Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
 
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
 
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/compaction.h>
  55#include <trace/events/kmem.h>
  56#include <linux/ftrace_event.h>
  57#include <linux/memcontrol.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/page-debug-flags.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64
  65#include <asm/sections.h>
  66#include <asm/tlbflush.h>
 
 
 
 
  67#include <asm/div64.h>
  68#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71static DEFINE_MUTEX(pcp_batch_high_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74DEFINE_PER_CPU(int, numa_node);
  75EXPORT_PER_CPU_SYMBOL(numa_node);
  76#endif
  77
 
 
  78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  79/*
  80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  83 * defined in <linux/topology.h>.
  84 */
  85DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  87#endif
  88
 
 
 
 
 
 
 
  89/*
  90 * Array of node states.
  91 */
  92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  93	[N_POSSIBLE] = NODE_MASK_ALL,
  94	[N_ONLINE] = { { [0] = 1UL } },
  95#ifndef CONFIG_NUMA
  96	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
  97#ifdef CONFIG_HIGHMEM
  98	[N_HIGH_MEMORY] = { { [0] = 1UL } },
  99#endif
 100#ifdef CONFIG_MOVABLE_NODE
 101	[N_MEMORY] = { { [0] = 1UL } },
 102#endif
 103	[N_CPU] = { { [0] = 1UL } },
 104#endif	/* NUMA */
 105};
 106EXPORT_SYMBOL(node_states);
 107
 108/* Protect totalram_pages and zone->managed_pages */
 109static DEFINE_SPINLOCK(managed_page_count_lock);
 110
 111unsigned long totalram_pages __read_mostly;
 112unsigned long totalreserve_pages __read_mostly;
 113/*
 114 * When calculating the number of globally allowed dirty pages, there
 115 * is a certain number of per-zone reserves that should not be
 116 * considered dirtyable memory.  This is the sum of those reserves
 117 * over all existing zones that contribute dirtyable memory.
 118 */
 119unsigned long dirty_balance_reserve __read_mostly;
 120
 121int percpu_pagelist_fraction;
 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 123
 124#ifdef CONFIG_PM_SLEEP
 125/*
 126 * The following functions are used by the suspend/hibernate code to temporarily
 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 128 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 131 * guaranteed not to run in parallel with that modification).
 132 */
 133
 134static gfp_t saved_gfp_mask;
 135
 136void pm_restore_gfp_mask(void)
 137{
 138	WARN_ON(!mutex_is_locked(&pm_mutex));
 139	if (saved_gfp_mask) {
 140		gfp_allowed_mask = saved_gfp_mask;
 141		saved_gfp_mask = 0;
 142	}
 143}
 144
 145void pm_restrict_gfp_mask(void)
 146{
 147	WARN_ON(!mutex_is_locked(&pm_mutex));
 148	WARN_ON(saved_gfp_mask);
 149	saved_gfp_mask = gfp_allowed_mask;
 150	gfp_allowed_mask &= ~GFP_IOFS;
 151}
 152
 153bool pm_suspended_storage(void)
 154{
 155	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
 156		return false;
 157	return true;
 158}
 159#endif /* CONFIG_PM_SLEEP */
 160
 161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 162int pageblock_order __read_mostly;
 163#endif
 164
 165static void __free_pages_ok(struct page *page, unsigned int order);
 
 166
 167/*
 168 * results with 256, 32 in the lowmem_reserve sysctl:
 169 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 170 *	1G machine -> (16M dma, 784M normal, 224M high)
 171 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 172 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 173 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 174 *
 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 176 * don't need any ZONE_NORMAL reservation
 177 */
 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 179#ifdef CONFIG_ZONE_DMA
 180	 256,
 181#endif
 182#ifdef CONFIG_ZONE_DMA32
 183	 256,
 184#endif
 
 185#ifdef CONFIG_HIGHMEM
 186	 32,
 187#endif
 188	 32,
 189};
 190
 191EXPORT_SYMBOL(totalram_pages);
 192
 193static char * const zone_names[MAX_NR_ZONES] = {
 194#ifdef CONFIG_ZONE_DMA
 195	 "DMA",
 196#endif
 197#ifdef CONFIG_ZONE_DMA32
 198	 "DMA32",
 199#endif
 200	 "Normal",
 201#ifdef CONFIG_HIGHMEM
 202	 "HighMem",
 203#endif
 204	 "Movable",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205};
 206
 207int min_free_kbytes = 1024;
 208int user_min_free_kbytes = -1;
 209
 210static unsigned long __meminitdata nr_kernel_pages;
 211static unsigned long __meminitdata nr_all_pages;
 212static unsigned long __meminitdata dma_reserve;
 213
 214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 217static unsigned long __initdata required_kernelcore;
 218static unsigned long __initdata required_movablecore;
 219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 220
 221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 222int movable_zone;
 223EXPORT_SYMBOL(movable_zone);
 224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 225
 226#if MAX_NUMNODES > 1
 227int nr_node_ids __read_mostly = MAX_NUMNODES;
 228int nr_online_nodes __read_mostly = 1;
 229EXPORT_SYMBOL(nr_node_ids);
 230EXPORT_SYMBOL(nr_online_nodes);
 231#endif
 232
 
 
 
 
 
 
 233int page_group_by_mobility_disabled __read_mostly;
 234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235void set_pageblock_migratetype(struct page *page, int migratetype)
 236{
 237	if (unlikely(page_group_by_mobility_disabled &&
 238		     migratetype < MIGRATE_PCPTYPES))
 239		migratetype = MIGRATE_UNMOVABLE;
 240
 241	set_pageblock_flags_group(page, (unsigned long)migratetype,
 242					PB_migrate, PB_migrate_end);
 243}
 244
 245bool oom_killer_disabled __read_mostly;
 246
 247#ifdef CONFIG_DEBUG_VM
 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 249{
 250	int ret = 0;
 251	unsigned seq;
 252	unsigned long pfn = page_to_pfn(page);
 253	unsigned long sp, start_pfn;
 254
 255	do {
 256		seq = zone_span_seqbegin(zone);
 257		start_pfn = zone->zone_start_pfn;
 258		sp = zone->spanned_pages;
 259		if (!zone_spans_pfn(zone, pfn))
 260			ret = 1;
 261	} while (zone_span_seqretry(zone, seq));
 262
 263	if (ret)
 264		pr_err("page %lu outside zone [ %lu - %lu ]\n",
 265			pfn, start_pfn, start_pfn + sp);
 
 266
 267	return ret;
 268}
 269
 270static int page_is_consistent(struct zone *zone, struct page *page)
 271{
 272	if (!pfn_valid_within(page_to_pfn(page)))
 273		return 0;
 274	if (zone != page_zone(page))
 275		return 0;
 276
 277	return 1;
 278}
 279/*
 280 * Temporary debugging check for pages not lying within a given zone.
 281 */
 282static int bad_range(struct zone *zone, struct page *page)
 283{
 284	if (page_outside_zone_boundaries(zone, page))
 285		return 1;
 286	if (!page_is_consistent(zone, page))
 287		return 1;
 288
 289	return 0;
 290}
 291#else
 292static inline int bad_range(struct zone *zone, struct page *page)
 293{
 294	return 0;
 295}
 296#endif
 297
 298static void bad_page(struct page *page, const char *reason,
 299		unsigned long bad_flags)
 300{
 301	static unsigned long resume;
 302	static unsigned long nr_shown;
 303	static unsigned long nr_unshown;
 304
 305	/* Don't complain about poisoned pages */
 306	if (PageHWPoison(page)) {
 307		page_mapcount_reset(page); /* remove PageBuddy */
 308		return;
 309	}
 310
 311	/*
 312	 * Allow a burst of 60 reports, then keep quiet for that minute;
 313	 * or allow a steady drip of one report per second.
 314	 */
 315	if (nr_shown == 60) {
 316		if (time_before(jiffies, resume)) {
 317			nr_unshown++;
 318			goto out;
 319		}
 320		if (nr_unshown) {
 321			printk(KERN_ALERT
 322			      "BUG: Bad page state: %lu messages suppressed\n",
 323				nr_unshown);
 324			nr_unshown = 0;
 325		}
 326		nr_shown = 0;
 327	}
 328	if (nr_shown++ == 0)
 329		resume = jiffies + 60 * HZ;
 330
 331	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 332		current->comm, page_to_pfn(page));
 333	dump_page_badflags(page, reason, bad_flags);
 334
 335	print_modules();
 336	dump_stack();
 337out:
 338	/* Leave bad fields for debug, except PageBuddy could make trouble */
 339	page_mapcount_reset(page); /* remove PageBuddy */
 340	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 341}
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343/*
 344 * Higher-order pages are called "compound pages".  They are structured thusly:
 345 *
 346 * The first PAGE_SIZE page is called the "head page".
 347 *
 348 * The remaining PAGE_SIZE pages are called "tail pages".
 349 *
 350 * All pages have PG_compound set.  All tail pages have their ->first_page
 351 * pointing at the head page.
 352 *
 353 * The first tail page's ->lru.next holds the address of the compound page's
 354 * put_page() function.  Its ->lru.prev holds the order of allocation.
 355 * This usage means that zero-order pages may not be compound.
 356 */
 357
 358static void free_compound_page(struct page *page)
 359{
 360	__free_pages_ok(page, compound_order(page));
 361}
 362
 363void prep_compound_page(struct page *page, unsigned long order)
 364{
 365	int i;
 366	int nr_pages = 1 << order;
 367
 368	set_compound_page_dtor(page, free_compound_page);
 369	set_compound_order(page, order);
 370	__SetPageHead(page);
 371	for (i = 1; i < nr_pages; i++) {
 372		struct page *p = page + i;
 373		set_page_count(p, 0);
 374		p->first_page = page;
 375		/* Make sure p->first_page is always valid for PageTail() */
 376		smp_wmb();
 377		__SetPageTail(p);
 378	}
 379}
 380
 381/* update __split_huge_page_refcount if you change this function */
 382static int destroy_compound_page(struct page *page, unsigned long order)
 383{
 384	int i;
 385	int nr_pages = 1 << order;
 386	int bad = 0;
 387
 388	if (unlikely(compound_order(page) != order)) {
 389		bad_page(page, "wrong compound order", 0);
 390		bad++;
 391	}
 392
 393	__ClearPageHead(page);
 
 394
 395	for (i = 1; i < nr_pages; i++) {
 396		struct page *p = page + i;
 
 397
 398		if (unlikely(!PageTail(p))) {
 399			bad_page(page, "PageTail not set", 0);
 400			bad++;
 401		} else if (unlikely(p->first_page != page)) {
 402			bad_page(page, "first_page not consistent", 0);
 403			bad++;
 404		}
 405		__ClearPageTail(p);
 406	}
 
 407
 408	return bad;
 
 
 
 409}
 410
 411static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 
 
 412{
 413	int i;
 
 
 
 
 
 
 414
 415	/*
 416	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 417	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 
 
 418	 */
 419	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 420	for (i = 0; i < (1 << order); i++)
 421		clear_highpage(page + i);
 422}
 423
 424#ifdef CONFIG_DEBUG_PAGEALLOC
 425unsigned int _debug_guardpage_minorder;
 
 426
 427static int __init debug_guardpage_minorder_setup(char *buf)
 
 428{
 429	unsigned long res;
 
 430
 431	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 432		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 433		return 0;
 434	}
 435	_debug_guardpage_minorder = res;
 436	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 437	return 0;
 438}
 439__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 440
 441static inline void set_page_guard_flag(struct page *page)
 
 
 442{
 443	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 444}
 445
 446static inline void clear_page_guard_flag(struct page *page)
 
 
 447{
 448	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 449}
 450#else
 451static inline void set_page_guard_flag(struct page *page) { }
 452static inline void clear_page_guard_flag(struct page *page) { }
 453#endif
 454
 455static inline void set_page_order(struct page *page, int order)
 
 
 
 
 
 
 456{
 457	set_page_private(page, order);
 458	__SetPageBuddy(page);
 
 459}
 460
 461static inline void rmv_page_order(struct page *page)
 
 462{
 
 
 
 
 
 463	__ClearPageBuddy(page);
 464	set_page_private(page, 0);
 
 465}
 466
 467/*
 468 * Locate the struct page for both the matching buddy in our
 469 * pair (buddy1) and the combined O(n+1) page they form (page).
 470 *
 471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 472 * the following equation:
 473 *     B2 = B1 ^ (1 << O)
 474 * For example, if the starting buddy (buddy2) is #8 its order
 475 * 1 buddy is #10:
 476 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 477 *
 478 * 2) Any buddy B will have an order O+1 parent P which
 479 * satisfies the following equation:
 480 *     P = B & ~(1 << O)
 481 *
 482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 483 */
 484static inline unsigned long
 485__find_buddy_index(unsigned long page_idx, unsigned int order)
 486{
 487	return page_idx ^ (1 << order);
 
 488}
 489
 490/*
 491 * This function checks whether a page is free && is the buddy
 492 * we can do coalesce a page and its buddy if
 493 * (a) the buddy is not in a hole &&
 494 * (b) the buddy is in the buddy system &&
 495 * (c) a page and its buddy have the same order &&
 496 * (d) a page and its buddy are in the same zone.
 497 *
 498 * For recording whether a page is in the buddy system, we set ->_mapcount
 499 * PAGE_BUDDY_MAPCOUNT_VALUE.
 500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 501 * serialized by zone->lock.
 502 *
 503 * For recording page's order, we use page_private(page).
 504 */
 505static inline int page_is_buddy(struct page *page, struct page *buddy,
 506								int order)
 
 507{
 508	if (!pfn_valid_within(page_to_pfn(buddy)))
 509		return 0;
 510
 511	if (page_zone_id(page) != page_zone_id(buddy))
 512		return 0;
 513
 514	if (page_is_guard(buddy) && page_order(buddy) == order) {
 515		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 516		return 1;
 517	}
 518
 519	if (PageBuddy(buddy) && page_order(buddy) == order) {
 520		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 521		return 1;
 522	}
 523	return 0;
 524}
 525
 526/*
 527 * Freeing function for a buddy system allocator.
 528 *
 529 * The concept of a buddy system is to maintain direct-mapped table
 530 * (containing bit values) for memory blocks of various "orders".
 531 * The bottom level table contains the map for the smallest allocatable
 532 * units of memory (here, pages), and each level above it describes
 533 * pairs of units from the levels below, hence, "buddies".
 534 * At a high level, all that happens here is marking the table entry
 535 * at the bottom level available, and propagating the changes upward
 536 * as necessary, plus some accounting needed to play nicely with other
 537 * parts of the VM system.
 538 * At each level, we keep a list of pages, which are heads of continuous
 539 * free pages of length of (1 << order) and marked with _mapcount
 540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 541 * field.
 542 * So when we are allocating or freeing one, we can derive the state of the
 543 * other.  That is, if we allocate a small block, and both were
 544 * free, the remainder of the region must be split into blocks.
 545 * If a block is freed, and its buddy is also free, then this
 546 * triggers coalescing into a block of larger size.
 547 *
 548 * -- nyc
 549 */
 550
 551static inline void __free_one_page(struct page *page,
 
 552		struct zone *zone, unsigned int order,
 553		int migratetype)
 554{
 555	unsigned long page_idx;
 556	unsigned long combined_idx;
 557	unsigned long uninitialized_var(buddy_idx);
 558	struct page *buddy;
 
 559
 560	VM_BUG_ON(!zone_is_initialized(zone));
 
 
 
 
 
 
 
 
 561
 562	if (unlikely(PageCompound(page)))
 563		if (unlikely(destroy_compound_page(page, order)))
 
 
 564			return;
 
 565
 566	VM_BUG_ON(migratetype == -1);
 
 
 567
 568	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 
 
 
 
 
 
 
 569
 570	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 571	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 
 
 
 572
 573	while (order < MAX_ORDER-1) {
 574		buddy_idx = __find_buddy_index(page_idx, order);
 575		buddy = page + (buddy_idx - page_idx);
 576		if (!page_is_buddy(page, buddy, order))
 577			break;
 578		/*
 579		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 580		 * merge with it and move up one order.
 581		 */
 582		if (page_is_guard(buddy)) {
 583			clear_page_guard_flag(buddy);
 584			set_page_private(page, 0);
 585			__mod_zone_freepage_state(zone, 1 << order,
 586						  migratetype);
 587		} else {
 588			list_del(&buddy->lru);
 589			zone->free_area[order].nr_free--;
 590			rmv_page_order(buddy);
 591		}
 592		combined_idx = buddy_idx & page_idx;
 593		page = page + (combined_idx - page_idx);
 594		page_idx = combined_idx;
 595		order++;
 596	}
 597	set_page_order(page, order);
 598
 599	/*
 600	 * If this is not the largest possible page, check if the buddy
 601	 * of the next-highest order is free. If it is, it's possible
 602	 * that pages are being freed that will coalesce soon. In case,
 603	 * that is happening, add the free page to the tail of the list
 604	 * so it's less likely to be used soon and more likely to be merged
 605	 * as a higher order page
 606	 */
 607	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 608		struct page *higher_page, *higher_buddy;
 609		combined_idx = buddy_idx & page_idx;
 610		higher_page = page + (combined_idx - page_idx);
 611		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 612		higher_buddy = higher_page + (buddy_idx - combined_idx);
 613		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 614			list_add_tail(&page->lru,
 615				&zone->free_area[order].free_list[migratetype]);
 616			goto out;
 617		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618	}
 619
 620	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621out:
 622	zone->free_area[order].nr_free++;
 
 623}
 
 
 
 
 
 
 
 
 
 
 624
 625static inline int free_pages_check(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	const char *bad_reason = NULL;
 628	unsigned long bad_flags = 0;
 629
 630	if (unlikely(page_mapcount(page)))
 631		bad_reason = "nonzero mapcount";
 632	if (unlikely(page->mapping != NULL))
 633		bad_reason = "non-NULL mapping";
 634	if (unlikely(atomic_read(&page->_count) != 0))
 635		bad_reason = "nonzero _count";
 636	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 637		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 638		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 639	}
 640	if (unlikely(mem_cgroup_bad_page_check(page)))
 641		bad_reason = "cgroup check failed";
 642	if (unlikely(bad_reason)) {
 643		bad_page(page, bad_reason, bad_flags);
 644		return 1;
 645	}
 646	page_cpupid_reset_last(page);
 647	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 648		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 649	return 0;
 
 
 
 
 
 650}
 651
 652/*
 653 * Frees a number of pages from the PCP lists
 654 * Assumes all pages on list are in same zone, and of same order.
 655 * count is the number of pages to free.
 656 *
 657 * If the zone was previously in an "all pages pinned" state then look to
 658 * see if this freeing clears that state.
 659 *
 660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 661 * pinned" detection logic.
 662 */
 663static void free_pcppages_bulk(struct zone *zone, int count,
 664					struct per_cpu_pages *pcp)
 665{
 666	int migratetype = 0;
 667	int batch_free = 0;
 668	int to_free = count;
 669
 670	spin_lock(&zone->lock);
 671	zone->pages_scanned = 0;
 
 
 672
 673	while (to_free) {
 674		struct page *page;
 675		struct list_head *list;
 
 676
 677		/*
 678		 * Remove pages from lists in a round-robin fashion. A
 679		 * batch_free count is maintained that is incremented when an
 680		 * empty list is encountered.  This is so more pages are freed
 681		 * off fuller lists instead of spinning excessively around empty
 682		 * lists
 683		 */
 684		do {
 685			batch_free++;
 686			if (++migratetype == MIGRATE_PCPTYPES)
 687				migratetype = 0;
 688			list = &pcp->lists[migratetype];
 689		} while (list_empty(list));
 690
 691		/* This is the only non-empty list. Free them all. */
 692		if (batch_free == MIGRATE_PCPTYPES)
 693			batch_free = to_free;
 
 694
 695		do {
 696			int mt;	/* migratetype of the to-be-freed page */
 
 
 
 697
 698			page = list_entry(list->prev, struct page, lru);
 699			/* must delete as __free_one_page list manipulates */
 700			list_del(&page->lru);
 701			mt = get_freepage_migratetype(page);
 702			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 703			__free_one_page(page, zone, 0, mt);
 704			trace_mm_page_pcpu_drain(page, 0, mt);
 705			if (likely(!is_migrate_isolate_page(page))) {
 706				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
 707				if (is_migrate_cma(mt))
 708					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
 709			}
 710		} while (--to_free && --batch_free && !list_empty(list));
 711	}
 712	spin_unlock(&zone->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713}
 714
 715static void free_one_page(struct zone *zone, struct page *page, int order,
 716				int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717{
 718	spin_lock(&zone->lock);
 719	zone->pages_scanned = 0;
 720
 721	__free_one_page(page, zone, order, migratetype);
 722	if (unlikely(!is_migrate_isolate(migratetype)))
 723		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 724	spin_unlock(&zone->lock);
 725}
 726
 727static bool free_pages_prepare(struct page *page, unsigned int order)
 728{
 729	int i;
 
 
 
 
 
 
 
 
 
 
 
 730	int bad = 0;
 
 
 
 
 
 731
 732	trace_mm_page_free(page, order);
 733	kmemcheck_free_shadow(page, order);
 734
 735	if (PageAnon(page))
 736		page->mapping = NULL;
 737	for (i = 0; i < (1 << order); i++)
 738		bad += free_pages_check(page + i);
 739	if (bad)
 
 
 740		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741
 742	if (!PageHighMem(page)) {
 743		debug_check_no_locks_freed(page_address(page),
 744					   PAGE_SIZE << order);
 745		debug_check_no_obj_freed(page_address(page),
 746					   PAGE_SIZE << order);
 747	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748	arch_free_page(page, order);
 749	kernel_map_pages(page, 1 << order, 0);
 
 750
 751	return true;
 752}
 753
 754static void __free_pages_ok(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 757	int migratetype;
 
 
 758
 759	if (!free_pages_prepare(page, order))
 760		return;
 761
 762	local_irq_save(flags);
 
 
 
 
 
 
 
 
 763	__count_vm_events(PGFREE, 1 << order);
 764	migratetype = get_pageblock_migratetype(page);
 765	set_freepage_migratetype(page, migratetype);
 766	free_one_page(page_zone(page), page, order, migratetype);
 767	local_irq_restore(flags);
 768}
 769
 770void __init __free_pages_bootmem(struct page *page, unsigned int order)
 771{
 772	unsigned int nr_pages = 1 << order;
 773	struct page *p = page;
 774	unsigned int loop;
 775
 
 
 
 
 
 776	prefetchw(p);
 777	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 778		prefetchw(p + 1);
 779		__ClearPageReserved(p);
 780		set_page_count(p, 0);
 781	}
 782	__ClearPageReserved(p);
 783	set_page_count(p, 0);
 784
 785	page_zone(page)->managed_pages += nr_pages;
 786	set_page_refcounted(page);
 787	__free_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790#ifdef CONFIG_CMA
 791/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 792void __init init_cma_reserved_pageblock(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793{
 794	unsigned i = pageblock_nr_pages;
 795	struct page *p = page;
 796
 797	do {
 798		__ClearPageReserved(p);
 799		set_page_count(p, 0);
 800	} while (++p, --i);
 801
 802	set_page_refcounted(page);
 803	set_pageblock_migratetype(page, MIGRATE_CMA);
 804	__free_pages(page, pageblock_order);
 805	adjust_managed_page_count(page, pageblock_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 806}
 807#endif
 808
 809/*
 810 * The order of subdivision here is critical for the IO subsystem.
 811 * Please do not alter this order without good reasons and regression
 812 * testing. Specifically, as large blocks of memory are subdivided,
 813 * the order in which smaller blocks are delivered depends on the order
 814 * they're subdivided in this function. This is the primary factor
 815 * influencing the order in which pages are delivered to the IO
 816 * subsystem according to empirical testing, and this is also justified
 817 * by considering the behavior of a buddy system containing a single
 818 * large block of memory acted on by a series of small allocations.
 819 * This behavior is a critical factor in sglist merging's success.
 820 *
 821 * -- nyc
 822 */
 823static inline void expand(struct zone *zone, struct page *page,
 824	int low, int high, struct free_area *area,
 825	int migratetype)
 826{
 827	unsigned long size = 1 << high;
 828
 829	while (high > low) {
 830		area--;
 831		high--;
 832		size >>= 1;
 833		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
 834
 835#ifdef CONFIG_DEBUG_PAGEALLOC
 836		if (high < debug_guardpage_minorder()) {
 837			/*
 838			 * Mark as guard pages (or page), that will allow to
 839			 * merge back to allocator when buddy will be freed.
 840			 * Corresponding page table entries will not be touched,
 841			 * pages will stay not present in virtual address space
 842			 */
 843			INIT_LIST_HEAD(&page[size].lru);
 844			set_page_guard_flag(&page[size]);
 845			set_page_private(&page[size], high);
 846			/* Guard pages are not available for any usage */
 847			__mod_zone_freepage_state(zone, -(1 << high),
 848						  migratetype);
 849			continue;
 850		}
 851#endif
 852		list_add(&page[size].lru, &area->free_list[migratetype]);
 853		area->nr_free++;
 854		set_page_order(&page[size], high);
 855	}
 856}
 857
 
 
 
 
 
 
 
 
 
 
 
 
 858/*
 859 * This page is about to be returned from the page allocator
 860 */
 861static inline int check_new_page(struct page *page)
 862{
 863	const char *bad_reason = NULL;
 864	unsigned long bad_flags = 0;
 
 865
 866	if (unlikely(page_mapcount(page)))
 867		bad_reason = "nonzero mapcount";
 868	if (unlikely(page->mapping != NULL))
 869		bad_reason = "non-NULL mapping";
 870	if (unlikely(atomic_read(&page->_count) != 0))
 871		bad_reason = "nonzero _count";
 872	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
 873		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
 874		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
 875	}
 876	if (unlikely(mem_cgroup_bad_page_check(page)))
 877		bad_reason = "cgroup check failed";
 878	if (unlikely(bad_reason)) {
 879		bad_page(page, bad_reason, bad_flags);
 880		return 1;
 881	}
 882	return 0;
 883}
 884
 885static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 886{
 887	int i;
 
 
 888
 889	for (i = 0; i < (1 << order); i++) {
 890		struct page *p = page + i;
 891		if (unlikely(check_new_page(p)))
 892			return 1;
 893	}
 894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895	set_page_private(page, 0);
 896	set_page_refcounted(page);
 897
 898	arch_alloc_page(page, order);
 899	kernel_map_pages(page, 1 << order, 1);
 900
 901	if (gfp_flags & __GFP_ZERO)
 902		prep_zero_page(page, order, gfp_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	if (order && (gfp_flags & __GFP_COMP))
 905		prep_compound_page(page, order);
 906
 907	return 0;
 
 
 
 
 
 
 
 
 
 908}
 909
 910/*
 911 * Go through the free lists for the given migratetype and remove
 912 * the smallest available page from the freelists
 913 */
 914static inline
 915struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 916						int migratetype)
 917{
 918	unsigned int current_order;
 919	struct free_area *area;
 920	struct page *page;
 921
 922	/* Find a page of the appropriate size in the preferred list */
 923	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 924		area = &(zone->free_area[current_order]);
 925		if (list_empty(&area->free_list[migratetype]))
 
 926			continue;
 927
 928		page = list_entry(area->free_list[migratetype].next,
 929							struct page, lru);
 930		list_del(&page->lru);
 931		rmv_page_order(page);
 932		area->nr_free--;
 933		expand(zone, page, order, current_order, area, migratetype);
 934		return page;
 935	}
 936
 937	return NULL;
 938}
 939
 940
 941/*
 942 * This array describes the order lists are fallen back to when
 943 * the free lists for the desirable migrate type are depleted
 
 
 944 */
 945static int fallbacks[MIGRATE_TYPES][4] = {
 946	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 947	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 
 
 
 948#ifdef CONFIG_CMA
 949	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 950	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
 
 
 
 951#else
 952	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
 953#endif
 954	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
 955#ifdef CONFIG_MEMORY_ISOLATION
 956	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
 957#endif
 958};
 959
 960/*
 961 * Move the free pages in a range to the free lists of the requested type.
 962 * Note that start_page and end_pages are not aligned on a pageblock
 963 * boundary. If alignment is required, use move_freepages_block()
 964 */
 965int move_freepages(struct zone *zone,
 966			  struct page *start_page, struct page *end_page,
 967			  int migratetype)
 968{
 969	struct page *page;
 970	unsigned long order;
 
 971	int pages_moved = 0;
 972
 973#ifndef CONFIG_HOLES_IN_ZONE
 974	/*
 975	 * page_zone is not safe to call in this context when
 976	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 977	 * anyway as we check zone boundaries in move_freepages_block().
 978	 * Remove at a later date when no bug reports exist related to
 979	 * grouping pages by mobility
 980	 */
 981	BUG_ON(page_zone(start_page) != page_zone(end_page));
 982#endif
 983
 984	for (page = start_page; page <= end_page;) {
 985		/* Make sure we are not inadvertently changing nodes */
 986		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
 987
 988		if (!pfn_valid_within(page_to_pfn(page))) {
 989			page++;
 990			continue;
 991		}
 992
 993		if (!PageBuddy(page)) {
 994			page++;
 
 
 
 
 
 
 
 
 995			continue;
 996		}
 997
 998		order = page_order(page);
 999		list_move(&page->lru,
1000			  &zone->free_area[order].free_list[migratetype]);
1001		set_freepage_migratetype(page, migratetype);
1002		page += 1 << order;
 
 
1003		pages_moved += 1 << order;
1004	}
1005
1006	return pages_moved;
1007}
1008
1009int move_freepages_block(struct zone *zone, struct page *page,
1010				int migratetype)
1011{
1012	unsigned long start_pfn, end_pfn;
1013	struct page *start_page, *end_page;
 
 
1014
1015	start_pfn = page_to_pfn(page);
1016	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1017	start_page = pfn_to_page(start_pfn);
1018	end_page = start_page + pageblock_nr_pages - 1;
1019	end_pfn = start_pfn + pageblock_nr_pages - 1;
1020
1021	/* Do not cross zone boundaries */
1022	if (!zone_spans_pfn(zone, start_pfn))
1023		start_page = page;
1024	if (!zone_spans_pfn(zone, end_pfn))
1025		return 0;
1026
1027	return move_freepages(zone, start_page, end_page, migratetype);
 
1028}
1029
1030static void change_pageblock_range(struct page *pageblock_page,
1031					int start_order, int migratetype)
1032{
1033	int nr_pageblocks = 1 << (start_order - pageblock_order);
1034
1035	while (nr_pageblocks--) {
1036		set_pageblock_migratetype(pageblock_page, migratetype);
1037		pageblock_page += pageblock_nr_pages;
1038	}
1039}
1040
1041/*
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1045 *
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1049 *
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052 */
1053static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054				  int start_type, int fallback_type)
1055{
1056	int current_order = page_order(page);
 
 
 
 
1057
1058	/*
1059	 * When borrowing from MIGRATE_CMA, we need to release the excess
1060	 * buddy pages to CMA itself.
1061	 */
1062	if (is_migrate_cma(fallback_type))
1063		return fallback_type;
1064
1065	/* Take ownership for orders >= pageblock_order */
1066	if (current_order >= pageblock_order) {
1067		change_pageblock_range(page, current_order, start_type);
1068		return start_type;
1069	}
1070
1071	if (current_order >= pageblock_order / 2 ||
1072	    start_type == MIGRATE_RECLAIMABLE ||
1073	    page_group_by_mobility_disabled) {
1074		int pages;
 
 
 
1075
1076		pages = move_freepages_block(zone, page, start_type);
 
 
1077
1078		/* Claim the whole block if over half of it is free */
1079		if (pages >= (1 << (pageblock_order-1)) ||
1080				page_group_by_mobility_disabled) {
 
 
1081
1082			set_pageblock_migratetype(page, start_type);
1083			return start_type;
1084		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085
 
 
 
 
 
 
 
 
1086	}
1087
1088	return fallback_type;
1089}
1090
1091/* Remove an element from the buddy allocator from the fallback list */
1092static inline struct page *
1093__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
 
1094{
1095	struct free_area *area;
1096	int current_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097	struct page *page;
1098	int migratetype, new_type, i;
 
1099
1100	/* Find the largest possible block of pages in the other list */
1101	for (current_order = MAX_ORDER-1; current_order >= order;
1102						--current_order) {
1103		for (i = 0;; i++) {
1104			migratetype = fallbacks[start_migratetype][i];
 
 
 
 
1105
1106			/* MIGRATE_RESERVE handled later if necessary */
1107			if (migratetype == MIGRATE_RESERVE)
1108				break;
1109
1110			area = &(zone->free_area[current_order]);
1111			if (list_empty(&area->free_list[migratetype]))
1112				continue;
1113
1114			page = list_entry(area->free_list[migratetype].next,
1115					struct page, lru);
1116			area->nr_free--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118			new_type = try_to_steal_freepages(zone, page,
1119							  start_migratetype,
1120							  migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121
1122			/* Remove the page from the freelists */
1123			list_del(&page->lru);
1124			rmv_page_order(page);
1125
1126			expand(zone, page, order, current_order, area,
1127			       new_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
1129			trace_mm_page_alloc_extfrag(page, order, current_order,
1130				start_migratetype, migratetype, new_type);
 
 
 
 
 
1131
1132			return page;
1133		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134	}
1135
1136	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137}
1138
1139/*
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1142 */
1143static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144						int migratetype)
 
1145{
1146	struct page *page;
1147
1148retry_reserve:
1149	page = __rmqueue_smallest(zone, order, migratetype);
1150
1151	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1152		page = __rmqueue_fallback(zone, order, migratetype);
1153
1154		/*
1155		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156		 * is used because __rmqueue_smallest is an inline function
1157		 * and we want just one call site
1158		 */
1159		if (!page) {
1160			migratetype = MIGRATE_RESERVE;
1161			goto retry_reserve;
 
 
 
1162		}
1163	}
 
 
 
 
 
1164
1165	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
 
 
1166	return page;
1167}
1168
1169/*
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1173 */
1174static int rmqueue_bulk(struct zone *zone, unsigned int order,
1175			unsigned long count, struct list_head *list,
1176			int migratetype, int cold)
1177{
1178	int mt = migratetype, i;
 
1179
1180	spin_lock(&zone->lock);
1181	for (i = 0; i < count; ++i) {
1182		struct page *page = __rmqueue(zone, order, migratetype);
 
1183		if (unlikely(page == NULL))
1184			break;
1185
1186		/*
1187		 * Split buddy pages returned by expand() are received here
1188		 * in physical page order. The page is added to the callers and
1189		 * list and the list head then moves forward. From the callers
1190		 * perspective, the linked list is ordered by page number in
1191		 * some conditions. This is useful for IO devices that can
1192		 * merge IO requests if the physical pages are ordered
1193		 * properly.
 
1194		 */
1195		if (likely(cold == 0))
1196			list_add(&page->lru, list);
1197		else
1198			list_add_tail(&page->lru, list);
1199		if (IS_ENABLED(CONFIG_CMA)) {
1200			mt = get_pageblock_migratetype(page);
1201			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1202				mt = migratetype;
1203		}
1204		set_freepage_migratetype(page, mt);
1205		list = &page->lru;
1206		if (is_migrate_cma(mt))
1207			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208					      -(1 << order));
1209	}
 
1210	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1211	spin_unlock(&zone->lock);
 
1212	return i;
1213}
1214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215#ifdef CONFIG_NUMA
1216/*
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1219 * expired.
1220 *
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
1223 */
1224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1225{
1226	unsigned long flags;
1227	int to_drain;
1228	unsigned long batch;
1229
1230	local_irq_save(flags);
1231	batch = ACCESS_ONCE(pcp->batch);
1232	if (pcp->count >= batch)
1233		to_drain = batch;
1234	else
1235		to_drain = pcp->count;
1236	if (to_drain > 0) {
1237		free_pcppages_bulk(zone, to_drain, pcp);
1238		pcp->count -= to_drain;
 
1239	}
1240	local_irq_restore(flags);
1241}
1242#endif
1243
1244/*
1245 * Drain pages of the indicated processor.
1246 *
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1249 * is not online.
 
 
 
 
 
 
 
 
 
 
 
1250 */
1251static void drain_pages(unsigned int cpu)
1252{
1253	unsigned long flags;
1254	struct zone *zone;
1255
1256	for_each_populated_zone(zone) {
1257		struct per_cpu_pageset *pset;
1258		struct per_cpu_pages *pcp;
1259
1260		local_irq_save(flags);
1261		pset = per_cpu_ptr(zone->pageset, cpu);
1262
1263		pcp = &pset->pcp;
1264		if (pcp->count) {
1265			free_pcppages_bulk(zone, pcp->count, pcp);
1266			pcp->count = 0;
1267		}
1268		local_irq_restore(flags);
1269	}
1270}
1271
1272/*
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1274 */
1275void drain_local_pages(void *arg)
1276{
1277	drain_pages(smp_processor_id());
 
 
 
 
 
1278}
1279
1280/*
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 
1282 *
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
1288 */
1289void drain_all_pages(void)
1290{
1291	int cpu;
1292	struct per_cpu_pageset *pcp;
1293	struct zone *zone;
1294
1295	/*
1296	 * Allocate in the BSS so we wont require allocation in
1297	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298	 */
1299	static cpumask_t cpus_with_pcps;
1300
1301	/*
 
 
 
 
 
 
 
 
 
 
 
1302	 * We don't care about racing with CPU hotplug event
1303	 * as offline notification will cause the notified
1304	 * cpu to drain that CPU pcps and on_each_cpu_mask
1305	 * disables preemption as part of its processing
1306	 */
1307	for_each_online_cpu(cpu) {
 
 
1308		bool has_pcps = false;
1309		for_each_populated_zone(zone) {
1310			pcp = per_cpu_ptr(zone->pageset, cpu);
1311			if (pcp->pcp.count) {
 
 
 
 
 
 
 
1312				has_pcps = true;
1313				break;
 
 
 
 
 
 
1314			}
1315		}
 
1316		if (has_pcps)
1317			cpumask_set_cpu(cpu, &cpus_with_pcps);
1318		else
1319			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320	}
1321	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
 
 
 
 
 
 
 
 
1322}
1323
1324#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
1325
1326void mark_free_pages(struct zone *zone)
 
1327{
1328	unsigned long pfn, max_zone_pfn;
1329	unsigned long flags;
1330	int order, t;
1331	struct list_head *curr;
1332
1333	if (zone_is_empty(zone))
1334		return;
1335
1336	spin_lock_irqsave(&zone->lock, flags);
 
 
 
1337
1338	max_zone_pfn = zone_end_pfn(zone);
1339	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340		if (pfn_valid(pfn)) {
1341			struct page *page = pfn_to_page(pfn);
1342
1343			if (!swsusp_page_is_forbidden(page))
1344				swsusp_unset_page_free(page);
1345		}
1346
1347	for_each_migratetype_order(order, t) {
1348		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1349			unsigned long i;
1350
1351			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352			for (i = 0; i < (1UL << order); i++)
1353				swsusp_set_page_free(pfn_to_page(pfn + i));
1354		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355	}
1356	spin_unlock_irqrestore(&zone->lock, flags);
1357}
1358#endif /* CONFIG_PM */
1359
1360/*
1361 * Free a 0-order page
1362 * cold == 1 ? free a cold page : free a hot page
1363 */
1364void free_hot_cold_page(struct page *page, int cold)
1365{
1366	struct zone *zone = page_zone(page);
1367	struct per_cpu_pages *pcp;
1368	unsigned long flags;
1369	int migratetype;
 
1370
1371	if (!free_pages_prepare(page, 0))
1372		return;
1373
1374	migratetype = get_pageblock_migratetype(page);
1375	set_freepage_migratetype(page, migratetype);
1376	local_irq_save(flags);
1377	__count_vm_event(PGFREE);
1378
1379	/*
1380	 * We only track unmovable, reclaimable and movable on pcp lists.
1381	 * Free ISOLATE pages back to the allocator because they are being
1382	 * offlined but treat RESERVE as movable pages so we can get those
1383	 * areas back if necessary. Otherwise, we may have to free
1384	 * excessively into the page allocator
1385	 */
1386	if (migratetype >= MIGRATE_PCPTYPES) {
 
1387		if (unlikely(is_migrate_isolate(migratetype))) {
1388			free_one_page(zone, page, 0, migratetype);
1389			goto out;
1390		}
1391		migratetype = MIGRATE_MOVABLE;
1392	}
1393
1394	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1395	if (cold)
1396		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1397	else
1398		list_add(&page->lru, &pcp->lists[migratetype]);
1399	pcp->count++;
1400	if (pcp->count >= pcp->high) {
1401		unsigned long batch = ACCESS_ONCE(pcp->batch);
1402		free_pcppages_bulk(zone, batch, pcp);
1403		pcp->count -= batch;
1404	}
1405
1406out:
1407	local_irq_restore(flags);
1408}
1409
1410/*
1411 * Free a list of 0-order pages
1412 */
1413void free_hot_cold_page_list(struct list_head *list, int cold)
1414{
1415	struct page *page, *next;
 
 
 
 
 
 
 
 
 
1416
1417	list_for_each_entry_safe(page, next, list, lru) {
1418		trace_mm_page_free_batched(page, cold);
1419		free_hot_cold_page(page, cold);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420	}
 
 
 
 
 
 
1421}
1422
1423/*
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1427 *
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1430 */
1431void split_page(struct page *page, unsigned int order)
1432{
1433	int i;
1434
1435	VM_BUG_ON_PAGE(PageCompound(page), page);
1436	VM_BUG_ON_PAGE(!page_count(page), page);
1437
1438#ifdef CONFIG_KMEMCHECK
1439	/*
1440	 * Split shadow pages too, because free(page[0]) would
1441	 * otherwise free the whole shadow.
1442	 */
1443	if (kmemcheck_page_is_tracked(page))
1444		split_page(virt_to_page(page[0].shadow), order);
1445#endif
1446
1447	for (i = 1; i < (1 << order); i++)
1448		set_page_refcounted(page + i);
 
 
1449}
1450EXPORT_SYMBOL_GPL(split_page);
1451
1452static int __isolate_free_page(struct page *page, unsigned int order)
1453{
1454	unsigned long watermark;
1455	struct zone *zone;
1456	int mt;
1457
1458	BUG_ON(!PageBuddy(page));
1459
1460	zone = page_zone(page);
1461	mt = get_pageblock_migratetype(page);
1462
1463	if (!is_migrate_isolate(mt)) {
1464		/* Obey watermarks as if the page was being allocated */
1465		watermark = low_wmark_pages(zone) + (1 << order);
1466		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 
 
 
1467			return 0;
1468
1469		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1470	}
1471
1472	/* Remove page from free list */
1473	list_del(&page->lru);
1474	zone->free_area[order].nr_free--;
1475	rmv_page_order(page);
1476
1477	/* Set the pageblock if the isolated page is at least a pageblock */
 
 
 
1478	if (order >= pageblock_order - 1) {
1479		struct page *endpage = page + (1 << order) - 1;
1480		for (; page < endpage; page += pageblock_nr_pages) {
1481			int mt = get_pageblock_migratetype(page);
1482			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 
 
 
 
1483				set_pageblock_migratetype(page,
1484							  MIGRATE_MOVABLE);
1485		}
1486	}
1487
1488	return 1UL << order;
1489}
1490
1491/*
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496 * are enabled.
1497 *
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1500 */
1501int split_free_page(struct page *page)
1502{
1503	unsigned int order;
1504	int nr_pages;
1505
1506	order = page_order(page);
1507
1508	nr_pages = __isolate_free_page(page, order);
1509	if (!nr_pages)
1510		return 0;
1511
1512	/* Split into individual pages */
1513	set_page_refcounted(page);
1514	split_page(page, order);
1515	return nr_pages;
1516}
1517
1518/*
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1520 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1521 * or two.
1522 */
1523static inline
1524struct page *buffered_rmqueue(struct zone *preferred_zone,
1525			struct zone *zone, int order, gfp_t gfp_flags,
1526			int migratetype)
1527{
1528	unsigned long flags;
1529	struct page *page;
1530	int cold = !!(gfp_flags & __GFP_COLD);
1531
1532again:
1533	if (likely(order == 0)) {
1534		struct per_cpu_pages *pcp;
1535		struct list_head *list;
1536
1537		local_irq_save(flags);
1538		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539		list = &pcp->lists[migratetype];
1540		if (list_empty(list)) {
1541			pcp->count += rmqueue_bulk(zone, 0,
1542					pcp->batch, list,
1543					migratetype, cold);
1544			if (unlikely(list_empty(list)))
1545				goto failed;
1546		}
1547
1548		if (cold)
1549			page = list_entry(list->prev, struct page, lru);
1550		else
1551			page = list_entry(list->next, struct page, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553		list_del(&page->lru);
1554		pcp->count--;
1555	} else {
1556		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557			/*
1558			 * __GFP_NOFAIL is not to be used in new code.
1559			 *
1560			 * All __GFP_NOFAIL callers should be fixed so that they
1561			 * properly detect and handle allocation failures.
1562			 *
1563			 * We most definitely don't want callers attempting to
1564			 * allocate greater than order-1 page units with
1565			 * __GFP_NOFAIL.
1566			 */
1567			WARN_ON_ONCE(order > 1);
 
 
 
 
 
 
1568		}
1569		spin_lock_irqsave(&zone->lock, flags);
1570		page = __rmqueue(zone, order, migratetype);
1571		spin_unlock(&zone->lock);
1572		if (!page)
1573			goto failed;
1574		__mod_zone_freepage_state(zone, -(1 << order),
1575					  get_pageblock_migratetype(page));
1576	}
1577
1578	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1579
1580	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1581	zone_statistics(preferred_zone, zone, gfp_flags);
1582	local_irq_restore(flags);
1583
1584	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1585	if (prep_new_page(page, order, gfp_flags))
1586		goto again;
1587	return page;
1588
1589failed:
1590	local_irq_restore(flags);
1591	return NULL;
1592}
1593
1594#ifdef CONFIG_FAIL_PAGE_ALLOC
 
 
 
1595
1596static struct {
1597	struct fault_attr attr;
 
 
1598
1599	u32 ignore_gfp_highmem;
1600	u32 ignore_gfp_wait;
1601	u32 min_order;
1602} fail_page_alloc = {
1603	.attr = FAULT_ATTR_INITIALIZER,
1604	.ignore_gfp_wait = 1,
1605	.ignore_gfp_highmem = 1,
1606	.min_order = 1,
1607};
1608
1609static int __init setup_fail_page_alloc(char *str)
1610{
1611	return setup_fault_attr(&fail_page_alloc.attr, str);
1612}
1613__setup("fail_page_alloc=", setup_fail_page_alloc);
1614
1615static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1616{
1617	if (order < fail_page_alloc.min_order)
1618		return false;
1619	if (gfp_mask & __GFP_NOFAIL)
1620		return false;
1621	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1622		return false;
1623	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1624		return false;
1625
1626	return should_fail(&fail_page_alloc.attr, 1 << order);
1627}
 
 
 
 
 
 
 
 
 
1628
1629#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 
 
 
 
 
 
 
1630
1631static int __init fail_page_alloc_debugfs(void)
 
 
 
 
 
 
 
 
 
1632{
1633	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1634	struct dentry *dir;
1635
1636	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637					&fail_page_alloc.attr);
1638	if (IS_ERR(dir))
1639		return PTR_ERR(dir);
1640
1641	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642				&fail_page_alloc.ignore_gfp_wait))
1643		goto fail;
1644	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645				&fail_page_alloc.ignore_gfp_highmem))
1646		goto fail;
1647	if (!debugfs_create_u32("min-order", mode, dir,
1648				&fail_page_alloc.min_order))
1649		goto fail;
1650
1651	return 0;
1652fail:
1653	debugfs_remove_recursive(dir);
 
1654
1655	return -ENOMEM;
1656}
 
1657
1658late_initcall(fail_page_alloc_debugfs);
 
 
 
1659
1660#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 
 
 
1661
1662#else /* CONFIG_FAIL_PAGE_ALLOC */
 
1663
1664static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 
 
 
1665{
1666	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667}
1668
1669#endif /* CONFIG_FAIL_PAGE_ALLOC */
 
 
 
1670
1671/*
1672 * Return true if free pages are above 'mark'. This takes into account the order
1673 * of the allocation.
 
 
1674 */
1675static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676		      int classzone_idx, int alloc_flags, long free_pages)
 
 
 
 
1677{
1678	/* free_pages my go negative - that's OK */
1679	long min = mark;
1680	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1681	int o;
1682	long free_cma = 0;
1683
1684	free_pages -= (1 << order) - 1;
1685	if (alloc_flags & ALLOC_HIGH)
1686		min -= min / 2;
1687	if (alloc_flags & ALLOC_HARDER)
1688		min -= min / 4;
1689#ifdef CONFIG_CMA
1690	/* If allocation can't use CMA areas don't use free CMA pages */
1691	if (!(alloc_flags & ALLOC_CMA))
1692		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1693#endif
1694
1695	if (free_pages - free_cma <= min + lowmem_reserve)
1696		return false;
1697	for (o = 0; o < order; o++) {
1698		/* At the next order, this order's pages become unavailable */
1699		free_pages -= z->free_area[o].nr_free << o;
 
1700
1701		/* Require fewer higher order pages to be free */
1702		min >>= 1;
1703
1704		if (free_pages <= min)
1705			return false;
 
 
 
 
1706	}
1707	return true;
 
 
1708}
1709
1710bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711		      int classzone_idx, int alloc_flags)
1712{
1713	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714					zone_page_state(z, NR_FREE_PAGES));
1715}
 
1716
1717bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718		      int classzone_idx, int alloc_flags)
1719{
1720	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721
1722	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 
 
 
 
 
1724
1725	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726								free_pages);
 
 
 
 
 
 
 
 
1727}
1728
1729#ifdef CONFIG_NUMA
1730/*
1731 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full.  See further
1734 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1735 * that have to skip over a lot of full or unallowed zones.
1736 *
1737 * If the zonelist cache is present in the passed zonelist, then
1738 * returns a pointer to the allowed node mask (either the current
1739 * tasks mems_allowed, or node_states[N_MEMORY].)
1740 *
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1743 *
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1746 *
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1751 */
1752static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
 
 
1753{
1754	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1755	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1756
1757	zlc = zonelist->zlcache_ptr;
1758	if (!zlc)
1759		return NULL;
1760
1761	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1762		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763		zlc->last_full_zap = jiffies;
1764	}
1765
1766	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767					&cpuset_current_mems_allowed :
1768					&node_states[N_MEMORY];
1769	return allowednodes;
1770}
1771
1772/*
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 *  1) Check that the zone isn't thought to be full (doesn't have its
1776 *     bit set in the zonelist_cache fullzones BITMAP).
1777 *  2) Check that the zones node (obtained from the zonelist_cache
1778 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1781 *
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1788 *
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1793 */
1794static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1795						nodemask_t *allowednodes)
1796{
1797	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1798	int i;				/* index of *z in zonelist zones */
1799	int n;				/* node that zone *z is on */
1800
1801	zlc = zonelist->zlcache_ptr;
1802	if (!zlc)
1803		return 1;
 
 
 
 
 
 
1804
1805	i = z - zonelist->_zonerefs;
1806	n = zlc->z_to_n[i];
 
 
 
 
 
1807
1808	/* This zone is worth trying if it is allowed but not full */
1809	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1816 */
1817static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1818{
1819	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1820	int i;				/* index of *z in zonelist zones */
1821
1822	zlc = zonelist->zlcache_ptr;
1823	if (!zlc)
1824		return;
1825
1826	i = z - zonelist->_zonerefs;
 
 
 
1827
1828	set_bit(i, zlc->fullzones);
 
 
 
 
 
 
 
 
 
 
 
1829}
1830
1831/*
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1834 */
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1838
1839	zlc = zonelist->zlcache_ptr;
1840	if (!zlc)
1841		return;
1842
1843	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844}
1845
1846static bool zone_local(struct zone *local_zone, struct zone *zone)
 
 
1847{
1848	return local_zone->node == zone->node;
1849}
1850
1851static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852{
1853	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1854}
1855
1856static void __paginginit init_zone_allows_reclaim(int nid)
1857{
1858	int i;
 
 
 
 
1859
1860	for_each_node_state(i, N_MEMORY)
1861		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1862			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1863		else
1864			zone_reclaim_mode = 1;
1865}
1866
1867#else	/* CONFIG_NUMA */
 
 
 
 
1868
1869static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1870{
1871	return NULL;
1872}
1873
1874static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1875				nodemask_t *allowednodes)
1876{
1877	return 1;
 
 
 
 
 
 
 
 
 
 
1878}
1879
1880static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
 
1881{
 
 
 
 
 
 
 
1882}
1883
1884static void zlc_clear_zones_full(struct zonelist *zonelist)
 
 
 
1885{
 
 
1886}
1887
1888static bool zone_local(struct zone *local_zone, struct zone *zone)
1889{
1890	return true;
1891}
 
1892
1893static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 
 
 
 
 
 
 
 
 
1894{
1895	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896}
1897
1898static inline void init_zone_allows_reclaim(int nid)
 
 
1899{
 
 
 
 
 
1900}
1901#endif	/* CONFIG_NUMA */
1902
1903/*
1904 * get_page_from_freelist goes through the zonelist trying to allocate
1905 * a page.
1906 */
1907static struct page *
1908get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1909		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1910		struct zone *preferred_zone, int migratetype)
1911{
1912	struct zoneref *z;
1913	struct page *page = NULL;
1914	int classzone_idx;
1915	struct zone *zone;
1916	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1917	int zlc_active = 0;		/* set if using zonelist_cache */
1918	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1919
1920	classzone_idx = zone_idx(preferred_zone);
1921zonelist_scan:
1922	/*
1923	 * Scan zonelist, looking for a zone with enough free.
1924	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1925	 */
1926	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1927						high_zoneidx, nodemask) {
 
 
 
1928		unsigned long mark;
1929
1930		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1932				continue;
1933		if ((alloc_flags & ALLOC_CPUSET) &&
1934			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1935				continue;
1936		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1937		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1938			goto try_this_zone;
1939		/*
1940		 * Distribute pages in proportion to the individual
1941		 * zone size to ensure fair page aging.  The zone a
1942		 * page was allocated in should have no effect on the
1943		 * time the page has in memory before being reclaimed.
1944		 */
1945		if (alloc_flags & ALLOC_FAIR) {
1946			if (!zone_local(preferred_zone, zone))
1947				continue;
1948			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1949				continue;
1950		}
1951		/*
1952		 * When allocating a page cache page for writing, we
1953		 * want to get it from a zone that is within its dirty
1954		 * limit, such that no single zone holds more than its
1955		 * proportional share of globally allowed dirty pages.
1956		 * The dirty limits take into account the zone's
1957		 * lowmem reserves and high watermark so that kswapd
1958		 * should be able to balance it without having to
1959		 * write pages from its LRU list.
1960		 *
1961		 * This may look like it could increase pressure on
1962		 * lower zones by failing allocations in higher zones
1963		 * before they are full.  But the pages that do spill
1964		 * over are limited as the lower zones are protected
1965		 * by this very same mechanism.  It should not become
1966		 * a practical burden to them.
1967		 *
1968		 * XXX: For now, allow allocations to potentially
1969		 * exceed the per-zone dirty limit in the slowpath
1970		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1971		 * which is important when on a NUMA setup the allowed
1972		 * zones are together not big enough to reach the
1973		 * global limit.  The proper fix for these situations
1974		 * will require awareness of zones in the
1975		 * dirty-throttling and the flusher threads.
1976		 */
1977		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1978		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1979			goto this_zone_full;
1980
1981		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1982		if (!zone_watermark_ok(zone, order, mark,
1983				       classzone_idx, alloc_flags)) {
1984			int ret;
1985
1986			if (IS_ENABLED(CONFIG_NUMA) &&
1987					!did_zlc_setup && nr_online_nodes > 1) {
1988				/*
1989				 * we do zlc_setup if there are multiple nodes
1990				 * and before considering the first zone allowed
1991				 * by the cpuset.
1992				 */
1993				allowednodes = zlc_setup(zonelist, alloc_flags);
1994				zlc_active = 1;
1995				did_zlc_setup = 1;
 
 
 
 
 
 
 
1996			}
 
1997
1998			if (zone_reclaim_mode == 0 ||
1999			    !zone_allows_reclaim(preferred_zone, zone))
2000				goto this_zone_full;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001
 
 
 
 
 
 
 
 
 
 
 
 
 
2002			/*
2003			 * As we may have just activated ZLC, check if the first
2004			 * eligible zone has failed zone_reclaim recently.
2005			 */
2006			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2007				!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
 
 
 
 
 
 
 
 
 
2008				continue;
2009
2010			ret = zone_reclaim(zone, gfp_mask, order);
2011			switch (ret) {
2012			case ZONE_RECLAIM_NOSCAN:
2013				/* did not scan */
2014				continue;
2015			case ZONE_RECLAIM_FULL:
2016				/* scanned but unreclaimable */
2017				continue;
2018			default:
2019				/* did we reclaim enough */
2020				if (zone_watermark_ok(zone, order, mark,
2021						classzone_idx, alloc_flags))
2022					goto try_this_zone;
2023
2024				/*
2025				 * Failed to reclaim enough to meet watermark.
2026				 * Only mark the zone full if checking the min
2027				 * watermark or if we failed to reclaim just
2028				 * 1<<order pages or else the page allocator
2029				 * fastpath will prematurely mark zones full
2030				 * when the watermark is between the low and
2031				 * min watermarks.
2032				 */
2033				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2034				    ret == ZONE_RECLAIM_SOME)
2035					goto this_zone_full;
2036
2037				continue;
2038			}
2039		}
2040
2041try_this_zone:
2042		page = buffered_rmqueue(preferred_zone, zone, order,
2043						gfp_mask, migratetype);
2044		if (page)
2045			break;
2046this_zone_full:
2047		if (IS_ENABLED(CONFIG_NUMA))
2048			zlc_mark_zone_full(zonelist, z);
2049	}
2050
2051	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2052		/* Disable zlc cache for second zonelist scan */
2053		zlc_active = 0;
2054		goto zonelist_scan;
2055	}
 
2056
2057	if (page)
2058		/*
2059		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2060		 * necessary to allocate the page. The expectation is
2061		 * that the caller is taking steps that will free more
2062		 * memory. The caller should avoid the page being used
2063		 * for !PFMEMALLOC purposes.
2064		 */
2065		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2066
2067	return page;
2068}
 
 
 
 
 
 
 
2069
2070/*
2071 * Large machines with many possible nodes should not always dump per-node
2072 * meminfo in irq context.
2073 */
2074static inline bool should_suppress_show_mem(void)
2075{
2076	bool ret = false;
 
2077
2078#if NODES_SHIFT > 8
2079	ret = in_interrupt();
2080#endif
2081	return ret;
2082}
2083
2084static DEFINE_RATELIMIT_STATE(nopage_rs,
2085		DEFAULT_RATELIMIT_INTERVAL,
2086		DEFAULT_RATELIMIT_BURST);
2087
2088void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2089{
2090	unsigned int filter = SHOW_MEM_FILTER_NODES;
2091
2092	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2093	    debug_guardpage_minorder() > 0)
2094		return;
2095
2096	/*
2097	 * This documents exceptions given to allocations in certain
2098	 * contexts that are allowed to allocate outside current's set
2099	 * of allowed nodes.
2100	 */
2101	if (!(gfp_mask & __GFP_NOMEMALLOC))
2102		if (test_thread_flag(TIF_MEMDIE) ||
2103		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2104			filter &= ~SHOW_MEM_FILTER_NODES;
2105	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2106		filter &= ~SHOW_MEM_FILTER_NODES;
2107
2108	if (fmt) {
2109		struct va_format vaf;
2110		va_list args;
2111
2112		va_start(args, fmt);
2113
2114		vaf.fmt = fmt;
2115		vaf.va = &args;
2116
2117		pr_warn("%pV", &vaf);
 
 
 
 
2118
2119		va_end(args);
2120	}
 
 
2121
2122	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123		current->comm, order, gfp_mask);
 
 
 
 
 
2124
 
 
2125	dump_stack();
2126	if (!should_suppress_show_mem())
2127		show_mem(filter);
2128}
2129
2130static inline int
2131should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2132				unsigned long did_some_progress,
2133				unsigned long pages_reclaimed)
2134{
2135	/* Do not loop if specifically requested */
2136	if (gfp_mask & __GFP_NORETRY)
2137		return 0;
2138
2139	/* Always retry if specifically requested */
2140	if (gfp_mask & __GFP_NOFAIL)
2141		return 1;
2142
2143	/*
2144	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145	 * making forward progress without invoking OOM. Suspend also disables
2146	 * storage devices so kswapd will not help. Bail if we are suspending.
2147	 */
2148	if (!did_some_progress && pm_suspended_storage())
2149		return 0;
2150
2151	/*
2152	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153	 * means __GFP_NOFAIL, but that may not be true in other
2154	 * implementations.
2155	 */
2156	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2157		return 1;
2158
 
 
2159	/*
2160	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161	 * specified, then we retry until we no longer reclaim any pages
2162	 * (above), or we've reclaimed an order of pages at least as
2163	 * large as the allocation's order. In both cases, if the
2164	 * allocation still fails, we stop retrying.
2165	 */
2166	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2167		return 1;
 
2168
2169	return 0;
2170}
2171
2172static inline struct page *
2173__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2174	struct zonelist *zonelist, enum zone_type high_zoneidx,
2175	nodemask_t *nodemask, struct zone *preferred_zone,
2176	int migratetype)
2177{
 
 
 
 
 
 
 
2178	struct page *page;
2179
2180	/* Acquire the OOM killer lock for the zones in zonelist */
2181	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
 
 
 
 
 
 
2182		schedule_timeout_uninterruptible(1);
2183		return NULL;
2184	}
2185
2186	/*
2187	 * Go through the zonelist yet one more time, keep very high watermark
2188	 * here, this is only to catch a parallel oom killing, we must fail if
2189	 * we're still under heavy pressure.
2190	 */
2191	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2192		order, zonelist, high_zoneidx,
2193		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2194		preferred_zone, migratetype);
 
2195	if (page)
2196		goto out;
2197
2198	if (!(gfp_mask & __GFP_NOFAIL)) {
2199		/* The OOM killer will not help higher order allocs */
2200		if (order > PAGE_ALLOC_COSTLY_ORDER)
2201			goto out;
2202		/* The OOM killer does not needlessly kill tasks for lowmem */
2203		if (high_zoneidx < ZONE_NORMAL)
2204			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		/*
2206		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208		 * The caller should handle page allocation failure by itself if
2209		 * it specifies __GFP_THISNODE.
2210		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2211		 */
2212		if (gfp_mask & __GFP_THISNODE)
2213			goto out;
 
2214	}
2215	/* Exhausted what can be done so it's blamo time */
2216	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2217
2218out:
2219	clear_zonelist_oom(zonelist, gfp_mask);
2220	return page;
2221}
2222
 
 
 
 
 
 
2223#ifdef CONFIG_COMPACTION
2224/* Try memory compaction for high-order allocations before reclaim */
2225static struct page *
2226__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2227	struct zonelist *zonelist, enum zone_type high_zoneidx,
2228	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2229	int migratetype, bool sync_migration,
2230	bool *contended_compaction, bool *deferred_compaction,
2231	unsigned long *did_some_progress)
2232{
 
 
 
 
2233	if (!order)
2234		return NULL;
2235
2236	if (compaction_deferred(preferred_zone, order)) {
2237		*deferred_compaction = true;
 
 
 
 
 
 
 
 
 
 
2238		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239	}
2240
2241	current->flags |= PF_MEMALLOC;
2242	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2243						nodemask, sync_migration,
2244						contended_compaction);
2245	current->flags &= ~PF_MEMALLOC;
2246
2247	if (*did_some_progress != COMPACT_SKIPPED) {
2248		struct page *page;
2249
2250		/* Page migration frees to the PCP lists but we want merging */
2251		drain_pages(get_cpu());
2252		put_cpu();
2253
2254		page = get_page_from_freelist(gfp_mask, nodemask,
2255				order, zonelist, high_zoneidx,
2256				alloc_flags & ~ALLOC_NO_WATERMARKS,
2257				preferred_zone, migratetype);
2258		if (page) {
2259			preferred_zone->compact_blockskip_flush = false;
2260			compaction_defer_reset(preferred_zone, order, true);
2261			count_vm_event(COMPACTSUCCESS);
2262			return page;
2263		}
2264
2265		/*
2266		 * It's bad if compaction run occurs and fails.
2267		 * The most likely reason is that pages exist,
2268		 * but not enough to satisfy watermarks.
2269		 */
2270		count_vm_event(COMPACTFAIL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271
 
 
 
 
 
2272		/*
2273		 * As async compaction considers a subset of pageblocks, only
2274		 * defer if the failure was a sync compaction failure.
 
 
 
 
 
2275		 */
2276		if (sync_migration)
2277			defer_compaction(preferred_zone, order);
2278
2279		cond_resched();
 
 
 
2280	}
2281
2282	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2283}
2284#else
2285static inline struct page *
2286__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2287	struct zonelist *zonelist, enum zone_type high_zoneidx,
2288	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2289	int migratetype, bool sync_migration,
2290	bool *contended_compaction, bool *deferred_compaction,
2291	unsigned long *did_some_progress)
2292{
 
2293	return NULL;
2294}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295#endif /* CONFIG_COMPACTION */
2296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297/* Perform direct synchronous page reclaim */
2298static int
2299__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2300		  nodemask_t *nodemask)
2301{
2302	struct reclaim_state reclaim_state;
2303	int progress;
2304
2305	cond_resched();
2306
2307	/* We now go into synchronous reclaim */
2308	cpuset_memory_pressure_bump();
2309	current->flags |= PF_MEMALLOC;
2310	lockdep_set_current_reclaim_state(gfp_mask);
2311	reclaim_state.reclaimed_slab = 0;
2312	current->reclaim_state = &reclaim_state;
2313
2314	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2315
2316	current->reclaim_state = NULL;
2317	lockdep_clear_current_reclaim_state();
2318	current->flags &= ~PF_MEMALLOC;
2319
2320	cond_resched();
2321
2322	return progress;
2323}
2324
2325/* The really slow allocator path where we enter direct reclaim */
2326static inline struct page *
2327__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2328	struct zonelist *zonelist, enum zone_type high_zoneidx,
2329	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2330	int migratetype, unsigned long *did_some_progress)
2331{
2332	struct page *page = NULL;
 
2333	bool drained = false;
2334
2335	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2336					       nodemask);
2337	if (unlikely(!(*did_some_progress)))
2338		return NULL;
2339
2340	/* After successful reclaim, reconsider all zones for allocation */
2341	if (IS_ENABLED(CONFIG_NUMA))
2342		zlc_clear_zones_full(zonelist);
2343
2344retry:
2345	page = get_page_from_freelist(gfp_mask, nodemask, order,
2346					zonelist, high_zoneidx,
2347					alloc_flags & ~ALLOC_NO_WATERMARKS,
2348					preferred_zone, migratetype);
2349
2350	/*
2351	 * If an allocation failed after direct reclaim, it could be because
2352	 * pages are pinned on the per-cpu lists. Drain them and try again
 
2353	 */
2354	if (!page && !drained) {
2355		drain_all_pages();
 
2356		drained = true;
2357		goto retry;
2358	}
 
 
2359
2360	return page;
2361}
2362
2363/*
2364 * This is called in the allocator slow-path if the allocation request is of
2365 * sufficient urgency to ignore watermarks and take other desperate measures
2366 */
2367static inline struct page *
2368__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2369	struct zonelist *zonelist, enum zone_type high_zoneidx,
2370	nodemask_t *nodemask, struct zone *preferred_zone,
2371	int migratetype)
2372{
2373	struct page *page;
2374
2375	do {
2376		page = get_page_from_freelist(gfp_mask, nodemask, order,
2377			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2378			preferred_zone, migratetype);
2379
2380		if (!page && gfp_mask & __GFP_NOFAIL)
2381			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2382	} while (!page && (gfp_mask & __GFP_NOFAIL));
2383
2384	return page;
 
 
 
 
 
 
 
 
2385}
2386
2387static void reset_alloc_batches(struct zonelist *zonelist,
2388				enum zone_type high_zoneidx,
2389				struct zone *preferred_zone)
2390{
2391	struct zoneref *z;
2392	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393
2394	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2395		/*
2396		 * Only reset the batches of zones that were actually
2397		 * considered in the fairness pass, we don't want to
2398		 * trash fairness information for zones that are not
2399		 * actually part of this zonelist's round-robin cycle.
2400		 */
2401		if (!zone_local(preferred_zone, zone))
2402			continue;
2403		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2404			high_wmark_pages(zone) - low_wmark_pages(zone) -
2405			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2406	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2407}
2408
2409static void wake_all_kswapds(unsigned int order,
2410			     struct zonelist *zonelist,
2411			     enum zone_type high_zoneidx,
2412			     struct zone *preferred_zone)
2413{
2414	struct zoneref *z;
2415	struct zone *zone;
 
 
 
 
 
 
 
2416
2417	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2418		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2419}
2420
2421static inline int
2422gfp_to_alloc_flags(gfp_t gfp_mask)
 
 
 
2423{
2424	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2425	const gfp_t wait = gfp_mask & __GFP_WAIT;
 
 
 
 
 
 
 
 
 
 
2426
2427	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2428	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429
2430	/*
2431	 * The caller may dip into page reserves a bit more if the caller
2432	 * cannot run direct reclaim, or if the caller has realtime scheduling
2433	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2434	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2435	 */
2436	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437
2438	if (!wait) {
2439		/*
2440		 * Not worth trying to allocate harder for
2441		 * __GFP_NOMEMALLOC even if it can't schedule.
2442		 */
2443		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2444			alloc_flags |= ALLOC_HARDER;
2445		/*
2446		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2447		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2448		 */
2449		alloc_flags &= ~ALLOC_CPUSET;
2450	} else if (unlikely(rt_task(current)) && !in_interrupt())
2451		alloc_flags |= ALLOC_HARDER;
2452
2453	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2454		if (gfp_mask & __GFP_MEMALLOC)
2455			alloc_flags |= ALLOC_NO_WATERMARKS;
2456		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2457			alloc_flags |= ALLOC_NO_WATERMARKS;
2458		else if (!in_interrupt() &&
2459				((current->flags & PF_MEMALLOC) ||
2460				 unlikely(test_thread_flag(TIF_MEMDIE))))
2461			alloc_flags |= ALLOC_NO_WATERMARKS;
2462	}
2463#ifdef CONFIG_CMA
2464	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2465		alloc_flags |= ALLOC_CMA;
2466#endif
2467	return alloc_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
2468}
2469
2470bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
 
2471{
2472	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473}
2474
2475static inline struct page *
2476__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2477	struct zonelist *zonelist, enum zone_type high_zoneidx,
2478	nodemask_t *nodemask, struct zone *preferred_zone,
2479	int migratetype)
2480{
2481	const gfp_t wait = gfp_mask & __GFP_WAIT;
 
 
2482	struct page *page = NULL;
2483	int alloc_flags;
2484	unsigned long pages_reclaimed = 0;
2485	unsigned long did_some_progress;
2486	bool sync_migration = false;
2487	bool deferred_compaction = false;
2488	bool contended_compaction = false;
 
 
 
 
 
 
 
 
 
 
 
2489
2490	/*
2491	 * In the slowpath, we sanity check order to avoid ever trying to
2492	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2493	 * be using allocators in order of preference for an area that is
2494	 * too large.
2495	 */
2496	if (order >= MAX_ORDER) {
2497		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2498		return NULL;
2499	}
2500
2501	/*
2502	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2503	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2504	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2505	 * using a larger set of nodes after it has established that the
2506	 * allowed per node queues are empty and that nodes are
2507	 * over allocated.
2508	 */
2509	if (IS_ENABLED(CONFIG_NUMA) &&
2510	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
 
2511		goto nopage;
2512
2513restart:
2514	if (!(gfp_mask & __GFP_NO_KSWAPD))
2515		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2516
2517	/*
2518	 * OK, we're below the kswapd watermark and have kicked background
2519	 * reclaim. Now things get more complex, so set up alloc_flags according
2520	 * to how we want to proceed.
2521	 */
2522	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 
 
 
 
 
 
 
 
 
2523
2524	/*
2525	 * Find the true preferred zone if the allocation is unconstrained by
2526	 * cpusets.
2527	 */
2528	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2529		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2530					&preferred_zone);
2531
2532rebalance:
2533	/* This is the last chance, in general, before the goto nopage. */
2534	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2535			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2536			preferred_zone, migratetype);
2537	if (page)
2538		goto got_pg;
2539
2540	/* Allocate without watermarks if the context allows */
2541	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2542		/*
2543		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2544		 * the allocation is high priority and these type of
2545		 * allocations are system rather than user orientated
2546		 */
2547		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2548
2549		page = __alloc_pages_high_priority(gfp_mask, order,
2550				zonelist, high_zoneidx, nodemask,
2551				preferred_zone, migratetype);
2552		if (page) {
 
 
 
 
 
2553			goto got_pg;
2554		}
2555	}
2556
2557	/* Atomic allocations - we can't balance anything */
2558	if (!wait) {
2559		/*
2560		 * All existing users of the deprecated __GFP_NOFAIL are
2561		 * blockable, so warn of any new users that actually allow this
2562		 * type of allocation to fail.
2563		 */
2564		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2565		goto nopage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566	}
2567
 
 
 
 
 
 
 
 
 
2568	/* Avoid recursion of direct reclaim */
2569	if (current->flags & PF_MEMALLOC)
2570		goto nopage;
2571
2572	/* Avoid allocations with no watermarks from looping endlessly */
2573	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2574		goto nopage;
 
 
2575
2576	/*
2577	 * Try direct compaction. The first pass is asynchronous. Subsequent
2578	 * attempts after direct reclaim are synchronous
2579	 */
2580	page = __alloc_pages_direct_compact(gfp_mask, order,
2581					zonelist, high_zoneidx,
2582					nodemask,
2583					alloc_flags, preferred_zone,
2584					migratetype, sync_migration,
2585					&contended_compaction,
2586					&deferred_compaction,
2587					&did_some_progress);
2588	if (page)
2589		goto got_pg;
2590	sync_migration = true;
 
 
 
2591
2592	/*
2593	 * If compaction is deferred for high-order allocations, it is because
2594	 * sync compaction recently failed. In this is the case and the caller
2595	 * requested a movable allocation that does not heavily disrupt the
2596	 * system then fail the allocation instead of entering direct reclaim.
2597	 */
2598	if ((deferred_compaction || contended_compaction) &&
2599						(gfp_mask & __GFP_NO_KSWAPD))
2600		goto nopage;
2601
2602	/* Try direct reclaim and then allocating */
2603	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2604					zonelist, high_zoneidx,
2605					nodemask,
2606					alloc_flags, preferred_zone,
2607					migratetype, &did_some_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608	if (page)
2609		goto got_pg;
2610
 
 
 
 
 
 
 
 
 
 
 
 
 
2611	/*
2612	 * If we failed to make any progress reclaiming, then we are
2613	 * running out of options and have to consider going OOM
2614	 */
2615	if (!did_some_progress) {
2616		if (oom_gfp_allowed(gfp_mask)) {
2617			if (oom_killer_disabled)
2618				goto nopage;
2619			/* Coredumps can quickly deplete all memory reserves */
2620			if ((current->flags & PF_DUMPCORE) &&
2621			    !(gfp_mask & __GFP_NOFAIL))
2622				goto nopage;
2623			page = __alloc_pages_may_oom(gfp_mask, order,
2624					zonelist, high_zoneidx,
2625					nodemask, preferred_zone,
2626					migratetype);
2627			if (page)
2628				goto got_pg;
2629
2630			if (!(gfp_mask & __GFP_NOFAIL)) {
2631				/*
2632				 * The oom killer is not called for high-order
2633				 * allocations that may fail, so if no progress
2634				 * is being made, there are no other options and
2635				 * retrying is unlikely to help.
2636				 */
2637				if (order > PAGE_ALLOC_COSTLY_ORDER)
2638					goto nopage;
2639				/*
2640				 * The oom killer is not called for lowmem
2641				 * allocations to prevent needlessly killing
2642				 * innocent tasks.
2643				 */
2644				if (high_zoneidx < ZONE_NORMAL)
2645					goto nopage;
2646			}
2647
2648			goto restart;
2649		}
2650	}
 
 
 
2651
2652	/* Check if we should retry the allocation */
2653	pages_reclaimed += did_some_progress;
2654	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2655						pages_reclaimed)) {
2656		/* Wait for some write requests to complete then retry */
2657		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2658		goto rebalance;
2659	} else {
2660		/*
2661		 * High-order allocations do not necessarily loop after
2662		 * direct reclaim and reclaim/compaction depends on compaction
2663		 * being called after reclaim so call directly if necessary
 
2664		 */
2665		page = __alloc_pages_direct_compact(gfp_mask, order,
2666					zonelist, high_zoneidx,
2667					nodemask,
2668					alloc_flags, preferred_zone,
2669					migratetype, sync_migration,
2670					&contended_compaction,
2671					&deferred_compaction,
2672					&did_some_progress);
 
 
2673		if (page)
2674			goto got_pg;
2675	}
2676
2677nopage:
2678	warn_alloc_failed(gfp_mask, order, NULL);
2679	return page;
 
 
 
2680got_pg:
2681	if (kmemcheck_enabled)
2682		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2683
2684	return page;
2685}
2686
2687/*
2688 * This is the 'heart' of the zoned buddy allocator.
2689 */
2690struct page *
2691__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2692			struct zonelist *zonelist, nodemask_t *nodemask)
2693{
2694	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2695	struct zone *preferred_zone;
2696	struct page *page = NULL;
2697	int migratetype = allocflags_to_migratetype(gfp_mask);
2698	unsigned int cpuset_mems_cookie;
2699	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2700	struct mem_cgroup *memcg = NULL;
2701
2702	gfp_mask &= gfp_allowed_mask;
2703
2704	lockdep_trace_alloc(gfp_mask);
 
 
 
 
 
 
 
 
 
 
2705
2706	might_sleep_if(gfp_mask & __GFP_WAIT);
2707
2708	if (should_fail_alloc_page(gfp_mask, order))
2709		return NULL;
 
 
 
 
 
2710
2711	/*
2712	 * Check the zones suitable for the gfp_mask contain at least one
2713	 * valid zone. It's possible to have an empty zonelist as a result
2714	 * of GFP_THISNODE and a memoryless node
2715	 */
2716	if (unlikely(!zonelist->_zonerefs->zone))
2717		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718
2719	/*
2720	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2721	 * verified in the (always inline) callee
2722	 */
2723	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2724		return NULL;
2725
2726retry_cpuset:
2727	cpuset_mems_cookie = read_mems_allowed_begin();
 
2728
2729	/* The preferred zone is used for statistics later */
2730	first_zones_zonelist(zonelist, high_zoneidx,
2731				nodemask ? : &cpuset_current_mems_allowed,
2732				&preferred_zone);
2733	if (!preferred_zone)
2734		goto out;
2735
2736#ifdef CONFIG_CMA
2737	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2738		alloc_flags |= ALLOC_CMA;
2739#endif
2740retry:
2741	/* First allocation attempt */
2742	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2743			zonelist, high_zoneidx, alloc_flags,
2744			preferred_zone, migratetype);
2745	if (unlikely(!page)) {
2746		/*
2747		 * The first pass makes sure allocations are spread
2748		 * fairly within the local node.  However, the local
2749		 * node might have free pages left after the fairness
2750		 * batches are exhausted, and remote zones haven't
2751		 * even been considered yet.  Try once more without
2752		 * fairness, and include remote zones now, before
2753		 * entering the slowpath and waking kswapd: prefer
2754		 * spilling to a remote zone over swapping locally.
2755		 */
2756		if (alloc_flags & ALLOC_FAIR) {
2757			reset_alloc_batches(zonelist, high_zoneidx,
2758					    preferred_zone);
2759			alloc_flags &= ~ALLOC_FAIR;
2760			goto retry;
 
 
 
 
 
 
 
 
 
2761		}
2762		/*
2763		 * Runtime PM, block IO and its error handling path
2764		 * can deadlock because I/O on the device might not
2765		 * complete.
2766		 */
2767		gfp_mask = memalloc_noio_flags(gfp_mask);
2768		page = __alloc_pages_slowpath(gfp_mask, order,
2769				zonelist, high_zoneidx, nodemask,
2770				preferred_zone, migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2771	}
2772
2773	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
 
 
 
 
2774
2775out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776	/*
2777	 * When updating a task's mems_allowed, it is possible to race with
2778	 * parallel threads in such a way that an allocation can fail while
2779	 * the mask is being updated. If a page allocation is about to fail,
2780	 * check if the cpuset changed during allocation and if so, retry.
2781	 */
2782	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2783		goto retry_cpuset;
2784
2785	memcg_kmem_commit_charge(page, memcg, order);
 
 
 
 
 
 
 
 
 
 
2786
2787	return page;
2788}
2789EXPORT_SYMBOL(__alloc_pages_nodemask);
 
 
 
 
 
 
 
 
 
2790
2791/*
2792 * Common helper functions.
 
 
2793 */
2794unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2795{
2796	struct page *page;
2797
2798	/*
2799	 * __get_free_pages() returns a 32-bit address, which cannot represent
2800	 * a highmem page
2801	 */
2802	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2803
2804	page = alloc_pages(gfp_mask, order);
2805	if (!page)
2806		return 0;
2807	return (unsigned long) page_address(page);
2808}
2809EXPORT_SYMBOL(__get_free_pages);
2810
2811unsigned long get_zeroed_page(gfp_t gfp_mask)
2812{
2813	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2814}
2815EXPORT_SYMBOL(get_zeroed_page);
2816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2817void __free_pages(struct page *page, unsigned int order)
2818{
2819	if (put_page_testzero(page)) {
2820		if (order == 0)
2821			free_hot_cold_page(page, 0);
2822		else
2823			__free_pages_ok(page, order);
2824	}
2825}
2826
 
 
 
 
 
 
2827EXPORT_SYMBOL(__free_pages);
2828
2829void free_pages(unsigned long addr, unsigned int order)
2830{
2831	if (addr != 0) {
2832		VM_BUG_ON(!virt_addr_valid((void *)addr));
2833		__free_pages(virt_to_page((void *)addr), order);
2834	}
2835}
2836
2837EXPORT_SYMBOL(free_pages);
2838
2839/*
2840 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2841 * pages allocated with __GFP_KMEMCG.
2842 *
2843 * Those pages are accounted to a particular memcg, embedded in the
2844 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2845 * for that information only to find out that it is NULL for users who have no
2846 * interest in that whatsoever, we provide these functions.
2847 *
2848 * The caller knows better which flags it relies on.
2849 */
2850void __free_memcg_kmem_pages(struct page *page, unsigned int order)
 
2851{
2852	memcg_kmem_uncharge_pages(page, order);
2853	__free_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854}
2855
2856void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2857{
2858	if (addr != 0) {
2859		VM_BUG_ON(!virt_addr_valid((void *)addr));
2860		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2861	}
 
2862}
 
2863
2864static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2865{
2866	if (addr) {
2867		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2868		unsigned long used = addr + PAGE_ALIGN(size);
 
 
 
2869
2870		split_page(virt_to_page((void *)addr), order);
2871		while (used < alloc_end) {
2872			free_page(used);
2873			used += PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874		}
2875	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876	return (void *)addr;
2877}
2878
2879/**
2880 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2881 * @size: the number of bytes to allocate
2882 * @gfp_mask: GFP flags for the allocation
2883 *
2884 * This function is similar to alloc_pages(), except that it allocates the
2885 * minimum number of pages to satisfy the request.  alloc_pages() can only
2886 * allocate memory in power-of-two pages.
2887 *
2888 * This function is also limited by MAX_ORDER.
2889 *
2890 * Memory allocated by this function must be released by free_pages_exact().
 
 
2891 */
2892void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2893{
2894	unsigned int order = get_order(size);
2895	unsigned long addr;
2896
 
 
 
2897	addr = __get_free_pages(gfp_mask, order);
2898	return make_alloc_exact(addr, order, size);
2899}
2900EXPORT_SYMBOL(alloc_pages_exact);
2901
2902/**
2903 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2904 *			   pages on a node.
2905 * @nid: the preferred node ID where memory should be allocated
2906 * @size: the number of bytes to allocate
2907 * @gfp_mask: GFP flags for the allocation
2908 *
2909 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2910 * back.
2911 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2912 * but is not exact.
2913 */
2914void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2915{
2916	unsigned order = get_order(size);
2917	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
2918	if (!p)
2919		return NULL;
2920	return make_alloc_exact((unsigned long)page_address(p), order, size);
2921}
2922EXPORT_SYMBOL(alloc_pages_exact_nid);
2923
2924/**
2925 * free_pages_exact - release memory allocated via alloc_pages_exact()
2926 * @virt: the value returned by alloc_pages_exact.
2927 * @size: size of allocation, same value as passed to alloc_pages_exact().
2928 *
2929 * Release the memory allocated by a previous call to alloc_pages_exact.
2930 */
2931void free_pages_exact(void *virt, size_t size)
2932{
2933	unsigned long addr = (unsigned long)virt;
2934	unsigned long end = addr + PAGE_ALIGN(size);
2935
2936	while (addr < end) {
2937		free_page(addr);
2938		addr += PAGE_SIZE;
2939	}
2940}
2941EXPORT_SYMBOL(free_pages_exact);
2942
2943/**
2944 * nr_free_zone_pages - count number of pages beyond high watermark
2945 * @offset: The zone index of the highest zone
2946 *
2947 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2948 * high watermark within all zones at or below a given zone index.  For each
2949 * zone, the number of pages is calculated as:
2950 *     managed_pages - high_pages
 
 
 
2951 */
2952static unsigned long nr_free_zone_pages(int offset)
2953{
2954	struct zoneref *z;
2955	struct zone *zone;
2956
2957	/* Just pick one node, since fallback list is circular */
2958	unsigned long sum = 0;
2959
2960	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2961
2962	for_each_zone_zonelist(zone, z, zonelist, offset) {
2963		unsigned long size = zone->managed_pages;
2964		unsigned long high = high_wmark_pages(zone);
2965		if (size > high)
2966			sum += size - high;
2967	}
2968
2969	return sum;
2970}
2971
2972/**
2973 * nr_free_buffer_pages - count number of pages beyond high watermark
2974 *
2975 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2976 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
2977 */
2978unsigned long nr_free_buffer_pages(void)
2979{
2980	return nr_free_zone_pages(gfp_zone(GFP_USER));
2981}
2982EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2983
2984/**
2985 * nr_free_pagecache_pages - count number of pages beyond high watermark
2986 *
2987 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2988 * high watermark within all zones.
2989 */
2990unsigned long nr_free_pagecache_pages(void)
2991{
2992	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2993}
2994
2995static inline void show_node(struct zone *zone)
2996{
2997	if (IS_ENABLED(CONFIG_NUMA))
2998		printk("Node %d ", zone_to_nid(zone));
2999}
3000
3001void si_meminfo(struct sysinfo *val)
3002{
3003	val->totalram = totalram_pages;
3004	val->sharedram = 0;
3005	val->freeram = global_page_state(NR_FREE_PAGES);
3006	val->bufferram = nr_blockdev_pages();
3007	val->totalhigh = totalhigh_pages;
3008	val->freehigh = nr_free_highpages();
3009	val->mem_unit = PAGE_SIZE;
3010}
3011
3012EXPORT_SYMBOL(si_meminfo);
3013
3014#ifdef CONFIG_NUMA
3015void si_meminfo_node(struct sysinfo *val, int nid)
3016{
3017	int zone_type;		/* needs to be signed */
3018	unsigned long managed_pages = 0;
3019	pg_data_t *pgdat = NODE_DATA(nid);
3020
3021	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3022		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3023	val->totalram = managed_pages;
3024	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3025#ifdef CONFIG_HIGHMEM
3026	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3027	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3028			NR_FREE_PAGES);
3029#else
3030	val->totalhigh = 0;
3031	val->freehigh = 0;
3032#endif
3033	val->mem_unit = PAGE_SIZE;
3034}
3035#endif
3036
3037/*
3038 * Determine whether the node should be displayed or not, depending on whether
3039 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3040 */
3041bool skip_free_areas_node(unsigned int flags, int nid)
3042{
3043	bool ret = false;
3044	unsigned int cpuset_mems_cookie;
3045
3046	if (!(flags & SHOW_MEM_FILTER_NODES))
3047		goto out;
3048
3049	do {
3050		cpuset_mems_cookie = read_mems_allowed_begin();
3051		ret = !node_isset(nid, cpuset_current_mems_allowed);
3052	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3053out:
3054	return ret;
3055}
3056
3057#define K(x) ((x) << (PAGE_SHIFT-10))
3058
3059static void show_migration_types(unsigned char type)
3060{
3061	static const char types[MIGRATE_TYPES] = {
3062		[MIGRATE_UNMOVABLE]	= 'U',
3063		[MIGRATE_RECLAIMABLE]	= 'E',
3064		[MIGRATE_MOVABLE]	= 'M',
3065		[MIGRATE_RESERVE]	= 'R',
3066#ifdef CONFIG_CMA
3067		[MIGRATE_CMA]		= 'C',
3068#endif
3069#ifdef CONFIG_MEMORY_ISOLATION
3070		[MIGRATE_ISOLATE]	= 'I',
3071#endif
3072	};
3073	char tmp[MIGRATE_TYPES + 1];
3074	char *p = tmp;
3075	int i;
3076
3077	for (i = 0; i < MIGRATE_TYPES; i++) {
3078		if (type & (1 << i))
3079			*p++ = types[i];
3080	}
3081
3082	*p = '\0';
3083	printk("(%s) ", tmp);
3084}
3085
3086/*
3087 * Show free area list (used inside shift_scroll-lock stuff)
3088 * We also calculate the percentage fragmentation. We do this by counting the
3089 * memory on each free list with the exception of the first item on the list.
3090 * Suppresses nodes that are not allowed by current's cpuset if
3091 * SHOW_MEM_FILTER_NODES is passed.
3092 */
3093void show_free_areas(unsigned int filter)
3094{
3095	int cpu;
3096	struct zone *zone;
3097
3098	for_each_populated_zone(zone) {
3099		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3100			continue;
3101		show_node(zone);
3102		printk("%s per-cpu:\n", zone->name);
3103
3104		for_each_online_cpu(cpu) {
3105			struct per_cpu_pageset *pageset;
3106
3107			pageset = per_cpu_ptr(zone->pageset, cpu);
3108
3109			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3110			       cpu, pageset->pcp.high,
3111			       pageset->pcp.batch, pageset->pcp.count);
3112		}
3113	}
3114
3115	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3116		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3117		" unevictable:%lu"
3118		" dirty:%lu writeback:%lu unstable:%lu\n"
3119		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3120		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3121		" free_cma:%lu\n",
3122		global_page_state(NR_ACTIVE_ANON),
3123		global_page_state(NR_INACTIVE_ANON),
3124		global_page_state(NR_ISOLATED_ANON),
3125		global_page_state(NR_ACTIVE_FILE),
3126		global_page_state(NR_INACTIVE_FILE),
3127		global_page_state(NR_ISOLATED_FILE),
3128		global_page_state(NR_UNEVICTABLE),
3129		global_page_state(NR_FILE_DIRTY),
3130		global_page_state(NR_WRITEBACK),
3131		global_page_state(NR_UNSTABLE_NFS),
3132		global_page_state(NR_FREE_PAGES),
3133		global_page_state(NR_SLAB_RECLAIMABLE),
3134		global_page_state(NR_SLAB_UNRECLAIMABLE),
3135		global_page_state(NR_FILE_MAPPED),
3136		global_page_state(NR_SHMEM),
3137		global_page_state(NR_PAGETABLE),
3138		global_page_state(NR_BOUNCE),
3139		global_page_state(NR_FREE_CMA_PAGES));
3140
3141	for_each_populated_zone(zone) {
3142		int i;
3143
3144		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3145			continue;
3146		show_node(zone);
3147		printk("%s"
3148			" free:%lukB"
3149			" min:%lukB"
3150			" low:%lukB"
3151			" high:%lukB"
3152			" active_anon:%lukB"
3153			" inactive_anon:%lukB"
3154			" active_file:%lukB"
3155			" inactive_file:%lukB"
3156			" unevictable:%lukB"
3157			" isolated(anon):%lukB"
3158			" isolated(file):%lukB"
3159			" present:%lukB"
3160			" managed:%lukB"
3161			" mlocked:%lukB"
3162			" dirty:%lukB"
3163			" writeback:%lukB"
3164			" mapped:%lukB"
3165			" shmem:%lukB"
3166			" slab_reclaimable:%lukB"
3167			" slab_unreclaimable:%lukB"
3168			" kernel_stack:%lukB"
3169			" pagetables:%lukB"
3170			" unstable:%lukB"
3171			" bounce:%lukB"
3172			" free_cma:%lukB"
3173			" writeback_tmp:%lukB"
3174			" pages_scanned:%lu"
3175			" all_unreclaimable? %s"
3176			"\n",
3177			zone->name,
3178			K(zone_page_state(zone, NR_FREE_PAGES)),
3179			K(min_wmark_pages(zone)),
3180			K(low_wmark_pages(zone)),
3181			K(high_wmark_pages(zone)),
3182			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3183			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3184			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3185			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3186			K(zone_page_state(zone, NR_UNEVICTABLE)),
3187			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3188			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3189			K(zone->present_pages),
3190			K(zone->managed_pages),
3191			K(zone_page_state(zone, NR_MLOCK)),
3192			K(zone_page_state(zone, NR_FILE_DIRTY)),
3193			K(zone_page_state(zone, NR_WRITEBACK)),
3194			K(zone_page_state(zone, NR_FILE_MAPPED)),
3195			K(zone_page_state(zone, NR_SHMEM)),
3196			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3197			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3198			zone_page_state(zone, NR_KERNEL_STACK) *
3199				THREAD_SIZE / 1024,
3200			K(zone_page_state(zone, NR_PAGETABLE)),
3201			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3202			K(zone_page_state(zone, NR_BOUNCE)),
3203			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3204			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3205			zone->pages_scanned,
3206			(!zone_reclaimable(zone) ? "yes" : "no")
3207			);
3208		printk("lowmem_reserve[]:");
3209		for (i = 0; i < MAX_NR_ZONES; i++)
3210			printk(" %lu", zone->lowmem_reserve[i]);
3211		printk("\n");
3212	}
3213
3214	for_each_populated_zone(zone) {
3215		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3216		unsigned char types[MAX_ORDER];
3217
3218		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3219			continue;
3220		show_node(zone);
3221		printk("%s: ", zone->name);
3222
3223		spin_lock_irqsave(&zone->lock, flags);
3224		for (order = 0; order < MAX_ORDER; order++) {
3225			struct free_area *area = &zone->free_area[order];
3226			int type;
3227
3228			nr[order] = area->nr_free;
3229			total += nr[order] << order;
3230
3231			types[order] = 0;
3232			for (type = 0; type < MIGRATE_TYPES; type++) {
3233				if (!list_empty(&area->free_list[type]))
3234					types[order] |= 1 << type;
3235			}
3236		}
3237		spin_unlock_irqrestore(&zone->lock, flags);
3238		for (order = 0; order < MAX_ORDER; order++) {
3239			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3240			if (nr[order])
3241				show_migration_types(types[order]);
3242		}
3243		printk("= %lukB\n", K(total));
3244	}
3245
3246	hugetlb_show_meminfo();
3247
3248	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3249
3250	show_swap_cache_info();
3251}
3252
3253static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3254{
3255	zoneref->zone = zone;
3256	zoneref->zone_idx = zone_idx(zone);
3257}
3258
3259/*
3260 * Builds allocation fallback zone lists.
3261 *
3262 * Add all populated zones of a node to the zonelist.
3263 */
3264static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3265				int nr_zones)
3266{
3267	struct zone *zone;
3268	enum zone_type zone_type = MAX_NR_ZONES;
 
3269
3270	do {
3271		zone_type--;
3272		zone = pgdat->node_zones + zone_type;
3273		if (populated_zone(zone)) {
3274			zoneref_set_zone(zone,
3275				&zonelist->_zonerefs[nr_zones++]);
3276			check_highest_zone(zone_type);
3277		}
3278	} while (zone_type);
3279
3280	return nr_zones;
3281}
3282
3283
3284/*
3285 *  zonelist_order:
3286 *  0 = automatic detection of better ordering.
3287 *  1 = order by ([node] distance, -zonetype)
3288 *  2 = order by (-zonetype, [node] distance)
3289 *
3290 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3291 *  the same zonelist. So only NUMA can configure this param.
3292 */
3293#define ZONELIST_ORDER_DEFAULT  0
3294#define ZONELIST_ORDER_NODE     1
3295#define ZONELIST_ORDER_ZONE     2
3296
3297/* zonelist order in the kernel.
3298 * set_zonelist_order() will set this to NODE or ZONE.
3299 */
3300static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3302
3303
3304#ifdef CONFIG_NUMA
3305/* The value user specified ....changed by config */
3306static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3307/* string for sysctl */
3308#define NUMA_ZONELIST_ORDER_LEN	16
3309char numa_zonelist_order[16] = "default";
3310
3311/*
3312 * interface for configure zonelist ordering.
3313 * command line option "numa_zonelist_order"
3314 *	= "[dD]efault	- default, automatic configuration.
3315 *	= "[nN]ode 	- order by node locality, then by zone within node
3316 *	= "[zZ]one      - order by zone, then by locality within zone
3317 */
3318
3319static int __parse_numa_zonelist_order(char *s)
3320{
3321	if (*s == 'd' || *s == 'D') {
3322		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3323	} else if (*s == 'n' || *s == 'N') {
3324		user_zonelist_order = ZONELIST_ORDER_NODE;
3325	} else if (*s == 'z' || *s == 'Z') {
3326		user_zonelist_order = ZONELIST_ORDER_ZONE;
3327	} else {
3328		printk(KERN_WARNING
3329			"Ignoring invalid numa_zonelist_order value:  "
3330			"%s\n", s);
3331		return -EINVAL;
3332	}
3333	return 0;
3334}
3335
3336static __init int setup_numa_zonelist_order(char *s)
3337{
3338	int ret;
3339
3340	if (!s)
3341		return 0;
3342
3343	ret = __parse_numa_zonelist_order(s);
3344	if (ret == 0)
3345		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3346
3347	return ret;
3348}
3349early_param("numa_zonelist_order", setup_numa_zonelist_order);
3350
3351/*
3352 * sysctl handler for numa_zonelist_order
3353 */
3354int numa_zonelist_order_handler(ctl_table *table, int write,
3355		void __user *buffer, size_t *length,
3356		loff_t *ppos)
3357{
3358	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3359	int ret;
3360	static DEFINE_MUTEX(zl_order_mutex);
3361
3362	mutex_lock(&zl_order_mutex);
3363	if (write) {
3364		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3365			ret = -EINVAL;
3366			goto out;
3367		}
3368		strcpy(saved_string, (char *)table->data);
3369	}
3370	ret = proc_dostring(table, write, buffer, length, ppos);
3371	if (ret)
3372		goto out;
3373	if (write) {
3374		int oldval = user_zonelist_order;
3375
3376		ret = __parse_numa_zonelist_order((char *)table->data);
3377		if (ret) {
3378			/*
3379			 * bogus value.  restore saved string
3380			 */
3381			strncpy((char *)table->data, saved_string,
3382				NUMA_ZONELIST_ORDER_LEN);
3383			user_zonelist_order = oldval;
3384		} else if (oldval != user_zonelist_order) {
3385			mutex_lock(&zonelists_mutex);
3386			build_all_zonelists(NULL, NULL);
3387			mutex_unlock(&zonelists_mutex);
3388		}
3389	}
3390out:
3391	mutex_unlock(&zl_order_mutex);
3392	return ret;
3393}
3394
3395
3396#define MAX_NODE_LOAD (nr_online_nodes)
3397static int node_load[MAX_NUMNODES];
3398
3399/**
3400 * find_next_best_node - find the next node that should appear in a given node's fallback list
3401 * @node: node whose fallback list we're appending
3402 * @used_node_mask: nodemask_t of already used nodes
3403 *
3404 * We use a number of factors to determine which is the next node that should
3405 * appear on a given node's fallback list.  The node should not have appeared
3406 * already in @node's fallback list, and it should be the next closest node
3407 * according to the distance array (which contains arbitrary distance values
3408 * from each node to each node in the system), and should also prefer nodes
3409 * with no CPUs, since presumably they'll have very little allocation pressure
3410 * on them otherwise.
3411 * It returns -1 if no node is found.
 
3412 */
3413static int find_next_best_node(int node, nodemask_t *used_node_mask)
3414{
3415	int n, val;
3416	int min_val = INT_MAX;
3417	int best_node = NUMA_NO_NODE;
3418	const struct cpumask *tmp = cpumask_of_node(0);
3419
3420	/* Use the local node if we haven't already */
3421	if (!node_isset(node, *used_node_mask)) {
 
 
 
3422		node_set(node, *used_node_mask);
3423		return node;
3424	}
3425
3426	for_each_node_state(n, N_MEMORY) {
3427
3428		/* Don't want a node to appear more than once */
3429		if (node_isset(n, *used_node_mask))
3430			continue;
3431
3432		/* Use the distance array to find the distance */
3433		val = node_distance(node, n);
3434
3435		/* Penalize nodes under us ("prefer the next node") */
3436		val += (n < node);
3437
3438		/* Give preference to headless and unused nodes */
3439		tmp = cpumask_of_node(n);
3440		if (!cpumask_empty(tmp))
3441			val += PENALTY_FOR_NODE_WITH_CPUS;
3442
3443		/* Slight preference for less loaded node */
3444		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3445		val += node_load[n];
3446
3447		if (val < min_val) {
3448			min_val = val;
3449			best_node = n;
3450		}
3451	}
3452
3453	if (best_node >= 0)
3454		node_set(best_node, *used_node_mask);
3455
3456	return best_node;
3457}
3458
3459
3460/*
3461 * Build zonelists ordered by node and zones within node.
3462 * This results in maximum locality--normal zone overflows into local
3463 * DMA zone, if any--but risks exhausting DMA zone.
3464 */
3465static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
3466{
3467	int j;
3468	struct zonelist *zonelist;
3469
3470	zonelist = &pgdat->node_zonelists[0];
3471	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3472		;
3473	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3474	zonelist->_zonerefs[j].zone = NULL;
3475	zonelist->_zonerefs[j].zone_idx = 0;
 
 
 
 
 
 
3476}
3477
3478/*
3479 * Build gfp_thisnode zonelists
3480 */
3481static void build_thisnode_zonelists(pg_data_t *pgdat)
3482{
3483	int j;
3484	struct zonelist *zonelist;
3485
3486	zonelist = &pgdat->node_zonelists[1];
3487	j = build_zonelists_node(pgdat, zonelist, 0);
3488	zonelist->_zonerefs[j].zone = NULL;
3489	zonelist->_zonerefs[j].zone_idx = 0;
 
3490}
3491
3492/*
3493 * Build zonelists ordered by zone and nodes within zones.
3494 * This results in conserving DMA zone[s] until all Normal memory is
3495 * exhausted, but results in overflowing to remote node while memory
3496 * may still exist in local DMA zone.
3497 */
3498static int node_order[MAX_NUMNODES];
3499
3500static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3501{
3502	int pos, j, node;
3503	int zone_type;		/* needs to be signed */
3504	struct zone *z;
3505	struct zonelist *zonelist;
3506
3507	zonelist = &pgdat->node_zonelists[0];
3508	pos = 0;
3509	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3510		for (j = 0; j < nr_nodes; j++) {
3511			node = node_order[j];
3512			z = &NODE_DATA(node)->node_zones[zone_type];
3513			if (populated_zone(z)) {
3514				zoneref_set_zone(z,
3515					&zonelist->_zonerefs[pos++]);
3516				check_highest_zone(zone_type);
3517			}
3518		}
3519	}
3520	zonelist->_zonerefs[pos].zone = NULL;
3521	zonelist->_zonerefs[pos].zone_idx = 0;
3522}
3523
3524static int default_zonelist_order(void)
3525{
3526	int nid, zone_type;
3527	unsigned long low_kmem_size, total_size;
3528	struct zone *z;
3529	int average_size;
3530	/*
3531	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3532	 * If they are really small and used heavily, the system can fall
3533	 * into OOM very easily.
3534	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3535	 */
3536	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3537	low_kmem_size = 0;
3538	total_size = 0;
3539	for_each_online_node(nid) {
3540		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3541			z = &NODE_DATA(nid)->node_zones[zone_type];
3542			if (populated_zone(z)) {
3543				if (zone_type < ZONE_NORMAL)
3544					low_kmem_size += z->managed_pages;
3545				total_size += z->managed_pages;
3546			} else if (zone_type == ZONE_NORMAL) {
3547				/*
3548				 * If any node has only lowmem, then node order
3549				 * is preferred to allow kernel allocations
3550				 * locally; otherwise, they can easily infringe
3551				 * on other nodes when there is an abundance of
3552				 * lowmem available to allocate from.
3553				 */
3554				return ZONELIST_ORDER_NODE;
3555			}
3556		}
3557	}
3558	if (!low_kmem_size ||  /* there are no DMA area. */
3559	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3560		return ZONELIST_ORDER_NODE;
3561	/*
3562	 * look into each node's config.
3563	 * If there is a node whose DMA/DMA32 memory is very big area on
3564	 * local memory, NODE_ORDER may be suitable.
3565	 */
3566	average_size = total_size /
3567				(nodes_weight(node_states[N_MEMORY]) + 1);
3568	for_each_online_node(nid) {
3569		low_kmem_size = 0;
3570		total_size = 0;
3571		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3572			z = &NODE_DATA(nid)->node_zones[zone_type];
3573			if (populated_zone(z)) {
3574				if (zone_type < ZONE_NORMAL)
3575					low_kmem_size += z->present_pages;
3576				total_size += z->present_pages;
3577			}
3578		}
3579		if (low_kmem_size &&
3580		    total_size > average_size && /* ignore small node */
3581		    low_kmem_size > total_size * 70/100)
3582			return ZONELIST_ORDER_NODE;
3583	}
3584	return ZONELIST_ORDER_ZONE;
3585}
3586
3587static void set_zonelist_order(void)
3588{
3589	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3590		current_zonelist_order = default_zonelist_order();
3591	else
3592		current_zonelist_order = user_zonelist_order;
3593}
3594
3595static void build_zonelists(pg_data_t *pgdat)
3596{
3597	int j, node, load;
3598	enum zone_type i;
3599	nodemask_t used_mask;
3600	int local_node, prev_node;
3601	struct zonelist *zonelist;
3602	int order = current_zonelist_order;
3603
3604	/* initialize zonelists */
3605	for (i = 0; i < MAX_ZONELISTS; i++) {
3606		zonelist = pgdat->node_zonelists + i;
3607		zonelist->_zonerefs[0].zone = NULL;
3608		zonelist->_zonerefs[0].zone_idx = 0;
3609	}
3610
3611	/* NUMA-aware ordering of nodes */
3612	local_node = pgdat->node_id;
3613	load = nr_online_nodes;
3614	prev_node = local_node;
3615	nodes_clear(used_mask);
3616
3617	memset(node_order, 0, sizeof(node_order));
3618	j = 0;
3619
3620	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3621		/*
3622		 * We don't want to pressure a particular node.
3623		 * So adding penalty to the first node in same
3624		 * distance group to make it round-robin.
3625		 */
3626		if (node_distance(local_node, node) !=
3627		    node_distance(local_node, prev_node))
3628			node_load[node] = load;
3629
 
3630		prev_node = node;
3631		load--;
3632		if (order == ZONELIST_ORDER_NODE)
3633			build_zonelists_in_node_order(pgdat, node);
3634		else
3635			node_order[j++] = node;	/* remember order */
3636	}
3637
3638	if (order == ZONELIST_ORDER_ZONE) {
3639		/* calculate node order -- i.e., DMA last! */
3640		build_zonelists_in_zone_order(pgdat, j);
3641	}
3642
 
3643	build_thisnode_zonelists(pgdat);
3644}
3645
3646/* Construct the zonelist performance cache - see further mmzone.h */
3647static void build_zonelist_cache(pg_data_t *pgdat)
3648{
3649	struct zonelist *zonelist;
3650	struct zonelist_cache *zlc;
3651	struct zoneref *z;
3652
3653	zonelist = &pgdat->node_zonelists[0];
3654	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3655	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3656	for (z = zonelist->_zonerefs; z->zone; z++)
3657		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3658}
3659
3660#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3661/*
3662 * Return node id of node used for "local" allocations.
3663 * I.e., first node id of first zone in arg node's generic zonelist.
3664 * Used for initializing percpu 'numa_mem', which is used primarily
3665 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3666 */
3667int local_memory_node(int node)
3668{
3669	struct zone *zone;
3670
3671	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3672				   gfp_zone(GFP_KERNEL),
3673				   NULL,
3674				   &zone);
3675	return zone->node;
3676}
3677#endif
3678
 
 
3679#else	/* CONFIG_NUMA */
3680
3681static void set_zonelist_order(void)
3682{
3683	current_zonelist_order = ZONELIST_ORDER_ZONE;
3684}
3685
3686static void build_zonelists(pg_data_t *pgdat)
3687{
3688	int node, local_node;
3689	enum zone_type j;
3690	struct zonelist *zonelist;
3691
3692	local_node = pgdat->node_id;
3693
3694	zonelist = &pgdat->node_zonelists[0];
3695	j = build_zonelists_node(pgdat, zonelist, 0);
 
3696
3697	/*
3698	 * Now we build the zonelist so that it contains the zones
3699	 * of all the other nodes.
3700	 * We don't want to pressure a particular node, so when
3701	 * building the zones for node N, we make sure that the
3702	 * zones coming right after the local ones are those from
3703	 * node N+1 (modulo N)
3704	 */
3705	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3706		if (!node_online(node))
3707			continue;
3708		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
3709	}
3710	for (node = 0; node < local_node; node++) {
3711		if (!node_online(node))
3712			continue;
3713		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
3714	}
3715
3716	zonelist->_zonerefs[j].zone = NULL;
3717	zonelist->_zonerefs[j].zone_idx = 0;
3718}
3719
3720/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3721static void build_zonelist_cache(pg_data_t *pgdat)
3722{
3723	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3724}
3725
3726#endif	/* CONFIG_NUMA */
3727
3728/*
3729 * Boot pageset table. One per cpu which is going to be used for all
3730 * zones and all nodes. The parameters will be set in such a way
3731 * that an item put on a list will immediately be handed over to
3732 * the buddy list. This is safe since pageset manipulation is done
3733 * with interrupts disabled.
3734 *
3735 * The boot_pagesets must be kept even after bootup is complete for
3736 * unused processors and/or zones. They do play a role for bootstrapping
3737 * hotplugged processors.
3738 *
3739 * zoneinfo_show() and maybe other functions do
3740 * not check if the processor is online before following the pageset pointer.
3741 * Other parts of the kernel may not check if the zone is available.
3742 */
3743static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3744static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3745static void setup_zone_pageset(struct zone *zone);
 
 
 
3746
3747/*
3748 * Global mutex to protect against size modification of zonelists
3749 * as well as to serialize pageset setup for the new populated zone.
3750 */
3751DEFINE_MUTEX(zonelists_mutex);
3752
3753/* return values int ....just for stop_machine() */
3754static int __build_all_zonelists(void *data)
3755{
3756	int nid;
3757	int cpu;
3758	pg_data_t *self = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3759
3760#ifdef CONFIG_NUMA
3761	memset(node_load, 0, sizeof(node_load));
3762#endif
3763
 
 
 
 
3764	if (self && !node_online(self->node_id)) {
3765		build_zonelists(self);
3766		build_zonelist_cache(self);
3767	}
 
 
 
 
 
3768
3769	for_each_online_node(nid) {
3770		pg_data_t *pgdat = NODE_DATA(nid);
3771
3772		build_zonelists(pgdat);
3773		build_zonelist_cache(pgdat);
 
 
 
 
 
 
 
 
 
 
3774	}
3775
 
 
 
 
 
 
 
 
 
 
 
3776	/*
3777	 * Initialize the boot_pagesets that are going to be used
3778	 * for bootstrapping processors. The real pagesets for
3779	 * each zone will be allocated later when the per cpu
3780	 * allocator is available.
3781	 *
3782	 * boot_pagesets are used also for bootstrapping offline
3783	 * cpus if the system is already booted because the pagesets
3784	 * are needed to initialize allocators on a specific cpu too.
3785	 * F.e. the percpu allocator needs the page allocator which
3786	 * needs the percpu allocator in order to allocate its pagesets
3787	 * (a chicken-egg dilemma).
3788	 */
3789	for_each_possible_cpu(cpu) {
3790		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3791
3792#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3793		/*
3794		 * We now know the "local memory node" for each node--
3795		 * i.e., the node of the first zone in the generic zonelist.
3796		 * Set up numa_mem percpu variable for on-line cpus.  During
3797		 * boot, only the boot cpu should be on-line;  we'll init the
3798		 * secondary cpus' numa_mem as they come on-line.  During
3799		 * node/memory hotplug, we'll fixup all on-line cpus.
3800		 */
3801		if (cpu_online(cpu))
3802			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3803#endif
3804	}
3805
3806	return 0;
 
3807}
3808
3809/*
3810 * Called with zonelists_mutex held always
3811 * unless system_state == SYSTEM_BOOTING.
 
 
 
3812 */
3813void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3814{
3815	set_zonelist_order();
3816
3817	if (system_state == SYSTEM_BOOTING) {
3818		__build_all_zonelists(NULL);
3819		mminit_verify_zonelist();
3820		cpuset_init_current_mems_allowed();
3821	} else {
3822#ifdef CONFIG_MEMORY_HOTPLUG
3823		if (zone)
3824			setup_zone_pageset(zone);
3825#endif
3826		/* we have to stop all cpus to guarantee there is no user
3827		   of zonelist */
3828		stop_machine(__build_all_zonelists, pgdat, NULL);
3829		/* cpuset refresh routine should be here */
3830	}
3831	vm_total_pages = nr_free_pagecache_pages();
 
3832	/*
3833	 * Disable grouping by mobility if the number of pages in the
3834	 * system is too low to allow the mechanism to work. It would be
3835	 * more accurate, but expensive to check per-zone. This check is
3836	 * made on memory-hotadd so a system can start with mobility
3837	 * disabled and enable it later
3838	 */
3839	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3840		page_group_by_mobility_disabled = 1;
3841	else
3842		page_group_by_mobility_disabled = 0;
3843
3844	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3845		"Total pages: %ld\n",
3846			nr_online_nodes,
3847			zonelist_order_name[current_zonelist_order],
3848			page_group_by_mobility_disabled ? "off" : "on",
3849			vm_total_pages);
3850#ifdef CONFIG_NUMA
3851	printk("Policy zone: %s\n", zone_names[policy_zone]);
3852#endif
3853}
3854
3855/*
3856 * Helper functions to size the waitqueue hash table.
3857 * Essentially these want to choose hash table sizes sufficiently
3858 * large so that collisions trying to wait on pages are rare.
3859 * But in fact, the number of active page waitqueues on typical
3860 * systems is ridiculously low, less than 200. So this is even
3861 * conservative, even though it seems large.
3862 *
3863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3864 * waitqueues, i.e. the size of the waitq table given the number of pages.
3865 */
3866#define PAGES_PER_WAITQUEUE	256
3867
3868#ifndef CONFIG_MEMORY_HOTPLUG
3869static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3870{
3871	unsigned long size = 1;
3872
3873	pages /= PAGES_PER_WAITQUEUE;
3874
3875	while (size < pages)
3876		size <<= 1;
3877
3878	/*
3879	 * Once we have dozens or even hundreds of threads sleeping
3880	 * on IO we've got bigger problems than wait queue collision.
3881	 * Limit the size of the wait table to a reasonable size.
3882	 */
3883	size = min(size, 4096UL);
3884
3885	return max(size, 4UL);
3886}
3887#else
3888/*
3889 * A zone's size might be changed by hot-add, so it is not possible to determine
3890 * a suitable size for its wait_table.  So we use the maximum size now.
3891 *
3892 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3893 *
3894 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3895 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3896 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3897 *
3898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3899 * or more by the traditional way. (See above).  It equals:
3900 *
3901 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3902 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3903 *    powerpc (64K page size)             : =  (32G +16M)byte.
3904 */
3905static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3906{
3907	return 4096UL;
3908}
3909#endif
3910
3911/*
3912 * This is an integer logarithm so that shifts can be used later
3913 * to extract the more random high bits from the multiplicative
3914 * hash function before the remainder is taken.
3915 */
3916static inline unsigned long wait_table_bits(unsigned long size)
3917{
3918	return ffz(~size);
3919}
3920
3921/*
3922 * Check if a pageblock contains reserved pages
3923 */
3924static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3925{
3926	unsigned long pfn;
3927
3928	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3929		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3930			return 1;
3931	}
3932	return 0;
3933}
3934
3935/*
3936 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3937 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3938 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3939 * higher will lead to a bigger reserve which will get freed as contiguous
3940 * blocks as reclaim kicks in
3941 */
3942static void setup_zone_migrate_reserve(struct zone *zone)
3943{
3944	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3945	struct page *page;
3946	unsigned long block_migratetype;
3947	int reserve;
3948	int old_reserve;
3949
3950	/*
3951	 * Get the start pfn, end pfn and the number of blocks to reserve
3952	 * We have to be careful to be aligned to pageblock_nr_pages to
3953	 * make sure that we always check pfn_valid for the first page in
3954	 * the block.
3955	 */
3956	start_pfn = zone->zone_start_pfn;
3957	end_pfn = zone_end_pfn(zone);
3958	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3959	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3960							pageblock_order;
3961
3962	/*
3963	 * Reserve blocks are generally in place to help high-order atomic
3964	 * allocations that are short-lived. A min_free_kbytes value that
3965	 * would result in more than 2 reserve blocks for atomic allocations
3966	 * is assumed to be in place to help anti-fragmentation for the
3967	 * future allocation of hugepages at runtime.
3968	 */
3969	reserve = min(2, reserve);
3970	old_reserve = zone->nr_migrate_reserve_block;
3971
3972	/* When memory hot-add, we almost always need to do nothing */
3973	if (reserve == old_reserve)
3974		return;
3975	zone->nr_migrate_reserve_block = reserve;
3976
3977	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3978		if (!pfn_valid(pfn))
3979			continue;
3980		page = pfn_to_page(pfn);
3981
3982		/* Watch out for overlapping nodes */
3983		if (page_to_nid(page) != zone_to_nid(zone))
3984			continue;
3985
3986		block_migratetype = get_pageblock_migratetype(page);
3987
3988		/* Only test what is necessary when the reserves are not met */
3989		if (reserve > 0) {
3990			/*
3991			 * Blocks with reserved pages will never free, skip
3992			 * them.
3993			 */
3994			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3995			if (pageblock_is_reserved(pfn, block_end_pfn))
3996				continue;
3997
3998			/* If this block is reserved, account for it */
3999			if (block_migratetype == MIGRATE_RESERVE) {
4000				reserve--;
4001				continue;
4002			}
4003
4004			/* Suitable for reserving if this block is movable */
4005			if (block_migratetype == MIGRATE_MOVABLE) {
4006				set_pageblock_migratetype(page,
4007							MIGRATE_RESERVE);
4008				move_freepages_block(zone, page,
4009							MIGRATE_RESERVE);
4010				reserve--;
4011				continue;
4012			}
4013		} else if (!old_reserve) {
4014			/*
4015			 * At boot time we don't need to scan the whole zone
4016			 * for turning off MIGRATE_RESERVE.
4017			 */
4018			break;
4019		}
4020
4021		/*
4022		 * If the reserve is met and this is a previous reserved block,
4023		 * take it back
4024		 */
4025		if (block_migratetype == MIGRATE_RESERVE) {
4026			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4027			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4028		}
4029	}
4030}
4031
4032/*
4033 * Initially all pages are reserved - free ones are freed
4034 * up by free_all_bootmem() once the early boot process is
4035 * done. Non-atomic initialization, single-pass.
4036 */
4037void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4038		unsigned long start_pfn, enum memmap_context context)
4039{
4040	struct page *page;
4041	unsigned long end_pfn = start_pfn + size;
4042	unsigned long pfn;
4043	struct zone *z;
4044
4045	if (highest_memmap_pfn < end_pfn - 1)
4046		highest_memmap_pfn = end_pfn - 1;
4047
4048	z = &NODE_DATA(nid)->node_zones[zone];
4049	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4050		/*
4051		 * There can be holes in boot-time mem_map[]s
4052		 * handed to this function.  They do not
4053		 * exist on hotplugged memory.
4054		 */
4055		if (context == MEMMAP_EARLY) {
4056			if (!early_pfn_valid(pfn))
4057				continue;
4058			if (!early_pfn_in_nid(pfn, nid))
4059				continue;
4060		}
4061		page = pfn_to_page(pfn);
4062		set_page_links(page, zone, nid, pfn);
4063		mminit_verify_page_links(page, zone, nid, pfn);
4064		init_page_count(page);
4065		page_mapcount_reset(page);
4066		page_cpupid_reset_last(page);
4067		SetPageReserved(page);
4068		/*
4069		 * Mark the block movable so that blocks are reserved for
4070		 * movable at startup. This will force kernel allocations
4071		 * to reserve their blocks rather than leaking throughout
4072		 * the address space during boot when many long-lived
4073		 * kernel allocations are made. Later some blocks near
4074		 * the start are marked MIGRATE_RESERVE by
4075		 * setup_zone_migrate_reserve()
4076		 *
4077		 * bitmap is created for zone's valid pfn range. but memmap
4078		 * can be created for invalid pages (for alignment)
4079		 * check here not to call set_pageblock_migratetype() against
4080		 * pfn out of zone.
4081		 */
4082		if ((z->zone_start_pfn <= pfn)
4083		    && (pfn < zone_end_pfn(z))
4084		    && !(pfn & (pageblock_nr_pages - 1)))
4085			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4086
4087		INIT_LIST_HEAD(&page->lru);
4088#ifdef WANT_PAGE_VIRTUAL
4089		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4090		if (!is_highmem_idx(zone))
4091			set_page_address(page, __va(pfn << PAGE_SHIFT));
4092#endif
4093	}
4094}
4095
4096static void __meminit zone_init_free_lists(struct zone *zone)
4097{
4098	int order, t;
4099	for_each_migratetype_order(order, t) {
4100		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4101		zone->free_area[order].nr_free = 0;
4102	}
4103}
4104
4105#ifndef __HAVE_ARCH_MEMMAP_INIT
4106#define memmap_init(size, nid, zone, start_pfn) \
4107	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4108#endif
4109
4110static int __meminit zone_batchsize(struct zone *zone)
4111{
4112#ifdef CONFIG_MMU
4113	int batch;
4114
4115	/*
4116	 * The per-cpu-pages pools are set to around 1000th of the
4117	 * size of the zone.  But no more than 1/2 of a meg.
4118	 *
4119	 * OK, so we don't know how big the cache is.  So guess.
4120	 */
4121	batch = zone->managed_pages / 1024;
4122	if (batch * PAGE_SIZE > 512 * 1024)
4123		batch = (512 * 1024) / PAGE_SIZE;
4124	batch /= 4;		/* We effectively *= 4 below */
4125	if (batch < 1)
4126		batch = 1;
4127
4128	/*
4129	 * Clamp the batch to a 2^n - 1 value. Having a power
4130	 * of 2 value was found to be more likely to have
4131	 * suboptimal cache aliasing properties in some cases.
4132	 *
4133	 * For example if 2 tasks are alternately allocating
4134	 * batches of pages, one task can end up with a lot
4135	 * of pages of one half of the possible page colors
4136	 * and the other with pages of the other colors.
4137	 */
4138	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4139
4140	return batch;
4141
4142#else
4143	/* The deferral and batching of frees should be suppressed under NOMMU
4144	 * conditions.
4145	 *
4146	 * The problem is that NOMMU needs to be able to allocate large chunks
4147	 * of contiguous memory as there's no hardware page translation to
4148	 * assemble apparent contiguous memory from discontiguous pages.
4149	 *
4150	 * Queueing large contiguous runs of pages for batching, however,
4151	 * causes the pages to actually be freed in smaller chunks.  As there
4152	 * can be a significant delay between the individual batches being
4153	 * recycled, this leads to the once large chunks of space being
4154	 * fragmented and becoming unavailable for high-order allocations.
4155	 */
4156	return 0;
4157#endif
4158}
4159
4160/*
4161 * pcp->high and pcp->batch values are related and dependent on one another:
4162 * ->batch must never be higher then ->high.
4163 * The following function updates them in a safe manner without read side
4164 * locking.
4165 *
4166 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4167 * those fields changing asynchronously (acording the the above rule).
4168 *
4169 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4170 * outside of boot time (or some other assurance that no concurrent updaters
4171 * exist).
4172 */
4173static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4174		unsigned long batch)
4175{
4176       /* start with a fail safe value for batch */
4177	pcp->batch = 1;
4178	smp_wmb();
4179
4180       /* Update high, then batch, in order */
4181	pcp->high = high;
4182	smp_wmb();
4183
4184	pcp->batch = batch;
4185}
4186
4187/* a companion to pageset_set_high() */
4188static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4189{
4190	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4191}
4192
4193static void pageset_init(struct per_cpu_pageset *p)
4194{
4195	struct per_cpu_pages *pcp;
4196	int migratetype;
4197
4198	memset(p, 0, sizeof(*p));
4199
4200	pcp = &p->pcp;
4201	pcp->count = 0;
4202	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4203		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4204}
4205
4206static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4207{
4208	pageset_init(p);
4209	pageset_set_batch(p, batch);
4210}
4211
4212/*
4213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4214 * to the value high for the pageset p.
4215 */
4216static void pageset_set_high(struct per_cpu_pageset *p,
4217				unsigned long high)
4218{
4219	unsigned long batch = max(1UL, high / 4);
4220	if ((high / 4) > (PAGE_SHIFT * 8))
4221		batch = PAGE_SHIFT * 8;
4222
4223	pageset_update(&p->pcp, high, batch);
4224}
4225
4226static void __meminit pageset_set_high_and_batch(struct zone *zone,
4227		struct per_cpu_pageset *pcp)
4228{
4229	if (percpu_pagelist_fraction)
4230		pageset_set_high(pcp,
4231			(zone->managed_pages /
4232				percpu_pagelist_fraction));
4233	else
4234		pageset_set_batch(pcp, zone_batchsize(zone));
4235}
4236
4237static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4238{
4239	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4240
4241	pageset_init(pcp);
4242	pageset_set_high_and_batch(zone, pcp);
4243}
4244
4245static void __meminit setup_zone_pageset(struct zone *zone)
4246{
4247	int cpu;
4248	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4249	for_each_possible_cpu(cpu)
4250		zone_pageset_init(zone, cpu);
4251}
4252
4253/*
4254 * Allocate per cpu pagesets and initialize them.
4255 * Before this call only boot pagesets were available.
4256 */
4257void __init setup_per_cpu_pageset(void)
4258{
4259	struct zone *zone;
4260
4261	for_each_populated_zone(zone)
4262		setup_zone_pageset(zone);
4263}
4264
4265static noinline __init_refok
4266int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4267{
4268	int i;
4269	size_t alloc_size;
4270
4271	/*
4272	 * The per-page waitqueue mechanism uses hashed waitqueues
4273	 * per zone.
4274	 */
4275	zone->wait_table_hash_nr_entries =
4276		 wait_table_hash_nr_entries(zone_size_pages);
4277	zone->wait_table_bits =
4278		wait_table_bits(zone->wait_table_hash_nr_entries);
4279	alloc_size = zone->wait_table_hash_nr_entries
4280					* sizeof(wait_queue_head_t);
4281
4282	if (!slab_is_available()) {
4283		zone->wait_table = (wait_queue_head_t *)
4284			memblock_virt_alloc_node_nopanic(
4285				alloc_size, zone->zone_pgdat->node_id);
4286	} else {
4287		/*
4288		 * This case means that a zone whose size was 0 gets new memory
4289		 * via memory hot-add.
4290		 * But it may be the case that a new node was hot-added.  In
4291		 * this case vmalloc() will not be able to use this new node's
4292		 * memory - this wait_table must be initialized to use this new
4293		 * node itself as well.
4294		 * To use this new node's memory, further consideration will be
4295		 * necessary.
4296		 */
4297		zone->wait_table = vmalloc(alloc_size);
4298	}
4299	if (!zone->wait_table)
4300		return -ENOMEM;
4301
4302	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4303		init_waitqueue_head(zone->wait_table + i);
4304
4305	return 0;
4306}
4307
4308static __meminit void zone_pcp_init(struct zone *zone)
4309{
4310	/*
4311	 * per cpu subsystem is not up at this point. The following code
4312	 * relies on the ability of the linker to provide the
4313	 * offset of a (static) per cpu variable into the per cpu area.
 
 
 
4314	 */
4315	zone->pageset = &boot_pageset;
4316
4317	if (populated_zone(zone))
4318		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4319			zone->name, zone->present_pages,
4320					 zone_batchsize(zone));
4321}
4322
4323int __meminit init_currently_empty_zone(struct zone *zone,
4324					unsigned long zone_start_pfn,
4325					unsigned long size,
4326					enum memmap_context context)
4327{
4328	struct pglist_data *pgdat = zone->zone_pgdat;
4329	int ret;
4330	ret = zone_wait_table_init(zone, size);
4331	if (ret)
4332		return ret;
4333	pgdat->nr_zones = zone_idx(zone) + 1;
4334
4335	zone->zone_start_pfn = zone_start_pfn;
4336
4337	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4338			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4339			pgdat->node_id,
4340			(unsigned long)zone_idx(zone),
4341			zone_start_pfn, (zone_start_pfn + size));
4342
4343	zone_init_free_lists(zone);
4344
4345	return 0;
4346}
4347
4348#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4349#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4350/*
4351 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4352 * Architectures may implement their own version but if add_active_range()
4353 * was used and there are no special requirements, this is a convenient
4354 * alternative
4355 */
4356int __meminit __early_pfn_to_nid(unsigned long pfn)
4357{
4358	unsigned long start_pfn, end_pfn;
4359	int nid;
4360	/*
4361	 * NOTE: The following SMP-unsafe globals are only used early in boot
4362	 * when the kernel is running single-threaded.
4363	 */
4364	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4365	static int __meminitdata last_nid;
4366
4367	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4368		return last_nid;
4369
4370	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4371	if (nid != -1) {
4372		last_start_pfn = start_pfn;
4373		last_end_pfn = end_pfn;
4374		last_nid = nid;
4375	}
4376
4377	return nid;
4378}
4379#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4380
4381int __meminit early_pfn_to_nid(unsigned long pfn)
4382{
4383	int nid;
4384
4385	nid = __early_pfn_to_nid(pfn);
4386	if (nid >= 0)
4387		return nid;
4388	/* just returns 0 */
4389	return 0;
4390}
4391
4392#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4393bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4394{
4395	int nid;
4396
4397	nid = __early_pfn_to_nid(pfn);
4398	if (nid >= 0 && nid != node)
4399		return false;
4400	return true;
4401}
4402#endif
4403
4404/**
4405 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4406 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4407 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4408 *
4409 * If an architecture guarantees that all ranges registered with
4410 * add_active_ranges() contain no holes and may be freed, this
4411 * this function may be used instead of calling memblock_free_early_nid()
4412 * manually.
4413 */
4414void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4415{
4416	unsigned long start_pfn, end_pfn;
4417	int i, this_nid;
4418
4419	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4420		start_pfn = min(start_pfn, max_low_pfn);
4421		end_pfn = min(end_pfn, max_low_pfn);
4422
4423		if (start_pfn < end_pfn)
4424			memblock_free_early_nid(PFN_PHYS(start_pfn),
4425					(end_pfn - start_pfn) << PAGE_SHIFT,
4426					this_nid);
4427	}
4428}
4429
4430/**
4431 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4432 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4433 *
4434 * If an architecture guarantees that all ranges registered with
4435 * add_active_ranges() contain no holes and may be freed, this
4436 * function may be used instead of calling memory_present() manually.
4437 */
4438void __init sparse_memory_present_with_active_regions(int nid)
4439{
4440	unsigned long start_pfn, end_pfn;
4441	int i, this_nid;
4442
4443	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4444		memory_present(this_nid, start_pfn, end_pfn);
4445}
4446
4447/**
4448 * get_pfn_range_for_nid - Return the start and end page frames for a node
4449 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4450 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4451 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4452 *
4453 * It returns the start and end page frame of a node based on information
4454 * provided by an arch calling add_active_range(). If called for a node
4455 * with no available memory, a warning is printed and the start and end
4456 * PFNs will be 0.
4457 */
4458void __meminit get_pfn_range_for_nid(unsigned int nid,
4459			unsigned long *start_pfn, unsigned long *end_pfn)
4460{
4461	unsigned long this_start_pfn, this_end_pfn;
4462	int i;
4463
4464	*start_pfn = -1UL;
4465	*end_pfn = 0;
4466
4467	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4468		*start_pfn = min(*start_pfn, this_start_pfn);
4469		*end_pfn = max(*end_pfn, this_end_pfn);
4470	}
4471
4472	if (*start_pfn == -1UL)
4473		*start_pfn = 0;
4474}
4475
4476/*
4477 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4478 * assumption is made that zones within a node are ordered in monotonic
4479 * increasing memory addresses so that the "highest" populated zone is used
4480 */
4481static void __init find_usable_zone_for_movable(void)
4482{
4483	int zone_index;
4484	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4485		if (zone_index == ZONE_MOVABLE)
4486			continue;
4487
4488		if (arch_zone_highest_possible_pfn[zone_index] >
4489				arch_zone_lowest_possible_pfn[zone_index])
4490			break;
4491	}
4492
4493	VM_BUG_ON(zone_index == -1);
4494	movable_zone = zone_index;
4495}
4496
4497/*
4498 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4499 * because it is sized independent of architecture. Unlike the other zones,
4500 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4501 * in each node depending on the size of each node and how evenly kernelcore
4502 * is distributed. This helper function adjusts the zone ranges
4503 * provided by the architecture for a given node by using the end of the
4504 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4505 * zones within a node are in order of monotonic increases memory addresses
4506 */
4507static void __meminit adjust_zone_range_for_zone_movable(int nid,
4508					unsigned long zone_type,
4509					unsigned long node_start_pfn,
4510					unsigned long node_end_pfn,
4511					unsigned long *zone_start_pfn,
4512					unsigned long *zone_end_pfn)
4513{
4514	/* Only adjust if ZONE_MOVABLE is on this node */
4515	if (zone_movable_pfn[nid]) {
4516		/* Size ZONE_MOVABLE */
4517		if (zone_type == ZONE_MOVABLE) {
4518			*zone_start_pfn = zone_movable_pfn[nid];
4519			*zone_end_pfn = min(node_end_pfn,
4520				arch_zone_highest_possible_pfn[movable_zone]);
4521
4522		/* Adjust for ZONE_MOVABLE starting within this range */
4523		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4524				*zone_end_pfn > zone_movable_pfn[nid]) {
4525			*zone_end_pfn = zone_movable_pfn[nid];
4526
4527		/* Check if this whole range is within ZONE_MOVABLE */
4528		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4529			*zone_start_pfn = *zone_end_pfn;
4530	}
4531}
4532
4533/*
4534 * Return the number of pages a zone spans in a node, including holes
4535 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4536 */
4537static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4538					unsigned long zone_type,
4539					unsigned long node_start_pfn,
4540					unsigned long node_end_pfn,
4541					unsigned long *ignored)
4542{
4543	unsigned long zone_start_pfn, zone_end_pfn;
4544
4545	/* Get the start and end of the zone */
4546	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4547	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4548	adjust_zone_range_for_zone_movable(nid, zone_type,
4549				node_start_pfn, node_end_pfn,
4550				&zone_start_pfn, &zone_end_pfn);
4551
4552	/* Check that this node has pages within the zone's required range */
4553	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4554		return 0;
4555
4556	/* Move the zone boundaries inside the node if necessary */
4557	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4558	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4559
4560	/* Return the spanned pages */
4561	return zone_end_pfn - zone_start_pfn;
4562}
4563
4564/*
4565 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4566 * then all holes in the requested range will be accounted for.
4567 */
4568unsigned long __meminit __absent_pages_in_range(int nid,
4569				unsigned long range_start_pfn,
4570				unsigned long range_end_pfn)
4571{
4572	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4573	unsigned long start_pfn, end_pfn;
4574	int i;
4575
4576	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4577		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4578		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4579		nr_absent -= end_pfn - start_pfn;
4580	}
4581	return nr_absent;
4582}
4583
4584/**
4585 * absent_pages_in_range - Return number of page frames in holes within a range
4586 * @start_pfn: The start PFN to start searching for holes
4587 * @end_pfn: The end PFN to stop searching for holes
4588 *
4589 * It returns the number of pages frames in memory holes within a range.
 
 
4590 */
4591unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4592							unsigned long end_pfn)
4593{
4594	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 
 
4595}
4596
4597/* Return the number of page frames in holes in a zone on a node */
4598static unsigned long __meminit zone_absent_pages_in_node(int nid,
4599					unsigned long zone_type,
4600					unsigned long node_start_pfn,
4601					unsigned long node_end_pfn,
4602					unsigned long *ignored)
4603{
4604	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4605	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4606	unsigned long zone_start_pfn, zone_end_pfn;
4607
4608	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4609	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4610
4611	adjust_zone_range_for_zone_movable(nid, zone_type,
4612			node_start_pfn, node_end_pfn,
4613			&zone_start_pfn, &zone_end_pfn);
4614	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4615}
4616
4617#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4619					unsigned long zone_type,
4620					unsigned long node_start_pfn,
4621					unsigned long node_end_pfn,
4622					unsigned long *zones_size)
4623{
4624	return zones_size[zone_type];
4625}
4626
4627static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4628						unsigned long zone_type,
4629						unsigned long node_start_pfn,
4630						unsigned long node_end_pfn,
4631						unsigned long *zholes_size)
4632{
4633	if (!zholes_size)
4634		return 0;
4635
4636	return zholes_size[zone_type];
4637}
4638
4639#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4640
4641static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4642						unsigned long node_start_pfn,
4643						unsigned long node_end_pfn,
4644						unsigned long *zones_size,
4645						unsigned long *zholes_size)
4646{
4647	unsigned long realtotalpages, totalpages = 0;
4648	enum zone_type i;
4649
4650	for (i = 0; i < MAX_NR_ZONES; i++)
4651		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4652							 node_start_pfn,
4653							 node_end_pfn,
4654							 zones_size);
4655	pgdat->node_spanned_pages = totalpages;
4656
4657	realtotalpages = totalpages;
4658	for (i = 0; i < MAX_NR_ZONES; i++)
4659		realtotalpages -=
4660			zone_absent_pages_in_node(pgdat->node_id, i,
4661						  node_start_pfn, node_end_pfn,
4662						  zholes_size);
4663	pgdat->node_present_pages = realtotalpages;
4664	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4665							realtotalpages);
4666}
4667
4668#ifndef CONFIG_SPARSEMEM
4669/*
4670 * Calculate the size of the zone->blockflags rounded to an unsigned long
4671 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4672 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4673 * round what is now in bits to nearest long in bits, then return it in
4674 * bytes.
4675 */
4676static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4677{
4678	unsigned long usemapsize;
4679
4680	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4681	usemapsize = roundup(zonesize, pageblock_nr_pages);
4682	usemapsize = usemapsize >> pageblock_order;
4683	usemapsize *= NR_PAGEBLOCK_BITS;
4684	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4685
4686	return usemapsize / 8;
4687}
4688
4689static void __init setup_usemap(struct pglist_data *pgdat,
4690				struct zone *zone,
4691				unsigned long zone_start_pfn,
4692				unsigned long zonesize)
4693{
4694	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4695	zone->pageblock_flags = NULL;
4696	if (usemapsize)
4697		zone->pageblock_flags =
4698			memblock_virt_alloc_node_nopanic(usemapsize,
4699							 pgdat->node_id);
4700}
4701#else
4702static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4703				unsigned long zone_start_pfn, unsigned long zonesize) {}
4704#endif /* CONFIG_SPARSEMEM */
4705
4706#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4707
4708/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4709void __paginginit set_pageblock_order(void)
4710{
4711	unsigned int order;
4712
4713	/* Check that pageblock_nr_pages has not already been setup */
4714	if (pageblock_order)
4715		return;
4716
4717	if (HPAGE_SHIFT > PAGE_SHIFT)
4718		order = HUGETLB_PAGE_ORDER;
4719	else
4720		order = MAX_ORDER - 1;
4721
4722	/*
4723	 * Assume the largest contiguous order of interest is a huge page.
4724	 * This value may be variable depending on boot parameters on IA64 and
4725	 * powerpc.
 
4726	 */
4727	pageblock_order = order;
4728}
4729#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4730
4731/*
4732 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4733 * is unused as pageblock_order is set at compile-time. See
4734 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4735 * the kernel config
4736 */
4737void __paginginit set_pageblock_order(void)
4738{
4739}
4740
4741#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4742
4743static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4744						   unsigned long present_pages)
4745{
4746	unsigned long pages = spanned_pages;
4747
4748	/*
4749	 * Provide a more accurate estimation if there are holes within
4750	 * the zone and SPARSEMEM is in use. If there are holes within the
4751	 * zone, each populated memory region may cost us one or two extra
4752	 * memmap pages due to alignment because memmap pages for each
4753	 * populated regions may not naturally algined on page boundary.
4754	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4755	 */
4756	if (spanned_pages > present_pages + (present_pages >> 4) &&
4757	    IS_ENABLED(CONFIG_SPARSEMEM))
4758		pages = present_pages;
4759
4760	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 
 
 
4761}
4762
4763/*
4764 * Set up the zone data structures:
4765 *   - mark all pages reserved
4766 *   - mark all memory queues empty
4767 *   - clear the memory bitmaps
4768 *
4769 * NOTE: pgdat should get zeroed by caller.
4770 */
4771static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4772		unsigned long node_start_pfn, unsigned long node_end_pfn,
4773		unsigned long *zones_size, unsigned long *zholes_size)
4774{
4775	enum zone_type j;
4776	int nid = pgdat->node_id;
4777	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4778	int ret;
4779
4780	pgdat_resize_init(pgdat);
4781#ifdef CONFIG_NUMA_BALANCING
4782	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4783	pgdat->numabalancing_migrate_nr_pages = 0;
4784	pgdat->numabalancing_migrate_next_window = jiffies;
4785#endif
4786	init_waitqueue_head(&pgdat->kswapd_wait);
4787	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4788	pgdat_page_cgroup_init(pgdat);
4789
4790	for (j = 0; j < MAX_NR_ZONES; j++) {
4791		struct zone *zone = pgdat->node_zones + j;
4792		unsigned long size, realsize, freesize, memmap_pages;
4793
4794		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4795						  node_end_pfn, zones_size);
4796		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4797								node_start_pfn,
4798								node_end_pfn,
4799								zholes_size);
4800
4801		/*
4802		 * Adjust freesize so that it accounts for how much memory
4803		 * is used by this zone for memmap. This affects the watermark
4804		 * and per-cpu initialisations
4805		 */
4806		memmap_pages = calc_memmap_size(size, realsize);
4807		if (freesize >= memmap_pages) {
4808			freesize -= memmap_pages;
4809			if (memmap_pages)
4810				printk(KERN_DEBUG
4811				       "  %s zone: %lu pages used for memmap\n",
4812				       zone_names[j], memmap_pages);
4813		} else
4814			printk(KERN_WARNING
4815				"  %s zone: %lu pages exceeds freesize %lu\n",
4816				zone_names[j], memmap_pages, freesize);
4817
4818		/* Account for reserved pages */
4819		if (j == 0 && freesize > dma_reserve) {
4820			freesize -= dma_reserve;
4821			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4822					zone_names[0], dma_reserve);
4823		}
4824
4825		if (!is_highmem_idx(j))
4826			nr_kernel_pages += freesize;
4827		/* Charge for highmem memmap if there are enough kernel pages */
4828		else if (nr_kernel_pages > memmap_pages * 2)
4829			nr_kernel_pages -= memmap_pages;
4830		nr_all_pages += freesize;
4831
4832		zone->spanned_pages = size;
4833		zone->present_pages = realsize;
4834		/*
4835		 * Set an approximate value for lowmem here, it will be adjusted
4836		 * when the bootmem allocator frees pages into the buddy system.
4837		 * And all highmem pages will be managed by the buddy system.
4838		 */
4839		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4840#ifdef CONFIG_NUMA
4841		zone->node = nid;
4842		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4843						/ 100;
4844		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4845#endif
4846		zone->name = zone_names[j];
4847		spin_lock_init(&zone->lock);
4848		spin_lock_init(&zone->lru_lock);
4849		zone_seqlock_init(zone);
4850		zone->zone_pgdat = pgdat;
4851		zone_pcp_init(zone);
4852
4853		/* For bootup, initialized properly in watermark setup */
4854		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4855
4856		lruvec_init(&zone->lruvec);
4857		if (!size)
4858			continue;
4859
4860		set_pageblock_order();
4861		setup_usemap(pgdat, zone, zone_start_pfn, size);
4862		ret = init_currently_empty_zone(zone, zone_start_pfn,
4863						size, MEMMAP_EARLY);
4864		BUG_ON(ret);
4865		memmap_init(size, nid, j, zone_start_pfn);
4866		zone_start_pfn += size;
4867	}
4868}
4869
4870static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4871{
4872	/* Skip empty nodes */
4873	if (!pgdat->node_spanned_pages)
4874		return;
4875
4876#ifdef CONFIG_FLAT_NODE_MEM_MAP
4877	/* ia64 gets its own node_mem_map, before this, without bootmem */
4878	if (!pgdat->node_mem_map) {
4879		unsigned long size, start, end;
4880		struct page *map;
4881
4882		/*
4883		 * The zone's endpoints aren't required to be MAX_ORDER
4884		 * aligned but the node_mem_map endpoints must be in order
4885		 * for the buddy allocator to function correctly.
4886		 */
4887		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4888		end = pgdat_end_pfn(pgdat);
4889		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4890		size =  (end - start) * sizeof(struct page);
4891		map = alloc_remap(pgdat->node_id, size);
4892		if (!map)
4893			map = memblock_virt_alloc_node_nopanic(size,
4894							       pgdat->node_id);
4895		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4896	}
4897#ifndef CONFIG_NEED_MULTIPLE_NODES
4898	/*
4899	 * With no DISCONTIG, the global mem_map is just set as node 0's
4900	 */
4901	if (pgdat == NODE_DATA(0)) {
4902		mem_map = NODE_DATA(0)->node_mem_map;
4903#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4905			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4906#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4907	}
4908#endif
4909#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4910}
4911
4912void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4913		unsigned long node_start_pfn, unsigned long *zholes_size)
4914{
4915	pg_data_t *pgdat = NODE_DATA(nid);
4916	unsigned long start_pfn = 0;
4917	unsigned long end_pfn = 0;
4918
4919	/* pg_data_t should be reset to zero when it's allocated */
4920	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
 
4921
4922	pgdat->node_id = nid;
4923	pgdat->node_start_pfn = node_start_pfn;
4924	if (node_state(nid, N_MEMORY))
4925		init_zone_allows_reclaim(nid);
4926#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4927	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4928#endif
4929	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4930				  zones_size, zholes_size);
4931
4932	alloc_node_mem_map(pgdat);
4933#ifdef CONFIG_FLAT_NODE_MEM_MAP
4934	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4935		nid, (unsigned long)pgdat,
4936		(unsigned long)pgdat->node_mem_map);
4937#endif
4938
4939	free_area_init_core(pgdat, start_pfn, end_pfn,
4940			    zones_size, zholes_size);
4941}
4942
4943#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4944
4945#if MAX_NUMNODES > 1
4946/*
4947 * Figure out the number of possible node ids.
 
4948 */
4949void __init setup_nr_node_ids(void)
4950{
4951	unsigned int node;
4952	unsigned int highest = 0;
4953
4954	for_each_node_mask(node, node_possible_map)
4955		highest = node;
4956	nr_node_ids = highest + 1;
4957}
4958#endif
4959
4960/**
4961 * node_map_pfn_alignment - determine the maximum internode alignment
4962 *
4963 * This function should be called after node map is populated and sorted.
4964 * It calculates the maximum power of two alignment which can distinguish
4965 * all the nodes.
4966 *
4967 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4968 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4969 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4970 * shifted, 1GiB is enough and this function will indicate so.
4971 *
4972 * This is used to test whether pfn -> nid mapping of the chosen memory
4973 * model has fine enough granularity to avoid incorrect mapping for the
4974 * populated node map.
4975 *
4976 * Returns the determined alignment in pfn's.  0 if there is no alignment
4977 * requirement (single node).
4978 */
4979unsigned long __init node_map_pfn_alignment(void)
4980{
4981	unsigned long accl_mask = 0, last_end = 0;
4982	unsigned long start, end, mask;
4983	int last_nid = -1;
4984	int i, nid;
4985
4986	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4987		if (!start || last_nid < 0 || last_nid == nid) {
4988			last_nid = nid;
4989			last_end = end;
4990			continue;
4991		}
4992
4993		/*
4994		 * Start with a mask granular enough to pin-point to the
4995		 * start pfn and tick off bits one-by-one until it becomes
4996		 * too coarse to separate the current node from the last.
4997		 */
4998		mask = ~((1 << __ffs(start)) - 1);
4999		while (mask && last_end <= (start & (mask << 1)))
5000			mask <<= 1;
5001
5002		/* accumulate all internode masks */
5003		accl_mask |= mask;
5004	}
5005
5006	/* convert mask to number of pages */
5007	return ~accl_mask + 1;
5008}
5009
5010/* Find the lowest pfn for a node */
5011static unsigned long __init find_min_pfn_for_node(int nid)
5012{
5013	unsigned long min_pfn = ULONG_MAX;
5014	unsigned long start_pfn;
5015	int i;
5016
5017	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5018		min_pfn = min(min_pfn, start_pfn);
5019
5020	if (min_pfn == ULONG_MAX) {
5021		printk(KERN_WARNING
5022			"Could not find start_pfn for node %d\n", nid);
5023		return 0;
5024	}
5025
5026	return min_pfn;
5027}
5028
5029/**
5030 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5031 *
5032 * It returns the minimum PFN based on information provided via
5033 * add_active_range().
5034 */
5035unsigned long __init find_min_pfn_with_active_regions(void)
5036{
5037	return find_min_pfn_for_node(MAX_NUMNODES);
 
 
 
 
 
 
5038}
5039
5040/*
5041 * early_calculate_totalpages()
5042 * Sum pages in active regions for movable zone.
5043 * Populate N_MEMORY for calculating usable_nodes.
5044 */
5045static unsigned long __init early_calculate_totalpages(void)
5046{
5047	unsigned long totalpages = 0;
5048	unsigned long start_pfn, end_pfn;
5049	int i, nid;
5050
5051	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5052		unsigned long pages = end_pfn - start_pfn;
5053
5054		totalpages += pages;
5055		if (pages)
5056			node_set_state(nid, N_MEMORY);
5057	}
5058	return totalpages;
5059}
5060
5061/*
5062 * Find the PFN the Movable zone begins in each node. Kernel memory
5063 * is spread evenly between nodes as long as the nodes have enough
5064 * memory. When they don't, some nodes will have more kernelcore than
5065 * others
5066 */
5067static void __init find_zone_movable_pfns_for_nodes(void)
5068{
5069	int i, nid;
5070	unsigned long usable_startpfn;
5071	unsigned long kernelcore_node, kernelcore_remaining;
5072	/* save the state before borrow the nodemask */
5073	nodemask_t saved_node_state = node_states[N_MEMORY];
5074	unsigned long totalpages = early_calculate_totalpages();
5075	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5076	struct memblock_region *r;
5077
5078	/* Need to find movable_zone earlier when movable_node is specified. */
5079	find_usable_zone_for_movable();
5080
5081	/*
5082	 * If movable_node is specified, ignore kernelcore and movablecore
5083	 * options.
5084	 */
5085	if (movable_node_is_enabled()) {
5086		for_each_memblock(memory, r) {
5087			if (!memblock_is_hotpluggable(r))
5088				continue;
5089
5090			nid = r->nid;
5091
5092			usable_startpfn = PFN_DOWN(r->base);
5093			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5094				min(usable_startpfn, zone_movable_pfn[nid]) :
5095				usable_startpfn;
5096		}
5097
5098		goto out2;
5099	}
5100
5101	/*
5102	 * If movablecore=nn[KMG] was specified, calculate what size of
5103	 * kernelcore that corresponds so that memory usable for
5104	 * any allocation type is evenly spread. If both kernelcore
5105	 * and movablecore are specified, then the value of kernelcore
5106	 * will be used for required_kernelcore if it's greater than
5107	 * what movablecore would have allowed.
5108	 */
5109	if (required_movablecore) {
5110		unsigned long corepages;
5111
5112		/*
5113		 * Round-up so that ZONE_MOVABLE is at least as large as what
5114		 * was requested by the user
5115		 */
5116		required_movablecore =
5117			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5118		corepages = totalpages - required_movablecore;
5119
5120		required_kernelcore = max(required_kernelcore, corepages);
5121	}
5122
5123	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5124	if (!required_kernelcore)
5125		goto out;
5126
5127	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5128	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5129
5130restart:
5131	/* Spread kernelcore memory as evenly as possible throughout nodes */
5132	kernelcore_node = required_kernelcore / usable_nodes;
5133	for_each_node_state(nid, N_MEMORY) {
5134		unsigned long start_pfn, end_pfn;
5135
5136		/*
5137		 * Recalculate kernelcore_node if the division per node
5138		 * now exceeds what is necessary to satisfy the requested
5139		 * amount of memory for the kernel
5140		 */
5141		if (required_kernelcore < kernelcore_node)
5142			kernelcore_node = required_kernelcore / usable_nodes;
5143
5144		/*
5145		 * As the map is walked, we track how much memory is usable
5146		 * by the kernel using kernelcore_remaining. When it is
5147		 * 0, the rest of the node is usable by ZONE_MOVABLE
5148		 */
5149		kernelcore_remaining = kernelcore_node;
5150
5151		/* Go through each range of PFNs within this node */
5152		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5153			unsigned long size_pages;
5154
5155			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5156			if (start_pfn >= end_pfn)
5157				continue;
5158
5159			/* Account for what is only usable for kernelcore */
5160			if (start_pfn < usable_startpfn) {
5161				unsigned long kernel_pages;
5162				kernel_pages = min(end_pfn, usable_startpfn)
5163								- start_pfn;
5164
5165				kernelcore_remaining -= min(kernel_pages,
5166							kernelcore_remaining);
5167				required_kernelcore -= min(kernel_pages,
5168							required_kernelcore);
5169
5170				/* Continue if range is now fully accounted */
5171				if (end_pfn <= usable_startpfn) {
5172
5173					/*
5174					 * Push zone_movable_pfn to the end so
5175					 * that if we have to rebalance
5176					 * kernelcore across nodes, we will
5177					 * not double account here
5178					 */
5179					zone_movable_pfn[nid] = end_pfn;
5180					continue;
5181				}
5182				start_pfn = usable_startpfn;
5183			}
5184
5185			/*
5186			 * The usable PFN range for ZONE_MOVABLE is from
5187			 * start_pfn->end_pfn. Calculate size_pages as the
5188			 * number of pages used as kernelcore
5189			 */
5190			size_pages = end_pfn - start_pfn;
5191			if (size_pages > kernelcore_remaining)
5192				size_pages = kernelcore_remaining;
5193			zone_movable_pfn[nid] = start_pfn + size_pages;
5194
5195			/*
5196			 * Some kernelcore has been met, update counts and
5197			 * break if the kernelcore for this node has been
5198			 * satisfied
5199			 */
5200			required_kernelcore -= min(required_kernelcore,
5201								size_pages);
5202			kernelcore_remaining -= size_pages;
5203			if (!kernelcore_remaining)
5204				break;
5205		}
5206	}
5207
 
5208	/*
5209	 * If there is still required_kernelcore, we do another pass with one
5210	 * less node in the count. This will push zone_movable_pfn[nid] further
5211	 * along on the nodes that still have memory until kernelcore is
5212	 * satisfied
5213	 */
5214	usable_nodes--;
5215	if (usable_nodes && required_kernelcore > usable_nodes)
5216		goto restart;
5217
5218out2:
5219	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5220	for (nid = 0; nid < MAX_NUMNODES; nid++)
5221		zone_movable_pfn[nid] =
5222			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5223
5224out:
5225	/* restore the node_state */
5226	node_states[N_MEMORY] = saved_node_state;
5227}
5228
5229/* Any regular or high memory on that node ? */
5230static void check_for_memory(pg_data_t *pgdat, int nid)
5231{
5232	enum zone_type zone_type;
5233
5234	if (N_MEMORY == N_NORMAL_MEMORY)
5235		return;
5236
5237	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5238		struct zone *zone = &pgdat->node_zones[zone_type];
5239		if (populated_zone(zone)) {
5240			node_set_state(nid, N_HIGH_MEMORY);
5241			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5242			    zone_type <= ZONE_NORMAL)
5243				node_set_state(nid, N_NORMAL_MEMORY);
5244			break;
5245		}
5246	}
5247}
5248
5249/**
5250 * free_area_init_nodes - Initialise all pg_data_t and zone data
5251 * @max_zone_pfn: an array of max PFNs for each zone
5252 *
5253 * This will call free_area_init_node() for each active node in the system.
5254 * Using the page ranges provided by add_active_range(), the size of each
5255 * zone in each node and their holes is calculated. If the maximum PFN
5256 * between two adjacent zones match, it is assumed that the zone is empty.
5257 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5258 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5259 * starts where the previous one ended. For example, ZONE_DMA32 starts
5260 * at arch_max_dma_pfn.
5261 */
5262void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5263{
5264	unsigned long start_pfn, end_pfn;
5265	int i, nid;
5266
5267	/* Record where the zone boundaries are */
5268	memset(arch_zone_lowest_possible_pfn, 0,
5269				sizeof(arch_zone_lowest_possible_pfn));
5270	memset(arch_zone_highest_possible_pfn, 0,
5271				sizeof(arch_zone_highest_possible_pfn));
5272	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5273	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5274	for (i = 1; i < MAX_NR_ZONES; i++) {
5275		if (i == ZONE_MOVABLE)
5276			continue;
5277		arch_zone_lowest_possible_pfn[i] =
5278			arch_zone_highest_possible_pfn[i-1];
5279		arch_zone_highest_possible_pfn[i] =
5280			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5281	}
5282	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5283	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5284
5285	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5286	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5287	find_zone_movable_pfns_for_nodes();
5288
5289	/* Print out the zone ranges */
5290	printk("Zone ranges:\n");
5291	for (i = 0; i < MAX_NR_ZONES; i++) {
5292		if (i == ZONE_MOVABLE)
5293			continue;
5294		printk(KERN_CONT "  %-8s ", zone_names[i]);
5295		if (arch_zone_lowest_possible_pfn[i] ==
5296				arch_zone_highest_possible_pfn[i])
5297			printk(KERN_CONT "empty\n");
5298		else
5299			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5300				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5301				(arch_zone_highest_possible_pfn[i]
5302					<< PAGE_SHIFT) - 1);
5303	}
5304
5305	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5306	printk("Movable zone start for each node\n");
5307	for (i = 0; i < MAX_NUMNODES; i++) {
5308		if (zone_movable_pfn[i])
5309			printk("  Node %d: %#010lx\n", i,
5310			       zone_movable_pfn[i] << PAGE_SHIFT);
5311	}
5312
5313	/* Print out the early node map */
5314	printk("Early memory node ranges\n");
5315	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5316		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5317		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5318
5319	/* Initialise every node */
5320	mminit_verify_pageflags_layout();
5321	setup_nr_node_ids();
5322	for_each_online_node(nid) {
5323		pg_data_t *pgdat = NODE_DATA(nid);
5324		free_area_init_node(nid, NULL,
5325				find_min_pfn_for_node(nid), NULL);
5326
5327		/* Any memory on that node */
5328		if (pgdat->node_present_pages)
5329			node_set_state(nid, N_MEMORY);
5330		check_for_memory(pgdat, nid);
5331	}
5332}
5333
5334static int __init cmdline_parse_core(char *p, unsigned long *core)
5335{
5336	unsigned long long coremem;
5337	if (!p)
5338		return -EINVAL;
5339
5340	coremem = memparse(p, &p);
5341	*core = coremem >> PAGE_SHIFT;
5342
5343	/* Paranoid check that UL is enough for the coremem value */
5344	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5345
5346	return 0;
 
 
5347}
5348
5349/*
5350 * kernelcore=size sets the amount of memory for use for allocations that
5351 * cannot be reclaimed or migrated.
5352 */
5353static int __init cmdline_parse_kernelcore(char *p)
5354{
5355	return cmdline_parse_core(p, &required_kernelcore);
5356}
 
 
 
 
 
 
 
 
5357
5358/*
5359 * movablecore=size sets the amount of memory for use for allocations that
5360 * can be reclaimed or migrated.
5361 */
5362static int __init cmdline_parse_movablecore(char *p)
5363{
5364	return cmdline_parse_core(p, &required_movablecore);
5365}
5366
5367early_param("kernelcore", cmdline_parse_kernelcore);
5368early_param("movablecore", cmdline_parse_movablecore);
5369
5370#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5371
5372void adjust_managed_page_count(struct page *page, long count)
5373{
5374	spin_lock(&managed_page_count_lock);
5375	page_zone(page)->managed_pages += count;
5376	totalram_pages += count;
5377#ifdef CONFIG_HIGHMEM
5378	if (PageHighMem(page))
5379		totalhigh_pages += count;
5380#endif
5381	spin_unlock(&managed_page_count_lock);
5382}
5383EXPORT_SYMBOL(adjust_managed_page_count);
5384
5385unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5386{
5387	void *pos;
5388	unsigned long pages = 0;
5389
5390	start = (void *)PAGE_ALIGN((unsigned long)start);
5391	end = (void *)((unsigned long)end & PAGE_MASK);
5392	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5393		if ((unsigned int)poison <= 0xFF)
5394			memset(pos, poison, PAGE_SIZE);
5395		free_reserved_page(virt_to_page(pos));
 
5396	}
5397
5398	if (pages && s)
5399		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5400			s, pages << (PAGE_SHIFT - 10), start, end);
5401
5402	return pages;
5403}
5404EXPORT_SYMBOL(free_reserved_area);
5405
5406#ifdef	CONFIG_HIGHMEM
5407void free_highmem_page(struct page *page)
5408{
5409	__free_reserved_page(page);
5410	totalram_pages++;
5411	page_zone(page)->managed_pages++;
5412	totalhigh_pages++;
5413}
5414#endif
5415
5416
5417void __init mem_init_print_info(const char *str)
5418{
5419	unsigned long physpages, codesize, datasize, rosize, bss_size;
5420	unsigned long init_code_size, init_data_size;
5421
5422	physpages = get_num_physpages();
5423	codesize = _etext - _stext;
5424	datasize = _edata - _sdata;
5425	rosize = __end_rodata - __start_rodata;
5426	bss_size = __bss_stop - __bss_start;
5427	init_data_size = __init_end - __init_begin;
5428	init_code_size = _einittext - _sinittext;
5429
5430	/*
5431	 * Detect special cases and adjust section sizes accordingly:
5432	 * 1) .init.* may be embedded into .data sections
5433	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5434	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5435	 * 3) .rodata.* may be embedded into .text or .data sections.
5436	 */
5437#define adj_init_size(start, end, size, pos, adj) \
5438	do { \
5439		if (start <= pos && pos < end && size > adj) \
5440			size -= adj; \
5441	} while (0)
5442
5443	adj_init_size(__init_begin, __init_end, init_data_size,
5444		     _sinittext, init_code_size);
5445	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5446	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5447	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5448	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
 
 
5449
5450#undef	adj_init_size
 
5451
5452	printk("Memory: %luK/%luK available "
5453	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5454	       "%luK init, %luK bss, %luK reserved"
5455#ifdef	CONFIG_HIGHMEM
5456	       ", %luK highmem"
5457#endif
5458	       "%s%s)\n",
5459	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5460	       codesize >> 10, datasize >> 10, rosize >> 10,
5461	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5462	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5463#ifdef	CONFIG_HIGHMEM
5464	       totalhigh_pages << (PAGE_SHIFT-10),
5465#endif
5466	       str ? ", " : "", str ? str : "");
5467}
5468
5469/**
5470 * set_dma_reserve - set the specified number of pages reserved in the first zone
5471 * @new_dma_reserve: The number of pages to mark reserved
5472 *
5473 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5474 * In the DMA zone, a significant percentage may be consumed by kernel image
5475 * and other unfreeable allocations which can skew the watermarks badly. This
5476 * function may optionally be used to account for unfreeable pages in the
5477 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5478 * smaller per-cpu batchsize.
5479 */
5480void __init set_dma_reserve(unsigned long new_dma_reserve)
5481{
5482	dma_reserve = new_dma_reserve;
5483}
5484
5485void __init free_area_init(unsigned long *zones_size)
5486{
5487	free_area_init_node(0, zones_size,
5488			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5489}
5490
5491static int page_alloc_cpu_notify(struct notifier_block *self,
5492				 unsigned long action, void *hcpu)
5493{
5494	int cpu = (unsigned long)hcpu;
5495
5496	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5497		lru_add_drain_cpu(cpu);
5498		drain_pages(cpu);
5499
5500		/*
5501		 * Spill the event counters of the dead processor
5502		 * into the current processors event counters.
5503		 * This artificially elevates the count of the current
5504		 * processor.
5505		 */
5506		vm_events_fold_cpu(cpu);
5507
5508		/*
5509		 * Zero the differential counters of the dead processor
5510		 * so that the vm statistics are consistent.
5511		 *
5512		 * This is only okay since the processor is dead and cannot
5513		 * race with what we are doing.
5514		 */
5515		cpu_vm_stats_fold(cpu);
5516	}
5517	return NOTIFY_OK;
5518}
5519
5520void __init page_alloc_init(void)
5521{
5522	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
5523}
5524
5525/*
5526 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5527 *	or min_free_kbytes changes.
5528 */
5529static void calculate_totalreserve_pages(void)
5530{
5531	struct pglist_data *pgdat;
5532	unsigned long reserve_pages = 0;
5533	enum zone_type i, j;
5534
5535	for_each_online_pgdat(pgdat) {
 
 
 
5536		for (i = 0; i < MAX_NR_ZONES; i++) {
5537			struct zone *zone = pgdat->node_zones + i;
5538			unsigned long max = 0;
 
5539
5540			/* Find valid and maximum lowmem_reserve in the zone */
5541			for (j = i; j < MAX_NR_ZONES; j++) {
5542				if (zone->lowmem_reserve[j] > max)
5543					max = zone->lowmem_reserve[j];
5544			}
5545
5546			/* we treat the high watermark as reserved pages. */
5547			max += high_wmark_pages(zone);
5548
5549			if (max > zone->managed_pages)
5550				max = zone->managed_pages;
 
 
 
5551			reserve_pages += max;
5552			/*
5553			 * Lowmem reserves are not available to
5554			 * GFP_HIGHUSER page cache allocations and
5555			 * kswapd tries to balance zones to their high
5556			 * watermark.  As a result, neither should be
5557			 * regarded as dirtyable memory, to prevent a
5558			 * situation where reclaim has to clean pages
5559			 * in order to balance the zones.
5560			 */
5561			zone->dirty_balance_reserve = max;
5562		}
5563	}
5564	dirty_balance_reserve = reserve_pages;
5565	totalreserve_pages = reserve_pages;
5566}
5567
5568/*
5569 * setup_per_zone_lowmem_reserve - called whenever
5570 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5571 *	has a correct pages reserved value, so an adequate number of
5572 *	pages are left in the zone after a successful __alloc_pages().
5573 */
5574static void setup_per_zone_lowmem_reserve(void)
5575{
5576	struct pglist_data *pgdat;
5577	enum zone_type j, idx;
5578
5579	for_each_online_pgdat(pgdat) {
5580		for (j = 0; j < MAX_NR_ZONES; j++) {
5581			struct zone *zone = pgdat->node_zones + j;
5582			unsigned long managed_pages = zone->managed_pages;
5583
5584			zone->lowmem_reserve[j] = 0;
5585
5586			idx = j;
5587			while (idx) {
5588				struct zone *lower_zone;
5589
5590				idx--;
5591
5592				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5593					sysctl_lowmem_reserve_ratio[idx] = 1;
5594
5595				lower_zone = pgdat->node_zones + idx;
5596				lower_zone->lowmem_reserve[j] = managed_pages /
5597					sysctl_lowmem_reserve_ratio[idx];
5598				managed_pages += lower_zone->managed_pages;
5599			}
5600		}
5601	}
5602
5603	/* update totalreserve_pages */
5604	calculate_totalreserve_pages();
5605}
5606
5607static void __setup_per_zone_wmarks(void)
5608{
5609	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5610	unsigned long lowmem_pages = 0;
5611	struct zone *zone;
5612	unsigned long flags;
5613
5614	/* Calculate total number of !ZONE_HIGHMEM pages */
5615	for_each_zone(zone) {
5616		if (!is_highmem(zone))
5617			lowmem_pages += zone->managed_pages;
5618	}
5619
5620	for_each_zone(zone) {
5621		u64 tmp;
5622
5623		spin_lock_irqsave(&zone->lock, flags);
5624		tmp = (u64)pages_min * zone->managed_pages;
5625		do_div(tmp, lowmem_pages);
5626		if (is_highmem(zone)) {
5627			/*
5628			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5629			 * need highmem pages, so cap pages_min to a small
5630			 * value here.
5631			 *
5632			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5633			 * deltas controls asynch page reclaim, and so should
5634			 * not be capped for highmem.
5635			 */
5636			unsigned long min_pages;
5637
5638			min_pages = zone->managed_pages / 1024;
5639			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5640			zone->watermark[WMARK_MIN] = min_pages;
5641		} else {
5642			/*
5643			 * If it's a lowmem zone, reserve a number of pages
5644			 * proportionate to the zone's size.
5645			 */
5646			zone->watermark[WMARK_MIN] = tmp;
5647		}
5648
5649		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5650		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5651
5652		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5653				      high_wmark_pages(zone) -
5654				      low_wmark_pages(zone) -
5655				      zone_page_state(zone, NR_ALLOC_BATCH));
 
 
 
 
 
 
5656
5657		setup_zone_migrate_reserve(zone);
5658		spin_unlock_irqrestore(&zone->lock, flags);
5659	}
5660
5661	/* update totalreserve_pages */
5662	calculate_totalreserve_pages();
5663}
5664
5665/**
5666 * setup_per_zone_wmarks - called when min_free_kbytes changes
5667 * or when memory is hot-{added|removed}
5668 *
5669 * Ensures that the watermark[min,low,high] values for each zone are set
5670 * correctly with respect to min_free_kbytes.
5671 */
5672void setup_per_zone_wmarks(void)
5673{
5674	mutex_lock(&zonelists_mutex);
5675	__setup_per_zone_wmarks();
5676	mutex_unlock(&zonelists_mutex);
5677}
5678
5679/*
5680 * The inactive anon list should be small enough that the VM never has to
5681 * do too much work, but large enough that each inactive page has a chance
5682 * to be referenced again before it is swapped out.
5683 *
5684 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5685 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5686 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5687 * the anonymous pages are kept on the inactive list.
5688 *
5689 * total     target    max
5690 * memory    ratio     inactive anon
5691 * -------------------------------------
5692 *   10MB       1         5MB
5693 *  100MB       1        50MB
5694 *    1GB       3       250MB
5695 *   10GB      10       0.9GB
5696 *  100GB      31         3GB
5697 *    1TB     101        10GB
5698 *   10TB     320        32GB
5699 */
5700static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5701{
5702	unsigned int gb, ratio;
5703
5704	/* Zone size in gigabytes */
5705	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5706	if (gb)
5707		ratio = int_sqrt(10 * gb);
5708	else
5709		ratio = 1;
5710
5711	zone->inactive_ratio = ratio;
5712}
5713
5714static void __meminit setup_per_zone_inactive_ratio(void)
5715{
5716	struct zone *zone;
 
5717
 
 
 
 
 
 
 
 
5718	for_each_zone(zone)
5719		calculate_zone_inactive_ratio(zone);
5720}
5721
5722/*
5723 * Initialise min_free_kbytes.
5724 *
5725 * For small machines we want it small (128k min).  For large machines
5726 * we want it large (64MB max).  But it is not linear, because network
5727 * bandwidth does not increase linearly with machine size.  We use
5728 *
5729 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5730 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5731 *
5732 * which yields
5733 *
5734 * 16MB:	512k
5735 * 32MB:	724k
5736 * 64MB:	1024k
5737 * 128MB:	1448k
5738 * 256MB:	2048k
5739 * 512MB:	2896k
5740 * 1024MB:	4096k
5741 * 2048MB:	5792k
5742 * 4096MB:	8192k
5743 * 8192MB:	11584k
5744 * 16384MB:	16384k
5745 */
5746int __meminit init_per_zone_wmark_min(void)
5747{
5748	unsigned long lowmem_kbytes;
5749	int new_min_free_kbytes;
5750
5751	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5752	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5753
5754	if (new_min_free_kbytes > user_min_free_kbytes) {
5755		min_free_kbytes = new_min_free_kbytes;
5756		if (min_free_kbytes < 128)
5757			min_free_kbytes = 128;
5758		if (min_free_kbytes > 65536)
5759			min_free_kbytes = 65536;
5760	} else {
5761		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5762				new_min_free_kbytes, user_min_free_kbytes);
5763	}
 
 
 
 
 
5764	setup_per_zone_wmarks();
5765	refresh_zone_stat_thresholds();
5766	setup_per_zone_lowmem_reserve();
5767	setup_per_zone_inactive_ratio();
 
 
 
 
 
 
 
5768	return 0;
5769}
5770module_init(init_per_zone_wmark_min)
5771
5772/*
5773 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5774 *	that we can call two helper functions whenever min_free_kbytes
5775 *	changes.
5776 */
5777int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5778	void __user *buffer, size_t *length, loff_t *ppos)
5779{
5780	int rc;
5781
5782	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5783	if (rc)
5784		return rc;
5785
5786	if (write) {
5787		user_min_free_kbytes = min_free_kbytes;
5788		setup_per_zone_wmarks();
5789	}
5790	return 0;
5791}
5792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5793#ifdef CONFIG_NUMA
5794int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5795	void __user *buffer, size_t *length, loff_t *ppos)
5796{
 
5797	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
5798	int rc;
5799
5800	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5801	if (rc)
5802		return rc;
5803
5804	for_each_zone(zone)
5805		zone->min_unmapped_pages = (zone->managed_pages *
5806				sysctl_min_unmapped_ratio) / 100;
5807	return 0;
5808}
5809
5810int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5811	void __user *buffer, size_t *length, loff_t *ppos)
5812{
 
5813	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
5814	int rc;
5815
5816	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5817	if (rc)
5818		return rc;
5819
5820	for_each_zone(zone)
5821		zone->min_slab_pages = (zone->managed_pages *
5822				sysctl_min_slab_ratio) / 100;
5823	return 0;
5824}
5825#endif
5826
5827/*
5828 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5829 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5830 *	whenever sysctl_lowmem_reserve_ratio changes.
5831 *
5832 * The reserve ratio obviously has absolutely no relation with the
5833 * minimum watermarks. The lowmem reserve ratio can only make sense
5834 * if in function of the boot time zone sizes.
5835 */
5836int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5837	void __user *buffer, size_t *length, loff_t *ppos)
5838{
 
 
5839	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
5840	setup_per_zone_lowmem_reserve();
5841	return 0;
5842}
5843
5844/*
5845 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5846 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5847 * pagelist can have before it gets flushed back to buddy allocator.
5848 */
5849int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5850	void __user *buffer, size_t *length, loff_t *ppos)
5851{
5852	struct zone *zone;
5853	unsigned int cpu;
5854	int ret;
5855
5856	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5857	if (!write || (ret < 0))
5858		return ret;
5859
5860	mutex_lock(&pcp_batch_high_lock);
5861	for_each_populated_zone(zone) {
5862		unsigned long  high;
5863		high = zone->managed_pages / percpu_pagelist_fraction;
5864		for_each_possible_cpu(cpu)
5865			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5866					 high);
5867	}
5868	mutex_unlock(&pcp_batch_high_lock);
5869	return 0;
5870}
5871
5872int hashdist = HASHDIST_DEFAULT;
5873
5874#ifdef CONFIG_NUMA
5875static int __init set_hashdist(char *str)
5876{
5877	if (!str)
5878		return 0;
5879	hashdist = simple_strtoul(str, &str, 0);
5880	return 1;
5881}
5882__setup("hashdist=", set_hashdist);
5883#endif
5884
5885/*
5886 * allocate a large system hash table from bootmem
5887 * - it is assumed that the hash table must contain an exact power-of-2
5888 *   quantity of entries
5889 * - limit is the number of hash buckets, not the total allocation size
5890 */
5891void *__init alloc_large_system_hash(const char *tablename,
5892				     unsigned long bucketsize,
5893				     unsigned long numentries,
5894				     int scale,
5895				     int flags,
5896				     unsigned int *_hash_shift,
5897				     unsigned int *_hash_mask,
5898				     unsigned long low_limit,
5899				     unsigned long high_limit)
5900{
5901	unsigned long long max = high_limit;
5902	unsigned long log2qty, size;
5903	void *table = NULL;
5904
5905	/* allow the kernel cmdline to have a say */
5906	if (!numentries) {
5907		/* round applicable memory size up to nearest megabyte */
5908		numentries = nr_kernel_pages;
5909
5910		/* It isn't necessary when PAGE_SIZE >= 1MB */
5911		if (PAGE_SHIFT < 20)
5912			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5913
5914		/* limit to 1 bucket per 2^scale bytes of low memory */
5915		if (scale > PAGE_SHIFT)
5916			numentries >>= (scale - PAGE_SHIFT);
5917		else
5918			numentries <<= (PAGE_SHIFT - scale);
5919
5920		/* Make sure we've got at least a 0-order allocation.. */
5921		if (unlikely(flags & HASH_SMALL)) {
5922			/* Makes no sense without HASH_EARLY */
5923			WARN_ON(!(flags & HASH_EARLY));
5924			if (!(numentries >> *_hash_shift)) {
5925				numentries = 1UL << *_hash_shift;
5926				BUG_ON(!numentries);
5927			}
5928		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5929			numentries = PAGE_SIZE / bucketsize;
5930	}
5931	numentries = roundup_pow_of_two(numentries);
5932
5933	/* limit allocation size to 1/16 total memory by default */
5934	if (max == 0) {
5935		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5936		do_div(max, bucketsize);
 
 
5937	}
5938	max = min(max, 0x80000000ULL);
5939
5940	if (numentries < low_limit)
5941		numentries = low_limit;
5942	if (numentries > max)
5943		numentries = max;
5944
5945	log2qty = ilog2(numentries);
5946
5947	do {
5948		size = bucketsize << log2qty;
5949		if (flags & HASH_EARLY)
5950			table = memblock_virt_alloc_nopanic(size, 0);
5951		else if (hashdist)
5952			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5953		else {
5954			/*
5955			 * If bucketsize is not a power-of-two, we may free
5956			 * some pages at the end of hash table which
5957			 * alloc_pages_exact() automatically does
5958			 */
5959			if (get_order(size) < MAX_ORDER) {
5960				table = alloc_pages_exact(size, GFP_ATOMIC);
5961				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5962			}
5963		}
5964	} while (!table && size > PAGE_SIZE && --log2qty);
5965
5966	if (!table)
5967		panic("Failed to allocate %s hash table\n", tablename);
5968
5969	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5970	       tablename,
5971	       (1UL << log2qty),
5972	       ilog2(size) - PAGE_SHIFT,
5973	       size);
5974
5975	if (_hash_shift)
5976		*_hash_shift = log2qty;
5977	if (_hash_mask)
5978		*_hash_mask = (1 << log2qty) - 1;
5979
5980	return table;
 
 
 
 
5981}
5982
5983/* Return a pointer to the bitmap storing bits affecting a block of pages */
5984static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5985							unsigned long pfn)
5986{
5987#ifdef CONFIG_SPARSEMEM
5988	return __pfn_to_section(pfn)->pageblock_flags;
5989#else
5990	return zone->pageblock_flags;
5991#endif /* CONFIG_SPARSEMEM */
5992}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5993
5994static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5995{
5996#ifdef CONFIG_SPARSEMEM
5997	pfn &= (PAGES_PER_SECTION-1);
5998	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5999#else
6000	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6001	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6002#endif /* CONFIG_SPARSEMEM */
6003}
6004
6005/**
6006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6007 * @page: The page within the block of interest
6008 * @start_bitidx: The first bit of interest to retrieve
6009 * @end_bitidx: The last bit of interest
6010 * returns pageblock_bits flags
6011 */
6012unsigned long get_pageblock_flags_group(struct page *page,
6013					int start_bitidx, int end_bitidx)
6014{
6015	struct zone *zone;
6016	unsigned long *bitmap;
6017	unsigned long pfn, bitidx;
6018	unsigned long flags = 0;
6019	unsigned long value = 1;
6020
6021	zone = page_zone(page);
6022	pfn = page_to_pfn(page);
6023	bitmap = get_pageblock_bitmap(zone, pfn);
6024	bitidx = pfn_to_bitidx(zone, pfn);
6025
6026	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6027		if (test_bit(bitidx + start_bitidx, bitmap))
6028			flags |= value;
6029
6030	return flags;
6031}
6032
6033/**
6034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6035 * @page: The page within the block of interest
6036 * @start_bitidx: The first bit of interest
6037 * @end_bitidx: The last bit of interest
6038 * @flags: The flags to set
6039 */
6040void set_pageblock_flags_group(struct page *page, unsigned long flags,
6041					int start_bitidx, int end_bitidx)
6042{
6043	struct zone *zone;
6044	unsigned long *bitmap;
6045	unsigned long pfn, bitidx;
6046	unsigned long value = 1;
6047
6048	zone = page_zone(page);
6049	pfn = page_to_pfn(page);
6050	bitmap = get_pageblock_bitmap(zone, pfn);
6051	bitidx = pfn_to_bitidx(zone, pfn);
6052	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6053
6054	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6055		if (flags & value)
6056			__set_bit(bitidx + start_bitidx, bitmap);
6057		else
6058			__clear_bit(bitidx + start_bitidx, bitmap);
6059}
6060
6061/*
6062 * This function checks whether pageblock includes unmovable pages or not.
6063 * If @count is not zero, it is okay to include less @count unmovable pages
6064 *
6065 * PageLRU check without isolation or lru_lock could race so that
6066 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6067 * expect this function should be exact.
6068 */
6069bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6070			 bool skip_hwpoisoned_pages)
6071{
6072	unsigned long pfn, iter, found;
6073	int mt;
6074
6075	/*
6076	 * For avoiding noise data, lru_add_drain_all() should be called
6077	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6078	 */
6079	if (zone_idx(zone) == ZONE_MOVABLE)
6080		return false;
6081	mt = get_pageblock_migratetype(page);
6082	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6083		return false;
6084
6085	pfn = page_to_pfn(page);
6086	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6087		unsigned long check = pfn + iter;
6088
6089		if (!pfn_valid_within(check))
6090			continue;
6091
6092		page = pfn_to_page(check);
6093
6094		/*
6095		 * Hugepages are not in LRU lists, but they're movable.
6096		 * We need not scan over tail pages bacause we don't
6097		 * handle each tail page individually in migration.
6098		 */
6099		if (PageHuge(page)) {
6100			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6101			continue;
6102		}
6103
6104		/*
6105		 * We can't use page_count without pin a page
6106		 * because another CPU can free compound page.
6107		 * This check already skips compound tails of THP
6108		 * because their page->_count is zero at all time.
6109		 */
6110		if (!atomic_read(&page->_count)) {
6111			if (PageBuddy(page))
6112				iter += (1 << page_order(page)) - 1;
6113			continue;
6114		}
6115
6116		/*
6117		 * The HWPoisoned page may be not in buddy system, and
6118		 * page_count() is not 0.
6119		 */
6120		if (skip_hwpoisoned_pages && PageHWPoison(page))
6121			continue;
6122
6123		if (!PageLRU(page))
6124			found++;
6125		/*
6126		 * If there are RECLAIMABLE pages, we need to check it.
6127		 * But now, memory offline itself doesn't call shrink_slab()
6128		 * and it still to be fixed.
6129		 */
6130		/*
6131		 * If the page is not RAM, page_count()should be 0.
6132		 * we don't need more check. This is an _used_ not-movable page.
6133		 *
6134		 * The problematic thing here is PG_reserved pages. PG_reserved
6135		 * is set to both of a memory hole page and a _used_ kernel
6136		 * page at boot.
6137		 */
6138		if (found > count)
6139			return true;
6140	}
6141	return false;
6142}
6143
6144bool is_pageblock_removable_nolock(struct page *page)
6145{
6146	struct zone *zone;
6147	unsigned long pfn;
6148
6149	/*
6150	 * We have to be careful here because we are iterating over memory
6151	 * sections which are not zone aware so we might end up outside of
6152	 * the zone but still within the section.
6153	 * We have to take care about the node as well. If the node is offline
6154	 * its NODE_DATA will be NULL - see page_zone.
6155	 */
6156	if (!node_online(page_to_nid(page)))
6157		return false;
6158
6159	zone = page_zone(page);
6160	pfn = page_to_pfn(page);
6161	if (!zone_spans_pfn(zone, pfn))
6162		return false;
6163
6164	return !has_unmovable_pages(zone, page, 0, true);
6165}
6166
6167#ifdef CONFIG_CMA
6168
6169static unsigned long pfn_max_align_down(unsigned long pfn)
6170{
6171	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6172			     pageblock_nr_pages) - 1);
6173}
6174
6175static unsigned long pfn_max_align_up(unsigned long pfn)
6176{
6177	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6178				pageblock_nr_pages));
6179}
6180
6181/* [start, end) must belong to a single zone. */
6182static int __alloc_contig_migrate_range(struct compact_control *cc,
6183					unsigned long start, unsigned long end)
6184{
6185	/* This function is based on compact_zone() from compaction.c. */
6186	unsigned long nr_reclaimed;
6187	unsigned long pfn = start;
6188	unsigned int tries = 0;
6189	int ret = 0;
 
 
 
 
 
 
 
 
6190
6191	migrate_prep();
6192
6193	while (pfn < end || !list_empty(&cc->migratepages)) {
6194		if (fatal_signal_pending(current)) {
6195			ret = -EINTR;
6196			break;
6197		}
6198
6199		if (list_empty(&cc->migratepages)) {
6200			cc->nr_migratepages = 0;
6201			pfn = isolate_migratepages_range(cc->zone, cc,
6202							 pfn, end, true);
6203			if (!pfn) {
6204				ret = -EINTR;
6205				break;
6206			}
6207			tries = 0;
6208		} else if (++tries == 5) {
6209			ret = ret < 0 ? ret : -EBUSY;
6210			break;
6211		}
6212
6213		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6214							&cc->migratepages);
6215		cc->nr_migratepages -= nr_reclaimed;
6216
6217		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6218				    0, MIGRATE_SYNC, MR_CMA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6219	}
 
 
6220	if (ret < 0) {
 
 
6221		putback_movable_pages(&cc->migratepages);
6222		return ret;
6223	}
6224	return 0;
 
 
 
 
 
6225}
6226
6227/**
6228 * alloc_contig_range() -- tries to allocate given range of pages
6229 * @start:	start PFN to allocate
6230 * @end:	one-past-the-last PFN to allocate
6231 * @migratetype:	migratetype of the underlaying pageblocks (either
6232 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6233 *			in range must have the same migratetype and it must
6234 *			be either of the two.
 
6235 *
6236 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6237 * aligned, however it's the caller's responsibility to guarantee that
6238 * we are the only thread that changes migrate type of pageblocks the
6239 * pages fall in.
6240 *
6241 * The PFN range must belong to a single zone.
 
 
6242 *
6243 * Returns zero on success or negative error code.  On success all
6244 * pages which PFN is in [start, end) are allocated for the caller and
6245 * need to be freed with free_contig_range().
6246 */
6247int alloc_contig_range(unsigned long start, unsigned long end,
6248		       unsigned migratetype)
6249{
6250	unsigned long outer_start, outer_end;
6251	int ret = 0, order;
 
6252
6253	struct compact_control cc = {
6254		.nr_migratepages = 0,
6255		.order = -1,
6256		.zone = page_zone(pfn_to_page(start)),
6257		.sync = true,
6258		.ignore_skip_hint = true,
 
 
 
6259	};
6260	INIT_LIST_HEAD(&cc.migratepages);
6261
6262	/*
6263	 * What we do here is we mark all pageblocks in range as
6264	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6265	 * have different sizes, and due to the way page allocator
6266	 * work, we align the range to biggest of the two pages so
6267	 * that page allocator won't try to merge buddies from
6268	 * different pageblocks and change MIGRATE_ISOLATE to some
6269	 * other migration type.
6270	 *
6271	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6272	 * migrate the pages from an unaligned range (ie. pages that
6273	 * we are interested in).  This will put all the pages in
6274	 * range back to page allocator as MIGRATE_ISOLATE.
6275	 *
6276	 * When this is done, we take the pages in range from page
6277	 * allocator removing them from the buddy system.  This way
6278	 * page allocator will never consider using them.
6279	 *
6280	 * This lets us mark the pageblocks back as
6281	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6282	 * aligned range but not in the unaligned, original range are
6283	 * put back to page allocator so that buddy can use them.
6284	 */
6285
6286	ret = start_isolate_page_range(pfn_max_align_down(start),
6287				       pfn_max_align_up(end), migratetype,
6288				       false);
6289	if (ret)
6290		return ret;
6291
6292	ret = __alloc_contig_migrate_range(&cc, start, end);
6293	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
6294		goto done;
 
6295
6296	/*
6297	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6298	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6299	 * more, all pages in [start, end) are free in page allocator.
6300	 * What we are going to do is to allocate all pages from
6301	 * [start, end) (that is remove them from page allocator).
6302	 *
6303	 * The only problem is that pages at the beginning and at the
6304	 * end of interesting range may be not aligned with pages that
6305	 * page allocator holds, ie. they can be part of higher order
6306	 * pages.  Because of this, we reserve the bigger range and
6307	 * once this is done free the pages we are not interested in.
6308	 *
6309	 * We don't have to hold zone->lock here because the pages are
6310	 * isolated thus they won't get removed from buddy.
6311	 */
6312
6313	lru_add_drain_all();
6314	drain_all_pages();
6315
6316	order = 0;
6317	outer_start = start;
6318	while (!PageBuddy(pfn_to_page(outer_start))) {
6319		if (++order >= MAX_ORDER) {
6320			ret = -EBUSY;
6321			goto done;
6322		}
6323		outer_start &= ~0UL << order;
6324	}
6325
 
 
 
 
 
 
 
 
 
 
 
 
 
6326	/* Make sure the range is really isolated. */
6327	if (test_pages_isolated(outer_start, end, false)) {
6328		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6329		       outer_start, end);
6330		ret = -EBUSY;
6331		goto done;
6332	}
6333
6334
6335	/* Grab isolated pages from freelists. */
6336	outer_end = isolate_freepages_range(&cc, outer_start, end);
6337	if (!outer_end) {
6338		ret = -EBUSY;
6339		goto done;
6340	}
6341
6342	/* Free head and tail (if any) */
6343	if (start != outer_start)
6344		free_contig_range(outer_start, start - outer_start);
6345	if (end != outer_end)
6346		free_contig_range(end, outer_end - end);
6347
6348done:
6349	undo_isolate_page_range(pfn_max_align_down(start),
6350				pfn_max_align_up(end), migratetype);
6351	return ret;
6352}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6353
6354void free_contig_range(unsigned long pfn, unsigned nr_pages)
6355{
6356	unsigned int count = 0;
6357
6358	for (; nr_pages--; pfn++) {
6359		struct page *page = pfn_to_page(pfn);
6360
6361		count += page_count(page) != 1;
6362		__free_page(page);
6363	}
6364	WARN(count != 0, "%d pages are still in use!\n", count);
6365}
6366#endif
6367
6368#ifdef CONFIG_MEMORY_HOTPLUG
6369/*
6370 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6371 * page high values need to be recalulated.
 
 
 
 
6372 */
6373void __meminit zone_pcp_update(struct zone *zone)
6374{
6375	unsigned cpu;
6376	mutex_lock(&pcp_batch_high_lock);
6377	for_each_possible_cpu(cpu)
6378		pageset_set_high_and_batch(zone,
6379				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
 
6380	mutex_unlock(&pcp_batch_high_lock);
6381}
6382#endif
6383
6384void zone_pcp_reset(struct zone *zone)
6385{
6386	unsigned long flags;
6387	int cpu;
6388	struct per_cpu_pageset *pset;
6389
6390	/* avoid races with drain_pages()  */
6391	local_irq_save(flags);
6392	if (zone->pageset != &boot_pageset) {
6393		for_each_online_cpu(cpu) {
6394			pset = per_cpu_ptr(zone->pageset, cpu);
6395			drain_zonestat(zone, pset);
 
 
 
 
 
 
6396		}
6397		free_percpu(zone->pageset);
6398		zone->pageset = &boot_pageset;
6399	}
6400	local_irq_restore(flags);
6401}
6402
6403#ifdef CONFIG_MEMORY_HOTREMOVE
6404/*
6405 * All pages in the range must be isolated before calling this.
 
6406 */
6407void
6408__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6409{
 
6410	struct page *page;
6411	struct zone *zone;
6412	int order, i;
6413	unsigned long pfn;
6414	unsigned long flags;
6415	/* find the first valid pfn */
6416	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6417		if (pfn_valid(pfn))
6418			break;
6419	if (pfn == end_pfn)
6420		return;
6421	zone = page_zone(pfn_to_page(pfn));
6422	spin_lock_irqsave(&zone->lock, flags);
6423	pfn = start_pfn;
6424	while (pfn < end_pfn) {
6425		if (!pfn_valid(pfn)) {
6426			pfn++;
6427			continue;
6428		}
6429		page = pfn_to_page(pfn);
6430		/*
6431		 * The HWPoisoned page may be not in buddy system, and
6432		 * page_count() is not 0.
6433		 */
6434		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6435			pfn++;
6436			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
6437			continue;
6438		}
6439
6440		BUG_ON(page_count(page));
6441		BUG_ON(!PageBuddy(page));
6442		order = page_order(page);
6443#ifdef CONFIG_DEBUG_VM
6444		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6445		       pfn, 1 << order, end_pfn);
6446#endif
6447		list_del(&page->lru);
6448		rmv_page_order(page);
6449		zone->free_area[order].nr_free--;
6450		for (i = 0; i < (1 << order); i++)
6451			SetPageReserved((page+i));
6452		pfn += (1 << order);
6453	}
6454	spin_unlock_irqrestore(&zone->lock, flags);
6455}
6456#endif
6457
6458#ifdef CONFIG_MEMORY_FAILURE
 
 
6459bool is_free_buddy_page(struct page *page)
6460{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6461	struct zone *zone = page_zone(page);
6462	unsigned long pfn = page_to_pfn(page);
6463	unsigned long flags;
6464	int order;
 
6465
6466	spin_lock_irqsave(&zone->lock, flags);
6467	for (order = 0; order < MAX_ORDER; order++) {
6468		struct page *page_head = page - (pfn & ((1 << order) - 1));
 
6469
6470		if (PageBuddy(page_head) && page_order(page_head) >= order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6471			break;
6472	}
6473	spin_unlock_irqrestore(&zone->lock, flags);
6474
6475	return order < MAX_ORDER;
6476}
6477#endif
6478
6479static const struct trace_print_flags pageflag_names[] = {
6480	{1UL << PG_locked,		"locked"	},
6481	{1UL << PG_error,		"error"		},
6482	{1UL << PG_referenced,		"referenced"	},
6483	{1UL << PG_uptodate,		"uptodate"	},
6484	{1UL << PG_dirty,		"dirty"		},
6485	{1UL << PG_lru,			"lru"		},
6486	{1UL << PG_active,		"active"	},
6487	{1UL << PG_slab,		"slab"		},
6488	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6489	{1UL << PG_arch_1,		"arch_1"	},
6490	{1UL << PG_reserved,		"reserved"	},
6491	{1UL << PG_private,		"private"	},
6492	{1UL << PG_private_2,		"private_2"	},
6493	{1UL << PG_writeback,		"writeback"	},
6494#ifdef CONFIG_PAGEFLAGS_EXTENDED
6495	{1UL << PG_head,		"head"		},
6496	{1UL << PG_tail,		"tail"		},
6497#else
6498	{1UL << PG_compound,		"compound"	},
6499#endif
6500	{1UL << PG_swapcache,		"swapcache"	},
6501	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6502	{1UL << PG_reclaim,		"reclaim"	},
6503	{1UL << PG_swapbacked,		"swapbacked"	},
6504	{1UL << PG_unevictable,		"unevictable"	},
6505#ifdef CONFIG_MMU
6506	{1UL << PG_mlocked,		"mlocked"	},
6507#endif
6508#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6509	{1UL << PG_uncached,		"uncached"	},
6510#endif
6511#ifdef CONFIG_MEMORY_FAILURE
6512	{1UL << PG_hwpoison,		"hwpoison"	},
6513#endif
6514#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6515	{1UL << PG_compound_lock,	"compound_lock"	},
6516#endif
6517};
6518
6519static void dump_page_flags(unsigned long flags)
 
6520{
6521	const char *delim = "";
6522	unsigned long mask;
6523	int i;
6524
6525	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
 
6526
6527	printk(KERN_ALERT "page flags: %#lx(", flags);
 
 
 
 
 
6528
6529	/* remove zone id */
6530	flags &= (1UL << NR_PAGEFLAGS) - 1;
6531
6532	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
 
6533
6534		mask = pageflag_names[i].mask;
6535		if ((flags & mask) != mask)
6536			continue;
6537
6538		flags &= ~mask;
6539		printk("%s%s", delim, pageflag_names[i].name);
6540		delim = "|";
 
 
 
 
 
 
 
6541	}
 
 
6542
6543	/* check for left over flags */
6544	if (flags)
6545		printk("%s%#lx", delim, flags);
 
6546
6547	printk(")\n");
6548}
6549
6550void dump_page_badflags(struct page *page, const char *reason,
6551		unsigned long badflags)
6552{
6553	printk(KERN_ALERT
6554	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6555		page, atomic_read(&page->_count), page_mapcount(page),
6556		page->mapping, page->index);
6557	dump_page_flags(page->flags);
6558	if (reason)
6559		pr_alert("page dumped because: %s\n", reason);
6560	if (page->flags & badflags) {
6561		pr_alert("bad because of flags:\n");
6562		dump_page_flags(page->flags & badflags);
 
 
 
 
 
 
 
 
 
 
6563	}
6564	mem_cgroup_print_bad_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6565}
6566
6567void dump_page(struct page *page, const char *reason)
6568{
6569	dump_page_badflags(page, reason, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6570}
6571EXPORT_SYMBOL(dump_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/interrupt.h>
 
  22#include <linux/jiffies.h>
 
 
  23#include <linux/compiler.h>
  24#include <linux/kernel.h>
  25#include <linux/kasan.h>
  26#include <linux/kmsan.h>
  27#include <linux/module.h>
  28#include <linux/suspend.h>
 
 
 
  29#include <linux/ratelimit.h>
  30#include <linux/oom.h>
 
  31#include <linux/topology.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/pagevec.h>
  36#include <linux/memory_hotplug.h>
  37#include <linux/nodemask.h>
 
  38#include <linux/vmstat.h>
 
 
 
 
 
  39#include <linux/fault-inject.h>
 
 
 
 
  40#include <linux/compaction.h>
  41#include <trace/events/kmem.h>
  42#include <trace/events/oom.h>
 
  43#include <linux/prefetch.h>
  44#include <linux/mm_inline.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/migrate.h>
  47#include <linux/sched/mm.h>
  48#include <linux/page_owner.h>
  49#include <linux/page_table_check.h>
  50#include <linux/memcontrol.h>
  51#include <linux/ftrace.h>
  52#include <linux/lockdep.h>
  53#include <linux/psi.h>
  54#include <linux/khugepaged.h>
  55#include <linux/delayacct.h>
  56#include <linux/cacheinfo.h>
  57#include <asm/div64.h>
  58#include "internal.h"
  59#include "shuffle.h"
  60#include "page_reporting.h"
  61
  62/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  63typedef int __bitwise fpi_t;
  64
  65/* No special request */
  66#define FPI_NONE		((__force fpi_t)0)
  67
  68/*
  69 * Skip free page reporting notification for the (possibly merged) page.
  70 * This does not hinder free page reporting from grabbing the page,
  71 * reporting it and marking it "reported" -  it only skips notifying
  72 * the free page reporting infrastructure about a newly freed page. For
  73 * example, used when temporarily pulling a page from a freelist and
  74 * putting it back unmodified.
  75 */
  76#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  77
  78/*
  79 * Place the (possibly merged) page to the tail of the freelist. Will ignore
  80 * page shuffling (relevant code - e.g., memory onlining - is expected to
  81 * shuffle the whole zone).
  82 *
  83 * Note: No code should rely on this flag for correctness - it's purely
  84 *       to allow for optimizations when handing back either fresh pages
  85 *       (memory onlining) or untouched pages (page isolation, free page
  86 *       reporting).
  87 */
  88#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
  89
  90/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  91static DEFINE_MUTEX(pcp_batch_high_lock);
  92#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
  93
  94#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
  95/*
  96 * On SMP, spin_trylock is sufficient protection.
  97 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
  98 */
  99#define pcp_trylock_prepare(flags)	do { } while (0)
 100#define pcp_trylock_finish(flag)	do { } while (0)
 101#else
 102
 103/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
 104#define pcp_trylock_prepare(flags)	local_irq_save(flags)
 105#define pcp_trylock_finish(flags)	local_irq_restore(flags)
 106#endif
 107
 108/*
 109 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
 110 * a migration causing the wrong PCP to be locked and remote memory being
 111 * potentially allocated, pin the task to the CPU for the lookup+lock.
 112 * preempt_disable is used on !RT because it is faster than migrate_disable.
 113 * migrate_disable is used on RT because otherwise RT spinlock usage is
 114 * interfered with and a high priority task cannot preempt the allocator.
 115 */
 116#ifndef CONFIG_PREEMPT_RT
 117#define pcpu_task_pin()		preempt_disable()
 118#define pcpu_task_unpin()	preempt_enable()
 119#else
 120#define pcpu_task_pin()		migrate_disable()
 121#define pcpu_task_unpin()	migrate_enable()
 122#endif
 123
 124/*
 125 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
 126 * Return value should be used with equivalent unlock helper.
 127 */
 128#define pcpu_spin_lock(type, member, ptr)				\
 129({									\
 130	type *_ret;							\
 131	pcpu_task_pin();						\
 132	_ret = this_cpu_ptr(ptr);					\
 133	spin_lock(&_ret->member);					\
 134	_ret;								\
 135})
 136
 137#define pcpu_spin_trylock(type, member, ptr)				\
 138({									\
 139	type *_ret;							\
 140	pcpu_task_pin();						\
 141	_ret = this_cpu_ptr(ptr);					\
 142	if (!spin_trylock(&_ret->member)) {				\
 143		pcpu_task_unpin();					\
 144		_ret = NULL;						\
 145	}								\
 146	_ret;								\
 147})
 148
 149#define pcpu_spin_unlock(member, ptr)					\
 150({									\
 151	spin_unlock(&ptr->member);					\
 152	pcpu_task_unpin();						\
 153})
 154
 155/* struct per_cpu_pages specific helpers. */
 156#define pcp_spin_lock(ptr)						\
 157	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
 158
 159#define pcp_spin_trylock(ptr)						\
 160	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
 161
 162#define pcp_spin_unlock(ptr)						\
 163	pcpu_spin_unlock(lock, ptr)
 164
 165#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 166DEFINE_PER_CPU(int, numa_node);
 167EXPORT_PER_CPU_SYMBOL(numa_node);
 168#endif
 169
 170DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 171
 172#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 173/*
 174 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 175 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 176 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 177 * defined in <linux/topology.h>.
 178 */
 179DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 180EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 181#endif
 182
 183static DEFINE_MUTEX(pcpu_drain_mutex);
 184
 185#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 186volatile unsigned long latent_entropy __latent_entropy;
 187EXPORT_SYMBOL(latent_entropy);
 188#endif
 189
 190/*
 191 * Array of node states.
 192 */
 193nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 194	[N_POSSIBLE] = NODE_MASK_ALL,
 195	[N_ONLINE] = { { [0] = 1UL } },
 196#ifndef CONFIG_NUMA
 197	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 198#ifdef CONFIG_HIGHMEM
 199	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 200#endif
 
 201	[N_MEMORY] = { { [0] = 1UL } },
 
 202	[N_CPU] = { { [0] = 1UL } },
 203#endif	/* NUMA */
 204};
 205EXPORT_SYMBOL(node_states);
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 208
 
 209/*
 210 * A cached value of the page's pageblock's migratetype, used when the page is
 211 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 212 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 213 * Also the migratetype set in the page does not necessarily match the pcplist
 214 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 215 * other index - this ensures that it will be put on the correct CMA freelist.
 216 */
 217static inline int get_pcppage_migratetype(struct page *page)
 
 
 
 218{
 219	return page->index;
 
 
 
 
 220}
 221
 222static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 223{
 224	page->index = migratetype;
 
 
 
 
 
 
 
 
 
 
 225}
 
 226
 227#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 228unsigned int pageblock_order __read_mostly;
 229#endif
 230
 231static void __free_pages_ok(struct page *page, unsigned int order,
 232			    fpi_t fpi_flags);
 233
 234/*
 235 * results with 256, 32 in the lowmem_reserve sysctl:
 236 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 237 *	1G machine -> (16M dma, 784M normal, 224M high)
 238 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 239 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 240 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 241 *
 242 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 243 * don't need any ZONE_NORMAL reservation
 244 */
 245static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 246#ifdef CONFIG_ZONE_DMA
 247	[ZONE_DMA] = 256,
 248#endif
 249#ifdef CONFIG_ZONE_DMA32
 250	[ZONE_DMA32] = 256,
 251#endif
 252	[ZONE_NORMAL] = 32,
 253#ifdef CONFIG_HIGHMEM
 254	[ZONE_HIGHMEM] = 0,
 255#endif
 256	[ZONE_MOVABLE] = 0,
 257};
 258
 259char * const zone_names[MAX_NR_ZONES] = {
 
 
 260#ifdef CONFIG_ZONE_DMA
 261	 "DMA",
 262#endif
 263#ifdef CONFIG_ZONE_DMA32
 264	 "DMA32",
 265#endif
 266	 "Normal",
 267#ifdef CONFIG_HIGHMEM
 268	 "HighMem",
 269#endif
 270	 "Movable",
 271#ifdef CONFIG_ZONE_DEVICE
 272	 "Device",
 273#endif
 274};
 275
 276const char * const migratetype_names[MIGRATE_TYPES] = {
 277	"Unmovable",
 278	"Movable",
 279	"Reclaimable",
 280	"HighAtomic",
 281#ifdef CONFIG_CMA
 282	"CMA",
 283#endif
 284#ifdef CONFIG_MEMORY_ISOLATION
 285	"Isolate",
 286#endif
 287};
 288
 289int min_free_kbytes = 1024;
 290int user_min_free_kbytes = -1;
 291static int watermark_boost_factor __read_mostly = 15000;
 292static int watermark_scale_factor = 10;
 
 
 
 
 
 
 
 
 
 293
 294/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 295int movable_zone;
 296EXPORT_SYMBOL(movable_zone);
 
 297
 298#if MAX_NUMNODES > 1
 299unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 300unsigned int nr_online_nodes __read_mostly = 1;
 301EXPORT_SYMBOL(nr_node_ids);
 302EXPORT_SYMBOL(nr_online_nodes);
 303#endif
 304
 305static bool page_contains_unaccepted(struct page *page, unsigned int order);
 306static void accept_page(struct page *page, unsigned int order);
 307static bool try_to_accept_memory(struct zone *zone, unsigned int order);
 308static inline bool has_unaccepted_memory(void);
 309static bool __free_unaccepted(struct page *page);
 310
 311int page_group_by_mobility_disabled __read_mostly;
 312
 313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 314/*
 315 * During boot we initialize deferred pages on-demand, as needed, but once
 316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 317 * and we can permanently disable that path.
 318 */
 319DEFINE_STATIC_KEY_TRUE(deferred_pages);
 320
 321static inline bool deferred_pages_enabled(void)
 322{
 323	return static_branch_unlikely(&deferred_pages);
 324}
 325
 326/*
 327 * deferred_grow_zone() is __init, but it is called from
 328 * get_page_from_freelist() during early boot until deferred_pages permanently
 329 * disables this call. This is why we have refdata wrapper to avoid warning,
 330 * and to ensure that the function body gets unloaded.
 331 */
 332static bool __ref
 333_deferred_grow_zone(struct zone *zone, unsigned int order)
 334{
 335       return deferred_grow_zone(zone, order);
 336}
 337#else
 338static inline bool deferred_pages_enabled(void)
 339{
 340	return false;
 341}
 342#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 343
 344/* Return a pointer to the bitmap storing bits affecting a block of pages */
 345static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 346							unsigned long pfn)
 347{
 348#ifdef CONFIG_SPARSEMEM
 349	return section_to_usemap(__pfn_to_section(pfn));
 350#else
 351	return page_zone(page)->pageblock_flags;
 352#endif /* CONFIG_SPARSEMEM */
 353}
 354
 355static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 356{
 357#ifdef CONFIG_SPARSEMEM
 358	pfn &= (PAGES_PER_SECTION-1);
 359#else
 360	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
 361#endif /* CONFIG_SPARSEMEM */
 362	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 363}
 364
 365/**
 366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 367 * @page: The page within the block of interest
 368 * @pfn: The target page frame number
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373unsigned long get_pfnblock_flags_mask(const struct page *page,
 374					unsigned long pfn, unsigned long mask)
 375{
 376	unsigned long *bitmap;
 377	unsigned long bitidx, word_bitidx;
 378	unsigned long word;
 379
 380	bitmap = get_pageblock_bitmap(page, pfn);
 381	bitidx = pfn_to_bitidx(page, pfn);
 382	word_bitidx = bitidx / BITS_PER_LONG;
 383	bitidx &= (BITS_PER_LONG-1);
 384	/*
 385	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
 386	 * a consistent read of the memory array, so that results, even though
 387	 * racy, are not corrupted.
 388	 */
 389	word = READ_ONCE(bitmap[word_bitidx]);
 390	return (word >> bitidx) & mask;
 391}
 392
 393static __always_inline int get_pfnblock_migratetype(const struct page *page,
 394					unsigned long pfn)
 395{
 396	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 397}
 398
 399/**
 400 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 401 * @page: The page within the block of interest
 402 * @flags: The flags to set
 403 * @pfn: The target page frame number
 404 * @mask: mask of bits that the caller is interested in
 405 */
 406void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 407					unsigned long pfn,
 408					unsigned long mask)
 409{
 410	unsigned long *bitmap;
 411	unsigned long bitidx, word_bitidx;
 412	unsigned long word;
 413
 414	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 415	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 416
 417	bitmap = get_pageblock_bitmap(page, pfn);
 418	bitidx = pfn_to_bitidx(page, pfn);
 419	word_bitidx = bitidx / BITS_PER_LONG;
 420	bitidx &= (BITS_PER_LONG-1);
 421
 422	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 423
 424	mask <<= bitidx;
 425	flags <<= bitidx;
 426
 427	word = READ_ONCE(bitmap[word_bitidx]);
 428	do {
 429	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
 430}
 431
 432void set_pageblock_migratetype(struct page *page, int migratetype)
 433{
 434	if (unlikely(page_group_by_mobility_disabled &&
 435		     migratetype < MIGRATE_PCPTYPES))
 436		migratetype = MIGRATE_UNMOVABLE;
 437
 438	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 439				page_to_pfn(page), MIGRATETYPE_MASK);
 440}
 441
 
 
 442#ifdef CONFIG_DEBUG_VM
 443static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 444{
 445	int ret;
 446	unsigned seq;
 447	unsigned long pfn = page_to_pfn(page);
 448	unsigned long sp, start_pfn;
 449
 450	do {
 451		seq = zone_span_seqbegin(zone);
 452		start_pfn = zone->zone_start_pfn;
 453		sp = zone->spanned_pages;
 454		ret = !zone_spans_pfn(zone, pfn);
 
 455	} while (zone_span_seqretry(zone, seq));
 456
 457	if (ret)
 458		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 459			pfn, zone_to_nid(zone), zone->name,
 460			start_pfn, start_pfn + sp);
 461
 462	return ret;
 463}
 464
 
 
 
 
 
 
 
 
 
 465/*
 466 * Temporary debugging check for pages not lying within a given zone.
 467 */
 468static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
 469{
 470	if (page_outside_zone_boundaries(zone, page))
 471		return true;
 472	if (zone != page_zone(page))
 473		return true;
 474
 475	return false;
 476}
 477#else
 478static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
 479{
 480	return false;
 481}
 482#endif
 483
 484static void bad_page(struct page *page, const char *reason)
 
 485{
 486	static unsigned long resume;
 487	static unsigned long nr_shown;
 488	static unsigned long nr_unshown;
 489
 
 
 
 
 
 
 490	/*
 491	 * Allow a burst of 60 reports, then keep quiet for that minute;
 492	 * or allow a steady drip of one report per second.
 493	 */
 494	if (nr_shown == 60) {
 495		if (time_before(jiffies, resume)) {
 496			nr_unshown++;
 497			goto out;
 498		}
 499		if (nr_unshown) {
 500			pr_alert(
 501			      "BUG: Bad page state: %lu messages suppressed\n",
 502				nr_unshown);
 503			nr_unshown = 0;
 504		}
 505		nr_shown = 0;
 506	}
 507	if (nr_shown++ == 0)
 508		resume = jiffies + 60 * HZ;
 509
 510	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 511		current->comm, page_to_pfn(page));
 512	dump_page(page, reason);
 513
 514	print_modules();
 515	dump_stack();
 516out:
 517	/* Leave bad fields for debug, except PageBuddy could make trouble */
 518	page_mapcount_reset(page); /* remove PageBuddy */
 519	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 520}
 521
 522static inline unsigned int order_to_pindex(int migratetype, int order)
 523{
 524#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 525	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 526		VM_BUG_ON(order != pageblock_order);
 527		return NR_LOWORDER_PCP_LISTS;
 528	}
 529#else
 530	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 531#endif
 532
 533	return (MIGRATE_PCPTYPES * order) + migratetype;
 534}
 535
 536static inline int pindex_to_order(unsigned int pindex)
 537{
 538	int order = pindex / MIGRATE_PCPTYPES;
 539
 540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 541	if (pindex == NR_LOWORDER_PCP_LISTS)
 542		order = pageblock_order;
 543#else
 544	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 545#endif
 546
 547	return order;
 548}
 549
 550static inline bool pcp_allowed_order(unsigned int order)
 551{
 552	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 553		return true;
 554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 555	if (order == pageblock_order)
 556		return true;
 557#endif
 558	return false;
 559}
 560
 561static inline void free_the_page(struct page *page, unsigned int order)
 562{
 563	if (pcp_allowed_order(order))		/* Via pcp? */
 564		free_unref_page(page, order);
 565	else
 566		__free_pages_ok(page, order, FPI_NONE);
 567}
 568
 569/*
 570 * Higher-order pages are called "compound pages".  They are structured thusly:
 571 *
 572 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 
 
 573 *
 574 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 575 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 576 *
 577 * The first tail page's ->compound_order holds the order of allocation.
 
 578 * This usage means that zero-order pages may not be compound.
 579 */
 580
 581void prep_compound_page(struct page *page, unsigned int order)
 
 
 
 
 
 582{
 583	int i;
 584	int nr_pages = 1 << order;
 585
 
 
 586	__SetPageHead(page);
 587	for (i = 1; i < nr_pages; i++)
 588		prep_compound_tail(page, i);
 589
 590	prep_compound_head(page, order);
 
 
 
 
 591}
 592
 593void destroy_large_folio(struct folio *folio)
 
 594{
 595	if (folio_test_hugetlb(folio)) {
 596		free_huge_folio(folio);
 597		return;
 
 
 
 
 598	}
 599
 600	if (folio_test_large_rmappable(folio))
 601		folio_undo_large_rmappable(folio);
 602
 603	mem_cgroup_uncharge(folio);
 604	free_the_page(&folio->page, folio_order(folio));
 605}
 606
 607static inline void set_buddy_order(struct page *page, unsigned int order)
 608{
 609	set_page_private(page, order);
 610	__SetPageBuddy(page);
 611}
 612
 613#ifdef CONFIG_COMPACTION
 614static inline struct capture_control *task_capc(struct zone *zone)
 615{
 616	struct capture_control *capc = current->capture_control;
 617
 618	return unlikely(capc) &&
 619		!(current->flags & PF_KTHREAD) &&
 620		!capc->page &&
 621		capc->cc->zone == zone ? capc : NULL;
 622}
 623
 624static inline bool
 625compaction_capture(struct capture_control *capc, struct page *page,
 626		   int order, int migratetype)
 627{
 628	if (!capc || order != capc->cc->order)
 629		return false;
 630
 631	/* Do not accidentally pollute CMA or isolated regions*/
 632	if (is_migrate_cma(migratetype) ||
 633	    is_migrate_isolate(migratetype))
 634		return false;
 635
 636	/*
 637	 * Do not let lower order allocations pollute a movable pageblock.
 638	 * This might let an unmovable request use a reclaimable pageblock
 639	 * and vice-versa but no more than normal fallback logic which can
 640	 * have trouble finding a high-order free page.
 641	 */
 642	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 643		return false;
 
 
 644
 645	capc->page = page;
 646	return true;
 647}
 648
 649#else
 650static inline struct capture_control *task_capc(struct zone *zone)
 651{
 652	return NULL;
 653}
 654
 655static inline bool
 656compaction_capture(struct capture_control *capc, struct page *page,
 657		   int order, int migratetype)
 658{
 659	return false;
 
 
 660}
 661#endif /* CONFIG_COMPACTION */
 662
 663/* Used for pages not on another list */
 664static inline void add_to_free_list(struct page *page, struct zone *zone,
 665				    unsigned int order, int migratetype)
 666{
 667	struct free_area *area = &zone->free_area[order];
 668
 669	list_add(&page->buddy_list, &area->free_list[migratetype]);
 670	area->nr_free++;
 671}
 672
 673/* Used for pages not on another list */
 674static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 675					 unsigned int order, int migratetype)
 676{
 677	struct free_area *area = &zone->free_area[order];
 678
 679	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
 680	area->nr_free++;
 681}
 
 
 
 
 682
 683/*
 684 * Used for pages which are on another list. Move the pages to the tail
 685 * of the list - so the moved pages won't immediately be considered for
 686 * allocation again (e.g., optimization for memory onlining).
 687 */
 688static inline void move_to_free_list(struct page *page, struct zone *zone,
 689				     unsigned int order, int migratetype)
 690{
 691	struct free_area *area = &zone->free_area[order];
 692
 693	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
 694}
 695
 696static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 697					   unsigned int order)
 698{
 699	/* clear reported state and update reported page count */
 700	if (page_reported(page))
 701		__ClearPageReported(page);
 702
 703	list_del(&page->buddy_list);
 704	__ClearPageBuddy(page);
 705	set_page_private(page, 0);
 706	zone->free_area[order].nr_free--;
 707}
 708
 709static inline struct page *get_page_from_free_area(struct free_area *area,
 710					    int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711{
 712	return list_first_entry_or_null(&area->free_list[migratetype],
 713					struct page, buddy_list);
 714}
 715
 716/*
 717 * If this is not the largest possible page, check if the buddy
 718 * of the next-highest order is free. If it is, it's possible
 719 * that pages are being freed that will coalesce soon. In case,
 720 * that is happening, add the free page to the tail of the list
 721 * so it's less likely to be used soon and more likely to be merged
 722 * as a higher order page
 
 
 
 
 
 
 
 723 */
 724static inline bool
 725buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 726		   struct page *page, unsigned int order)
 727{
 728	unsigned long higher_page_pfn;
 729	struct page *higher_page;
 730
 731	if (order >= MAX_PAGE_ORDER - 1)
 732		return false;
 733
 734	higher_page_pfn = buddy_pfn & pfn;
 735	higher_page = page + (higher_page_pfn - pfn);
 
 
 736
 737	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
 738			NULL) != NULL;
 
 
 
 739}
 740
 741/*
 742 * Freeing function for a buddy system allocator.
 743 *
 744 * The concept of a buddy system is to maintain direct-mapped table
 745 * (containing bit values) for memory blocks of various "orders".
 746 * The bottom level table contains the map for the smallest allocatable
 747 * units of memory (here, pages), and each level above it describes
 748 * pairs of units from the levels below, hence, "buddies".
 749 * At a high level, all that happens here is marking the table entry
 750 * at the bottom level available, and propagating the changes upward
 751 * as necessary, plus some accounting needed to play nicely with other
 752 * parts of the VM system.
 753 * At each level, we keep a list of pages, which are heads of continuous
 754 * free pages of length of (1 << order) and marked with PageBuddy.
 755 * Page's order is recorded in page_private(page) field.
 
 756 * So when we are allocating or freeing one, we can derive the state of the
 757 * other.  That is, if we allocate a small block, and both were
 758 * free, the remainder of the region must be split into blocks.
 759 * If a block is freed, and its buddy is also free, then this
 760 * triggers coalescing into a block of larger size.
 761 *
 762 * -- nyc
 763 */
 764
 765static inline void __free_one_page(struct page *page,
 766		unsigned long pfn,
 767		struct zone *zone, unsigned int order,
 768		int migratetype, fpi_t fpi_flags)
 769{
 770	struct capture_control *capc = task_capc(zone);
 771	unsigned long buddy_pfn = 0;
 772	unsigned long combined_pfn;
 773	struct page *buddy;
 774	bool to_tail;
 775
 776	VM_BUG_ON(!zone_is_initialized(zone));
 777	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 778
 779	VM_BUG_ON(migratetype == -1);
 780	if (likely(!is_migrate_isolate(migratetype)))
 781		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 782
 783	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 784	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 785
 786	while (order < MAX_PAGE_ORDER) {
 787		if (compaction_capture(capc, page, order, migratetype)) {
 788			__mod_zone_freepage_state(zone, -(1 << order),
 789								migratetype);
 790			return;
 791		}
 792
 793		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
 794		if (!buddy)
 795			goto done_merging;
 796
 797		if (unlikely(order >= pageblock_order)) {
 798			/*
 799			 * We want to prevent merge between freepages on pageblock
 800			 * without fallbacks and normal pageblock. Without this,
 801			 * pageblock isolation could cause incorrect freepage or CMA
 802			 * accounting or HIGHATOMIC accounting.
 803			 */
 804			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
 805
 806			if (migratetype != buddy_mt
 807					&& (!migratetype_is_mergeable(migratetype) ||
 808						!migratetype_is_mergeable(buddy_mt)))
 809				goto done_merging;
 810		}
 811
 
 
 
 
 
 812		/*
 813		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 814		 * merge with it and move up one order.
 815		 */
 816		if (page_is_guard(buddy))
 817			clear_page_guard(zone, buddy, order, migratetype);
 818		else
 819			del_page_from_free_list(buddy, zone, order);
 820		combined_pfn = buddy_pfn & pfn;
 821		page = page + (combined_pfn - pfn);
 822		pfn = combined_pfn;
 
 
 
 
 
 
 823		order++;
 824	}
 
 825
 826done_merging:
 827	set_buddy_order(page, order);
 828
 829	if (fpi_flags & FPI_TO_TAIL)
 830		to_tail = true;
 831	else if (is_shuffle_order(order))
 832		to_tail = shuffle_pick_tail();
 833	else
 834		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 835
 836	if (to_tail)
 837		add_to_free_list_tail(page, zone, order, migratetype);
 838	else
 839		add_to_free_list(page, zone, order, migratetype);
 840
 841	/* Notify page reporting subsystem of freed page */
 842	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
 843		page_reporting_notify_free(order);
 844}
 845
 846/**
 847 * split_free_page() -- split a free page at split_pfn_offset
 848 * @free_page:		the original free page
 849 * @order:		the order of the page
 850 * @split_pfn_offset:	split offset within the page
 851 *
 852 * Return -ENOENT if the free page is changed, otherwise 0
 853 *
 854 * It is used when the free page crosses two pageblocks with different migratetypes
 855 * at split_pfn_offset within the page. The split free page will be put into
 856 * separate migratetype lists afterwards. Otherwise, the function achieves
 857 * nothing.
 858 */
 859int split_free_page(struct page *free_page,
 860			unsigned int order, unsigned long split_pfn_offset)
 861{
 862	struct zone *zone = page_zone(free_page);
 863	unsigned long free_page_pfn = page_to_pfn(free_page);
 864	unsigned long pfn;
 865	unsigned long flags;
 866	int free_page_order;
 867	int mt;
 868	int ret = 0;
 869
 870	if (split_pfn_offset == 0)
 871		return ret;
 872
 873	spin_lock_irqsave(&zone->lock, flags);
 874
 875	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
 876		ret = -ENOENT;
 877		goto out;
 878	}
 879
 880	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
 881	if (likely(!is_migrate_isolate(mt)))
 882		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 883
 884	del_page_from_free_list(free_page, zone, order);
 885	for (pfn = free_page_pfn;
 886	     pfn < free_page_pfn + (1UL << order);) {
 887		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
 888
 889		free_page_order = min_t(unsigned int,
 890					pfn ? __ffs(pfn) : order,
 891					__fls(split_pfn_offset));
 892		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
 893				mt, FPI_NONE);
 894		pfn += 1UL << free_page_order;
 895		split_pfn_offset -= (1UL << free_page_order);
 896		/* we have done the first part, now switch to second part */
 897		if (split_pfn_offset == 0)
 898			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
 899	}
 900out:
 901	spin_unlock_irqrestore(&zone->lock, flags);
 902	return ret;
 903}
 904/*
 905 * A bad page could be due to a number of fields. Instead of multiple branches,
 906 * try and check multiple fields with one check. The caller must do a detailed
 907 * check if necessary.
 908 */
 909static inline bool page_expected_state(struct page *page,
 910					unsigned long check_flags)
 911{
 912	if (unlikely(atomic_read(&page->_mapcount) != -1))
 913		return false;
 914
 915	if (unlikely((unsigned long)page->mapping |
 916			page_ref_count(page) |
 917#ifdef CONFIG_MEMCG
 918			page->memcg_data |
 919#endif
 920#ifdef CONFIG_PAGE_POOL
 921			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
 922#endif
 923			(page->flags & check_flags)))
 924		return false;
 925
 926	return true;
 927}
 928
 929static const char *page_bad_reason(struct page *page, unsigned long flags)
 930{
 931	const char *bad_reason = NULL;
 
 932
 933	if (unlikely(atomic_read(&page->_mapcount) != -1))
 934		bad_reason = "nonzero mapcount";
 935	if (unlikely(page->mapping != NULL))
 936		bad_reason = "non-NULL mapping";
 937	if (unlikely(page_ref_count(page) != 0))
 938		bad_reason = "nonzero _refcount";
 939	if (unlikely(page->flags & flags)) {
 940		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
 941			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
 942		else
 943			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 
 
 
 
 944	}
 945#ifdef CONFIG_MEMCG
 946	if (unlikely(page->memcg_data))
 947		bad_reason = "page still charged to cgroup";
 948#endif
 949#ifdef CONFIG_PAGE_POOL
 950	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
 951		bad_reason = "page_pool leak";
 952#endif
 953	return bad_reason;
 954}
 955
 956static void free_page_is_bad_report(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 957{
 958	bad_page(page,
 959		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
 960}
 961
 962static inline bool free_page_is_bad(struct page *page)
 963{
 964	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 965		return false;
 966
 967	/* Something has gone sideways, find it */
 968	free_page_is_bad_report(page);
 969	return true;
 970}
 971
 972static inline bool is_check_pages_enabled(void)
 973{
 974	return static_branch_unlikely(&check_pages_enabled);
 975}
 
 
 
 
 
 
 
 
 
 976
 977static int free_tail_page_prepare(struct page *head_page, struct page *page)
 978{
 979	struct folio *folio = (struct folio *)head_page;
 980	int ret = 1;
 981
 982	/*
 983	 * We rely page->lru.next never has bit 0 set, unless the page
 984	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 985	 */
 986	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 987
 988	if (!is_check_pages_enabled()) {
 989		ret = 0;
 990		goto out;
 
 
 
 
 
 
 
 
 
 
 991	}
 992	switch (page - head_page) {
 993	case 1:
 994		/* the first tail page: these may be in place of ->mapping */
 995		if (unlikely(folio_entire_mapcount(folio))) {
 996			bad_page(page, "nonzero entire_mapcount");
 997			goto out;
 998		}
 999		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1000			bad_page(page, "nonzero nr_pages_mapped");
1001			goto out;
1002		}
1003		if (unlikely(atomic_read(&folio->_pincount))) {
1004			bad_page(page, "nonzero pincount");
1005			goto out;
1006		}
1007		break;
1008	case 2:
1009		/*
1010		 * the second tail page: ->mapping is
1011		 * deferred_list.next -- ignore value.
1012		 */
1013		break;
1014	default:
1015		if (page->mapping != TAIL_MAPPING) {
1016			bad_page(page, "corrupted mapping in tail page");
1017			goto out;
1018		}
1019		break;
1020	}
1021	if (unlikely(!PageTail(page))) {
1022		bad_page(page, "PageTail not set");
1023		goto out;
1024	}
1025	if (unlikely(compound_head(page) != head_page)) {
1026		bad_page(page, "compound_head not consistent");
1027		goto out;
1028	}
1029	ret = 0;
1030out:
1031	page->mapping = NULL;
1032	clear_compound_head(page);
1033	return ret;
1034}
1035
1036/*
1037 * Skip KASAN memory poisoning when either:
1038 *
1039 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1040 *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1041 *    using page tags instead (see below).
1042 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1043 *    that error detection is disabled for accesses via the page address.
1044 *
1045 * Pages will have match-all tags in the following circumstances:
1046 *
1047 * 1. Pages are being initialized for the first time, including during deferred
1048 *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1049 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1050 *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1051 * 3. The allocation was excluded from being checked due to sampling,
1052 *    see the call to kasan_unpoison_pages.
1053 *
1054 * Poisoning pages during deferred memory init will greatly lengthen the
1055 * process and cause problem in large memory systems as the deferred pages
1056 * initialization is done with interrupt disabled.
1057 *
1058 * Assuming that there will be no reference to those newly initialized
1059 * pages before they are ever allocated, this should have no effect on
1060 * KASAN memory tracking as the poison will be properly inserted at page
1061 * allocation time. The only corner case is when pages are allocated by
1062 * on-demand allocation and then freed again before the deferred pages
1063 * initialization is done, but this is not likely to happen.
1064 */
1065static inline bool should_skip_kasan_poison(struct page *page)
1066{
1067	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1068		return deferred_pages_enabled();
1069
1070	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
 
 
 
1071}
1072
1073static void kernel_init_pages(struct page *page, int numpages)
1074{
1075	int i;
1076
1077	/* s390's use of memset() could override KASAN redzones. */
1078	kasan_disable_current();
1079	for (i = 0; i < numpages; i++)
1080		clear_highpage_kasan_tagged(page + i);
1081	kasan_enable_current();
1082}
1083
1084__always_inline bool free_pages_prepare(struct page *page,
1085			unsigned int order)
1086{
1087	int bad = 0;
1088	bool skip_kasan_poison = should_skip_kasan_poison(page);
1089	bool init = want_init_on_free();
1090	bool compound = PageCompound(page);
1091
1092	VM_BUG_ON_PAGE(PageTail(page), page);
1093
1094	trace_mm_page_free(page, order);
1095	kmsan_free_page(page, order);
1096
1097	if (memcg_kmem_online() && PageMemcgKmem(page))
1098		__memcg_kmem_uncharge_page(page, order);
1099
1100	if (unlikely(PageHWPoison(page)) && !order) {
1101		/* Do not let hwpoison pages hit pcplists/buddy */
1102		reset_page_owner(page, order);
1103		page_table_check_free(page, order);
1104		return false;
1105	}
1106
1107	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108
1109	/*
1110	 * Check tail pages before head page information is cleared to
1111	 * avoid checking PageCompound for order-0 pages.
1112	 */
1113	if (unlikely(order)) {
1114		int i;
1115
1116		if (compound)
1117			page[1].flags &= ~PAGE_FLAGS_SECOND;
1118		for (i = 1; i < (1 << order); i++) {
1119			if (compound)
1120				bad += free_tail_page_prepare(page, page + i);
1121			if (is_check_pages_enabled()) {
1122				if (free_page_is_bad(page + i)) {
1123					bad++;
1124					continue;
1125				}
1126			}
1127			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1128		}
1129	}
1130	if (PageMappingFlags(page))
1131		page->mapping = NULL;
1132	if (is_check_pages_enabled()) {
1133		if (free_page_is_bad(page))
1134			bad++;
1135		if (bad)
1136			return false;
1137	}
1138
1139	page_cpupid_reset_last(page);
1140	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141	reset_page_owner(page, order);
1142	page_table_check_free(page, order);
1143
1144	if (!PageHighMem(page)) {
1145		debug_check_no_locks_freed(page_address(page),
1146					   PAGE_SIZE << order);
1147		debug_check_no_obj_freed(page_address(page),
1148					   PAGE_SIZE << order);
1149	}
1150
1151	kernel_poison_pages(page, 1 << order);
1152
1153	/*
1154	 * As memory initialization might be integrated into KASAN,
1155	 * KASAN poisoning and memory initialization code must be
1156	 * kept together to avoid discrepancies in behavior.
1157	 *
1158	 * With hardware tag-based KASAN, memory tags must be set before the
1159	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160	 */
1161	if (!skip_kasan_poison) {
1162		kasan_poison_pages(page, order, init);
1163
1164		/* Memory is already initialized if KASAN did it internally. */
1165		if (kasan_has_integrated_init())
1166			init = false;
1167	}
1168	if (init)
1169		kernel_init_pages(page, 1 << order);
1170
1171	/*
1172	 * arch_free_page() can make the page's contents inaccessible.  s390
1173	 * does this.  So nothing which can access the page's contents should
1174	 * happen after this.
1175	 */
1176	arch_free_page(page, order);
1177
1178	debug_pagealloc_unmap_pages(page, 1 << order);
1179
1180	return true;
1181}
1182
1183/*
1184 * Frees a number of pages from the PCP lists
1185 * Assumes all pages on list are in same zone.
1186 * count is the number of pages to free.
1187 */
1188static void free_pcppages_bulk(struct zone *zone, int count,
1189					struct per_cpu_pages *pcp,
1190					int pindex)
1191{
1192	unsigned long flags;
1193	unsigned int order;
1194	bool isolated_pageblocks;
1195	struct page *page;
1196
1197	/*
1198	 * Ensure proper count is passed which otherwise would stuck in the
1199	 * below while (list_empty(list)) loop.
1200	 */
1201	count = min(pcp->count, count);
1202
1203	/* Ensure requested pindex is drained first. */
1204	pindex = pindex - 1;
1205
1206	spin_lock_irqsave(&zone->lock, flags);
1207	isolated_pageblocks = has_isolate_pageblock(zone);
1208
1209	while (count > 0) {
1210		struct list_head *list;
1211		int nr_pages;
1212
1213		/* Remove pages from lists in a round-robin fashion. */
1214		do {
1215			if (++pindex > NR_PCP_LISTS - 1)
1216				pindex = 0;
1217			list = &pcp->lists[pindex];
1218		} while (list_empty(list));
1219
1220		order = pindex_to_order(pindex);
1221		nr_pages = 1 << order;
1222		do {
1223			int mt;
1224
1225			page = list_last_entry(list, struct page, pcp_list);
1226			mt = get_pcppage_migratetype(page);
1227
1228			/* must delete to avoid corrupting pcp list */
1229			list_del(&page->pcp_list);
1230			count -= nr_pages;
1231			pcp->count -= nr_pages;
1232
1233			/* MIGRATE_ISOLATE page should not go to pcplists */
1234			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235			/* Pageblock could have been isolated meanwhile */
1236			if (unlikely(isolated_pageblocks))
1237				mt = get_pageblock_migratetype(page);
1238
1239			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240			trace_mm_page_pcpu_drain(page, order, mt);
1241		} while (count > 0 && !list_empty(list));
1242	}
1243
1244	spin_unlock_irqrestore(&zone->lock, flags);
1245}
1246
1247static void free_one_page(struct zone *zone,
1248				struct page *page, unsigned long pfn,
1249				unsigned int order,
1250				int migratetype, fpi_t fpi_flags)
1251{
1252	unsigned long flags;
1253
1254	spin_lock_irqsave(&zone->lock, flags);
1255	if (unlikely(has_isolate_pageblock(zone) ||
1256		is_migrate_isolate(migratetype))) {
1257		migratetype = get_pfnblock_migratetype(page, pfn);
1258	}
1259	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1260	spin_unlock_irqrestore(&zone->lock, flags);
1261}
1262
1263static void __free_pages_ok(struct page *page, unsigned int order,
1264			    fpi_t fpi_flags)
1265{
1266	int migratetype;
1267	unsigned long pfn = page_to_pfn(page);
1268	struct zone *zone = page_zone(page);
1269
1270	if (!free_pages_prepare(page, order))
1271		return;
1272
1273	/*
1274	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1275	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1276	 * This will reduce the lock holding time.
1277	 */
1278	migratetype = get_pfnblock_migratetype(page, pfn);
1279
1280	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1281
1282	__count_vm_events(PGFREE, 1 << order);
 
 
 
 
1283}
1284
1285void __free_pages_core(struct page *page, unsigned int order)
1286{
1287	unsigned int nr_pages = 1 << order;
1288	struct page *p = page;
1289	unsigned int loop;
1290
1291	/*
1292	 * When initializing the memmap, __init_single_page() sets the refcount
1293	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1294	 * refcount of all involved pages to 0.
1295	 */
1296	prefetchw(p);
1297	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1298		prefetchw(p + 1);
1299		__ClearPageReserved(p);
1300		set_page_count(p, 0);
1301	}
1302	__ClearPageReserved(p);
1303	set_page_count(p, 0);
1304
1305	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1306
1307	if (page_contains_unaccepted(page, order)) {
1308		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1309			return;
1310
1311		accept_page(page, order);
1312	}
1313
1314	/*
1315	 * Bypass PCP and place fresh pages right to the tail, primarily
1316	 * relevant for memory onlining.
1317	 */
1318	__free_pages_ok(page, order, FPI_TO_TAIL);
1319}
1320
1321/*
1322 * Check that the whole (or subset of) a pageblock given by the interval of
1323 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1324 * with the migration of free compaction scanner.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 *
1336 * Note: the function may return non-NULL struct page even for a page block
1337 * which contains a memory hole (i.e. there is no physical memory for a subset
1338 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1339 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1340 * even though the start pfn is online and valid. This should be safe most of
1341 * the time because struct pages are still initialized via init_unavailable_range()
1342 * and pfn walkers shouldn't touch any physical memory range for which they do
1343 * not recognize any specific metadata in struct pages.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346				     unsigned long end_pfn, struct zone *zone)
1347{
1348	struct page *start_page;
1349	struct page *end_page;
1350
1351	/* end_pfn is one past the range we are checking */
1352	end_pfn--;
 
 
1353
1354	if (!pfn_valid(end_pfn))
1355		return NULL;
1356
1357	start_page = pfn_to_online_page(start_pfn);
1358	if (!start_page)
1359		return NULL;
1360
1361	if (page_zone(start_page) != zone)
1362		return NULL;
1363
1364	end_page = pfn_to_page(end_pfn);
1365
1366	/* This gives a shorter code than deriving page_zone(end_page) */
1367	if (page_zone_id(start_page) != page_zone_id(end_page))
1368		return NULL;
1369
1370	return start_page;
1371}
 
1372
1373/*
1374 * The order of subdivision here is critical for the IO subsystem.
1375 * Please do not alter this order without good reasons and regression
1376 * testing. Specifically, as large blocks of memory are subdivided,
1377 * the order in which smaller blocks are delivered depends on the order
1378 * they're subdivided in this function. This is the primary factor
1379 * influencing the order in which pages are delivered to the IO
1380 * subsystem according to empirical testing, and this is also justified
1381 * by considering the behavior of a buddy system containing a single
1382 * large block of memory acted on by a series of small allocations.
1383 * This behavior is a critical factor in sglist merging's success.
1384 *
1385 * -- nyc
1386 */
1387static inline void expand(struct zone *zone, struct page *page,
1388	int low, int high, int migratetype)
 
1389{
1390	unsigned long size = 1 << high;
1391
1392	while (high > low) {
 
1393		high--;
1394		size >>= 1;
1395		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1396
1397		/*
1398		 * Mark as guard pages (or page), that will allow to
1399		 * merge back to allocator when buddy will be freed.
1400		 * Corresponding page table entries will not be touched,
1401		 * pages will stay not present in virtual address space
1402		 */
1403		if (set_page_guard(zone, &page[size], high, migratetype))
 
 
 
 
 
 
 
1404			continue;
1405
1406		add_to_free_list(&page[size], zone, high, migratetype);
1407		set_buddy_order(&page[size], high);
 
 
1408	}
1409}
1410
1411static void check_new_page_bad(struct page *page)
1412{
1413	if (unlikely(page->flags & __PG_HWPOISON)) {
1414		/* Don't complain about hwpoisoned pages */
1415		page_mapcount_reset(page); /* remove PageBuddy */
1416		return;
1417	}
1418
1419	bad_page(page,
1420		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1421}
1422
1423/*
1424 * This page is about to be returned from the page allocator
1425 */
1426static bool check_new_page(struct page *page)
1427{
1428	if (likely(page_expected_state(page,
1429				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1430		return false;
1431
1432	check_new_page_bad(page);
1433	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434}
1435
1436static inline bool check_new_pages(struct page *page, unsigned int order)
1437{
1438	if (is_check_pages_enabled()) {
1439		for (int i = 0; i < (1 << order); i++) {
1440			struct page *p = page + i;
1441
1442			if (check_new_page(p))
1443				return true;
1444		}
 
1445	}
1446
1447	return false;
1448}
1449
1450static inline bool should_skip_kasan_unpoison(gfp_t flags)
1451{
1452	/* Don't skip if a software KASAN mode is enabled. */
1453	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1454	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1455		return false;
1456
1457	/* Skip, if hardware tag-based KASAN is not enabled. */
1458	if (!kasan_hw_tags_enabled())
1459		return true;
1460
1461	/*
1462	 * With hardware tag-based KASAN enabled, skip if this has been
1463	 * requested via __GFP_SKIP_KASAN.
1464	 */
1465	return flags & __GFP_SKIP_KASAN;
1466}
1467
1468static inline bool should_skip_init(gfp_t flags)
1469{
1470	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1471	if (!kasan_hw_tags_enabled())
1472		return false;
1473
1474	/* For hardware tag-based KASAN, skip if requested. */
1475	return (flags & __GFP_SKIP_ZERO);
1476}
1477
1478inline void post_alloc_hook(struct page *page, unsigned int order,
1479				gfp_t gfp_flags)
1480{
1481	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1482			!should_skip_init(gfp_flags);
1483	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1484	int i;
1485
1486	set_page_private(page, 0);
1487	set_page_refcounted(page);
1488
1489	arch_alloc_page(page, order);
1490	debug_pagealloc_map_pages(page, 1 << order);
1491
1492	/*
1493	 * Page unpoisoning must happen before memory initialization.
1494	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1495	 * allocations and the page unpoisoning code will complain.
1496	 */
1497	kernel_unpoison_pages(page, 1 << order);
1498
1499	/*
1500	 * As memory initialization might be integrated into KASAN,
1501	 * KASAN unpoisoning and memory initializion code must be
1502	 * kept together to avoid discrepancies in behavior.
1503	 */
1504
1505	/*
1506	 * If memory tags should be zeroed
1507	 * (which happens only when memory should be initialized as well).
1508	 */
1509	if (zero_tags) {
1510		/* Initialize both memory and memory tags. */
1511		for (i = 0; i != 1 << order; ++i)
1512			tag_clear_highpage(page + i);
1513
1514		/* Take note that memory was initialized by the loop above. */
1515		init = false;
1516	}
1517	if (!should_skip_kasan_unpoison(gfp_flags) &&
1518	    kasan_unpoison_pages(page, order, init)) {
1519		/* Take note that memory was initialized by KASAN. */
1520		if (kasan_has_integrated_init())
1521			init = false;
1522	} else {
1523		/*
1524		 * If memory tags have not been set by KASAN, reset the page
1525		 * tags to ensure page_address() dereferencing does not fault.
1526		 */
1527		for (i = 0; i != 1 << order; ++i)
1528			page_kasan_tag_reset(page + i);
1529	}
1530	/* If memory is still not initialized, initialize it now. */
1531	if (init)
1532		kernel_init_pages(page, 1 << order);
1533
1534	set_page_owner(page, order, gfp_flags);
1535	page_table_check_alloc(page, order);
1536}
1537
1538static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1539							unsigned int alloc_flags)
1540{
1541	post_alloc_hook(page, order, gfp_flags);
1542
1543	if (order && (gfp_flags & __GFP_COMP))
1544		prep_compound_page(page, order);
1545
1546	/*
1547	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1548	 * allocate the page. The expectation is that the caller is taking
1549	 * steps that will free more memory. The caller should avoid the page
1550	 * being used for !PFMEMALLOC purposes.
1551	 */
1552	if (alloc_flags & ALLOC_NO_WATERMARKS)
1553		set_page_pfmemalloc(page);
1554	else
1555		clear_page_pfmemalloc(page);
1556}
1557
1558/*
1559 * Go through the free lists for the given migratetype and remove
1560 * the smallest available page from the freelists
1561 */
1562static __always_inline
1563struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1564						int migratetype)
1565{
1566	unsigned int current_order;
1567	struct free_area *area;
1568	struct page *page;
1569
1570	/* Find a page of the appropriate size in the preferred list */
1571	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1572		area = &(zone->free_area[current_order]);
1573		page = get_page_from_free_area(area, migratetype);
1574		if (!page)
1575			continue;
1576		del_page_from_free_list(page, zone, current_order);
1577		expand(zone, page, order, current_order, migratetype);
1578		set_pcppage_migratetype(page, migratetype);
1579		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1580				pcp_allowed_order(order) &&
1581				migratetype < MIGRATE_PCPTYPES);
 
1582		return page;
1583	}
1584
1585	return NULL;
1586}
1587
1588
1589/*
1590 * This array describes the order lists are fallen back to when
1591 * the free lists for the desirable migrate type are depleted
1592 *
1593 * The other migratetypes do not have fallbacks.
1594 */
1595static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1596	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1597	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1598	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1599};
1600
1601#ifdef CONFIG_CMA
1602static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1603					unsigned int order)
1604{
1605	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1606}
1607#else
1608static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609					unsigned int order) { return NULL; }
 
 
 
1610#endif
 
1611
1612/*
1613 * Move the free pages in a range to the freelist tail of the requested type.
1614 * Note that start_page and end_pages are not aligned on a pageblock
1615 * boundary. If alignment is required, use move_freepages_block()
1616 */
1617static int move_freepages(struct zone *zone,
1618			  unsigned long start_pfn, unsigned long end_pfn,
1619			  int migratetype, int *num_movable)
1620{
1621	struct page *page;
1622	unsigned long pfn;
1623	unsigned int order;
1624	int pages_moved = 0;
1625
1626	for (pfn = start_pfn; pfn <= end_pfn;) {
1627		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628		if (!PageBuddy(page)) {
1629			/*
1630			 * We assume that pages that could be isolated for
1631			 * migration are movable. But we don't actually try
1632			 * isolating, as that would be expensive.
1633			 */
1634			if (num_movable &&
1635					(PageLRU(page) || __PageMovable(page)))
1636				(*num_movable)++;
1637			pfn++;
1638			continue;
1639		}
1640
1641		/* Make sure we are not inadvertently changing nodes */
1642		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1643		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1644
1645		order = buddy_order(page);
1646		move_to_free_list(page, zone, order, migratetype);
1647		pfn += 1 << order;
1648		pages_moved += 1 << order;
1649	}
1650
1651	return pages_moved;
1652}
1653
1654int move_freepages_block(struct zone *zone, struct page *page,
1655				int migratetype, int *num_movable)
1656{
1657	unsigned long start_pfn, end_pfn, pfn;
1658
1659	if (num_movable)
1660		*num_movable = 0;
1661
1662	pfn = page_to_pfn(page);
1663	start_pfn = pageblock_start_pfn(pfn);
1664	end_pfn = pageblock_end_pfn(pfn) - 1;
 
 
1665
1666	/* Do not cross zone boundaries */
1667	if (!zone_spans_pfn(zone, start_pfn))
1668		start_pfn = pfn;
1669	if (!zone_spans_pfn(zone, end_pfn))
1670		return 0;
1671
1672	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1673								num_movable);
1674}
1675
1676static void change_pageblock_range(struct page *pageblock_page,
1677					int start_order, int migratetype)
1678{
1679	int nr_pageblocks = 1 << (start_order - pageblock_order);
1680
1681	while (nr_pageblocks--) {
1682		set_pageblock_migratetype(pageblock_page, migratetype);
1683		pageblock_page += pageblock_nr_pages;
1684	}
1685}
1686
1687/*
1688 * When we are falling back to another migratetype during allocation, try to
1689 * steal extra free pages from the same pageblocks to satisfy further
1690 * allocations, instead of polluting multiple pageblocks.
1691 *
1692 * If we are stealing a relatively large buddy page, it is likely there will
1693 * be more free pages in the pageblock, so try to steal them all. For
1694 * reclaimable and unmovable allocations, we steal regardless of page size,
1695 * as fragmentation caused by those allocations polluting movable pageblocks
1696 * is worse than movable allocations stealing from unmovable and reclaimable
1697 * pageblocks.
1698 */
1699static bool can_steal_fallback(unsigned int order, int start_mt)
1700{
1701	/*
1702	 * Leaving this order check is intended, although there is
1703	 * relaxed order check in next check. The reason is that
1704	 * we can actually steal whole pageblock if this condition met,
1705	 * but, below check doesn't guarantee it and that is just heuristic
1706	 * so could be changed anytime.
1707	 */
1708	if (order >= pageblock_order)
1709		return true;
1710
1711	if (order >= pageblock_order / 2 ||
1712		start_mt == MIGRATE_RECLAIMABLE ||
1713		start_mt == MIGRATE_UNMOVABLE ||
1714		page_group_by_mobility_disabled)
1715		return true;
1716
1717	return false;
1718}
1719
1720static inline bool boost_watermark(struct zone *zone)
1721{
1722	unsigned long max_boost;
1723
1724	if (!watermark_boost_factor)
1725		return false;
1726	/*
1727	 * Don't bother in zones that are unlikely to produce results.
1728	 * On small machines, including kdump capture kernels running
1729	 * in a small area, boosting the watermark can cause an out of
1730	 * memory situation immediately.
1731	 */
1732	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1733		return false;
1734
1735	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1736			watermark_boost_factor, 10000);
1737
1738	/*
1739	 * high watermark may be uninitialised if fragmentation occurs
1740	 * very early in boot so do not boost. We do not fall
1741	 * through and boost by pageblock_nr_pages as failing
1742	 * allocations that early means that reclaim is not going
1743	 * to help and it may even be impossible to reclaim the
1744	 * boosted watermark resulting in a hang.
1745	 */
1746	if (!max_boost)
1747		return false;
1748
1749	max_boost = max(pageblock_nr_pages, max_boost);
1750
1751	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1752		max_boost);
1753
1754	return true;
1755}
1756
1757/*
1758 * This function implements actual steal behaviour. If order is large enough,
1759 * we can steal whole pageblock. If not, we first move freepages in this
1760 * pageblock to our migratetype and determine how many already-allocated pages
1761 * are there in the pageblock with a compatible migratetype. If at least half
1762 * of pages are free or compatible, we can change migratetype of the pageblock
1763 * itself, so pages freed in the future will be put on the correct free list.
1764 */
1765static void steal_suitable_fallback(struct zone *zone, struct page *page,
1766		unsigned int alloc_flags, int start_type, bool whole_block)
1767{
1768	unsigned int current_order = buddy_order(page);
1769	int free_pages, movable_pages, alike_pages;
1770	int old_block_type;
1771
1772	old_block_type = get_pageblock_migratetype(page);
1773
1774	/*
1775	 * This can happen due to races and we want to prevent broken
1776	 * highatomic accounting.
1777	 */
1778	if (is_migrate_highatomic(old_block_type))
1779		goto single_page;
1780
1781	/* Take ownership for orders >= pageblock_order */
1782	if (current_order >= pageblock_order) {
1783		change_pageblock_range(page, current_order, start_type);
1784		goto single_page;
1785	}
1786
1787	/*
1788	 * Boost watermarks to increase reclaim pressure to reduce the
1789	 * likelihood of future fallbacks. Wake kswapd now as the node
1790	 * may be balanced overall and kswapd will not wake naturally.
1791	 */
1792	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1793		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1794
1795	/* We are not allowed to try stealing from the whole block */
1796	if (!whole_block)
1797		goto single_page;
1798
1799	free_pages = move_freepages_block(zone, page, start_type,
1800						&movable_pages);
1801	/* moving whole block can fail due to zone boundary conditions */
1802	if (!free_pages)
1803		goto single_page;
1804
1805	/*
1806	 * Determine how many pages are compatible with our allocation.
1807	 * For movable allocation, it's the number of movable pages which
1808	 * we just obtained. For other types it's a bit more tricky.
1809	 */
1810	if (start_type == MIGRATE_MOVABLE) {
1811		alike_pages = movable_pages;
1812	} else {
1813		/*
1814		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1815		 * to MOVABLE pageblock, consider all non-movable pages as
1816		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1817		 * vice versa, be conservative since we can't distinguish the
1818		 * exact migratetype of non-movable pages.
1819		 */
1820		if (old_block_type == MIGRATE_MOVABLE)
1821			alike_pages = pageblock_nr_pages
1822						- (free_pages + movable_pages);
1823		else
1824			alike_pages = 0;
1825	}
1826	/*
1827	 * If a sufficient number of pages in the block are either free or of
1828	 * compatible migratability as our allocation, claim the whole block.
1829	 */
1830	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1831			page_group_by_mobility_disabled)
1832		set_pageblock_migratetype(page, start_type);
1833
1834	return;
1835
1836single_page:
1837	move_to_free_list(page, zone, current_order, start_type);
1838}
1839
1840/*
1841 * Check whether there is a suitable fallback freepage with requested order.
1842 * If only_stealable is true, this function returns fallback_mt only if
1843 * we can steal other freepages all together. This would help to reduce
1844 * fragmentation due to mixed migratetype pages in one pageblock.
1845 */
1846int find_suitable_fallback(struct free_area *area, unsigned int order,
1847			int migratetype, bool only_stealable, bool *can_steal)
1848{
1849	int i;
1850	int fallback_mt;
1851
1852	if (area->nr_free == 0)
1853		return -1;
1854
1855	*can_steal = false;
1856	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1857		fallback_mt = fallbacks[migratetype][i];
1858		if (free_area_empty(area, fallback_mt))
1859			continue;
1860
1861		if (can_steal_fallback(order, migratetype))
1862			*can_steal = true;
1863
1864		if (!only_stealable)
1865			return fallback_mt;
1866
1867		if (*can_steal)
1868			return fallback_mt;
1869	}
1870
1871	return -1;
1872}
1873
1874/*
1875 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1876 * there are no empty page blocks that contain a page with a suitable order
1877 */
1878static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1879{
1880	int mt;
1881	unsigned long max_managed, flags;
1882
1883	/*
1884	 * The number reserved as: minimum is 1 pageblock, maximum is
1885	 * roughly 1% of a zone. But if 1% of a zone falls below a
1886	 * pageblock size, then don't reserve any pageblocks.
1887	 * Check is race-prone but harmless.
1888	 */
1889	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1890		return;
1891	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1892	if (zone->nr_reserved_highatomic >= max_managed)
1893		return;
1894
1895	spin_lock_irqsave(&zone->lock, flags);
1896
1897	/* Recheck the nr_reserved_highatomic limit under the lock */
1898	if (zone->nr_reserved_highatomic >= max_managed)
1899		goto out_unlock;
1900
1901	/* Yoink! */
1902	mt = get_pageblock_migratetype(page);
1903	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1904	if (migratetype_is_mergeable(mt)) {
1905		zone->nr_reserved_highatomic += pageblock_nr_pages;
1906		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1907		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1908	}
1909
1910out_unlock:
1911	spin_unlock_irqrestore(&zone->lock, flags);
1912}
1913
1914/*
1915 * Used when an allocation is about to fail under memory pressure. This
1916 * potentially hurts the reliability of high-order allocations when under
1917 * intense memory pressure but failed atomic allocations should be easier
1918 * to recover from than an OOM.
1919 *
1920 * If @force is true, try to unreserve a pageblock even though highatomic
1921 * pageblock is exhausted.
1922 */
1923static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1924						bool force)
1925{
1926	struct zonelist *zonelist = ac->zonelist;
1927	unsigned long flags;
1928	struct zoneref *z;
1929	struct zone *zone;
1930	struct page *page;
1931	int order;
1932	bool ret;
1933
1934	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1935								ac->nodemask) {
1936		/*
1937		 * Preserve at least one pageblock unless memory pressure
1938		 * is really high.
1939		 */
1940		if (!force && zone->nr_reserved_highatomic <=
1941					pageblock_nr_pages)
1942			continue;
1943
1944		spin_lock_irqsave(&zone->lock, flags);
1945		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1946			struct free_area *area = &(zone->free_area[order]);
1947
1948			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1949			if (!page)
1950				continue;
1951
1952			/*
1953			 * In page freeing path, migratetype change is racy so
1954			 * we can counter several free pages in a pageblock
1955			 * in this loop although we changed the pageblock type
1956			 * from highatomic to ac->migratetype. So we should
1957			 * adjust the count once.
1958			 */
1959			if (is_migrate_highatomic_page(page)) {
1960				/*
1961				 * It should never happen but changes to
1962				 * locking could inadvertently allow a per-cpu
1963				 * drain to add pages to MIGRATE_HIGHATOMIC
1964				 * while unreserving so be safe and watch for
1965				 * underflows.
1966				 */
1967				zone->nr_reserved_highatomic -= min(
1968						pageblock_nr_pages,
1969						zone->nr_reserved_highatomic);
1970			}
1971
1972			/*
1973			 * Convert to ac->migratetype and avoid the normal
1974			 * pageblock stealing heuristics. Minimally, the caller
1975			 * is doing the work and needs the pages. More
1976			 * importantly, if the block was always converted to
1977			 * MIGRATE_UNMOVABLE or another type then the number
1978			 * of pageblocks that cannot be completely freed
1979			 * may increase.
1980			 */
1981			set_pageblock_migratetype(page, ac->migratetype);
1982			ret = move_freepages_block(zone, page, ac->migratetype,
1983									NULL);
1984			if (ret) {
1985				spin_unlock_irqrestore(&zone->lock, flags);
1986				return ret;
1987			}
1988		}
1989		spin_unlock_irqrestore(&zone->lock, flags);
1990	}
1991
1992	return false;
1993}
 
1994
1995/*
1996 * Try finding a free buddy page on the fallback list and put it on the free
1997 * list of requested migratetype, possibly along with other pages from the same
1998 * block, depending on fragmentation avoidance heuristics. Returns true if
1999 * fallback was found so that __rmqueue_smallest() can grab it.
2000 *
2001 * The use of signed ints for order and current_order is a deliberate
2002 * deviation from the rest of this file, to make the for loop
2003 * condition simpler.
2004 */
2005static __always_inline bool
2006__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2007						unsigned int alloc_flags)
2008{
2009	struct free_area *area;
2010	int current_order;
2011	int min_order = order;
2012	struct page *page;
2013	int fallback_mt;
2014	bool can_steal;
2015
2016	/*
2017	 * Do not steal pages from freelists belonging to other pageblocks
2018	 * i.e. orders < pageblock_order. If there are no local zones free,
2019	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2020	 */
2021	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2022		min_order = pageblock_order;
2023
2024	/*
2025	 * Find the largest available free page in the other list. This roughly
2026	 * approximates finding the pageblock with the most free pages, which
2027	 * would be too costly to do exactly.
2028	 */
2029	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2030				--current_order) {
2031		area = &(zone->free_area[current_order]);
2032		fallback_mt = find_suitable_fallback(area, current_order,
2033				start_migratetype, false, &can_steal);
2034		if (fallback_mt == -1)
2035			continue;
2036
2037		/*
2038		 * We cannot steal all free pages from the pageblock and the
2039		 * requested migratetype is movable. In that case it's better to
2040		 * steal and split the smallest available page instead of the
2041		 * largest available page, because even if the next movable
2042		 * allocation falls back into a different pageblock than this
2043		 * one, it won't cause permanent fragmentation.
2044		 */
2045		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2046					&& current_order > order)
2047			goto find_smallest;
2048
2049		goto do_steal;
2050	}
2051
2052	return false;
2053
2054find_smallest:
2055	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2056		area = &(zone->free_area[current_order]);
2057		fallback_mt = find_suitable_fallback(area, current_order,
2058				start_migratetype, false, &can_steal);
2059		if (fallback_mt != -1)
2060			break;
2061	}
2062
2063	/*
2064	 * This should not happen - we already found a suitable fallback
2065	 * when looking for the largest page.
2066	 */
2067	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2068
2069do_steal:
2070	page = get_page_from_free_area(area, fallback_mt);
2071
2072	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2073								can_steal);
2074
2075	trace_mm_page_alloc_extfrag(page, order, current_order,
2076		start_migratetype, fallback_mt);
2077
2078	return true;
2079
2080}
2081
2082/*
2083 * Do the hard work of removing an element from the buddy allocator.
2084 * Call me with the zone->lock already held.
2085 */
2086static __always_inline struct page *
2087__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2088						unsigned int alloc_flags)
2089{
2090	struct page *page;
2091
2092	if (IS_ENABLED(CONFIG_CMA)) {
 
 
 
 
 
2093		/*
2094		 * Balance movable allocations between regular and CMA areas by
2095		 * allocating from CMA when over half of the zone's free memory
2096		 * is in the CMA area.
2097		 */
2098		if (alloc_flags & ALLOC_CMA &&
2099		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2100		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2101			page = __rmqueue_cma_fallback(zone, order);
2102			if (page)
2103				return page;
2104		}
2105	}
2106retry:
2107	page = __rmqueue_smallest(zone, order, migratetype);
2108	if (unlikely(!page)) {
2109		if (alloc_flags & ALLOC_CMA)
2110			page = __rmqueue_cma_fallback(zone, order);
2111
2112		if (!page && __rmqueue_fallback(zone, order, migratetype,
2113								alloc_flags))
2114			goto retry;
2115	}
2116	return page;
2117}
2118
2119/*
2120 * Obtain a specified number of elements from the buddy allocator, all under
2121 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2122 * Returns the number of new pages which were placed at *list.
2123 */
2124static int rmqueue_bulk(struct zone *zone, unsigned int order,
2125			unsigned long count, struct list_head *list,
2126			int migratetype, unsigned int alloc_flags)
2127{
2128	unsigned long flags;
2129	int i;
2130
2131	spin_lock_irqsave(&zone->lock, flags);
2132	for (i = 0; i < count; ++i) {
2133		struct page *page = __rmqueue(zone, order, migratetype,
2134								alloc_flags);
2135		if (unlikely(page == NULL))
2136			break;
2137
2138		/*
2139		 * Split buddy pages returned by expand() are received here in
2140		 * physical page order. The page is added to the tail of
2141		 * caller's list. From the callers perspective, the linked list
2142		 * is ordered by page number under some conditions. This is
2143		 * useful for IO devices that can forward direction from the
2144		 * head, thus also in the physical page order. This is useful
2145		 * for IO devices that can merge IO requests if the physical
2146		 * pages are ordered properly.
2147		 */
2148		list_add_tail(&page->pcp_list, list);
2149		if (is_migrate_cma(get_pcppage_migratetype(page)))
 
 
 
 
 
 
 
 
 
 
2150			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2151					      -(1 << order));
2152	}
2153
2154	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2155	spin_unlock_irqrestore(&zone->lock, flags);
2156
2157	return i;
2158}
2159
2160/*
2161 * Called from the vmstat counter updater to decay the PCP high.
2162 * Return whether there are addition works to do.
2163 */
2164int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2165{
2166	int high_min, to_drain, batch;
2167	int todo = 0;
2168
2169	high_min = READ_ONCE(pcp->high_min);
2170	batch = READ_ONCE(pcp->batch);
2171	/*
2172	 * Decrease pcp->high periodically to try to free possible
2173	 * idle PCP pages.  And, avoid to free too many pages to
2174	 * control latency.  This caps pcp->high decrement too.
2175	 */
2176	if (pcp->high > high_min) {
2177		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2178				 pcp->high - (pcp->high >> 3), high_min);
2179		if (pcp->high > high_min)
2180			todo++;
2181	}
2182
2183	to_drain = pcp->count - pcp->high;
2184	if (to_drain > 0) {
2185		spin_lock(&pcp->lock);
2186		free_pcppages_bulk(zone, to_drain, pcp, 0);
2187		spin_unlock(&pcp->lock);
2188		todo++;
2189	}
2190
2191	return todo;
2192}
2193
2194#ifdef CONFIG_NUMA
2195/*
2196 * Called from the vmstat counter updater to drain pagesets of this
2197 * currently executing processor on remote nodes after they have
2198 * expired.
 
 
 
2199 */
2200void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2201{
2202	int to_drain, batch;
 
 
2203
2204	batch = READ_ONCE(pcp->batch);
2205	to_drain = min(pcp->count, batch);
 
 
 
 
2206	if (to_drain > 0) {
2207		spin_lock(&pcp->lock);
2208		free_pcppages_bulk(zone, to_drain, pcp, 0);
2209		spin_unlock(&pcp->lock);
2210	}
 
2211}
2212#endif
2213
2214/*
2215 * Drain pcplists of the indicated processor and zone.
2216 */
2217static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2218{
2219	struct per_cpu_pages *pcp;
2220
2221	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2222	if (pcp->count) {
2223		spin_lock(&pcp->lock);
2224		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2225		spin_unlock(&pcp->lock);
2226	}
2227}
2228
2229/*
2230 * Drain pcplists of all zones on the indicated processor.
2231 */
2232static void drain_pages(unsigned int cpu)
2233{
 
2234	struct zone *zone;
2235
2236	for_each_populated_zone(zone) {
2237		drain_pages_zone(cpu, zone);
 
 
 
 
 
 
 
 
 
 
 
2238	}
2239}
2240
2241/*
2242 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243 */
2244void drain_local_pages(struct zone *zone)
2245{
2246	int cpu = smp_processor_id();
2247
2248	if (zone)
2249		drain_pages_zone(cpu, zone);
2250	else
2251		drain_pages(cpu);
2252}
2253
2254/*
2255 * The implementation of drain_all_pages(), exposing an extra parameter to
2256 * drain on all cpus.
2257 *
2258 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259 * not empty. The check for non-emptiness can however race with a free to
2260 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261 * that need the guarantee that every CPU has drained can disable the
2262 * optimizing racy check.
2263 */
2264static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2265{
2266	int cpu;
 
 
2267
2268	/*
2269	 * Allocate in the BSS so we won't require allocation in
2270	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271	 */
2272	static cpumask_t cpus_with_pcps;
2273
2274	/*
2275	 * Do not drain if one is already in progress unless it's specific to
2276	 * a zone. Such callers are primarily CMA and memory hotplug and need
2277	 * the drain to be complete when the call returns.
2278	 */
2279	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280		if (!zone)
2281			return;
2282		mutex_lock(&pcpu_drain_mutex);
2283	}
2284
2285	/*
2286	 * We don't care about racing with CPU hotplug event
2287	 * as offline notification will cause the notified
2288	 * cpu to drain that CPU pcps and on_each_cpu_mask
2289	 * disables preemption as part of its processing
2290	 */
2291	for_each_online_cpu(cpu) {
2292		struct per_cpu_pages *pcp;
2293		struct zone *z;
2294		bool has_pcps = false;
2295
2296		if (force_all_cpus) {
2297			/*
2298			 * The pcp.count check is racy, some callers need a
2299			 * guarantee that no cpu is missed.
2300			 */
2301			has_pcps = true;
2302		} else if (zone) {
2303			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304			if (pcp->count)
2305				has_pcps = true;
2306		} else {
2307			for_each_populated_zone(z) {
2308				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309				if (pcp->count) {
2310					has_pcps = true;
2311					break;
2312				}
2313			}
2314		}
2315
2316		if (has_pcps)
2317			cpumask_set_cpu(cpu, &cpus_with_pcps);
2318		else
2319			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320	}
2321
2322	for_each_cpu(cpu, &cpus_with_pcps) {
2323		if (zone)
2324			drain_pages_zone(cpu, zone);
2325		else
2326			drain_pages(cpu);
2327	}
2328
2329	mutex_unlock(&pcpu_drain_mutex);
2330}
2331
2332/*
2333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334 *
2335 * When zone parameter is non-NULL, spill just the single zone's pages.
2336 */
2337void drain_all_pages(struct zone *zone)
2338{
2339	__drain_all_pages(zone, false);
2340}
2341
2342static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343							unsigned int order)
2344{
2345	int migratetype;
 
 
 
2346
2347	if (!free_pages_prepare(page, order))
2348		return false;
2349
2350	migratetype = get_pfnblock_migratetype(page, pfn);
2351	set_pcppage_migratetype(page, migratetype);
2352	return true;
2353}
2354
2355static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2356{
2357	int min_nr_free, max_nr_free;
2358
2359	/* Free as much as possible if batch freeing high-order pages. */
2360	if (unlikely(free_high))
2361		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2362
2363	/* Check for PCP disabled or boot pageset */
2364	if (unlikely(high < batch))
2365		return 1;
2366
2367	/* Leave at least pcp->batch pages on the list */
2368	min_nr_free = batch;
2369	max_nr_free = high - batch;
2370
2371	/*
2372	 * Increase the batch number to the number of the consecutive
2373	 * freed pages to reduce zone lock contention.
2374	 */
2375	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2376
2377	return batch;
2378}
2379
2380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2381		       int batch, bool free_high)
2382{
2383	int high, high_min, high_max;
2384
2385	high_min = READ_ONCE(pcp->high_min);
2386	high_max = READ_ONCE(pcp->high_max);
2387	high = pcp->high = clamp(pcp->high, high_min, high_max);
2388
2389	if (unlikely(!high))
2390		return 0;
2391
2392	if (unlikely(free_high)) {
2393		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2394				high_min);
2395		return 0;
2396	}
2397
2398	/*
2399	 * If reclaim is active, limit the number of pages that can be
2400	 * stored on pcp lists
2401	 */
2402	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2403		int free_count = max_t(int, pcp->free_count, batch);
2404
2405		pcp->high = max(high - free_count, high_min);
2406		return min(batch << 2, pcp->high);
2407	}
2408
2409	if (high_min == high_max)
2410		return high;
2411
2412	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2413		int free_count = max_t(int, pcp->free_count, batch);
2414
2415		pcp->high = max(high - free_count, high_min);
2416		high = max(pcp->count, high_min);
2417	} else if (pcp->count >= high) {
2418		int need_high = pcp->free_count + batch;
2419
2420		/* pcp->high should be large enough to hold batch freed pages */
2421		if (pcp->high < need_high)
2422			pcp->high = clamp(need_high, high_min, high_max);
2423	}
2424
2425	return high;
2426}
2427
2428static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2429				   struct page *page, int migratetype,
2430				   unsigned int order)
2431{
2432	int high, batch;
2433	int pindex;
2434	bool free_high = false;
2435
2436	/*
2437	 * On freeing, reduce the number of pages that are batch allocated.
2438	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2439	 * allocations.
2440	 */
2441	pcp->alloc_factor >>= 1;
2442	__count_vm_events(PGFREE, 1 << order);
2443	pindex = order_to_pindex(migratetype, order);
2444	list_add(&page->pcp_list, &pcp->lists[pindex]);
2445	pcp->count += 1 << order;
2446
2447	batch = READ_ONCE(pcp->batch);
2448	/*
2449	 * As high-order pages other than THP's stored on PCP can contribute
2450	 * to fragmentation, limit the number stored when PCP is heavily
2451	 * freeing without allocation. The remainder after bulk freeing
2452	 * stops will be drained from vmstat refresh context.
2453	 */
2454	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2455		free_high = (pcp->free_count >= batch &&
2456			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2457			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2458			      pcp->count >= READ_ONCE(batch)));
2459		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2460	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2461		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2462	}
2463	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2464		pcp->free_count += (1 << order);
2465	high = nr_pcp_high(pcp, zone, batch, free_high);
2466	if (pcp->count >= high) {
2467		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2468				   pcp, pindex);
2469		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2470		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2471				      ZONE_MOVABLE, 0))
2472			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2473	}
 
2474}
 
2475
2476/*
2477 * Free a pcp page
 
2478 */
2479void free_unref_page(struct page *page, unsigned int order)
2480{
2481	unsigned long __maybe_unused UP_flags;
2482	struct per_cpu_pages *pcp;
2483	struct zone *zone;
2484	unsigned long pfn = page_to_pfn(page);
2485	int migratetype, pcpmigratetype;
2486
2487	if (!free_unref_page_prepare(page, pfn, order))
2488		return;
2489
 
 
 
 
 
2490	/*
2491	 * We only track unmovable, reclaimable and movable on pcp lists.
2492	 * Place ISOLATE pages on the isolated list because they are being
2493	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2494	 * get those areas back if necessary. Otherwise, we may have to free
2495	 * excessively into the page allocator
2496	 */
2497	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2498	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2499		if (unlikely(is_migrate_isolate(migratetype))) {
2500			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2501			return;
2502		}
2503		pcpmigratetype = MIGRATE_MOVABLE;
2504	}
2505
2506	zone = page_zone(page);
2507	pcp_trylock_prepare(UP_flags);
2508	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2509	if (pcp) {
2510		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2511		pcp_spin_unlock(pcp);
2512	} else {
2513		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
 
 
2514	}
2515	pcp_trylock_finish(UP_flags);
 
 
2516}
2517
2518/*
2519 * Free a batch of folios
2520 */
2521void free_unref_folios(struct folio_batch *folios)
2522{
2523	unsigned long __maybe_unused UP_flags;
2524	struct per_cpu_pages *pcp = NULL;
2525	struct zone *locked_zone = NULL;
2526	int i, j, migratetype;
2527
2528	/* Prepare folios for freeing */
2529	for (i = 0, j = 0; i < folios->nr; i++) {
2530		struct folio *folio = folios->folios[i];
2531		unsigned long pfn = folio_pfn(folio);
2532		unsigned int order = folio_order(folio);
2533
2534		if (order > 0 && folio_test_large_rmappable(folio))
2535			folio_undo_large_rmappable(folio);
2536		if (!free_unref_page_prepare(&folio->page, pfn, order))
2537			continue;
2538
2539		/*
2540		 * Free isolated folios and orders not handled on the PCP
2541		 * directly to the allocator, see comment in free_unref_page.
2542		 */
2543		migratetype = get_pcppage_migratetype(&folio->page);
2544		if (!pcp_allowed_order(order) ||
2545		    is_migrate_isolate(migratetype)) {
2546			free_one_page(folio_zone(folio), &folio->page, pfn,
2547					order, migratetype, FPI_NONE);
2548			continue;
2549		}
2550		folio->private = (void *)(unsigned long)order;
2551		if (j != i)
2552			folios->folios[j] = folio;
2553		j++;
2554	}
2555	folios->nr = j;
2556
2557	for (i = 0; i < folios->nr; i++) {
2558		struct folio *folio = folios->folios[i];
2559		struct zone *zone = folio_zone(folio);
2560		unsigned int order = (unsigned long)folio->private;
2561
2562		folio->private = NULL;
2563		migratetype = get_pcppage_migratetype(&folio->page);
2564
2565		/* Different zone requires a different pcp lock */
2566		if (zone != locked_zone) {
2567			if (pcp) {
2568				pcp_spin_unlock(pcp);
2569				pcp_trylock_finish(UP_flags);
2570			}
2571
2572			/*
2573			 * trylock is necessary as folios may be getting freed
2574			 * from IRQ or SoftIRQ context after an IO completion.
2575			 */
2576			pcp_trylock_prepare(UP_flags);
2577			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2578			if (unlikely(!pcp)) {
2579				pcp_trylock_finish(UP_flags);
2580				free_one_page(zone, &folio->page,
2581						folio_pfn(folio), order,
2582						migratetype, FPI_NONE);
2583				locked_zone = NULL;
2584				continue;
2585			}
2586			locked_zone = zone;
2587		}
2588
2589		/*
2590		 * Non-isolated types over MIGRATE_PCPTYPES get added
2591		 * to the MIGRATE_MOVABLE pcp list.
2592		 */
2593		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2594			migratetype = MIGRATE_MOVABLE;
2595
2596		trace_mm_page_free_batched(&folio->page);
2597		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2598				order);
2599	}
2600
2601	if (pcp) {
2602		pcp_spin_unlock(pcp);
2603		pcp_trylock_finish(UP_flags);
2604	}
2605	folio_batch_reinit(folios);
2606}
2607
2608/*
2609 * split_page takes a non-compound higher-order page, and splits it into
2610 * n (1<<order) sub-pages: page[0..n]
2611 * Each sub-page must be freed individually.
2612 *
2613 * Note: this is probably too low level an operation for use in drivers.
2614 * Please consult with lkml before using this in your driver.
2615 */
2616void split_page(struct page *page, unsigned int order)
2617{
2618	int i;
2619
2620	VM_BUG_ON_PAGE(PageCompound(page), page);
2621	VM_BUG_ON_PAGE(!page_count(page), page);
2622
 
 
 
 
 
 
 
 
 
2623	for (i = 1; i < (1 << order); i++)
2624		set_page_refcounted(page + i);
2625	split_page_owner(page, order, 0);
2626	split_page_memcg(page, order, 0);
2627}
2628EXPORT_SYMBOL_GPL(split_page);
2629
2630int __isolate_free_page(struct page *page, unsigned int order)
2631{
2632	struct zone *zone = page_zone(page);
2633	int mt = get_pageblock_migratetype(page);
 
 
 
 
 
 
2634
2635	if (!is_migrate_isolate(mt)) {
2636		unsigned long watermark;
2637		/*
2638		 * Obey watermarks as if the page was being allocated. We can
2639		 * emulate a high-order watermark check with a raised order-0
2640		 * watermark, because we already know our high-order page
2641		 * exists.
2642		 */
2643		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2644		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2645			return 0;
2646
2647		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2648	}
2649
2650	del_page_from_free_list(page, zone, order);
 
 
 
2651
2652	/*
2653	 * Set the pageblock if the isolated page is at least half of a
2654	 * pageblock
2655	 */
2656	if (order >= pageblock_order - 1) {
2657		struct page *endpage = page + (1 << order) - 1;
2658		for (; page < endpage; page += pageblock_nr_pages) {
2659			int mt = get_pageblock_migratetype(page);
2660			/*
2661			 * Only change normal pageblocks (i.e., they can merge
2662			 * with others)
2663			 */
2664			if (migratetype_is_mergeable(mt))
2665				set_pageblock_migratetype(page,
2666							  MIGRATE_MOVABLE);
2667		}
2668	}
2669
2670	return 1UL << order;
2671}
2672
2673/**
2674 * __putback_isolated_page - Return a now-isolated page back where we got it
2675 * @page: Page that was isolated
2676 * @order: Order of the isolated page
2677 * @mt: The page's pageblock's migratetype
 
2678 *
2679 * This function is meant to return a page pulled from the free lists via
2680 * __isolate_free_page back to the free lists they were pulled from.
2681 */
2682void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2683{
2684	struct zone *zone = page_zone(page);
 
 
 
2685
2686	/* zone lock should be held when this function is called */
2687	lockdep_assert_held(&zone->lock);
 
2688
2689	/* Return isolated page to tail of freelist. */
2690	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2691			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
 
2692}
2693
2694/*
2695 * Update NUMA hit/miss statistics
 
 
2696 */
2697static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2698				   long nr_account)
 
 
2699{
2700#ifdef CONFIG_NUMA
2701	enum numa_stat_item local_stat = NUMA_LOCAL;
 
2702
2703	/* skip numa counters update if numa stats is disabled */
2704	if (!static_branch_likely(&vm_numa_stat_key))
2705		return;
 
2706
2707	if (zone_to_nid(z) != numa_node_id())
2708		local_stat = NUMA_OTHER;
 
 
 
 
 
 
 
 
2709
2710	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2711		__count_numa_events(z, NUMA_HIT, nr_account);
2712	else {
2713		__count_numa_events(z, NUMA_MISS, nr_account);
2714		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2715	}
2716	__count_numa_events(z, local_stat, nr_account);
2717#endif
2718}
2719
2720static __always_inline
2721struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2722			   unsigned int order, unsigned int alloc_flags,
2723			   int migratetype)
2724{
2725	struct page *page;
2726	unsigned long flags;
2727
2728	do {
2729		page = NULL;
2730		spin_lock_irqsave(&zone->lock, flags);
2731		if (alloc_flags & ALLOC_HIGHATOMIC)
2732			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2733		if (!page) {
2734			page = __rmqueue(zone, order, migratetype, alloc_flags);
2735
 
 
 
 
2736			/*
2737			 * If the allocation fails, allow OOM handling access
2738			 * to HIGHATOMIC reserves as failing now is worse than
2739			 * failing a high-order atomic allocation in the
2740			 * future.
 
 
 
 
2741			 */
2742			if (!page && (alloc_flags & ALLOC_OOM))
2743				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2744
2745			if (!page) {
2746				spin_unlock_irqrestore(&zone->lock, flags);
2747				return NULL;
2748			}
2749		}
 
 
 
 
 
2750		__mod_zone_freepage_state(zone, -(1 << order),
2751					  get_pcppage_migratetype(page));
2752		spin_unlock_irqrestore(&zone->lock, flags);
2753	} while (check_new_pages(page, order));
 
2754
2755	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2756	zone_statistics(preferred_zone, zone, 1);
 
2757
 
 
 
2758	return page;
 
 
 
 
2759}
2760
2761static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2762{
2763	int high, base_batch, batch, max_nr_alloc;
2764	int high_max, high_min;
2765
2766	base_batch = READ_ONCE(pcp->batch);
2767	high_min = READ_ONCE(pcp->high_min);
2768	high_max = READ_ONCE(pcp->high_max);
2769	high = pcp->high = clamp(pcp->high, high_min, high_max);
2770
2771	/* Check for PCP disabled or boot pageset */
2772	if (unlikely(high < base_batch))
2773		return 1;
 
 
 
 
 
 
2774
2775	if (order)
2776		batch = base_batch;
2777	else
2778		batch = (base_batch << pcp->alloc_factor);
 
2779
2780	/*
2781	 * If we had larger pcp->high, we could avoid to allocate from
2782	 * zone.
2783	 */
2784	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2785		high = pcp->high = min(high + batch, high_max);
 
 
 
 
2786
2787	if (!order) {
2788		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2789		/*
2790		 * Double the number of pages allocated each time there is
2791		 * subsequent allocation of order-0 pages without any freeing.
2792		 */
2793		if (batch <= max_nr_alloc &&
2794		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2795			pcp->alloc_factor++;
2796		batch = min(batch, max_nr_alloc);
2797	}
2798
2799	/*
2800	 * Scale batch relative to order if batch implies free pages
2801	 * can be stored on the PCP. Batch can be 1 for small zones or
2802	 * for boot pagesets which should never store free pages as
2803	 * the pages may belong to arbitrary zones.
2804	 */
2805	if (batch > 1)
2806		batch = max(batch >> order, 2);
2807
2808	return batch;
2809}
2810
2811/* Remove page from the per-cpu list, caller must protect the list */
2812static inline
2813struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2814			int migratetype,
2815			unsigned int alloc_flags,
2816			struct per_cpu_pages *pcp,
2817			struct list_head *list)
2818{
2819	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2820
2821	do {
2822		if (list_empty(list)) {
2823			int batch = nr_pcp_alloc(pcp, zone, order);
2824			int alloced;
2825
2826			alloced = rmqueue_bulk(zone, order,
2827					batch, list,
2828					migratetype, alloc_flags);
2829
2830			pcp->count += alloced << order;
2831			if (unlikely(list_empty(list)))
2832				return NULL;
2833		}
2834
2835		page = list_first_entry(list, struct page, pcp_list);
2836		list_del(&page->pcp_list);
2837		pcp->count -= 1 << order;
2838	} while (check_new_pages(page, order));
2839
2840	return page;
2841}
2842
2843/* Lock and remove page from the per-cpu list */
2844static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2845			struct zone *zone, unsigned int order,
2846			int migratetype, unsigned int alloc_flags)
2847{
2848	struct per_cpu_pages *pcp;
2849	struct list_head *list;
2850	struct page *page;
2851	unsigned long __maybe_unused UP_flags;
2852
2853	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2854	pcp_trylock_prepare(UP_flags);
2855	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2856	if (!pcp) {
2857		pcp_trylock_finish(UP_flags);
2858		return NULL;
2859	}
2860
2861	/*
2862	 * On allocation, reduce the number of pages that are batch freed.
2863	 * See nr_pcp_free() where free_factor is increased for subsequent
2864	 * frees.
2865	 */
2866	pcp->free_count >>= 1;
2867	list = &pcp->lists[order_to_pindex(migratetype, order)];
2868	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2869	pcp_spin_unlock(pcp);
2870	pcp_trylock_finish(UP_flags);
2871	if (page) {
2872		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2873		zone_statistics(preferred_zone, zone, 1);
2874	}
2875	return page;
2876}
2877
2878/*
2879 * Allocate a page from the given zone.
2880 * Use pcplists for THP or "cheap" high-order allocations.
2881 */
2882
2883/*
2884 * Do not instrument rmqueue() with KMSAN. This function may call
2885 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2886 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2887 * may call rmqueue() again, which will result in a deadlock.
2888 */
2889__no_sanitize_memory
2890static inline
2891struct page *rmqueue(struct zone *preferred_zone,
2892			struct zone *zone, unsigned int order,
2893			gfp_t gfp_flags, unsigned int alloc_flags,
2894			int migratetype)
2895{
2896	struct page *page;
 
 
 
 
2897
2898	/*
2899	 * We most definitely don't want callers attempting to
2900	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2901	 */
2902	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
 
 
 
 
 
2903
2904	if (likely(pcp_allowed_order(order))) {
2905		page = rmqueue_pcplist(preferred_zone, zone, order,
2906				       migratetype, alloc_flags);
2907		if (likely(page))
2908			goto out;
2909	}
2910
2911	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2912							migratetype);
2913
2914out:
2915	/* Separate test+clear to avoid unnecessary atomics */
2916	if ((alloc_flags & ALLOC_KSWAPD) &&
2917	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2918		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2919		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2920	}
2921
2922	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2923	return page;
2924}
2925
2926noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 
2927{
2928	return __should_fail_alloc_page(gfp_mask, order);
 
2929}
2930ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2931
2932static inline long __zone_watermark_unusable_free(struct zone *z,
2933				unsigned int order, unsigned int alloc_flags)
2934{
2935	long unusable_free = (1 << order) - 1;
2936
2937	/*
2938	 * If the caller does not have rights to reserves below the min
2939	 * watermark then subtract the high-atomic reserves. This will
2940	 * over-estimate the size of the atomic reserve but it avoids a search.
2941	 */
2942	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2943		unusable_free += z->nr_reserved_highatomic;
2944
2945#ifdef CONFIG_CMA
2946	/* If allocation can't use CMA areas don't use free CMA pages */
2947	if (!(alloc_flags & ALLOC_CMA))
2948		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2949#endif
2950#ifdef CONFIG_UNACCEPTED_MEMORY
2951	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2952#endif
2953
2954	return unusable_free;
2955}
2956
 
2957/*
2958 * Return true if free base pages are above 'mark'. For high-order checks it
2959 * will return true of the order-0 watermark is reached and there is at least
2960 * one free page of a suitable size. Checking now avoids taking the zone lock
2961 * to check in the allocation paths if no pages are free.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962 */
2963bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2964			 int highest_zoneidx, unsigned int alloc_flags,
2965			 long free_pages)
2966{
2967	long min = mark;
2968	int o;
2969
2970	/* free_pages may go negative - that's OK */
2971	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
 
2972
2973	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2974		/*
2975		 * __GFP_HIGH allows access to 50% of the min reserve as well
2976		 * as OOM.
2977		 */
2978		if (alloc_flags & ALLOC_MIN_RESERVE) {
2979			min -= min / 2;
 
 
 
2980
2981			/*
2982			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2983			 * access more reserves than just __GFP_HIGH. Other
2984			 * non-blocking allocations requests such as GFP_NOWAIT
2985			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2986			 * access to the min reserve.
2987			 */
2988			if (alloc_flags & ALLOC_NON_BLOCK)
2989				min -= min / 4;
2990		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2991
2992		/*
2993		 * OOM victims can try even harder than the normal reserve
2994		 * users on the grounds that it's definitely going to be in
2995		 * the exit path shortly and free memory. Any allocation it
2996		 * makes during the free path will be small and short-lived.
2997		 */
2998		if (alloc_flags & ALLOC_OOM)
2999			min -= min / 2;
3000	}
3001
3002	/*
3003	 * Check watermarks for an order-0 allocation request. If these
3004	 * are not met, then a high-order request also cannot go ahead
3005	 * even if a suitable page happened to be free.
3006	 */
3007	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3008		return false;
3009
3010	/* If this is an order-0 request then the watermark is fine */
3011	if (!order)
3012		return true;
3013
3014	/* For a high-order request, check at least one suitable page is free */
3015	for (o = order; o < NR_PAGE_ORDERS; o++) {
3016		struct free_area *area = &z->free_area[o];
3017		int mt;
 
 
 
 
 
3018
3019		if (!area->nr_free)
3020			continue;
 
3021
3022		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3023			if (!free_area_empty(area, mt))
3024				return true;
3025		}
3026
3027#ifdef CONFIG_CMA
3028		if ((alloc_flags & ALLOC_CMA) &&
3029		    !free_area_empty(area, MIGRATE_CMA)) {
3030			return true;
3031		}
3032#endif
3033		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3034		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3035			return true;
3036		}
3037	}
3038	return false;
3039}
3040
3041bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3042		      int highest_zoneidx, unsigned int alloc_flags)
 
 
 
3043{
3044	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3045					zone_page_state(z, NR_FREE_PAGES));
 
 
 
 
 
3046}
3047
3048static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3049				unsigned long mark, int highest_zoneidx,
3050				unsigned int alloc_flags, gfp_t gfp_mask)
3051{
3052	long free_pages;
 
3053
3054	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
3055
3056	/*
3057	 * Fast check for order-0 only. If this fails then the reserves
3058	 * need to be calculated.
3059	 */
3060	if (!order) {
3061		long usable_free;
3062		long reserved;
3063
3064		usable_free = free_pages;
3065		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
 
 
 
 
3066
3067		/* reserved may over estimate high-atomic reserves. */
3068		usable_free -= min(usable_free, reserved);
3069		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3070			return true;
3071	}
3072
3073	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3074					free_pages))
3075		return true;
 
3076
3077	/*
3078	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3079	 * when checking the min watermark. The min watermark is the
3080	 * point where boosting is ignored so that kswapd is woken up
3081	 * when below the low watermark.
3082	 */
3083	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3084		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3085		mark = z->_watermark[WMARK_MIN];
3086		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3087					alloc_flags, free_pages);
3088	}
3089
3090	return false;
3091}
3092
3093bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3094			unsigned long mark, int highest_zoneidx)
3095{
3096	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3097
3098	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3099		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3100
3101	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3102								free_pages);
3103}
3104
3105#ifdef CONFIG_NUMA
3106int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3107
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3111				node_reclaim_distance;
3112}
3113#else	/* CONFIG_NUMA */
3114static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3115{
3116	return true;
3117}
3118#endif	/* CONFIG_NUMA */
3119
3120/*
3121 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3122 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3123 * premature use of a lower zone may cause lowmem pressure problems that
3124 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3125 * probably too small. It only makes sense to spread allocations to avoid
3126 * fragmentation between the Normal and DMA32 zones.
3127 */
3128static inline unsigned int
3129alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3130{
3131	unsigned int alloc_flags;
3132
3133	/*
3134	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3135	 * to save a branch.
3136	 */
3137	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3138
3139#ifdef CONFIG_ZONE_DMA32
3140	if (!zone)
3141		return alloc_flags;
3142
3143	if (zone_idx(zone) != ZONE_NORMAL)
3144		return alloc_flags;
3145
3146	/*
3147	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3148	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3149	 * on UMA that if Normal is populated then so is DMA32.
3150	 */
3151	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3152	if (nr_online_nodes > 1 && !populated_zone(--zone))
3153		return alloc_flags;
3154
3155	alloc_flags |= ALLOC_NOFRAGMENT;
3156#endif /* CONFIG_ZONE_DMA32 */
3157	return alloc_flags;
3158}
3159
3160/* Must be called after current_gfp_context() which can change gfp_mask */
3161static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3162						  unsigned int alloc_flags)
3163{
3164#ifdef CONFIG_CMA
3165	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3166		alloc_flags |= ALLOC_CMA;
3167#endif
3168	return alloc_flags;
3169}
 
3170
3171/*
3172 * get_page_from_freelist goes through the zonelist trying to allocate
3173 * a page.
3174 */
3175static struct page *
3176get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3177						const struct alloc_context *ac)
 
3178{
3179	struct zoneref *z;
 
 
3180	struct zone *zone;
3181	struct pglist_data *last_pgdat = NULL;
3182	bool last_pgdat_dirty_ok = false;
3183	bool no_fallback;
3184
3185retry:
 
3186	/*
3187	 * Scan zonelist, looking for a zone with enough free.
3188	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3189	 */
3190	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3191	z = ac->preferred_zoneref;
3192	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3193					ac->nodemask) {
3194		struct page *page;
3195		unsigned long mark;
3196
3197		if (cpusets_enabled() &&
3198			(alloc_flags & ALLOC_CPUSET) &&
3199			!__cpuset_zone_allowed(zone, gfp_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200				continue;
 
 
 
3201		/*
3202		 * When allocating a page cache page for writing, we
3203		 * want to get it from a node that is within its dirty
3204		 * limit, such that no single node holds more than its
3205		 * proportional share of globally allowed dirty pages.
3206		 * The dirty limits take into account the node's
3207		 * lowmem reserves and high watermark so that kswapd
3208		 * should be able to balance it without having to
3209		 * write pages from its LRU list.
3210		 *
 
 
 
 
 
 
 
3211		 * XXX: For now, allow allocations to potentially
3212		 * exceed the per-node dirty limit in the slowpath
3213		 * (spread_dirty_pages unset) before going into reclaim,
3214		 * which is important when on a NUMA setup the allowed
3215		 * nodes are together not big enough to reach the
3216		 * global limit.  The proper fix for these situations
3217		 * will require awareness of nodes in the
3218		 * dirty-throttling and the flusher threads.
3219		 */
3220		if (ac->spread_dirty_pages) {
3221			if (last_pgdat != zone->zone_pgdat) {
3222				last_pgdat = zone->zone_pgdat;
3223				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3224			}
 
 
 
3225
3226			if (!last_pgdat_dirty_ok)
3227				continue;
3228		}
3229
3230		if (no_fallback && nr_online_nodes > 1 &&
3231		    zone != ac->preferred_zoneref->zone) {
3232			int local_nid;
3233
3234			/*
3235			 * If moving to a remote node, retry but allow
3236			 * fragmenting fallbacks. Locality is more important
3237			 * than fragmentation avoidance.
3238			 */
3239			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3240			if (zone_to_nid(zone) != local_nid) {
3241				alloc_flags &= ~ALLOC_NOFRAGMENT;
3242				goto retry;
3243			}
3244		}
3245
3246		/*
3247		 * Detect whether the number of free pages is below high
3248		 * watermark.  If so, we will decrease pcp->high and free
3249		 * PCP pages in free path to reduce the possibility of
3250		 * premature page reclaiming.  Detection is done here to
3251		 * avoid to do that in hotter free path.
3252		 */
3253		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3254			goto check_alloc_wmark;
3255
3256		mark = high_wmark_pages(zone);
3257		if (zone_watermark_fast(zone, order, mark,
3258					ac->highest_zoneidx, alloc_flags,
3259					gfp_mask))
3260			goto try_this_zone;
3261		else
3262			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3263
3264check_alloc_wmark:
3265		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3266		if (!zone_watermark_fast(zone, order, mark,
3267				       ac->highest_zoneidx, alloc_flags,
3268				       gfp_mask)) {
3269			int ret;
3270
3271			if (has_unaccepted_memory()) {
3272				if (try_to_accept_memory(zone, order))
3273					goto try_this_zone;
3274			}
3275
3276#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3277			/*
3278			 * Watermark failed for this zone, but see if we can
3279			 * grow this zone if it contains deferred pages.
3280			 */
3281			if (deferred_pages_enabled()) {
3282				if (_deferred_grow_zone(zone, order))
3283					goto try_this_zone;
3284			}
3285#endif
3286			/* Checked here to keep the fast path fast */
3287			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3288			if (alloc_flags & ALLOC_NO_WATERMARKS)
3289				goto try_this_zone;
3290
3291			if (!node_reclaim_enabled() ||
3292			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3293				continue;
3294
3295			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3296			switch (ret) {
3297			case NODE_RECLAIM_NOSCAN:
3298				/* did not scan */
3299				continue;
3300			case NODE_RECLAIM_FULL:
3301				/* scanned but unreclaimable */
3302				continue;
3303			default:
3304				/* did we reclaim enough */
3305				if (zone_watermark_ok(zone, order, mark,
3306					ac->highest_zoneidx, alloc_flags))
3307					goto try_this_zone;
3308
 
 
 
 
 
 
 
 
 
 
 
 
 
3309				continue;
3310			}
3311		}
3312
3313try_this_zone:
3314		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3315				gfp_mask, alloc_flags, ac->migratetype);
3316		if (page) {
3317			prep_new_page(page, order, gfp_mask, alloc_flags);
 
 
 
 
3318
3319			/*
3320			 * If this is a high-order atomic allocation then check
3321			 * if the pageblock should be reserved for the future
3322			 */
3323			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3324				reserve_highatomic_pageblock(page, zone);
3325
3326			return page;
3327		} else {
3328			if (has_unaccepted_memory()) {
3329				if (try_to_accept_memory(zone, order))
3330					goto try_this_zone;
3331			}
 
 
 
3332
3333#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3334			/* Try again if zone has deferred pages */
3335			if (deferred_pages_enabled()) {
3336				if (_deferred_grow_zone(zone, order))
3337					goto try_this_zone;
3338			}
3339#endif
3340		}
3341	}
3342
3343	/*
3344	 * It's possible on a UMA machine to get through all zones that are
3345	 * fragmented. If avoiding fragmentation, reset and try again.
3346	 */
3347	if (no_fallback) {
3348		alloc_flags &= ~ALLOC_NOFRAGMENT;
3349		goto retry;
3350	}
3351
3352	return NULL;
 
 
 
3353}
3354
3355static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
3356{
3357	unsigned int filter = SHOW_MEM_FILTER_NODES;
3358
 
 
 
 
3359	/*
3360	 * This documents exceptions given to allocations in certain
3361	 * contexts that are allowed to allocate outside current's set
3362	 * of allowed nodes.
3363	 */
3364	if (!(gfp_mask & __GFP_NOMEMALLOC))
3365		if (tsk_is_oom_victim(current) ||
3366		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3367			filter &= ~SHOW_MEM_FILTER_NODES;
3368	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3369		filter &= ~SHOW_MEM_FILTER_NODES;
3370
3371	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3372}
 
 
 
 
 
 
3373
3374void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3375{
3376	struct va_format vaf;
3377	va_list args;
3378	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3379
3380	if ((gfp_mask & __GFP_NOWARN) ||
3381	     !__ratelimit(&nopage_rs) ||
3382	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3383		return;
3384
3385	va_start(args, fmt);
3386	vaf.fmt = fmt;
3387	vaf.va = &args;
3388	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3389			current->comm, &vaf, gfp_mask, &gfp_mask,
3390			nodemask_pr_args(nodemask));
3391	va_end(args);
3392
3393	cpuset_print_current_mems_allowed();
3394	pr_cont("\n");
3395	dump_stack();
3396	warn_alloc_show_mem(gfp_mask, nodemask);
 
3397}
3398
3399static inline struct page *
3400__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3401			      unsigned int alloc_flags,
3402			      const struct alloc_context *ac)
3403{
3404	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405
3406	page = get_page_from_freelist(gfp_mask, order,
3407			alloc_flags|ALLOC_CPUSET, ac);
3408	/*
3409	 * fallback to ignore cpuset restriction if our nodes
3410	 * are depleted
 
 
 
3411	 */
3412	if (!page)
3413		page = get_page_from_freelist(gfp_mask, order,
3414				alloc_flags, ac);
3415
3416	return page;
3417}
3418
3419static inline struct page *
3420__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3421	const struct alloc_context *ac, unsigned long *did_some_progress)
 
 
3422{
3423	struct oom_control oc = {
3424		.zonelist = ac->zonelist,
3425		.nodemask = ac->nodemask,
3426		.memcg = NULL,
3427		.gfp_mask = gfp_mask,
3428		.order = order,
3429	};
3430	struct page *page;
3431
3432	*did_some_progress = 0;
3433
3434	/*
3435	 * Acquire the oom lock.  If that fails, somebody else is
3436	 * making progress for us.
3437	 */
3438	if (!mutex_trylock(&oom_lock)) {
3439		*did_some_progress = 1;
3440		schedule_timeout_uninterruptible(1);
3441		return NULL;
3442	}
3443
3444	/*
3445	 * Go through the zonelist yet one more time, keep very high watermark
3446	 * here, this is only to catch a parallel oom killing, we must fail if
3447	 * we're still under heavy pressure. But make sure that this reclaim
3448	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3449	 * allocation which will never fail due to oom_lock already held.
3450	 */
3451	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3452				      ~__GFP_DIRECT_RECLAIM, order,
3453				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3454	if (page)
3455		goto out;
3456
3457	/* Coredumps can quickly deplete all memory reserves */
3458	if (current->flags & PF_DUMPCORE)
3459		goto out;
3460	/* The OOM killer will not help higher order allocs */
3461	if (order > PAGE_ALLOC_COSTLY_ORDER)
3462		goto out;
3463	/*
3464	 * We have already exhausted all our reclaim opportunities without any
3465	 * success so it is time to admit defeat. We will skip the OOM killer
3466	 * because it is very likely that the caller has a more reasonable
3467	 * fallback than shooting a random task.
3468	 *
3469	 * The OOM killer may not free memory on a specific node.
3470	 */
3471	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3472		goto out;
3473	/* The OOM killer does not needlessly kill tasks for lowmem */
3474	if (ac->highest_zoneidx < ZONE_NORMAL)
3475		goto out;
3476	if (pm_suspended_storage())
3477		goto out;
3478	/*
3479	 * XXX: GFP_NOFS allocations should rather fail than rely on
3480	 * other request to make a forward progress.
3481	 * We are in an unfortunate situation where out_of_memory cannot
3482	 * do much for this context but let's try it to at least get
3483	 * access to memory reserved if the current task is killed (see
3484	 * out_of_memory). Once filesystems are ready to handle allocation
3485	 * failures more gracefully we should just bail out here.
3486	 */
3487
3488	/* Exhausted what can be done so it's blame time */
3489	if (out_of_memory(&oc) ||
3490	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3491		*did_some_progress = 1;
3492
3493		/*
3494		 * Help non-failing allocations by giving them access to memory
3495		 * reserves
 
 
 
3496		 */
3497		if (gfp_mask & __GFP_NOFAIL)
3498			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3499					ALLOC_NO_WATERMARKS, ac);
3500	}
 
 
 
3501out:
3502	mutex_unlock(&oom_lock);
3503	return page;
3504}
3505
3506/*
3507 * Maximum number of compaction retries with a progress before OOM
3508 * killer is consider as the only way to move forward.
3509 */
3510#define MAX_COMPACT_RETRIES 16
3511
3512#ifdef CONFIG_COMPACTION
3513/* Try memory compaction for high-order allocations before reclaim */
3514static struct page *
3515__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3516		unsigned int alloc_flags, const struct alloc_context *ac,
3517		enum compact_priority prio, enum compact_result *compact_result)
 
 
 
3518{
3519	struct page *page = NULL;
3520	unsigned long pflags;
3521	unsigned int noreclaim_flag;
3522
3523	if (!order)
3524		return NULL;
3525
3526	psi_memstall_enter(&pflags);
3527	delayacct_compact_start();
3528	noreclaim_flag = memalloc_noreclaim_save();
3529
3530	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3531								prio, &page);
3532
3533	memalloc_noreclaim_restore(noreclaim_flag);
3534	psi_memstall_leave(&pflags);
3535	delayacct_compact_end();
3536
3537	if (*compact_result == COMPACT_SKIPPED)
3538		return NULL;
3539	/*
3540	 * At least in one zone compaction wasn't deferred or skipped, so let's
3541	 * count a compaction stall
3542	 */
3543	count_vm_event(COMPACTSTALL);
3544
3545	/* Prep a captured page if available */
3546	if (page)
3547		prep_new_page(page, order, gfp_mask, alloc_flags);
3548
3549	/* Try get a page from the freelist if available */
3550	if (!page)
3551		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3552
3553	if (page) {
3554		struct zone *zone = page_zone(page);
3555
3556		zone->compact_blockskip_flush = false;
3557		compaction_defer_reset(zone, order, true);
3558		count_vm_event(COMPACTSUCCESS);
3559		return page;
3560	}
3561
3562	/*
3563	 * It's bad if compaction run occurs and fails. The most likely reason
3564	 * is that pages exist, but not enough to satisfy watermarks.
3565	 */
3566	count_vm_event(COMPACTFAIL);
3567
3568	cond_resched();
 
3569
3570	return NULL;
3571}
 
 
 
 
 
 
 
 
 
 
 
 
3572
3573static inline bool
3574should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3575		     enum compact_result compact_result,
3576		     enum compact_priority *compact_priority,
3577		     int *compaction_retries)
3578{
3579	int max_retries = MAX_COMPACT_RETRIES;
3580	int min_priority;
3581	bool ret = false;
3582	int retries = *compaction_retries;
3583	enum compact_priority priority = *compact_priority;
3584
3585	if (!order)
3586		return false;
3587
3588	if (fatal_signal_pending(current))
3589		return false;
3590
3591	/*
3592	 * Compaction was skipped due to a lack of free order-0
3593	 * migration targets. Continue if reclaim can help.
3594	 */
3595	if (compact_result == COMPACT_SKIPPED) {
3596		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3597		goto out;
3598	}
3599
3600	/*
3601	 * Compaction managed to coalesce some page blocks, but the
3602	 * allocation failed presumably due to a race. Retry some.
3603	 */
3604	if (compact_result == COMPACT_SUCCESS) {
3605		/*
3606		 * !costly requests are much more important than
3607		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3608		 * facto nofail and invoke OOM killer to move on while
3609		 * costly can fail and users are ready to cope with
3610		 * that. 1/4 retries is rather arbitrary but we would
3611		 * need much more detailed feedback from compaction to
3612		 * make a better decision.
3613		 */
3614		if (order > PAGE_ALLOC_COSTLY_ORDER)
3615			max_retries /= 4;
3616
3617		if (++(*compaction_retries) <= max_retries) {
3618			ret = true;
3619			goto out;
3620		}
3621	}
3622
3623	/*
3624	 * Compaction failed. Retry with increasing priority.
3625	 */
3626	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3627			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3628
3629	if (*compact_priority > min_priority) {
3630		(*compact_priority)--;
3631		*compaction_retries = 0;
3632		ret = true;
3633	}
3634out:
3635	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3636	return ret;
3637}
3638#else
3639static inline struct page *
3640__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3641		unsigned int alloc_flags, const struct alloc_context *ac,
3642		enum compact_priority prio, enum compact_result *compact_result)
 
 
 
3643{
3644	*compact_result = COMPACT_SKIPPED;
3645	return NULL;
3646}
3647
3648static inline bool
3649should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3650		     enum compact_result compact_result,
3651		     enum compact_priority *compact_priority,
3652		     int *compaction_retries)
3653{
3654	struct zone *zone;
3655	struct zoneref *z;
3656
3657	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3658		return false;
3659
3660	/*
3661	 * There are setups with compaction disabled which would prefer to loop
3662	 * inside the allocator rather than hit the oom killer prematurely.
3663	 * Let's give them a good hope and keep retrying while the order-0
3664	 * watermarks are OK.
3665	 */
3666	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3667				ac->highest_zoneidx, ac->nodemask) {
3668		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3669					ac->highest_zoneidx, alloc_flags))
3670			return true;
3671	}
3672	return false;
3673}
3674#endif /* CONFIG_COMPACTION */
3675
3676#ifdef CONFIG_LOCKDEP
3677static struct lockdep_map __fs_reclaim_map =
3678	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3679
3680static bool __need_reclaim(gfp_t gfp_mask)
3681{
3682	/* no reclaim without waiting on it */
3683	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3684		return false;
3685
3686	/* this guy won't enter reclaim */
3687	if (current->flags & PF_MEMALLOC)
3688		return false;
3689
3690	if (gfp_mask & __GFP_NOLOCKDEP)
3691		return false;
3692
3693	return true;
3694}
3695
3696void __fs_reclaim_acquire(unsigned long ip)
3697{
3698	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3699}
3700
3701void __fs_reclaim_release(unsigned long ip)
3702{
3703	lock_release(&__fs_reclaim_map, ip);
3704}
3705
3706void fs_reclaim_acquire(gfp_t gfp_mask)
3707{
3708	gfp_mask = current_gfp_context(gfp_mask);
3709
3710	if (__need_reclaim(gfp_mask)) {
3711		if (gfp_mask & __GFP_FS)
3712			__fs_reclaim_acquire(_RET_IP_);
3713
3714#ifdef CONFIG_MMU_NOTIFIER
3715		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3716		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3717#endif
3718
3719	}
3720}
3721EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3722
3723void fs_reclaim_release(gfp_t gfp_mask)
3724{
3725	gfp_mask = current_gfp_context(gfp_mask);
3726
3727	if (__need_reclaim(gfp_mask)) {
3728		if (gfp_mask & __GFP_FS)
3729			__fs_reclaim_release(_RET_IP_);
3730	}
3731}
3732EXPORT_SYMBOL_GPL(fs_reclaim_release);
3733#endif
3734
3735/*
3736 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3737 * have been rebuilt so allocation retries. Reader side does not lock and
3738 * retries the allocation if zonelist changes. Writer side is protected by the
3739 * embedded spin_lock.
3740 */
3741static DEFINE_SEQLOCK(zonelist_update_seq);
3742
3743static unsigned int zonelist_iter_begin(void)
3744{
3745	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3746		return read_seqbegin(&zonelist_update_seq);
3747
3748	return 0;
3749}
3750
3751static unsigned int check_retry_zonelist(unsigned int seq)
3752{
3753	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3754		return read_seqretry(&zonelist_update_seq, seq);
3755
3756	return seq;
3757}
3758
3759/* Perform direct synchronous page reclaim */
3760static unsigned long
3761__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3762					const struct alloc_context *ac)
3763{
3764	unsigned int noreclaim_flag;
3765	unsigned long progress;
3766
3767	cond_resched();
3768
3769	/* We now go into synchronous reclaim */
3770	cpuset_memory_pressure_bump();
3771	fs_reclaim_acquire(gfp_mask);
3772	noreclaim_flag = memalloc_noreclaim_save();
3773
3774	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775								ac->nodemask);
3776
3777	memalloc_noreclaim_restore(noreclaim_flag);
3778	fs_reclaim_release(gfp_mask);
 
 
3779
3780	cond_resched();
3781
3782	return progress;
3783}
3784
3785/* The really slow allocator path where we enter direct reclaim */
3786static inline struct page *
3787__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3788		unsigned int alloc_flags, const struct alloc_context *ac,
3789		unsigned long *did_some_progress)
 
3790{
3791	struct page *page = NULL;
3792	unsigned long pflags;
3793	bool drained = false;
3794
3795	psi_memstall_enter(&pflags);
3796	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797	if (unlikely(!(*did_some_progress)))
3798		goto out;
 
 
 
 
3799
3800retry:
3801	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
3802
3803	/*
3804	 * If an allocation failed after direct reclaim, it could be because
3805	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806	 * Shrink them and try again
3807	 */
3808	if (!page && !drained) {
3809		unreserve_highatomic_pageblock(ac, false);
3810		drain_all_pages(NULL);
3811		drained = true;
3812		goto retry;
3813	}
3814out:
3815	psi_memstall_leave(&pflags);
3816
3817	return page;
3818}
3819
3820static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3821			     const struct alloc_context *ac)
 
 
 
 
 
 
 
3822{
3823	struct zoneref *z;
3824	struct zone *zone;
3825	pg_data_t *last_pgdat = NULL;
3826	enum zone_type highest_zoneidx = ac->highest_zoneidx;
 
 
 
 
 
 
3827
3828	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3829					ac->nodemask) {
3830		if (!managed_zone(zone))
3831			continue;
3832		if (last_pgdat != zone->zone_pgdat) {
3833			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3834			last_pgdat = zone->zone_pgdat;
3835		}
3836	}
3837}
3838
3839static inline unsigned int
3840gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
 
3841{
3842	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3843
3844	/*
3845	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3846	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3847	 * to save two branches.
3848	 */
3849	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3850	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3851
3852	/*
3853	 * The caller may dip into page reserves a bit more if the caller
3854	 * cannot run direct reclaim, or if the caller has realtime scheduling
3855	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3856	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3857	 */
3858	alloc_flags |= (__force int)
3859		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3860
3861	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3862		/*
3863		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3864		 * if it can't schedule.
 
 
3865		 */
3866		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3867			alloc_flags |= ALLOC_NON_BLOCK;
3868
3869			if (order > 0)
3870				alloc_flags |= ALLOC_HIGHATOMIC;
3871		}
3872
3873		/*
3874		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3875		 * GFP_ATOMIC) rather than fail, see the comment for
3876		 * cpuset_node_allowed().
3877		 */
3878		if (alloc_flags & ALLOC_MIN_RESERVE)
3879			alloc_flags &= ~ALLOC_CPUSET;
3880	} else if (unlikely(rt_task(current)) && in_task())
3881		alloc_flags |= ALLOC_MIN_RESERVE;
3882
3883	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3884
3885	return alloc_flags;
3886}
3887
3888static bool oom_reserves_allowed(struct task_struct *tsk)
 
 
 
3889{
3890	if (!tsk_is_oom_victim(tsk))
3891		return false;
3892
3893	/*
3894	 * !MMU doesn't have oom reaper so give access to memory reserves
3895	 * only to the thread with TIF_MEMDIE set
3896	 */
3897	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3898		return false;
3899
3900	return true;
 
3901}
3902
3903/*
3904 * Distinguish requests which really need access to full memory
3905 * reserves from oom victims which can live with a portion of it
3906 */
3907static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3908{
3909	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3910		return 0;
3911	if (gfp_mask & __GFP_MEMALLOC)
3912		return ALLOC_NO_WATERMARKS;
3913	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3914		return ALLOC_NO_WATERMARKS;
3915	if (!in_interrupt()) {
3916		if (current->flags & PF_MEMALLOC)
3917			return ALLOC_NO_WATERMARKS;
3918		else if (oom_reserves_allowed(current))
3919			return ALLOC_OOM;
3920	}
3921
3922	return 0;
3923}
3924
3925bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3926{
3927	return !!__gfp_pfmemalloc_flags(gfp_mask);
3928}
3929
3930/*
3931 * Checks whether it makes sense to retry the reclaim to make a forward progress
3932 * for the given allocation request.
3933 *
3934 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3935 * without success, or when we couldn't even meet the watermark if we
3936 * reclaimed all remaining pages on the LRU lists.
3937 *
3938 * Returns true if a retry is viable or false to enter the oom path.
3939 */
3940static inline bool
3941should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3942		     struct alloc_context *ac, int alloc_flags,
3943		     bool did_some_progress, int *no_progress_loops)
3944{
3945	struct zone *zone;
3946	struct zoneref *z;
3947	bool ret = false;
3948
3949	/*
3950	 * Costly allocations might have made a progress but this doesn't mean
3951	 * their order will become available due to high fragmentation so
3952	 * always increment the no progress counter for them
 
3953	 */
3954	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3955		*no_progress_loops = 0;
3956	else
3957		(*no_progress_loops)++;
3958
3959	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3960		goto out;
3961
3962
3963	/*
3964	 * Keep reclaiming pages while there is a chance this will lead
3965	 * somewhere.  If none of the target zones can satisfy our allocation
3966	 * request even if all reclaimable pages are considered then we are
3967	 * screwed and have to go OOM.
3968	 */
3969	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3970				ac->highest_zoneidx, ac->nodemask) {
3971		unsigned long available;
3972		unsigned long reclaimable;
3973		unsigned long min_wmark = min_wmark_pages(zone);
3974		bool wmark;
3975
3976		available = reclaimable = zone_reclaimable_pages(zone);
3977		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3978
 
3979		/*
3980		 * Would the allocation succeed if we reclaimed all
3981		 * reclaimable pages?
3982		 */
3983		wmark = __zone_watermark_ok(zone, order, min_wmark,
3984				ac->highest_zoneidx, alloc_flags, available);
3985		trace_reclaim_retry_zone(z, order, reclaimable,
3986				available, min_wmark, *no_progress_loops, wmark);
3987		if (wmark) {
3988			ret = true;
3989			break;
3990		}
 
 
 
 
 
 
 
 
 
 
 
3991	}
3992
3993	/*
3994	 * Memory allocation/reclaim might be called from a WQ context and the
3995	 * current implementation of the WQ concurrency control doesn't
3996	 * recognize that a particular WQ is congested if the worker thread is
3997	 * looping without ever sleeping. Therefore we have to do a short sleep
3998	 * here rather than calling cond_resched().
3999	 */
4000	if (current->flags & PF_WQ_WORKER)
4001		schedule_timeout_uninterruptible(1);
4002	else
4003		cond_resched();
4004out:
4005	/* Before OOM, exhaust highatomic_reserve */
4006	if (!ret)
4007		return unreserve_highatomic_pageblock(ac, true);
4008
4009	return ret;
4010}
4011
4012static inline bool
4013check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4014{
4015	/*
4016	 * It's possible that cpuset's mems_allowed and the nodemask from
4017	 * mempolicy don't intersect. This should be normally dealt with by
4018	 * policy_nodemask(), but it's possible to race with cpuset update in
4019	 * such a way the check therein was true, and then it became false
4020	 * before we got our cpuset_mems_cookie here.
4021	 * This assumes that for all allocations, ac->nodemask can come only
4022	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4023	 * when it does not intersect with the cpuset restrictions) or the
4024	 * caller can deal with a violated nodemask.
4025	 */
4026	if (cpusets_enabled() && ac->nodemask &&
4027			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4028		ac->nodemask = NULL;
4029		return true;
4030	}
4031
4032	/*
4033	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4034	 * possible to race with parallel threads in such a way that our
4035	 * allocation can fail while the mask is being updated. If we are about
4036	 * to fail, check if the cpuset changed during allocation and if so,
4037	 * retry.
4038	 */
4039	if (read_mems_allowed_retry(cpuset_mems_cookie))
4040		return true;
4041
4042	return false;
4043}
4044
4045static inline struct page *
4046__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4047						struct alloc_context *ac)
 
 
4048{
4049	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4050	bool can_compact = gfp_compaction_allowed(gfp_mask);
4051	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4052	struct page *page = NULL;
4053	unsigned int alloc_flags;
 
4054	unsigned long did_some_progress;
4055	enum compact_priority compact_priority;
4056	enum compact_result compact_result;
4057	int compaction_retries;
4058	int no_progress_loops;
4059	unsigned int cpuset_mems_cookie;
4060	unsigned int zonelist_iter_cookie;
4061	int reserve_flags;
4062
4063restart:
4064	compaction_retries = 0;
4065	no_progress_loops = 0;
4066	compact_priority = DEF_COMPACT_PRIORITY;
4067	cpuset_mems_cookie = read_mems_allowed_begin();
4068	zonelist_iter_cookie = zonelist_iter_begin();
4069
4070	/*
4071	 * The fast path uses conservative alloc_flags to succeed only until
4072	 * kswapd needs to be woken up, and to avoid the cost of setting up
4073	 * alloc_flags precisely. So we do that now.
 
4074	 */
4075	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
 
 
 
4076
4077	/*
4078	 * We need to recalculate the starting point for the zonelist iterator
4079	 * because we might have used different nodemask in the fast path, or
4080	 * there was a cpuset modification and we are retrying - otherwise we
4081	 * could end up iterating over non-eligible zones endlessly.
 
 
4082	 */
4083	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4084					ac->highest_zoneidx, ac->nodemask);
4085	if (!ac->preferred_zoneref->zone)
4086		goto nopage;
4087
 
 
 
 
4088	/*
4089	 * Check for insane configurations where the cpuset doesn't contain
4090	 * any suitable zone to satisfy the request - e.g. non-movable
4091	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4092	 */
4093	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4094		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4095					ac->highest_zoneidx,
4096					&cpuset_current_mems_allowed);
4097		if (!z->zone)
4098			goto nopage;
4099	}
4100
4101	if (alloc_flags & ALLOC_KSWAPD)
4102		wake_all_kswapds(order, gfp_mask, ac);
4103
4104	/*
4105	 * The adjusted alloc_flags might result in immediate success, so try
4106	 * that first
4107	 */
4108	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
 
 
4109	if (page)
4110		goto got_pg;
4111
4112	/*
4113	 * For costly allocations, try direct compaction first, as it's likely
4114	 * that we have enough base pages and don't need to reclaim. For non-
4115	 * movable high-order allocations, do that as well, as compaction will
4116	 * try prevent permanent fragmentation by migrating from blocks of the
4117	 * same migratetype.
4118	 * Don't try this for allocations that are allowed to ignore
4119	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120	 */
4121	if (can_direct_reclaim && can_compact &&
4122			(costly_order ||
4123			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4125		page = __alloc_pages_direct_compact(gfp_mask, order,
4126						alloc_flags, ac,
4127						INIT_COMPACT_PRIORITY,
4128						&compact_result);
4129		if (page)
4130			goto got_pg;
 
 
4131
 
 
4132		/*
4133		 * Checks for costly allocations with __GFP_NORETRY, which
4134		 * includes some THP page fault allocations
 
4135		 */
4136		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137			/*
4138			 * If allocating entire pageblock(s) and compaction
4139			 * failed because all zones are below low watermarks
4140			 * or is prohibited because it recently failed at this
4141			 * order, fail immediately unless the allocator has
4142			 * requested compaction and reclaim retry.
4143			 *
4144			 * Reclaim is
4145			 *  - potentially very expensive because zones are far
4146			 *    below their low watermarks or this is part of very
4147			 *    bursty high order allocations,
4148			 *  - not guaranteed to help because isolate_freepages()
4149			 *    may not iterate over freed pages as part of its
4150			 *    linear scan, and
4151			 *  - unlikely to make entire pageblocks free on its
4152			 *    own.
4153			 */
4154			if (compact_result == COMPACT_SKIPPED ||
4155			    compact_result == COMPACT_DEFERRED)
4156				goto nopage;
4157
4158			/*
4159			 * Looks like reclaim/compaction is worth trying, but
4160			 * sync compaction could be very expensive, so keep
4161			 * using async compaction.
4162			 */
4163			compact_priority = INIT_COMPACT_PRIORITY;
4164		}
4165	}
4166
4167retry:
4168	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4169	if (alloc_flags & ALLOC_KSWAPD)
4170		wake_all_kswapds(order, gfp_mask, ac);
4171
4172	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4173	if (reserve_flags)
4174		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4175					  (alloc_flags & ALLOC_KSWAPD);
4176
4177	/*
4178	 * Reset the nodemask and zonelist iterators if memory policies can be
4179	 * ignored. These allocations are high priority and system rather than
4180	 * user oriented.
4181	 */
4182	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4183		ac->nodemask = NULL;
4184		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4185					ac->highest_zoneidx, ac->nodemask);
4186	}
4187
4188	/* Attempt with potentially adjusted zonelist and alloc_flags */
4189	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4190	if (page)
4191		goto got_pg;
4192
4193	/* Caller is not willing to reclaim, we can't balance anything */
4194	if (!can_direct_reclaim)
4195		goto nopage;
4196
4197	/* Avoid recursion of direct reclaim */
4198	if (current->flags & PF_MEMALLOC)
4199		goto nopage;
4200
4201	/* Try direct reclaim and then allocating */
4202	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4203							&did_some_progress);
4204	if (page)
4205		goto got_pg;
4206
4207	/* Try direct compaction and then allocating */
4208	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4209					compact_priority, &compact_result);
 
 
 
 
 
 
 
 
 
4210	if (page)
4211		goto got_pg;
4212
4213	/* Do not loop if specifically requested */
4214	if (gfp_mask & __GFP_NORETRY)
4215		goto nopage;
4216
4217	/*
4218	 * Do not retry costly high order allocations unless they are
4219	 * __GFP_RETRY_MAYFAIL and we can compact
 
 
4220	 */
4221	if (costly_order && (!can_compact ||
4222			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4223		goto nopage;
4224
4225	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4226				 did_some_progress > 0, &no_progress_loops))
4227		goto retry;
4228
4229	/*
4230	 * It doesn't make any sense to retry for the compaction if the order-0
4231	 * reclaim is not able to make any progress because the current
4232	 * implementation of the compaction depends on the sufficient amount
4233	 * of free memory (see __compaction_suitable)
4234	 */
4235	if (did_some_progress > 0 && can_compact &&
4236			should_compact_retry(ac, order, alloc_flags,
4237				compact_result, &compact_priority,
4238				&compaction_retries))
4239		goto retry;
4240
4241
4242	/*
4243	 * Deal with possible cpuset update races or zonelist updates to avoid
4244	 * a unnecessary OOM kill.
4245	 */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247	    check_retry_zonelist(zonelist_iter_cookie))
4248		goto restart;
4249
4250	/* Reclaim has failed us, start killing things */
4251	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4252	if (page)
4253		goto got_pg;
4254
4255	/* Avoid allocations with no watermarks from looping endlessly */
4256	if (tsk_is_oom_victim(current) &&
4257	    (alloc_flags & ALLOC_OOM ||
4258	     (gfp_mask & __GFP_NOMEMALLOC)))
4259		goto nopage;
4260
4261	/* Retry as long as the OOM killer is making progress */
4262	if (did_some_progress) {
4263		no_progress_loops = 0;
4264		goto retry;
4265	}
4266
4267nopage:
4268	/*
4269	 * Deal with possible cpuset update races or zonelist updates to avoid
4270	 * a unnecessary OOM kill.
4271	 */
4272	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273	    check_retry_zonelist(zonelist_iter_cookie))
4274		goto restart;
 
 
 
 
 
 
 
 
 
 
 
4275
4276	/*
4277	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278	 * we always retry
4279	 */
4280	if (gfp_mask & __GFP_NOFAIL) {
4281		/*
4282		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283		 * of any new users that actually require GFP_NOWAIT
4284		 */
4285		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4286			goto fail;
 
 
 
 
 
 
4287
4288		/*
4289		 * PF_MEMALLOC request from this context is rather bizarre
4290		 * because we cannot reclaim anything and only can loop waiting
4291		 * for somebody to do a work for us
4292		 */
4293		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4294
 
 
 
 
 
 
 
 
4295		/*
4296		 * non failing costly orders are a hard requirement which we
4297		 * are not prepared for much so let's warn about these users
4298		 * so that we can identify them and convert them to something
4299		 * else.
4300		 */
4301		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4302
4303		/*
4304		 * Help non-failing allocations by giving some access to memory
4305		 * reserves normally used for high priority non-blocking
4306		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4307		 * could deplete whole memory reserves which would just make
4308		 * the situation worse.
4309		 */
4310		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4311		if (page)
4312			goto got_pg;
 
4313
4314		cond_resched();
4315		goto retry;
4316	}
4317fail:
4318	warn_alloc(gfp_mask, ac->nodemask,
4319			"page allocation failure: order:%u", order);
4320got_pg:
 
 
 
4321	return page;
4322}
4323
4324static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4325		int preferred_nid, nodemask_t *nodemask,
4326		struct alloc_context *ac, gfp_t *alloc_gfp,
4327		unsigned int *alloc_flags)
4328{
4329	ac->highest_zoneidx = gfp_zone(gfp_mask);
4330	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4331	ac->nodemask = nodemask;
4332	ac->migratetype = gfp_migratetype(gfp_mask);
 
 
 
 
 
 
 
4333
4334	if (cpusets_enabled()) {
4335		*alloc_gfp |= __GFP_HARDWALL;
4336		/*
4337		 * When we are in the interrupt context, it is irrelevant
4338		 * to the current task context. It means that any node ok.
4339		 */
4340		if (in_task() && !ac->nodemask)
4341			ac->nodemask = &cpuset_current_mems_allowed;
4342		else
4343			*alloc_flags |= ALLOC_CPUSET;
4344	}
4345
4346	might_alloc(gfp_mask);
4347
4348	if (should_fail_alloc_page(gfp_mask, order))
4349		return false;
4350
4351	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4352
4353	/* Dirty zone balancing only done in the fast path */
4354	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4355
4356	/*
4357	 * The preferred zone is used for statistics but crucially it is
4358	 * also used as the starting point for the zonelist iterator. It
4359	 * may get reset for allocations that ignore memory policies.
4360	 */
4361	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362					ac->highest_zoneidx, ac->nodemask);
4363
4364	return true;
4365}
4366
4367/*
4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4369 * @gfp: GFP flags for the allocation
4370 * @preferred_nid: The preferred NUMA node ID to allocate from
4371 * @nodemask: Set of nodes to allocate from, may be NULL
4372 * @nr_pages: The number of pages desired on the list or array
4373 * @page_list: Optional list to store the allocated pages
4374 * @page_array: Optional array to store the pages
4375 *
4376 * This is a batched version of the page allocator that attempts to
4377 * allocate nr_pages quickly. Pages are added to page_list if page_list
4378 * is not NULL, otherwise it is assumed that the page_array is valid.
4379 *
4380 * For lists, nr_pages is the number of pages that should be allocated.
4381 *
4382 * For arrays, only NULL elements are populated with pages and nr_pages
4383 * is the maximum number of pages that will be stored in the array.
4384 *
4385 * Returns the number of pages on the list or array.
4386 */
4387unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388			nodemask_t *nodemask, int nr_pages,
4389			struct list_head *page_list,
4390			struct page **page_array)
4391{
4392	struct page *page;
4393	unsigned long __maybe_unused UP_flags;
4394	struct zone *zone;
4395	struct zoneref *z;
4396	struct per_cpu_pages *pcp;
4397	struct list_head *pcp_list;
4398	struct alloc_context ac;
4399	gfp_t alloc_gfp;
4400	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401	int nr_populated = 0, nr_account = 0;
4402
4403	/*
4404	 * Skip populated array elements to determine if any pages need
4405	 * to be allocated before disabling IRQs.
4406	 */
4407	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4408		nr_populated++;
4409
4410	/* No pages requested? */
4411	if (unlikely(nr_pages <= 0))
4412		goto out;
4413
4414	/* Already populated array? */
4415	if (unlikely(page_array && nr_pages - nr_populated == 0))
 
 
 
4416		goto out;
4417
4418	/* Bulk allocator does not support memcg accounting. */
4419	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4420		goto failed;
4421
4422	/* Use the single page allocator for one page. */
4423	if (nr_pages - nr_populated == 1)
4424		goto failed;
4425
4426#ifdef CONFIG_PAGE_OWNER
4427	/*
4428	 * PAGE_OWNER may recurse into the allocator to allocate space to
4429	 * save the stack with pagesets.lock held. Releasing/reacquiring
4430	 * removes much of the performance benefit of bulk allocation so
4431	 * force the caller to allocate one page at a time as it'll have
4432	 * similar performance to added complexity to the bulk allocator.
4433	 */
4434	if (static_branch_unlikely(&page_owner_inited))
4435		goto failed;
4436#endif
4437
4438	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439	gfp &= gfp_allowed_mask;
4440	alloc_gfp = gfp;
4441	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4442		goto out;
4443	gfp = alloc_gfp;
4444
4445	/* Find an allowed local zone that meets the low watermark. */
4446	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4447		unsigned long mark;
4448
4449		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450		    !__cpuset_zone_allowed(zone, gfp)) {
4451			continue;
4452		}
4453
4454		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4456			goto failed;
4457		}
4458
4459		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460		if (zone_watermark_fast(zone, 0,  mark,
4461				zonelist_zone_idx(ac.preferred_zoneref),
4462				alloc_flags, gfp)) {
4463			break;
4464		}
4465	}
4466
4467	/*
4468	 * If there are no allowed local zones that meets the watermarks then
4469	 * try to allocate a single page and reclaim if necessary.
4470	 */
4471	if (unlikely(!zone))
4472		goto failed;
4473
4474	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4475	pcp_trylock_prepare(UP_flags);
4476	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4477	if (!pcp)
4478		goto failed_irq;
4479
4480	/* Attempt the batch allocation */
4481	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4482	while (nr_populated < nr_pages) {
4483
4484		/* Skip existing pages */
4485		if (page_array && page_array[nr_populated]) {
4486			nr_populated++;
4487			continue;
4488		}
4489
4490		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4491								pcp, pcp_list);
4492		if (unlikely(!page)) {
4493			/* Try and allocate at least one page */
4494			if (!nr_account) {
4495				pcp_spin_unlock(pcp);
4496				goto failed_irq;
4497			}
4498			break;
4499		}
4500		nr_account++;
4501
4502		prep_new_page(page, 0, gfp, 0);
4503		if (page_list)
4504			list_add(&page->lru, page_list);
4505		else
4506			page_array[nr_populated] = page;
4507		nr_populated++;
4508	}
4509
4510	pcp_spin_unlock(pcp);
4511	pcp_trylock_finish(UP_flags);
4512
4513	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4515
4516out:
4517	return nr_populated;
4518
4519failed_irq:
4520	pcp_trylock_finish(UP_flags);
4521
4522failed:
4523	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4524	if (page) {
4525		if (page_list)
4526			list_add(&page->lru, page_list);
4527		else
4528			page_array[nr_populated] = page;
4529		nr_populated++;
4530	}
4531
4532	goto out;
4533}
4534EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4535
4536/*
4537 * This is the 'heart' of the zoned buddy allocator.
4538 */
4539struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4540							nodemask_t *nodemask)
4541{
4542	struct page *page;
4543	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4545	struct alloc_context ac = { };
4546
4547	/*
4548	 * There are several places where we assume that the order value is sane
4549	 * so bail out early if the request is out of bound.
4550	 */
4551	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4552		return NULL;
4553
4554	gfp &= gfp_allowed_mask;
4555	/*
4556	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558	 * from a particular context which has been marked by
4559	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560	 * movable zones are not used during allocation.
4561	 */
4562	gfp = current_gfp_context(gfp);
4563	alloc_gfp = gfp;
4564	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4565			&alloc_gfp, &alloc_flags))
4566		return NULL;
4567
4568	/*
4569	 * Forbid the first pass from falling back to types that fragment
4570	 * memory until all local zones are considered.
4571	 */
4572	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4573
4574	/* First allocation attempt */
4575	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4576	if (likely(page))
4577		goto out;
4578
4579	alloc_gfp = gfp;
4580	ac.spread_dirty_pages = false;
4581
4582	/*
4583	 * Restore the original nodemask if it was potentially replaced with
4584	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
 
 
4585	 */
4586	ac.nodemask = nodemask;
 
4587
4588	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4589
4590out:
4591	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4592	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4593		__free_pages(page, order);
4594		page = NULL;
4595	}
4596
4597	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4598	kmsan_alloc_page(page, order, alloc_gfp);
4599
4600	return page;
4601}
4602EXPORT_SYMBOL(__alloc_pages);
4603
4604struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605		nodemask_t *nodemask)
4606{
4607	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4608					preferred_nid, nodemask);
4609	return page_rmappable_folio(page);
4610}
4611EXPORT_SYMBOL(__folio_alloc);
4612
4613/*
4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616 * you need to access high mem.
4617 */
4618unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4619{
4620	struct page *page;
4621
4622	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
4623	if (!page)
4624		return 0;
4625	return (unsigned long) page_address(page);
4626}
4627EXPORT_SYMBOL(__get_free_pages);
4628
4629unsigned long get_zeroed_page(gfp_t gfp_mask)
4630{
4631	return __get_free_page(gfp_mask | __GFP_ZERO);
4632}
4633EXPORT_SYMBOL(get_zeroed_page);
4634
4635/**
4636 * __free_pages - Free pages allocated with alloc_pages().
4637 * @page: The page pointer returned from alloc_pages().
4638 * @order: The order of the allocation.
4639 *
4640 * This function can free multi-page allocations that are not compound
4641 * pages.  It does not check that the @order passed in matches that of
4642 * the allocation, so it is easy to leak memory.  Freeing more memory
4643 * than was allocated will probably emit a warning.
4644 *
4645 * If the last reference to this page is speculative, it will be released
4646 * by put_page() which only frees the first page of a non-compound
4647 * allocation.  To prevent the remaining pages from being leaked, we free
4648 * the subsequent pages here.  If you want to use the page's reference
4649 * count to decide when to free the allocation, you should allocate a
4650 * compound page, and use put_page() instead of __free_pages().
4651 *
4652 * Context: May be called in interrupt context or while holding a normal
4653 * spinlock, but not in NMI context or while holding a raw spinlock.
4654 */
4655void __free_pages(struct page *page, unsigned int order)
4656{
4657	/* get PageHead before we drop reference */
4658	int head = PageHead(page);
 
 
 
 
 
4659
4660	if (put_page_testzero(page))
4661		free_the_page(page, order);
4662	else if (!head)
4663		while (order-- > 0)
4664			free_the_page(page + (1 << order), order);
4665}
4666EXPORT_SYMBOL(__free_pages);
4667
4668void free_pages(unsigned long addr, unsigned int order)
4669{
4670	if (addr != 0) {
4671		VM_BUG_ON(!virt_addr_valid((void *)addr));
4672		__free_pages(virt_to_page((void *)addr), order);
4673	}
4674}
4675
4676EXPORT_SYMBOL(free_pages);
4677
4678/*
4679 * Page Fragment:
4680 *  An arbitrary-length arbitrary-offset area of memory which resides
4681 *  within a 0 or higher order page.  Multiple fragments within that page
4682 *  are individually refcounted, in the page's reference counter.
4683 *
4684 * The page_frag functions below provide a simple allocation framework for
4685 * page fragments.  This is used by the network stack and network device
4686 * drivers to provide a backing region of memory for use as either an
4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4688 */
4689static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4690					     gfp_t gfp_mask)
4691{
4692	struct page *page = NULL;
4693	gfp_t gfp = gfp_mask;
4694
4695#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4696	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4697		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4698	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699				PAGE_FRAG_CACHE_MAX_ORDER);
4700	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4701#endif
4702	if (unlikely(!page))
4703		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4704
4705	nc->va = page ? page_address(page) : NULL;
4706
4707	return page;
4708}
4709
4710void page_frag_cache_drain(struct page_frag_cache *nc)
4711{
4712	if (!nc->va)
4713		return;
4714
4715	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4716	nc->va = NULL;
4717}
4718EXPORT_SYMBOL(page_frag_cache_drain);
4719
4720void __page_frag_cache_drain(struct page *page, unsigned int count)
4721{
4722	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4723
4724	if (page_ref_sub_and_test(page, count))
4725		free_the_page(page, compound_order(page));
4726}
4727EXPORT_SYMBOL(__page_frag_cache_drain);
4728
4729void *__page_frag_alloc_align(struct page_frag_cache *nc,
4730			      unsigned int fragsz, gfp_t gfp_mask,
4731			      unsigned int align_mask)
4732{
4733	unsigned int size = PAGE_SIZE;
4734	struct page *page;
4735	int offset;
4736
4737	if (unlikely(!nc->va)) {
4738refill:
4739		page = __page_frag_cache_refill(nc, gfp_mask);
4740		if (!page)
4741			return NULL;
4742
4743#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4744		/* if size can vary use size else just use PAGE_SIZE */
4745		size = nc->size;
4746#endif
4747		/* Even if we own the page, we do not use atomic_set().
4748		 * This would break get_page_unless_zero() users.
4749		 */
4750		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4751
4752		/* reset page count bias and offset to start of new frag */
4753		nc->pfmemalloc = page_is_pfmemalloc(page);
4754		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4755		nc->offset = size;
4756	}
4757
4758	offset = nc->offset - fragsz;
4759	if (unlikely(offset < 0)) {
4760		page = virt_to_page(nc->va);
4761
4762		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4763			goto refill;
4764
4765		if (unlikely(nc->pfmemalloc)) {
4766			free_the_page(page, compound_order(page));
4767			goto refill;
4768		}
4769
4770#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4771		/* if size can vary use size else just use PAGE_SIZE */
4772		size = nc->size;
4773#endif
4774		/* OK, page count is 0, we can safely set it */
4775		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4776
4777		/* reset page count bias and offset to start of new frag */
4778		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4779		offset = size - fragsz;
4780		if (unlikely(offset < 0)) {
4781			/*
4782			 * The caller is trying to allocate a fragment
4783			 * with fragsz > PAGE_SIZE but the cache isn't big
4784			 * enough to satisfy the request, this may
4785			 * happen in low memory conditions.
4786			 * We don't release the cache page because
4787			 * it could make memory pressure worse
4788			 * so we simply return NULL here.
4789			 */
4790			return NULL;
4791		}
4792	}
4793
4794	nc->pagecnt_bias--;
4795	offset &= align_mask;
4796	nc->offset = offset;
4797
4798	return nc->va + offset;
4799}
4800EXPORT_SYMBOL(__page_frag_alloc_align);
4801
4802/*
4803 * Frees a page fragment allocated out of either a compound or order 0 page.
4804 */
4805void page_frag_free(void *addr)
4806{
4807	struct page *page = virt_to_head_page(addr);
4808
4809	if (unlikely(put_page_testzero(page)))
4810		free_the_page(page, compound_order(page));
4811}
4812EXPORT_SYMBOL(page_frag_free);
4813
4814static void *make_alloc_exact(unsigned long addr, unsigned int order,
4815		size_t size)
4816{
4817	if (addr) {
4818		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4819		struct page *page = virt_to_page((void *)addr);
4820		struct page *last = page + nr;
4821
4822		split_page_owner(page, order, 0);
4823		split_page_memcg(page, order, 0);
4824		while (page < --last)
4825			set_page_refcounted(last);
4826
4827		last = page + (1UL << order);
4828		for (page += nr; page < last; page++)
4829			__free_pages_ok(page, 0, FPI_TO_TAIL);
4830	}
4831	return (void *)addr;
4832}
4833
4834/**
4835 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4836 * @size: the number of bytes to allocate
4837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4838 *
4839 * This function is similar to alloc_pages(), except that it allocates the
4840 * minimum number of pages to satisfy the request.  alloc_pages() can only
4841 * allocate memory in power-of-two pages.
4842 *
4843 * This function is also limited by MAX_PAGE_ORDER.
4844 *
4845 * Memory allocated by this function must be released by free_pages_exact().
4846 *
4847 * Return: pointer to the allocated area or %NULL in case of error.
4848 */
4849void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4850{
4851	unsigned int order = get_order(size);
4852	unsigned long addr;
4853
4854	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4855		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4856
4857	addr = __get_free_pages(gfp_mask, order);
4858	return make_alloc_exact(addr, order, size);
4859}
4860EXPORT_SYMBOL(alloc_pages_exact);
4861
4862/**
4863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4864 *			   pages on a node.
4865 * @nid: the preferred node ID where memory should be allocated
4866 * @size: the number of bytes to allocate
4867 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4868 *
4869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4870 * back.
4871 *
4872 * Return: pointer to the allocated area or %NULL in case of error.
4873 */
4874void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4875{
4876	unsigned int order = get_order(size);
4877	struct page *p;
4878
4879	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4880		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4881
4882	p = alloc_pages_node(nid, gfp_mask, order);
4883	if (!p)
4884		return NULL;
4885	return make_alloc_exact((unsigned long)page_address(p), order, size);
4886}
 
4887
4888/**
4889 * free_pages_exact - release memory allocated via alloc_pages_exact()
4890 * @virt: the value returned by alloc_pages_exact.
4891 * @size: size of allocation, same value as passed to alloc_pages_exact().
4892 *
4893 * Release the memory allocated by a previous call to alloc_pages_exact.
4894 */
4895void free_pages_exact(void *virt, size_t size)
4896{
4897	unsigned long addr = (unsigned long)virt;
4898	unsigned long end = addr + PAGE_ALIGN(size);
4899
4900	while (addr < end) {
4901		free_page(addr);
4902		addr += PAGE_SIZE;
4903	}
4904}
4905EXPORT_SYMBOL(free_pages_exact);
4906
4907/**
4908 * nr_free_zone_pages - count number of pages beyond high watermark
4909 * @offset: The zone index of the highest zone
4910 *
4911 * nr_free_zone_pages() counts the number of pages which are beyond the
4912 * high watermark within all zones at or below a given zone index.  For each
4913 * zone, the number of pages is calculated as:
4914 *
4915 *     nr_free_zone_pages = managed_pages - high_pages
4916 *
4917 * Return: number of pages beyond high watermark.
4918 */
4919static unsigned long nr_free_zone_pages(int offset)
4920{
4921	struct zoneref *z;
4922	struct zone *zone;
4923
4924	/* Just pick one node, since fallback list is circular */
4925	unsigned long sum = 0;
4926
4927	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4928
4929	for_each_zone_zonelist(zone, z, zonelist, offset) {
4930		unsigned long size = zone_managed_pages(zone);
4931		unsigned long high = high_wmark_pages(zone);
4932		if (size > high)
4933			sum += size - high;
4934	}
4935
4936	return sum;
4937}
4938
4939/**
4940 * nr_free_buffer_pages - count number of pages beyond high watermark
4941 *
4942 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4943 * watermark within ZONE_DMA and ZONE_NORMAL.
4944 *
4945 * Return: number of pages beyond high watermark within ZONE_DMA and
4946 * ZONE_NORMAL.
4947 */
4948unsigned long nr_free_buffer_pages(void)
4949{
4950	return nr_free_zone_pages(gfp_zone(GFP_USER));
4951}
4952EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4954static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4955{
4956	zoneref->zone = zone;
4957	zoneref->zone_idx = zone_idx(zone);
4958}
4959
4960/*
4961 * Builds allocation fallback zone lists.
4962 *
4963 * Add all populated zones of a node to the zonelist.
4964 */
4965static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
4966{
4967	struct zone *zone;
4968	enum zone_type zone_type = MAX_NR_ZONES;
4969	int nr_zones = 0;
4970
4971	do {
4972		zone_type--;
4973		zone = pgdat->node_zones + zone_type;
4974		if (populated_zone(zone)) {
4975			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
4976			check_highest_zone(zone_type);
4977		}
4978	} while (zone_type);
4979
4980	return nr_zones;
4981}
4982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4983#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
4984
4985static int __parse_numa_zonelist_order(char *s)
4986{
4987	/*
4988	 * We used to support different zonelists modes but they turned
4989	 * out to be just not useful. Let's keep the warning in place
4990	 * if somebody still use the cmd line parameter so that we do
4991	 * not fail it silently
4992	 */
4993	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4994		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
 
 
4995		return -EINVAL;
4996	}
4997	return 0;
4998}
4999
5000static char numa_zonelist_order[] = "Node";
5001#define NUMA_ZONELIST_ORDER_LEN	16
 
 
 
 
 
 
 
 
 
 
 
 
 
5002/*
5003 * sysctl handler for numa_zonelist_order
5004 */
5005static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5006		void *buffer, size_t *length, loff_t *ppos)
 
5007{
5008	if (write)
5009		return __parse_numa_zonelist_order(buffer);
5010	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5011}
5012
 
 
5013static int node_load[MAX_NUMNODES];
5014
5015/**
5016 * find_next_best_node - find the next node that should appear in a given node's fallback list
5017 * @node: node whose fallback list we're appending
5018 * @used_node_mask: nodemask_t of already used nodes
5019 *
5020 * We use a number of factors to determine which is the next node that should
5021 * appear on a given node's fallback list.  The node should not have appeared
5022 * already in @node's fallback list, and it should be the next closest node
5023 * according to the distance array (which contains arbitrary distance values
5024 * from each node to each node in the system), and should also prefer nodes
5025 * with no CPUs, since presumably they'll have very little allocation pressure
5026 * on them otherwise.
5027 *
5028 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5029 */
5030int find_next_best_node(int node, nodemask_t *used_node_mask)
5031{
5032	int n, val;
5033	int min_val = INT_MAX;
5034	int best_node = NUMA_NO_NODE;
 
5035
5036	/*
5037	 * Use the local node if we haven't already, but for memoryless local
5038	 * node, we should skip it and fall back to other nodes.
5039	 */
5040	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5041		node_set(node, *used_node_mask);
5042		return node;
5043	}
5044
5045	for_each_node_state(n, N_MEMORY) {
5046
5047		/* Don't want a node to appear more than once */
5048		if (node_isset(n, *used_node_mask))
5049			continue;
5050
5051		/* Use the distance array to find the distance */
5052		val = node_distance(node, n);
5053
5054		/* Penalize nodes under us ("prefer the next node") */
5055		val += (n < node);
5056
5057		/* Give preference to headless and unused nodes */
5058		if (!cpumask_empty(cpumask_of_node(n)))
 
5059			val += PENALTY_FOR_NODE_WITH_CPUS;
5060
5061		/* Slight preference for less loaded node */
5062		val *= MAX_NUMNODES;
5063		val += node_load[n];
5064
5065		if (val < min_val) {
5066			min_val = val;
5067			best_node = n;
5068		}
5069	}
5070
5071	if (best_node >= 0)
5072		node_set(best_node, *used_node_mask);
5073
5074	return best_node;
5075}
5076
5077
5078/*
5079 * Build zonelists ordered by node and zones within node.
5080 * This results in maximum locality--normal zone overflows into local
5081 * DMA zone, if any--but risks exhausting DMA zone.
5082 */
5083static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5084		unsigned nr_nodes)
5085{
5086	struct zoneref *zonerefs;
5087	int i;
5088
5089	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5090
5091	for (i = 0; i < nr_nodes; i++) {
5092		int nr_zones;
5093
5094		pg_data_t *node = NODE_DATA(node_order[i]);
5095
5096		nr_zones = build_zonerefs_node(node, zonerefs);
5097		zonerefs += nr_zones;
5098	}
5099	zonerefs->zone = NULL;
5100	zonerefs->zone_idx = 0;
5101}
5102
5103/*
5104 * Build gfp_thisnode zonelists
5105 */
5106static void build_thisnode_zonelists(pg_data_t *pgdat)
5107{
5108	struct zoneref *zonerefs;
5109	int nr_zones;
5110
5111	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5112	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5113	zonerefs += nr_zones;
5114	zonerefs->zone = NULL;
5115	zonerefs->zone_idx = 0;
5116}
5117
5118/*
5119 * Build zonelists ordered by zone and nodes within zones.
5120 * This results in conserving DMA zone[s] until all Normal memory is
5121 * exhausted, but results in overflowing to remote node while memory
5122 * may still exist in local DMA zone.
5123 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5124
5125static void build_zonelists(pg_data_t *pgdat)
5126{
5127	static int node_order[MAX_NUMNODES];
5128	int node, nr_nodes = 0;
5129	nodemask_t used_mask = NODE_MASK_NONE;
5130	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
5131
5132	/* NUMA-aware ordering of nodes */
5133	local_node = pgdat->node_id;
 
5134	prev_node = local_node;
 
5135
5136	memset(node_order, 0, sizeof(node_order));
 
 
5137	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5138		/*
5139		 * We don't want to pressure a particular node.
5140		 * So adding penalty to the first node in same
5141		 * distance group to make it round-robin.
5142		 */
5143		if (node_distance(local_node, node) !=
5144		    node_distance(local_node, prev_node))
5145			node_load[node] += 1;
5146
5147		node_order[nr_nodes++] = node;
5148		prev_node = node;
 
 
 
 
 
 
 
 
 
 
5149	}
5150
5151	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5152	build_thisnode_zonelists(pgdat);
5153	pr_info("Fallback order for Node %d: ", local_node);
5154	for (node = 0; node < nr_nodes; node++)
5155		pr_cont("%d ", node_order[node]);
5156	pr_cont("\n");
 
 
 
 
 
 
 
 
 
 
5157}
5158
5159#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160/*
5161 * Return node id of node used for "local" allocations.
5162 * I.e., first node id of first zone in arg node's generic zonelist.
5163 * Used for initializing percpu 'numa_mem', which is used primarily
5164 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5165 */
5166int local_memory_node(int node)
5167{
5168	struct zoneref *z;
5169
5170	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5171				   gfp_zone(GFP_KERNEL),
5172				   NULL);
5173	return zone_to_nid(z->zone);
 
5174}
5175#endif
5176
5177static void setup_min_unmapped_ratio(void);
5178static void setup_min_slab_ratio(void);
5179#else	/* CONFIG_NUMA */
5180
 
 
 
 
 
5181static void build_zonelists(pg_data_t *pgdat)
5182{
5183	int node, local_node;
5184	struct zoneref *zonerefs;
5185	int nr_zones;
5186
5187	local_node = pgdat->node_id;
5188
5189	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5190	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5191	zonerefs += nr_zones;
5192
5193	/*
5194	 * Now we build the zonelist so that it contains the zones
5195	 * of all the other nodes.
5196	 * We don't want to pressure a particular node, so when
5197	 * building the zones for node N, we make sure that the
5198	 * zones coming right after the local ones are those from
5199	 * node N+1 (modulo N)
5200	 */
5201	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5202		if (!node_online(node))
5203			continue;
5204		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5205		zonerefs += nr_zones;
5206	}
5207	for (node = 0; node < local_node; node++) {
5208		if (!node_online(node))
5209			continue;
5210		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5211		zonerefs += nr_zones;
5212	}
5213
5214	zonerefs->zone = NULL;
5215	zonerefs->zone_idx = 0;
 
 
 
 
 
 
5216}
5217
5218#endif	/* CONFIG_NUMA */
5219
5220/*
5221 * Boot pageset table. One per cpu which is going to be used for all
5222 * zones and all nodes. The parameters will be set in such a way
5223 * that an item put on a list will immediately be handed over to
5224 * the buddy list. This is safe since pageset manipulation is done
5225 * with interrupts disabled.
5226 *
5227 * The boot_pagesets must be kept even after bootup is complete for
5228 * unused processors and/or zones. They do play a role for bootstrapping
5229 * hotplugged processors.
5230 *
5231 * zoneinfo_show() and maybe other functions do
5232 * not check if the processor is online before following the pageset pointer.
5233 * Other parts of the kernel may not check if the zone is available.
5234 */
5235static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5236/* These effectively disable the pcplists in the boot pageset completely */
5237#define BOOT_PAGESET_HIGH	0
5238#define BOOT_PAGESET_BATCH	1
5239static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5240static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5241
5242static void __build_all_zonelists(void *data)
 
 
 
 
 
 
 
5243{
5244	int nid;
5245	int __maybe_unused cpu;
5246	pg_data_t *self = data;
5247	unsigned long flags;
5248
5249	/*
5250	 * The zonelist_update_seq must be acquired with irqsave because the
5251	 * reader can be invoked from IRQ with GFP_ATOMIC.
5252	 */
5253	write_seqlock_irqsave(&zonelist_update_seq, flags);
5254	/*
5255	 * Also disable synchronous printk() to prevent any printk() from
5256	 * trying to hold port->lock, for
5257	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5258	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5259	 */
5260	printk_deferred_enter();
5261
5262#ifdef CONFIG_NUMA
5263	memset(node_load, 0, sizeof(node_load));
5264#endif
5265
5266	/*
5267	 * This node is hotadded and no memory is yet present.   So just
5268	 * building zonelists is fine - no need to touch other nodes.
5269	 */
5270	if (self && !node_online(self->node_id)) {
5271		build_zonelists(self);
5272	} else {
5273		/*
5274		 * All possible nodes have pgdat preallocated
5275		 * in free_area_init
5276		 */
5277		for_each_node(nid) {
5278			pg_data_t *pgdat = NODE_DATA(nid);
5279
5280			build_zonelists(pgdat);
5281		}
5282
5283#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5284		/*
5285		 * We now know the "local memory node" for each node--
5286		 * i.e., the node of the first zone in the generic zonelist.
5287		 * Set up numa_mem percpu variable for on-line cpus.  During
5288		 * boot, only the boot cpu should be on-line;  we'll init the
5289		 * secondary cpus' numa_mem as they come on-line.  During
5290		 * node/memory hotplug, we'll fixup all on-line cpus.
5291		 */
5292		for_each_online_cpu(cpu)
5293			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5294#endif
5295	}
5296
5297	printk_deferred_exit();
5298	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5299}
5300
5301static noinline void __init
5302build_all_zonelists_init(void)
5303{
5304	int cpu;
5305
5306	__build_all_zonelists(NULL);
5307
5308	/*
5309	 * Initialize the boot_pagesets that are going to be used
5310	 * for bootstrapping processors. The real pagesets for
5311	 * each zone will be allocated later when the per cpu
5312	 * allocator is available.
5313	 *
5314	 * boot_pagesets are used also for bootstrapping offline
5315	 * cpus if the system is already booted because the pagesets
5316	 * are needed to initialize allocators on a specific cpu too.
5317	 * F.e. the percpu allocator needs the page allocator which
5318	 * needs the percpu allocator in order to allocate its pagesets
5319	 * (a chicken-egg dilemma).
5320	 */
5321	for_each_possible_cpu(cpu)
5322		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323
5324	mminit_verify_zonelist();
5325	cpuset_init_current_mems_allowed();
5326}
5327
5328/*
 
5329 * unless system_state == SYSTEM_BOOTING.
5330 *
5331 * __ref due to call of __init annotated helper build_all_zonelists_init
5332 * [protected by SYSTEM_BOOTING].
5333 */
5334void __ref build_all_zonelists(pg_data_t *pgdat)
5335{
5336	unsigned long vm_total_pages;
5337
5338	if (system_state == SYSTEM_BOOTING) {
5339		build_all_zonelists_init();
 
 
5340	} else {
5341		__build_all_zonelists(pgdat);
 
 
 
 
 
 
5342		/* cpuset refresh routine should be here */
5343	}
5344	/* Get the number of free pages beyond high watermark in all zones. */
5345	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5346	/*
5347	 * Disable grouping by mobility if the number of pages in the
5348	 * system is too low to allow the mechanism to work. It would be
5349	 * more accurate, but expensive to check per-zone. This check is
5350	 * made on memory-hotadd so a system can start with mobility
5351	 * disabled and enable it later
5352	 */
5353	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5354		page_group_by_mobility_disabled = 1;
5355	else
5356		page_group_by_mobility_disabled = 0;
5357
5358	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5359		nr_online_nodes,
5360		page_group_by_mobility_disabled ? "off" : "on",
5361		vm_total_pages);
 
 
5362#ifdef CONFIG_NUMA
5363	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364#endif
 
5365}
5366
5367static int zone_batchsize(struct zone *zone)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5368{
5369#ifdef CONFIG_MMU
5370	int batch;
5371
5372	/*
5373	 * The number of pages to batch allocate is either ~0.1%
5374	 * of the zone or 1MB, whichever is smaller. The batch
5375	 * size is striking a balance between allocation latency
5376	 * and zone lock contention.
5377	 */
5378	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
 
 
5379	batch /= 4;		/* We effectively *= 4 below */
5380	if (batch < 1)
5381		batch = 1;
5382
5383	/*
5384	 * Clamp the batch to a 2^n - 1 value. Having a power
5385	 * of 2 value was found to be more likely to have
5386	 * suboptimal cache aliasing properties in some cases.
5387	 *
5388	 * For example if 2 tasks are alternately allocating
5389	 * batches of pages, one task can end up with a lot
5390	 * of pages of one half of the possible page colors
5391	 * and the other with pages of the other colors.
5392	 */
5393	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5394
5395	return batch;
5396
5397#else
5398	/* The deferral and batching of frees should be suppressed under NOMMU
5399	 * conditions.
5400	 *
5401	 * The problem is that NOMMU needs to be able to allocate large chunks
5402	 * of contiguous memory as there's no hardware page translation to
5403	 * assemble apparent contiguous memory from discontiguous pages.
5404	 *
5405	 * Queueing large contiguous runs of pages for batching, however,
5406	 * causes the pages to actually be freed in smaller chunks.  As there
5407	 * can be a significant delay between the individual batches being
5408	 * recycled, this leads to the once large chunks of space being
5409	 * fragmented and becoming unavailable for high-order allocations.
5410	 */
5411	return 0;
5412#endif
5413}
5414
5415static int percpu_pagelist_high_fraction;
5416static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5417			 int high_fraction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5418{
5419#ifdef CONFIG_MMU
5420	int high;
5421	int nr_split_cpus;
5422	unsigned long total_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5423
5424	if (!high_fraction) {
5425		/*
5426		 * By default, the high value of the pcp is based on the zone
5427		 * low watermark so that if they are full then background
5428		 * reclaim will not be started prematurely.
5429		 */
5430		total_pages = low_wmark_pages(zone);
 
 
 
 
 
 
 
 
5431	} else {
5432		/*
5433		 * If percpu_pagelist_high_fraction is configured, the high
5434		 * value is based on a fraction of the managed pages in the
5435		 * zone.
 
 
 
 
 
5436		 */
5437		total_pages = zone_managed_pages(zone) / high_fraction;
5438	}
 
 
 
 
 
 
 
 
5439
 
 
5440	/*
5441	 * Split the high value across all online CPUs local to the zone. Note
5442	 * that early in boot that CPUs may not be online yet and that during
5443	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5444	 * onlined. For memory nodes that have no CPUs, split the high value
5445	 * across all online CPUs to mitigate the risk that reclaim is triggered
5446	 * prematurely due to pages stored on pcp lists.
5447	 */
5448	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5449	if (!nr_split_cpus)
5450		nr_split_cpus = num_online_cpus();
5451	high = total_pages / nr_split_cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5452
 
 
 
 
 
 
 
 
 
 
 
 
5453	/*
5454	 * Ensure high is at least batch*4. The multiple is based on the
5455	 * historical relationship between high and batch.
5456	 */
5457	high = max(high, batch << 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5458
5459	return high;
5460#else
 
 
5461	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
5462#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5463}
5464
5465/*
5466 * pcp->high and pcp->batch values are related and generally batch is lower
5467 * than high. They are also related to pcp->count such that count is lower
5468 * than high, and as soon as it reaches high, the pcplist is flushed.
5469 *
5470 * However, guaranteeing these relations at all times would require e.g. write
5471 * barriers here but also careful usage of read barriers at the read side, and
5472 * thus be prone to error and bad for performance. Thus the update only prevents
5473 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5474 * should ensure they can cope with those fields changing asynchronously, and
5475 * fully trust only the pcp->count field on the local CPU with interrupts
5476 * disabled.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477 *
5478 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5479 * outside of boot time (or some other assurance that no concurrent updaters
5480 * exist).
5481 */
5482static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5483			   unsigned long high_max, unsigned long batch)
5484{
5485	WRITE_ONCE(pcp->batch, batch);
5486	WRITE_ONCE(pcp->high_min, high_min);
5487	WRITE_ONCE(pcp->high_max, high_max);
5488}
5489
5490static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
 
 
 
 
5491{
5492	int pindex;
 
 
 
 
 
 
 
 
 
 
 
5493
5494	memset(pcp, 0, sizeof(*pcp));
5495	memset(pzstats, 0, sizeof(*pzstats));
 
 
 
 
 
 
 
5496
5497	spin_lock_init(&pcp->lock);
5498	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5499		INIT_LIST_HEAD(&pcp->lists[pindex]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5500
5501	/*
5502	 * Set batch and high values safe for a boot pageset. A true percpu
5503	 * pageset's initialization will update them subsequently. Here we don't
5504	 * need to be as careful as pageset_update() as nobody can access the
5505	 * pageset yet.
5506	 */
5507	pcp->high_min = BOOT_PAGESET_HIGH;
5508	pcp->high_max = BOOT_PAGESET_HIGH;
5509	pcp->batch = BOOT_PAGESET_BATCH;
5510	pcp->free_count = 0;
 
 
 
 
 
 
 
 
5511}
5512
5513static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5514					      unsigned long high_max, unsigned long batch)
 
 
5515{
5516	struct per_cpu_pages *pcp;
5517	int cpu;
 
 
 
 
 
 
 
 
 
 
 
5518
5519	for_each_possible_cpu(cpu) {
5520		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5521		pageset_update(pcp, high_min, high_max, batch);
5522	}
5523}
5524
5525/*
5526 * Calculate and set new high and batch values for all per-cpu pagesets of a
5527 * zone based on the zone's size.
 
 
 
 
5528 */
5529static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
 
 
5530{
5531	int new_high_min, new_high_max, new_batch;
 
 
 
5532
5533	new_batch = max(1, zone_batchsize(zone));
5534	if (percpu_pagelist_high_fraction) {
5535		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5536					     percpu_pagelist_high_fraction);
5537		/*
5538		 * PCP high is tuned manually, disable auto-tuning via
5539		 * setting high_min and high_max to the manual value.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5540		 */
5541		new_high_max = new_high_min;
5542	} else {
5543		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5544		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5545					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5546	}
 
5547
5548	if (zone->pageset_high_min == new_high_min &&
5549	    zone->pageset_high_max == new_high_max &&
5550	    zone->pageset_batch == new_batch)
 
5551		return;
5552
5553	zone->pageset_high_min = new_high_min;
5554	zone->pageset_high_max = new_high_max;
5555	zone->pageset_batch = new_batch;
 
 
5556
5557	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5558					  new_batch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5559}
5560
5561void __meminit setup_zone_pageset(struct zone *zone)
 
5562{
5563	int cpu;
 
 
5564
5565	/* Size may be 0 on !SMP && !NUMA */
5566	if (sizeof(struct per_cpu_zonestat) > 0)
5567		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5568
5569	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5570	for_each_possible_cpu(cpu) {
5571		struct per_cpu_pages *pcp;
5572		struct per_cpu_zonestat *pzstats;
 
 
 
 
 
5573
5574		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5575		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5576		per_cpu_pages_init(pcp, pzstats);
5577	}
 
 
5578
5579	zone_set_pageset_high_and_batch(zone, 0);
 
5580}
5581
 
 
 
5582/*
5583 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5584 * page high values need to be recalculated.
5585 */
5586static void zone_pcp_update(struct zone *zone, int cpu_online)
5587{
5588	mutex_lock(&pcp_batch_high_lock);
5589	zone_set_pageset_high_and_batch(zone, cpu_online);
5590	mutex_unlock(&pcp_batch_high_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5591}
5592
5593static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
 
5594{
5595	struct per_cpu_pages *pcp;
5596	struct cpu_cacheinfo *cci;
 
 
 
 
 
 
 
 
 
 
 
 
 
5597
5598	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5599	cci = get_cpu_cacheinfo(cpu);
5600	/*
5601	 * If data cache slice of CPU is large enough, "pcp->batch"
5602	 * pages can be preserved in PCP before draining PCP for
5603	 * consecutive high-order pages freeing without allocation.
5604	 * This can reduce zone lock contention without hurting
5605	 * cache-hot pages sharing.
5606	 */
5607	spin_lock(&pcp->lock);
5608	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5609		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5610	else
5611		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5612	spin_unlock(&pcp->lock);
5613}
5614
5615void setup_pcp_cacheinfo(unsigned int cpu)
 
 
 
 
 
5616{
5617	struct zone *zone;
 
 
 
 
 
5618
5619	for_each_populated_zone(zone)
5620		zone_pcp_update_cacheinfo(zone, cpu);
 
 
 
5621}
5622
5623/*
5624 * Allocate per cpu pagesets and initialize them.
5625 * Before this call only boot pagesets were available.
 
 
5626 */
5627void __init setup_per_cpu_pageset(void)
5628{
5629	struct pglist_data *pgdat;
5630	struct zone *zone;
5631	int __maybe_unused cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5632
5633	for_each_populated_zone(zone)
5634		setup_zone_pageset(zone);
 
 
 
 
 
 
 
 
 
 
5635
5636#ifdef CONFIG_NUMA
5637	/*
5638	 * Unpopulated zones continue using the boot pagesets.
5639	 * The numa stats for these pagesets need to be reset.
5640	 * Otherwise, they will end up skewing the stats of
5641	 * the nodes these zones are associated with.
5642	 */
5643	for_each_possible_cpu(cpu) {
5644		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5645		memset(pzstats->vm_numa_event, 0,
5646		       sizeof(pzstats->vm_numa_event));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5647	}
5648#endif
 
 
 
 
 
 
 
 
 
 
 
 
5649
5650	for_each_online_pgdat(pgdat)
5651		pgdat->per_cpu_nodestats =
5652			alloc_percpu(struct per_cpu_nodestat);
5653}
5654
5655__meminit void zone_pcp_init(struct zone *zone)
 
 
 
 
5656{
5657	/*
5658	 * per cpu subsystem is not up at this point. The following code
5659	 * relies on the ability of the linker to provide the
5660	 * offset of a (static) per cpu variable into the per cpu area.
5661	 */
5662	zone->per_cpu_pageset = &boot_pageset;
5663	zone->per_cpu_zonestats = &boot_zonestats;
5664	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5665	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5666	zone->pageset_batch = BOOT_PAGESET_BATCH;
5667
5668	if (populated_zone(zone))
5669		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5670			 zone->present_pages, zone_batchsize(zone));
 
 
 
 
5671}
5672
 
 
 
 
 
5673void adjust_managed_page_count(struct page *page, long count)
5674{
5675	atomic_long_add(count, &page_zone(page)->managed_pages);
5676	totalram_pages_add(count);
 
5677#ifdef CONFIG_HIGHMEM
5678	if (PageHighMem(page))
5679		totalhigh_pages_add(count);
5680#endif
 
5681}
5682EXPORT_SYMBOL(adjust_managed_page_count);
5683
5684unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5685{
5686	void *pos;
5687	unsigned long pages = 0;
5688
5689	start = (void *)PAGE_ALIGN((unsigned long)start);
5690	end = (void *)((unsigned long)end & PAGE_MASK);
5691	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5692		struct page *page = virt_to_page(pos);
5693		void *direct_map_addr;
5694
5695		/*
5696		 * 'direct_map_addr' might be different from 'pos'
5697		 * because some architectures' virt_to_page()
5698		 * work with aliases.  Getting the direct map
5699		 * address ensures that we get a _writeable_
5700		 * alias for the memset().
5701		 */
5702		direct_map_addr = page_address(page);
5703		/*
5704		 * Perform a kasan-unchecked memset() since this memory
5705		 * has not been initialized.
5706		 */
5707		direct_map_addr = kasan_reset_tag(direct_map_addr);
5708		if ((unsigned int)poison <= 0xFF)
5709			memset(direct_map_addr, poison, PAGE_SIZE);
5710
5711		free_reserved_page(page);
5712	}
5713
5714	if (pages && s)
5715		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
 
5716
5717	return pages;
5718}
 
5719
5720static int page_alloc_cpu_dead(unsigned int cpu)
 
5721{
5722	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
5723
5724	lru_add_drain_cpu(cpu);
5725	mlock_drain_remote(cpu);
5726	drain_pages(cpu);
 
 
 
 
5727
5728	/*
5729	 * Spill the event counters of the dead processor
5730	 * into the current processors event counters.
5731	 * This artificially elevates the count of the current
5732	 * processor.
 
5733	 */
5734	vm_events_fold_cpu(cpu);
 
 
 
 
5735
5736	/*
5737	 * Zero the differential counters of the dead processor
5738	 * so that the vm statistics are consistent.
5739	 *
5740	 * This is only okay since the processor is dead and cannot
5741	 * race with what we are doing.
5742	 */
5743	cpu_vm_stats_fold(cpu);
5744
5745	for_each_populated_zone(zone)
5746		zone_pcp_update(zone, 0);
5747
5748	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5749}
5750
5751static int page_alloc_cpu_online(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
5752{
5753	struct zone *zone;
 
5754
5755	for_each_populated_zone(zone)
5756		zone_pcp_update(zone, 1);
5757	return 0;
 
5758}
5759
5760void __init page_alloc_init_cpuhp(void)
 
5761{
5762	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763
5764	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5765					"mm/page_alloc:pcp",
5766					page_alloc_cpu_online,
5767					page_alloc_cpu_dead);
5768	WARN_ON(ret < 0);
5769}
5770
5771/*
5772 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5773 *	or min_free_kbytes changes.
5774 */
5775static void calculate_totalreserve_pages(void)
5776{
5777	struct pglist_data *pgdat;
5778	unsigned long reserve_pages = 0;
5779	enum zone_type i, j;
5780
5781	for_each_online_pgdat(pgdat) {
5782
5783		pgdat->totalreserve_pages = 0;
5784
5785		for (i = 0; i < MAX_NR_ZONES; i++) {
5786			struct zone *zone = pgdat->node_zones + i;
5787			long max = 0;
5788			unsigned long managed_pages = zone_managed_pages(zone);
5789
5790			/* Find valid and maximum lowmem_reserve in the zone */
5791			for (j = i; j < MAX_NR_ZONES; j++) {
5792				if (zone->lowmem_reserve[j] > max)
5793					max = zone->lowmem_reserve[j];
5794			}
5795
5796			/* we treat the high watermark as reserved pages. */
5797			max += high_wmark_pages(zone);
5798
5799			if (max > managed_pages)
5800				max = managed_pages;
5801
5802			pgdat->totalreserve_pages += max;
5803
5804			reserve_pages += max;
 
 
 
 
 
 
 
 
 
 
5805		}
5806	}
 
5807	totalreserve_pages = reserve_pages;
5808}
5809
5810/*
5811 * setup_per_zone_lowmem_reserve - called whenever
5812 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5813 *	has a correct pages reserved value, so an adequate number of
5814 *	pages are left in the zone after a successful __alloc_pages().
5815 */
5816static void setup_per_zone_lowmem_reserve(void)
5817{
5818	struct pglist_data *pgdat;
5819	enum zone_type i, j;
5820
5821	for_each_online_pgdat(pgdat) {
5822		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5823			struct zone *zone = &pgdat->node_zones[i];
5824			int ratio = sysctl_lowmem_reserve_ratio[i];
5825			bool clear = !ratio || !zone_managed_pages(zone);
5826			unsigned long managed_pages = 0;
5827
5828			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5829				struct zone *upper_zone = &pgdat->node_zones[j];
5830
5831				managed_pages += zone_managed_pages(upper_zone);
5832
5833				if (clear)
5834					zone->lowmem_reserve[j] = 0;
5835				else
5836					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
5837			}
5838		}
5839	}
5840
5841	/* update totalreserve_pages */
5842	calculate_totalreserve_pages();
5843}
5844
5845static void __setup_per_zone_wmarks(void)
5846{
5847	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5848	unsigned long lowmem_pages = 0;
5849	struct zone *zone;
5850	unsigned long flags;
5851
5852	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5853	for_each_zone(zone) {
5854		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5855			lowmem_pages += zone_managed_pages(zone);
5856	}
5857
5858	for_each_zone(zone) {
5859		u64 tmp;
5860
5861		spin_lock_irqsave(&zone->lock, flags);
5862		tmp = (u64)pages_min * zone_managed_pages(zone);
5863		tmp = div64_ul(tmp, lowmem_pages);
5864		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5865			/*
5866			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5867			 * need highmem and movable zones pages, so cap pages_min
5868			 * to a small  value here.
5869			 *
5870			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5871			 * deltas control async page reclaim, and so should
5872			 * not be capped for highmem and movable zones.
5873			 */
5874			unsigned long min_pages;
5875
5876			min_pages = zone_managed_pages(zone) / 1024;
5877			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5878			zone->_watermark[WMARK_MIN] = min_pages;
5879		} else {
5880			/*
5881			 * If it's a lowmem zone, reserve a number of pages
5882			 * proportionate to the zone's size.
5883			 */
5884			zone->_watermark[WMARK_MIN] = tmp;
5885		}
5886
5887		/*
5888		 * Set the kswapd watermarks distance according to the
5889		 * scale factor in proportion to available memory, but
5890		 * ensure a minimum size on small systems.
5891		 */
5892		tmp = max_t(u64, tmp >> 2,
5893			    mult_frac(zone_managed_pages(zone),
5894				      watermark_scale_factor, 10000));
5895
5896		zone->watermark_boost = 0;
5897		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5898		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5899		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5900
 
5901		spin_unlock_irqrestore(&zone->lock, flags);
5902	}
5903
5904	/* update totalreserve_pages */
5905	calculate_totalreserve_pages();
5906}
5907
5908/**
5909 * setup_per_zone_wmarks - called when min_free_kbytes changes
5910 * or when memory is hot-{added|removed}
5911 *
5912 * Ensures that the watermark[min,low,high] values for each zone are set
5913 * correctly with respect to min_free_kbytes.
5914 */
5915void setup_per_zone_wmarks(void)
5916{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5917	struct zone *zone;
5918	static DEFINE_SPINLOCK(lock);
5919
5920	spin_lock(&lock);
5921	__setup_per_zone_wmarks();
5922	spin_unlock(&lock);
5923
5924	/*
5925	 * The watermark size have changed so update the pcpu batch
5926	 * and high limits or the limits may be inappropriate.
5927	 */
5928	for_each_zone(zone)
5929		zone_pcp_update(zone, 0);
5930}
5931
5932/*
5933 * Initialise min_free_kbytes.
5934 *
5935 * For small machines we want it small (128k min).  For large machines
5936 * we want it large (256MB max).  But it is not linear, because network
5937 * bandwidth does not increase linearly with machine size.  We use
5938 *
5939 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5940 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5941 *
5942 * which yields
5943 *
5944 * 16MB:	512k
5945 * 32MB:	724k
5946 * 64MB:	1024k
5947 * 128MB:	1448k
5948 * 256MB:	2048k
5949 * 512MB:	2896k
5950 * 1024MB:	4096k
5951 * 2048MB:	5792k
5952 * 4096MB:	8192k
5953 * 8192MB:	11584k
5954 * 16384MB:	16384k
5955 */
5956void calculate_min_free_kbytes(void)
5957{
5958	unsigned long lowmem_kbytes;
5959	int new_min_free_kbytes;
5960
5961	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5962	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5963
5964	if (new_min_free_kbytes > user_min_free_kbytes)
5965		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5966	else
 
 
 
 
5967		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5968				new_min_free_kbytes, user_min_free_kbytes);
5969
5970}
5971
5972int __meminit init_per_zone_wmark_min(void)
5973{
5974	calculate_min_free_kbytes();
5975	setup_per_zone_wmarks();
5976	refresh_zone_stat_thresholds();
5977	setup_per_zone_lowmem_reserve();
5978
5979#ifdef CONFIG_NUMA
5980	setup_min_unmapped_ratio();
5981	setup_min_slab_ratio();
5982#endif
5983
5984	khugepaged_min_free_kbytes_update();
5985
5986	return 0;
5987}
5988postcore_initcall(init_per_zone_wmark_min)
5989
5990/*
5991 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5992 *	that we can call two helper functions whenever min_free_kbytes
5993 *	changes.
5994 */
5995static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5996		void *buffer, size_t *length, loff_t *ppos)
5997{
5998	int rc;
5999
6000	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6001	if (rc)
6002		return rc;
6003
6004	if (write) {
6005		user_min_free_kbytes = min_free_kbytes;
6006		setup_per_zone_wmarks();
6007	}
6008	return 0;
6009}
6010
6011static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6012		void *buffer, size_t *length, loff_t *ppos)
6013{
6014	int rc;
6015
6016	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6017	if (rc)
6018		return rc;
6019
6020	if (write)
6021		setup_per_zone_wmarks();
6022
6023	return 0;
6024}
6025
6026#ifdef CONFIG_NUMA
6027static void setup_min_unmapped_ratio(void)
 
6028{
6029	pg_data_t *pgdat;
6030	struct zone *zone;
6031
6032	for_each_online_pgdat(pgdat)
6033		pgdat->min_unmapped_pages = 0;
6034
6035	for_each_zone(zone)
6036		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6037						         sysctl_min_unmapped_ratio) / 100;
6038}
6039
6040
6041static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6042		void *buffer, size_t *length, loff_t *ppos)
6043{
6044	int rc;
6045
6046	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6047	if (rc)
6048		return rc;
6049
6050	setup_min_unmapped_ratio();
6051
 
6052	return 0;
6053}
6054
6055static void setup_min_slab_ratio(void)
 
6056{
6057	pg_data_t *pgdat;
6058	struct zone *zone;
6059
6060	for_each_online_pgdat(pgdat)
6061		pgdat->min_slab_pages = 0;
6062
6063	for_each_zone(zone)
6064		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6065						     sysctl_min_slab_ratio) / 100;
6066}
6067
6068static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6069		void *buffer, size_t *length, loff_t *ppos)
6070{
6071	int rc;
6072
6073	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6074	if (rc)
6075		return rc;
6076
6077	setup_min_slab_ratio();
6078
 
6079	return 0;
6080}
6081#endif
6082
6083/*
6084 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6085 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6086 *	whenever sysctl_lowmem_reserve_ratio changes.
6087 *
6088 * The reserve ratio obviously has absolutely no relation with the
6089 * minimum watermarks. The lowmem reserve ratio can only make sense
6090 * if in function of the boot time zone sizes.
6091 */
6092static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6093		int write, void *buffer, size_t *length, loff_t *ppos)
6094{
6095	int i;
6096
6097	proc_dointvec_minmax(table, write, buffer, length, ppos);
6098
6099	for (i = 0; i < MAX_NR_ZONES; i++) {
6100		if (sysctl_lowmem_reserve_ratio[i] < 1)
6101			sysctl_lowmem_reserve_ratio[i] = 0;
6102	}
6103
6104	setup_per_zone_lowmem_reserve();
6105	return 0;
6106}
6107
6108/*
6109 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6110 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6111 * pagelist can have before it gets flushed back to buddy allocator.
6112 */
6113static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6114		int write, void *buffer, size_t *length, loff_t *ppos)
6115{
6116	struct zone *zone;
6117	int old_percpu_pagelist_high_fraction;
6118	int ret;
6119
 
 
 
 
6120	mutex_lock(&pcp_batch_high_lock);
6121	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
 
 
 
 
 
 
 
 
 
6122
6123	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6124	if (!write || ret < 0)
6125		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6126
6127	/* Sanity checking to avoid pcp imbalance */
6128	if (percpu_pagelist_high_fraction &&
6129	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6130		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6131		ret = -EINVAL;
6132		goto out;
6133	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6134
6135	/* No change? */
6136	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6137		goto out;
 
 
 
 
 
 
 
6138
6139	for_each_populated_zone(zone)
6140		zone_set_pageset_high_and_batch(zone, 0);
6141out:
6142	mutex_unlock(&pcp_batch_high_lock);
6143	return ret;
6144}
6145
6146static struct ctl_table page_alloc_sysctl_table[] = {
6147	{
6148		.procname	= "min_free_kbytes",
6149		.data		= &min_free_kbytes,
6150		.maxlen		= sizeof(min_free_kbytes),
6151		.mode		= 0644,
6152		.proc_handler	= min_free_kbytes_sysctl_handler,
6153		.extra1		= SYSCTL_ZERO,
6154	},
6155	{
6156		.procname	= "watermark_boost_factor",
6157		.data		= &watermark_boost_factor,
6158		.maxlen		= sizeof(watermark_boost_factor),
6159		.mode		= 0644,
6160		.proc_handler	= proc_dointvec_minmax,
6161		.extra1		= SYSCTL_ZERO,
6162	},
6163	{
6164		.procname	= "watermark_scale_factor",
6165		.data		= &watermark_scale_factor,
6166		.maxlen		= sizeof(watermark_scale_factor),
6167		.mode		= 0644,
6168		.proc_handler	= watermark_scale_factor_sysctl_handler,
6169		.extra1		= SYSCTL_ONE,
6170		.extra2		= SYSCTL_THREE_THOUSAND,
6171	},
6172	{
6173		.procname	= "percpu_pagelist_high_fraction",
6174		.data		= &percpu_pagelist_high_fraction,
6175		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6176		.mode		= 0644,
6177		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6178		.extra1		= SYSCTL_ZERO,
6179	},
6180	{
6181		.procname	= "lowmem_reserve_ratio",
6182		.data		= &sysctl_lowmem_reserve_ratio,
6183		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6184		.mode		= 0644,
6185		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6186	},
6187#ifdef CONFIG_NUMA
6188	{
6189		.procname	= "numa_zonelist_order",
6190		.data		= &numa_zonelist_order,
6191		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6192		.mode		= 0644,
6193		.proc_handler	= numa_zonelist_order_handler,
6194	},
6195	{
6196		.procname	= "min_unmapped_ratio",
6197		.data		= &sysctl_min_unmapped_ratio,
6198		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6199		.mode		= 0644,
6200		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6201		.extra1		= SYSCTL_ZERO,
6202		.extra2		= SYSCTL_ONE_HUNDRED,
6203	},
6204	{
6205		.procname	= "min_slab_ratio",
6206		.data		= &sysctl_min_slab_ratio,
6207		.maxlen		= sizeof(sysctl_min_slab_ratio),
6208		.mode		= 0644,
6209		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6210		.extra1		= SYSCTL_ZERO,
6211		.extra2		= SYSCTL_ONE_HUNDRED,
6212	},
6213#endif
6214	{}
6215};
6216
6217void __init page_alloc_sysctl_init(void)
6218{
6219	register_sysctl_init("vm", page_alloc_sysctl_table);
 
 
 
 
 
 
6220}
6221
6222#ifdef CONFIG_CONTIG_ALLOC
6223/* Usage: See admin-guide/dynamic-debug-howto.rst */
6224static void alloc_contig_dump_pages(struct list_head *page_list)
 
 
 
 
 
 
6225{
6226	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6227
6228	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6229		struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
6230
6231		dump_stack();
6232		list_for_each_entry(page, page_list, lru)
6233			dump_page(page, "migration failure");
6234	}
 
 
 
 
 
 
 
6235}
6236
6237/*
6238 * [start, end) must belong to a single zone.
6239 * @migratetype: using migratetype to filter the type of migration in
6240 *		trace_mm_alloc_contig_migrate_range_info.
 
 
 
6241 */
6242int __alloc_contig_migrate_range(struct compact_control *cc,
6243					unsigned long start, unsigned long end,
6244					int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6245{
6246	/* This function is based on compact_zone() from compaction.c. */
6247	unsigned int nr_reclaimed;
6248	unsigned long pfn = start;
6249	unsigned int tries = 0;
6250	int ret = 0;
6251	struct migration_target_control mtc = {
6252		.nid = zone_to_nid(cc->zone),
6253		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6254	};
6255	struct page *page;
6256	unsigned long total_mapped = 0;
6257	unsigned long total_migrated = 0;
6258	unsigned long total_reclaimed = 0;
6259
6260	lru_cache_disable();
6261
6262	while (pfn < end || !list_empty(&cc->migratepages)) {
6263		if (fatal_signal_pending(current)) {
6264			ret = -EINTR;
6265			break;
6266		}
6267
6268		if (list_empty(&cc->migratepages)) {
6269			cc->nr_migratepages = 0;
6270			ret = isolate_migratepages_range(cc, pfn, end);
6271			if (ret && ret != -EAGAIN)
 
 
6272				break;
6273			pfn = cc->migrate_pfn;
6274			tries = 0;
6275		} else if (++tries == 5) {
6276			ret = -EBUSY;
6277			break;
6278		}
6279
6280		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6281							&cc->migratepages);
6282		cc->nr_migratepages -= nr_reclaimed;
6283
6284		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6285			total_reclaimed += nr_reclaimed;
6286			list_for_each_entry(page, &cc->migratepages, lru)
6287				total_mapped += page_mapcount(page);
6288		}
6289
6290		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6291			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6292
6293		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6294			total_migrated += cc->nr_migratepages;
6295
6296		/*
6297		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6298		 * to retry again over this error, so do the same here.
6299		 */
6300		if (ret == -ENOMEM)
6301			break;
6302	}
6303
6304	lru_cache_enable();
6305	if (ret < 0) {
6306		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6307			alloc_contig_dump_pages(&cc->migratepages);
6308		putback_movable_pages(&cc->migratepages);
 
6309	}
6310
6311	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6312						 total_migrated,
6313						 total_reclaimed,
6314						 total_mapped);
6315	return (ret < 0) ? ret : 0;
6316}
6317
6318/**
6319 * alloc_contig_range() -- tries to allocate given range of pages
6320 * @start:	start PFN to allocate
6321 * @end:	one-past-the-last PFN to allocate
6322 * @migratetype:	migratetype of the underlying pageblocks (either
6323 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6324 *			in range must have the same migratetype and it must
6325 *			be either of the two.
6326 * @gfp_mask:	GFP mask to use during compaction
6327 *
6328 * The PFN range does not have to be pageblock aligned. The PFN range must
6329 * belong to a single zone.
 
 
6330 *
6331 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6332 * pageblocks in the range.  Once isolated, the pageblocks should not
6333 * be modified by others.
6334 *
6335 * Return: zero on success or negative error code.  On success all
6336 * pages which PFN is in [start, end) are allocated for the caller and
6337 * need to be freed with free_contig_range().
6338 */
6339int alloc_contig_range(unsigned long start, unsigned long end,
6340		       unsigned migratetype, gfp_t gfp_mask)
6341{
6342	unsigned long outer_start, outer_end;
6343	int order;
6344	int ret = 0;
6345
6346	struct compact_control cc = {
6347		.nr_migratepages = 0,
6348		.order = -1,
6349		.zone = page_zone(pfn_to_page(start)),
6350		.mode = MIGRATE_SYNC,
6351		.ignore_skip_hint = true,
6352		.no_set_skip_hint = true,
6353		.gfp_mask = current_gfp_context(gfp_mask),
6354		.alloc_contig = true,
6355	};
6356	INIT_LIST_HEAD(&cc.migratepages);
6357
6358	/*
6359	 * What we do here is we mark all pageblocks in range as
6360	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6361	 * have different sizes, and due to the way page allocator
6362	 * work, start_isolate_page_range() has special handlings for this.
 
 
 
6363	 *
6364	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6365	 * migrate the pages from an unaligned range (ie. pages that
6366	 * we are interested in). This will put all the pages in
6367	 * range back to page allocator as MIGRATE_ISOLATE.
6368	 *
6369	 * When this is done, we take the pages in range from page
6370	 * allocator removing them from the buddy system.  This way
6371	 * page allocator will never consider using them.
6372	 *
6373	 * This lets us mark the pageblocks back as
6374	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6375	 * aligned range but not in the unaligned, original range are
6376	 * put back to page allocator so that buddy can use them.
6377	 */
6378
6379	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
 
 
6380	if (ret)
6381		goto done;
6382
6383	drain_all_pages(cc.zone);
6384
6385	/*
6386	 * In case of -EBUSY, we'd like to know which page causes problem.
6387	 * So, just fall through. test_pages_isolated() has a tracepoint
6388	 * which will report the busy page.
6389	 *
6390	 * It is possible that busy pages could become available before
6391	 * the call to test_pages_isolated, and the range will actually be
6392	 * allocated.  So, if we fall through be sure to clear ret so that
6393	 * -EBUSY is not accidentally used or returned to caller.
6394	 */
6395	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6396	if (ret && ret != -EBUSY)
6397		goto done;
6398	ret = 0;
6399
6400	/*
6401	 * Pages from [start, end) are within a pageblock_nr_pages
6402	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6403	 * more, all pages in [start, end) are free in page allocator.
6404	 * What we are going to do is to allocate all pages from
6405	 * [start, end) (that is remove them from page allocator).
6406	 *
6407	 * The only problem is that pages at the beginning and at the
6408	 * end of interesting range may be not aligned with pages that
6409	 * page allocator holds, ie. they can be part of higher order
6410	 * pages.  Because of this, we reserve the bigger range and
6411	 * once this is done free the pages we are not interested in.
6412	 *
6413	 * We don't have to hold zone->lock here because the pages are
6414	 * isolated thus they won't get removed from buddy.
6415	 */
6416
 
 
 
6417	order = 0;
6418	outer_start = start;
6419	while (!PageBuddy(pfn_to_page(outer_start))) {
6420		if (++order > MAX_PAGE_ORDER) {
6421			outer_start = start;
6422			break;
6423		}
6424		outer_start &= ~0UL << order;
6425	}
6426
6427	if (outer_start != start) {
6428		order = buddy_order(pfn_to_page(outer_start));
6429
6430		/*
6431		 * outer_start page could be small order buddy page and
6432		 * it doesn't include start page. Adjust outer_start
6433		 * in this case to report failed page properly
6434		 * on tracepoint in test_pages_isolated()
6435		 */
6436		if (outer_start + (1UL << order) <= start)
6437			outer_start = start;
6438	}
6439
6440	/* Make sure the range is really isolated. */
6441	if (test_pages_isolated(outer_start, end, 0)) {
 
 
6442		ret = -EBUSY;
6443		goto done;
6444	}
6445
 
6446	/* Grab isolated pages from freelists. */
6447	outer_end = isolate_freepages_range(&cc, outer_start, end);
6448	if (!outer_end) {
6449		ret = -EBUSY;
6450		goto done;
6451	}
6452
6453	/* Free head and tail (if any) */
6454	if (start != outer_start)
6455		free_contig_range(outer_start, start - outer_start);
6456	if (end != outer_end)
6457		free_contig_range(end, outer_end - end);
6458
6459done:
6460	undo_isolate_page_range(start, end, migratetype);
 
6461	return ret;
6462}
6463EXPORT_SYMBOL(alloc_contig_range);
6464
6465static int __alloc_contig_pages(unsigned long start_pfn,
6466				unsigned long nr_pages, gfp_t gfp_mask)
6467{
6468	unsigned long end_pfn = start_pfn + nr_pages;
6469
6470	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6471				  gfp_mask);
6472}
6473
6474static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6475				   unsigned long nr_pages)
6476{
6477	unsigned long i, end_pfn = start_pfn + nr_pages;
6478	struct page *page;
6479
6480	for (i = start_pfn; i < end_pfn; i++) {
6481		page = pfn_to_online_page(i);
6482		if (!page)
6483			return false;
6484
6485		if (page_zone(page) != z)
6486			return false;
6487
6488		if (PageReserved(page))
6489			return false;
6490
6491		if (PageHuge(page))
6492			return false;
6493	}
6494	return true;
6495}
6496
6497static bool zone_spans_last_pfn(const struct zone *zone,
6498				unsigned long start_pfn, unsigned long nr_pages)
6499{
6500	unsigned long last_pfn = start_pfn + nr_pages - 1;
6501
6502	return zone_spans_pfn(zone, last_pfn);
6503}
6504
6505/**
6506 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6507 * @nr_pages:	Number of contiguous pages to allocate
6508 * @gfp_mask:	GFP mask to limit search and used during compaction
6509 * @nid:	Target node
6510 * @nodemask:	Mask for other possible nodes
6511 *
6512 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6513 * on an applicable zonelist to find a contiguous pfn range which can then be
6514 * tried for allocation with alloc_contig_range(). This routine is intended
6515 * for allocation requests which can not be fulfilled with the buddy allocator.
6516 *
6517 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6518 * power of two, then allocated range is also guaranteed to be aligned to same
6519 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6520 *
6521 * Allocated pages can be freed with free_contig_range() or by manually calling
6522 * __free_page() on each allocated page.
6523 *
6524 * Return: pointer to contiguous pages on success, or NULL if not successful.
6525 */
6526struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6527				int nid, nodemask_t *nodemask)
6528{
6529	unsigned long ret, pfn, flags;
6530	struct zonelist *zonelist;
6531	struct zone *zone;
6532	struct zoneref *z;
6533
6534	zonelist = node_zonelist(nid, gfp_mask);
6535	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6536					gfp_zone(gfp_mask), nodemask) {
6537		spin_lock_irqsave(&zone->lock, flags);
6538
6539		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6540		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6541			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6542				/*
6543				 * We release the zone lock here because
6544				 * alloc_contig_range() will also lock the zone
6545				 * at some point. If there's an allocation
6546				 * spinning on this lock, it may win the race
6547				 * and cause alloc_contig_range() to fail...
6548				 */
6549				spin_unlock_irqrestore(&zone->lock, flags);
6550				ret = __alloc_contig_pages(pfn, nr_pages,
6551							gfp_mask);
6552				if (!ret)
6553					return pfn_to_page(pfn);
6554				spin_lock_irqsave(&zone->lock, flags);
6555			}
6556			pfn += nr_pages;
6557		}
6558		spin_unlock_irqrestore(&zone->lock, flags);
6559	}
6560	return NULL;
6561}
6562#endif /* CONFIG_CONTIG_ALLOC */
6563
6564void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6565{
6566	unsigned long count = 0;
6567
6568	for (; nr_pages--; pfn++) {
6569		struct page *page = pfn_to_page(pfn);
6570
6571		count += page_count(page) != 1;
6572		__free_page(page);
6573	}
6574	WARN(count != 0, "%lu pages are still in use!\n", count);
6575}
6576EXPORT_SYMBOL(free_contig_range);
6577
 
6578/*
6579 * Effectively disable pcplists for the zone by setting the high limit to 0
6580 * and draining all cpus. A concurrent page freeing on another CPU that's about
6581 * to put the page on pcplist will either finish before the drain and the page
6582 * will be drained, or observe the new high limit and skip the pcplist.
6583 *
6584 * Must be paired with a call to zone_pcp_enable().
6585 */
6586void zone_pcp_disable(struct zone *zone)
6587{
 
6588	mutex_lock(&pcp_batch_high_lock);
6589	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6590	__drain_all_pages(zone, true);
6591}
6592
6593void zone_pcp_enable(struct zone *zone)
6594{
6595	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6596		zone->pageset_high_max, zone->pageset_batch);
6597	mutex_unlock(&pcp_batch_high_lock);
6598}
 
6599
6600void zone_pcp_reset(struct zone *zone)
6601{
 
6602	int cpu;
6603	struct per_cpu_zonestat *pzstats;
6604
6605	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
6606		for_each_online_cpu(cpu) {
6607			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6608			drain_zonestat(zone, pzstats);
6609		}
6610		free_percpu(zone->per_cpu_pageset);
6611		zone->per_cpu_pageset = &boot_pageset;
6612		if (zone->per_cpu_zonestats != &boot_zonestats) {
6613			free_percpu(zone->per_cpu_zonestats);
6614			zone->per_cpu_zonestats = &boot_zonestats;
6615		}
 
 
6616	}
 
6617}
6618
6619#ifdef CONFIG_MEMORY_HOTREMOVE
6620/*
6621 * All pages in the range must be in a single zone, must not contain holes,
6622 * must span full sections, and must be isolated before calling this function.
6623 */
6624void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
6625{
6626	unsigned long pfn = start_pfn;
6627	struct page *page;
6628	struct zone *zone;
6629	unsigned int order;
 
6630	unsigned long flags;
6631
6632	offline_mem_sections(pfn, end_pfn);
 
 
 
 
6633	zone = page_zone(pfn_to_page(pfn));
6634	spin_lock_irqsave(&zone->lock, flags);
 
6635	while (pfn < end_pfn) {
 
 
 
 
6636		page = pfn_to_page(pfn);
6637		/*
6638		 * The HWPoisoned page may be not in buddy system, and
6639		 * page_count() is not 0.
6640		 */
6641		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6642			pfn++;
6643			continue;
6644		}
6645		/*
6646		 * At this point all remaining PageOffline() pages have a
6647		 * reference count of 0 and can simply be skipped.
6648		 */
6649		if (PageOffline(page)) {
6650			BUG_ON(page_count(page));
6651			BUG_ON(PageBuddy(page));
6652			pfn++;
6653			continue;
6654		}
6655
6656		BUG_ON(page_count(page));
6657		BUG_ON(!PageBuddy(page));
6658		order = buddy_order(page);
6659		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
6660		pfn += (1 << order);
6661	}
6662	spin_unlock_irqrestore(&zone->lock, flags);
6663}
6664#endif
6665
6666/*
6667 * This function returns a stable result only if called under zone lock.
6668 */
6669bool is_free_buddy_page(struct page *page)
6670{
6671	unsigned long pfn = page_to_pfn(page);
6672	unsigned int order;
6673
6674	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6675		struct page *page_head = page - (pfn & ((1 << order) - 1));
6676
6677		if (PageBuddy(page_head) &&
6678		    buddy_order_unsafe(page_head) >= order)
6679			break;
6680	}
6681
6682	return order <= MAX_PAGE_ORDER;
6683}
6684EXPORT_SYMBOL(is_free_buddy_page);
6685
6686#ifdef CONFIG_MEMORY_FAILURE
6687/*
6688 * Break down a higher-order page in sub-pages, and keep our target out of
6689 * buddy allocator.
6690 */
6691static void break_down_buddy_pages(struct zone *zone, struct page *page,
6692				   struct page *target, int low, int high,
6693				   int migratetype)
6694{
6695	unsigned long size = 1 << high;
6696	struct page *current_buddy;
6697
6698	while (high > low) {
6699		high--;
6700		size >>= 1;
6701
6702		if (target >= &page[size]) {
6703			current_buddy = page;
6704			page = page + size;
6705		} else {
6706			current_buddy = page + size;
6707		}
6708
6709		if (set_page_guard(zone, current_buddy, high, migratetype))
6710			continue;
6711
6712		add_to_free_list(current_buddy, zone, high, migratetype);
6713		set_buddy_order(current_buddy, high);
6714	}
6715}
6716
6717/*
6718 * Take a page that will be marked as poisoned off the buddy allocator.
6719 */
6720bool take_page_off_buddy(struct page *page)
6721{
6722	struct zone *zone = page_zone(page);
6723	unsigned long pfn = page_to_pfn(page);
6724	unsigned long flags;
6725	unsigned int order;
6726	bool ret = false;
6727
6728	spin_lock_irqsave(&zone->lock, flags);
6729	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6730		struct page *page_head = page - (pfn & ((1 << order) - 1));
6731		int page_order = buddy_order(page_head);
6732
6733		if (PageBuddy(page_head) && page_order >= order) {
6734			unsigned long pfn_head = page_to_pfn(page_head);
6735			int migratetype = get_pfnblock_migratetype(page_head,
6736								   pfn_head);
6737
6738			del_page_from_free_list(page_head, zone, page_order);
6739			break_down_buddy_pages(zone, page_head, page, 0,
6740						page_order, migratetype);
6741			SetPageHWPoisonTakenOff(page);
6742			if (!is_migrate_isolate(migratetype))
6743				__mod_zone_freepage_state(zone, -1, migratetype);
6744			ret = true;
6745			break;
6746		}
6747		if (page_count(page_head) > 0)
6748			break;
6749	}
6750	spin_unlock_irqrestore(&zone->lock, flags);
6751	return ret;
 
6752}
 
6753
6754/*
6755 * Cancel takeoff done by take_page_off_buddy().
6756 */
6757bool put_page_back_buddy(struct page *page)
6758{
6759	struct zone *zone = page_zone(page);
6760	unsigned long pfn = page_to_pfn(page);
6761	unsigned long flags;
6762	int migratetype = get_pfnblock_migratetype(page, pfn);
6763	bool ret = false;
6764
6765	spin_lock_irqsave(&zone->lock, flags);
6766	if (put_page_testzero(page)) {
6767		ClearPageHWPoisonTakenOff(page);
6768		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6769		if (TestClearPageHWPoison(page)) {
6770			ret = true;
6771		}
6772	}
6773	spin_unlock_irqrestore(&zone->lock, flags);
6774
6775	return ret;
6776}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6777#endif
 
6778
6779#ifdef CONFIG_ZONE_DMA
6780bool has_managed_dma(void)
6781{
6782	struct pglist_data *pgdat;
 
 
6783
6784	for_each_online_pgdat(pgdat) {
6785		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6786
6787		if (managed_zone(zone))
6788			return true;
6789	}
6790	return false;
6791}
6792#endif /* CONFIG_ZONE_DMA */
6793
6794#ifdef CONFIG_UNACCEPTED_MEMORY
 
6795
6796/* Counts number of zones with unaccepted pages. */
6797static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6798
6799static bool lazy_accept = true;
 
 
6800
6801static int __init accept_memory_parse(char *p)
6802{
6803	if (!strcmp(p, "lazy")) {
6804		lazy_accept = true;
6805		return 0;
6806	} else if (!strcmp(p, "eager")) {
6807		lazy_accept = false;
6808		return 0;
6809	} else {
6810		return -EINVAL;
6811	}
6812}
6813early_param("accept_memory", accept_memory_parse);
6814
6815static bool page_contains_unaccepted(struct page *page, unsigned int order)
6816{
6817	phys_addr_t start = page_to_phys(page);
6818	phys_addr_t end = start + (PAGE_SIZE << order);
6819
6820	return range_contains_unaccepted_memory(start, end);
6821}
6822
6823static void accept_page(struct page *page, unsigned int order)
 
6824{
6825	phys_addr_t start = page_to_phys(page);
6826
6827	accept_memory(start, start + (PAGE_SIZE << order));
6828}
6829
6830static bool try_to_accept_memory_one(struct zone *zone)
6831{
6832	unsigned long flags;
6833	struct page *page;
6834	bool last;
6835
6836	if (list_empty(&zone->unaccepted_pages))
6837		return false;
6838
6839	spin_lock_irqsave(&zone->lock, flags);
6840	page = list_first_entry_or_null(&zone->unaccepted_pages,
6841					struct page, lru);
6842	if (!page) {
6843		spin_unlock_irqrestore(&zone->lock, flags);
6844		return false;
6845	}
6846
6847	list_del(&page->lru);
6848	last = list_empty(&zone->unaccepted_pages);
6849
6850	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6851	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6852	spin_unlock_irqrestore(&zone->lock, flags);
6853
6854	accept_page(page, MAX_PAGE_ORDER);
6855
6856	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6857
6858	if (last)
6859		static_branch_dec(&zones_with_unaccepted_pages);
6860
6861	return true;
6862}
6863
6864static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6865{
6866	long to_accept;
6867	int ret = false;
6868
6869	/* How much to accept to get to high watermark? */
6870	to_accept = high_wmark_pages(zone) -
6871		    (zone_page_state(zone, NR_FREE_PAGES) -
6872		    __zone_watermark_unusable_free(zone, order, 0));
6873
6874	/* Accept at least one page */
6875	do {
6876		if (!try_to_accept_memory_one(zone))
6877			break;
6878		ret = true;
6879		to_accept -= MAX_ORDER_NR_PAGES;
6880	} while (to_accept > 0);
6881
6882	return ret;
6883}
6884
6885static inline bool has_unaccepted_memory(void)
6886{
6887	return static_branch_unlikely(&zones_with_unaccepted_pages);
6888}
6889
6890static bool __free_unaccepted(struct page *page)
6891{
6892	struct zone *zone = page_zone(page);
6893	unsigned long flags;
6894	bool first = false;
6895
6896	if (!lazy_accept)
6897		return false;
6898
6899	spin_lock_irqsave(&zone->lock, flags);
6900	first = list_empty(&zone->unaccepted_pages);
6901	list_add_tail(&page->lru, &zone->unaccepted_pages);
6902	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6903	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6904	spin_unlock_irqrestore(&zone->lock, flags);
6905
6906	if (first)
6907		static_branch_inc(&zones_with_unaccepted_pages);
6908
6909	return true;
6910}
6911
6912#else
6913
6914static bool page_contains_unaccepted(struct page *page, unsigned int order)
6915{
6916	return false;
6917}
6918
6919static void accept_page(struct page *page, unsigned int order)
6920{
6921}
6922
6923static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6924{
6925	return false;
6926}
6927
6928static inline bool has_unaccepted_memory(void)
6929{
6930	return false;
6931}
6932
6933static bool __free_unaccepted(struct page *page)
6934{
6935	BUILD_BUG();
6936	return false;
6937}
6938
6939#endif /* CONFIG_UNACCEPTED_MEMORY */