
2884	}
2885	if (last_page > maxpages) {
2886		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2887			K(maxpages), K(last_page));
 
2888	}
2889	if (maxpages > last_page) {
2890		maxpages = last_page + 1;
2891		/* p->max is an unsigned int: don't overflow it */
2892		if ((unsigned int)maxpages == 0)
2893			maxpages = UINT_MAX;
2894	}
2895	p->highest_bit = maxpages - 1;
2896
2897	if (!maxpages)
2898		return 0;
2899	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2900	if (swapfilepages && maxpages > swapfilepages) {
2901		pr_warn("Swap area shorter than signature indicates\n");
2902		return 0;
2903	}
2904	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2905		return 0;
2906	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2907		return 0;
2908
2909	return maxpages;
2910}
2911
2912#define SWAP_CLUSTER_INFO_COLS						\
2913	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2914#define SWAP_CLUSTER_SPACE_COLS						\
2915	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2916#define SWAP_CLUSTER_COLS						\
2917	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2918
2919static int setup_swap_map_and_extents(struct swap_info_struct *p,
2920					union swap_header *swap_header,
2921					unsigned char *swap_map,
2922					struct swap_cluster_info *cluster_info,
2923					unsigned long maxpages,
2924					sector_t *span)
2925{
2926	unsigned int j, k;
2927	unsigned int nr_good_pages;
2928	int nr_extents;
2929	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2930	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2931	unsigned long i, idx;
2932
2933	nr_good_pages = maxpages - 1;	/* omit header page */
2934
2935	cluster_list_init(&p->free_clusters);
2936	cluster_list_init(&p->discard_clusters);
 
 
2937
2938	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2939		unsigned int page_nr = swap_header->info.badpages[i];
2940		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2941			return -EINVAL;
2942		if (page_nr < maxpages) {
2943			swap_map[page_nr] = SWAP_MAP_BAD;
2944			nr_good_pages--;
2945			/*
2946			 * Haven't marked the cluster free yet, no list
2947			 * operation involved
2948			 */
2949			inc_cluster_info_page(p, cluster_info, page_nr);
2950		}
2951	}
2952
2953	/* Haven't marked the cluster free yet, no list operation involved */
2954	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2955		inc_cluster_info_page(p, cluster_info, i);
2956
2957	if (nr_good_pages) {
2958		swap_map[0] = SWAP_MAP_BAD;
2959		/*
2960		 * Not mark the cluster free yet, no list
2961		 * operation involved
2962		 */
2963		inc_cluster_info_page(p, cluster_info, 0);
2964		p->max = maxpages;
2965		p->pages = nr_good_pages;
2966		nr_extents = setup_swap_extents(p, span);
2967		if (nr_extents < 0)
2968			return nr_extents;
2969		nr_good_pages = p->pages;
2970	}
2971	if (!nr_good_pages) {
2972		pr_warn("Empty swap-file\n");
2973		return -EINVAL;
2974	}
2975
2976	if (!cluster_info)
2977		return nr_extents;
2978
2979
2980	/*
2981	 * Reduce false cache line sharing between cluster_info and
2982	 * sharing same address space.
2983	 */
2984	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2985		j = (k + col) % SWAP_CLUSTER_COLS;
2986		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2987			idx = i * SWAP_CLUSTER_COLS + j;
2988			if (idx >= nr_clusters)
2989				continue;
2990			if (cluster_count(&cluster_info[idx]))
2991				continue;
2992			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2993			cluster_list_add_tail(&p->free_clusters, cluster_info,
2994					      idx);
 
 
 
 
 
 
 
 
 
 
 
2995		}
 
 
 
2996	}
2997	return nr_extents;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3001{
3002	struct swap_info_struct *p;
3003	struct filename *name;
3004	struct file *swap_file = NULL;
3005	struct address_space *mapping;
3006	struct dentry *dentry;
3007	int prio;
3008	int error;
3009	union swap_header *swap_header;
3010	int nr_extents;
3011	sector_t span;
3012	unsigned long maxpages;
3013	unsigned char *swap_map = NULL;
3014	struct swap_cluster_info *cluster_info = NULL;
 
3015	struct page *page = NULL;
3016	struct inode *inode = NULL;
3017	bool inced_nr_rotate_swap = false;
3018
3019	if (swap_flags & ~SWAP_FLAGS_VALID)
3020		return -EINVAL;
3021
3022	if (!capable(CAP_SYS_ADMIN))
3023		return -EPERM;
3024
3025	if (!swap_avail_heads)
3026		return -ENOMEM;
3027
3028	p = alloc_swap_info();
3029	if (IS_ERR(p))
3030		return PTR_ERR(p);
3031
3032	INIT_WORK(&p->discard_work, swap_discard_work);
3033
3034	name = getname(specialfile);
3035	if (IS_ERR(name)) {
3036		error = PTR_ERR(name);
3037		name = NULL;
3038		goto bad_swap;
3039	}
3040	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3041	if (IS_ERR(swap_file)) {
3042		error = PTR_ERR(swap_file);
3043		swap_file = NULL;
3044		goto bad_swap;
3045	}
3046
3047	p->swap_file = swap_file;
3048	mapping = swap_file->f_mapping;
3049	dentry = swap_file->f_path.dentry;
 
 
 
 
 
 
 
 
 
 
 
3050	inode = mapping->host;
3051
3052	error = claim_swapfile(p, inode);
3053	if (unlikely(error))
3054		goto bad_swap;
3055
3056	inode_lock(inode);
3057	if (d_unlinked(dentry) || cant_mount(dentry)) {
3058		error = -ENOENT;
3059		goto bad_swap_unlock_inode;
3060	}
3061	if (IS_SWAPFILE(inode)) {
3062		error = -EBUSY;
3063		goto bad_swap_unlock_inode;
3064	}
3065
3066	/*
3067	 * Read the swap header.
3068	 */
3069	if (!mapping->a_ops->read_folio) {
3070		error = -EINVAL;
3071		goto bad_swap_unlock_inode;
3072	}
3073	page = read_mapping_page(mapping, 0, swap_file);
3074	if (IS_ERR(page)) {
3075		error = PTR_ERR(page);
3076		goto bad_swap_unlock_inode;
3077	}
3078	swap_header = kmap(page);
3079
3080	maxpages = read_swap_header(p, swap_header, inode);
3081	if (unlikely(!maxpages)) {
3082		error = -EINVAL;
3083		goto bad_swap_unlock_inode;
3084	}
3085
3086	/* OK, set up the swap map and apply the bad block list */
3087	swap_map = vzalloc(maxpages);
3088	if (!swap_map) {
3089		error = -ENOMEM;
3090		goto bad_swap_unlock_inode;
3091	}
3092
3093	if (p->bdev && bdev_stable_writes(p->bdev))
3094		p->flags |= SWP_STABLE_WRITES;
3095
3096	if (p->bdev && bdev_synchronous(p->bdev))
3097		p->flags |= SWP_SYNCHRONOUS_IO;
3098
3099	if (p->bdev && bdev_nonrot(p->bdev)) {
3100		int cpu;
3101		unsigned long ci, nr_cluster;
3102
3103		p->flags |= SWP_SOLIDSTATE;
3104		p->cluster_next_cpu = alloc_percpu(unsigned int);
3105		if (!p->cluster_next_cpu) {
3106			error = -ENOMEM;
3107			goto bad_swap_unlock_inode;
3108		}
3109		/*
3110		 * select a random position to start with to help wear leveling
3111		 * SSD
3112		 */
3113		for_each_possible_cpu(cpu) {
3114			per_cpu(*p->cluster_next_cpu, cpu) =
3115				get_random_u32_inclusive(1, p->highest_bit);
3116		}
3117		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3118
3119		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3120					GFP_KERNEL);
3121		if (!cluster_info) {
3122			error = -ENOMEM;
3123			goto bad_swap_unlock_inode;
3124		}
3125
3126		for (ci = 0; ci < nr_cluster; ci++)
3127			spin_lock_init(&((cluster_info + ci)->lock));
3128
3129		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3130		if (!p->percpu_cluster) {
3131			error = -ENOMEM;
3132			goto bad_swap_unlock_inode;
3133		}
3134		for_each_possible_cpu(cpu) {
3135			struct percpu_cluster *cluster;
3136			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3137			cluster_set_null(&cluster->index);
3138		}
3139	} else {
3140		atomic_inc(&nr_rotate_swap);
3141		inced_nr_rotate_swap = true;
3142	}
3143
3144	error = swap_cgroup_swapon(p->type, maxpages);
3145	if (error)
3146		goto bad_swap_unlock_inode;
3147
3148	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3149		cluster_info, maxpages, &span);
3150	if (unlikely(nr_extents < 0)) {
3151		error = nr_extents;
3152		goto bad_swap_unlock_inode;
3153	}
 
 
 
3154
3155	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3156	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3157		/*
3158		 * When discard is enabled for swap with no particular
3159		 * policy flagged, we set all swap discard flags here in
3160		 * order to sustain backward compatibility with older
3161		 * swapon(8) releases.
3162		 */
3163		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3164			     SWP_PAGE_DISCARD);
3165
3166		/*
3167		 * By flagging sys_swapon, a sysadmin can tell us to
3168		 * either do single-time area discards only, or to just
3169		 * perform discards for released swap page-clusters.
3170		 * Now it's time to adjust the p->flags accordingly.
3171		 */
3172		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3173			p->flags &= ~SWP_PAGE_DISCARD;
3174		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3175			p->flags &= ~SWP_AREA_DISCARD;
3176
3177		/* issue a swapon-time discard if it's still required */
3178		if (p->flags & SWP_AREA_DISCARD) {
3179			int err = discard_swap(p);
3180			if (unlikely(err))
3181				pr_err("swapon: discard_swap(%p): %d\n",
3182					p, err);
3183		}
3184	}
3185
3186	error = init_swap_address_space(p->type, maxpages);
3187	if (error)
3188		goto bad_swap_unlock_inode;
3189
3190	error = zswap_swapon(p->type, maxpages);
3191	if (error)
3192		goto free_swap_address_space;
3193
3194	/*
3195	 * Flush any pending IO and dirty mappings before we start using this
3196	 * swap device.
3197	 */
3198	inode->i_flags |= S_SWAPFILE;
3199	error = inode_drain_writes(inode);
3200	if (error) {
3201		inode->i_flags &= ~S_SWAPFILE;
3202		goto free_swap_zswap;
3203	}
3204
3205	mutex_lock(&swapon_mutex);
3206	prio = -1;
3207	if (swap_flags & SWAP_FLAG_PREFER)
3208		prio =
3209		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3210	enable_swap_info(p, prio, swap_map, cluster_info);
3211
3212	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3213		K(p->pages), name->name, p->prio, nr_extents,
3214		K((unsigned long long)span),
 
3215		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3216		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3217		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3218		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3219
3220	mutex_unlock(&swapon_mutex);
3221	atomic_inc(&proc_poll_event);
3222	wake_up_interruptible(&proc_poll_wait);
3223
 
 
3224	error = 0;
3225	goto out;
3226free_swap_zswap:
3227	zswap_swapoff(p->type);
3228free_swap_address_space:
3229	exit_swap_address_space(p->type);
3230bad_swap_unlock_inode:
3231	inode_unlock(inode);
3232bad_swap:
3233	free_percpu(p->percpu_cluster);
3234	p->percpu_cluster = NULL;
3235	free_percpu(p->cluster_next_cpu);
3236	p->cluster_next_cpu = NULL;
3237	if (p->bdev_file) {
3238		set_blocksize(p->bdev, p->old_block_size);
3239		fput(p->bdev_file);
3240		p->bdev_file = NULL;
3241	}
3242	inode = NULL;
3243	destroy_swap_extents(p);
3244	swap_cgroup_swapoff(p->type);
3245	spin_lock(&swap_lock);
3246	p->swap_file = NULL;
3247	p->flags = 0;
3248	spin_unlock(&swap_lock);
3249	vfree(swap_map);
3250	kvfree(cluster_info);
3251	if (inced_nr_rotate_swap)
3252		atomic_dec(&nr_rotate_swap);
3253	if (swap_file)
 
 
3254		filp_close(swap_file, NULL);
 
3255out:
3256	if (page && !IS_ERR(page)) {
3257		kunmap(page);
3258		put_page(page);
3259	}
3260	if (name)
3261		putname(name);
3262	if (inode)
3263		inode_unlock(inode);
3264	if (!error)
3265		enable_swap_slots_cache();
3266	return error;
3267}
3268
3269void si_swapinfo(struct sysinfo *val)
3270{
3271	unsigned int type;
3272	unsigned long nr_to_be_unused = 0;
3273
3274	spin_lock(&swap_lock);
3275	for (type = 0; type < nr_swapfiles; type++) {
3276		struct swap_info_struct *si = swap_info[type];
3277
3278		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3279			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3280	}
3281	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3282	val->totalswap = total_swap_pages + nr_to_be_unused;
3283	spin_unlock(&swap_lock);
3284}
3285
3286/*
3287 * Verify that a swap entry is valid and increment its swap map count.
3288 *
3289 * Returns error code in following case.
3290 * - success -> 0
3291 * - swp_entry is invalid -> EINVAL
3292 * - swp_entry is migration entry -> EINVAL
3293 * - swap-cache reference is requested but there is already one. -> EEXIST
3294 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3295 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3296 */
3297static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3298{
3299	struct swap_info_struct *p;
3300	struct swap_cluster_info *ci;
3301	unsigned long offset;
3302	unsigned char count;
3303	unsigned char has_cache;
3304	int err;
3305
3306	p = swp_swap_info(entry);
 
3307
 
 
 
 
3308	offset = swp_offset(entry);
3309	ci = lock_cluster_or_swap_info(p, offset);
 
 
 
3310
3311	count = p->swap_map[offset];
3312
3313	/*
3314	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3315	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3316	 */
3317	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3318		err = -ENOENT;
3319		goto unlock_out;
3320	}
3321
3322	has_cache = count & SWAP_HAS_CACHE;
3323	count &= ~SWAP_HAS_CACHE;
3324	err = 0;
3325
3326	if (usage == SWAP_HAS_CACHE) {
3327
3328		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3329		if (!has_cache && count)
3330			has_cache = SWAP_HAS_CACHE;
3331		else if (has_cache)		/* someone else added cache */
3332			err = -EEXIST;
3333		else				/* no users remaining */
3334			err = -ENOENT;
3335
3336	} else if (count || has_cache) {
3337
3338		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3339			count += usage;
3340		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3341			err = -EINVAL;
3342		else if (swap_count_continued(p, offset, count))
3343			count = COUNT_CONTINUED;
3344		else
3345			err = -ENOMEM;
3346	} else
3347		err = -ENOENT;			/* unused swap entry */
3348
3349	if (!err)
3350		WRITE_ONCE(p->swap_map[offset], count | has_cache);
3351
3352unlock_out:
3353	unlock_cluster_or_swap_info(p, ci);
 
3354	return err;
 
 
 
 
3355}
3356
3357/*
3358 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3359 * (in which case its reference count is never incremented).
3360 */
3361void swap_shmem_alloc(swp_entry_t entry)
3362{
3363	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3364}
3365
3366/*
3367 * Increase reference count of swap entry by 1.
3368 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3369 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3370 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3371 * might occur if a page table entry has got corrupted.
3372 */
3373int swap_duplicate(swp_entry_t entry)
3374{
3375	int err = 0;
3376
3377	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3378		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3379	return err;
3380}
3381
3382/*
3383 * @entry: swap entry for which we allocate swap cache.
3384 *
3385 * Called when allocating swap cache for existing swap entry,
3386 * This can return error codes. Returns 0 at success.
3387 * -EEXIST means there is a swap cache.
3388 * Note: return code is different from swap_duplicate().
3389 */
3390int swapcache_prepare(swp_entry_t entry)
3391{
3392	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3393}
3394
3395void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3396{
3397	struct swap_cluster_info *ci;
3398	unsigned long offset = swp_offset(entry);
3399	unsigned char usage;
3400
3401	ci = lock_cluster_or_swap_info(si, offset);
3402	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3403	unlock_cluster_or_swap_info(si, ci);
3404	if (!usage)
3405		free_swap_slot(entry);
3406}
3407
3408struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3409{
3410	return swap_type_to_swap_info(swp_type(entry));
3411}
3412
3413/*
3414 * out-of-line methods to avoid include hell.
3415 */
3416struct address_space *swapcache_mapping(struct folio *folio)
3417{
3418	return swp_swap_info(folio->swap)->swap_file->f_mapping;
 
3419}
3420EXPORT_SYMBOL_GPL(swapcache_mapping);
3421
3422pgoff_t __page_file_index(struct page *page)
3423{
3424	swp_entry_t swap = page_swap_entry(page);
 
3425	return swp_offset(swap);
3426}
3427EXPORT_SYMBOL_GPL(__page_file_index);
3428
3429/*
3430 * add_swap_count_continuation - called when a swap count is duplicated
3431 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3432 * page of the original vmalloc'ed swap_map, to hold the continuation count
3433 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3434 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3435 *
3436 * These continuation pages are seldom referenced: the common paths all work
3437 * on the original swap_map, only referring to a continuation page when the
3438 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3439 *
3440 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3441 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3442 * can be called after dropping locks.
3443 */
3444int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3445{
3446	struct swap_info_struct *si;
3447	struct swap_cluster_info *ci;
3448	struct page *head;
3449	struct page *page;
3450	struct page *list_page;
3451	pgoff_t offset;
3452	unsigned char count;
3453	int ret = 0;
3454
3455	/*
3456	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3457	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3458	 */
3459	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3460
3461	si = get_swap_device(entry);
3462	if (!si) {
3463		/*
3464		 * An acceptable race has occurred since the failing
3465		 * __swap_duplicate(): the swap device may be swapoff
 
3466		 */
3467		goto outer;
3468	}
3469	spin_lock(&si->lock);
3470
3471	offset = swp_offset(entry);
3472
3473	ci = lock_cluster(si, offset);
3474
3475	count = swap_count(si->swap_map[offset]);
3476
3477	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3478		/*
3479		 * The higher the swap count, the more likely it is that tasks
3480		 * will race to add swap count continuation: we need to avoid
3481		 * over-provisioning.
3482		 */
3483		goto out;
3484	}
3485
3486	if (!page) {
3487		ret = -ENOMEM;
3488		goto out;
3489	}
3490
 
 
 
 
 
3491	head = vmalloc_to_page(si->swap_map + offset);
3492	offset &= ~PAGE_MASK;
3493
3494	spin_lock(&si->cont_lock);
3495	/*
3496	 * Page allocation does not initialize the page's lru field,
3497	 * but it does always reset its private field.
3498	 */
3499	if (!page_private(head)) {
3500		BUG_ON(count & COUNT_CONTINUED);
3501		INIT_LIST_HEAD(&head->lru);
3502		set_page_private(head, SWP_CONTINUED);
3503		si->flags |= SWP_CONTINUED;
3504	}
3505
3506	list_for_each_entry(list_page, &head->lru, lru) {
3507		unsigned char *map;
3508
3509		/*
3510		 * If the previous map said no continuation, but we've found
3511		 * a continuation page, free our allocation and use this one.
3512		 */
3513		if (!(count & COUNT_CONTINUED))
3514			goto out_unlock_cont;
3515
3516		map = kmap_local_page(list_page) + offset;
3517		count = *map;
3518		kunmap_local(map);
3519
3520		/*
3521		 * If this continuation count now has some space in it,
3522		 * free our allocation and use this one.
3523		 */
3524		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3525			goto out_unlock_cont;
3526	}
3527
3528	list_add_tail(&page->lru, &head->lru);
3529	page = NULL;			/* now it's attached, don't free it */
3530out_unlock_cont:
3531	spin_unlock(&si->cont_lock);
3532out:
3533	unlock_cluster(ci);
3534	spin_unlock(&si->lock);
3535	put_swap_device(si);
3536outer:
3537	if (page)
3538		__free_page(page);
3539	return ret;
3540}
3541
3542/*
3543 * swap_count_continued - when the original swap_map count is incremented
3544 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3545 * into, carry if so, or else fail until a new continuation page is allocated;
3546 * when the original swap_map count is decremented from 0 with continuation,
3547 * borrow from the continuation and report whether it still holds more.
3548 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3549 * lock.
3550 */
3551static bool swap_count_continued(struct swap_info_struct *si,
3552				 pgoff_t offset, unsigned char count)
3553{
3554	struct page *head;
3555	struct page *page;
3556	unsigned char *map;
3557	bool ret;
3558
3559	head = vmalloc_to_page(si->swap_map + offset);
3560	if (page_private(head) != SWP_CONTINUED) {
3561		BUG_ON(count & COUNT_CONTINUED);
3562		return false;		/* need to add count continuation */
3563	}
3564
3565	spin_lock(&si->cont_lock);
3566	offset &= ~PAGE_MASK;
3567	page = list_next_entry(head, lru);
3568	map = kmap_local_page(page) + offset;
3569
3570	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3571		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3572
3573	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3574		/*
3575		 * Think of how you add 1 to 999
3576		 */
3577		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3578			kunmap_local(map);
3579			page = list_next_entry(page, lru);
3580			BUG_ON(page == head);
3581			map = kmap_local_page(page) + offset;
3582		}
3583		if (*map == SWAP_CONT_MAX) {
3584			kunmap_local(map);
3585			page = list_next_entry(page, lru);
3586			if (page == head) {
3587				ret = false;	/* add count continuation */
3588				goto out;
3589			}
3590			map = kmap_local_page(page) + offset;
3591init_map:		*map = 0;		/* we didn't zero the page */
3592		}
3593		*map += 1;
3594		kunmap_local(map);
3595		while ((page = list_prev_entry(page, lru)) != head) {
3596			map = kmap_local_page(page) + offset;
 
3597			*map = COUNT_CONTINUED;
3598			kunmap_local(map);
 
3599		}
3600		ret = true;			/* incremented */
3601
3602	} else {				/* decrementing */
3603		/*
3604		 * Think of how you subtract 1 from 1000
3605		 */
3606		BUG_ON(count != COUNT_CONTINUED);
3607		while (*map == COUNT_CONTINUED) {
3608			kunmap_local(map);
3609			page = list_next_entry(page, lru);
3610			BUG_ON(page == head);
3611			map = kmap_local_page(page) + offset;
3612		}
3613		BUG_ON(*map == 0);
3614		*map -= 1;
3615		if (*map == 0)
3616			count = 0;
3617		kunmap_local(map);
3618		while ((page = list_prev_entry(page, lru)) != head) {
3619			map = kmap_local_page(page) + offset;
 
3620			*map = SWAP_CONT_MAX | count;
3621			count = COUNT_CONTINUED;
3622			kunmap_local(map);
 
3623		}
3624		ret = count == COUNT_CONTINUED;
3625	}
3626out:
3627	spin_unlock(&si->cont_lock);
3628	return ret;
3629}
3630
3631/*
3632 * free_swap_count_continuations - swapoff free all the continuation pages
3633 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3634 */
3635static void free_swap_count_continuations(struct swap_info_struct *si)
3636{
3637	pgoff_t offset;
3638
3639	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3640		struct page *head;
3641		head = vmalloc_to_page(si->swap_map + offset);
3642		if (page_private(head)) {
3643			struct page *page, *next;
3644
3645			list_for_each_entry_safe(page, next, &head->lru, lru) {
3646				list_del(&page->lru);
 
3647				__free_page(page);
3648			}
3649		}
3650	}
3651}
3652
3653#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3654void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3655{
3656	struct swap_info_struct *si, *next;
3657	int nid = folio_nid(folio);
3658
3659	if (!(gfp & __GFP_IO))
3660		return;
3661
3662	if (!blk_cgroup_congested())
3663		return;
3664
3665	/*
3666	 * We've already scheduled a throttle, avoid taking the global swap
3667	 * lock.
3668	 */
3669	if (current->throttle_disk)
3670		return;
3671
3672	spin_lock(&swap_avail_lock);
3673	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3674				  avail_lists[nid]) {
3675		if (si->bdev) {
3676			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3677			break;
3678		}
3679	}
3680	spin_unlock(&swap_avail_lock);
3681}
3682#endif
3683
3684static int __init swapfile_init(void)
3685{
3686	int nid;
3687
3688	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3689					 GFP_KERNEL);
3690	if (!swap_avail_heads) {
3691		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3692		return -ENOMEM;
3693	}
3694
3695	for_each_node(nid)
3696		plist_head_init(&swap_avail_heads[nid]);
3697
3698	swapfile_maximum_size = arch_max_swapfile_size();
3699
3700#ifdef CONFIG_MIGRATION
3701	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3702		swap_migration_ad_supported = true;
3703#endif	/* CONFIG_MIGRATION */
3704
3705	return 0;
3706}
3707subsys_initcall(swapfile_init);