Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
 
 
  32#include <linux/export.h>
 
  33#include <linux/swap.h>
  34#include <linux/aio.h>
 
 
 
 
 
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
 
 
 
 
 
 
 
 
 
  69
  70#include <asm/uaccess.h>
  71#include <asm/pgtable.h>
  72
  73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  75
  76/* Pretend that each entry is of this size in directory's i_size */
  77#define BOGO_DIRENT_SIZE 20
  78
 
 
 
  79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  80#define SHORT_SYMLINK_LEN 128
  81
  82/*
  83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
  84 * (with i_mutex making sure that it has only one user at a time):
  85 * we would prefer not to enlarge the shmem inode just for that.
  86 */
  87struct shmem_falloc {
 
  88	pgoff_t start;		/* start of range currently being fallocated */
  89	pgoff_t next;		/* the next page offset to be fallocated */
  90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
  91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
  92};
  93
  94/* Flag allocation requirements to shmem_getpage */
  95enum sgp_type {
  96	SGP_READ,	/* don't exceed i_size, don't allocate page */
  97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
  98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
  99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
 100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
 
 
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103#ifdef CONFIG_TMPFS
 104static unsigned long shmem_default_max_blocks(void)
 105{
 106	return totalram_pages / 2;
 107}
 108
 109static unsigned long shmem_default_max_inodes(void)
 110{
 111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 
 
 
 112}
 113#endif
 114
 115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 117				struct shmem_inode_info *info, pgoff_t index);
 118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 120
 121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 122	struct page **pagep, enum sgp_type sgp, int *fault_type)
 123{
 124	return shmem_getpage_gfp(inode, index, pagep, sgp,
 125			mapping_gfp_mask(inode->i_mapping), fault_type);
 126}
 127
 128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 129{
 130	return sb->s_fs_info;
 131}
 132
 133/*
 134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 135 * for shared memory and for shared anonymous (/dev/zero) mappings
 136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 137 * consistent with the pre-accounting of private mappings ...
 138 */
 139static inline int shmem_acct_size(unsigned long flags, loff_t size)
 140{
 141	return (flags & VM_NORESERVE) ?
 142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 143}
 144
 145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 146{
 147	if (!(flags & VM_NORESERVE))
 148		vm_unacct_memory(VM_ACCT(size));
 149}
 150
 
 
 
 
 
 
 
 
 
 
 
 
 
 151/*
 152 * ... whereas tmpfs objects are accounted incrementally as
 153 * pages are allocated, in order to allow huge sparse files.
 154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 156 */
 157static inline int shmem_acct_block(unsigned long flags)
 158{
 159	return (flags & VM_NORESERVE) ?
 160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 
 
 
 161}
 162
 163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 164{
 165	if (flags & VM_NORESERVE)
 166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169static const struct super_operations shmem_ops;
 170static const struct address_space_operations shmem_aops;
 171static const struct file_operations shmem_file_operations;
 172static const struct inode_operations shmem_inode_operations;
 173static const struct inode_operations shmem_dir_inode_operations;
 174static const struct inode_operations shmem_special_inode_operations;
 175static const struct vm_operations_struct shmem_vm_ops;
 
 
 176
 177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 178	.ra_pages	= 0,	/* No readahead */
 179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 180};
 
 
 
 
 
 
 
 
 
 
 
 181
 182static LIST_HEAD(shmem_swaplist);
 183static DEFINE_MUTEX(shmem_swaplist_mutex);
 184
 185static int shmem_reserve_inode(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186{
 187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 188	if (sbinfo->max_inodes) {
 189		spin_lock(&sbinfo->stat_lock);
 190		if (!sbinfo->free_inodes) {
 191			spin_unlock(&sbinfo->stat_lock);
 192			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193		}
 194		sbinfo->free_inodes--;
 195		spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196	}
 
 197	return 0;
 198}
 199
 200static void shmem_free_inode(struct super_block *sb)
 201{
 202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 203	if (sbinfo->max_inodes) {
 204		spin_lock(&sbinfo->stat_lock);
 205		sbinfo->free_inodes++;
 206		spin_unlock(&sbinfo->stat_lock);
 207	}
 208}
 209
 210/**
 211 * shmem_recalc_inode - recalculate the block usage of an inode
 212 * @inode: inode to recalc
 
 
 213 *
 214 * We have to calculate the free blocks since the mm can drop
 215 * undirtied hole pages behind our back.
 216 *
 217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 219 *
 220 * It has to be called with the spinlock held.
 221 */
 222static void shmem_recalc_inode(struct inode *inode)
 223{
 224	struct shmem_inode_info *info = SHMEM_I(inode);
 225	long freed;
 226
 227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 228	if (freed > 0) {
 229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 230		if (sbinfo->max_blocks)
 231			percpu_counter_add(&sbinfo->used_blocks, -freed);
 
 
 
 
 
 
 
 
 
 
 232		info->alloced -= freed;
 233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 234		shmem_unacct_blocks(info->flags, freed);
 235	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236}
 237
 238/*
 239 * Replace item expected in radix tree by a new item, while holding tree lock.
 240 */
 241static int shmem_radix_tree_replace(struct address_space *mapping,
 242			pgoff_t index, void *expected, void *replacement)
 243{
 244	void **pslot;
 245	void *item;
 246
 247	VM_BUG_ON(!expected);
 248	VM_BUG_ON(!replacement);
 249	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 250	if (!pslot)
 251		return -ENOENT;
 252	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 253	if (item != expected)
 254		return -ENOENT;
 255	radix_tree_replace_slot(pslot, replacement);
 256	return 0;
 257}
 258
 259/*
 260 * Sometimes, before we decide whether to proceed or to fail, we must check
 261 * that an entry was not already brought back from swap by a racing thread.
 262 *
 263 * Checking page is not enough: by the time a SwapCache page is locked, it
 264 * might be reused, and again be SwapCache, using the same swap as before.
 265 */
 266static bool shmem_confirm_swap(struct address_space *mapping,
 267			       pgoff_t index, swp_entry_t swap)
 268{
 269	void *item;
 
 270
 271	rcu_read_lock();
 272	item = radix_tree_lookup(&mapping->page_tree, index);
 273	rcu_read_unlock();
 274	return item == swp_to_radix_entry(swap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275}
 
 276
 277/*
 278 * Like add_to_page_cache_locked, but error if expected item has gone.
 279 */
 280static int shmem_add_to_page_cache(struct page *page,
 281				   struct address_space *mapping,
 282				   pgoff_t index, gfp_t gfp, void *expected)
 283{
 284	int error;
 
 285
 286	VM_BUG_ON_PAGE(!PageLocked(page), page);
 287	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288
 289	page_cache_get(page);
 290	page->mapping = mapping;
 291	page->index = index;
 292
 293	spin_lock_irq(&mapping->tree_lock);
 294	if (!expected)
 295		error = radix_tree_insert(&mapping->page_tree, index, page);
 296	else
 297		error = shmem_radix_tree_replace(mapping, index, expected,
 298								 page);
 299	if (!error) {
 300		mapping->nrpages++;
 301		__inc_zone_page_state(page, NR_FILE_PAGES);
 302		__inc_zone_page_state(page, NR_SHMEM);
 303		spin_unlock_irq(&mapping->tree_lock);
 304	} else {
 305		page->mapping = NULL;
 306		spin_unlock_irq(&mapping->tree_lock);
 307		page_cache_release(page);
 308	}
 309	return error;
 
 310}
 311
 312/*
 313 * Like delete_from_page_cache, but substitutes swap for page.
 314 */
 315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 316{
 317	struct address_space *mapping = page->mapping;
 
 318	int error;
 319
 320	spin_lock_irq(&mapping->tree_lock);
 321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 322	page->mapping = NULL;
 323	mapping->nrpages--;
 324	__dec_zone_page_state(page, NR_FILE_PAGES);
 325	__dec_zone_page_state(page, NR_SHMEM);
 326	spin_unlock_irq(&mapping->tree_lock);
 327	page_cache_release(page);
 328	BUG_ON(error);
 329}
 330
 331/*
 332 * Remove swap entry from radix tree, free the swap and its page cache.
 333 */
 334static int shmem_free_swap(struct address_space *mapping,
 335			   pgoff_t index, void *radswap)
 336{
 337	void *old;
 338
 339	spin_lock_irq(&mapping->tree_lock);
 340	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 341	spin_unlock_irq(&mapping->tree_lock);
 342	if (old != radswap)
 343		return -ENOENT;
 344	free_swap_and_cache(radix_to_swp_entry(radswap));
 345	return 0;
 346}
 347
 348/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 350 */
 351void shmem_unlock_mapping(struct address_space *mapping)
 352{
 353	struct pagevec pvec;
 354	pgoff_t indices[PAGEVEC_SIZE];
 355	pgoff_t index = 0;
 356
 357	pagevec_init(&pvec, 0);
 358	/*
 359	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 360	 */
 361	while (!mapping_unevictable(mapping)) {
 362		/*
 363		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 364		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 365		 */
 366		pvec.nr = find_get_entries(mapping, index,
 367					   PAGEVEC_SIZE, pvec.pages, indices);
 368		if (!pvec.nr)
 369			break;
 370		index = indices[pvec.nr - 1] + 1;
 371		pagevec_remove_exceptionals(&pvec);
 372		check_move_unevictable_pages(pvec.pages, pvec.nr);
 373		pagevec_release(&pvec);
 374		cond_resched();
 375	}
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378/*
 379 * Remove range of pages and swap entries from radix tree, and free them.
 380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 381 */
 382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 383								 bool unfalloc)
 384{
 385	struct address_space *mapping = inode->i_mapping;
 386	struct shmem_inode_info *info = SHMEM_I(inode);
 387	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 388	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 389	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 390	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 391	struct pagevec pvec;
 392	pgoff_t indices[PAGEVEC_SIZE];
 
 
 393	long nr_swaps_freed = 0;
 394	pgoff_t index;
 395	int i;
 396
 397	if (lend == -1)
 398		end = -1;	/* unsigned, so actually very big */
 399
 400	pagevec_init(&pvec, 0);
 401	index = start;
 402	while (index < end) {
 403		pvec.nr = find_get_entries(mapping, index,
 404			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 405			pvec.pages, indices);
 406		if (!pvec.nr)
 407			break;
 408		mem_cgroup_uncharge_start();
 409		for (i = 0; i < pagevec_count(&pvec); i++) {
 410			struct page *page = pvec.pages[i];
 411
 412			index = indices[i];
 413			if (index >= end)
 414				break;
 
 
 
 415
 416			if (radix_tree_exceptional_entry(page)) {
 417				if (unfalloc)
 418					continue;
 419				nr_swaps_freed += !shmem_free_swap(mapping,
 420								index, page);
 421				continue;
 422			}
 423
 424			if (!trylock_page(page))
 425				continue;
 426			if (!unfalloc || !PageUptodate(page)) {
 427				if (page->mapping == mapping) {
 428					VM_BUG_ON_PAGE(PageWriteback(page), page);
 429					truncate_inode_page(mapping, page);
 430				}
 431			}
 432			unlock_page(page);
 433		}
 434		pagevec_remove_exceptionals(&pvec);
 435		pagevec_release(&pvec);
 436		mem_cgroup_uncharge_end();
 437		cond_resched();
 438		index++;
 439	}
 440
 441	if (partial_start) {
 442		struct page *page = NULL;
 443		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 444		if (page) {
 445			unsigned int top = PAGE_CACHE_SIZE;
 446			if (start > end) {
 447				top = partial_end;
 448				partial_end = 0;
 449			}
 450			zero_user_segment(page, partial_start, top);
 451			set_page_dirty(page);
 452			unlock_page(page);
 453			page_cache_release(page);
 454		}
 455	}
 456	if (partial_end) {
 457		struct page *page = NULL;
 458		shmem_getpage(inode, end, &page, SGP_READ, NULL);
 459		if (page) {
 460			zero_user_segment(page, 0, partial_end);
 461			set_page_dirty(page);
 462			unlock_page(page);
 463			page_cache_release(page);
 464		}
 
 
 
 
 
 
 
 
 465	}
 466	if (start >= end)
 467		return;
 468
 469	index = start;
 470	for ( ; ; ) {
 471		cond_resched();
 472
 473		pvec.nr = find_get_entries(mapping, index,
 474				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 475				pvec.pages, indices);
 476		if (!pvec.nr) {
 477			if (index == start || unfalloc)
 478				break;
 
 479			index = start;
 480			continue;
 481		}
 482		if ((index == start || unfalloc) && indices[0] >= end) {
 483			pagevec_remove_exceptionals(&pvec);
 484			pagevec_release(&pvec);
 485			break;
 486		}
 487		mem_cgroup_uncharge_start();
 488		for (i = 0; i < pagevec_count(&pvec); i++) {
 489			struct page *page = pvec.pages[i];
 490
 491			index = indices[i];
 492			if (index >= end)
 493				break;
 494
 495			if (radix_tree_exceptional_entry(page)) {
 496				if (unfalloc)
 497					continue;
 498				nr_swaps_freed += !shmem_free_swap(mapping,
 499								index, page);
 
 
 
 
 500				continue;
 501			}
 502
 503			lock_page(page);
 504			if (!unfalloc || !PageUptodate(page)) {
 505				if (page->mapping == mapping) {
 506					VM_BUG_ON_PAGE(PageWriteback(page), page);
 507					truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508				}
 509			}
 510			unlock_page(page);
 511		}
 512		pagevec_remove_exceptionals(&pvec);
 513		pagevec_release(&pvec);
 514		mem_cgroup_uncharge_end();
 515		index++;
 516	}
 517
 518	spin_lock(&info->lock);
 519	info->swapped -= nr_swaps_freed;
 520	shmem_recalc_inode(inode);
 521	spin_unlock(&info->lock);
 522}
 523
 524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 525{
 526	shmem_undo_range(inode, lstart, lend, false);
 527	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 528}
 529EXPORT_SYMBOL_GPL(shmem_truncate_range);
 530
 531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
 
 532{
 533	struct inode *inode = dentry->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534	int error;
 
 
 535
 536	error = inode_change_ok(inode, attr);
 537	if (error)
 538		return error;
 539
 
 
 
 
 
 
 540	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 541		loff_t oldsize = inode->i_size;
 542		loff_t newsize = attr->ia_size;
 543
 
 
 
 
 
 544		if (newsize != oldsize) {
 
 
 
 
 545			i_size_write(inode, newsize);
 546			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 
 547		}
 548		if (newsize < oldsize) {
 549			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 550			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 551			shmem_truncate_range(inode, newsize, (loff_t)-1);
 
 
 
 
 552			/* unmap again to remove racily COWed private pages */
 553			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 
 
 554		}
 555	}
 556
 557	setattr_copy(inode, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558	if (attr->ia_valid & ATTR_MODE)
 559		error = posix_acl_chmod(inode, inode->i_mode);
 
 
 
 
 
 
 560	return error;
 561}
 562
 563static void shmem_evict_inode(struct inode *inode)
 564{
 565	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 566
 567	if (inode->i_mapping->a_ops == &shmem_aops) {
 568		shmem_unacct_size(info->flags, inode->i_size);
 569		inode->i_size = 0;
 
 570		shmem_truncate_range(inode, 0, (loff_t)-1);
 571		if (!list_empty(&info->swaplist)) {
 
 
 
 
 
 
 
 
 
 
 
 572			mutex_lock(&shmem_swaplist_mutex);
 573			list_del_init(&info->swaplist);
 
 
 574			mutex_unlock(&shmem_swaplist_mutex);
 575		}
 576	} else
 577		kfree(info->symlink);
 578
 579	simple_xattrs_free(&info->xattrs);
 
 580	WARN_ON(inode->i_blocks);
 581	shmem_free_inode(inode->i_sb);
 582	clear_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583}
 584
 585/*
 586 * If swap found in inode, free it and move page from swapcache to filecache.
 
 587 */
 588static int shmem_unuse_inode(struct shmem_inode_info *info,
 589			     swp_entry_t swap, struct page **pagep)
 590{
 591	struct address_space *mapping = info->vfs_inode.i_mapping;
 592	void *radswap;
 593	pgoff_t index;
 594	gfp_t gfp;
 595	int error = 0;
 
 596
 597	radswap = swp_to_radix_entry(swap);
 598	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 599	if (index == -1)
 600		return 0;
 601
 602	/*
 603	 * Move _head_ to start search for next from here.
 604	 * But be careful: shmem_evict_inode checks list_empty without taking
 605	 * mutex, and there's an instant in list_move_tail when info->swaplist
 606	 * would appear empty, if it were the only one on shmem_swaplist.
 607	 */
 608	if (shmem_swaplist.next != &info->swaplist)
 609		list_move_tail(&shmem_swaplist, &info->swaplist);
 610
 611	gfp = mapping_gfp_mask(mapping);
 612	if (shmem_should_replace_page(*pagep, gfp)) {
 613		mutex_unlock(&shmem_swaplist_mutex);
 614		error = shmem_replace_page(pagep, gfp, info, index);
 615		mutex_lock(&shmem_swaplist_mutex);
 616		/*
 617		 * We needed to drop mutex to make that restrictive page
 618		 * allocation, but the inode might have been freed while we
 619		 * dropped it: although a racing shmem_evict_inode() cannot
 620		 * complete without emptying the radix_tree, our page lock
 621		 * on this swapcache page is not enough to prevent that -
 622		 * free_swap_and_cache() of our swap entry will only
 623		 * trylock_page(), removing swap from radix_tree whatever.
 624		 *
 625		 * We must not proceed to shmem_add_to_page_cache() if the
 626		 * inode has been freed, but of course we cannot rely on
 627		 * inode or mapping or info to check that.  However, we can
 628		 * safely check if our swap entry is still in use (and here
 629		 * it can't have got reused for another page): if it's still
 630		 * in use, then the inode cannot have been freed yet, and we
 631		 * can safely proceed (if it's no longer in use, that tells
 632		 * nothing about the inode, but we don't need to unuse swap).
 633		 */
 634		if (!page_swapcount(*pagep))
 635			error = -ENOENT;
 636	}
 
 
 637
 638	/*
 639	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 640	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 641	 * beneath us (pagelock doesn't help until the page is in pagecache).
 642	 */
 643	if (!error)
 644		error = shmem_add_to_page_cache(*pagep, mapping, index,
 645						GFP_NOWAIT, radswap);
 646	if (error != -ENOMEM) {
 647		/*
 648		 * Truncation and eviction use free_swap_and_cache(), which
 649		 * only does trylock page: if we raced, best clean up here.
 650		 */
 651		delete_from_swap_cache(*pagep);
 652		set_page_dirty(*pagep);
 653		if (!error) {
 654			spin_lock(&info->lock);
 655			info->swapped--;
 656			spin_unlock(&info->lock);
 657			swap_free(swap);
 658		}
 659		error = 1;	/* not an error, but entry was found */
 660	}
 661	return error;
 
 
 
 
 
 
 662}
 663
 664/*
 665 * Search through swapped inodes to find and replace swap by page.
 
 
 666 */
 667int shmem_unuse(swp_entry_t swap, struct page *page)
 668{
 669	struct list_head *this, *next;
 670	struct shmem_inode_info *info;
 671	int found = 0;
 672	int error = 0;
 673
 674	/*
 675	 * There's a faint possibility that swap page was replaced before
 676	 * caller locked it: caller will come back later with the right page.
 677	 */
 678	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 679		goto out;
 680
 681	/*
 682	 * Charge page using GFP_KERNEL while we can wait, before taking
 683	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 684	 * Charged back to the user (not to caller) when swap account is used.
 685	 */
 686	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
 687	if (error)
 688		goto out;
 689	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 690
 691	mutex_lock(&shmem_swaplist_mutex);
 692	list_for_each_safe(this, next, &shmem_swaplist) {
 693		info = list_entry(this, struct shmem_inode_info, swaplist);
 694		if (info->swapped)
 695			found = shmem_unuse_inode(info, swap, &page);
 696		else
 697			list_del_init(&info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
 698		cond_resched();
 699		if (found)
 
 
 
 
 
 
 
 700			break;
 701	}
 702	mutex_unlock(&shmem_swaplist_mutex);
 703
 704	if (found < 0)
 705		error = found;
 706out:
 707	unlock_page(page);
 708	page_cache_release(page);
 709	return error;
 710}
 711
 712/*
 713 * Move the page from the page cache to the swap cache.
 714 */
 715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 716{
 717	struct shmem_inode_info *info;
 718	struct address_space *mapping;
 719	struct inode *inode;
 
 
 720	swp_entry_t swap;
 721	pgoff_t index;
 722
 723	BUG_ON(!PageLocked(page));
 724	mapping = page->mapping;
 725	index = page->index;
 726	inode = mapping->host;
 727	info = SHMEM_I(inode);
 728	if (info->flags & VM_LOCKED)
 
 
 
 
 
 729		goto redirty;
 
 730	if (!total_swap_pages)
 731		goto redirty;
 732
 733	/*
 734	 * shmem_backing_dev_info's capabilities prevent regular writeback or
 735	 * sync from ever calling shmem_writepage; but a stacking filesystem
 736	 * might use ->writepage of its underlying filesystem, in which case
 737	 * tmpfs should write out to swap only in response to memory pressure,
 738	 * and not for the writeback threads or sync.
 739	 */
 740	if (!wbc->for_reclaim) {
 741		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 742		goto redirty;
 
 
 
 
 743	}
 744
 
 
 745	/*
 746	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 747	 * value into swapfile.c, the only way we can correctly account for a
 748	 * fallocated page arriving here is now to initialize it and write it.
 749	 *
 750	 * That's okay for a page already fallocated earlier, but if we have
 751	 * not yet completed the fallocation, then (a) we want to keep track
 752	 * of this page in case we have to undo it, and (b) it may not be a
 753	 * good idea to continue anyway, once we're pushing into swap.  So
 754	 * reactivate the page, and let shmem_fallocate() quit when too many.
 755	 */
 756	if (!PageUptodate(page)) {
 757		if (inode->i_private) {
 758			struct shmem_falloc *shmem_falloc;
 759			spin_lock(&inode->i_lock);
 760			shmem_falloc = inode->i_private;
 761			if (shmem_falloc &&
 
 762			    index >= shmem_falloc->start &&
 763			    index < shmem_falloc->next)
 764				shmem_falloc->nr_unswapped++;
 765			else
 766				shmem_falloc = NULL;
 767			spin_unlock(&inode->i_lock);
 768			if (shmem_falloc)
 769				goto redirty;
 770		}
 771		clear_highpage(page);
 772		flush_dcache_page(page);
 773		SetPageUptodate(page);
 774	}
 775
 776	swap = get_swap_page();
 777	if (!swap.val)
 778		goto redirty;
 779
 780	/*
 781	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 782	 * if it's not already there.  Do it now before the page is
 783	 * moved to swap cache, when its pagelock no longer protects
 784	 * the inode from eviction.  But don't unlock the mutex until
 785	 * we've incremented swapped, because shmem_unuse_inode() will
 786	 * prune a !swapped inode from the swaplist under this mutex.
 787	 */
 788	mutex_lock(&shmem_swaplist_mutex);
 789	if (list_empty(&info->swaplist))
 790		list_add_tail(&info->swaplist, &shmem_swaplist);
 791
 792	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 
 
 
 793		swap_shmem_alloc(swap);
 794		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 795
 796		spin_lock(&info->lock);
 797		info->swapped++;
 798		shmem_recalc_inode(inode);
 799		spin_unlock(&info->lock);
 800
 801		mutex_unlock(&shmem_swaplist_mutex);
 802		BUG_ON(page_mapped(page));
 803		swap_writepage(page, wbc);
 804		return 0;
 805	}
 806
 807	mutex_unlock(&shmem_swaplist_mutex);
 808	swapcache_free(swap, NULL);
 809redirty:
 810	set_page_dirty(page);
 811	if (wbc->for_reclaim)
 812		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 813	unlock_page(page);
 814	return 0;
 815}
 816
 817#ifdef CONFIG_NUMA
 818#ifdef CONFIG_TMPFS
 819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 820{
 821	char buffer[64];
 822
 823	if (!mpol || mpol->mode == MPOL_DEFAULT)
 824		return;		/* show nothing */
 825
 826	mpol_to_str(buffer, sizeof(buffer), mpol);
 827
 828	seq_printf(seq, ",mpol=%s", buffer);
 829}
 830
 831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 832{
 833	struct mempolicy *mpol = NULL;
 834	if (sbinfo->mpol) {
 835		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 836		mpol = sbinfo->mpol;
 837		mpol_get(mpol);
 838		spin_unlock(&sbinfo->stat_lock);
 839	}
 840	return mpol;
 841}
 842#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
 
 
 
 
 
 843
 844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 845			struct shmem_inode_info *info, pgoff_t index)
 846{
 847	struct vm_area_struct pvma;
 848	struct page *page;
 
 
 
 
 
 849
 850	/* Create a pseudo vma that just contains the policy */
 851	pvma.vm_start = 0;
 852	/* Bias interleave by inode number to distribute better across nodes */
 853	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 854	pvma.vm_ops = NULL;
 855	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 
 
 
 
 
 
 
 856
 857	page = swapin_readahead(swap, gfp, &pvma, 0);
 
 858
 859	/* Drop reference taken by mpol_shared_policy_lookup() */
 860	mpol_cond_put(pvma.vm_policy);
 
 
 
 
 861
 862	return page;
 863}
 864
 865static struct page *shmem_alloc_page(gfp_t gfp,
 866			struct shmem_inode_info *info, pgoff_t index)
 867{
 868	struct vm_area_struct pvma;
 
 869	struct page *page;
 870
 871	/* Create a pseudo vma that just contains the policy */
 872	pvma.vm_start = 0;
 873	/* Bias interleave by inode number to distribute better across nodes */
 874	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 875	pvma.vm_ops = NULL;
 876	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 877
 878	page = alloc_page_vma(gfp, &pvma, 0);
 879
 880	/* Drop reference taken by mpol_shared_policy_lookup() */
 881	mpol_cond_put(pvma.vm_policy);
 882
 883	return page;
 884}
 885#else /* !CONFIG_NUMA */
 886#ifdef CONFIG_TMPFS
 887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 888{
 889}
 890#endif /* CONFIG_TMPFS */
 891
 892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 893			struct shmem_inode_info *info, pgoff_t index)
 894{
 895	return swapin_readahead(swap, gfp, NULL, 0);
 896}
 
 897
 898static inline struct page *shmem_alloc_page(gfp_t gfp,
 899			struct shmem_inode_info *info, pgoff_t index)
 900{
 901	return alloc_page(gfp);
 
 902}
 903#endif /* CONFIG_NUMA */
 904
 905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 
 907{
 908	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909}
 910#endif
 911
 912/*
 913 * When a page is moved from swapcache to shmem filecache (either by the
 914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
 915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
 916 * ignorance of the mapping it belongs to.  If that mapping has special
 917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
 918 * we may need to copy to a suitable page before moving to filecache.
 919 *
 920 * In a future release, this may well be extended to respect cpuset and
 921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
 922 * but for now it is a simple matter of zone.
 923 */
 924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
 925{
 926	return page_zonenum(page) > gfp_zone(gfp);
 927}
 928
 929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 930				struct shmem_inode_info *info, pgoff_t index)
 931{
 932	struct page *oldpage, *newpage;
 933	struct address_space *swap_mapping;
 
 934	pgoff_t swap_index;
 935	int error;
 936
 937	oldpage = *pagep;
 938	swap_index = page_private(oldpage);
 939	swap_mapping = page_mapping(oldpage);
 
 940
 941	/*
 942	 * We have arrived here because our zones are constrained, so don't
 943	 * limit chance of success by further cpuset and node constraints.
 944	 */
 945	gfp &= ~GFP_CONSTRAINT_MASK;
 946	newpage = shmem_alloc_page(gfp, info, index);
 947	if (!newpage)
 
 948		return -ENOMEM;
 949
 950	page_cache_get(newpage);
 951	copy_highpage(newpage, oldpage);
 952	flush_dcache_page(newpage);
 953
 954	__set_page_locked(newpage);
 955	SetPageUptodate(newpage);
 956	SetPageSwapBacked(newpage);
 957	set_page_private(newpage, swap_index);
 958	SetPageSwapCache(newpage);
 959
 960	/*
 961	 * Our caller will very soon move newpage out of swapcache, but it's
 962	 * a nice clean interface for us to replace oldpage by newpage there.
 963	 */
 964	spin_lock_irq(&swap_mapping->tree_lock);
 965	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
 966								   newpage);
 967	if (!error) {
 968		__inc_zone_page_state(newpage, NR_FILE_PAGES);
 969		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
 
 
 
 970	}
 971	spin_unlock_irq(&swap_mapping->tree_lock);
 972
 973	if (unlikely(error)) {
 974		/*
 975		 * Is this possible?  I think not, now that our callers check
 976		 * both PageSwapCache and page_private after getting page lock;
 977		 * but be defensive.  Reverse old to newpage for clear and free.
 978		 */
 979		oldpage = newpage;
 980	} else {
 981		mem_cgroup_replace_page_cache(oldpage, newpage);
 982		lru_cache_add_anon(newpage);
 983		*pagep = newpage;
 984	}
 985
 986	ClearPageSwapCache(oldpage);
 987	set_page_private(oldpage, 0);
 988
 989	unlock_page(oldpage);
 990	page_cache_release(oldpage);
 991	page_cache_release(oldpage);
 992	return error;
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995/*
 996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 997 *
 998 * If we allocate a new one we do not mark it dirty. That's up to the
 999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 
 
1004{
1005	struct address_space *mapping = inode->i_mapping;
1006	struct shmem_inode_info *info;
1007	struct shmem_sb_info *sbinfo;
1008	struct page *page;
1009	swp_entry_t swap;
1010	int error;
1011	int once = 0;
1012	int alloced = 0;
1013
1014	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015		return -EFBIG;
1016repeat:
1017	swap.val = 0;
1018	page = find_lock_entry(mapping, index);
1019	if (radix_tree_exceptional_entry(page)) {
1020		swap = radix_to_swp_entry(page);
1021		page = NULL;
 
 
 
 
 
1022	}
1023
1024	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026		error = -EINVAL;
1027		goto failed;
 
 
 
 
 
 
 
 
 
 
 
1028	}
1029
1030	/* fallocated page? */
1031	if (page && !PageUptodate(page)) {
1032		if (sgp != SGP_READ)
1033			goto clear;
1034		unlock_page(page);
1035		page_cache_release(page);
1036		page = NULL;
1037	}
1038	if (page || (sgp == SGP_READ && !swap.val)) {
1039		*pagep = page;
1040		return 0;
1041	}
 
1042
1043	/*
1044	 * Fast cache lookup did not find it:
1045	 * bring it back from swap or allocate.
1046	 */
1047	info = SHMEM_I(inode);
1048	sbinfo = SHMEM_SB(inode->i_sb);
1049
1050	if (swap.val) {
1051		/* Look it up and read it in.. */
1052		page = lookup_swap_cache(swap);
1053		if (!page) {
1054			/* here we actually do the io */
1055			if (fault_type)
1056				*fault_type |= VM_FAULT_MAJOR;
1057			page = shmem_swapin(swap, gfp, info, index);
1058			if (!page) {
1059				error = -ENOMEM;
1060				goto failed;
1061			}
1062		}
1063
1064		/* We have to do this with page locked to prevent races */
1065		lock_page(page);
1066		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067		    !shmem_confirm_swap(mapping, index, swap)) {
1068			error = -EEXIST;	/* try again */
1069			goto unlock;
1070		}
1071		if (!PageUptodate(page)) {
1072			error = -EIO;
1073			goto failed;
1074		}
1075		wait_on_page_writeback(page);
1076
1077		if (shmem_should_replace_page(page, gfp)) {
1078			error = shmem_replace_page(&page, gfp, info, index);
1079			if (error)
1080				goto failed;
1081		}
1082
1083		error = mem_cgroup_charge_file(page, current->mm,
1084						gfp & GFP_RECLAIM_MASK);
1085		if (!error) {
1086			error = shmem_add_to_page_cache(page, mapping, index,
1087						gfp, swp_to_radix_entry(swap));
1088			/*
1089			 * We already confirmed swap under page lock, and make
1090			 * no memory allocation here, so usually no possibility
1091			 * of error; but free_swap_and_cache() only trylocks a
1092			 * page, so it is just possible that the entry has been
1093			 * truncated or holepunched since swap was confirmed.
1094			 * shmem_undo_range() will have done some of the
1095			 * unaccounting, now delete_from_swap_cache() will do
1096			 * the rest (including mem_cgroup_uncharge_swapcache).
1097			 * Reset swap.val? No, leave it so "failed" goes back to
1098			 * "repeat": reading a hole and writing should succeed.
1099			 */
1100			if (error)
1101				delete_from_swap_cache(page);
1102		}
1103		if (error)
1104			goto failed;
1105
1106		spin_lock(&info->lock);
1107		info->swapped--;
1108		shmem_recalc_inode(inode);
1109		spin_unlock(&info->lock);
1110
1111		delete_from_swap_cache(page);
1112		set_page_dirty(page);
1113		swap_free(swap);
 
1114
1115	} else {
1116		if (shmem_acct_block(info->flags)) {
1117			error = -ENOSPC;
1118			goto failed;
1119		}
1120		if (sbinfo->max_blocks) {
1121			if (percpu_counter_compare(&sbinfo->used_blocks,
1122						sbinfo->max_blocks) >= 0) {
1123				error = -ENOSPC;
1124				goto unacct;
1125			}
1126			percpu_counter_inc(&sbinfo->used_blocks);
1127		}
1128
1129		page = shmem_alloc_page(gfp, info, index);
1130		if (!page) {
1131			error = -ENOMEM;
1132			goto decused;
1133		}
1134
1135		SetPageSwapBacked(page);
1136		__set_page_locked(page);
1137		error = mem_cgroup_charge_file(page, current->mm,
1138						gfp & GFP_RECLAIM_MASK);
1139		if (error)
1140			goto decused;
1141		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142		if (!error) {
1143			error = shmem_add_to_page_cache(page, mapping, index,
1144							gfp, NULL);
1145			radix_tree_preload_end();
1146		}
1147		if (error) {
1148			mem_cgroup_uncharge_cache_page(page);
1149			goto decused;
1150		}
1151		lru_cache_add_anon(page);
 
1152
1153		spin_lock(&info->lock);
1154		info->alloced++;
1155		inode->i_blocks += BLOCKS_PER_PAGE;
1156		shmem_recalc_inode(inode);
1157		spin_unlock(&info->lock);
1158		alloced = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160		/*
1161		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
 
1162		 */
1163		if (sgp == SGP_FALLOC)
1164			sgp = SGP_WRITE;
1165clear:
1166		/*
1167		 * Let SGP_WRITE caller clear ends if write does not fill page;
1168		 * but SGP_FALLOC on a page fallocated earlier must initialize
1169		 * it now, lest undo on failure cancel our earlier guarantee.
1170		 */
1171		if (sgp != SGP_WRITE) {
1172			clear_highpage(page);
1173			flush_dcache_page(page);
1174			SetPageUptodate(page);
1175		}
1176		if (sgp == SGP_DIRTY)
1177			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178	}
1179
1180	/* Perhaps the file has been truncated since we checked */
1181	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183		error = -EINVAL;
1184		if (alloced)
1185			goto trunc;
1186		else
1187			goto failed;
1188	}
1189	*pagep = page;
 
1190	return 0;
1191
1192	/*
1193	 * Error recovery.
1194	 */
1195trunc:
1196	info = SHMEM_I(inode);
1197	ClearPageDirty(page);
1198	delete_from_page_cache(page);
1199	spin_lock(&info->lock);
1200	info->alloced--;
1201	inode->i_blocks -= BLOCKS_PER_PAGE;
1202	spin_unlock(&info->lock);
1203decused:
1204	sbinfo = SHMEM_SB(inode->i_sb);
1205	if (sbinfo->max_blocks)
1206		percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208	shmem_unacct_blocks(info->flags, 1);
1209failed:
1210	if (swap.val && error != -EINVAL &&
1211	    !shmem_confirm_swap(mapping, index, swap))
1212		error = -EEXIST;
1213unlock:
1214	if (page) {
1215		unlock_page(page);
1216		page_cache_release(page);
1217	}
1218	if (error == -ENOSPC && !once++) {
1219		info = SHMEM_I(inode);
1220		spin_lock(&info->lock);
1221		shmem_recalc_inode(inode);
1222		spin_unlock(&info->lock);
1223		goto repeat;
1224	}
1225	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1226		goto repeat;
1227	return error;
1228}
1229
1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231{
1232	struct inode *inode = file_inode(vma->vm_file);
1233	int error;
1234	int ret = VM_FAULT_LOCKED;
 
1235
1236	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237	if (error)
1238		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 
 
 
 
 
 
 
 
 
1239
1240	if (ret & VM_FAULT_MAJOR) {
1241		count_vm_event(PGMAJFAULT);
1242		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
1244	return ret;
1245}
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247#ifdef CONFIG_NUMA
1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249{
1250	struct inode *inode = file_inode(vma->vm_file);
1251	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252}
1253
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255					  unsigned long addr)
1256{
1257	struct inode *inode = file_inode(vma->vm_file);
1258	pgoff_t index;
1259
 
 
 
 
 
 
 
1260	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266{
1267	struct inode *inode = file_inode(file);
1268	struct shmem_inode_info *info = SHMEM_I(inode);
1269	int retval = -ENOMEM;
1270
1271	spin_lock(&info->lock);
 
 
 
 
1272	if (lock && !(info->flags & VM_LOCKED)) {
1273		if (!user_shm_lock(inode->i_size, user))
1274			goto out_nomem;
1275		info->flags |= VM_LOCKED;
1276		mapping_set_unevictable(file->f_mapping);
1277	}
1278	if (!lock && (info->flags & VM_LOCKED) && user) {
1279		user_shm_unlock(inode->i_size, user);
1280		info->flags &= ~VM_LOCKED;
1281		mapping_clear_unevictable(file->f_mapping);
1282	}
1283	retval = 0;
1284
1285out_nomem:
1286	spin_unlock(&info->lock);
1287	return retval;
1288}
1289
1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291{
 
 
 
 
 
 
 
 
 
 
 
1292	file_accessed(file);
1293	vma->vm_ops = &shmem_vm_ops;
 
 
 
 
1294	return 0;
1295}
1296
1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298				     umode_t mode, dev_t dev, unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299{
1300	struct inode *inode;
1301	struct shmem_inode_info *info;
1302	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 
 
1303
1304	if (shmem_reserve_inode(sb))
1305		return NULL;
 
1306
1307	inode = new_inode(sb);
1308	if (inode) {
1309		inode->i_ino = get_next_ino();
1310		inode_init_owner(inode, dir, mode);
1311		inode->i_blocks = 0;
1312		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314		inode->i_generation = get_seconds();
1315		info = SHMEM_I(inode);
1316		memset(info, 0, (char *)inode - (char *)info);
1317		spin_lock_init(&info->lock);
1318		info->flags = flags & VM_NORESERVE;
1319		INIT_LIST_HEAD(&info->swaplist);
1320		simple_xattrs_init(&info->xattrs);
1321		cache_no_acl(inode);
1322
1323		switch (mode & S_IFMT) {
1324		default:
1325			inode->i_op = &shmem_special_inode_operations;
1326			init_special_inode(inode, mode, dev);
1327			break;
1328		case S_IFREG:
1329			inode->i_mapping->a_ops = &shmem_aops;
1330			inode->i_op = &shmem_inode_operations;
1331			inode->i_fop = &shmem_file_operations;
1332			mpol_shared_policy_init(&info->policy,
1333						 shmem_get_sbmpol(sbinfo));
1334			break;
1335		case S_IFDIR:
1336			inc_nlink(inode);
1337			/* Some things misbehave if size == 0 on a directory */
1338			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339			inode->i_op = &shmem_dir_inode_operations;
1340			inode->i_fop = &simple_dir_operations;
1341			break;
1342		case S_IFLNK:
1343			/*
1344			 * Must not load anything in the rbtree,
1345			 * mpol_free_shared_policy will not be called.
1346			 */
1347			mpol_shared_policy_init(&info->policy, NULL);
1348			break;
1349		}
1350	} else
1351		shmem_free_inode(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352	return inode;
1353}
1354
1355bool shmem_mapping(struct address_space *mapping)
 
 
 
1356{
1357	return mapping->backing_dev_info == &shmem_backing_dev_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358}
 
1359
1360#ifdef CONFIG_TMPFS
1361static const struct inode_operations shmem_symlink_inode_operations;
1362static const struct inode_operations shmem_short_symlink_operations;
1363
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1370static int
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372			loff_t pos, unsigned len, unsigned flags,
1373			struct page **pagep, void **fsdata)
1374{
1375	struct inode *inode = mapping->host;
1376	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378}
1379
1380static int
1381shmem_write_end(struct file *file, struct address_space *mapping,
1382			loff_t pos, unsigned len, unsigned copied,
1383			struct page *page, void *fsdata)
1384{
 
1385	struct inode *inode = mapping->host;
1386
1387	if (pos + copied > inode->i_size)
1388		i_size_write(inode, pos + copied);
1389
1390	if (!PageUptodate(page)) {
1391		if (copied < PAGE_CACHE_SIZE) {
1392			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393			zero_user_segments(page, 0, from,
1394					from + copied, PAGE_CACHE_SIZE);
1395		}
1396		SetPageUptodate(page);
1397	}
1398	set_page_dirty(page);
1399	unlock_page(page);
1400	page_cache_release(page);
1401
1402	return copied;
1403}
1404
1405static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1406		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1407{
1408	struct file *file = iocb->ki_filp;
1409	struct inode *inode = file_inode(file);
1410	struct address_space *mapping = inode->i_mapping;
1411	pgoff_t index;
1412	unsigned long offset;
1413	enum sgp_type sgp = SGP_READ;
1414	int error = 0;
1415	ssize_t retval;
1416	size_t count;
1417	loff_t *ppos = &iocb->ki_pos;
1418	struct iov_iter iter;
1419
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423	iov_iter_init(&iter, iov, nr_segs, count, 0);
1424
1425	/*
1426	 * Might this read be for a stacking filesystem?  Then when reading
1427	 * holes of a sparse file, we actually need to allocate those pages,
1428	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1429	 */
1430	if (segment_eq(get_fs(), KERNEL_DS))
1431		sgp = SGP_DIRTY;
1432
1433	index = *ppos >> PAGE_CACHE_SHIFT;
1434	offset = *ppos & ~PAGE_CACHE_MASK;
1435
1436	for (;;) {
 
1437		struct page *page = NULL;
1438		pgoff_t end_index;
1439		unsigned long nr, ret;
1440		loff_t i_size = i_size_read(inode);
1441
1442		end_index = i_size >> PAGE_CACHE_SHIFT;
1443		if (index > end_index)
1444			break;
1445		if (index == end_index) {
1446			nr = i_size & ~PAGE_CACHE_MASK;
1447			if (nr <= offset)
1448				break;
1449		}
1450
1451		error = shmem_getpage(inode, index, &page, sgp, NULL);
1452		if (error) {
1453			if (error == -EINVAL)
1454				error = 0;
1455			break;
1456		}
1457		if (page)
1458			unlock_page(page);
 
 
 
 
 
 
 
 
1459
1460		/*
1461		 * We must evaluate after, since reads (unlike writes)
1462		 * are called without i_mutex protection against truncate
1463		 */
1464		nr = PAGE_CACHE_SIZE;
1465		i_size = i_size_read(inode);
1466		end_index = i_size >> PAGE_CACHE_SHIFT;
1467		if (index == end_index) {
1468			nr = i_size & ~PAGE_CACHE_MASK;
1469			if (nr <= offset) {
1470				if (page)
1471					page_cache_release(page);
1472				break;
1473			}
1474		}
1475		nr -= offset;
1476
1477		if (page) {
1478			/*
1479			 * If users can be writing to this page using arbitrary
1480			 * virtual addresses, take care about potential aliasing
1481			 * before reading the page on the kernel side.
1482			 */
1483			if (mapping_writably_mapped(mapping))
1484				flush_dcache_page(page);
1485			/*
1486			 * Mark the page accessed if we read the beginning.
1487			 */
1488			if (!offset)
1489				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490		} else {
1491			page = ZERO_PAGE(0);
1492			page_cache_get(page);
 
 
 
 
1493		}
1494
1495		/*
1496		 * Ok, we have the page, and it's up-to-date, so
1497		 * now we can copy it to user space...
1498		 */
1499		ret = copy_page_to_iter(page, offset, nr, &iter);
1500		retval += ret;
1501		offset += ret;
1502		index += offset >> PAGE_CACHE_SHIFT;
1503		offset &= ~PAGE_CACHE_MASK;
1504
1505		page_cache_release(page);
1506		if (!iov_iter_count(&iter))
1507			break;
1508		if (ret < nr) {
1509			error = -EFAULT;
1510			break;
1511		}
1512		cond_resched();
1513	}
1514
1515	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1516	file_accessed(file);
1517	return retval ? retval : error;
1518}
1519
1520static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1521				struct pipe_inode_info *pipe, size_t len,
1522				unsigned int flags)
1523{
1524	struct address_space *mapping = in->f_mapping;
1525	struct inode *inode = mapping->host;
1526	unsigned int loff, nr_pages, req_pages;
1527	struct page *pages[PIPE_DEF_BUFFERS];
1528	struct partial_page partial[PIPE_DEF_BUFFERS];
1529	struct page *page;
1530	pgoff_t index, end_index;
1531	loff_t isize, left;
1532	int error, page_nr;
1533	struct splice_pipe_desc spd = {
1534		.pages = pages,
1535		.partial = partial,
1536		.nr_pages_max = PIPE_DEF_BUFFERS,
1537		.flags = flags,
1538		.ops = &page_cache_pipe_buf_ops,
1539		.spd_release = spd_release_page,
1540	};
1541
1542	isize = i_size_read(inode);
1543	if (unlikely(*ppos >= isize))
1544		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	left = isize - *ppos;
1547	if (unlikely(left < len))
1548		len = left;
 
 
1549
1550	if (splice_grow_spd(pipe, &spd))
1551		return -ENOMEM;
 
 
1552
1553	index = *ppos >> PAGE_CACHE_SHIFT;
1554	loff = *ppos & ~PAGE_CACHE_MASK;
1555	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1556	nr_pages = min(req_pages, spd.nr_pages_max);
1557
1558	spd.nr_pages = find_get_pages_contig(mapping, index,
1559						nr_pages, spd.pages);
1560	index += spd.nr_pages;
1561	error = 0;
1562
1563	while (spd.nr_pages < nr_pages) {
1564		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1565		if (error)
1566			break;
1567		unlock_page(page);
1568		spd.pages[spd.nr_pages++] = page;
1569		index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
1571
1572	index = *ppos >> PAGE_CACHE_SHIFT;
1573	nr_pages = spd.nr_pages;
1574	spd.nr_pages = 0;
1575
1576	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1577		unsigned int this_len;
 
 
 
 
 
 
 
 
1578
1579		if (!len)
 
 
 
 
 
 
1580			break;
1581
1582		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1583		page = spd.pages[page_nr];
 
 
 
 
 
 
 
1584
1585		if (!PageUptodate(page) || page->mapping != mapping) {
1586			error = shmem_getpage(inode, index, &page,
1587							SGP_CACHE, NULL);
1588			if (error)
1589				break;
1590			unlock_page(page);
1591			page_cache_release(spd.pages[page_nr]);
1592			spd.pages[page_nr] = page;
1593		}
1594
 
 
 
 
 
 
 
 
1595		isize = i_size_read(inode);
1596		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1597		if (unlikely(!isize || index > end_index))
1598			break;
 
1599
1600		if (end_index == index) {
1601			unsigned int plen;
1602
1603			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604			if (plen <= loff)
1605				break;
1606
1607			this_len = min(this_len, plen - loff);
1608			len = this_len;
 
 
 
 
 
 
 
 
 
1609		}
1610
1611		spd.partial[page_nr].offset = loff;
1612		spd.partial[page_nr].len = this_len;
1613		len -= this_len;
1614		loff = 0;
1615		spd.nr_pages++;
1616		index++;
1617	}
1618
1619	while (page_nr < nr_pages)
1620		page_cache_release(spd.pages[page_nr++]);
1621
1622	if (spd.nr_pages)
1623		error = splice_to_pipe(pipe, &spd);
1624
1625	splice_shrink_spd(&spd);
 
1626
1627	if (error > 0) {
1628		*ppos += error;
1629		file_accessed(in);
1630	}
1631	return error;
1632}
1633
1634/*
1635 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1636 */
1637static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1638				    pgoff_t index, pgoff_t end, int whence)
1639{
1640	struct page *page;
1641	struct pagevec pvec;
1642	pgoff_t indices[PAGEVEC_SIZE];
1643	bool done = false;
1644	int i;
1645
1646	pagevec_init(&pvec, 0);
1647	pvec.nr = 1;		/* start small: we may be there already */
1648	while (!done) {
1649		pvec.nr = find_get_entries(mapping, index,
1650					pvec.nr, pvec.pages, indices);
1651		if (!pvec.nr) {
1652			if (whence == SEEK_DATA)
1653				index = end;
1654			break;
1655		}
1656		for (i = 0; i < pvec.nr; i++, index++) {
1657			if (index < indices[i]) {
1658				if (whence == SEEK_HOLE) {
1659					done = true;
1660					break;
1661				}
1662				index = indices[i];
1663			}
1664			page = pvec.pages[i];
1665			if (page && !radix_tree_exceptional_entry(page)) {
1666				if (!PageUptodate(page))
1667					page = NULL;
1668			}
1669			if (index >= end ||
1670			    (page && whence == SEEK_DATA) ||
1671			    (!page && whence == SEEK_HOLE)) {
1672				done = true;
1673				break;
1674			}
1675		}
1676		pagevec_remove_exceptionals(&pvec);
1677		pagevec_release(&pvec);
1678		pvec.nr = PAGEVEC_SIZE;
1679		cond_resched();
1680	}
1681	return index;
1682}
1683
1684static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1685{
1686	struct address_space *mapping = file->f_mapping;
1687	struct inode *inode = mapping->host;
1688	pgoff_t start, end;
1689	loff_t new_offset;
1690
1691	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1692		return generic_file_llseek_size(file, offset, whence,
1693					MAX_LFS_FILESIZE, i_size_read(inode));
1694	mutex_lock(&inode->i_mutex);
1695	/* We're holding i_mutex so we can access i_size directly */
1696
1697	if (offset < 0)
1698		offset = -EINVAL;
1699	else if (offset >= inode->i_size)
1700		offset = -ENXIO;
1701	else {
1702		start = offset >> PAGE_CACHE_SHIFT;
1703		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1704		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1705		new_offset <<= PAGE_CACHE_SHIFT;
1706		if (new_offset > offset) {
1707			if (new_offset < inode->i_size)
1708				offset = new_offset;
1709			else if (whence == SEEK_DATA)
1710				offset = -ENXIO;
1711			else
1712				offset = inode->i_size;
1713		}
1714	}
1715
 
 
 
1716	if (offset >= 0)
1717		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1718	mutex_unlock(&inode->i_mutex);
1719	return offset;
1720}
1721
1722static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1723							 loff_t len)
1724{
1725	struct inode *inode = file_inode(file);
1726	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 
1727	struct shmem_falloc shmem_falloc;
1728	pgoff_t start, index, end;
1729	int error;
1730
1731	mutex_lock(&inode->i_mutex);
 
 
 
1732
1733	if (mode & FALLOC_FL_PUNCH_HOLE) {
1734		struct address_space *mapping = file->f_mapping;
1735		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1736		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737
1738		if ((u64)unmap_end > (u64)unmap_start)
1739			unmap_mapping_range(mapping, unmap_start,
1740					    1 + unmap_end - unmap_start, 0);
1741		shmem_truncate_range(inode, offset, offset + len - 1);
1742		/* No need to unmap again: hole-punching leaves COWed pages */
 
 
 
 
 
 
1743		error = 0;
1744		goto out;
1745	}
1746
1747	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1748	error = inode_newsize_ok(inode, offset + len);
1749	if (error)
1750		goto out;
1751
1752	start = offset >> PAGE_CACHE_SHIFT;
1753	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
1754	/* Try to avoid a swapstorm if len is impossible to satisfy */
1755	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1756		error = -ENOSPC;
1757		goto out;
1758	}
1759
 
1760	shmem_falloc.start = start;
1761	shmem_falloc.next  = start;
1762	shmem_falloc.nr_falloced = 0;
1763	shmem_falloc.nr_unswapped = 0;
1764	spin_lock(&inode->i_lock);
1765	inode->i_private = &shmem_falloc;
1766	spin_unlock(&inode->i_lock);
1767
1768	for (index = start; index < end; index++) {
1769		struct page *page;
 
 
 
 
 
 
 
 
 
1770
1771		/*
1772		 * Good, the fallocate(2) manpage permits EINTR: we may have
1773		 * been interrupted because we are using up too much memory.
1774		 */
1775		if (signal_pending(current))
1776			error = -EINTR;
1777		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1778			error = -ENOMEM;
1779		else
1780			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1781									NULL);
1782		if (error) {
1783			/* Remove the !PageUptodate pages we added */
1784			shmem_undo_range(inode,
1785				(loff_t)start << PAGE_CACHE_SHIFT,
1786				(loff_t)index << PAGE_CACHE_SHIFT, true);
 
 
 
1787			goto undone;
1788		}
1789
1790		/*
 
 
 
 
 
 
 
 
 
 
1791		 * Inform shmem_writepage() how far we have reached.
1792		 * No need for lock or barrier: we have the page lock.
1793		 */
1794		shmem_falloc.next++;
1795		if (!PageUptodate(page))
1796			shmem_falloc.nr_falloced++;
1797
1798		/*
1799		 * If !PageUptodate, leave it that way so that freeable pages
1800		 * can be recognized if we need to rollback on error later.
1801		 * But set_page_dirty so that memory pressure will swap rather
1802		 * than free the pages we are allocating (and SGP_CACHE pages
1803		 * might still be clean: we now need to mark those dirty too).
1804		 */
1805		set_page_dirty(page);
1806		unlock_page(page);
1807		page_cache_release(page);
1808		cond_resched();
1809	}
1810
1811	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1812		i_size_write(inode, offset + len);
1813	inode->i_ctime = CURRENT_TIME;
1814undone:
1815	spin_lock(&inode->i_lock);
1816	inode->i_private = NULL;
1817	spin_unlock(&inode->i_lock);
1818out:
1819	mutex_unlock(&inode->i_mutex);
 
 
1820	return error;
1821}
1822
1823static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1824{
1825	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1826
1827	buf->f_type = TMPFS_MAGIC;
1828	buf->f_bsize = PAGE_CACHE_SIZE;
1829	buf->f_namelen = NAME_MAX;
1830	if (sbinfo->max_blocks) {
1831		buf->f_blocks = sbinfo->max_blocks;
1832		buf->f_bavail =
1833		buf->f_bfree  = sbinfo->max_blocks -
1834				percpu_counter_sum(&sbinfo->used_blocks);
1835	}
1836	if (sbinfo->max_inodes) {
1837		buf->f_files = sbinfo->max_inodes;
1838		buf->f_ffree = sbinfo->free_inodes;
1839	}
1840	/* else leave those fields 0 like simple_statfs */
 
 
 
1841	return 0;
1842}
1843
1844/*
1845 * File creation. Allocate an inode, and we're done..
1846 */
1847static int
1848shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
1849{
1850	struct inode *inode;
1851	int error = -ENOSPC;
1852
1853	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1854	if (inode) {
1855		error = simple_acl_create(dir, inode);
1856		if (error)
1857			goto out_iput;
1858		error = security_inode_init_security(inode, dir,
1859						     &dentry->d_name,
1860						     shmem_initxattrs, NULL);
1861		if (error && error != -EOPNOTSUPP)
1862			goto out_iput;
1863
1864		error = 0;
1865		dir->i_size += BOGO_DIRENT_SIZE;
1866		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867		d_instantiate(dentry, inode);
1868		dget(dentry); /* Extra count - pin the dentry in core */
1869	}
 
 
 
 
 
 
 
 
 
 
 
1870	return error;
 
1871out_iput:
1872	iput(inode);
1873	return error;
1874}
1875
1876static int
1877shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1878{
1879	struct inode *inode;
1880	int error = -ENOSPC;
1881
1882	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1883	if (inode) {
1884		error = security_inode_init_security(inode, dir,
1885						     NULL,
1886						     shmem_initxattrs, NULL);
1887		if (error && error != -EOPNOTSUPP)
1888			goto out_iput;
1889		error = simple_acl_create(dir, inode);
1890		if (error)
1891			goto out_iput;
1892		d_tmpfile(dentry, inode);
1893	}
1894	return error;
 
 
 
 
 
 
 
 
 
 
1895out_iput:
1896	iput(inode);
1897	return error;
1898}
1899
1900static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1901{
1902	int error;
1903
1904	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
1905		return error;
1906	inc_nlink(dir);
1907	return 0;
1908}
1909
1910static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1911		bool excl)
1912{
1913	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1914}
1915
1916/*
1917 * Link a file..
1918 */
1919static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 
1920{
1921	struct inode *inode = old_dentry->d_inode;
1922	int ret;
1923
1924	/*
1925	 * No ordinary (disk based) filesystem counts links as inodes;
1926	 * but each new link needs a new dentry, pinning lowmem, and
1927	 * tmpfs dentries cannot be pruned until they are unlinked.
 
 
1928	 */
1929	ret = shmem_reserve_inode(inode->i_sb);
1930	if (ret)
 
 
 
 
 
 
 
 
1931		goto out;
 
1932
1933	dir->i_size += BOGO_DIRENT_SIZE;
1934	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
 
1935	inc_nlink(inode);
1936	ihold(inode);	/* New dentry reference */
1937	dget(dentry);		/* Extra pinning count for the created dentry */
1938	d_instantiate(dentry, inode);
1939out:
1940	return ret;
1941}
1942
1943static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1944{
1945	struct inode *inode = dentry->d_inode;
1946
1947	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1948		shmem_free_inode(inode->i_sb);
 
 
1949
1950	dir->i_size -= BOGO_DIRENT_SIZE;
1951	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
 
1952	drop_nlink(inode);
1953	dput(dentry);	/* Undo the count from "create" - this does all the work */
1954	return 0;
1955}
1956
1957static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1958{
1959	if (!simple_empty(dentry))
1960		return -ENOTEMPTY;
1961
1962	drop_nlink(dentry->d_inode);
1963	drop_nlink(dir);
1964	return shmem_unlink(dir, dentry);
1965}
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967/*
1968 * The VFS layer already does all the dentry stuff for rename,
1969 * we just have to decrement the usage count for the target if
1970 * it exists so that the VFS layer correctly free's it when it
1971 * gets overwritten.
1972 */
1973static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
 
 
 
1974{
1975	struct inode *inode = old_dentry->d_inode;
1976	int they_are_dirs = S_ISDIR(inode->i_mode);
 
 
 
 
1977
1978	if (!simple_empty(new_dentry))
 
 
 
 
1979		return -ENOTEMPTY;
1980
1981	if (new_dentry->d_inode) {
 
 
 
 
 
 
 
 
 
 
1982		(void) shmem_unlink(new_dir, new_dentry);
1983		if (they_are_dirs)
 
1984			drop_nlink(old_dir);
 
1985	} else if (they_are_dirs) {
1986		drop_nlink(old_dir);
1987		inc_nlink(new_dir);
1988	}
1989
1990	old_dir->i_size -= BOGO_DIRENT_SIZE;
1991	new_dir->i_size += BOGO_DIRENT_SIZE;
1992	old_dir->i_ctime = old_dir->i_mtime =
1993	new_dir->i_ctime = new_dir->i_mtime =
1994	inode->i_ctime = CURRENT_TIME;
1995	return 0;
1996}
1997
1998static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
1999{
2000	int error;
2001	int len;
2002	struct inode *inode;
2003	struct page *page;
2004	char *kaddr;
2005	struct shmem_inode_info *info;
2006
2007	len = strlen(symname) + 1;
2008	if (len > PAGE_CACHE_SIZE)
2009		return -ENAMETOOLONG;
2010
2011	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2012	if (!inode)
2013		return -ENOSPC;
 
2014
2015	error = security_inode_init_security(inode, dir, &dentry->d_name,
2016					     shmem_initxattrs, NULL);
2017	if (error) {
2018		if (error != -EOPNOTSUPP) {
2019			iput(inode);
2020			return error;
2021		}
2022		error = 0;
2023	}
2024
2025	info = SHMEM_I(inode);
2026	inode->i_size = len-1;
2027	if (len <= SHORT_SYMLINK_LEN) {
2028		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2029		if (!info->symlink) {
2030			iput(inode);
2031			return -ENOMEM;
2032		}
2033		inode->i_op = &shmem_short_symlink_operations;
2034	} else {
2035		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2036		if (error) {
2037			iput(inode);
2038			return error;
2039		}
2040		inode->i_mapping->a_ops = &shmem_aops;
 
 
 
2041		inode->i_op = &shmem_symlink_inode_operations;
2042		kaddr = kmap_atomic(page);
2043		memcpy(kaddr, symname, len);
2044		kunmap_atomic(kaddr);
2045		SetPageUptodate(page);
2046		set_page_dirty(page);
2047		unlock_page(page);
2048		page_cache_release(page);
2049	}
2050	dir->i_size += BOGO_DIRENT_SIZE;
2051	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
2052	d_instantiate(dentry, inode);
2053	dget(dentry);
2054	return 0;
2055}
2056
2057static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2058{
2059	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2060	return NULL;
 
2061}
2062
2063static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2064{
2065	struct page *page = NULL;
2066	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2067	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2068	if (page)
2069		unlock_page(page);
2070	return page;
2071}
2072
2073static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
 
2074{
2075	if (!IS_ERR(nd_get_link(nd))) {
2076		struct page *page = cookie;
2077		kunmap(page);
2078		mark_page_accessed(page);
2079		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080	}
 
 
2081}
2082
2083#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084/*
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2089 */
2090
2091/*
2092 * Callback for security_inode_init_security() for acquiring xattrs.
2093 */
2094static int shmem_initxattrs(struct inode *inode,
2095			    const struct xattr *xattr_array,
2096			    void *fs_info)
2097{
2098	struct shmem_inode_info *info = SHMEM_I(inode);
 
2099	const struct xattr *xattr;
2100	struct simple_xattr *new_xattr;
 
2101	size_t len;
2102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2104		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2105		if (!new_xattr)
2106			return -ENOMEM;
2107
2108		len = strlen(xattr->name) + 1;
2109		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2110					  GFP_KERNEL);
2111		if (!new_xattr->name) {
2112			kfree(new_xattr);
2113			return -ENOMEM;
2114		}
2115
2116		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2117		       XATTR_SECURITY_PREFIX_LEN);
2118		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2119		       xattr->name, len);
2120
2121		simple_xattr_list_add(&info->xattrs, new_xattr);
2122	}
2123
2124	return 0;
2125}
2126
2127static const struct xattr_handler *shmem_xattr_handlers[] = {
2128#ifdef CONFIG_TMPFS_POSIX_ACL
2129	&posix_acl_access_xattr_handler,
2130	&posix_acl_default_xattr_handler,
2131#endif
2132	NULL
2133};
2134
2135static int shmem_xattr_validate(const char *name)
2136{
2137	struct { const char *prefix; size_t len; } arr[] = {
2138		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2139		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2140	};
2141	int i;
2142
2143	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2144		size_t preflen = arr[i].len;
2145		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2146			if (!name[preflen])
2147				return -EINVAL;
2148			return 0;
2149		}
 
 
2150	}
2151	return -EOPNOTSUPP;
 
2152}
2153
2154static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2155			      void *buffer, size_t size)
 
2156{
2157	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2158	int err;
2159
2160	/*
2161	 * If this is a request for a synthetic attribute in the system.*
2162	 * namespace use the generic infrastructure to resolve a handler
2163	 * for it via sb->s_xattr.
2164	 */
2165	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2166		return generic_getxattr(dentry, name, buffer, size);
2167
2168	err = shmem_xattr_validate(name);
2169	if (err)
2170		return err;
2171
 
2172	return simple_xattr_get(&info->xattrs, name, buffer, size);
2173}
2174
2175static int shmem_setxattr(struct dentry *dentry, const char *name,
2176			  const void *value, size_t size, int flags)
 
 
 
2177{
2178	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2179	int err;
2180
2181	/*
2182	 * If this is a request for a synthetic attribute in the system.*
2183	 * namespace use the generic infrastructure to resolve a handler
2184	 * for it via sb->s_xattr.
2185	 */
2186	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2187		return generic_setxattr(dentry, name, value, size, flags);
2188
2189	err = shmem_xattr_validate(name);
2190	if (err)
2191		return err;
2192
2193	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2194}
 
 
 
 
 
 
 
 
 
 
2195
2196static int shmem_removexattr(struct dentry *dentry, const char *name)
2197{
2198	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2199	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200
2201	/*
2202	 * If this is a request for a synthetic attribute in the system.*
2203	 * namespace use the generic infrastructure to resolve a handler
2204	 * for it via sb->s_xattr.
2205	 */
2206	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2207		return generic_removexattr(dentry, name);
2208
2209	err = shmem_xattr_validate(name);
2210	if (err)
2211		return err;
 
 
2212
2213	return simple_xattr_remove(&info->xattrs, name);
2214}
 
 
 
 
2215
2216static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2217{
2218	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2219	return simple_xattr_list(&info->xattrs, buffer, size);
2220}
2221#endif /* CONFIG_TMPFS_XATTR */
2222
2223static const struct inode_operations shmem_short_symlink_operations = {
2224	.readlink	= generic_readlink,
2225	.follow_link	= shmem_follow_short_symlink,
 
2226#ifdef CONFIG_TMPFS_XATTR
2227	.setxattr	= shmem_setxattr,
2228	.getxattr	= shmem_getxattr,
2229	.listxattr	= shmem_listxattr,
2230	.removexattr	= shmem_removexattr,
2231#endif
2232};
2233
2234static const struct inode_operations shmem_symlink_inode_operations = {
2235	.readlink	= generic_readlink,
2236	.follow_link	= shmem_follow_link,
2237	.put_link	= shmem_put_link,
2238#ifdef CONFIG_TMPFS_XATTR
2239	.setxattr	= shmem_setxattr,
2240	.getxattr	= shmem_getxattr,
2241	.listxattr	= shmem_listxattr,
2242	.removexattr	= shmem_removexattr,
2243#endif
2244};
2245
2246static struct dentry *shmem_get_parent(struct dentry *child)
2247{
2248	return ERR_PTR(-ESTALE);
2249}
2250
2251static int shmem_match(struct inode *ino, void *vfh)
2252{
2253	__u32 *fh = vfh;
2254	__u64 inum = fh[2];
2255	inum = (inum << 32) | fh[1];
2256	return ino->i_ino == inum && fh[0] == ino->i_generation;
2257}
2258
 
 
 
 
 
 
 
 
2259static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2260		struct fid *fid, int fh_len, int fh_type)
2261{
2262	struct inode *inode;
2263	struct dentry *dentry = NULL;
2264	u64 inum;
2265
2266	if (fh_len < 3)
2267		return NULL;
2268
2269	inum = fid->raw[2];
2270	inum = (inum << 32) | fid->raw[1];
2271
2272	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2273			shmem_match, fid->raw);
2274	if (inode) {
2275		dentry = d_find_alias(inode);
2276		iput(inode);
2277	}
2278
2279	return dentry;
2280}
2281
2282static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2283				struct inode *parent)
2284{
2285	if (*len < 3) {
2286		*len = 3;
2287		return FILEID_INVALID;
2288	}
2289
2290	if (inode_unhashed(inode)) {
2291		/* Unfortunately insert_inode_hash is not idempotent,
2292		 * so as we hash inodes here rather than at creation
2293		 * time, we need a lock to ensure we only try
2294		 * to do it once
2295		 */
2296		static DEFINE_SPINLOCK(lock);
2297		spin_lock(&lock);
2298		if (inode_unhashed(inode))
2299			__insert_inode_hash(inode,
2300					    inode->i_ino + inode->i_generation);
2301		spin_unlock(&lock);
2302	}
2303
2304	fh[0] = inode->i_generation;
2305	fh[1] = inode->i_ino;
2306	fh[2] = ((__u64)inode->i_ino) >> 32;
2307
2308	*len = 3;
2309	return 1;
2310}
2311
2312static const struct export_operations shmem_export_ops = {
2313	.get_parent     = shmem_get_parent,
2314	.encode_fh      = shmem_encode_fh,
2315	.fh_to_dentry	= shmem_fh_to_dentry,
2316};
2317
2318static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2319			       bool remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320{
2321	char *this_char, *value, *rest;
2322	struct mempolicy *mpol = NULL;
2323	uid_t uid;
2324	gid_t gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325
2326	while (options != NULL) {
2327		this_char = options;
2328		for (;;) {
2329			/*
2330			 * NUL-terminate this option: unfortunately,
2331			 * mount options form a comma-separated list,
2332			 * but mpol's nodelist may also contain commas.
2333			 */
2334			options = strchr(options, ',');
2335			if (options == NULL)
2336				break;
2337			options++;
2338			if (!isdigit(*options)) {
2339				options[-1] = '\0';
2340				break;
2341			}
2342		}
2343		if (!*this_char)
2344			continue;
2345		if ((value = strchr(this_char,'=')) != NULL) {
2346			*value++ = 0;
2347		} else {
2348			printk(KERN_ERR
2349			    "tmpfs: No value for mount option '%s'\n",
2350			    this_char);
2351			goto error;
2352		}
2353
2354		if (!strcmp(this_char,"size")) {
2355			unsigned long long size;
2356			size = memparse(value,&rest);
2357			if (*rest == '%') {
2358				size <<= PAGE_SHIFT;
2359				size *= totalram_pages;
2360				do_div(size, 100);
2361				rest++;
2362			}
2363			if (*rest)
2364				goto bad_val;
2365			sbinfo->max_blocks =
2366				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2367		} else if (!strcmp(this_char,"nr_blocks")) {
2368			sbinfo->max_blocks = memparse(value, &rest);
2369			if (*rest)
2370				goto bad_val;
2371		} else if (!strcmp(this_char,"nr_inodes")) {
2372			sbinfo->max_inodes = memparse(value, &rest);
2373			if (*rest)
2374				goto bad_val;
2375		} else if (!strcmp(this_char,"mode")) {
2376			if (remount)
2377				continue;
2378			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2379			if (*rest)
2380				goto bad_val;
2381		} else if (!strcmp(this_char,"uid")) {
2382			if (remount)
2383				continue;
2384			uid = simple_strtoul(value, &rest, 0);
2385			if (*rest)
2386				goto bad_val;
2387			sbinfo->uid = make_kuid(current_user_ns(), uid);
2388			if (!uid_valid(sbinfo->uid))
2389				goto bad_val;
2390		} else if (!strcmp(this_char,"gid")) {
2391			if (remount)
2392				continue;
2393			gid = simple_strtoul(value, &rest, 0);
2394			if (*rest)
2395				goto bad_val;
2396			sbinfo->gid = make_kgid(current_user_ns(), gid);
2397			if (!gid_valid(sbinfo->gid))
2398				goto bad_val;
2399		} else if (!strcmp(this_char,"mpol")) {
2400			mpol_put(mpol);
2401			mpol = NULL;
2402			if (mpol_parse_str(value, &mpol))
2403				goto bad_val;
2404		} else {
2405			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2406			       this_char);
2407			goto error;
2408		}
2409	}
2410	sbinfo->mpol = mpol;
2411	return 0;
2412
2413bad_val:
2414	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2415	       value, this_char);
2416error:
2417	mpol_put(mpol);
2418	return 1;
2419
2420}
2421
2422static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 
 
 
2423{
2424	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2425	struct shmem_sb_info config = *sbinfo;
2426	unsigned long inodes;
2427	int error = -EINVAL;
 
2428
2429	config.mpol = NULL;
2430	if (shmem_parse_options(data, &config, true))
2431		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432
2433	spin_lock(&sbinfo->stat_lock);
2434	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2435	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2436		goto out;
2437	if (config.max_inodes < inodes)
 
 
2438		goto out;
2439	/*
2440	 * Those tests disallow limited->unlimited while any are in use;
2441	 * but we must separately disallow unlimited->limited, because
2442	 * in that case we have no record of how much is already in use.
2443	 */
2444	if (config.max_blocks && !sbinfo->max_blocks)
 
 
 
2445		goto out;
2446	if (config.max_inodes && !sbinfo->max_inodes)
 
 
 
 
 
 
 
 
 
2447		goto out;
 
 
2448
2449	error = 0;
2450	sbinfo->max_blocks  = config.max_blocks;
2451	sbinfo->max_inodes  = config.max_inodes;
2452	sbinfo->free_inodes = config.max_inodes - inodes;
 
 
 
 
 
 
2453
2454	/*
2455	 * Preserve previous mempolicy unless mpol remount option was specified.
2456	 */
2457	if (config.mpol) {
2458		mpol_put(sbinfo->mpol);
2459		sbinfo->mpol = config.mpol;	/* transfers initial ref */
 
2460	}
 
 
 
 
 
 
 
2461out:
2462	spin_unlock(&sbinfo->stat_lock);
2463	return error;
2464}
2465
2466static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2467{
2468	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
 
2469
2470	if (sbinfo->max_blocks != shmem_default_max_blocks())
2471		seq_printf(seq, ",size=%luk",
2472			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2473	if (sbinfo->max_inodes != shmem_default_max_inodes())
2474		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2475	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2476		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2477	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2478		seq_printf(seq, ",uid=%u",
2479				from_kuid_munged(&init_user_ns, sbinfo->uid));
2480	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2481		seq_printf(seq, ",gid=%u",
2482				from_kgid_munged(&init_user_ns, sbinfo->gid));
2483	shmem_show_mpol(seq, sbinfo->mpol);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484	return 0;
2485}
 
2486#endif /* CONFIG_TMPFS */
2487
2488static void shmem_put_super(struct super_block *sb)
2489{
2490	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2491
 
 
 
 
2492	percpu_counter_destroy(&sbinfo->used_blocks);
2493	mpol_put(sbinfo->mpol);
2494	kfree(sbinfo);
2495	sb->s_fs_info = NULL;
2496}
2497
2498int shmem_fill_super(struct super_block *sb, void *data, int silent)
2499{
 
2500	struct inode *inode;
2501	struct shmem_sb_info *sbinfo;
2502	int err = -ENOMEM;
2503
2504	/* Round up to L1_CACHE_BYTES to resist false sharing */
2505	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2506				L1_CACHE_BYTES), GFP_KERNEL);
2507	if (!sbinfo)
2508		return -ENOMEM;
2509
2510	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2511	sbinfo->uid = current_fsuid();
2512	sbinfo->gid = current_fsgid();
2513	sb->s_fs_info = sbinfo;
2514
2515#ifdef CONFIG_TMPFS
2516	/*
2517	 * Per default we only allow half of the physical ram per
2518	 * tmpfs instance, limiting inodes to one per page of lowmem;
2519	 * but the internal instance is left unlimited.
2520	 */
2521	if (!(sb->s_flags & MS_KERNMOUNT)) {
2522		sbinfo->max_blocks = shmem_default_max_blocks();
2523		sbinfo->max_inodes = shmem_default_max_inodes();
2524		if (shmem_parse_options(data, sbinfo, false)) {
2525			err = -EINVAL;
2526			goto failed;
2527		}
 
2528	} else {
2529		sb->s_flags |= MS_NOUSER;
2530	}
2531	sb->s_export_op = &shmem_export_ops;
2532	sb->s_flags |= MS_NOSEC;
2533#else
2534	sb->s_flags |= MS_NOUSER;
2535#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536
2537	spin_lock_init(&sbinfo->stat_lock);
2538	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2539		goto failed;
2540	sbinfo->free_inodes = sbinfo->max_inodes;
 
2541
2542	sb->s_maxbytes = MAX_LFS_FILESIZE;
2543	sb->s_blocksize = PAGE_CACHE_SIZE;
2544	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2545	sb->s_magic = TMPFS_MAGIC;
2546	sb->s_op = &shmem_ops;
2547	sb->s_time_gran = 1;
2548#ifdef CONFIG_TMPFS_XATTR
2549	sb->s_xattr = shmem_xattr_handlers;
2550#endif
2551#ifdef CONFIG_TMPFS_POSIX_ACL
2552	sb->s_flags |= MS_POSIXACL;
2553#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
2554
2555	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2556	if (!inode)
 
 
 
 
 
 
 
2557		goto failed;
 
2558	inode->i_uid = sbinfo->uid;
2559	inode->i_gid = sbinfo->gid;
2560	sb->s_root = d_make_root(inode);
2561	if (!sb->s_root)
2562		goto failed;
2563	return 0;
2564
2565failed:
2566	shmem_put_super(sb);
2567	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2568}
2569
2570static struct kmem_cache *shmem_inode_cachep;
 
 
 
 
 
 
 
 
 
 
2571
2572static struct inode *shmem_alloc_inode(struct super_block *sb)
2573{
2574	struct shmem_inode_info *info;
2575	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2576	if (!info)
2577		return NULL;
2578	return &info->vfs_inode;
2579}
2580
2581static void shmem_destroy_callback(struct rcu_head *head)
2582{
2583	struct inode *inode = container_of(head, struct inode, i_rcu);
 
2584	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2585}
2586
2587static void shmem_destroy_inode(struct inode *inode)
2588{
2589	if (S_ISREG(inode->i_mode))
2590		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2591	call_rcu(&inode->i_rcu, shmem_destroy_callback);
 
2592}
2593
2594static void shmem_init_inode(void *foo)
2595{
2596	struct shmem_inode_info *info = foo;
2597	inode_init_once(&info->vfs_inode);
2598}
2599
2600static int shmem_init_inodecache(void)
2601{
2602	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2603				sizeof(struct shmem_inode_info),
2604				0, SLAB_PANIC, shmem_init_inode);
2605	return 0;
2606}
2607
2608static void shmem_destroy_inodecache(void)
2609{
2610	kmem_cache_destroy(shmem_inode_cachep);
2611}
2612
 
 
 
 
 
 
 
2613static const struct address_space_operations shmem_aops = {
2614	.writepage	= shmem_writepage,
2615	.set_page_dirty	= __set_page_dirty_no_writeback,
2616#ifdef CONFIG_TMPFS
2617	.write_begin	= shmem_write_begin,
2618	.write_end	= shmem_write_end,
2619#endif
2620	.migratepage	= migrate_page,
2621	.error_remove_page = generic_error_remove_page,
 
 
2622};
2623
2624static const struct file_operations shmem_file_operations = {
2625	.mmap		= shmem_mmap,
 
 
2626#ifdef CONFIG_TMPFS
2627	.llseek		= shmem_file_llseek,
2628	.read		= do_sync_read,
2629	.write		= do_sync_write,
2630	.aio_read	= shmem_file_aio_read,
2631	.aio_write	= generic_file_aio_write,
2632	.fsync		= noop_fsync,
2633	.splice_read	= shmem_file_splice_read,
2634	.splice_write	= generic_file_splice_write,
2635	.fallocate	= shmem_fallocate,
2636#endif
2637};
2638
2639static const struct inode_operations shmem_inode_operations = {
 
2640	.setattr	= shmem_setattr,
2641#ifdef CONFIG_TMPFS_XATTR
2642	.setxattr	= shmem_setxattr,
2643	.getxattr	= shmem_getxattr,
2644	.listxattr	= shmem_listxattr,
2645	.removexattr	= shmem_removexattr,
2646	.set_acl	= simple_set_acl,
 
 
2647#endif
2648};
2649
2650static const struct inode_operations shmem_dir_inode_operations = {
2651#ifdef CONFIG_TMPFS
 
2652	.create		= shmem_create,
2653	.lookup		= simple_lookup,
2654	.link		= shmem_link,
2655	.unlink		= shmem_unlink,
2656	.symlink	= shmem_symlink,
2657	.mkdir		= shmem_mkdir,
2658	.rmdir		= shmem_rmdir,
2659	.mknod		= shmem_mknod,
2660	.rename		= shmem_rename,
2661	.tmpfile	= shmem_tmpfile,
 
2662#endif
2663#ifdef CONFIG_TMPFS_XATTR
2664	.setxattr	= shmem_setxattr,
2665	.getxattr	= shmem_getxattr,
2666	.listxattr	= shmem_listxattr,
2667	.removexattr	= shmem_removexattr,
 
2668#endif
2669#ifdef CONFIG_TMPFS_POSIX_ACL
2670	.setattr	= shmem_setattr,
2671	.set_acl	= simple_set_acl,
2672#endif
2673};
2674
2675static const struct inode_operations shmem_special_inode_operations = {
 
2676#ifdef CONFIG_TMPFS_XATTR
2677	.setxattr	= shmem_setxattr,
2678	.getxattr	= shmem_getxattr,
2679	.listxattr	= shmem_listxattr,
2680	.removexattr	= shmem_removexattr,
2681#endif
2682#ifdef CONFIG_TMPFS_POSIX_ACL
2683	.setattr	= shmem_setattr,
2684	.set_acl	= simple_set_acl,
2685#endif
2686};
2687
2688static const struct super_operations shmem_ops = {
2689	.alloc_inode	= shmem_alloc_inode,
 
2690	.destroy_inode	= shmem_destroy_inode,
2691#ifdef CONFIG_TMPFS
2692	.statfs		= shmem_statfs,
2693	.remount_fs	= shmem_remount_fs,
2694	.show_options	= shmem_show_options,
2695#endif
 
 
 
2696	.evict_inode	= shmem_evict_inode,
2697	.drop_inode	= generic_delete_inode,
2698	.put_super	= shmem_put_super,
 
 
 
 
2699};
2700
2701static const struct vm_operations_struct shmem_vm_ops = {
2702	.fault		= shmem_fault,
2703	.map_pages	= filemap_map_pages,
2704#ifdef CONFIG_NUMA
2705	.set_policy     = shmem_set_policy,
2706	.get_policy     = shmem_get_policy,
2707#endif
2708	.remap_pages	= generic_file_remap_pages,
2709};
2710
2711static struct dentry *shmem_mount(struct file_system_type *fs_type,
2712	int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
2713{
2714	return mount_nodev(fs_type, flags, data, shmem_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
2715}
2716
2717static struct file_system_type shmem_fs_type = {
2718	.owner		= THIS_MODULE,
2719	.name		= "tmpfs",
2720	.mount		= shmem_mount,
 
 
 
2721	.kill_sb	= kill_litter_super,
2722	.fs_flags	= FS_USERNS_MOUNT,
2723};
2724
2725int __init shmem_init(void)
2726{
2727	int error;
2728
2729	/* If rootfs called this, don't re-init */
2730	if (shmem_inode_cachep)
2731		return 0;
2732
2733	error = bdi_init(&shmem_backing_dev_info);
2734	if (error)
2735		goto out4;
2736
2737	error = shmem_init_inodecache();
2738	if (error)
2739		goto out3;
 
 
2740
2741	error = register_filesystem(&shmem_fs_type);
2742	if (error) {
2743		printk(KERN_ERR "Could not register tmpfs\n");
2744		goto out2;
2745	}
2746
2747	shm_mnt = kern_mount(&shmem_fs_type);
2748	if (IS_ERR(shm_mnt)) {
2749		error = PTR_ERR(shm_mnt);
2750		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2751		goto out1;
2752	}
2753	return 0;
 
 
 
 
 
 
 
2754
2755out1:
2756	unregister_filesystem(&shmem_fs_type);
2757out2:
2758	shmem_destroy_inodecache();
 
2759out3:
2760	bdi_destroy(&shmem_backing_dev_info);
2761out4:
2762	shm_mnt = ERR_PTR(error);
2763	return error;
2764}
2765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766#else /* !CONFIG_SHMEM */
2767
2768/*
2769 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2770 *
2771 * This is intended for small system where the benefits of the full
2772 * shmem code (swap-backed and resource-limited) are outweighed by
2773 * their complexity. On systems without swap this code should be
2774 * effectively equivalent, but much lighter weight.
2775 */
2776
2777static struct file_system_type shmem_fs_type = {
2778	.name		= "tmpfs",
2779	.mount		= ramfs_mount,
2780	.kill_sb	= kill_litter_super,
 
2781	.fs_flags	= FS_USERNS_MOUNT,
2782};
2783
2784int __init shmem_init(void)
2785{
2786	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2787
2788	shm_mnt = kern_mount(&shmem_fs_type);
2789	BUG_ON(IS_ERR(shm_mnt));
2790
2791	return 0;
2792}
2793
2794int shmem_unuse(swp_entry_t swap, struct page *page)
2795{
2796	return 0;
2797}
2798
2799int shmem_lock(struct file *file, int lock, struct user_struct *user)
2800{
2801	return 0;
2802}
2803
2804void shmem_unlock_mapping(struct address_space *mapping)
2805{
2806}
2807
 
 
 
 
 
 
 
 
 
2808void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2809{
2810	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2811}
2812EXPORT_SYMBOL_GPL(shmem_truncate_range);
2813
2814#define shmem_vm_ops				generic_file_vm_ops
 
2815#define shmem_file_operations			ramfs_file_operations
2816#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2817#define shmem_acct_size(flags, size)		0
2818#define shmem_unacct_size(flags, size)		do {} while (0)
2819
 
 
 
 
 
 
 
 
2820#endif /* CONFIG_SHMEM */
2821
2822/* common code */
2823
2824static struct dentry_operations anon_ops = {
2825	.d_dname = simple_dname
2826};
2827
2828static struct file *__shmem_file_setup(const char *name, loff_t size,
2829				       unsigned long flags, unsigned int i_flags)
2830{
2831	struct file *res;
2832	struct inode *inode;
2833	struct path path;
2834	struct super_block *sb;
2835	struct qstr this;
2836
2837	if (IS_ERR(shm_mnt))
2838		return ERR_CAST(shm_mnt);
2839
2840	if (size < 0 || size > MAX_LFS_FILESIZE)
2841		return ERR_PTR(-EINVAL);
2842
2843	if (shmem_acct_size(flags, size))
2844		return ERR_PTR(-ENOMEM);
2845
2846	res = ERR_PTR(-ENOMEM);
2847	this.name = name;
2848	this.len = strlen(name);
2849	this.hash = 0; /* will go */
2850	sb = shm_mnt->mnt_sb;
2851	path.dentry = d_alloc_pseudo(sb, &this);
2852	if (!path.dentry)
2853		goto put_memory;
2854	d_set_d_op(path.dentry, &anon_ops);
2855	path.mnt = mntget(shm_mnt);
2856
2857	res = ERR_PTR(-ENOSPC);
2858	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2859	if (!inode)
2860		goto put_dentry;
2861
 
 
 
 
 
 
2862	inode->i_flags |= i_flags;
2863	d_instantiate(path.dentry, inode);
2864	inode->i_size = size;
2865	clear_nlink(inode);	/* It is unlinked */
2866	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
 
 
 
2867	if (IS_ERR(res))
2868		goto put_dentry;
2869
2870	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2871		  &shmem_file_operations);
2872	if (IS_ERR(res))
2873		goto put_dentry;
2874
2875	return res;
2876
2877put_dentry:
2878	path_put(&path);
2879put_memory:
2880	shmem_unacct_size(flags, size);
2881	return res;
2882}
2883
2884/**
2885 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2886 * 	kernel internal.  There will be NO LSM permission checks against the
2887 * 	underlying inode.  So users of this interface must do LSM checks at a
2888 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2889 * 	are provided at the key level rather than the inode level.
2890 * @name: name for dentry (to be seen in /proc/<pid>/maps
2891 * @size: size to be set for the file
2892 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2893 */
2894struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2895{
2896	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2897}
 
2898
2899/**
2900 * shmem_file_setup - get an unlinked file living in tmpfs
2901 * @name: name for dentry (to be seen in /proc/<pid>/maps
2902 * @size: size to be set for the file
2903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2904 */
2905struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2906{
2907	return __shmem_file_setup(name, size, flags, 0);
2908}
2909EXPORT_SYMBOL_GPL(shmem_file_setup);
2910
2911/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912 * shmem_zero_setup - setup a shared anonymous mapping
2913 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2914 */
2915int shmem_zero_setup(struct vm_area_struct *vma)
2916{
2917	struct file *file;
2918	loff_t size = vma->vm_end - vma->vm_start;
2919
2920	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
 
 
 
 
 
 
2921	if (IS_ERR(file))
2922		return PTR_ERR(file);
2923
2924	if (vma->vm_file)
2925		fput(vma->vm_file);
2926	vma->vm_file = file;
2927	vma->vm_ops = &shmem_vm_ops;
 
2928	return 0;
2929}
2930
2931/**
2932 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2933 * @mapping:	the page's address_space
2934 * @index:	the page index
2935 * @gfp:	the page allocator flags to use if allocating
2936 *
2937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2938 * with any new page allocations done using the specified allocation flags.
2939 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2942 *
2943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2945 */
2946struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2947					 pgoff_t index, gfp_t gfp)
2948{
2949#ifdef CONFIG_SHMEM
2950	struct inode *inode = mapping->host;
2951	struct page *page;
2952	int error;
2953
2954	BUG_ON(mapping->a_ops != &shmem_aops);
2955	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2956	if (error)
2957		page = ERR_PTR(error);
2958	else
2959		unlock_page(page);
2960	return page;
2961#else
2962	/*
2963	 * The tiny !SHMEM case uses ramfs without swap
2964	 */
2965	return read_cache_page_gfp(mapping, index, gfp);
2966#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967}
2968EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v6.9.4
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/shmem_fs.h>
  37#include <linux/swap.h>
  38#include <linux/uio.h>
  39#include <linux/hugetlb.h>
  40#include <linux/fs_parser.h>
  41#include <linux/swapfile.h>
  42#include <linux/iversion.h>
  43#include "swap.h"
  44
  45static struct vfsmount *shm_mnt __ro_after_init;
  46
  47#ifdef CONFIG_SHMEM
  48/*
  49 * This virtual memory filesystem is heavily based on the ramfs. It
  50 * extends ramfs by the ability to use swap and honor resource limits
  51 * which makes it a completely usable filesystem.
  52 */
  53
  54#include <linux/xattr.h>
  55#include <linux/exportfs.h>
  56#include <linux/posix_acl.h>
  57#include <linux/posix_acl_xattr.h>
  58#include <linux/mman.h>
  59#include <linux/string.h>
  60#include <linux/slab.h>
  61#include <linux/backing-dev.h>
 
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/rmap.h>
  80#include <linux/uuid.h>
  81#include <linux/quotaops.h>
  82#include <linux/rcupdate_wait.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
 
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Pretend that one inode + its dentry occupy this much memory */
  95#define BOGO_INODE_SIZE 1024
  96
  97/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  98#define SHORT_SYMLINK_LEN 128
  99
 100/*
 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
 102 * inode->i_private (with i_rwsem making sure that it has only one user at
 103 * a time): we would prefer not to enlarge the shmem inode just for that.
 104 */
 105struct shmem_falloc {
 106	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 107	pgoff_t start;		/* start of range currently being fallocated */
 108	pgoff_t next;		/* the next page offset to be fallocated */
 109	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 110	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 111};
 112
 113struct shmem_options {
 114	unsigned long long blocks;
 115	unsigned long long inodes;
 116	struct mempolicy *mpol;
 117	kuid_t uid;
 118	kgid_t gid;
 119	umode_t mode;
 120	bool full_inums;
 121	int huge;
 122	int seen;
 123	bool noswap;
 124	unsigned short quota_types;
 125	struct shmem_quota_limits qlimits;
 126#define SHMEM_SEEN_BLOCKS 1
 127#define SHMEM_SEEN_INODES 2
 128#define SHMEM_SEEN_HUGE 4
 129#define SHMEM_SEEN_INUMS 8
 130#define SHMEM_SEEN_NOSWAP 16
 131#define SHMEM_SEEN_QUOTA 32
 132};
 133
 134#ifdef CONFIG_TMPFS
 135static unsigned long shmem_default_max_blocks(void)
 136{
 137	return totalram_pages() / 2;
 138}
 139
 140static unsigned long shmem_default_max_inodes(void)
 141{
 142	unsigned long nr_pages = totalram_pages();
 143
 144	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
 145			ULONG_MAX / BOGO_INODE_SIZE);
 146}
 147#endif
 148
 149static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 150			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
 151			struct mm_struct *fault_mm, vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 
 152
 153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 154{
 155	return sb->s_fs_info;
 156}
 157
 158/*
 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 160 * for shared memory and for shared anonymous (/dev/zero) mappings
 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 162 * consistent with the pre-accounting of private mappings ...
 163 */
 164static inline int shmem_acct_size(unsigned long flags, loff_t size)
 165{
 166	return (flags & VM_NORESERVE) ?
 167		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 168}
 169
 170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 171{
 172	if (!(flags & VM_NORESERVE))
 173		vm_unacct_memory(VM_ACCT(size));
 174}
 175
 176static inline int shmem_reacct_size(unsigned long flags,
 177		loff_t oldsize, loff_t newsize)
 178{
 179	if (!(flags & VM_NORESERVE)) {
 180		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 181			return security_vm_enough_memory_mm(current->mm,
 182					VM_ACCT(newsize) - VM_ACCT(oldsize));
 183		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 184			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 185	}
 186	return 0;
 187}
 188
 189/*
 190 * ... whereas tmpfs objects are accounted incrementally as
 191 * pages are allocated, in order to allow large sparse files.
 192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 194 */
 195static inline int shmem_acct_blocks(unsigned long flags, long pages)
 196{
 197	if (!(flags & VM_NORESERVE))
 198		return 0;
 199
 200	return security_vm_enough_memory_mm(current->mm,
 201			pages * VM_ACCT(PAGE_SIZE));
 202}
 203
 204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 205{
 206	if (flags & VM_NORESERVE)
 207		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static int shmem_inode_acct_blocks(struct inode *inode, long pages)
 211{
 212	struct shmem_inode_info *info = SHMEM_I(inode);
 213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 214	int err = -ENOSPC;
 215
 216	if (shmem_acct_blocks(info->flags, pages))
 217		return err;
 218
 219	might_sleep();	/* when quotas */
 220	if (sbinfo->max_blocks) {
 221		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
 222						sbinfo->max_blocks, pages))
 223			goto unacct;
 224
 225		err = dquot_alloc_block_nodirty(inode, pages);
 226		if (err) {
 227			percpu_counter_sub(&sbinfo->used_blocks, pages);
 228			goto unacct;
 229		}
 230	} else {
 231		err = dquot_alloc_block_nodirty(inode, pages);
 232		if (err)
 233			goto unacct;
 234	}
 235
 236	return 0;
 237
 238unacct:
 239	shmem_unacct_blocks(info->flags, pages);
 240	return err;
 241}
 242
 243static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 244{
 245	struct shmem_inode_info *info = SHMEM_I(inode);
 246	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 247
 248	might_sleep();	/* when quotas */
 249	dquot_free_block_nodirty(inode, pages);
 250
 251	if (sbinfo->max_blocks)
 252		percpu_counter_sub(&sbinfo->used_blocks, pages);
 253	shmem_unacct_blocks(info->flags, pages);
 254}
 255
 256static const struct super_operations shmem_ops;
 257static const struct address_space_operations shmem_aops;
 258static const struct file_operations shmem_file_operations;
 259static const struct inode_operations shmem_inode_operations;
 260static const struct inode_operations shmem_dir_inode_operations;
 261static const struct inode_operations shmem_special_inode_operations;
 262static const struct vm_operations_struct shmem_vm_ops;
 263static const struct vm_operations_struct shmem_anon_vm_ops;
 264static struct file_system_type shmem_fs_type;
 265
 266bool shmem_mapping(struct address_space *mapping)
 267{
 268	return mapping->a_ops == &shmem_aops;
 269}
 270EXPORT_SYMBOL_GPL(shmem_mapping);
 271
 272bool vma_is_anon_shmem(struct vm_area_struct *vma)
 273{
 274	return vma->vm_ops == &shmem_anon_vm_ops;
 275}
 276
 277bool vma_is_shmem(struct vm_area_struct *vma)
 278{
 279	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 280}
 281
 282static LIST_HEAD(shmem_swaplist);
 283static DEFINE_MUTEX(shmem_swaplist_mutex);
 284
 285#ifdef CONFIG_TMPFS_QUOTA
 286
 287static int shmem_enable_quotas(struct super_block *sb,
 288			       unsigned short quota_types)
 289{
 290	int type, err = 0;
 291
 292	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
 293	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
 294		if (!(quota_types & (1 << type)))
 295			continue;
 296		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
 297					  DQUOT_USAGE_ENABLED |
 298					  DQUOT_LIMITS_ENABLED);
 299		if (err)
 300			goto out_err;
 301	}
 302	return 0;
 303
 304out_err:
 305	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
 306		type, err);
 307	for (type--; type >= 0; type--)
 308		dquot_quota_off(sb, type);
 309	return err;
 310}
 311
 312static void shmem_disable_quotas(struct super_block *sb)
 313{
 314	int type;
 315
 316	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
 317		dquot_quota_off(sb, type);
 318}
 319
 320static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
 321{
 322	return SHMEM_I(inode)->i_dquot;
 323}
 324#endif /* CONFIG_TMPFS_QUOTA */
 325
 326/*
 327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 328 * produces a novel ino for the newly allocated inode.
 329 *
 330 * It may also be called when making a hard link to permit the space needed by
 331 * each dentry. However, in that case, no new inode number is needed since that
 332 * internally draws from another pool of inode numbers (currently global
 333 * get_next_ino()). This case is indicated by passing NULL as inop.
 334 */
 335#define SHMEM_INO_BATCH 1024
 336static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 337{
 338	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 339	ino_t ino;
 340
 341	if (!(sb->s_flags & SB_KERNMOUNT)) {
 342		raw_spin_lock(&sbinfo->stat_lock);
 343		if (sbinfo->max_inodes) {
 344			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
 345				raw_spin_unlock(&sbinfo->stat_lock);
 346				return -ENOSPC;
 347			}
 348			sbinfo->free_ispace -= BOGO_INODE_SIZE;
 349		}
 350		if (inop) {
 351			ino = sbinfo->next_ino++;
 352			if (unlikely(is_zero_ino(ino)))
 353				ino = sbinfo->next_ino++;
 354			if (unlikely(!sbinfo->full_inums &&
 355				     ino > UINT_MAX)) {
 356				/*
 357				 * Emulate get_next_ino uint wraparound for
 358				 * compatibility
 359				 */
 360				if (IS_ENABLED(CONFIG_64BIT))
 361					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 362						__func__, MINOR(sb->s_dev));
 363				sbinfo->next_ino = 1;
 364				ino = sbinfo->next_ino++;
 365			}
 366			*inop = ino;
 367		}
 368		raw_spin_unlock(&sbinfo->stat_lock);
 369	} else if (inop) {
 370		/*
 371		 * __shmem_file_setup, one of our callers, is lock-free: it
 372		 * doesn't hold stat_lock in shmem_reserve_inode since
 373		 * max_inodes is always 0, and is called from potentially
 374		 * unknown contexts. As such, use a per-cpu batched allocator
 375		 * which doesn't require the per-sb stat_lock unless we are at
 376		 * the batch boundary.
 377		 *
 378		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 379		 * shmem mounts are not exposed to userspace, so we don't need
 380		 * to worry about things like glibc compatibility.
 381		 */
 382		ino_t *next_ino;
 383
 384		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 385		ino = *next_ino;
 386		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 387			raw_spin_lock(&sbinfo->stat_lock);
 388			ino = sbinfo->next_ino;
 389			sbinfo->next_ino += SHMEM_INO_BATCH;
 390			raw_spin_unlock(&sbinfo->stat_lock);
 391			if (unlikely(is_zero_ino(ino)))
 392				ino++;
 393		}
 394		*inop = ino;
 395		*next_ino = ++ino;
 396		put_cpu();
 397	}
 398
 399	return 0;
 400}
 401
 402static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
 403{
 404	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 405	if (sbinfo->max_inodes) {
 406		raw_spin_lock(&sbinfo->stat_lock);
 407		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
 408		raw_spin_unlock(&sbinfo->stat_lock);
 409	}
 410}
 411
 412/**
 413 * shmem_recalc_inode - recalculate the block usage of an inode
 414 * @inode: inode to recalc
 415 * @alloced: the change in number of pages allocated to inode
 416 * @swapped: the change in number of pages swapped from inode
 417 *
 418 * We have to calculate the free blocks since the mm can drop
 419 * undirtied hole pages behind our back.
 420 *
 421 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 
 
 423 */
 424static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
 425{
 426	struct shmem_inode_info *info = SHMEM_I(inode);
 427	long freed;
 428
 429	spin_lock(&info->lock);
 430	info->alloced += alloced;
 431	info->swapped += swapped;
 432	freed = info->alloced - info->swapped -
 433		READ_ONCE(inode->i_mapping->nrpages);
 434	/*
 435	 * Special case: whereas normally shmem_recalc_inode() is called
 436	 * after i_mapping->nrpages has already been adjusted (up or down),
 437	 * shmem_writepage() has to raise swapped before nrpages is lowered -
 438	 * to stop a racing shmem_recalc_inode() from thinking that a page has
 439	 * been freed.  Compensate here, to avoid the need for a followup call.
 440	 */
 441	if (swapped > 0)
 442		freed += swapped;
 443	if (freed > 0)
 444		info->alloced -= freed;
 445	spin_unlock(&info->lock);
 446
 447	/* The quota case may block */
 448	if (freed > 0)
 449		shmem_inode_unacct_blocks(inode, freed);
 450}
 451
 452bool shmem_charge(struct inode *inode, long pages)
 453{
 454	struct address_space *mapping = inode->i_mapping;
 455
 456	if (shmem_inode_acct_blocks(inode, pages))
 457		return false;
 458
 459	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 460	xa_lock_irq(&mapping->i_pages);
 461	mapping->nrpages += pages;
 462	xa_unlock_irq(&mapping->i_pages);
 463
 464	shmem_recalc_inode(inode, pages, 0);
 465	return true;
 466}
 467
 468void shmem_uncharge(struct inode *inode, long pages)
 469{
 470	/* pages argument is currently unused: keep it to help debugging */
 471	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 472
 473	shmem_recalc_inode(inode, 0, 0);
 474}
 475
 476/*
 477 * Replace item expected in xarray by a new item, while holding xa_lock.
 478 */
 479static int shmem_replace_entry(struct address_space *mapping,
 480			pgoff_t index, void *expected, void *replacement)
 481{
 482	XA_STATE(xas, &mapping->i_pages, index);
 483	void *item;
 484
 485	VM_BUG_ON(!expected);
 486	VM_BUG_ON(!replacement);
 487	item = xas_load(&xas);
 
 
 
 488	if (item != expected)
 489		return -ENOENT;
 490	xas_store(&xas, replacement);
 491	return 0;
 492}
 493
 494/*
 495 * Sometimes, before we decide whether to proceed or to fail, we must check
 496 * that an entry was not already brought back from swap by a racing thread.
 497 *
 498 * Checking page is not enough: by the time a SwapCache page is locked, it
 499 * might be reused, and again be SwapCache, using the same swap as before.
 500 */
 501static bool shmem_confirm_swap(struct address_space *mapping,
 502			       pgoff_t index, swp_entry_t swap)
 503{
 504	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 505}
 506
 507/*
 508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 509 *
 510 * SHMEM_HUGE_NEVER:
 511 *	disables huge pages for the mount;
 512 * SHMEM_HUGE_ALWAYS:
 513 *	enables huge pages for the mount;
 514 * SHMEM_HUGE_WITHIN_SIZE:
 515 *	only allocate huge pages if the page will be fully within i_size,
 516 *	also respect fadvise()/madvise() hints;
 517 * SHMEM_HUGE_ADVISE:
 518 *	only allocate huge pages if requested with fadvise()/madvise();
 519 */
 520
 521#define SHMEM_HUGE_NEVER	0
 522#define SHMEM_HUGE_ALWAYS	1
 523#define SHMEM_HUGE_WITHIN_SIZE	2
 524#define SHMEM_HUGE_ADVISE	3
 525
 526/*
 527 * Special values.
 528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 529 *
 530 * SHMEM_HUGE_DENY:
 531 *	disables huge on shm_mnt and all mounts, for emergency use;
 532 * SHMEM_HUGE_FORCE:
 533 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 534 *
 535 */
 536#define SHMEM_HUGE_DENY		(-1)
 537#define SHMEM_HUGE_FORCE	(-2)
 538
 539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 540/* ifdef here to avoid bloating shmem.o when not necessary */
 541
 542static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 543
 544bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
 545		   struct mm_struct *mm, unsigned long vm_flags)
 546{
 547	loff_t i_size;
 548
 549	if (!S_ISREG(inode->i_mode))
 550		return false;
 551	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
 552		return false;
 553	if (shmem_huge == SHMEM_HUGE_DENY)
 554		return false;
 555	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 556		return true;
 557
 558	switch (SHMEM_SB(inode->i_sb)->huge) {
 559	case SHMEM_HUGE_ALWAYS:
 560		return true;
 561	case SHMEM_HUGE_WITHIN_SIZE:
 562		index = round_up(index + 1, HPAGE_PMD_NR);
 563		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 564		if (i_size >> PAGE_SHIFT >= index)
 565			return true;
 566		fallthrough;
 567	case SHMEM_HUGE_ADVISE:
 568		if (mm && (vm_flags & VM_HUGEPAGE))
 569			return true;
 570		fallthrough;
 571	default:
 572		return false;
 573	}
 574}
 575
 576#if defined(CONFIG_SYSFS)
 577static int shmem_parse_huge(const char *str)
 578{
 579	if (!strcmp(str, "never"))
 580		return SHMEM_HUGE_NEVER;
 581	if (!strcmp(str, "always"))
 582		return SHMEM_HUGE_ALWAYS;
 583	if (!strcmp(str, "within_size"))
 584		return SHMEM_HUGE_WITHIN_SIZE;
 585	if (!strcmp(str, "advise"))
 586		return SHMEM_HUGE_ADVISE;
 587	if (!strcmp(str, "deny"))
 588		return SHMEM_HUGE_DENY;
 589	if (!strcmp(str, "force"))
 590		return SHMEM_HUGE_FORCE;
 591	return -EINVAL;
 592}
 593#endif
 594
 595#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 596static const char *shmem_format_huge(int huge)
 597{
 598	switch (huge) {
 599	case SHMEM_HUGE_NEVER:
 600		return "never";
 601	case SHMEM_HUGE_ALWAYS:
 602		return "always";
 603	case SHMEM_HUGE_WITHIN_SIZE:
 604		return "within_size";
 605	case SHMEM_HUGE_ADVISE:
 606		return "advise";
 607	case SHMEM_HUGE_DENY:
 608		return "deny";
 609	case SHMEM_HUGE_FORCE:
 610		return "force";
 611	default:
 612		VM_BUG_ON(1);
 613		return "bad_val";
 614	}
 615}
 616#endif
 617
 618static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 619		struct shrink_control *sc, unsigned long nr_to_split)
 620{
 621	LIST_HEAD(list), *pos, *next;
 622	LIST_HEAD(to_remove);
 623	struct inode *inode;
 624	struct shmem_inode_info *info;
 625	struct folio *folio;
 626	unsigned long batch = sc ? sc->nr_to_scan : 128;
 627	int split = 0;
 628
 629	if (list_empty(&sbinfo->shrinklist))
 630		return SHRINK_STOP;
 631
 632	spin_lock(&sbinfo->shrinklist_lock);
 633	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 634		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 635
 636		/* pin the inode */
 637		inode = igrab(&info->vfs_inode);
 638
 639		/* inode is about to be evicted */
 640		if (!inode) {
 641			list_del_init(&info->shrinklist);
 642			goto next;
 643		}
 644
 645		/* Check if there's anything to gain */
 646		if (round_up(inode->i_size, PAGE_SIZE) ==
 647				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 648			list_move(&info->shrinklist, &to_remove);
 649			goto next;
 650		}
 651
 652		list_move(&info->shrinklist, &list);
 653next:
 654		sbinfo->shrinklist_len--;
 655		if (!--batch)
 656			break;
 657	}
 658	spin_unlock(&sbinfo->shrinklist_lock);
 659
 660	list_for_each_safe(pos, next, &to_remove) {
 661		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 662		inode = &info->vfs_inode;
 663		list_del_init(&info->shrinklist);
 664		iput(inode);
 665	}
 666
 667	list_for_each_safe(pos, next, &list) {
 668		int ret;
 669		pgoff_t index;
 670
 671		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 672		inode = &info->vfs_inode;
 673
 674		if (nr_to_split && split >= nr_to_split)
 675			goto move_back;
 676
 677		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 678		folio = filemap_get_folio(inode->i_mapping, index);
 679		if (IS_ERR(folio))
 680			goto drop;
 681
 682		/* No huge page at the end of the file: nothing to split */
 683		if (!folio_test_large(folio)) {
 684			folio_put(folio);
 685			goto drop;
 686		}
 687
 688		/*
 689		 * Move the inode on the list back to shrinklist if we failed
 690		 * to lock the page at this time.
 691		 *
 692		 * Waiting for the lock may lead to deadlock in the
 693		 * reclaim path.
 694		 */
 695		if (!folio_trylock(folio)) {
 696			folio_put(folio);
 697			goto move_back;
 698		}
 699
 700		ret = split_folio(folio);
 701		folio_unlock(folio);
 702		folio_put(folio);
 703
 704		/* If split failed move the inode on the list back to shrinklist */
 705		if (ret)
 706			goto move_back;
 707
 708		split++;
 709drop:
 710		list_del_init(&info->shrinklist);
 711		goto put;
 712move_back:
 713		/*
 714		 * Make sure the inode is either on the global list or deleted
 715		 * from any local list before iput() since it could be deleted
 716		 * in another thread once we put the inode (then the local list
 717		 * is corrupted).
 718		 */
 719		spin_lock(&sbinfo->shrinklist_lock);
 720		list_move(&info->shrinklist, &sbinfo->shrinklist);
 721		sbinfo->shrinklist_len++;
 722		spin_unlock(&sbinfo->shrinklist_lock);
 723put:
 724		iput(inode);
 725	}
 726
 727	return split;
 728}
 729
 730static long shmem_unused_huge_scan(struct super_block *sb,
 731		struct shrink_control *sc)
 732{
 733	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 734
 735	if (!READ_ONCE(sbinfo->shrinklist_len))
 736		return SHRINK_STOP;
 737
 738	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 739}
 740
 741static long shmem_unused_huge_count(struct super_block *sb,
 742		struct shrink_control *sc)
 743{
 744	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 745	return READ_ONCE(sbinfo->shrinklist_len);
 746}
 747#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 748
 749#define shmem_huge SHMEM_HUGE_DENY
 750
 751static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 752		struct shrink_control *sc, unsigned long nr_to_split)
 753{
 754	return 0;
 755}
 756#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 757
 758/*
 759 * Somewhat like filemap_add_folio, but error if expected item has gone.
 760 */
 761static int shmem_add_to_page_cache(struct folio *folio,
 762				   struct address_space *mapping,
 763				   pgoff_t index, void *expected, gfp_t gfp)
 764{
 765	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 766	long nr = folio_nr_pages(folio);
 767
 768	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 769	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 770	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 771	VM_BUG_ON(expected && folio_test_large(folio));
 772
 773	folio_ref_add(folio, nr);
 774	folio->mapping = mapping;
 775	folio->index = index;
 776
 777	gfp &= GFP_RECLAIM_MASK;
 778	folio_throttle_swaprate(folio, gfp);
 779
 780	do {
 781		xas_lock_irq(&xas);
 782		if (expected != xas_find_conflict(&xas)) {
 783			xas_set_err(&xas, -EEXIST);
 784			goto unlock;
 785		}
 786		if (expected && xas_find_conflict(&xas)) {
 787			xas_set_err(&xas, -EEXIST);
 788			goto unlock;
 789		}
 790		xas_store(&xas, folio);
 791		if (xas_error(&xas))
 792			goto unlock;
 793		if (folio_test_pmd_mappable(folio))
 794			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 795		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 796		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 797		mapping->nrpages += nr;
 798unlock:
 799		xas_unlock_irq(&xas);
 800	} while (xas_nomem(&xas, gfp));
 801
 802	if (xas_error(&xas)) {
 803		folio->mapping = NULL;
 804		folio_ref_sub(folio, nr);
 805		return xas_error(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	}
 807
 808	return 0;
 809}
 810
 811/*
 812 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
 813 */
 814static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 815{
 816	struct address_space *mapping = folio->mapping;
 817	long nr = folio_nr_pages(folio);
 818	int error;
 819
 820	xa_lock_irq(&mapping->i_pages);
 821	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 822	folio->mapping = NULL;
 823	mapping->nrpages -= nr;
 824	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 825	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 826	xa_unlock_irq(&mapping->i_pages);
 827	folio_put(folio);
 828	BUG_ON(error);
 829}
 830
 831/*
 832 * Remove swap entry from page cache, free the swap and its page cache.
 833 */
 834static int shmem_free_swap(struct address_space *mapping,
 835			   pgoff_t index, void *radswap)
 836{
 837	void *old;
 838
 839	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 
 
 840	if (old != radswap)
 841		return -ENOENT;
 842	free_swap_and_cache(radix_to_swp_entry(radswap));
 843	return 0;
 844}
 845
 846/*
 847 * Determine (in bytes) how many of the shmem object's pages mapped by the
 848 * given offsets are swapped out.
 849 *
 850 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 851 * as long as the inode doesn't go away and racy results are not a problem.
 852 */
 853unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 854						pgoff_t start, pgoff_t end)
 855{
 856	XA_STATE(xas, &mapping->i_pages, start);
 857	struct page *page;
 858	unsigned long swapped = 0;
 859	unsigned long max = end - 1;
 860
 861	rcu_read_lock();
 862	xas_for_each(&xas, page, max) {
 863		if (xas_retry(&xas, page))
 864			continue;
 865		if (xa_is_value(page))
 866			swapped++;
 867		if (xas.xa_index == max)
 868			break;
 869		if (need_resched()) {
 870			xas_pause(&xas);
 871			cond_resched_rcu();
 872		}
 873	}
 874	rcu_read_unlock();
 875
 876	return swapped << PAGE_SHIFT;
 877}
 878
 879/*
 880 * Determine (in bytes) how many of the shmem object's pages mapped by the
 881 * given vma is swapped out.
 882 *
 883 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 884 * as long as the inode doesn't go away and racy results are not a problem.
 885 */
 886unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 887{
 888	struct inode *inode = file_inode(vma->vm_file);
 889	struct shmem_inode_info *info = SHMEM_I(inode);
 890	struct address_space *mapping = inode->i_mapping;
 891	unsigned long swapped;
 892
 893	/* Be careful as we don't hold info->lock */
 894	swapped = READ_ONCE(info->swapped);
 895
 896	/*
 897	 * The easier cases are when the shmem object has nothing in swap, or
 898	 * the vma maps it whole. Then we can simply use the stats that we
 899	 * already track.
 900	 */
 901	if (!swapped)
 902		return 0;
 903
 904	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 905		return swapped << PAGE_SHIFT;
 906
 907	/* Here comes the more involved part */
 908	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 909					vma->vm_pgoff + vma_pages(vma));
 910}
 911
 912/*
 913 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 914 */
 915void shmem_unlock_mapping(struct address_space *mapping)
 916{
 917	struct folio_batch fbatch;
 
 918	pgoff_t index = 0;
 919
 920	folio_batch_init(&fbatch);
 921	/*
 922	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 923	 */
 924	while (!mapping_unevictable(mapping) &&
 925	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 926		check_move_unevictable_folios(&fbatch);
 927		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 928		cond_resched();
 929	}
 930}
 931
 932static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 933{
 934	struct folio *folio;
 935
 936	/*
 937	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 938	 * beyond i_size, and reports fallocated folios as holes.
 939	 */
 940	folio = filemap_get_entry(inode->i_mapping, index);
 941	if (!folio)
 942		return folio;
 943	if (!xa_is_value(folio)) {
 944		folio_lock(folio);
 945		if (folio->mapping == inode->i_mapping)
 946			return folio;
 947		/* The folio has been swapped out */
 948		folio_unlock(folio);
 949		folio_put(folio);
 950	}
 951	/*
 952	 * But read a folio back from swap if any of it is within i_size
 953	 * (although in some cases this is just a waste of time).
 954	 */
 955	folio = NULL;
 956	shmem_get_folio(inode, index, &folio, SGP_READ);
 957	return folio;
 958}
 959
 960/*
 961 * Remove range of pages and swap entries from page cache, and free them.
 962 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 963 */
 964static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 965								 bool unfalloc)
 966{
 967	struct address_space *mapping = inode->i_mapping;
 968	struct shmem_inode_info *info = SHMEM_I(inode);
 969	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 970	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 971	struct folio_batch fbatch;
 
 
 972	pgoff_t indices[PAGEVEC_SIZE];
 973	struct folio *folio;
 974	bool same_folio;
 975	long nr_swaps_freed = 0;
 976	pgoff_t index;
 977	int i;
 978
 979	if (lend == -1)
 980		end = -1;	/* unsigned, so actually very big */
 981
 982	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 983		info->fallocend = start;
 
 
 
 
 
 
 
 
 
 984
 985	folio_batch_init(&fbatch);
 986	index = start;
 987	while (index < end && find_lock_entries(mapping, &index, end - 1,
 988			&fbatch, indices)) {
 989		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 990			folio = fbatch.folios[i];
 991
 992			if (xa_is_value(folio)) {
 993				if (unfalloc)
 994					continue;
 995				nr_swaps_freed += !shmem_free_swap(mapping,
 996							indices[i], folio);
 997				continue;
 998			}
 999
1000			if (!unfalloc || !folio_test_uptodate(folio))
1001				truncate_inode_folio(mapping, folio);
1002			folio_unlock(folio);
 
 
 
 
 
 
1003		}
1004		folio_batch_remove_exceptionals(&fbatch);
1005		folio_batch_release(&fbatch);
 
1006		cond_resched();
 
1007	}
1008
1009	/*
1010	 * When undoing a failed fallocate, we want none of the partial folio
1011	 * zeroing and splitting below, but shall want to truncate the whole
1012	 * folio when !uptodate indicates that it was added by this fallocate,
1013	 * even when [lstart, lend] covers only a part of the folio.
1014	 */
1015	if (unfalloc)
1016		goto whole_folios;
1017
1018	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1019	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1020	if (folio) {
1021		same_folio = lend < folio_pos(folio) + folio_size(folio);
1022		folio_mark_dirty(folio);
1023		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1024			start = folio_next_index(folio);
1025			if (same_folio)
1026				end = folio->index;
1027		}
1028		folio_unlock(folio);
1029		folio_put(folio);
1030		folio = NULL;
1031	}
1032
1033	if (!same_folio)
1034		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1035	if (folio) {
1036		folio_mark_dirty(folio);
1037		if (!truncate_inode_partial_folio(folio, lstart, lend))
1038			end = folio->index;
1039		folio_unlock(folio);
1040		folio_put(folio);
1041	}
1042
1043whole_folios:
1044
1045	index = start;
1046	while (index < end) {
1047		cond_resched();
1048
1049		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1050				indices)) {
1051			/* If all gone or hole-punch or unfalloc, we're done */
1052			if (index == start || end != -1)
 
1053				break;
1054			/* But if truncating, restart to make sure all gone */
1055			index = start;
1056			continue;
1057		}
1058		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1059			folio = fbatch.folios[i];
 
 
 
 
 
 
1060
1061			if (xa_is_value(folio)) {
 
 
 
 
1062				if (unfalloc)
1063					continue;
1064				if (shmem_free_swap(mapping, indices[i], folio)) {
1065					/* Swap was replaced by page: retry */
1066					index = indices[i];
1067					break;
1068				}
1069				nr_swaps_freed++;
1070				continue;
1071			}
1072
1073			folio_lock(folio);
1074
1075			if (!unfalloc || !folio_test_uptodate(folio)) {
1076				if (folio_mapping(folio) != mapping) {
1077					/* Page was replaced by swap: retry */
1078					folio_unlock(folio);
1079					index = indices[i];
1080					break;
1081				}
1082				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1083						folio);
1084
1085				if (!folio_test_large(folio)) {
1086					truncate_inode_folio(mapping, folio);
1087				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1088					/*
1089					 * If we split a page, reset the loop so
1090					 * that we pick up the new sub pages.
1091					 * Otherwise the THP was entirely
1092					 * dropped or the target range was
1093					 * zeroed, so just continue the loop as
1094					 * is.
1095					 */
1096					if (!folio_test_large(folio)) {
1097						folio_unlock(folio);
1098						index = start;
1099						break;
1100					}
1101				}
1102			}
1103			folio_unlock(folio);
1104		}
1105		folio_batch_remove_exceptionals(&fbatch);
1106		folio_batch_release(&fbatch);
 
 
1107	}
1108
1109	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
 
 
 
1110}
1111
1112void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113{
1114	shmem_undo_range(inode, lstart, lend, false);
1115	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1116	inode_inc_iversion(inode);
1117}
1118EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119
1120static int shmem_getattr(struct mnt_idmap *idmap,
1121			 const struct path *path, struct kstat *stat,
1122			 u32 request_mask, unsigned int query_flags)
1123{
1124	struct inode *inode = path->dentry->d_inode;
1125	struct shmem_inode_info *info = SHMEM_I(inode);
1126
1127	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128		shmem_recalc_inode(inode, 0, 0);
1129
1130	if (info->fsflags & FS_APPEND_FL)
1131		stat->attributes |= STATX_ATTR_APPEND;
1132	if (info->fsflags & FS_IMMUTABLE_FL)
1133		stat->attributes |= STATX_ATTR_IMMUTABLE;
1134	if (info->fsflags & FS_NODUMP_FL)
1135		stat->attributes |= STATX_ATTR_NODUMP;
1136	stat->attributes_mask |= (STATX_ATTR_APPEND |
1137			STATX_ATTR_IMMUTABLE |
1138			STATX_ATTR_NODUMP);
1139	generic_fillattr(idmap, request_mask, inode, stat);
1140
1141	if (shmem_is_huge(inode, 0, false, NULL, 0))
1142		stat->blksize = HPAGE_PMD_SIZE;
1143
1144	if (request_mask & STATX_BTIME) {
1145		stat->result_mask |= STATX_BTIME;
1146		stat->btime.tv_sec = info->i_crtime.tv_sec;
1147		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148	}
1149
1150	return 0;
1151}
1152
1153static int shmem_setattr(struct mnt_idmap *idmap,
1154			 struct dentry *dentry, struct iattr *attr)
1155{
1156	struct inode *inode = d_inode(dentry);
1157	struct shmem_inode_info *info = SHMEM_I(inode);
1158	int error;
1159	bool update_mtime = false;
1160	bool update_ctime = true;
1161
1162	error = setattr_prepare(idmap, dentry, attr);
1163	if (error)
1164		return error;
1165
1166	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168			return -EPERM;
1169		}
1170	}
1171
1172	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173		loff_t oldsize = inode->i_size;
1174		loff_t newsize = attr->ia_size;
1175
1176		/* protected by i_rwsem */
1177		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179			return -EPERM;
1180
1181		if (newsize != oldsize) {
1182			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183					oldsize, newsize);
1184			if (error)
1185				return error;
1186			i_size_write(inode, newsize);
1187			update_mtime = true;
1188		} else {
1189			update_ctime = false;
1190		}
1191		if (newsize <= oldsize) {
1192			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193			if (oldsize > holebegin)
1194				unmap_mapping_range(inode->i_mapping,
1195							holebegin, 0, 1);
1196			if (info->alloced)
1197				shmem_truncate_range(inode,
1198							newsize, (loff_t)-1);
1199			/* unmap again to remove racily COWed private pages */
1200			if (oldsize > holebegin)
1201				unmap_mapping_range(inode->i_mapping,
1202							holebegin, 0, 1);
1203		}
1204	}
1205
1206	if (is_quota_modification(idmap, inode, attr)) {
1207		error = dquot_initialize(inode);
1208		if (error)
1209			return error;
1210	}
1211
1212	/* Transfer quota accounting */
1213	if (i_uid_needs_update(idmap, attr, inode) ||
1214	    i_gid_needs_update(idmap, attr, inode)) {
1215		error = dquot_transfer(idmap, inode, attr);
1216		if (error)
1217			return error;
1218	}
1219
1220	setattr_copy(idmap, inode, attr);
1221	if (attr->ia_valid & ATTR_MODE)
1222		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1223	if (!error && update_ctime) {
1224		inode_set_ctime_current(inode);
1225		if (update_mtime)
1226			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1227		inode_inc_iversion(inode);
1228	}
1229	return error;
1230}
1231
1232static void shmem_evict_inode(struct inode *inode)
1233{
1234	struct shmem_inode_info *info = SHMEM_I(inode);
1235	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1236	size_t freed = 0;
1237
1238	if (shmem_mapping(inode->i_mapping)) {
1239		shmem_unacct_size(info->flags, inode->i_size);
1240		inode->i_size = 0;
1241		mapping_set_exiting(inode->i_mapping);
1242		shmem_truncate_range(inode, 0, (loff_t)-1);
1243		if (!list_empty(&info->shrinklist)) {
1244			spin_lock(&sbinfo->shrinklist_lock);
1245			if (!list_empty(&info->shrinklist)) {
1246				list_del_init(&info->shrinklist);
1247				sbinfo->shrinklist_len--;
1248			}
1249			spin_unlock(&sbinfo->shrinklist_lock);
1250		}
1251		while (!list_empty(&info->swaplist)) {
1252			/* Wait while shmem_unuse() is scanning this inode... */
1253			wait_var_event(&info->stop_eviction,
1254				       !atomic_read(&info->stop_eviction));
1255			mutex_lock(&shmem_swaplist_mutex);
1256			/* ...but beware of the race if we peeked too early */
1257			if (!atomic_read(&info->stop_eviction))
1258				list_del_init(&info->swaplist);
1259			mutex_unlock(&shmem_swaplist_mutex);
1260		}
1261	}
 
1262
1263	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1264	shmem_free_inode(inode->i_sb, freed);
1265	WARN_ON(inode->i_blocks);
 
1266	clear_inode(inode);
1267#ifdef CONFIG_TMPFS_QUOTA
1268	dquot_free_inode(inode);
1269	dquot_drop(inode);
1270#endif
1271}
1272
1273static int shmem_find_swap_entries(struct address_space *mapping,
1274				   pgoff_t start, struct folio_batch *fbatch,
1275				   pgoff_t *indices, unsigned int type)
1276{
1277	XA_STATE(xas, &mapping->i_pages, start);
1278	struct folio *folio;
1279	swp_entry_t entry;
1280
1281	rcu_read_lock();
1282	xas_for_each(&xas, folio, ULONG_MAX) {
1283		if (xas_retry(&xas, folio))
1284			continue;
1285
1286		if (!xa_is_value(folio))
1287			continue;
1288
1289		entry = radix_to_swp_entry(folio);
1290		/*
1291		 * swapin error entries can be found in the mapping. But they're
1292		 * deliberately ignored here as we've done everything we can do.
1293		 */
1294		if (swp_type(entry) != type)
1295			continue;
1296
1297		indices[folio_batch_count(fbatch)] = xas.xa_index;
1298		if (!folio_batch_add(fbatch, folio))
1299			break;
1300
1301		if (need_resched()) {
1302			xas_pause(&xas);
1303			cond_resched_rcu();
1304		}
1305	}
1306	rcu_read_unlock();
1307
1308	return xas.xa_index;
1309}
1310
1311/*
1312 * Move the swapped pages for an inode to page cache. Returns the count
1313 * of pages swapped in, or the error in case of failure.
1314 */
1315static int shmem_unuse_swap_entries(struct inode *inode,
1316		struct folio_batch *fbatch, pgoff_t *indices)
1317{
1318	int i = 0;
1319	int ret = 0;
 
 
1320	int error = 0;
1321	struct address_space *mapping = inode->i_mapping;
1322
1323	for (i = 0; i < folio_batch_count(fbatch); i++) {
1324		struct folio *folio = fbatch->folios[i];
 
 
 
 
 
 
 
 
 
 
 
1325
1326		if (!xa_is_value(folio))
1327			continue;
1328		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1329					mapping_gfp_mask(mapping), NULL, NULL);
1330		if (error == 0) {
1331			folio_unlock(folio);
1332			folio_put(folio);
1333			ret++;
1334		}
1335		if (error == -ENOMEM)
1336			break;
1337		error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1338	}
1339	return error ? error : ret;
1340}
1341
1342/*
1343 * If swap found in inode, free it and move page from swapcache to filecache.
1344 */
1345static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1346{
1347	struct address_space *mapping = inode->i_mapping;
1348	pgoff_t start = 0;
1349	struct folio_batch fbatch;
1350	pgoff_t indices[PAGEVEC_SIZE];
1351	int ret = 0;
1352
1353	do {
1354		folio_batch_init(&fbatch);
1355		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1356		if (folio_batch_count(&fbatch) == 0) {
1357			ret = 0;
1358			break;
 
 
 
1359		}
1360
1361		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1362		if (ret < 0)
1363			break;
1364
1365		start = indices[folio_batch_count(&fbatch) - 1];
1366	} while (true);
1367
1368	return ret;
1369}
1370
1371/*
1372 * Read all the shared memory data that resides in the swap
1373 * device 'type' back into memory, so the swap device can be
1374 * unused.
1375 */
1376int shmem_unuse(unsigned int type)
1377{
1378	struct shmem_inode_info *info, *next;
 
 
1379	int error = 0;
1380
1381	if (list_empty(&shmem_swaplist))
1382		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384	mutex_lock(&shmem_swaplist_mutex);
1385	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1386		if (!info->swapped) {
 
 
 
1387			list_del_init(&info->swaplist);
1388			continue;
1389		}
1390		/*
1391		 * Drop the swaplist mutex while searching the inode for swap;
1392		 * but before doing so, make sure shmem_evict_inode() will not
1393		 * remove placeholder inode from swaplist, nor let it be freed
1394		 * (igrab() would protect from unlink, but not from unmount).
1395		 */
1396		atomic_inc(&info->stop_eviction);
1397		mutex_unlock(&shmem_swaplist_mutex);
1398
1399		error = shmem_unuse_inode(&info->vfs_inode, type);
1400		cond_resched();
1401
1402		mutex_lock(&shmem_swaplist_mutex);
1403		next = list_next_entry(info, swaplist);
1404		if (!info->swapped)
1405			list_del_init(&info->swaplist);
1406		if (atomic_dec_and_test(&info->stop_eviction))
1407			wake_up_var(&info->stop_eviction);
1408		if (error)
1409			break;
1410	}
1411	mutex_unlock(&shmem_swaplist_mutex);
1412
 
 
 
 
 
1413	return error;
1414}
1415
1416/*
1417 * Move the page from the page cache to the swap cache.
1418 */
1419static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1420{
1421	struct folio *folio = page_folio(page);
1422	struct address_space *mapping = folio->mapping;
1423	struct inode *inode = mapping->host;
1424	struct shmem_inode_info *info = SHMEM_I(inode);
1425	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1426	swp_entry_t swap;
1427	pgoff_t index;
1428
1429	/*
1430	 * Our capabilities prevent regular writeback or sync from ever calling
1431	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1432	 * its underlying filesystem, in which case tmpfs should write out to
1433	 * swap only in response to memory pressure, and not for the writeback
1434	 * threads or sync.
1435	 */
1436	if (WARN_ON_ONCE(!wbc->for_reclaim))
1437		goto redirty;
1438
1439	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1440		goto redirty;
1441
1442	if (!total_swap_pages)
1443		goto redirty;
1444
1445	/*
1446	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1447	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1448	 * and its shmem_writeback() needs them to be split when swapping.
 
 
1449	 */
1450	if (folio_test_large(folio)) {
1451		/* Ensure the subpages are still dirty */
1452		folio_test_set_dirty(folio);
1453		if (split_huge_page(page) < 0)
1454			goto redirty;
1455		folio = page_folio(page);
1456		folio_clear_dirty(folio);
1457	}
1458
1459	index = folio->index;
1460
1461	/*
1462	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1463	 * value into swapfile.c, the only way we can correctly account for a
1464	 * fallocated folio arriving here is now to initialize it and write it.
1465	 *
1466	 * That's okay for a folio already fallocated earlier, but if we have
1467	 * not yet completed the fallocation, then (a) we want to keep track
1468	 * of this folio in case we have to undo it, and (b) it may not be a
1469	 * good idea to continue anyway, once we're pushing into swap.  So
1470	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1471	 */
1472	if (!folio_test_uptodate(folio)) {
1473		if (inode->i_private) {
1474			struct shmem_falloc *shmem_falloc;
1475			spin_lock(&inode->i_lock);
1476			shmem_falloc = inode->i_private;
1477			if (shmem_falloc &&
1478			    !shmem_falloc->waitq &&
1479			    index >= shmem_falloc->start &&
1480			    index < shmem_falloc->next)
1481				shmem_falloc->nr_unswapped++;
1482			else
1483				shmem_falloc = NULL;
1484			spin_unlock(&inode->i_lock);
1485			if (shmem_falloc)
1486				goto redirty;
1487		}
1488		folio_zero_range(folio, 0, folio_size(folio));
1489		flush_dcache_folio(folio);
1490		folio_mark_uptodate(folio);
1491	}
1492
1493	swap = folio_alloc_swap(folio);
1494	if (!swap.val)
1495		goto redirty;
1496
1497	/*
1498	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1499	 * if it's not already there.  Do it now before the folio is
1500	 * moved to swap cache, when its pagelock no longer protects
1501	 * the inode from eviction.  But don't unlock the mutex until
1502	 * we've incremented swapped, because shmem_unuse_inode() will
1503	 * prune a !swapped inode from the swaplist under this mutex.
1504	 */
1505	mutex_lock(&shmem_swaplist_mutex);
1506	if (list_empty(&info->swaplist))
1507		list_add(&info->swaplist, &shmem_swaplist);
1508
1509	if (add_to_swap_cache(folio, swap,
1510			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1511			NULL) == 0) {
1512		shmem_recalc_inode(inode, 0, 1);
1513		swap_shmem_alloc(swap);
1514		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
 
 
 
 
 
1515
1516		mutex_unlock(&shmem_swaplist_mutex);
1517		BUG_ON(folio_mapped(folio));
1518		return swap_writepage(&folio->page, wbc);
 
1519	}
1520
1521	mutex_unlock(&shmem_swaplist_mutex);
1522	put_swap_folio(folio, swap);
1523redirty:
1524	folio_mark_dirty(folio);
1525	if (wbc->for_reclaim)
1526		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1527	folio_unlock(folio);
1528	return 0;
1529}
1530
1531#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
 
1532static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1533{
1534	char buffer[64];
1535
1536	if (!mpol || mpol->mode == MPOL_DEFAULT)
1537		return;		/* show nothing */
1538
1539	mpol_to_str(buffer, sizeof(buffer), mpol);
1540
1541	seq_printf(seq, ",mpol=%s", buffer);
1542}
1543
1544static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1545{
1546	struct mempolicy *mpol = NULL;
1547	if (sbinfo->mpol) {
1548		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1549		mpol = sbinfo->mpol;
1550		mpol_get(mpol);
1551		raw_spin_unlock(&sbinfo->stat_lock);
1552	}
1553	return mpol;
1554}
1555#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1556static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1557{
1558}
1559static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1560{
1561	return NULL;
1562}
1563#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1564
1565static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1566			pgoff_t index, unsigned int order, pgoff_t *ilx);
1567
1568static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1569			struct shmem_inode_info *info, pgoff_t index)
1570{
1571	struct mempolicy *mpol;
1572	pgoff_t ilx;
1573	struct folio *folio;
1574
1575	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1576	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1577	mpol_cond_put(mpol);
1578
1579	return folio;
1580}
1581
1582/*
1583 * Make sure huge_gfp is always more limited than limit_gfp.
1584 * Some of the flags set permissions, while others set limitations.
1585 */
1586static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1587{
1588	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1589	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1590	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1591	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1592
1593	/* Allow allocations only from the originally specified zones. */
1594	result |= zoneflags;
1595
1596	/*
1597	 * Minimize the result gfp by taking the union with the deny flags,
1598	 * and the intersection of the allow flags.
1599	 */
1600	result |= (limit_gfp & denyflags);
1601	result |= (huge_gfp & limit_gfp) & allowflags;
1602
1603	return result;
1604}
1605
1606static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1607		struct shmem_inode_info *info, pgoff_t index)
1608{
1609	struct mempolicy *mpol;
1610	pgoff_t ilx;
1611	struct page *page;
1612
1613	mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
1614	page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
1615	mpol_cond_put(mpol);
 
 
 
 
 
1616
1617	return page_rmappable_folio(page);
 
 
 
1618}
 
 
 
 
 
 
1619
1620static struct folio *shmem_alloc_folio(gfp_t gfp,
1621		struct shmem_inode_info *info, pgoff_t index)
1622{
1623	struct mempolicy *mpol;
1624	pgoff_t ilx;
1625	struct page *page;
1626
1627	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1628	page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
1629	mpol_cond_put(mpol);
1630
1631	return (struct folio *)page;
1632}
 
1633
1634static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
1635		struct inode *inode, pgoff_t index,
1636		struct mm_struct *fault_mm, bool huge)
1637{
1638	struct address_space *mapping = inode->i_mapping;
1639	struct shmem_inode_info *info = SHMEM_I(inode);
1640	struct folio *folio;
1641	long pages;
1642	int error;
1643
1644	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1645		huge = false;
1646
1647	if (huge) {
1648		pages = HPAGE_PMD_NR;
1649		index = round_down(index, HPAGE_PMD_NR);
1650
1651		/*
1652		 * Check for conflict before waiting on a huge allocation.
1653		 * Conflict might be that a huge page has just been allocated
1654		 * and added to page cache by a racing thread, or that there
1655		 * is already at least one small page in the huge extent.
1656		 * Be careful to retry when appropriate, but not forever!
1657		 * Elsewhere -EEXIST would be the right code, but not here.
1658		 */
1659		if (xa_find(&mapping->i_pages, &index,
1660				index + HPAGE_PMD_NR - 1, XA_PRESENT))
1661			return ERR_PTR(-E2BIG);
1662
1663		folio = shmem_alloc_hugefolio(gfp, info, index);
1664		if (!folio)
1665			count_vm_event(THP_FILE_FALLBACK);
1666	} else {
1667		pages = 1;
1668		folio = shmem_alloc_folio(gfp, info, index);
1669	}
1670	if (!folio)
1671		return ERR_PTR(-ENOMEM);
1672
1673	__folio_set_locked(folio);
1674	__folio_set_swapbacked(folio);
1675
1676	gfp &= GFP_RECLAIM_MASK;
1677	error = mem_cgroup_charge(folio, fault_mm, gfp);
1678	if (error) {
1679		if (xa_find(&mapping->i_pages, &index,
1680				index + pages - 1, XA_PRESENT)) {
1681			error = -EEXIST;
1682		} else if (huge) {
1683			count_vm_event(THP_FILE_FALLBACK);
1684			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1685		}
1686		goto unlock;
1687	}
1688
1689	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1690	if (error)
1691		goto unlock;
1692
1693	error = shmem_inode_acct_blocks(inode, pages);
1694	if (error) {
1695		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1696		long freed;
1697		/*
1698		 * Try to reclaim some space by splitting a few
1699		 * large folios beyond i_size on the filesystem.
1700		 */
1701		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1702		/*
1703		 * And do a shmem_recalc_inode() to account for freed pages:
1704		 * except our folio is there in cache, so not quite balanced.
1705		 */
1706		spin_lock(&info->lock);
1707		freed = pages + info->alloced - info->swapped -
1708			READ_ONCE(mapping->nrpages);
1709		if (freed > 0)
1710			info->alloced -= freed;
1711		spin_unlock(&info->lock);
1712		if (freed > 0)
1713			shmem_inode_unacct_blocks(inode, freed);
1714		error = shmem_inode_acct_blocks(inode, pages);
1715		if (error) {
1716			filemap_remove_folio(folio);
1717			goto unlock;
1718		}
1719	}
1720
1721	shmem_recalc_inode(inode, pages, 0);
1722	folio_add_lru(folio);
1723	return folio;
1724
1725unlock:
1726	folio_unlock(folio);
1727	folio_put(folio);
1728	return ERR_PTR(error);
1729}
 
1730
1731/*
1732 * When a page is moved from swapcache to shmem filecache (either by the
1733 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1734 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1735 * ignorance of the mapping it belongs to.  If that mapping has special
1736 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1737 * we may need to copy to a suitable page before moving to filecache.
1738 *
1739 * In a future release, this may well be extended to respect cpuset and
1740 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1741 * but for now it is a simple matter of zone.
1742 */
1743static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1744{
1745	return folio_zonenum(folio) > gfp_zone(gfp);
1746}
1747
1748static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1749				struct shmem_inode_info *info, pgoff_t index)
1750{
1751	struct folio *old, *new;
1752	struct address_space *swap_mapping;
1753	swp_entry_t entry;
1754	pgoff_t swap_index;
1755	int error;
1756
1757	old = *foliop;
1758	entry = old->swap;
1759	swap_index = swp_offset(entry);
1760	swap_mapping = swap_address_space(entry);
1761
1762	/*
1763	 * We have arrived here because our zones are constrained, so don't
1764	 * limit chance of success by further cpuset and node constraints.
1765	 */
1766	gfp &= ~GFP_CONSTRAINT_MASK;
1767	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1768	new = shmem_alloc_folio(gfp, info, index);
1769	if (!new)
1770		return -ENOMEM;
1771
1772	folio_get(new);
1773	folio_copy(new, old);
1774	flush_dcache_folio(new);
1775
1776	__folio_set_locked(new);
1777	__folio_set_swapbacked(new);
1778	folio_mark_uptodate(new);
1779	new->swap = entry;
1780	folio_set_swapcache(new);
1781
1782	/*
1783	 * Our caller will very soon move newpage out of swapcache, but it's
1784	 * a nice clean interface for us to replace oldpage by newpage there.
1785	 */
1786	xa_lock_irq(&swap_mapping->i_pages);
1787	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
 
1788	if (!error) {
1789		mem_cgroup_migrate(old, new);
1790		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1791		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1792		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1793		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1794	}
1795	xa_unlock_irq(&swap_mapping->i_pages);
1796
1797	if (unlikely(error)) {
1798		/*
1799		 * Is this possible?  I think not, now that our callers check
1800		 * both PageSwapCache and page_private after getting page lock;
1801		 * but be defensive.  Reverse old to newpage for clear and free.
1802		 */
1803		old = new;
1804	} else {
1805		folio_add_lru(new);
1806		*foliop = new;
 
1807	}
1808
1809	folio_clear_swapcache(old);
1810	old->private = NULL;
1811
1812	folio_unlock(old);
1813	folio_put_refs(old, 2);
 
1814	return error;
1815}
1816
1817static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1818					 struct folio *folio, swp_entry_t swap)
1819{
1820	struct address_space *mapping = inode->i_mapping;
1821	swp_entry_t swapin_error;
1822	void *old;
1823
1824	swapin_error = make_poisoned_swp_entry();
1825	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1826			     swp_to_radix_entry(swap),
1827			     swp_to_radix_entry(swapin_error), 0);
1828	if (old != swp_to_radix_entry(swap))
1829		return;
1830
1831	folio_wait_writeback(folio);
1832	delete_from_swap_cache(folio);
1833	/*
1834	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1835	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1836	 * in shmem_evict_inode().
1837	 */
1838	shmem_recalc_inode(inode, -1, -1);
1839	swap_free(swap);
1840}
1841
1842/*
1843 * Swap in the folio pointed to by *foliop.
1844 * Caller has to make sure that *foliop contains a valid swapped folio.
1845 * Returns 0 and the folio in foliop if success. On failure, returns the
1846 * error code and NULL in *foliop.
 
1847 */
1848static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1849			     struct folio **foliop, enum sgp_type sgp,
1850			     gfp_t gfp, struct mm_struct *fault_mm,
1851			     vm_fault_t *fault_type)
1852{
1853	struct address_space *mapping = inode->i_mapping;
1854	struct shmem_inode_info *info = SHMEM_I(inode);
1855	struct swap_info_struct *si;
1856	struct folio *folio = NULL;
1857	swp_entry_t swap;
1858	int error;
 
 
1859
1860	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1861	swap = radix_to_swp_entry(*foliop);
1862	*foliop = NULL;
1863
1864	if (is_poisoned_swp_entry(swap))
1865		return -EIO;
1866
1867	si = get_swap_device(swap);
1868	if (!si) {
1869		if (!shmem_confirm_swap(mapping, index, swap))
1870			return -EEXIST;
1871		else
1872			return -EINVAL;
1873	}
1874
1875	/* Look it up and read it in.. */
1876	folio = swap_cache_get_folio(swap, NULL, 0);
1877	if (!folio) {
1878		/* Or update major stats only when swapin succeeds?? */
1879		if (fault_type) {
1880			*fault_type |= VM_FAULT_MAJOR;
1881			count_vm_event(PGMAJFAULT);
1882			count_memcg_event_mm(fault_mm, PGMAJFAULT);
1883		}
1884		/* Here we actually start the io */
1885		folio = shmem_swapin_cluster(swap, gfp, info, index);
1886		if (!folio) {
1887			error = -ENOMEM;
1888			goto failed;
1889		}
1890	}
1891
1892	/* We have to do this with folio locked to prevent races */
1893	folio_lock(folio);
1894	if (!folio_test_swapcache(folio) ||
1895	    folio->swap.val != swap.val ||
1896	    !shmem_confirm_swap(mapping, index, swap)) {
1897		error = -EEXIST;
1898		goto unlock;
1899	}
1900	if (!folio_test_uptodate(folio)) {
1901		error = -EIO;
1902		goto failed;
1903	}
1904	folio_wait_writeback(folio);
1905
1906	/*
1907	 * Some architectures may have to restore extra metadata to the
1908	 * folio after reading from swap.
1909	 */
1910	arch_swap_restore(swap, folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911
1912	if (shmem_should_replace_folio(folio, gfp)) {
1913		error = shmem_replace_folio(&folio, gfp, info, index);
1914		if (error)
 
 
 
 
 
 
1915			goto failed;
1916	}
 
1917
1918	error = shmem_add_to_page_cache(folio, mapping, index,
1919					swp_to_radix_entry(swap), gfp);
1920	if (error)
1921		goto failed;
 
1922
1923	shmem_recalc_inode(inode, 0, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924
1925	if (sgp == SGP_WRITE)
1926		folio_mark_accessed(folio);
 
 
1927
1928	delete_from_swap_cache(folio);
1929	folio_mark_dirty(folio);
1930	swap_free(swap);
1931	put_swap_device(si);
1932
1933	*foliop = folio;
1934	return 0;
1935failed:
1936	if (!shmem_confirm_swap(mapping, index, swap))
1937		error = -EEXIST;
1938	if (error == -EIO)
1939		shmem_set_folio_swapin_error(inode, index, folio, swap);
1940unlock:
1941	if (folio) {
1942		folio_unlock(folio);
1943		folio_put(folio);
1944	}
1945	put_swap_device(si);
1946
1947	return error;
1948}
 
 
 
1949
1950/*
1951 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1952 *
1953 * If we allocate a new one we do not mark it dirty. That's up to the
1954 * vm. If we swap it in we mark it dirty since we also free the swap
1955 * entry since a page cannot live in both the swap and page cache.
1956 *
1957 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
1958 */
1959static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1960		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1961		struct vm_fault *vmf, vm_fault_t *fault_type)
1962{
1963	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1964	struct mm_struct *fault_mm;
1965	struct folio *folio;
1966	int error;
1967	bool alloced;
1968
1969	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
1970		return -EINVAL;
1971
1972	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1973		return -EFBIG;
1974repeat:
1975	if (sgp <= SGP_CACHE &&
1976	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
1977		return -EINVAL;
1978
1979	alloced = false;
1980	fault_mm = vma ? vma->vm_mm : NULL;
1981
1982	folio = filemap_get_entry(inode->i_mapping, index);
1983	if (folio && vma && userfaultfd_minor(vma)) {
1984		if (!xa_is_value(folio))
1985			folio_put(folio);
1986		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1987		return 0;
1988	}
1989
1990	if (xa_is_value(folio)) {
1991		error = shmem_swapin_folio(inode, index, &folio,
1992					   sgp, gfp, fault_mm, fault_type);
1993		if (error == -EEXIST)
1994			goto repeat;
1995
1996		*foliop = folio;
1997		return error;
1998	}
1999
2000	if (folio) {
2001		folio_lock(folio);
2002
2003		/* Has the folio been truncated or swapped out? */
2004		if (unlikely(folio->mapping != inode->i_mapping)) {
2005			folio_unlock(folio);
2006			folio_put(folio);
2007			goto repeat;
2008		}
2009		if (sgp == SGP_WRITE)
2010			folio_mark_accessed(folio);
2011		if (folio_test_uptodate(folio))
2012			goto out;
2013		/* fallocated folio */
2014		if (sgp != SGP_READ)
2015			goto clear;
2016		folio_unlock(folio);
2017		folio_put(folio);
2018	}
2019
2020	/*
2021	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2022	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2023	 */
2024	*foliop = NULL;
2025	if (sgp == SGP_READ)
2026		return 0;
2027	if (sgp == SGP_NOALLOC)
2028		return -ENOENT;
2029
2030	/*
2031	 * Fast cache lookup and swap lookup did not find it: allocate.
2032	 */
2033
2034	if (vma && userfaultfd_missing(vma)) {
2035		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2036		return 0;
2037	}
2038
2039	if (shmem_is_huge(inode, index, false, fault_mm,
2040			  vma ? vma->vm_flags : 0)) {
2041		gfp_t huge_gfp;
2042
2043		huge_gfp = vma_thp_gfp_mask(vma);
2044		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2045		folio = shmem_alloc_and_add_folio(huge_gfp,
2046				inode, index, fault_mm, true);
2047		if (!IS_ERR(folio)) {
2048			count_vm_event(THP_FILE_ALLOC);
2049			goto alloced;
2050		}
2051		if (PTR_ERR(folio) == -EEXIST)
2052			goto repeat;
2053	}
2054
2055	folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
2056	if (IS_ERR(folio)) {
2057		error = PTR_ERR(folio);
2058		if (error == -EEXIST)
2059			goto repeat;
2060		folio = NULL;
2061		goto unlock;
2062	}
2063
2064alloced:
2065	alloced = true;
2066	if (folio_test_pmd_mappable(folio) &&
2067	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2068					folio_next_index(folio) - 1) {
2069		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2070		struct shmem_inode_info *info = SHMEM_I(inode);
2071		/*
2072		 * Part of the large folio is beyond i_size: subject
2073		 * to shrink under memory pressure.
2074		 */
2075		spin_lock(&sbinfo->shrinklist_lock);
 
 
2076		/*
2077		 * _careful to defend against unlocked access to
2078		 * ->shrink_list in shmem_unused_huge_shrink()
2079		 */
2080		if (list_empty_careful(&info->shrinklist)) {
2081			list_add_tail(&info->shrinklist,
2082				      &sbinfo->shrinklist);
2083			sbinfo->shrinklist_len++;
 
2084		}
2085		spin_unlock(&sbinfo->shrinklist_lock);
2086	}
2087
2088	if (sgp == SGP_WRITE)
2089		folio_set_referenced(folio);
2090	/*
2091	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2092	 */
2093	if (sgp == SGP_FALLOC)
2094		sgp = SGP_WRITE;
2095clear:
2096	/*
2097	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2098	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2099	 * it now, lest undo on failure cancel our earlier guarantee.
2100	 */
2101	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2102		long i, n = folio_nr_pages(folio);
2103
2104		for (i = 0; i < n; i++)
2105			clear_highpage(folio_page(folio, i));
2106		flush_dcache_folio(folio);
2107		folio_mark_uptodate(folio);
2108	}
2109
2110	/* Perhaps the file has been truncated since we checked */
2111	if (sgp <= SGP_CACHE &&
2112	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2113		error = -EINVAL;
2114		goto unlock;
 
 
 
2115	}
2116out:
2117	*foliop = folio;
2118	return 0;
2119
2120	/*
2121	 * Error recovery.
2122	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123unlock:
2124	if (alloced)
2125		filemap_remove_folio(folio);
2126	shmem_recalc_inode(inode, 0, 0);
2127	if (folio) {
2128		folio_unlock(folio);
2129		folio_put(folio);
 
 
 
 
2130	}
 
 
2131	return error;
2132}
2133
2134/**
2135 * shmem_get_folio - find, and lock a shmem folio.
2136 * @inode:	inode to search
2137 * @index:	the page index.
2138 * @foliop:	pointer to the folio if found
2139 * @sgp:	SGP_* flags to control behavior
2140 *
2141 * Looks up the page cache entry at @inode & @index.  If a folio is
2142 * present, it is returned locked with an increased refcount.
2143 *
2144 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2145 * before unlocking the folio to ensure that the folio is not reclaimed.
2146 * There is no need to reserve space before calling folio_mark_dirty().
2147 *
2148 * When no folio is found, the behavior depends on @sgp:
2149 *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2150 *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2151 *  - for all other flags a new folio is allocated, inserted into the
2152 *    page cache and returned locked in @foliop.
2153 *
2154 * Context: May sleep.
2155 * Return: 0 if successful, else a negative error code.
2156 */
2157int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2158		enum sgp_type sgp)
2159{
2160	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2161			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2162}
2163EXPORT_SYMBOL_GPL(shmem_get_folio);
2164
2165/*
2166 * This is like autoremove_wake_function, but it removes the wait queue
2167 * entry unconditionally - even if something else had already woken the
2168 * target.
2169 */
2170static int synchronous_wake_function(wait_queue_entry_t *wait,
2171			unsigned int mode, int sync, void *key)
2172{
2173	int ret = default_wake_function(wait, mode, sync, key);
2174	list_del_init(&wait->entry);
2175	return ret;
2176}
2177
2178/*
2179 * Trinity finds that probing a hole which tmpfs is punching can
2180 * prevent the hole-punch from ever completing: which in turn
2181 * locks writers out with its hold on i_rwsem.  So refrain from
2182 * faulting pages into the hole while it's being punched.  Although
2183 * shmem_undo_range() does remove the additions, it may be unable to
2184 * keep up, as each new page needs its own unmap_mapping_range() call,
2185 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2186 *
2187 * It does not matter if we sometimes reach this check just before the
2188 * hole-punch begins, so that one fault then races with the punch:
2189 * we just need to make racing faults a rare case.
2190 *
2191 * The implementation below would be much simpler if we just used a
2192 * standard mutex or completion: but we cannot take i_rwsem in fault,
2193 * and bloating every shmem inode for this unlikely case would be sad.
2194 */
2195static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2196{
2197	struct shmem_falloc *shmem_falloc;
2198	struct file *fpin = NULL;
2199	vm_fault_t ret = 0;
2200
2201	spin_lock(&inode->i_lock);
2202	shmem_falloc = inode->i_private;
2203	if (shmem_falloc &&
2204	    shmem_falloc->waitq &&
2205	    vmf->pgoff >= shmem_falloc->start &&
2206	    vmf->pgoff < shmem_falloc->next) {
2207		wait_queue_head_t *shmem_falloc_waitq;
2208		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2209
2210		ret = VM_FAULT_NOPAGE;
2211		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2212		shmem_falloc_waitq = shmem_falloc->waitq;
2213		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2214				TASK_UNINTERRUPTIBLE);
2215		spin_unlock(&inode->i_lock);
2216		schedule();
2217
2218		/*
2219		 * shmem_falloc_waitq points into the shmem_fallocate()
2220		 * stack of the hole-punching task: shmem_falloc_waitq
2221		 * is usually invalid by the time we reach here, but
2222		 * finish_wait() does not dereference it in that case;
2223		 * though i_lock needed lest racing with wake_up_all().
2224		 */
2225		spin_lock(&inode->i_lock);
2226		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2227	}
2228	spin_unlock(&inode->i_lock);
2229	if (fpin) {
2230		fput(fpin);
2231		ret = VM_FAULT_RETRY;
2232	}
2233	return ret;
2234}
2235
2236static vm_fault_t shmem_fault(struct vm_fault *vmf)
2237{
2238	struct inode *inode = file_inode(vmf->vma->vm_file);
2239	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2240	struct folio *folio = NULL;
2241	vm_fault_t ret = 0;
2242	int err;
2243
2244	/*
2245	 * Trinity finds that probing a hole which tmpfs is punching can
2246	 * prevent the hole-punch from ever completing: noted in i_private.
2247	 */
2248	if (unlikely(inode->i_private)) {
2249		ret = shmem_falloc_wait(vmf, inode);
2250		if (ret)
2251			return ret;
2252	}
2253
2254	WARN_ON_ONCE(vmf->page != NULL);
2255	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2256				  gfp, vmf, &ret);
2257	if (err)
2258		return vmf_error(err);
2259	if (folio) {
2260		vmf->page = folio_file_page(folio, vmf->pgoff);
2261		ret |= VM_FAULT_LOCKED;
2262	}
2263	return ret;
2264}
2265
2266unsigned long shmem_get_unmapped_area(struct file *file,
2267				      unsigned long uaddr, unsigned long len,
2268				      unsigned long pgoff, unsigned long flags)
2269{
2270	unsigned long (*get_area)(struct file *,
2271		unsigned long, unsigned long, unsigned long, unsigned long);
2272	unsigned long addr;
2273	unsigned long offset;
2274	unsigned long inflated_len;
2275	unsigned long inflated_addr;
2276	unsigned long inflated_offset;
2277
2278	if (len > TASK_SIZE)
2279		return -ENOMEM;
2280
2281	get_area = current->mm->get_unmapped_area;
2282	addr = get_area(file, uaddr, len, pgoff, flags);
2283
2284	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2285		return addr;
2286	if (IS_ERR_VALUE(addr))
2287		return addr;
2288	if (addr & ~PAGE_MASK)
2289		return addr;
2290	if (addr > TASK_SIZE - len)
2291		return addr;
2292
2293	if (shmem_huge == SHMEM_HUGE_DENY)
2294		return addr;
2295	if (len < HPAGE_PMD_SIZE)
2296		return addr;
2297	if (flags & MAP_FIXED)
2298		return addr;
2299	/*
2300	 * Our priority is to support MAP_SHARED mapped hugely;
2301	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2302	 * But if caller specified an address hint and we allocated area there
2303	 * successfully, respect that as before.
2304	 */
2305	if (uaddr == addr)
2306		return addr;
2307
2308	if (shmem_huge != SHMEM_HUGE_FORCE) {
2309		struct super_block *sb;
2310
2311		if (file) {
2312			VM_BUG_ON(file->f_op != &shmem_file_operations);
2313			sb = file_inode(file)->i_sb;
2314		} else {
2315			/*
2316			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2317			 * for "/dev/zero", to create a shared anonymous object.
2318			 */
2319			if (IS_ERR(shm_mnt))
2320				return addr;
2321			sb = shm_mnt->mnt_sb;
2322		}
2323		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2324			return addr;
2325	}
2326
2327	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2328	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2329		return addr;
2330	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2331		return addr;
2332
2333	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2334	if (inflated_len > TASK_SIZE)
2335		return addr;
2336	if (inflated_len < len)
2337		return addr;
2338
2339	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2340	if (IS_ERR_VALUE(inflated_addr))
2341		return addr;
2342	if (inflated_addr & ~PAGE_MASK)
2343		return addr;
2344
2345	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2346	inflated_addr += offset - inflated_offset;
2347	if (inflated_offset > offset)
2348		inflated_addr += HPAGE_PMD_SIZE;
2349
2350	if (inflated_addr > TASK_SIZE - len)
2351		return addr;
2352	return inflated_addr;
2353}
2354
2355#ifdef CONFIG_NUMA
2356static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2357{
2358	struct inode *inode = file_inode(vma->vm_file);
2359	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2360}
2361
2362static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2363					  unsigned long addr, pgoff_t *ilx)
2364{
2365	struct inode *inode = file_inode(vma->vm_file);
2366	pgoff_t index;
2367
2368	/*
2369	 * Bias interleave by inode number to distribute better across nodes;
2370	 * but this interface is independent of which page order is used, so
2371	 * supplies only that bias, letting caller apply the offset (adjusted
2372	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2373	 */
2374	*ilx = inode->i_ino;
2375	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2376	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2377}
 
2378
2379static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2380			pgoff_t index, unsigned int order, pgoff_t *ilx)
2381{
2382	struct mempolicy *mpol;
2383
2384	/* Bias interleave by inode number to distribute better across nodes */
2385	*ilx = info->vfs_inode.i_ino + (index >> order);
2386
2387	mpol = mpol_shared_policy_lookup(&info->policy, index);
2388	return mpol ? mpol : get_task_policy(current);
2389}
2390#else
2391static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2392			pgoff_t index, unsigned int order, pgoff_t *ilx)
2393{
2394	*ilx = 0;
2395	return NULL;
2396}
2397#endif /* CONFIG_NUMA */
2398
2399int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2400{
2401	struct inode *inode = file_inode(file);
2402	struct shmem_inode_info *info = SHMEM_I(inode);
2403	int retval = -ENOMEM;
2404
2405	/*
2406	 * What serializes the accesses to info->flags?
2407	 * ipc_lock_object() when called from shmctl_do_lock(),
2408	 * no serialization needed when called from shm_destroy().
2409	 */
2410	if (lock && !(info->flags & VM_LOCKED)) {
2411		if (!user_shm_lock(inode->i_size, ucounts))
2412			goto out_nomem;
2413		info->flags |= VM_LOCKED;
2414		mapping_set_unevictable(file->f_mapping);
2415	}
2416	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2417		user_shm_unlock(inode->i_size, ucounts);
2418		info->flags &= ~VM_LOCKED;
2419		mapping_clear_unevictable(file->f_mapping);
2420	}
2421	retval = 0;
2422
2423out_nomem:
 
2424	return retval;
2425}
2426
2427static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2428{
2429	struct inode *inode = file_inode(file);
2430	struct shmem_inode_info *info = SHMEM_I(inode);
2431	int ret;
2432
2433	ret = seal_check_write(info->seals, vma);
2434	if (ret)
2435		return ret;
2436
2437	/* arm64 - allow memory tagging on RAM-based files */
2438	vm_flags_set(vma, VM_MTE_ALLOWED);
2439
2440	file_accessed(file);
2441	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2442	if (inode->i_nlink)
2443		vma->vm_ops = &shmem_vm_ops;
2444	else
2445		vma->vm_ops = &shmem_anon_vm_ops;
2446	return 0;
2447}
2448
2449static int shmem_file_open(struct inode *inode, struct file *file)
2450{
2451	file->f_mode |= FMODE_CAN_ODIRECT;
2452	return generic_file_open(inode, file);
2453}
2454
2455#ifdef CONFIG_TMPFS_XATTR
2456static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2457
2458/*
2459 * chattr's fsflags are unrelated to extended attributes,
2460 * but tmpfs has chosen to enable them under the same config option.
2461 */
2462static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2463{
2464	unsigned int i_flags = 0;
2465
2466	if (fsflags & FS_NOATIME_FL)
2467		i_flags |= S_NOATIME;
2468	if (fsflags & FS_APPEND_FL)
2469		i_flags |= S_APPEND;
2470	if (fsflags & FS_IMMUTABLE_FL)
2471		i_flags |= S_IMMUTABLE;
2472	/*
2473	 * But FS_NODUMP_FL does not require any action in i_flags.
2474	 */
2475	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2476}
2477#else
2478static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2479{
2480}
2481#define shmem_initxattrs NULL
2482#endif
2483
2484static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2485{
2486	return &SHMEM_I(inode)->dir_offsets;
2487}
2488
2489static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2490					     struct super_block *sb,
2491					     struct inode *dir, umode_t mode,
2492					     dev_t dev, unsigned long flags)
2493{
2494	struct inode *inode;
2495	struct shmem_inode_info *info;
2496	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2497	ino_t ino;
2498	int err;
2499
2500	err = shmem_reserve_inode(sb, &ino);
2501	if (err)
2502		return ERR_PTR(err);
2503
2504	inode = new_inode(sb);
2505	if (!inode) {
2506		shmem_free_inode(sb, 0);
2507		return ERR_PTR(-ENOSPC);
2508	}
2509
2510	inode->i_ino = ino;
2511	inode_init_owner(idmap, inode, dir, mode);
2512	inode->i_blocks = 0;
2513	simple_inode_init_ts(inode);
2514	inode->i_generation = get_random_u32();
2515	info = SHMEM_I(inode);
2516	memset(info, 0, (char *)inode - (char *)info);
2517	spin_lock_init(&info->lock);
2518	atomic_set(&info->stop_eviction, 0);
2519	info->seals = F_SEAL_SEAL;
2520	info->flags = flags & VM_NORESERVE;
2521	info->i_crtime = inode_get_mtime(inode);
2522	info->fsflags = (dir == NULL) ? 0 :
2523		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2524	if (info->fsflags)
2525		shmem_set_inode_flags(inode, info->fsflags);
2526	INIT_LIST_HEAD(&info->shrinklist);
2527	INIT_LIST_HEAD(&info->swaplist);
2528	simple_xattrs_init(&info->xattrs);
2529	cache_no_acl(inode);
2530	if (sbinfo->noswap)
2531		mapping_set_unevictable(inode->i_mapping);
2532	mapping_set_large_folios(inode->i_mapping);
2533
2534	switch (mode & S_IFMT) {
2535	default:
2536		inode->i_op = &shmem_special_inode_operations;
2537		init_special_inode(inode, mode, dev);
2538		break;
2539	case S_IFREG:
2540		inode->i_mapping->a_ops = &shmem_aops;
2541		inode->i_op = &shmem_inode_operations;
2542		inode->i_fop = &shmem_file_operations;
2543		mpol_shared_policy_init(&info->policy,
2544					 shmem_get_sbmpol(sbinfo));
2545		break;
2546	case S_IFDIR:
2547		inc_nlink(inode);
2548		/* Some things misbehave if size == 0 on a directory */
2549		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2550		inode->i_op = &shmem_dir_inode_operations;
2551		inode->i_fop = &simple_offset_dir_operations;
2552		simple_offset_init(shmem_get_offset_ctx(inode));
2553		break;
2554	case S_IFLNK:
2555		/*
2556		 * Must not load anything in the rbtree,
2557		 * mpol_free_shared_policy will not be called.
2558		 */
2559		mpol_shared_policy_init(&info->policy, NULL);
2560		break;
2561	}
2562
2563	lockdep_annotate_inode_mutex_key(inode);
2564	return inode;
2565}
2566
2567#ifdef CONFIG_TMPFS_QUOTA
2568static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2569				     struct super_block *sb, struct inode *dir,
2570				     umode_t mode, dev_t dev, unsigned long flags)
2571{
2572	int err;
2573	struct inode *inode;
2574
2575	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2576	if (IS_ERR(inode))
2577		return inode;
2578
2579	err = dquot_initialize(inode);
2580	if (err)
2581		goto errout;
2582
2583	err = dquot_alloc_inode(inode);
2584	if (err) {
2585		dquot_drop(inode);
2586		goto errout;
2587	}
2588	return inode;
2589
2590errout:
2591	inode->i_flags |= S_NOQUOTA;
2592	iput(inode);
2593	return ERR_PTR(err);
2594}
2595#else
2596static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2597				     struct super_block *sb, struct inode *dir,
2598				     umode_t mode, dev_t dev, unsigned long flags)
2599{
2600	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2601}
2602#endif /* CONFIG_TMPFS_QUOTA */
2603
2604#ifdef CONFIG_USERFAULTFD
2605int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2606			   struct vm_area_struct *dst_vma,
2607			   unsigned long dst_addr,
2608			   unsigned long src_addr,
2609			   uffd_flags_t flags,
2610			   struct folio **foliop)
2611{
2612	struct inode *inode = file_inode(dst_vma->vm_file);
2613	struct shmem_inode_info *info = SHMEM_I(inode);
2614	struct address_space *mapping = inode->i_mapping;
2615	gfp_t gfp = mapping_gfp_mask(mapping);
2616	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2617	void *page_kaddr;
2618	struct folio *folio;
2619	int ret;
2620	pgoff_t max_off;
2621
2622	if (shmem_inode_acct_blocks(inode, 1)) {
2623		/*
2624		 * We may have got a page, returned -ENOENT triggering a retry,
2625		 * and now we find ourselves with -ENOMEM. Release the page, to
2626		 * avoid a BUG_ON in our caller.
2627		 */
2628		if (unlikely(*foliop)) {
2629			folio_put(*foliop);
2630			*foliop = NULL;
2631		}
2632		return -ENOMEM;
2633	}
2634
2635	if (!*foliop) {
2636		ret = -ENOMEM;
2637		folio = shmem_alloc_folio(gfp, info, pgoff);
2638		if (!folio)
2639			goto out_unacct_blocks;
2640
2641		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2642			page_kaddr = kmap_local_folio(folio, 0);
2643			/*
2644			 * The read mmap_lock is held here.  Despite the
2645			 * mmap_lock being read recursive a deadlock is still
2646			 * possible if a writer has taken a lock.  For example:
2647			 *
2648			 * process A thread 1 takes read lock on own mmap_lock
2649			 * process A thread 2 calls mmap, blocks taking write lock
2650			 * process B thread 1 takes page fault, read lock on own mmap lock
2651			 * process B thread 2 calls mmap, blocks taking write lock
2652			 * process A thread 1 blocks taking read lock on process B
2653			 * process B thread 1 blocks taking read lock on process A
2654			 *
2655			 * Disable page faults to prevent potential deadlock
2656			 * and retry the copy outside the mmap_lock.
2657			 */
2658			pagefault_disable();
2659			ret = copy_from_user(page_kaddr,
2660					     (const void __user *)src_addr,
2661					     PAGE_SIZE);
2662			pagefault_enable();
2663			kunmap_local(page_kaddr);
2664
2665			/* fallback to copy_from_user outside mmap_lock */
2666			if (unlikely(ret)) {
2667				*foliop = folio;
2668				ret = -ENOENT;
2669				/* don't free the page */
2670				goto out_unacct_blocks;
2671			}
2672
2673			flush_dcache_folio(folio);
2674		} else {		/* ZEROPAGE */
2675			clear_user_highpage(&folio->page, dst_addr);
2676		}
2677	} else {
2678		folio = *foliop;
2679		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2680		*foliop = NULL;
2681	}
2682
2683	VM_BUG_ON(folio_test_locked(folio));
2684	VM_BUG_ON(folio_test_swapbacked(folio));
2685	__folio_set_locked(folio);
2686	__folio_set_swapbacked(folio);
2687	__folio_mark_uptodate(folio);
2688
2689	ret = -EFAULT;
2690	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2691	if (unlikely(pgoff >= max_off))
2692		goto out_release;
2693
2694	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2695	if (ret)
2696		goto out_release;
2697	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2698	if (ret)
2699		goto out_release;
2700
2701	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2702				       &folio->page, true, flags);
2703	if (ret)
2704		goto out_delete_from_cache;
2705
2706	shmem_recalc_inode(inode, 1, 0);
2707	folio_unlock(folio);
2708	return 0;
2709out_delete_from_cache:
2710	filemap_remove_folio(folio);
2711out_release:
2712	folio_unlock(folio);
2713	folio_put(folio);
2714out_unacct_blocks:
2715	shmem_inode_unacct_blocks(inode, 1);
2716	return ret;
2717}
2718#endif /* CONFIG_USERFAULTFD */
2719
2720#ifdef CONFIG_TMPFS
2721static const struct inode_operations shmem_symlink_inode_operations;
2722static const struct inode_operations shmem_short_symlink_operations;
2723
 
 
 
 
 
 
2724static int
2725shmem_write_begin(struct file *file, struct address_space *mapping,
2726			loff_t pos, unsigned len,
2727			struct page **pagep, void **fsdata)
2728{
2729	struct inode *inode = mapping->host;
2730	struct shmem_inode_info *info = SHMEM_I(inode);
2731	pgoff_t index = pos >> PAGE_SHIFT;
2732	struct folio *folio;
2733	int ret = 0;
2734
2735	/* i_rwsem is held by caller */
2736	if (unlikely(info->seals & (F_SEAL_GROW |
2737				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2738		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2739			return -EPERM;
2740		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2741			return -EPERM;
2742	}
2743
2744	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2745	if (ret)
2746		return ret;
2747
2748	*pagep = folio_file_page(folio, index);
2749	if (PageHWPoison(*pagep)) {
2750		folio_unlock(folio);
2751		folio_put(folio);
2752		*pagep = NULL;
2753		return -EIO;
2754	}
2755
2756	return 0;
2757}
2758
2759static int
2760shmem_write_end(struct file *file, struct address_space *mapping,
2761			loff_t pos, unsigned len, unsigned copied,
2762			struct page *page, void *fsdata)
2763{
2764	struct folio *folio = page_folio(page);
2765	struct inode *inode = mapping->host;
2766
2767	if (pos + copied > inode->i_size)
2768		i_size_write(inode, pos + copied);
2769
2770	if (!folio_test_uptodate(folio)) {
2771		if (copied < folio_size(folio)) {
2772			size_t from = offset_in_folio(folio, pos);
2773			folio_zero_segments(folio, 0, from,
2774					from + copied, folio_size(folio));
2775		}
2776		folio_mark_uptodate(folio);
2777	}
2778	folio_mark_dirty(folio);
2779	folio_unlock(folio);
2780	folio_put(folio);
2781
2782	return copied;
2783}
2784
2785static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 
2786{
2787	struct file *file = iocb->ki_filp;
2788	struct inode *inode = file_inode(file);
2789	struct address_space *mapping = inode->i_mapping;
2790	pgoff_t index;
2791	unsigned long offset;
 
2792	int error = 0;
2793	ssize_t retval = 0;
 
2794	loff_t *ppos = &iocb->ki_pos;
 
 
 
 
 
 
2795
2796	index = *ppos >> PAGE_SHIFT;
2797	offset = *ppos & ~PAGE_MASK;
 
 
 
 
 
 
 
 
2798
2799	for (;;) {
2800		struct folio *folio = NULL;
2801		struct page *page = NULL;
2802		pgoff_t end_index;
2803		unsigned long nr, ret;
2804		loff_t i_size = i_size_read(inode);
2805
2806		end_index = i_size >> PAGE_SHIFT;
2807		if (index > end_index)
2808			break;
2809		if (index == end_index) {
2810			nr = i_size & ~PAGE_MASK;
2811			if (nr <= offset)
2812				break;
2813		}
2814
2815		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2816		if (error) {
2817			if (error == -EINVAL)
2818				error = 0;
2819			break;
2820		}
2821		if (folio) {
2822			folio_unlock(folio);
2823
2824			page = folio_file_page(folio, index);
2825			if (PageHWPoison(page)) {
2826				folio_put(folio);
2827				error = -EIO;
2828				break;
2829			}
2830		}
2831
2832		/*
2833		 * We must evaluate after, since reads (unlike writes)
2834		 * are called without i_rwsem protection against truncate
2835		 */
2836		nr = PAGE_SIZE;
2837		i_size = i_size_read(inode);
2838		end_index = i_size >> PAGE_SHIFT;
2839		if (index == end_index) {
2840			nr = i_size & ~PAGE_MASK;
2841			if (nr <= offset) {
2842				if (folio)
2843					folio_put(folio);
2844				break;
2845			}
2846		}
2847		nr -= offset;
2848
2849		if (folio) {
2850			/*
2851			 * If users can be writing to this page using arbitrary
2852			 * virtual addresses, take care about potential aliasing
2853			 * before reading the page on the kernel side.
2854			 */
2855			if (mapping_writably_mapped(mapping))
2856				flush_dcache_page(page);
2857			/*
2858			 * Mark the page accessed if we read the beginning.
2859			 */
2860			if (!offset)
2861				folio_mark_accessed(folio);
2862			/*
2863			 * Ok, we have the page, and it's up-to-date, so
2864			 * now we can copy it to user space...
2865			 */
2866			ret = copy_page_to_iter(page, offset, nr, to);
2867			folio_put(folio);
2868
2869		} else if (user_backed_iter(to)) {
2870			/*
2871			 * Copy to user tends to be so well optimized, but
2872			 * clear_user() not so much, that it is noticeably
2873			 * faster to copy the zero page instead of clearing.
2874			 */
2875			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2876		} else {
2877			/*
2878			 * But submitting the same page twice in a row to
2879			 * splice() - or others? - can result in confusion:
2880			 * so don't attempt that optimization on pipes etc.
2881			 */
2882			ret = iov_iter_zero(nr, to);
2883		}
2884
 
 
 
 
 
2885		retval += ret;
2886		offset += ret;
2887		index += offset >> PAGE_SHIFT;
2888		offset &= ~PAGE_MASK;
2889
2890		if (!iov_iter_count(to))
 
2891			break;
2892		if (ret < nr) {
2893			error = -EFAULT;
2894			break;
2895		}
2896		cond_resched();
2897	}
2898
2899	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2900	file_accessed(file);
2901	return retval ? retval : error;
2902}
2903
2904static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
2905{
2906	struct file *file = iocb->ki_filp;
2907	struct inode *inode = file->f_mapping->host;
2908	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2909
2910	inode_lock(inode);
2911	ret = generic_write_checks(iocb, from);
2912	if (ret <= 0)
2913		goto unlock;
2914	ret = file_remove_privs(file);
2915	if (ret)
2916		goto unlock;
2917	ret = file_update_time(file);
2918	if (ret)
2919		goto unlock;
2920	ret = generic_perform_write(iocb, from);
2921unlock:
2922	inode_unlock(inode);
2923	return ret;
2924}
2925
2926static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2927			      struct pipe_buffer *buf)
2928{
2929	return true;
2930}
2931
2932static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2933				  struct pipe_buffer *buf)
2934{
2935}
2936
2937static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2938				    struct pipe_buffer *buf)
2939{
2940	return false;
2941}
 
 
 
 
2942
2943static const struct pipe_buf_operations zero_pipe_buf_ops = {
2944	.release	= zero_pipe_buf_release,
2945	.try_steal	= zero_pipe_buf_try_steal,
2946	.get		= zero_pipe_buf_get,
2947};
2948
2949static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2950					loff_t fpos, size_t size)
2951{
2952	size_t offset = fpos & ~PAGE_MASK;
2953
2954	size = min_t(size_t, size, PAGE_SIZE - offset);
2955
2956	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2957		struct pipe_buffer *buf = pipe_head_buf(pipe);
2958
2959		*buf = (struct pipe_buffer) {
2960			.ops	= &zero_pipe_buf_ops,
2961			.page	= ZERO_PAGE(0),
2962			.offset	= offset,
2963			.len	= size,
2964		};
2965		pipe->head++;
2966	}
2967
2968	return size;
2969}
 
2970
2971static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2972				      struct pipe_inode_info *pipe,
2973				      size_t len, unsigned int flags)
2974{
2975	struct inode *inode = file_inode(in);
2976	struct address_space *mapping = inode->i_mapping;
2977	struct folio *folio = NULL;
2978	size_t total_spliced = 0, used, npages, n, part;
2979	loff_t isize;
2980	int error = 0;
2981
2982	/* Work out how much data we can actually add into the pipe */
2983	used = pipe_occupancy(pipe->head, pipe->tail);
2984	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2985	len = min_t(size_t, len, npages * PAGE_SIZE);
2986
2987	do {
2988		if (*ppos >= i_size_read(inode))
2989			break;
2990
2991		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2992					SGP_READ);
2993		if (error) {
2994			if (error == -EINVAL)
2995				error = 0;
2996			break;
2997		}
2998		if (folio) {
2999			folio_unlock(folio);
3000
3001			if (folio_test_hwpoison(folio) ||
3002			    (folio_test_large(folio) &&
3003			     folio_test_has_hwpoisoned(folio))) {
3004				error = -EIO;
3005				break;
3006			}
 
 
3007		}
3008
3009		/*
3010		 * i_size must be checked after we know the pages are Uptodate.
3011		 *
3012		 * Checking i_size after the check allows us to calculate
3013		 * the correct value for "nr", which means the zero-filled
3014		 * part of the page is not copied back to userspace (unless
3015		 * another truncate extends the file - this is desired though).
3016		 */
3017		isize = i_size_read(inode);
3018		if (unlikely(*ppos >= isize))
 
3019			break;
3020		part = min_t(loff_t, isize - *ppos, len);
3021
3022		if (folio) {
3023			/*
3024			 * If users can be writing to this page using arbitrary
3025			 * virtual addresses, take care about potential aliasing
3026			 * before reading the page on the kernel side.
3027			 */
3028			if (mapping_writably_mapped(mapping))
3029				flush_dcache_folio(folio);
3030			folio_mark_accessed(folio);
3031			/*
3032			 * Ok, we have the page, and it's up-to-date, so we can
3033			 * now splice it into the pipe.
3034			 */
3035			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3036			folio_put(folio);
3037			folio = NULL;
3038		} else {
3039			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3040		}
3041
3042		if (!n)
3043			break;
3044		len -= n;
3045		total_spliced += n;
3046		*ppos += n;
3047		in->f_ra.prev_pos = *ppos;
3048		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3049			break;
 
 
 
 
 
3050
3051		cond_resched();
3052	} while (len);
3053
3054	if (folio)
3055		folio_put(folio);
 
 
 
 
3056
3057	file_accessed(in);
3058	return total_spliced ? total_spliced : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3059}
3060
3061static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3062{
3063	struct address_space *mapping = file->f_mapping;
3064	struct inode *inode = mapping->host;
 
 
3065
3066	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3067		return generic_file_llseek_size(file, offset, whence,
3068					MAX_LFS_FILESIZE, i_size_read(inode));
 
 
 
3069	if (offset < 0)
3070		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3071
3072	inode_lock(inode);
3073	/* We're holding i_rwsem so we can access i_size directly */
3074	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3075	if (offset >= 0)
3076		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3077	inode_unlock(inode);
3078	return offset;
3079}
3080
3081static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3082							 loff_t len)
3083{
3084	struct inode *inode = file_inode(file);
3085	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3086	struct shmem_inode_info *info = SHMEM_I(inode);
3087	struct shmem_falloc shmem_falloc;
3088	pgoff_t start, index, end, undo_fallocend;
3089	int error;
3090
3091	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3092		return -EOPNOTSUPP;
3093
3094	inode_lock(inode);
3095
3096	if (mode & FALLOC_FL_PUNCH_HOLE) {
3097		struct address_space *mapping = file->f_mapping;
3098		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3099		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3100		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3101
3102		/* protected by i_rwsem */
3103		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3104			error = -EPERM;
3105			goto out;
3106		}
3107
3108		shmem_falloc.waitq = &shmem_falloc_waitq;
3109		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3110		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3111		spin_lock(&inode->i_lock);
3112		inode->i_private = &shmem_falloc;
3113		spin_unlock(&inode->i_lock);
3114
3115		if ((u64)unmap_end > (u64)unmap_start)
3116			unmap_mapping_range(mapping, unmap_start,
3117					    1 + unmap_end - unmap_start, 0);
3118		shmem_truncate_range(inode, offset, offset + len - 1);
3119		/* No need to unmap again: hole-punching leaves COWed pages */
3120
3121		spin_lock(&inode->i_lock);
3122		inode->i_private = NULL;
3123		wake_up_all(&shmem_falloc_waitq);
3124		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3125		spin_unlock(&inode->i_lock);
3126		error = 0;
3127		goto out;
3128	}
3129
3130	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3131	error = inode_newsize_ok(inode, offset + len);
3132	if (error)
3133		goto out;
3134
3135	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3136		error = -EPERM;
3137		goto out;
3138	}
3139
3140	start = offset >> PAGE_SHIFT;
3141	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3142	/* Try to avoid a swapstorm if len is impossible to satisfy */
3143	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3144		error = -ENOSPC;
3145		goto out;
3146	}
3147
3148	shmem_falloc.waitq = NULL;
3149	shmem_falloc.start = start;
3150	shmem_falloc.next  = start;
3151	shmem_falloc.nr_falloced = 0;
3152	shmem_falloc.nr_unswapped = 0;
3153	spin_lock(&inode->i_lock);
3154	inode->i_private = &shmem_falloc;
3155	spin_unlock(&inode->i_lock);
3156
3157	/*
3158	 * info->fallocend is only relevant when huge pages might be
3159	 * involved: to prevent split_huge_page() freeing fallocated
3160	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3161	 */
3162	undo_fallocend = info->fallocend;
3163	if (info->fallocend < end)
3164		info->fallocend = end;
3165
3166	for (index = start; index < end; ) {
3167		struct folio *folio;
3168
3169		/*
3170		 * Good, the fallocate(2) manpage permits EINTR: we may have
3171		 * been interrupted because we are using up too much memory.
3172		 */
3173		if (signal_pending(current))
3174			error = -EINTR;
3175		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3176			error = -ENOMEM;
3177		else
3178			error = shmem_get_folio(inode, index, &folio,
3179						SGP_FALLOC);
3180		if (error) {
3181			info->fallocend = undo_fallocend;
3182			/* Remove the !uptodate folios we added */
3183			if (index > start) {
3184				shmem_undo_range(inode,
3185				    (loff_t)start << PAGE_SHIFT,
3186				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3187			}
3188			goto undone;
3189		}
3190
3191		/*
3192		 * Here is a more important optimization than it appears:
3193		 * a second SGP_FALLOC on the same large folio will clear it,
3194		 * making it uptodate and un-undoable if we fail later.
3195		 */
3196		index = folio_next_index(folio);
3197		/* Beware 32-bit wraparound */
3198		if (!index)
3199			index--;
3200
3201		/*
3202		 * Inform shmem_writepage() how far we have reached.
3203		 * No need for lock or barrier: we have the page lock.
3204		 */
3205		if (!folio_test_uptodate(folio))
3206			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3207		shmem_falloc.next = index;
3208
3209		/*
3210		 * If !uptodate, leave it that way so that freeable folios
3211		 * can be recognized if we need to rollback on error later.
3212		 * But mark it dirty so that memory pressure will swap rather
3213		 * than free the folios we are allocating (and SGP_CACHE folios
3214		 * might still be clean: we now need to mark those dirty too).
3215		 */
3216		folio_mark_dirty(folio);
3217		folio_unlock(folio);
3218		folio_put(folio);
3219		cond_resched();
3220	}
3221
3222	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3223		i_size_write(inode, offset + len);
 
3224undone:
3225	spin_lock(&inode->i_lock);
3226	inode->i_private = NULL;
3227	spin_unlock(&inode->i_lock);
3228out:
3229	if (!error)
3230		file_modified(file);
3231	inode_unlock(inode);
3232	return error;
3233}
3234
3235static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3236{
3237	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3238
3239	buf->f_type = TMPFS_MAGIC;
3240	buf->f_bsize = PAGE_SIZE;
3241	buf->f_namelen = NAME_MAX;
3242	if (sbinfo->max_blocks) {
3243		buf->f_blocks = sbinfo->max_blocks;
3244		buf->f_bavail =
3245		buf->f_bfree  = sbinfo->max_blocks -
3246				percpu_counter_sum(&sbinfo->used_blocks);
3247	}
3248	if (sbinfo->max_inodes) {
3249		buf->f_files = sbinfo->max_inodes;
3250		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3251	}
3252	/* else leave those fields 0 like simple_statfs */
3253
3254	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3255
3256	return 0;
3257}
3258
3259/*
3260 * File creation. Allocate an inode, and we're done..
3261 */
3262static int
3263shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3264	    struct dentry *dentry, umode_t mode, dev_t dev)
3265{
3266	struct inode *inode;
3267	int error;
3268
3269	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3270	if (IS_ERR(inode))
3271		return PTR_ERR(inode);
 
 
 
 
 
 
 
3272
3273	error = simple_acl_create(dir, inode);
3274	if (error)
3275		goto out_iput;
3276	error = security_inode_init_security(inode, dir, &dentry->d_name,
3277					     shmem_initxattrs, NULL);
3278	if (error && error != -EOPNOTSUPP)
3279		goto out_iput;
3280
3281	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3282	if (error)
3283		goto out_iput;
3284
3285	dir->i_size += BOGO_DIRENT_SIZE;
3286	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3287	inode_inc_iversion(dir);
3288	d_instantiate(dentry, inode);
3289	dget(dentry); /* Extra count - pin the dentry in core */
3290	return error;
3291
3292out_iput:
3293	iput(inode);
3294	return error;
3295}
3296
3297static int
3298shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3299	      struct file *file, umode_t mode)
3300{
3301	struct inode *inode;
3302	int error;
3303
3304	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3305	if (IS_ERR(inode)) {
3306		error = PTR_ERR(inode);
3307		goto err_out;
 
 
 
 
 
 
 
3308	}
3309	error = security_inode_init_security(inode, dir, NULL,
3310					     shmem_initxattrs, NULL);
3311	if (error && error != -EOPNOTSUPP)
3312		goto out_iput;
3313	error = simple_acl_create(dir, inode);
3314	if (error)
3315		goto out_iput;
3316	d_tmpfile(file, inode);
3317
3318err_out:
3319	return finish_open_simple(file, error);
3320out_iput:
3321	iput(inode);
3322	return error;
3323}
3324
3325static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3326		       struct dentry *dentry, umode_t mode)
3327{
3328	int error;
3329
3330	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3331	if (error)
3332		return error;
3333	inc_nlink(dir);
3334	return 0;
3335}
3336
3337static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3338			struct dentry *dentry, umode_t mode, bool excl)
3339{
3340	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3341}
3342
3343/*
3344 * Link a file..
3345 */
3346static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3347		      struct dentry *dentry)
3348{
3349	struct inode *inode = d_inode(old_dentry);
3350	int ret = 0;
3351
3352	/*
3353	 * No ordinary (disk based) filesystem counts links as inodes;
3354	 * but each new link needs a new dentry, pinning lowmem, and
3355	 * tmpfs dentries cannot be pruned until they are unlinked.
3356	 * But if an O_TMPFILE file is linked into the tmpfs, the
3357	 * first link must skip that, to get the accounting right.
3358	 */
3359	if (inode->i_nlink) {
3360		ret = shmem_reserve_inode(inode->i_sb, NULL);
3361		if (ret)
3362			goto out;
3363	}
3364
3365	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3366	if (ret) {
3367		if (inode->i_nlink)
3368			shmem_free_inode(inode->i_sb, 0);
3369		goto out;
3370	}
3371
3372	dir->i_size += BOGO_DIRENT_SIZE;
3373	inode_set_mtime_to_ts(dir,
3374			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3375	inode_inc_iversion(dir);
3376	inc_nlink(inode);
3377	ihold(inode);	/* New dentry reference */
3378	dget(dentry);	/* Extra pinning count for the created dentry */
3379	d_instantiate(dentry, inode);
3380out:
3381	return ret;
3382}
3383
3384static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3385{
3386	struct inode *inode = d_inode(dentry);
3387
3388	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3389		shmem_free_inode(inode->i_sb, 0);
3390
3391	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3392
3393	dir->i_size -= BOGO_DIRENT_SIZE;
3394	inode_set_mtime_to_ts(dir,
3395			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3396	inode_inc_iversion(dir);
3397	drop_nlink(inode);
3398	dput(dentry);	/* Undo the count from "create" - does all the work */
3399	return 0;
3400}
3401
3402static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3403{
3404	if (!simple_offset_empty(dentry))
3405		return -ENOTEMPTY;
3406
3407	drop_nlink(d_inode(dentry));
3408	drop_nlink(dir);
3409	return shmem_unlink(dir, dentry);
3410}
3411
3412static int shmem_whiteout(struct mnt_idmap *idmap,
3413			  struct inode *old_dir, struct dentry *old_dentry)
3414{
3415	struct dentry *whiteout;
3416	int error;
3417
3418	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3419	if (!whiteout)
3420		return -ENOMEM;
3421
3422	error = shmem_mknod(idmap, old_dir, whiteout,
3423			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3424	dput(whiteout);
3425	if (error)
3426		return error;
3427
3428	/*
3429	 * Cheat and hash the whiteout while the old dentry is still in
3430	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3431	 *
3432	 * d_lookup() will consistently find one of them at this point,
3433	 * not sure which one, but that isn't even important.
3434	 */
3435	d_rehash(whiteout);
3436	return 0;
3437}
3438
3439/*
3440 * The VFS layer already does all the dentry stuff for rename,
3441 * we just have to decrement the usage count for the target if
3442 * it exists so that the VFS layer correctly free's it when it
3443 * gets overwritten.
3444 */
3445static int shmem_rename2(struct mnt_idmap *idmap,
3446			 struct inode *old_dir, struct dentry *old_dentry,
3447			 struct inode *new_dir, struct dentry *new_dentry,
3448			 unsigned int flags)
3449{
3450	struct inode *inode = d_inode(old_dentry);
3451	int they_are_dirs = S_ISDIR(inode->i_mode);
3452	int error;
3453
3454	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3455		return -EINVAL;
3456
3457	if (flags & RENAME_EXCHANGE)
3458		return simple_offset_rename_exchange(old_dir, old_dentry,
3459						     new_dir, new_dentry);
3460
3461	if (!simple_offset_empty(new_dentry))
3462		return -ENOTEMPTY;
3463
3464	if (flags & RENAME_WHITEOUT) {
3465		error = shmem_whiteout(idmap, old_dir, old_dentry);
3466		if (error)
3467			return error;
3468	}
3469
3470	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3471	if (error)
3472		return error;
3473
3474	if (d_really_is_positive(new_dentry)) {
3475		(void) shmem_unlink(new_dir, new_dentry);
3476		if (they_are_dirs) {
3477			drop_nlink(d_inode(new_dentry));
3478			drop_nlink(old_dir);
3479		}
3480	} else if (they_are_dirs) {
3481		drop_nlink(old_dir);
3482		inc_nlink(new_dir);
3483	}
3484
3485	old_dir->i_size -= BOGO_DIRENT_SIZE;
3486	new_dir->i_size += BOGO_DIRENT_SIZE;
3487	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3488	inode_inc_iversion(old_dir);
3489	inode_inc_iversion(new_dir);
3490	return 0;
3491}
3492
3493static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3494			 struct dentry *dentry, const char *symname)
3495{
3496	int error;
3497	int len;
3498	struct inode *inode;
3499	struct folio *folio;
 
 
3500
3501	len = strlen(symname) + 1;
3502	if (len > PAGE_SIZE)
3503		return -ENAMETOOLONG;
3504
3505	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3506				VM_NORESERVE);
3507	if (IS_ERR(inode))
3508		return PTR_ERR(inode);
3509
3510	error = security_inode_init_security(inode, dir, &dentry->d_name,
3511					     shmem_initxattrs, NULL);
3512	if (error && error != -EOPNOTSUPP)
3513		goto out_iput;
3514
3515	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3516	if (error)
3517		goto out_iput;
 
3518
 
3519	inode->i_size = len-1;
3520	if (len <= SHORT_SYMLINK_LEN) {
3521		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3522		if (!inode->i_link) {
3523			error = -ENOMEM;
3524			goto out_remove_offset;
3525		}
3526		inode->i_op = &shmem_short_symlink_operations;
3527	} else {
3528		inode_nohighmem(inode);
 
 
 
 
3529		inode->i_mapping->a_ops = &shmem_aops;
3530		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3531		if (error)
3532			goto out_remove_offset;
3533		inode->i_op = &shmem_symlink_inode_operations;
3534		memcpy(folio_address(folio), symname, len);
3535		folio_mark_uptodate(folio);
3536		folio_mark_dirty(folio);
3537		folio_unlock(folio);
3538		folio_put(folio);
 
 
3539	}
3540	dir->i_size += BOGO_DIRENT_SIZE;
3541	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3542	inode_inc_iversion(dir);
3543	d_instantiate(dentry, inode);
3544	dget(dentry);
3545	return 0;
 
3546
3547out_remove_offset:
3548	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3549out_iput:
3550	iput(inode);
3551	return error;
3552}
3553
3554static void shmem_put_link(void *arg)
3555{
3556	folio_mark_accessed(arg);
3557	folio_put(arg);
 
 
 
 
3558}
3559
3560static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3561				  struct delayed_call *done)
3562{
3563	struct folio *folio = NULL;
3564	int error;
3565
3566	if (!dentry) {
3567		folio = filemap_get_folio(inode->i_mapping, 0);
3568		if (IS_ERR(folio))
3569			return ERR_PTR(-ECHILD);
3570		if (PageHWPoison(folio_page(folio, 0)) ||
3571		    !folio_test_uptodate(folio)) {
3572			folio_put(folio);
3573			return ERR_PTR(-ECHILD);
3574		}
3575	} else {
3576		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3577		if (error)
3578			return ERR_PTR(error);
3579		if (!folio)
3580			return ERR_PTR(-ECHILD);
3581		if (PageHWPoison(folio_page(folio, 0))) {
3582			folio_unlock(folio);
3583			folio_put(folio);
3584			return ERR_PTR(-ECHILD);
3585		}
3586		folio_unlock(folio);
3587	}
3588	set_delayed_call(done, shmem_put_link, folio);
3589	return folio_address(folio);
3590}
3591
3592#ifdef CONFIG_TMPFS_XATTR
3593
3594static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3595{
3596	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3597
3598	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3599
3600	return 0;
3601}
3602
3603static int shmem_fileattr_set(struct mnt_idmap *idmap,
3604			      struct dentry *dentry, struct fileattr *fa)
3605{
3606	struct inode *inode = d_inode(dentry);
3607	struct shmem_inode_info *info = SHMEM_I(inode);
3608
3609	if (fileattr_has_fsx(fa))
3610		return -EOPNOTSUPP;
3611	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3612		return -EOPNOTSUPP;
3613
3614	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3615		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3616
3617	shmem_set_inode_flags(inode, info->fsflags);
3618	inode_set_ctime_current(inode);
3619	inode_inc_iversion(inode);
3620	return 0;
3621}
3622
3623/*
3624 * Superblocks without xattr inode operations may get some security.* xattr
3625 * support from the LSM "for free". As soon as we have any other xattrs
3626 * like ACLs, we also need to implement the security.* handlers at
3627 * filesystem level, though.
3628 */
3629
3630/*
3631 * Callback for security_inode_init_security() for acquiring xattrs.
3632 */
3633static int shmem_initxattrs(struct inode *inode,
3634			    const struct xattr *xattr_array, void *fs_info)
 
3635{
3636	struct shmem_inode_info *info = SHMEM_I(inode);
3637	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3638	const struct xattr *xattr;
3639	struct simple_xattr *new_xattr;
3640	size_t ispace = 0;
3641	size_t len;
3642
3643	if (sbinfo->max_inodes) {
3644		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3645			ispace += simple_xattr_space(xattr->name,
3646				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3647		}
3648		if (ispace) {
3649			raw_spin_lock(&sbinfo->stat_lock);
3650			if (sbinfo->free_ispace < ispace)
3651				ispace = 0;
3652			else
3653				sbinfo->free_ispace -= ispace;
3654			raw_spin_unlock(&sbinfo->stat_lock);
3655			if (!ispace)
3656				return -ENOSPC;
3657		}
3658	}
3659
3660	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3661		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3662		if (!new_xattr)
3663			break;
3664
3665		len = strlen(xattr->name) + 1;
3666		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3667					  GFP_KERNEL_ACCOUNT);
3668		if (!new_xattr->name) {
3669			kvfree(new_xattr);
3670			break;
3671		}
3672
3673		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3674		       XATTR_SECURITY_PREFIX_LEN);
3675		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3676		       xattr->name, len);
3677
3678		simple_xattr_add(&info->xattrs, new_xattr);
3679	}
3680
3681	if (xattr->name != NULL) {
3682		if (ispace) {
3683			raw_spin_lock(&sbinfo->stat_lock);
3684			sbinfo->free_ispace += ispace;
3685			raw_spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686		}
3687		simple_xattrs_free(&info->xattrs, NULL);
3688		return -ENOMEM;
3689	}
3690
3691	return 0;
3692}
3693
3694static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3695				   struct dentry *unused, struct inode *inode,
3696				   const char *name, void *buffer, size_t size)
3697{
3698	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
3699
3700	name = xattr_full_name(handler, name);
3701	return simple_xattr_get(&info->xattrs, name, buffer, size);
3702}
3703
3704static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3705				   struct mnt_idmap *idmap,
3706				   struct dentry *unused, struct inode *inode,
3707				   const char *name, const void *value,
3708				   size_t size, int flags)
3709{
3710	struct shmem_inode_info *info = SHMEM_I(inode);
3711	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3712	struct simple_xattr *old_xattr;
3713	size_t ispace = 0;
 
 
 
 
 
 
 
 
 
 
3714
3715	name = xattr_full_name(handler, name);
3716	if (value && sbinfo->max_inodes) {
3717		ispace = simple_xattr_space(name, size);
3718		raw_spin_lock(&sbinfo->stat_lock);
3719		if (sbinfo->free_ispace < ispace)
3720			ispace = 0;
3721		else
3722			sbinfo->free_ispace -= ispace;
3723		raw_spin_unlock(&sbinfo->stat_lock);
3724		if (!ispace)
3725			return -ENOSPC;
3726	}
3727
3728	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3729	if (!IS_ERR(old_xattr)) {
3730		ispace = 0;
3731		if (old_xattr && sbinfo->max_inodes)
3732			ispace = simple_xattr_space(old_xattr->name,
3733						    old_xattr->size);
3734		simple_xattr_free(old_xattr);
3735		old_xattr = NULL;
3736		inode_set_ctime_current(inode);
3737		inode_inc_iversion(inode);
3738	}
3739	if (ispace) {
3740		raw_spin_lock(&sbinfo->stat_lock);
3741		sbinfo->free_ispace += ispace;
3742		raw_spin_unlock(&sbinfo->stat_lock);
3743	}
3744	return PTR_ERR(old_xattr);
3745}
3746
3747static const struct xattr_handler shmem_security_xattr_handler = {
3748	.prefix = XATTR_SECURITY_PREFIX,
3749	.get = shmem_xattr_handler_get,
3750	.set = shmem_xattr_handler_set,
3751};
3752
3753static const struct xattr_handler shmem_trusted_xattr_handler = {
3754	.prefix = XATTR_TRUSTED_PREFIX,
3755	.get = shmem_xattr_handler_get,
3756	.set = shmem_xattr_handler_set,
3757};
 
 
3758
3759static const struct xattr_handler shmem_user_xattr_handler = {
3760	.prefix = XATTR_USER_PREFIX,
3761	.get = shmem_xattr_handler_get,
3762	.set = shmem_xattr_handler_set,
3763};
3764
3765static const struct xattr_handler * const shmem_xattr_handlers[] = {
3766	&shmem_security_xattr_handler,
3767	&shmem_trusted_xattr_handler,
3768	&shmem_user_xattr_handler,
3769	NULL
3770};
3771
3772static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3773{
3774	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3775	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3776}
3777#endif /* CONFIG_TMPFS_XATTR */
3778
3779static const struct inode_operations shmem_short_symlink_operations = {
3780	.getattr	= shmem_getattr,
3781	.setattr	= shmem_setattr,
3782	.get_link	= simple_get_link,
3783#ifdef CONFIG_TMPFS_XATTR
 
 
3784	.listxattr	= shmem_listxattr,
 
3785#endif
3786};
3787
3788static const struct inode_operations shmem_symlink_inode_operations = {
3789	.getattr	= shmem_getattr,
3790	.setattr	= shmem_setattr,
3791	.get_link	= shmem_get_link,
3792#ifdef CONFIG_TMPFS_XATTR
 
 
3793	.listxattr	= shmem_listxattr,
 
3794#endif
3795};
3796
3797static struct dentry *shmem_get_parent(struct dentry *child)
3798{
3799	return ERR_PTR(-ESTALE);
3800}
3801
3802static int shmem_match(struct inode *ino, void *vfh)
3803{
3804	__u32 *fh = vfh;
3805	__u64 inum = fh[2];
3806	inum = (inum << 32) | fh[1];
3807	return ino->i_ino == inum && fh[0] == ino->i_generation;
3808}
3809
3810/* Find any alias of inode, but prefer a hashed alias */
3811static struct dentry *shmem_find_alias(struct inode *inode)
3812{
3813	struct dentry *alias = d_find_alias(inode);
3814
3815	return alias ?: d_find_any_alias(inode);
3816}
3817
3818static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3819		struct fid *fid, int fh_len, int fh_type)
3820{
3821	struct inode *inode;
3822	struct dentry *dentry = NULL;
3823	u64 inum;
3824
3825	if (fh_len < 3)
3826		return NULL;
3827
3828	inum = fid->raw[2];
3829	inum = (inum << 32) | fid->raw[1];
3830
3831	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3832			shmem_match, fid->raw);
3833	if (inode) {
3834		dentry = shmem_find_alias(inode);
3835		iput(inode);
3836	}
3837
3838	return dentry;
3839}
3840
3841static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3842				struct inode *parent)
3843{
3844	if (*len < 3) {
3845		*len = 3;
3846		return FILEID_INVALID;
3847	}
3848
3849	if (inode_unhashed(inode)) {
3850		/* Unfortunately insert_inode_hash is not idempotent,
3851		 * so as we hash inodes here rather than at creation
3852		 * time, we need a lock to ensure we only try
3853		 * to do it once
3854		 */
3855		static DEFINE_SPINLOCK(lock);
3856		spin_lock(&lock);
3857		if (inode_unhashed(inode))
3858			__insert_inode_hash(inode,
3859					    inode->i_ino + inode->i_generation);
3860		spin_unlock(&lock);
3861	}
3862
3863	fh[0] = inode->i_generation;
3864	fh[1] = inode->i_ino;
3865	fh[2] = ((__u64)inode->i_ino) >> 32;
3866
3867	*len = 3;
3868	return 1;
3869}
3870
3871static const struct export_operations shmem_export_ops = {
3872	.get_parent     = shmem_get_parent,
3873	.encode_fh      = shmem_encode_fh,
3874	.fh_to_dentry	= shmem_fh_to_dentry,
3875};
3876
3877enum shmem_param {
3878	Opt_gid,
3879	Opt_huge,
3880	Opt_mode,
3881	Opt_mpol,
3882	Opt_nr_blocks,
3883	Opt_nr_inodes,
3884	Opt_size,
3885	Opt_uid,
3886	Opt_inode32,
3887	Opt_inode64,
3888	Opt_noswap,
3889	Opt_quota,
3890	Opt_usrquota,
3891	Opt_grpquota,
3892	Opt_usrquota_block_hardlimit,
3893	Opt_usrquota_inode_hardlimit,
3894	Opt_grpquota_block_hardlimit,
3895	Opt_grpquota_inode_hardlimit,
3896};
3897
3898static const struct constant_table shmem_param_enums_huge[] = {
3899	{"never",	SHMEM_HUGE_NEVER },
3900	{"always",	SHMEM_HUGE_ALWAYS },
3901	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3902	{"advise",	SHMEM_HUGE_ADVISE },
3903	{}
3904};
3905
3906const struct fs_parameter_spec shmem_fs_parameters[] = {
3907	fsparam_u32   ("gid",		Opt_gid),
3908	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3909	fsparam_u32oct("mode",		Opt_mode),
3910	fsparam_string("mpol",		Opt_mpol),
3911	fsparam_string("nr_blocks",	Opt_nr_blocks),
3912	fsparam_string("nr_inodes",	Opt_nr_inodes),
3913	fsparam_string("size",		Opt_size),
3914	fsparam_u32   ("uid",		Opt_uid),
3915	fsparam_flag  ("inode32",	Opt_inode32),
3916	fsparam_flag  ("inode64",	Opt_inode64),
3917	fsparam_flag  ("noswap",	Opt_noswap),
3918#ifdef CONFIG_TMPFS_QUOTA
3919	fsparam_flag  ("quota",		Opt_quota),
3920	fsparam_flag  ("usrquota",	Opt_usrquota),
3921	fsparam_flag  ("grpquota",	Opt_grpquota),
3922	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3923	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3924	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3925	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3926#endif
3927	{}
3928};
3929
3930static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3931{
3932	struct shmem_options *ctx = fc->fs_private;
3933	struct fs_parse_result result;
3934	unsigned long long size;
3935	char *rest;
3936	int opt;
3937	kuid_t kuid;
3938	kgid_t kgid;
3939
3940	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3941	if (opt < 0)
3942		return opt;
3943
3944	switch (opt) {
3945	case Opt_size:
3946		size = memparse(param->string, &rest);
3947		if (*rest == '%') {
3948			size <<= PAGE_SHIFT;
3949			size *= totalram_pages();
3950			do_div(size, 100);
3951			rest++;
3952		}
3953		if (*rest)
3954			goto bad_value;
3955		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3956		ctx->seen |= SHMEM_SEEN_BLOCKS;
3957		break;
3958	case Opt_nr_blocks:
3959		ctx->blocks = memparse(param->string, &rest);
3960		if (*rest || ctx->blocks > LONG_MAX)
3961			goto bad_value;
3962		ctx->seen |= SHMEM_SEEN_BLOCKS;
3963		break;
3964	case Opt_nr_inodes:
3965		ctx->inodes = memparse(param->string, &rest);
3966		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3967			goto bad_value;
3968		ctx->seen |= SHMEM_SEEN_INODES;
3969		break;
3970	case Opt_mode:
3971		ctx->mode = result.uint_32 & 07777;
3972		break;
3973	case Opt_uid:
3974		kuid = make_kuid(current_user_ns(), result.uint_32);
3975		if (!uid_valid(kuid))
3976			goto bad_value;
3977
3978		/*
3979		 * The requested uid must be representable in the
3980		 * filesystem's idmapping.
3981		 */
3982		if (!kuid_has_mapping(fc->user_ns, kuid))
3983			goto bad_value;
3984
3985		ctx->uid = kuid;
3986		break;
3987	case Opt_gid:
3988		kgid = make_kgid(current_user_ns(), result.uint_32);
3989		if (!gid_valid(kgid))
3990			goto bad_value;
3991
3992		/*
3993		 * The requested gid must be representable in the
3994		 * filesystem's idmapping.
3995		 */
3996		if (!kgid_has_mapping(fc->user_ns, kgid))
3997			goto bad_value;
3998
3999		ctx->gid = kgid;
4000		break;
4001	case Opt_huge:
4002		ctx->huge = result.uint_32;
4003		if (ctx->huge != SHMEM_HUGE_NEVER &&
4004		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4005		      has_transparent_hugepage()))
4006			goto unsupported_parameter;
4007		ctx->seen |= SHMEM_SEEN_HUGE;
4008		break;
4009	case Opt_mpol:
4010		if (IS_ENABLED(CONFIG_NUMA)) {
4011			mpol_put(ctx->mpol);
4012			ctx->mpol = NULL;
4013			if (mpol_parse_str(param->string, &ctx->mpol))
4014				goto bad_value;
4015			break;
4016		}
4017		goto unsupported_parameter;
4018	case Opt_inode32:
4019		ctx->full_inums = false;
4020		ctx->seen |= SHMEM_SEEN_INUMS;
4021		break;
4022	case Opt_inode64:
4023		if (sizeof(ino_t) < 8) {
4024			return invalfc(fc,
4025				       "Cannot use inode64 with <64bit inums in kernel\n");
4026		}
4027		ctx->full_inums = true;
4028		ctx->seen |= SHMEM_SEEN_INUMS;
4029		break;
4030	case Opt_noswap:
4031		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4032			return invalfc(fc,
4033				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4034		}
4035		ctx->noswap = true;
4036		ctx->seen |= SHMEM_SEEN_NOSWAP;
4037		break;
4038	case Opt_quota:
4039		if (fc->user_ns != &init_user_ns)
4040			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4041		ctx->seen |= SHMEM_SEEN_QUOTA;
4042		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4043		break;
4044	case Opt_usrquota:
4045		if (fc->user_ns != &init_user_ns)
4046			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4047		ctx->seen |= SHMEM_SEEN_QUOTA;
4048		ctx->quota_types |= QTYPE_MASK_USR;
4049		break;
4050	case Opt_grpquota:
4051		if (fc->user_ns != &init_user_ns)
4052			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4053		ctx->seen |= SHMEM_SEEN_QUOTA;
4054		ctx->quota_types |= QTYPE_MASK_GRP;
4055		break;
4056	case Opt_usrquota_block_hardlimit:
4057		size = memparse(param->string, &rest);
4058		if (*rest || !size)
4059			goto bad_value;
4060		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4061			return invalfc(fc,
4062				       "User quota block hardlimit too large.");
4063		ctx->qlimits.usrquota_bhardlimit = size;
4064		break;
4065	case Opt_grpquota_block_hardlimit:
4066		size = memparse(param->string, &rest);
4067		if (*rest || !size)
4068			goto bad_value;
4069		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4070			return invalfc(fc,
4071				       "Group quota block hardlimit too large.");
4072		ctx->qlimits.grpquota_bhardlimit = size;
4073		break;
4074	case Opt_usrquota_inode_hardlimit:
4075		size = memparse(param->string, &rest);
4076		if (*rest || !size)
4077			goto bad_value;
4078		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4079			return invalfc(fc,
4080				       "User quota inode hardlimit too large.");
4081		ctx->qlimits.usrquota_ihardlimit = size;
4082		break;
4083	case Opt_grpquota_inode_hardlimit:
4084		size = memparse(param->string, &rest);
4085		if (*rest || !size)
4086			goto bad_value;
4087		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4088			return invalfc(fc,
4089				       "Group quota inode hardlimit too large.");
4090		ctx->qlimits.grpquota_ihardlimit = size;
4091		break;
4092	}
4093	return 0;
4094
4095unsupported_parameter:
4096	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4097bad_value:
4098	return invalfc(fc, "Bad value for '%s'", param->key);
4099}
4100
4101static int shmem_parse_options(struct fs_context *fc, void *data)
4102{
4103	char *options = data;
4104
4105	if (options) {
4106		int err = security_sb_eat_lsm_opts(options, &fc->security);
4107		if (err)
4108			return err;
4109	}
4110
4111	while (options != NULL) {
4112		char *this_char = options;
4113		for (;;) {
4114			/*
4115			 * NUL-terminate this option: unfortunately,
4116			 * mount options form a comma-separated list,
4117			 * but mpol's nodelist may also contain commas.
4118			 */
4119			options = strchr(options, ',');
4120			if (options == NULL)
4121				break;
4122			options++;
4123			if (!isdigit(*options)) {
4124				options[-1] = '\0';
4125				break;
4126			}
4127		}
4128		if (*this_char) {
4129			char *value = strchr(this_char, '=');
4130			size_t len = 0;
4131			int err;
4132
4133			if (value) {
4134				*value++ = '\0';
4135				len = strlen(value);
 
 
 
 
 
 
 
 
 
 
 
4136			}
4137			err = vfs_parse_fs_string(fc, this_char, value, len);
4138			if (err < 0)
4139				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4140		}
4141	}
 
4142	return 0;
 
 
 
 
 
 
 
 
4143}
4144
4145/*
4146 * Reconfigure a shmem filesystem.
4147 */
4148static int shmem_reconfigure(struct fs_context *fc)
4149{
4150	struct shmem_options *ctx = fc->fs_private;
4151	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4152	unsigned long used_isp;
4153	struct mempolicy *mpol = NULL;
4154	const char *err;
4155
4156	raw_spin_lock(&sbinfo->stat_lock);
4157	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4158
4159	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4160		if (!sbinfo->max_blocks) {
4161			err = "Cannot retroactively limit size";
4162			goto out;
4163		}
4164		if (percpu_counter_compare(&sbinfo->used_blocks,
4165					   ctx->blocks) > 0) {
4166			err = "Too small a size for current use";
4167			goto out;
4168		}
4169	}
4170	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4171		if (!sbinfo->max_inodes) {
4172			err = "Cannot retroactively limit inodes";
4173			goto out;
4174		}
4175		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4176			err = "Too few inodes for current use";
4177			goto out;
4178		}
4179	}
4180
4181	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4182	    sbinfo->next_ino > UINT_MAX) {
4183		err = "Current inum too high to switch to 32-bit inums";
4184		goto out;
4185	}
4186	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4187		err = "Cannot disable swap on remount";
4188		goto out;
4189	}
4190	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4191		err = "Cannot enable swap on remount if it was disabled on first mount";
4192		goto out;
4193	}
4194
4195	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4196	    !sb_any_quota_loaded(fc->root->d_sb)) {
4197		err = "Cannot enable quota on remount";
4198		goto out;
4199	}
4200
4201#ifdef CONFIG_TMPFS_QUOTA
4202#define CHANGED_LIMIT(name)						\
4203	(ctx->qlimits.name## hardlimit &&				\
4204	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4205
4206	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4207	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4208		err = "Cannot change global quota limit on remount";
4209		goto out;
4210	}
4211#endif /* CONFIG_TMPFS_QUOTA */
4212
4213	if (ctx->seen & SHMEM_SEEN_HUGE)
4214		sbinfo->huge = ctx->huge;
4215	if (ctx->seen & SHMEM_SEEN_INUMS)
4216		sbinfo->full_inums = ctx->full_inums;
4217	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4218		sbinfo->max_blocks  = ctx->blocks;
4219	if (ctx->seen & SHMEM_SEEN_INODES) {
4220		sbinfo->max_inodes  = ctx->inodes;
4221		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4222	}
4223
4224	/*
4225	 * Preserve previous mempolicy unless mpol remount option was specified.
4226	 */
4227	if (ctx->mpol) {
4228		mpol = sbinfo->mpol;
4229		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4230		ctx->mpol = NULL;
4231	}
4232
4233	if (ctx->noswap)
4234		sbinfo->noswap = true;
4235
4236	raw_spin_unlock(&sbinfo->stat_lock);
4237	mpol_put(mpol);
4238	return 0;
4239out:
4240	raw_spin_unlock(&sbinfo->stat_lock);
4241	return invalfc(fc, "%s", err);
4242}
4243
4244static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4245{
4246	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4247	struct mempolicy *mpol;
4248
4249	if (sbinfo->max_blocks != shmem_default_max_blocks())
4250		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
 
4251	if (sbinfo->max_inodes != shmem_default_max_inodes())
4252		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4253	if (sbinfo->mode != (0777 | S_ISVTX))
4254		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4255	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4256		seq_printf(seq, ",uid=%u",
4257				from_kuid_munged(&init_user_ns, sbinfo->uid));
4258	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4259		seq_printf(seq, ",gid=%u",
4260				from_kgid_munged(&init_user_ns, sbinfo->gid));
4261
4262	/*
4263	 * Showing inode{64,32} might be useful even if it's the system default,
4264	 * since then people don't have to resort to checking both here and
4265	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4266	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4267	 *
4268	 * We hide it when inode64 isn't the default and we are using 32-bit
4269	 * inodes, since that probably just means the feature isn't even under
4270	 * consideration.
4271	 *
4272	 * As such:
4273	 *
4274	 *                     +-----------------+-----------------+
4275	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4276	 *  +------------------+-----------------+-----------------+
4277	 *  | full_inums=true  | show            | show            |
4278	 *  | full_inums=false | show            | hide            |
4279	 *  +------------------+-----------------+-----------------+
4280	 *
4281	 */
4282	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4283		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4284#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4285	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4286	if (sbinfo->huge)
4287		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4288#endif
4289	mpol = shmem_get_sbmpol(sbinfo);
4290	shmem_show_mpol(seq, mpol);
4291	mpol_put(mpol);
4292	if (sbinfo->noswap)
4293		seq_printf(seq, ",noswap");
4294#ifdef CONFIG_TMPFS_QUOTA
4295	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4296		seq_printf(seq, ",usrquota");
4297	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4298		seq_printf(seq, ",grpquota");
4299	if (sbinfo->qlimits.usrquota_bhardlimit)
4300		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4301			   sbinfo->qlimits.usrquota_bhardlimit);
4302	if (sbinfo->qlimits.grpquota_bhardlimit)
4303		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4304			   sbinfo->qlimits.grpquota_bhardlimit);
4305	if (sbinfo->qlimits.usrquota_ihardlimit)
4306		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4307			   sbinfo->qlimits.usrquota_ihardlimit);
4308	if (sbinfo->qlimits.grpquota_ihardlimit)
4309		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4310			   sbinfo->qlimits.grpquota_ihardlimit);
4311#endif
4312	return 0;
4313}
4314
4315#endif /* CONFIG_TMPFS */
4316
4317static void shmem_put_super(struct super_block *sb)
4318{
4319	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4320
4321#ifdef CONFIG_TMPFS_QUOTA
4322	shmem_disable_quotas(sb);
4323#endif
4324	free_percpu(sbinfo->ino_batch);
4325	percpu_counter_destroy(&sbinfo->used_blocks);
4326	mpol_put(sbinfo->mpol);
4327	kfree(sbinfo);
4328	sb->s_fs_info = NULL;
4329}
4330
4331static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4332{
4333	struct shmem_options *ctx = fc->fs_private;
4334	struct inode *inode;
4335	struct shmem_sb_info *sbinfo;
4336	int error = -ENOMEM;
4337
4338	/* Round up to L1_CACHE_BYTES to resist false sharing */
4339	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4340				L1_CACHE_BYTES), GFP_KERNEL);
4341	if (!sbinfo)
4342		return error;
4343
 
 
 
4344	sb->s_fs_info = sbinfo;
4345
4346#ifdef CONFIG_TMPFS
4347	/*
4348	 * Per default we only allow half of the physical ram per
4349	 * tmpfs instance, limiting inodes to one per page of lowmem;
4350	 * but the internal instance is left unlimited.
4351	 */
4352	if (!(sb->s_flags & SB_KERNMOUNT)) {
4353		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4354			ctx->blocks = shmem_default_max_blocks();
4355		if (!(ctx->seen & SHMEM_SEEN_INODES))
4356			ctx->inodes = shmem_default_max_inodes();
4357		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4358			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4359		sbinfo->noswap = ctx->noswap;
4360	} else {
4361		sb->s_flags |= SB_NOUSER;
4362	}
4363	sb->s_export_op = &shmem_export_ops;
4364	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4365#else
4366	sb->s_flags |= SB_NOUSER;
4367#endif
4368	sbinfo->max_blocks = ctx->blocks;
4369	sbinfo->max_inodes = ctx->inodes;
4370	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4371	if (sb->s_flags & SB_KERNMOUNT) {
4372		sbinfo->ino_batch = alloc_percpu(ino_t);
4373		if (!sbinfo->ino_batch)
4374			goto failed;
4375	}
4376	sbinfo->uid = ctx->uid;
4377	sbinfo->gid = ctx->gid;
4378	sbinfo->full_inums = ctx->full_inums;
4379	sbinfo->mode = ctx->mode;
4380	sbinfo->huge = ctx->huge;
4381	sbinfo->mpol = ctx->mpol;
4382	ctx->mpol = NULL;
4383
4384	raw_spin_lock_init(&sbinfo->stat_lock);
4385	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4386		goto failed;
4387	spin_lock_init(&sbinfo->shrinklist_lock);
4388	INIT_LIST_HEAD(&sbinfo->shrinklist);
4389
4390	sb->s_maxbytes = MAX_LFS_FILESIZE;
4391	sb->s_blocksize = PAGE_SIZE;
4392	sb->s_blocksize_bits = PAGE_SHIFT;
4393	sb->s_magic = TMPFS_MAGIC;
4394	sb->s_op = &shmem_ops;
4395	sb->s_time_gran = 1;
4396#ifdef CONFIG_TMPFS_XATTR
4397	sb->s_xattr = shmem_xattr_handlers;
4398#endif
4399#ifdef CONFIG_TMPFS_POSIX_ACL
4400	sb->s_flags |= SB_POSIXACL;
4401#endif
4402	uuid_t uuid;
4403	uuid_gen(&uuid);
4404	super_set_uuid(sb, uuid.b, sizeof(uuid));
4405
4406#ifdef CONFIG_TMPFS_QUOTA
4407	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4408		sb->dq_op = &shmem_quota_operations;
4409		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4410		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4411
4412		/* Copy the default limits from ctx into sbinfo */
4413		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4414		       sizeof(struct shmem_quota_limits));
4415
4416		if (shmem_enable_quotas(sb, ctx->quota_types))
4417			goto failed;
4418	}
4419#endif /* CONFIG_TMPFS_QUOTA */
4420
4421	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4422				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4423	if (IS_ERR(inode)) {
4424		error = PTR_ERR(inode);
4425		goto failed;
4426	}
4427	inode->i_uid = sbinfo->uid;
4428	inode->i_gid = sbinfo->gid;
4429	sb->s_root = d_make_root(inode);
4430	if (!sb->s_root)
4431		goto failed;
4432	return 0;
4433
4434failed:
4435	shmem_put_super(sb);
4436	return error;
4437}
4438
4439static int shmem_get_tree(struct fs_context *fc)
4440{
4441	return get_tree_nodev(fc, shmem_fill_super);
4442}
4443
4444static void shmem_free_fc(struct fs_context *fc)
4445{
4446	struct shmem_options *ctx = fc->fs_private;
4447
4448	if (ctx) {
4449		mpol_put(ctx->mpol);
4450		kfree(ctx);
4451	}
4452}
4453
4454static const struct fs_context_operations shmem_fs_context_ops = {
4455	.free			= shmem_free_fc,
4456	.get_tree		= shmem_get_tree,
4457#ifdef CONFIG_TMPFS
4458	.parse_monolithic	= shmem_parse_options,
4459	.parse_param		= shmem_parse_one,
4460	.reconfigure		= shmem_reconfigure,
4461#endif
4462};
4463
4464static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4465
4466static struct inode *shmem_alloc_inode(struct super_block *sb)
4467{
4468	struct shmem_inode_info *info;
4469	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4470	if (!info)
4471		return NULL;
4472	return &info->vfs_inode;
4473}
4474
4475static void shmem_free_in_core_inode(struct inode *inode)
4476{
4477	if (S_ISLNK(inode->i_mode))
4478		kfree(inode->i_link);
4479	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4480}
4481
4482static void shmem_destroy_inode(struct inode *inode)
4483{
4484	if (S_ISREG(inode->i_mode))
4485		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4486	if (S_ISDIR(inode->i_mode))
4487		simple_offset_destroy(shmem_get_offset_ctx(inode));
4488}
4489
4490static void shmem_init_inode(void *foo)
4491{
4492	struct shmem_inode_info *info = foo;
4493	inode_init_once(&info->vfs_inode);
4494}
4495
4496static void __init shmem_init_inodecache(void)
4497{
4498	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4499				sizeof(struct shmem_inode_info),
4500				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
 
4501}
4502
4503static void __init shmem_destroy_inodecache(void)
4504{
4505	kmem_cache_destroy(shmem_inode_cachep);
4506}
4507
4508/* Keep the page in page cache instead of truncating it */
4509static int shmem_error_remove_folio(struct address_space *mapping,
4510				   struct folio *folio)
4511{
4512	return 0;
4513}
4514
4515static const struct address_space_operations shmem_aops = {
4516	.writepage	= shmem_writepage,
4517	.dirty_folio	= noop_dirty_folio,
4518#ifdef CONFIG_TMPFS
4519	.write_begin	= shmem_write_begin,
4520	.write_end	= shmem_write_end,
4521#endif
4522#ifdef CONFIG_MIGRATION
4523	.migrate_folio	= migrate_folio,
4524#endif
4525	.error_remove_folio = shmem_error_remove_folio,
4526};
4527
4528static const struct file_operations shmem_file_operations = {
4529	.mmap		= shmem_mmap,
4530	.open		= shmem_file_open,
4531	.get_unmapped_area = shmem_get_unmapped_area,
4532#ifdef CONFIG_TMPFS
4533	.llseek		= shmem_file_llseek,
4534	.read_iter	= shmem_file_read_iter,
4535	.write_iter	= shmem_file_write_iter,
 
 
4536	.fsync		= noop_fsync,
4537	.splice_read	= shmem_file_splice_read,
4538	.splice_write	= iter_file_splice_write,
4539	.fallocate	= shmem_fallocate,
4540#endif
4541};
4542
4543static const struct inode_operations shmem_inode_operations = {
4544	.getattr	= shmem_getattr,
4545	.setattr	= shmem_setattr,
4546#ifdef CONFIG_TMPFS_XATTR
 
 
4547	.listxattr	= shmem_listxattr,
 
4548	.set_acl	= simple_set_acl,
4549	.fileattr_get	= shmem_fileattr_get,
4550	.fileattr_set	= shmem_fileattr_set,
4551#endif
4552};
4553
4554static const struct inode_operations shmem_dir_inode_operations = {
4555#ifdef CONFIG_TMPFS
4556	.getattr	= shmem_getattr,
4557	.create		= shmem_create,
4558	.lookup		= simple_lookup,
4559	.link		= shmem_link,
4560	.unlink		= shmem_unlink,
4561	.symlink	= shmem_symlink,
4562	.mkdir		= shmem_mkdir,
4563	.rmdir		= shmem_rmdir,
4564	.mknod		= shmem_mknod,
4565	.rename		= shmem_rename2,
4566	.tmpfile	= shmem_tmpfile,
4567	.get_offset_ctx	= shmem_get_offset_ctx,
4568#endif
4569#ifdef CONFIG_TMPFS_XATTR
 
 
4570	.listxattr	= shmem_listxattr,
4571	.fileattr_get	= shmem_fileattr_get,
4572	.fileattr_set	= shmem_fileattr_set,
4573#endif
4574#ifdef CONFIG_TMPFS_POSIX_ACL
4575	.setattr	= shmem_setattr,
4576	.set_acl	= simple_set_acl,
4577#endif
4578};
4579
4580static const struct inode_operations shmem_special_inode_operations = {
4581	.getattr	= shmem_getattr,
4582#ifdef CONFIG_TMPFS_XATTR
 
 
4583	.listxattr	= shmem_listxattr,
 
4584#endif
4585#ifdef CONFIG_TMPFS_POSIX_ACL
4586	.setattr	= shmem_setattr,
4587	.set_acl	= simple_set_acl,
4588#endif
4589};
4590
4591static const struct super_operations shmem_ops = {
4592	.alloc_inode	= shmem_alloc_inode,
4593	.free_inode	= shmem_free_in_core_inode,
4594	.destroy_inode	= shmem_destroy_inode,
4595#ifdef CONFIG_TMPFS
4596	.statfs		= shmem_statfs,
 
4597	.show_options	= shmem_show_options,
4598#endif
4599#ifdef CONFIG_TMPFS_QUOTA
4600	.get_dquots	= shmem_get_dquots,
4601#endif
4602	.evict_inode	= shmem_evict_inode,
4603	.drop_inode	= generic_delete_inode,
4604	.put_super	= shmem_put_super,
4605#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4606	.nr_cached_objects	= shmem_unused_huge_count,
4607	.free_cached_objects	= shmem_unused_huge_scan,
4608#endif
4609};
4610
4611static const struct vm_operations_struct shmem_vm_ops = {
4612	.fault		= shmem_fault,
4613	.map_pages	= filemap_map_pages,
4614#ifdef CONFIG_NUMA
4615	.set_policy     = shmem_set_policy,
4616	.get_policy     = shmem_get_policy,
4617#endif
 
4618};
4619
4620static const struct vm_operations_struct shmem_anon_vm_ops = {
4621	.fault		= shmem_fault,
4622	.map_pages	= filemap_map_pages,
4623#ifdef CONFIG_NUMA
4624	.set_policy     = shmem_set_policy,
4625	.get_policy     = shmem_get_policy,
4626#endif
4627};
4628
4629int shmem_init_fs_context(struct fs_context *fc)
4630{
4631	struct shmem_options *ctx;
4632
4633	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4634	if (!ctx)
4635		return -ENOMEM;
4636
4637	ctx->mode = 0777 | S_ISVTX;
4638	ctx->uid = current_fsuid();
4639	ctx->gid = current_fsgid();
4640
4641	fc->fs_private = ctx;
4642	fc->ops = &shmem_fs_context_ops;
4643	return 0;
4644}
4645
4646static struct file_system_type shmem_fs_type = {
4647	.owner		= THIS_MODULE,
4648	.name		= "tmpfs",
4649	.init_fs_context = shmem_init_fs_context,
4650#ifdef CONFIG_TMPFS
4651	.parameters	= shmem_fs_parameters,
4652#endif
4653	.kill_sb	= kill_litter_super,
4654	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4655};
4656
4657void __init shmem_init(void)
4658{
4659	int error;
4660
4661	shmem_init_inodecache();
 
 
4662
4663#ifdef CONFIG_TMPFS_QUOTA
4664	error = register_quota_format(&shmem_quota_format);
4665	if (error < 0) {
4666		pr_err("Could not register quota format\n");
 
 
4667		goto out3;
4668	}
4669#endif
4670
4671	error = register_filesystem(&shmem_fs_type);
4672	if (error) {
4673		pr_err("Could not register tmpfs\n");
4674		goto out2;
4675	}
4676
4677	shm_mnt = kern_mount(&shmem_fs_type);
4678	if (IS_ERR(shm_mnt)) {
4679		error = PTR_ERR(shm_mnt);
4680		pr_err("Could not kern_mount tmpfs\n");
4681		goto out1;
4682	}
4683
4684#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4685	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4686		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4687	else
4688		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4689#endif
4690	return;
4691
4692out1:
4693	unregister_filesystem(&shmem_fs_type);
4694out2:
4695#ifdef CONFIG_TMPFS_QUOTA
4696	unregister_quota_format(&shmem_quota_format);
4697out3:
4698#endif
4699	shmem_destroy_inodecache();
4700	shm_mnt = ERR_PTR(error);
 
4701}
4702
4703#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4704static ssize_t shmem_enabled_show(struct kobject *kobj,
4705				  struct kobj_attribute *attr, char *buf)
4706{
4707	static const int values[] = {
4708		SHMEM_HUGE_ALWAYS,
4709		SHMEM_HUGE_WITHIN_SIZE,
4710		SHMEM_HUGE_ADVISE,
4711		SHMEM_HUGE_NEVER,
4712		SHMEM_HUGE_DENY,
4713		SHMEM_HUGE_FORCE,
4714	};
4715	int len = 0;
4716	int i;
4717
4718	for (i = 0; i < ARRAY_SIZE(values); i++) {
4719		len += sysfs_emit_at(buf, len,
4720				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4721				i ? " " : "", shmem_format_huge(values[i]));
4722	}
4723	len += sysfs_emit_at(buf, len, "\n");
4724
4725	return len;
4726}
4727
4728static ssize_t shmem_enabled_store(struct kobject *kobj,
4729		struct kobj_attribute *attr, const char *buf, size_t count)
4730{
4731	char tmp[16];
4732	int huge;
4733
4734	if (count + 1 > sizeof(tmp))
4735		return -EINVAL;
4736	memcpy(tmp, buf, count);
4737	tmp[count] = '\0';
4738	if (count && tmp[count - 1] == '\n')
4739		tmp[count - 1] = '\0';
4740
4741	huge = shmem_parse_huge(tmp);
4742	if (huge == -EINVAL)
4743		return -EINVAL;
4744	if (!has_transparent_hugepage() &&
4745			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4746		return -EINVAL;
4747
4748	shmem_huge = huge;
4749	if (shmem_huge > SHMEM_HUGE_DENY)
4750		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4751	return count;
4752}
4753
4754struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4755#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4756
4757#else /* !CONFIG_SHMEM */
4758
4759/*
4760 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4761 *
4762 * This is intended for small system where the benefits of the full
4763 * shmem code (swap-backed and resource-limited) are outweighed by
4764 * their complexity. On systems without swap this code should be
4765 * effectively equivalent, but much lighter weight.
4766 */
4767
4768static struct file_system_type shmem_fs_type = {
4769	.name		= "tmpfs",
4770	.init_fs_context = ramfs_init_fs_context,
4771	.parameters	= ramfs_fs_parameters,
4772	.kill_sb	= ramfs_kill_sb,
4773	.fs_flags	= FS_USERNS_MOUNT,
4774};
4775
4776void __init shmem_init(void)
4777{
4778	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4779
4780	shm_mnt = kern_mount(&shmem_fs_type);
4781	BUG_ON(IS_ERR(shm_mnt));
 
 
4782}
4783
4784int shmem_unuse(unsigned int type)
4785{
4786	return 0;
4787}
4788
4789int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4790{
4791	return 0;
4792}
4793
4794void shmem_unlock_mapping(struct address_space *mapping)
4795{
4796}
4797
4798#ifdef CONFIG_MMU
4799unsigned long shmem_get_unmapped_area(struct file *file,
4800				      unsigned long addr, unsigned long len,
4801				      unsigned long pgoff, unsigned long flags)
4802{
4803	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4804}
4805#endif
4806
4807void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4808{
4809	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4810}
4811EXPORT_SYMBOL_GPL(shmem_truncate_range);
4812
4813#define shmem_vm_ops				generic_file_vm_ops
4814#define shmem_anon_vm_ops			generic_file_vm_ops
4815#define shmem_file_operations			ramfs_file_operations
 
4816#define shmem_acct_size(flags, size)		0
4817#define shmem_unacct_size(flags, size)		do {} while (0)
4818
4819static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
4820				struct super_block *sb, struct inode *dir,
4821				umode_t mode, dev_t dev, unsigned long flags)
4822{
4823	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4824	return inode ? inode : ERR_PTR(-ENOSPC);
4825}
4826
4827#endif /* CONFIG_SHMEM */
4828
4829/* common code */
4830
4831static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
4832			loff_t size, unsigned long flags, unsigned int i_flags)
 
 
 
 
4833{
 
4834	struct inode *inode;
4835	struct file *res;
 
 
4836
4837	if (IS_ERR(mnt))
4838		return ERR_CAST(mnt);
4839
4840	if (size < 0 || size > MAX_LFS_FILESIZE)
4841		return ERR_PTR(-EINVAL);
4842
4843	if (shmem_acct_size(flags, size))
4844		return ERR_PTR(-ENOMEM);
4845
4846	if (is_idmapped_mnt(mnt))
4847		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
4848
4849	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4850				S_IFREG | S_IRWXUGO, 0, flags);
4851	if (IS_ERR(inode)) {
4852		shmem_unacct_size(flags, size);
4853		return ERR_CAST(inode);
4854	}
4855	inode->i_flags |= i_flags;
 
4856	inode->i_size = size;
4857	clear_nlink(inode);	/* It is unlinked */
4858	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4859	if (!IS_ERR(res))
4860		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4861				&shmem_file_operations);
4862	if (IS_ERR(res))
4863		iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
4864	return res;
4865}
4866
4867/**
4868 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4869 * 	kernel internal.  There will be NO LSM permission checks against the
4870 * 	underlying inode.  So users of this interface must do LSM checks at a
4871 *	higher layer.  The users are the big_key and shm implementations.  LSM
4872 *	checks are provided at the key or shm level rather than the inode.
4873 * @name: name for dentry (to be seen in /proc/<pid>/maps
4874 * @size: size to be set for the file
4875 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4876 */
4877struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4878{
4879	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4880}
4881EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
4882
4883/**
4884 * shmem_file_setup - get an unlinked file living in tmpfs
4885 * @name: name for dentry (to be seen in /proc/<pid>/maps
4886 * @size: size to be set for the file
4887 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4888 */
4889struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4890{
4891	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4892}
4893EXPORT_SYMBOL_GPL(shmem_file_setup);
4894
4895/**
4896 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4897 * @mnt: the tmpfs mount where the file will be created
4898 * @name: name for dentry (to be seen in /proc/<pid>/maps
4899 * @size: size to be set for the file
4900 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4901 */
4902struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4903				       loff_t size, unsigned long flags)
4904{
4905	return __shmem_file_setup(mnt, name, size, flags, 0);
4906}
4907EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4908
4909/**
4910 * shmem_zero_setup - setup a shared anonymous mapping
4911 * @vma: the vma to be mmapped is prepared by do_mmap
4912 */
4913int shmem_zero_setup(struct vm_area_struct *vma)
4914{
4915	struct file *file;
4916	loff_t size = vma->vm_end - vma->vm_start;
4917
4918	/*
4919	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4920	 * between XFS directory reading and selinux: since this file is only
4921	 * accessible to the user through its mapping, use S_PRIVATE flag to
4922	 * bypass file security, in the same way as shmem_kernel_file_setup().
4923	 */
4924	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4925	if (IS_ERR(file))
4926		return PTR_ERR(file);
4927
4928	if (vma->vm_file)
4929		fput(vma->vm_file);
4930	vma->vm_file = file;
4931	vma->vm_ops = &shmem_anon_vm_ops;
4932
4933	return 0;
4934}
4935
4936/**
4937 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4938 * @mapping:	the folio's address_space
4939 * @index:	the folio index
4940 * @gfp:	the page allocator flags to use if allocating
4941 *
4942 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4943 * with any new page allocations done using the specified allocation flags.
4944 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4945 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4946 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4947 *
4948 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4949 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4950 */
4951struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4952		pgoff_t index, gfp_t gfp)
4953{
4954#ifdef CONFIG_SHMEM
4955	struct inode *inode = mapping->host;
4956	struct folio *folio;
4957	int error;
4958
4959	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4960				    gfp, NULL, NULL);
4961	if (error)
4962		return ERR_PTR(error);
4963
4964	folio_unlock(folio);
4965	return folio;
4966#else
4967	/*
4968	 * The tiny !SHMEM case uses ramfs without swap
4969	 */
4970	return mapping_read_folio_gfp(mapping, index, gfp);
4971#endif
4972}
4973EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4974
4975struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4976					 pgoff_t index, gfp_t gfp)
4977{
4978	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4979	struct page *page;
4980
4981	if (IS_ERR(folio))
4982		return &folio->page;
4983
4984	page = folio_file_page(folio, index);
4985	if (PageHWPoison(page)) {
4986		folio_put(folio);
4987		return ERR_PTR(-EIO);
4988	}
4989
4990	return page;
4991}
4992EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);