Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/page_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include "internal.h"
60#include <net/sock.h>
61#include <net/ip.h>
62#include <net/tcp_memcontrol.h>
63#include "slab.h"
64
65#include <asm/uaccess.h>
66
67#include <trace/events/vmscan.h>
68
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
71
72#define MEM_CGROUP_RECLAIM_RETRIES 5
73static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75#ifdef CONFIG_MEMCG_SWAP
76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77int do_swap_account __read_mostly;
78
79/* for remember boot option*/
80#ifdef CONFIG_MEMCG_SWAP_ENABLED
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
86#else
87#define do_swap_account 0
88#endif
89
90
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98};
99
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106};
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134};
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
138
139struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144};
145
146struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
158/*
159 * per-zone information in memory controller.
160 */
161struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173};
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
204/* For threshold */
205struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
230
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
234struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358#endif
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381};
382
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387};
388
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
416#endif
417
418/* Stuffs for move charges at task migration. */
419/*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427};
428
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
444
445static bool move_anon(void)
446{
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448}
449
450static bool move_file(void)
451{
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453}
454
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468};
469
470/* for encoding cft->private value on file */
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476};
477
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480#define MEMFILE_ATTR(val) ((val) & 0xffff)
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
483
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502}
503
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &memory_cgrp_subsys);
542 return mem_cgroup_from_css(css);
543}
544
545/* Writing them here to avoid exposing memcg's inner layout */
546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548void sock_update_memcg(struct sock *sk)
549{
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590}
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
600
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
613#ifdef CONFIG_MEMCG_KMEM
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
627int memcg_limited_groups_array_size;
628
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650struct static_key memcg_kmem_enabled_key;
651EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
677static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679static struct mem_cgroup_per_zone *
680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681{
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684}
685
686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687{
688 return &memcg->css;
689}
690
691static struct mem_cgroup_per_zone *
692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693{
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698}
699
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879{
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886#ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890#endif
891 put_online_cpus();
892 return val;
893}
894
895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900}
901
902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911#ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915#endif
916 put_online_cpus();
917 return val;
918}
919
920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923{
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942 else {
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 nr_pages = -nr_pages; /* for event */
945 }
946
947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948}
949
950unsigned long
951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952{
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957}
958
959static unsigned long
960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962{
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974}
975
976static unsigned long
977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979{
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988}
989
990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992{
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999}
1000
1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003{
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027}
1028
1029/*
1030 * Check events in order.
1031 *
1032 */
1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034{
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044#if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047#endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053#if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056#endif
1057 } else
1058 preempt_enable();
1059}
1060
1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062{
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072}
1073
1074static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1075{
1076 struct mem_cgroup *memcg = NULL;
1077
1078 rcu_read_lock();
1079 do {
1080 /*
1081 * Page cache insertions can happen withou an
1082 * actual mm context, e.g. during disk probing
1083 * on boot, loopback IO, acct() writes etc.
1084 */
1085 if (unlikely(!mm))
1086 memcg = root_mem_cgroup;
1087 else {
1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 if (unlikely(!memcg))
1090 memcg = root_mem_cgroup;
1091 }
1092 } while (!css_tryget(&memcg->css));
1093 rcu_read_unlock();
1094 return memcg;
1095}
1096
1097/*
1098 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1099 * ref. count) or NULL if the whole root's subtree has been visited.
1100 *
1101 * helper function to be used by mem_cgroup_iter
1102 */
1103static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1104 struct mem_cgroup *last_visited)
1105{
1106 struct cgroup_subsys_state *prev_css, *next_css;
1107
1108 prev_css = last_visited ? &last_visited->css : NULL;
1109skip_node:
1110 next_css = css_next_descendant_pre(prev_css, &root->css);
1111
1112 /*
1113 * Even if we found a group we have to make sure it is
1114 * alive. css && !memcg means that the groups should be
1115 * skipped and we should continue the tree walk.
1116 * last_visited css is safe to use because it is
1117 * protected by css_get and the tree walk is rcu safe.
1118 *
1119 * We do not take a reference on the root of the tree walk
1120 * because we might race with the root removal when it would
1121 * be the only node in the iterated hierarchy and mem_cgroup_iter
1122 * would end up in an endless loop because it expects that at
1123 * least one valid node will be returned. Root cannot disappear
1124 * because caller of the iterator should hold it already so
1125 * skipping css reference should be safe.
1126 */
1127 if (next_css) {
1128 if ((next_css == &root->css) ||
1129 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1130 return mem_cgroup_from_css(next_css);
1131
1132 prev_css = next_css;
1133 goto skip_node;
1134 }
1135
1136 return NULL;
1137}
1138
1139static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1140{
1141 /*
1142 * When a group in the hierarchy below root is destroyed, the
1143 * hierarchy iterator can no longer be trusted since it might
1144 * have pointed to the destroyed group. Invalidate it.
1145 */
1146 atomic_inc(&root->dead_count);
1147}
1148
1149static struct mem_cgroup *
1150mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1151 struct mem_cgroup *root,
1152 int *sequence)
1153{
1154 struct mem_cgroup *position = NULL;
1155 /*
1156 * A cgroup destruction happens in two stages: offlining and
1157 * release. They are separated by a RCU grace period.
1158 *
1159 * If the iterator is valid, we may still race with an
1160 * offlining. The RCU lock ensures the object won't be
1161 * released, tryget will fail if we lost the race.
1162 */
1163 *sequence = atomic_read(&root->dead_count);
1164 if (iter->last_dead_count == *sequence) {
1165 smp_rmb();
1166 position = iter->last_visited;
1167
1168 /*
1169 * We cannot take a reference to root because we might race
1170 * with root removal and returning NULL would end up in
1171 * an endless loop on the iterator user level when root
1172 * would be returned all the time.
1173 */
1174 if (position && position != root &&
1175 !css_tryget(&position->css))
1176 position = NULL;
1177 }
1178 return position;
1179}
1180
1181static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1182 struct mem_cgroup *last_visited,
1183 struct mem_cgroup *new_position,
1184 struct mem_cgroup *root,
1185 int sequence)
1186{
1187 /* root reference counting symmetric to mem_cgroup_iter_load */
1188 if (last_visited && last_visited != root)
1189 css_put(&last_visited->css);
1190 /*
1191 * We store the sequence count from the time @last_visited was
1192 * loaded successfully instead of rereading it here so that we
1193 * don't lose destruction events in between. We could have
1194 * raced with the destruction of @new_position after all.
1195 */
1196 iter->last_visited = new_position;
1197 smp_wmb();
1198 iter->last_dead_count = sequence;
1199}
1200
1201/**
1202 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1203 * @root: hierarchy root
1204 * @prev: previously returned memcg, NULL on first invocation
1205 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1206 *
1207 * Returns references to children of the hierarchy below @root, or
1208 * @root itself, or %NULL after a full round-trip.
1209 *
1210 * Caller must pass the return value in @prev on subsequent
1211 * invocations for reference counting, or use mem_cgroup_iter_break()
1212 * to cancel a hierarchy walk before the round-trip is complete.
1213 *
1214 * Reclaimers can specify a zone and a priority level in @reclaim to
1215 * divide up the memcgs in the hierarchy among all concurrent
1216 * reclaimers operating on the same zone and priority.
1217 */
1218struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1219 struct mem_cgroup *prev,
1220 struct mem_cgroup_reclaim_cookie *reclaim)
1221{
1222 struct mem_cgroup *memcg = NULL;
1223 struct mem_cgroup *last_visited = NULL;
1224
1225 if (mem_cgroup_disabled())
1226 return NULL;
1227
1228 if (!root)
1229 root = root_mem_cgroup;
1230
1231 if (prev && !reclaim)
1232 last_visited = prev;
1233
1234 if (!root->use_hierarchy && root != root_mem_cgroup) {
1235 if (prev)
1236 goto out_css_put;
1237 return root;
1238 }
1239
1240 rcu_read_lock();
1241 while (!memcg) {
1242 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1243 int uninitialized_var(seq);
1244
1245 if (reclaim) {
1246 int nid = zone_to_nid(reclaim->zone);
1247 int zid = zone_idx(reclaim->zone);
1248 struct mem_cgroup_per_zone *mz;
1249
1250 mz = mem_cgroup_zoneinfo(root, nid, zid);
1251 iter = &mz->reclaim_iter[reclaim->priority];
1252 if (prev && reclaim->generation != iter->generation) {
1253 iter->last_visited = NULL;
1254 goto out_unlock;
1255 }
1256
1257 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1258 }
1259
1260 memcg = __mem_cgroup_iter_next(root, last_visited);
1261
1262 if (reclaim) {
1263 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1264 seq);
1265
1266 if (!memcg)
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
1271
1272 if (prev && !memcg)
1273 goto out_unlock;
1274 }
1275out_unlock:
1276 rcu_read_unlock();
1277out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
1281 return memcg;
1282}
1283
1284/**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
1291{
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296}
1297
1298/*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303#define for_each_mem_cgroup_tree(iter, root) \
1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1305 iter != NULL; \
1306 iter = mem_cgroup_iter(root, iter, NULL))
1307
1308#define for_each_mem_cgroup(iter) \
1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1310 iter != NULL; \
1311 iter = mem_cgroup_iter(NULL, iter, NULL))
1312
1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314{
1315 struct mem_cgroup *memcg;
1316
1317 rcu_read_lock();
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
1320 goto out;
1321
1322 switch (idx) {
1323 case PGFAULT:
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 break;
1329 default:
1330 BUG();
1331 }
1332out:
1333 rcu_read_unlock();
1334}
1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336
1337/**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
1340 * @memcg: memcg of the wanted lruvec
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348{
1349 struct mem_cgroup_per_zone *mz;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 lruvec = &mz->lruvec;
1359out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
1368}
1369
1370/*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
1383
1384/**
1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386 * @page: the page
1387 * @zone: zone of the page
1388 */
1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1390{
1391 struct mem_cgroup_per_zone *mz;
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
1394 struct lruvec *lruvec;
1395
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
1400
1401 pc = lookup_page_cgroup(page);
1402 memcg = pc->mem_cgroup;
1403
1404 /*
1405 * Surreptitiously switch any uncharged offlist page to root:
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
1416 mz = page_cgroup_zoneinfo(memcg, page);
1417 lruvec = &mz->lruvec;
1418out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
1434 *
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
1437 */
1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
1440{
1441 struct mem_cgroup_per_zone *mz;
1442 unsigned long *lru_size;
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
1451}
1452
1453/*
1454 * Checks whether given mem is same or in the root_mem_cgroup's
1455 * hierarchy subtree
1456 */
1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
1459{
1460 if (root_memcg == memcg)
1461 return true;
1462 if (!root_memcg->use_hierarchy || !memcg)
1463 return false;
1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465}
1466
1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469{
1470 bool ret;
1471
1472 rcu_read_lock();
1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 rcu_read_unlock();
1475 return ret;
1476}
1477
1478bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
1480{
1481 struct mem_cgroup *curr = NULL;
1482 struct task_struct *p;
1483 bool ret;
1484
1485 p = find_lock_task_mm(task);
1486 if (p) {
1487 curr = get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
1495 rcu_read_lock();
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
1499 rcu_read_unlock();
1500 }
1501 /*
1502 * We should check use_hierarchy of "memcg" not "curr". Because checking
1503 * use_hierarchy of "curr" here make this function true if hierarchy is
1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1505 * hierarchy(even if use_hierarchy is disabled in "memcg").
1506 */
1507 ret = mem_cgroup_same_or_subtree(memcg, curr);
1508 css_put(&curr->css);
1509 return ret;
1510}
1511
1512int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1513{
1514 unsigned long inactive_ratio;
1515 unsigned long inactive;
1516 unsigned long active;
1517 unsigned long gb;
1518
1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1521
1522 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1523 if (gb)
1524 inactive_ratio = int_sqrt(10 * gb);
1525 else
1526 inactive_ratio = 1;
1527
1528 return inactive * inactive_ratio < active;
1529}
1530
1531#define mem_cgroup_from_res_counter(counter, member) \
1532 container_of(counter, struct mem_cgroup, member)
1533
1534/**
1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1536 * @memcg: the memory cgroup
1537 *
1538 * Returns the maximum amount of memory @mem can be charged with, in
1539 * pages.
1540 */
1541static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1542{
1543 unsigned long long margin;
1544
1545 margin = res_counter_margin(&memcg->res);
1546 if (do_swap_account)
1547 margin = min(margin, res_counter_margin(&memcg->memsw));
1548 return margin >> PAGE_SHIFT;
1549}
1550
1551int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1552{
1553 /* root ? */
1554 if (!css_parent(&memcg->css))
1555 return vm_swappiness;
1556
1557 return memcg->swappiness;
1558}
1559
1560/*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
1574
1575/* for quick checking without looking up memcg */
1576atomic_t memcg_moving __read_mostly;
1577
1578static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579{
1580 atomic_inc(&memcg_moving);
1581 atomic_inc(&memcg->moving_account);
1582 synchronize_rcu();
1583}
1584
1585static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586{
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
1593 atomic_dec(&memcg->moving_account);
1594 }
1595}
1596
1597/*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
1609static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610{
1611 VM_BUG_ON(!rcu_read_lock_held());
1612 return atomic_read(&memcg->moving_account) > 0;
1613}
1614
1615static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616{
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
1619 bool ret = false;
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
1629
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
1632unlock:
1633 spin_unlock(&mc.lock);
1634 return ret;
1635}
1636
1637static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638{
1639 if (mc.moving_task && current != mc.moving_task) {
1640 if (mem_cgroup_under_move(memcg)) {
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651}
1652
1653/*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
1657 * see mem_cgroup_stolen(), too.
1658 */
1659static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661{
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663}
1664
1665static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667{
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669}
1670
1671#define K(x) ((x) << (PAGE_SHIFT-10))
1672/**
1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681{
1682 /* oom_info_lock ensures that parallel ooms do not interleave */
1683 static DEFINE_MUTEX(oom_info_lock);
1684 struct mem_cgroup *iter;
1685 unsigned int i;
1686
1687 if (!p)
1688 return;
1689
1690 mutex_lock(&oom_info_lock);
1691 rcu_read_lock();
1692
1693 pr_info("Task in ");
1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1695 pr_info(" killed as a result of limit of ");
1696 pr_cont_cgroup_path(memcg->css.cgroup);
1697 pr_info("\n");
1698
1699 rcu_read_unlock();
1700
1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1713
1714 for_each_mem_cgroup_tree(iter, memcg) {
1715 pr_info("Memory cgroup stats for ");
1716 pr_cont_cgroup_path(iter->css.cgroup);
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
1732 mutex_unlock(&oom_info_lock);
1733}
1734
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740{
1741 int num = 0;
1742 struct mem_cgroup *iter;
1743
1744 for_each_mem_cgroup_tree(iter, memcg)
1745 num++;
1746 return num;
1747}
1748
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753{
1754 u64 limit;
1755
1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757
1758 /*
1759 * Do not consider swap space if we cannot swap due to swappiness
1760 */
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
1775}
1776
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
1779{
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
1786 /*
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
1790 */
1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
1799 struct css_task_iter it;
1800 struct task_struct *task;
1801
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
1816 css_task_iter_end(&it);
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
1825 if (!points || points < chosen_points)
1826 continue;
1827 /* Prefer thread group leaders for display purposes */
1828 if (points == chosen_points &&
1829 thread_group_leader(chosen))
1830 continue;
1831
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
1837 }
1838 css_task_iter_end(&it);
1839 }
1840
1841 if (!chosen)
1842 return;
1843 points = chosen_points * 1000 / totalpages;
1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1845 NULL, "Memory cgroup out of memory");
1846}
1847
1848static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1849 gfp_t gfp_mask,
1850 unsigned long flags)
1851{
1852 unsigned long total = 0;
1853 bool noswap = false;
1854 int loop;
1855
1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1857 noswap = true;
1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1859 noswap = true;
1860
1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1862 if (loop)
1863 drain_all_stock_async(memcg);
1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1865 /*
1866 * Allow limit shrinkers, which are triggered directly
1867 * by userspace, to catch signals and stop reclaim
1868 * after minimal progress, regardless of the margin.
1869 */
1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1871 break;
1872 if (mem_cgroup_margin(memcg))
1873 break;
1874 /*
1875 * If nothing was reclaimed after two attempts, there
1876 * may be no reclaimable pages in this hierarchy.
1877 */
1878 if (loop && !total)
1879 break;
1880 }
1881 return total;
1882}
1883
1884/**
1885 * test_mem_cgroup_node_reclaimable
1886 * @memcg: the target memcg
1887 * @nid: the node ID to be checked.
1888 * @noswap : specify true here if the user wants flle only information.
1889 *
1890 * This function returns whether the specified memcg contains any
1891 * reclaimable pages on a node. Returns true if there are any reclaimable
1892 * pages in the node.
1893 */
1894static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1895 int nid, bool noswap)
1896{
1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1898 return true;
1899 if (noswap || !total_swap_pages)
1900 return false;
1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1902 return true;
1903 return false;
1904
1905}
1906#if MAX_NUMNODES > 1
1907
1908/*
1909 * Always updating the nodemask is not very good - even if we have an empty
1910 * list or the wrong list here, we can start from some node and traverse all
1911 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 *
1913 */
1914static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1915{
1916 int nid;
1917 /*
1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1919 * pagein/pageout changes since the last update.
1920 */
1921 if (!atomic_read(&memcg->numainfo_events))
1922 return;
1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1924 return;
1925
1926 /* make a nodemask where this memcg uses memory from */
1927 memcg->scan_nodes = node_states[N_MEMORY];
1928
1929 for_each_node_mask(nid, node_states[N_MEMORY]) {
1930
1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1932 node_clear(nid, memcg->scan_nodes);
1933 }
1934
1935 atomic_set(&memcg->numainfo_events, 0);
1936 atomic_set(&memcg->numainfo_updating, 0);
1937}
1938
1939/*
1940 * Selecting a node where we start reclaim from. Because what we need is just
1941 * reducing usage counter, start from anywhere is O,K. Considering
1942 * memory reclaim from current node, there are pros. and cons.
1943 *
1944 * Freeing memory from current node means freeing memory from a node which
1945 * we'll use or we've used. So, it may make LRU bad. And if several threads
1946 * hit limits, it will see a contention on a node. But freeing from remote
1947 * node means more costs for memory reclaim because of memory latency.
1948 *
1949 * Now, we use round-robin. Better algorithm is welcomed.
1950 */
1951int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1952{
1953 int node;
1954
1955 mem_cgroup_may_update_nodemask(memcg);
1956 node = memcg->last_scanned_node;
1957
1958 node = next_node(node, memcg->scan_nodes);
1959 if (node == MAX_NUMNODES)
1960 node = first_node(memcg->scan_nodes);
1961 /*
1962 * We call this when we hit limit, not when pages are added to LRU.
1963 * No LRU may hold pages because all pages are UNEVICTABLE or
1964 * memcg is too small and all pages are not on LRU. In that case,
1965 * we use curret node.
1966 */
1967 if (unlikely(node == MAX_NUMNODES))
1968 node = numa_node_id();
1969
1970 memcg->last_scanned_node = node;
1971 return node;
1972}
1973
1974/*
1975 * Check all nodes whether it contains reclaimable pages or not.
1976 * For quick scan, we make use of scan_nodes. This will allow us to skip
1977 * unused nodes. But scan_nodes is lazily updated and may not cotain
1978 * enough new information. We need to do double check.
1979 */
1980static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981{
1982 int nid;
1983
1984 /*
1985 * quick check...making use of scan_node.
1986 * We can skip unused nodes.
1987 */
1988 if (!nodes_empty(memcg->scan_nodes)) {
1989 for (nid = first_node(memcg->scan_nodes);
1990 nid < MAX_NUMNODES;
1991 nid = next_node(nid, memcg->scan_nodes)) {
1992
1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1994 return true;
1995 }
1996 }
1997 /*
1998 * Check rest of nodes.
1999 */
2000 for_each_node_state(nid, N_MEMORY) {
2001 if (node_isset(nid, memcg->scan_nodes))
2002 continue;
2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2004 return true;
2005 }
2006 return false;
2007}
2008
2009#else
2010int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2011{
2012 return 0;
2013}
2014
2015static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2016{
2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2018}
2019#endif
2020
2021static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2022 struct zone *zone,
2023 gfp_t gfp_mask,
2024 unsigned long *total_scanned)
2025{
2026 struct mem_cgroup *victim = NULL;
2027 int total = 0;
2028 int loop = 0;
2029 unsigned long excess;
2030 unsigned long nr_scanned;
2031 struct mem_cgroup_reclaim_cookie reclaim = {
2032 .zone = zone,
2033 .priority = 0,
2034 };
2035
2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2037
2038 while (1) {
2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2040 if (!victim) {
2041 loop++;
2042 if (loop >= 2) {
2043 /*
2044 * If we have not been able to reclaim
2045 * anything, it might because there are
2046 * no reclaimable pages under this hierarchy
2047 */
2048 if (!total)
2049 break;
2050 /*
2051 * We want to do more targeted reclaim.
2052 * excess >> 2 is not to excessive so as to
2053 * reclaim too much, nor too less that we keep
2054 * coming back to reclaim from this cgroup
2055 */
2056 if (total >= (excess >> 2) ||
2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2058 break;
2059 }
2060 continue;
2061 }
2062 if (!mem_cgroup_reclaimable(victim, false))
2063 continue;
2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2065 zone, &nr_scanned);
2066 *total_scanned += nr_scanned;
2067 if (!res_counter_soft_limit_excess(&root_memcg->res))
2068 break;
2069 }
2070 mem_cgroup_iter_break(root_memcg, victim);
2071 return total;
2072}
2073
2074#ifdef CONFIG_LOCKDEP
2075static struct lockdep_map memcg_oom_lock_dep_map = {
2076 .name = "memcg_oom_lock",
2077};
2078#endif
2079
2080static DEFINE_SPINLOCK(memcg_oom_lock);
2081
2082/*
2083 * Check OOM-Killer is already running under our hierarchy.
2084 * If someone is running, return false.
2085 */
2086static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2087{
2088 struct mem_cgroup *iter, *failed = NULL;
2089
2090 spin_lock(&memcg_oom_lock);
2091
2092 for_each_mem_cgroup_tree(iter, memcg) {
2093 if (iter->oom_lock) {
2094 /*
2095 * this subtree of our hierarchy is already locked
2096 * so we cannot give a lock.
2097 */
2098 failed = iter;
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 } else
2102 iter->oom_lock = true;
2103 }
2104
2105 if (failed) {
2106 /*
2107 * OK, we failed to lock the whole subtree so we have
2108 * to clean up what we set up to the failing subtree
2109 */
2110 for_each_mem_cgroup_tree(iter, memcg) {
2111 if (iter == failed) {
2112 mem_cgroup_iter_break(memcg, iter);
2113 break;
2114 }
2115 iter->oom_lock = false;
2116 }
2117 } else
2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2119
2120 spin_unlock(&memcg_oom_lock);
2121
2122 return !failed;
2123}
2124
2125static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2126{
2127 struct mem_cgroup *iter;
2128
2129 spin_lock(&memcg_oom_lock);
2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 iter->oom_lock = false;
2133 spin_unlock(&memcg_oom_lock);
2134}
2135
2136static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2137{
2138 struct mem_cgroup *iter;
2139
2140 for_each_mem_cgroup_tree(iter, memcg)
2141 atomic_inc(&iter->under_oom);
2142}
2143
2144static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2145{
2146 struct mem_cgroup *iter;
2147
2148 /*
2149 * When a new child is created while the hierarchy is under oom,
2150 * mem_cgroup_oom_lock() may not be called. We have to use
2151 * atomic_add_unless() here.
2152 */
2153 for_each_mem_cgroup_tree(iter, memcg)
2154 atomic_add_unless(&iter->under_oom, -1, 0);
2155}
2156
2157static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2158
2159struct oom_wait_info {
2160 struct mem_cgroup *memcg;
2161 wait_queue_t wait;
2162};
2163
2164static int memcg_oom_wake_function(wait_queue_t *wait,
2165 unsigned mode, int sync, void *arg)
2166{
2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2168 struct mem_cgroup *oom_wait_memcg;
2169 struct oom_wait_info *oom_wait_info;
2170
2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2172 oom_wait_memcg = oom_wait_info->memcg;
2173
2174 /*
2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2176 * Then we can use css_is_ancestor without taking care of RCU.
2177 */
2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2180 return 0;
2181 return autoremove_wake_function(wait, mode, sync, arg);
2182}
2183
2184static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2185{
2186 atomic_inc(&memcg->oom_wakeups);
2187 /* for filtering, pass "memcg" as argument. */
2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2189}
2190
2191static void memcg_oom_recover(struct mem_cgroup *memcg)
2192{
2193 if (memcg && atomic_read(&memcg->under_oom))
2194 memcg_wakeup_oom(memcg);
2195}
2196
2197static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2198{
2199 if (!current->memcg_oom.may_oom)
2200 return;
2201 /*
2202 * We are in the middle of the charge context here, so we
2203 * don't want to block when potentially sitting on a callstack
2204 * that holds all kinds of filesystem and mm locks.
2205 *
2206 * Also, the caller may handle a failed allocation gracefully
2207 * (like optional page cache readahead) and so an OOM killer
2208 * invocation might not even be necessary.
2209 *
2210 * That's why we don't do anything here except remember the
2211 * OOM context and then deal with it at the end of the page
2212 * fault when the stack is unwound, the locks are released,
2213 * and when we know whether the fault was overall successful.
2214 */
2215 css_get(&memcg->css);
2216 current->memcg_oom.memcg = memcg;
2217 current->memcg_oom.gfp_mask = mask;
2218 current->memcg_oom.order = order;
2219}
2220
2221/**
2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2223 * @handle: actually kill/wait or just clean up the OOM state
2224 *
2225 * This has to be called at the end of a page fault if the memcg OOM
2226 * handler was enabled.
2227 *
2228 * Memcg supports userspace OOM handling where failed allocations must
2229 * sleep on a waitqueue until the userspace task resolves the
2230 * situation. Sleeping directly in the charge context with all kinds
2231 * of locks held is not a good idea, instead we remember an OOM state
2232 * in the task and mem_cgroup_oom_synchronize() has to be called at
2233 * the end of the page fault to complete the OOM handling.
2234 *
2235 * Returns %true if an ongoing memcg OOM situation was detected and
2236 * completed, %false otherwise.
2237 */
2238bool mem_cgroup_oom_synchronize(bool handle)
2239{
2240 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2241 struct oom_wait_info owait;
2242 bool locked;
2243
2244 /* OOM is global, do not handle */
2245 if (!memcg)
2246 return false;
2247
2248 if (!handle)
2249 goto cleanup;
2250
2251 owait.memcg = memcg;
2252 owait.wait.flags = 0;
2253 owait.wait.func = memcg_oom_wake_function;
2254 owait.wait.private = current;
2255 INIT_LIST_HEAD(&owait.wait.task_list);
2256
2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2258 mem_cgroup_mark_under_oom(memcg);
2259
2260 locked = mem_cgroup_oom_trylock(memcg);
2261
2262 if (locked)
2263 mem_cgroup_oom_notify(memcg);
2264
2265 if (locked && !memcg->oom_kill_disable) {
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2269 current->memcg_oom.order);
2270 } else {
2271 schedule();
2272 mem_cgroup_unmark_under_oom(memcg);
2273 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 }
2275
2276 if (locked) {
2277 mem_cgroup_oom_unlock(memcg);
2278 /*
2279 * There is no guarantee that an OOM-lock contender
2280 * sees the wakeups triggered by the OOM kill
2281 * uncharges. Wake any sleepers explicitely.
2282 */
2283 memcg_oom_recover(memcg);
2284 }
2285cleanup:
2286 current->memcg_oom.memcg = NULL;
2287 css_put(&memcg->css);
2288 return true;
2289}
2290
2291/*
2292 * Currently used to update mapped file statistics, but the routine can be
2293 * generalized to update other statistics as well.
2294 *
2295 * Notes: Race condition
2296 *
2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2298 * it tends to be costly. But considering some conditions, we doesn't need
2299 * to do so _always_.
2300 *
2301 * Considering "charge", lock_page_cgroup() is not required because all
2302 * file-stat operations happen after a page is attached to radix-tree. There
2303 * are no race with "charge".
2304 *
2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2307 * if there are race with "uncharge". Statistics itself is properly handled
2308 * by flags.
2309 *
2310 * Considering "move", this is an only case we see a race. To make the race
2311 * small, we check mm->moving_account and detect there are possibility of race
2312 * If there is, we take a lock.
2313 */
2314
2315void __mem_cgroup_begin_update_page_stat(struct page *page,
2316 bool *locked, unsigned long *flags)
2317{
2318 struct mem_cgroup *memcg;
2319 struct page_cgroup *pc;
2320
2321 pc = lookup_page_cgroup(page);
2322again:
2323 memcg = pc->mem_cgroup;
2324 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2325 return;
2326 /*
2327 * If this memory cgroup is not under account moving, we don't
2328 * need to take move_lock_mem_cgroup(). Because we already hold
2329 * rcu_read_lock(), any calls to move_account will be delayed until
2330 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2331 */
2332 if (!mem_cgroup_stolen(memcg))
2333 return;
2334
2335 move_lock_mem_cgroup(memcg, flags);
2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2337 move_unlock_mem_cgroup(memcg, flags);
2338 goto again;
2339 }
2340 *locked = true;
2341}
2342
2343void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2344{
2345 struct page_cgroup *pc = lookup_page_cgroup(page);
2346
2347 /*
2348 * It's guaranteed that pc->mem_cgroup never changes while
2349 * lock is held because a routine modifies pc->mem_cgroup
2350 * should take move_lock_mem_cgroup().
2351 */
2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353}
2354
2355void mem_cgroup_update_page_stat(struct page *page,
2356 enum mem_cgroup_stat_index idx, int val)
2357{
2358 struct mem_cgroup *memcg;
2359 struct page_cgroup *pc = lookup_page_cgroup(page);
2360 unsigned long uninitialized_var(flags);
2361
2362 if (mem_cgroup_disabled())
2363 return;
2364
2365 VM_BUG_ON(!rcu_read_lock_held());
2366 memcg = pc->mem_cgroup;
2367 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2368 return;
2369
2370 this_cpu_add(memcg->stat->count[idx], val);
2371}
2372
2373/*
2374 * size of first charge trial. "32" comes from vmscan.c's magic value.
2375 * TODO: maybe necessary to use big numbers in big irons.
2376 */
2377#define CHARGE_BATCH 32U
2378struct memcg_stock_pcp {
2379 struct mem_cgroup *cached; /* this never be root cgroup */
2380 unsigned int nr_pages;
2381 struct work_struct work;
2382 unsigned long flags;
2383#define FLUSHING_CACHED_CHARGE 0
2384};
2385static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2386static DEFINE_MUTEX(percpu_charge_mutex);
2387
2388/**
2389 * consume_stock: Try to consume stocked charge on this cpu.
2390 * @memcg: memcg to consume from.
2391 * @nr_pages: how many pages to charge.
2392 *
2393 * The charges will only happen if @memcg matches the current cpu's memcg
2394 * stock, and at least @nr_pages are available in that stock. Failure to
2395 * service an allocation will refill the stock.
2396 *
2397 * returns true if successful, false otherwise.
2398 */
2399static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400{
2401 struct memcg_stock_pcp *stock;
2402 bool ret = true;
2403
2404 if (nr_pages > CHARGE_BATCH)
2405 return false;
2406
2407 stock = &get_cpu_var(memcg_stock);
2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2409 stock->nr_pages -= nr_pages;
2410 else /* need to call res_counter_charge */
2411 ret = false;
2412 put_cpu_var(memcg_stock);
2413 return ret;
2414}
2415
2416/*
2417 * Returns stocks cached in percpu to res_counter and reset cached information.
2418 */
2419static void drain_stock(struct memcg_stock_pcp *stock)
2420{
2421 struct mem_cgroup *old = stock->cached;
2422
2423 if (stock->nr_pages) {
2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2425
2426 res_counter_uncharge(&old->res, bytes);
2427 if (do_swap_account)
2428 res_counter_uncharge(&old->memsw, bytes);
2429 stock->nr_pages = 0;
2430 }
2431 stock->cached = NULL;
2432}
2433
2434/*
2435 * This must be called under preempt disabled or must be called by
2436 * a thread which is pinned to local cpu.
2437 */
2438static void drain_local_stock(struct work_struct *dummy)
2439{
2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2441 drain_stock(stock);
2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2443}
2444
2445static void __init memcg_stock_init(void)
2446{
2447 int cpu;
2448
2449 for_each_possible_cpu(cpu) {
2450 struct memcg_stock_pcp *stock =
2451 &per_cpu(memcg_stock, cpu);
2452 INIT_WORK(&stock->work, drain_local_stock);
2453 }
2454}
2455
2456/*
2457 * Cache charges(val) which is from res_counter, to local per_cpu area.
2458 * This will be consumed by consume_stock() function, later.
2459 */
2460static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2461{
2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2463
2464 if (stock->cached != memcg) { /* reset if necessary */
2465 drain_stock(stock);
2466 stock->cached = memcg;
2467 }
2468 stock->nr_pages += nr_pages;
2469 put_cpu_var(memcg_stock);
2470}
2471
2472/*
2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2474 * of the hierarchy under it. sync flag says whether we should block
2475 * until the work is done.
2476 */
2477static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2478{
2479 int cpu, curcpu;
2480
2481 /* Notify other cpus that system-wide "drain" is running */
2482 get_online_cpus();
2483 curcpu = get_cpu();
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486 struct mem_cgroup *memcg;
2487
2488 memcg = stock->cached;
2489 if (!memcg || !stock->nr_pages)
2490 continue;
2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2492 continue;
2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2494 if (cpu == curcpu)
2495 drain_local_stock(&stock->work);
2496 else
2497 schedule_work_on(cpu, &stock->work);
2498 }
2499 }
2500 put_cpu();
2501
2502 if (!sync)
2503 goto out;
2504
2505 for_each_online_cpu(cpu) {
2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2508 flush_work(&stock->work);
2509 }
2510out:
2511 put_online_cpus();
2512}
2513
2514/*
2515 * Tries to drain stocked charges in other cpus. This function is asynchronous
2516 * and just put a work per cpu for draining localy on each cpu. Caller can
2517 * expects some charges will be back to res_counter later but cannot wait for
2518 * it.
2519 */
2520static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2521{
2522 /*
2523 * If someone calls draining, avoid adding more kworker runs.
2524 */
2525 if (!mutex_trylock(&percpu_charge_mutex))
2526 return;
2527 drain_all_stock(root_memcg, false);
2528 mutex_unlock(&percpu_charge_mutex);
2529}
2530
2531/* This is a synchronous drain interface. */
2532static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2533{
2534 /* called when force_empty is called */
2535 mutex_lock(&percpu_charge_mutex);
2536 drain_all_stock(root_memcg, true);
2537 mutex_unlock(&percpu_charge_mutex);
2538}
2539
2540/*
2541 * This function drains percpu counter value from DEAD cpu and
2542 * move it to local cpu. Note that this function can be preempted.
2543 */
2544static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2545{
2546 int i;
2547
2548 spin_lock(&memcg->pcp_counter_lock);
2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2550 long x = per_cpu(memcg->stat->count[i], cpu);
2551
2552 per_cpu(memcg->stat->count[i], cpu) = 0;
2553 memcg->nocpu_base.count[i] += x;
2554 }
2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2557
2558 per_cpu(memcg->stat->events[i], cpu) = 0;
2559 memcg->nocpu_base.events[i] += x;
2560 }
2561 spin_unlock(&memcg->pcp_counter_lock);
2562}
2563
2564static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2565 unsigned long action,
2566 void *hcpu)
2567{
2568 int cpu = (unsigned long)hcpu;
2569 struct memcg_stock_pcp *stock;
2570 struct mem_cgroup *iter;
2571
2572 if (action == CPU_ONLINE)
2573 return NOTIFY_OK;
2574
2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2576 return NOTIFY_OK;
2577
2578 for_each_mem_cgroup(iter)
2579 mem_cgroup_drain_pcp_counter(iter, cpu);
2580
2581 stock = &per_cpu(memcg_stock, cpu);
2582 drain_stock(stock);
2583 return NOTIFY_OK;
2584}
2585
2586
2587/* See mem_cgroup_try_charge() for details */
2588enum {
2589 CHARGE_OK, /* success */
2590 CHARGE_RETRY, /* need to retry but retry is not bad */
2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2593};
2594
2595static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2596 unsigned int nr_pages, unsigned int min_pages,
2597 bool invoke_oom)
2598{
2599 unsigned long csize = nr_pages * PAGE_SIZE;
2600 struct mem_cgroup *mem_over_limit;
2601 struct res_counter *fail_res;
2602 unsigned long flags = 0;
2603 int ret;
2604
2605 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2606
2607 if (likely(!ret)) {
2608 if (!do_swap_account)
2609 return CHARGE_OK;
2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2611 if (likely(!ret))
2612 return CHARGE_OK;
2613
2614 res_counter_uncharge(&memcg->res, csize);
2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2617 } else
2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2619 /*
2620 * Never reclaim on behalf of optional batching, retry with a
2621 * single page instead.
2622 */
2623 if (nr_pages > min_pages)
2624 return CHARGE_RETRY;
2625
2626 if (!(gfp_mask & __GFP_WAIT))
2627 return CHARGE_WOULDBLOCK;
2628
2629 if (gfp_mask & __GFP_NORETRY)
2630 return CHARGE_NOMEM;
2631
2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2634 return CHARGE_RETRY;
2635 /*
2636 * Even though the limit is exceeded at this point, reclaim
2637 * may have been able to free some pages. Retry the charge
2638 * before killing the task.
2639 *
2640 * Only for regular pages, though: huge pages are rather
2641 * unlikely to succeed so close to the limit, and we fall back
2642 * to regular pages anyway in case of failure.
2643 */
2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2645 return CHARGE_RETRY;
2646
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 return CHARGE_RETRY;
2653
2654 if (invoke_oom)
2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2656
2657 return CHARGE_NOMEM;
2658}
2659
2660/**
2661 * mem_cgroup_try_charge - try charging a memcg
2662 * @memcg: memcg to charge
2663 * @nr_pages: number of pages to charge
2664 * @oom: trigger OOM if reclaim fails
2665 *
2666 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2667 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2668 */
2669static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2670 gfp_t gfp_mask,
2671 unsigned int nr_pages,
2672 bool oom)
2673{
2674 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2675 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2676 int ret;
2677
2678 if (mem_cgroup_is_root(memcg))
2679 goto done;
2680 /*
2681 * Unlike in global OOM situations, memcg is not in a physical
2682 * memory shortage. Allow dying and OOM-killed tasks to
2683 * bypass the last charges so that they can exit quickly and
2684 * free their memory.
2685 */
2686 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2687 fatal_signal_pending(current)))
2688 goto bypass;
2689
2690 if (unlikely(task_in_memcg_oom(current)))
2691 goto nomem;
2692
2693 if (gfp_mask & __GFP_NOFAIL)
2694 oom = false;
2695again:
2696 if (consume_stock(memcg, nr_pages))
2697 goto done;
2698
2699 do {
2700 bool invoke_oom = oom && !nr_oom_retries;
2701
2702 /* If killed, bypass charge */
2703 if (fatal_signal_pending(current))
2704 goto bypass;
2705
2706 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2707 nr_pages, invoke_oom);
2708 switch (ret) {
2709 case CHARGE_OK:
2710 break;
2711 case CHARGE_RETRY: /* not in OOM situation but retry */
2712 batch = nr_pages;
2713 goto again;
2714 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2715 goto nomem;
2716 case CHARGE_NOMEM: /* OOM routine works */
2717 if (!oom || invoke_oom)
2718 goto nomem;
2719 nr_oom_retries--;
2720 break;
2721 }
2722 } while (ret != CHARGE_OK);
2723
2724 if (batch > nr_pages)
2725 refill_stock(memcg, batch - nr_pages);
2726done:
2727 return 0;
2728nomem:
2729 if (!(gfp_mask & __GFP_NOFAIL))
2730 return -ENOMEM;
2731bypass:
2732 return -EINTR;
2733}
2734
2735/**
2736 * mem_cgroup_try_charge_mm - try charging a mm
2737 * @mm: mm_struct to charge
2738 * @nr_pages: number of pages to charge
2739 * @oom: trigger OOM if reclaim fails
2740 *
2741 * Returns the charged mem_cgroup associated with the given mm_struct or
2742 * NULL the charge failed.
2743 */
2744static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2745 gfp_t gfp_mask,
2746 unsigned int nr_pages,
2747 bool oom)
2748
2749{
2750 struct mem_cgroup *memcg;
2751 int ret;
2752
2753 memcg = get_mem_cgroup_from_mm(mm);
2754 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2755 css_put(&memcg->css);
2756 if (ret == -EINTR)
2757 memcg = root_mem_cgroup;
2758 else if (ret)
2759 memcg = NULL;
2760
2761 return memcg;
2762}
2763
2764/*
2765 * Somemtimes we have to undo a charge we got by try_charge().
2766 * This function is for that and do uncharge, put css's refcnt.
2767 * gotten by try_charge().
2768 */
2769static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2770 unsigned int nr_pages)
2771{
2772 if (!mem_cgroup_is_root(memcg)) {
2773 unsigned long bytes = nr_pages * PAGE_SIZE;
2774
2775 res_counter_uncharge(&memcg->res, bytes);
2776 if (do_swap_account)
2777 res_counter_uncharge(&memcg->memsw, bytes);
2778 }
2779}
2780
2781/*
2782 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2783 * This is useful when moving usage to parent cgroup.
2784 */
2785static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2786 unsigned int nr_pages)
2787{
2788 unsigned long bytes = nr_pages * PAGE_SIZE;
2789
2790 if (mem_cgroup_is_root(memcg))
2791 return;
2792
2793 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2794 if (do_swap_account)
2795 res_counter_uncharge_until(&memcg->memsw,
2796 memcg->memsw.parent, bytes);
2797}
2798
2799/*
2800 * A helper function to get mem_cgroup from ID. must be called under
2801 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2802 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2803 * called against removed memcg.)
2804 */
2805static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2806{
2807 /* ID 0 is unused ID */
2808 if (!id)
2809 return NULL;
2810 return mem_cgroup_from_id(id);
2811}
2812
2813struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2814{
2815 struct mem_cgroup *memcg = NULL;
2816 struct page_cgroup *pc;
2817 unsigned short id;
2818 swp_entry_t ent;
2819
2820 VM_BUG_ON_PAGE(!PageLocked(page), page);
2821
2822 pc = lookup_page_cgroup(page);
2823 lock_page_cgroup(pc);
2824 if (PageCgroupUsed(pc)) {
2825 memcg = pc->mem_cgroup;
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
2828 } else if (PageSwapCache(page)) {
2829 ent.val = page_private(page);
2830 id = lookup_swap_cgroup_id(ent);
2831 rcu_read_lock();
2832 memcg = mem_cgroup_lookup(id);
2833 if (memcg && !css_tryget(&memcg->css))
2834 memcg = NULL;
2835 rcu_read_unlock();
2836 }
2837 unlock_page_cgroup(pc);
2838 return memcg;
2839}
2840
2841static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2842 struct page *page,
2843 unsigned int nr_pages,
2844 enum charge_type ctype,
2845 bool lrucare)
2846{
2847 struct page_cgroup *pc = lookup_page_cgroup(page);
2848 struct zone *uninitialized_var(zone);
2849 struct lruvec *lruvec;
2850 bool was_on_lru = false;
2851 bool anon;
2852
2853 lock_page_cgroup(pc);
2854 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2855 /*
2856 * we don't need page_cgroup_lock about tail pages, becase they are not
2857 * accessed by any other context at this point.
2858 */
2859
2860 /*
2861 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2862 * may already be on some other mem_cgroup's LRU. Take care of it.
2863 */
2864 if (lrucare) {
2865 zone = page_zone(page);
2866 spin_lock_irq(&zone->lru_lock);
2867 if (PageLRU(page)) {
2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2869 ClearPageLRU(page);
2870 del_page_from_lru_list(page, lruvec, page_lru(page));
2871 was_on_lru = true;
2872 }
2873 }
2874
2875 pc->mem_cgroup = memcg;
2876 /*
2877 * We access a page_cgroup asynchronously without lock_page_cgroup().
2878 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2879 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2880 * before USED bit, we need memory barrier here.
2881 * See mem_cgroup_add_lru_list(), etc.
2882 */
2883 smp_wmb();
2884 SetPageCgroupUsed(pc);
2885
2886 if (lrucare) {
2887 if (was_on_lru) {
2888 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2889 VM_BUG_ON_PAGE(PageLRU(page), page);
2890 SetPageLRU(page);
2891 add_page_to_lru_list(page, lruvec, page_lru(page));
2892 }
2893 spin_unlock_irq(&zone->lru_lock);
2894 }
2895
2896 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2897 anon = true;
2898 else
2899 anon = false;
2900
2901 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2902 unlock_page_cgroup(pc);
2903
2904 /*
2905 * "charge_statistics" updated event counter. Then, check it.
2906 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2907 * if they exceeds softlimit.
2908 */
2909 memcg_check_events(memcg, page);
2910}
2911
2912static DEFINE_MUTEX(set_limit_mutex);
2913
2914#ifdef CONFIG_MEMCG_KMEM
2915static DEFINE_MUTEX(activate_kmem_mutex);
2916
2917static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2918{
2919 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2920 memcg_kmem_is_active(memcg);
2921}
2922
2923/*
2924 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2925 * in the memcg_cache_params struct.
2926 */
2927static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2928{
2929 struct kmem_cache *cachep;
2930
2931 VM_BUG_ON(p->is_root_cache);
2932 cachep = p->root_cache;
2933 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2934}
2935
2936#ifdef CONFIG_SLABINFO
2937static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2938{
2939 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2940 struct memcg_cache_params *params;
2941
2942 if (!memcg_can_account_kmem(memcg))
2943 return -EIO;
2944
2945 print_slabinfo_header(m);
2946
2947 mutex_lock(&memcg->slab_caches_mutex);
2948 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2949 cache_show(memcg_params_to_cache(params), m);
2950 mutex_unlock(&memcg->slab_caches_mutex);
2951
2952 return 0;
2953}
2954#endif
2955
2956static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2957{
2958 struct res_counter *fail_res;
2959 int ret = 0;
2960
2961 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2962 if (ret)
2963 return ret;
2964
2965 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2966 oom_gfp_allowed(gfp));
2967 if (ret == -EINTR) {
2968 /*
2969 * mem_cgroup_try_charge() chosed to bypass to root due to
2970 * OOM kill or fatal signal. Since our only options are to
2971 * either fail the allocation or charge it to this cgroup, do
2972 * it as a temporary condition. But we can't fail. From a
2973 * kmem/slab perspective, the cache has already been selected,
2974 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2975 * our minds.
2976 *
2977 * This condition will only trigger if the task entered
2978 * memcg_charge_kmem in a sane state, but was OOM-killed during
2979 * mem_cgroup_try_charge() above. Tasks that were already
2980 * dying when the allocation triggers should have been already
2981 * directed to the root cgroup in memcontrol.h
2982 */
2983 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2984 if (do_swap_account)
2985 res_counter_charge_nofail(&memcg->memsw, size,
2986 &fail_res);
2987 ret = 0;
2988 } else if (ret)
2989 res_counter_uncharge(&memcg->kmem, size);
2990
2991 return ret;
2992}
2993
2994static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2995{
2996 res_counter_uncharge(&memcg->res, size);
2997 if (do_swap_account)
2998 res_counter_uncharge(&memcg->memsw, size);
2999
3000 /* Not down to 0 */
3001 if (res_counter_uncharge(&memcg->kmem, size))
3002 return;
3003
3004 /*
3005 * Releases a reference taken in kmem_cgroup_css_offline in case
3006 * this last uncharge is racing with the offlining code or it is
3007 * outliving the memcg existence.
3008 *
3009 * The memory barrier imposed by test&clear is paired with the
3010 * explicit one in memcg_kmem_mark_dead().
3011 */
3012 if (memcg_kmem_test_and_clear_dead(memcg))
3013 css_put(&memcg->css);
3014}
3015
3016/*
3017 * helper for acessing a memcg's index. It will be used as an index in the
3018 * child cache array in kmem_cache, and also to derive its name. This function
3019 * will return -1 when this is not a kmem-limited memcg.
3020 */
3021int memcg_cache_id(struct mem_cgroup *memcg)
3022{
3023 return memcg ? memcg->kmemcg_id : -1;
3024}
3025
3026static size_t memcg_caches_array_size(int num_groups)
3027{
3028 ssize_t size;
3029 if (num_groups <= 0)
3030 return 0;
3031
3032 size = 2 * num_groups;
3033 if (size < MEMCG_CACHES_MIN_SIZE)
3034 size = MEMCG_CACHES_MIN_SIZE;
3035 else if (size > MEMCG_CACHES_MAX_SIZE)
3036 size = MEMCG_CACHES_MAX_SIZE;
3037
3038 return size;
3039}
3040
3041/*
3042 * We should update the current array size iff all caches updates succeed. This
3043 * can only be done from the slab side. The slab mutex needs to be held when
3044 * calling this.
3045 */
3046void memcg_update_array_size(int num)
3047{
3048 if (num > memcg_limited_groups_array_size)
3049 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3050}
3051
3052static void kmem_cache_destroy_work_func(struct work_struct *w);
3053
3054int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3055{
3056 struct memcg_cache_params *cur_params = s->memcg_params;
3057
3058 VM_BUG_ON(!is_root_cache(s));
3059
3060 if (num_groups > memcg_limited_groups_array_size) {
3061 int i;
3062 struct memcg_cache_params *new_params;
3063 ssize_t size = memcg_caches_array_size(num_groups);
3064
3065 size *= sizeof(void *);
3066 size += offsetof(struct memcg_cache_params, memcg_caches);
3067
3068 new_params = kzalloc(size, GFP_KERNEL);
3069 if (!new_params)
3070 return -ENOMEM;
3071
3072 new_params->is_root_cache = true;
3073
3074 /*
3075 * There is the chance it will be bigger than
3076 * memcg_limited_groups_array_size, if we failed an allocation
3077 * in a cache, in which case all caches updated before it, will
3078 * have a bigger array.
3079 *
3080 * But if that is the case, the data after
3081 * memcg_limited_groups_array_size is certainly unused
3082 */
3083 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3084 if (!cur_params->memcg_caches[i])
3085 continue;
3086 new_params->memcg_caches[i] =
3087 cur_params->memcg_caches[i];
3088 }
3089
3090 /*
3091 * Ideally, we would wait until all caches succeed, and only
3092 * then free the old one. But this is not worth the extra
3093 * pointer per-cache we'd have to have for this.
3094 *
3095 * It is not a big deal if some caches are left with a size
3096 * bigger than the others. And all updates will reset this
3097 * anyway.
3098 */
3099 rcu_assign_pointer(s->memcg_params, new_params);
3100 if (cur_params)
3101 kfree_rcu(cur_params, rcu_head);
3102 }
3103 return 0;
3104}
3105
3106char *memcg_create_cache_name(struct mem_cgroup *memcg,
3107 struct kmem_cache *root_cache)
3108{
3109 static char *buf = NULL;
3110
3111 /*
3112 * We need a mutex here to protect the shared buffer. Since this is
3113 * expected to be called only on cache creation, we can employ the
3114 * slab_mutex for that purpose.
3115 */
3116 lockdep_assert_held(&slab_mutex);
3117
3118 if (!buf) {
3119 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3120 if (!buf)
3121 return NULL;
3122 }
3123
3124 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3125 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3126 memcg_cache_id(memcg), buf);
3127}
3128
3129int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3130 struct kmem_cache *root_cache)
3131{
3132 size_t size;
3133
3134 if (!memcg_kmem_enabled())
3135 return 0;
3136
3137 if (!memcg) {
3138 size = offsetof(struct memcg_cache_params, memcg_caches);
3139 size += memcg_limited_groups_array_size * sizeof(void *);
3140 } else
3141 size = sizeof(struct memcg_cache_params);
3142
3143 s->memcg_params = kzalloc(size, GFP_KERNEL);
3144 if (!s->memcg_params)
3145 return -ENOMEM;
3146
3147 if (memcg) {
3148 s->memcg_params->memcg = memcg;
3149 s->memcg_params->root_cache = root_cache;
3150 INIT_WORK(&s->memcg_params->destroy,
3151 kmem_cache_destroy_work_func);
3152 css_get(&memcg->css);
3153 } else
3154 s->memcg_params->is_root_cache = true;
3155
3156 return 0;
3157}
3158
3159void memcg_free_cache_params(struct kmem_cache *s)
3160{
3161 if (!s->memcg_params)
3162 return;
3163 if (!s->memcg_params->is_root_cache)
3164 css_put(&s->memcg_params->memcg->css);
3165 kfree(s->memcg_params);
3166}
3167
3168void memcg_register_cache(struct kmem_cache *s)
3169{
3170 struct kmem_cache *root;
3171 struct mem_cgroup *memcg;
3172 int id;
3173
3174 if (is_root_cache(s))
3175 return;
3176
3177 /*
3178 * Holding the slab_mutex assures nobody will touch the memcg_caches
3179 * array while we are modifying it.
3180 */
3181 lockdep_assert_held(&slab_mutex);
3182
3183 root = s->memcg_params->root_cache;
3184 memcg = s->memcg_params->memcg;
3185 id = memcg_cache_id(memcg);
3186
3187 /*
3188 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3189 * barrier here to ensure nobody will see the kmem_cache partially
3190 * initialized.
3191 */
3192 smp_wmb();
3193
3194 /*
3195 * Initialize the pointer to this cache in its parent's memcg_params
3196 * before adding it to the memcg_slab_caches list, otherwise we can
3197 * fail to convert memcg_params_to_cache() while traversing the list.
3198 */
3199 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3200 root->memcg_params->memcg_caches[id] = s;
3201
3202 mutex_lock(&memcg->slab_caches_mutex);
3203 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3204 mutex_unlock(&memcg->slab_caches_mutex);
3205}
3206
3207void memcg_unregister_cache(struct kmem_cache *s)
3208{
3209 struct kmem_cache *root;
3210 struct mem_cgroup *memcg;
3211 int id;
3212
3213 if (is_root_cache(s))
3214 return;
3215
3216 /*
3217 * Holding the slab_mutex assures nobody will touch the memcg_caches
3218 * array while we are modifying it.
3219 */
3220 lockdep_assert_held(&slab_mutex);
3221
3222 root = s->memcg_params->root_cache;
3223 memcg = s->memcg_params->memcg;
3224 id = memcg_cache_id(memcg);
3225
3226 mutex_lock(&memcg->slab_caches_mutex);
3227 list_del(&s->memcg_params->list);
3228 mutex_unlock(&memcg->slab_caches_mutex);
3229
3230 /*
3231 * Clear the pointer to this cache in its parent's memcg_params only
3232 * after removing it from the memcg_slab_caches list, otherwise we can
3233 * fail to convert memcg_params_to_cache() while traversing the list.
3234 */
3235 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
3236 root->memcg_params->memcg_caches[id] = NULL;
3237}
3238
3239/*
3240 * During the creation a new cache, we need to disable our accounting mechanism
3241 * altogether. This is true even if we are not creating, but rather just
3242 * enqueing new caches to be created.
3243 *
3244 * This is because that process will trigger allocations; some visible, like
3245 * explicit kmallocs to auxiliary data structures, name strings and internal
3246 * cache structures; some well concealed, like INIT_WORK() that can allocate
3247 * objects during debug.
3248 *
3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3250 * to it. This may not be a bounded recursion: since the first cache creation
3251 * failed to complete (waiting on the allocation), we'll just try to create the
3252 * cache again, failing at the same point.
3253 *
3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3256 * inside the following two functions.
3257 */
3258static inline void memcg_stop_kmem_account(void)
3259{
3260 VM_BUG_ON(!current->mm);
3261 current->memcg_kmem_skip_account++;
3262}
3263
3264static inline void memcg_resume_kmem_account(void)
3265{
3266 VM_BUG_ON(!current->mm);
3267 current->memcg_kmem_skip_account--;
3268}
3269
3270static void kmem_cache_destroy_work_func(struct work_struct *w)
3271{
3272 struct kmem_cache *cachep;
3273 struct memcg_cache_params *p;
3274
3275 p = container_of(w, struct memcg_cache_params, destroy);
3276
3277 cachep = memcg_params_to_cache(p);
3278
3279 /*
3280 * If we get down to 0 after shrink, we could delete right away.
3281 * However, memcg_release_pages() already puts us back in the workqueue
3282 * in that case. If we proceed deleting, we'll get a dangling
3283 * reference, and removing the object from the workqueue in that case
3284 * is unnecessary complication. We are not a fast path.
3285 *
3286 * Note that this case is fundamentally different from racing with
3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3288 * kmem_cache_shrink, not only we would be reinserting a dead cache
3289 * into the queue, but doing so from inside the worker racing to
3290 * destroy it.
3291 *
3292 * So if we aren't down to zero, we'll just schedule a worker and try
3293 * again
3294 */
3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3296 kmem_cache_shrink(cachep);
3297 else
3298 kmem_cache_destroy(cachep);
3299}
3300
3301void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3302{
3303 if (!cachep->memcg_params->dead)
3304 return;
3305
3306 /*
3307 * There are many ways in which we can get here.
3308 *
3309 * We can get to a memory-pressure situation while the delayed work is
3310 * still pending to run. The vmscan shrinkers can then release all
3311 * cache memory and get us to destruction. If this is the case, we'll
3312 * be executed twice, which is a bug (the second time will execute over
3313 * bogus data). In this case, cancelling the work should be fine.
3314 *
3315 * But we can also get here from the worker itself, if
3316 * kmem_cache_shrink is enough to shake all the remaining objects and
3317 * get the page count to 0. In this case, we'll deadlock if we try to
3318 * cancel the work (the worker runs with an internal lock held, which
3319 * is the same lock we would hold for cancel_work_sync().)
3320 *
3321 * Since we can't possibly know who got us here, just refrain from
3322 * running if there is already work pending
3323 */
3324 if (work_pending(&cachep->memcg_params->destroy))
3325 return;
3326 /*
3327 * We have to defer the actual destroying to a workqueue, because
3328 * we might currently be in a context that cannot sleep.
3329 */
3330 schedule_work(&cachep->memcg_params->destroy);
3331}
3332
3333int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3334{
3335 struct kmem_cache *c;
3336 int i, failed = 0;
3337
3338 /*
3339 * If the cache is being destroyed, we trust that there is no one else
3340 * requesting objects from it. Even if there are, the sanity checks in
3341 * kmem_cache_destroy should caught this ill-case.
3342 *
3343 * Still, we don't want anyone else freeing memcg_caches under our
3344 * noses, which can happen if a new memcg comes to life. As usual,
3345 * we'll take the activate_kmem_mutex to protect ourselves against
3346 * this.
3347 */
3348 mutex_lock(&activate_kmem_mutex);
3349 for_each_memcg_cache_index(i) {
3350 c = cache_from_memcg_idx(s, i);
3351 if (!c)
3352 continue;
3353
3354 /*
3355 * We will now manually delete the caches, so to avoid races
3356 * we need to cancel all pending destruction workers and
3357 * proceed with destruction ourselves.
3358 *
3359 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3360 * and that could spawn the workers again: it is likely that
3361 * the cache still have active pages until this very moment.
3362 * This would lead us back to mem_cgroup_destroy_cache.
3363 *
3364 * But that will not execute at all if the "dead" flag is not
3365 * set, so flip it down to guarantee we are in control.
3366 */
3367 c->memcg_params->dead = false;
3368 cancel_work_sync(&c->memcg_params->destroy);
3369 kmem_cache_destroy(c);
3370
3371 if (cache_from_memcg_idx(s, i))
3372 failed++;
3373 }
3374 mutex_unlock(&activate_kmem_mutex);
3375 return failed;
3376}
3377
3378static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3379{
3380 struct kmem_cache *cachep;
3381 struct memcg_cache_params *params;
3382
3383 if (!memcg_kmem_is_active(memcg))
3384 return;
3385
3386 mutex_lock(&memcg->slab_caches_mutex);
3387 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3388 cachep = memcg_params_to_cache(params);
3389 cachep->memcg_params->dead = true;
3390 schedule_work(&cachep->memcg_params->destroy);
3391 }
3392 mutex_unlock(&memcg->slab_caches_mutex);
3393}
3394
3395struct create_work {
3396 struct mem_cgroup *memcg;
3397 struct kmem_cache *cachep;
3398 struct work_struct work;
3399};
3400
3401static void memcg_create_cache_work_func(struct work_struct *w)
3402{
3403 struct create_work *cw = container_of(w, struct create_work, work);
3404 struct mem_cgroup *memcg = cw->memcg;
3405 struct kmem_cache *cachep = cw->cachep;
3406
3407 kmem_cache_create_memcg(memcg, cachep);
3408 css_put(&memcg->css);
3409 kfree(cw);
3410}
3411
3412/*
3413 * Enqueue the creation of a per-memcg kmem_cache.
3414 */
3415static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3416 struct kmem_cache *cachep)
3417{
3418 struct create_work *cw;
3419
3420 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3421 if (cw == NULL) {
3422 css_put(&memcg->css);
3423 return;
3424 }
3425
3426 cw->memcg = memcg;
3427 cw->cachep = cachep;
3428
3429 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3430 schedule_work(&cw->work);
3431}
3432
3433static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3434 struct kmem_cache *cachep)
3435{
3436 /*
3437 * We need to stop accounting when we kmalloc, because if the
3438 * corresponding kmalloc cache is not yet created, the first allocation
3439 * in __memcg_create_cache_enqueue will recurse.
3440 *
3441 * However, it is better to enclose the whole function. Depending on
3442 * the debugging options enabled, INIT_WORK(), for instance, can
3443 * trigger an allocation. This too, will make us recurse. Because at
3444 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3445 * the safest choice is to do it like this, wrapping the whole function.
3446 */
3447 memcg_stop_kmem_account();
3448 __memcg_create_cache_enqueue(memcg, cachep);
3449 memcg_resume_kmem_account();
3450}
3451/*
3452 * Return the kmem_cache we're supposed to use for a slab allocation.
3453 * We try to use the current memcg's version of the cache.
3454 *
3455 * If the cache does not exist yet, if we are the first user of it,
3456 * we either create it immediately, if possible, or create it asynchronously
3457 * in a workqueue.
3458 * In the latter case, we will let the current allocation go through with
3459 * the original cache.
3460 *
3461 * Can't be called in interrupt context or from kernel threads.
3462 * This function needs to be called with rcu_read_lock() held.
3463 */
3464struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3465 gfp_t gfp)
3466{
3467 struct mem_cgroup *memcg;
3468 struct kmem_cache *memcg_cachep;
3469
3470 VM_BUG_ON(!cachep->memcg_params);
3471 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3472
3473 if (!current->mm || current->memcg_kmem_skip_account)
3474 return cachep;
3475
3476 rcu_read_lock();
3477 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3478
3479 if (!memcg_can_account_kmem(memcg))
3480 goto out;
3481
3482 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3483 if (likely(memcg_cachep)) {
3484 cachep = memcg_cachep;
3485 goto out;
3486 }
3487
3488 /* The corresponding put will be done in the workqueue. */
3489 if (!css_tryget(&memcg->css))
3490 goto out;
3491 rcu_read_unlock();
3492
3493 /*
3494 * If we are in a safe context (can wait, and not in interrupt
3495 * context), we could be be predictable and return right away.
3496 * This would guarantee that the allocation being performed
3497 * already belongs in the new cache.
3498 *
3499 * However, there are some clashes that can arrive from locking.
3500 * For instance, because we acquire the slab_mutex while doing
3501 * kmem_cache_dup, this means no further allocation could happen
3502 * with the slab_mutex held.
3503 *
3504 * Also, because cache creation issue get_online_cpus(), this
3505 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3506 * that ends up reversed during cpu hotplug. (cpuset allocates
3507 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3508 * better to defer everything.
3509 */
3510 memcg_create_cache_enqueue(memcg, cachep);
3511 return cachep;
3512out:
3513 rcu_read_unlock();
3514 return cachep;
3515}
3516EXPORT_SYMBOL(__memcg_kmem_get_cache);
3517
3518/*
3519 * We need to verify if the allocation against current->mm->owner's memcg is
3520 * possible for the given order. But the page is not allocated yet, so we'll
3521 * need a further commit step to do the final arrangements.
3522 *
3523 * It is possible for the task to switch cgroups in this mean time, so at
3524 * commit time, we can't rely on task conversion any longer. We'll then use
3525 * the handle argument to return to the caller which cgroup we should commit
3526 * against. We could also return the memcg directly and avoid the pointer
3527 * passing, but a boolean return value gives better semantics considering
3528 * the compiled-out case as well.
3529 *
3530 * Returning true means the allocation is possible.
3531 */
3532bool
3533__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3534{
3535 struct mem_cgroup *memcg;
3536 int ret;
3537
3538 *_memcg = NULL;
3539
3540 /*
3541 * Disabling accounting is only relevant for some specific memcg
3542 * internal allocations. Therefore we would initially not have such
3543 * check here, since direct calls to the page allocator that are marked
3544 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3545 * concerned with cache allocations, and by having this test at
3546 * memcg_kmem_get_cache, we are already able to relay the allocation to
3547 * the root cache and bypass the memcg cache altogether.
3548 *
3549 * There is one exception, though: the SLUB allocator does not create
3550 * large order caches, but rather service large kmallocs directly from
3551 * the page allocator. Therefore, the following sequence when backed by
3552 * the SLUB allocator:
3553 *
3554 * memcg_stop_kmem_account();
3555 * kmalloc(<large_number>)
3556 * memcg_resume_kmem_account();
3557 *
3558 * would effectively ignore the fact that we should skip accounting,
3559 * since it will drive us directly to this function without passing
3560 * through the cache selector memcg_kmem_get_cache. Such large
3561 * allocations are extremely rare but can happen, for instance, for the
3562 * cache arrays. We bring this test here.
3563 */
3564 if (!current->mm || current->memcg_kmem_skip_account)
3565 return true;
3566
3567 memcg = get_mem_cgroup_from_mm(current->mm);
3568
3569 if (!memcg_can_account_kmem(memcg)) {
3570 css_put(&memcg->css);
3571 return true;
3572 }
3573
3574 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3575 if (!ret)
3576 *_memcg = memcg;
3577
3578 css_put(&memcg->css);
3579 return (ret == 0);
3580}
3581
3582void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3583 int order)
3584{
3585 struct page_cgroup *pc;
3586
3587 VM_BUG_ON(mem_cgroup_is_root(memcg));
3588
3589 /* The page allocation failed. Revert */
3590 if (!page) {
3591 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3592 return;
3593 }
3594
3595 pc = lookup_page_cgroup(page);
3596 lock_page_cgroup(pc);
3597 pc->mem_cgroup = memcg;
3598 SetPageCgroupUsed(pc);
3599 unlock_page_cgroup(pc);
3600}
3601
3602void __memcg_kmem_uncharge_pages(struct page *page, int order)
3603{
3604 struct mem_cgroup *memcg = NULL;
3605 struct page_cgroup *pc;
3606
3607
3608 pc = lookup_page_cgroup(page);
3609 /*
3610 * Fast unlocked return. Theoretically might have changed, have to
3611 * check again after locking.
3612 */
3613 if (!PageCgroupUsed(pc))
3614 return;
3615
3616 lock_page_cgroup(pc);
3617 if (PageCgroupUsed(pc)) {
3618 memcg = pc->mem_cgroup;
3619 ClearPageCgroupUsed(pc);
3620 }
3621 unlock_page_cgroup(pc);
3622
3623 /*
3624 * We trust that only if there is a memcg associated with the page, it
3625 * is a valid allocation
3626 */
3627 if (!memcg)
3628 return;
3629
3630 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3631 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3632}
3633#else
3634static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3635{
3636}
3637#endif /* CONFIG_MEMCG_KMEM */
3638
3639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3640
3641#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3642/*
3643 * Because tail pages are not marked as "used", set it. We're under
3644 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3645 * charge/uncharge will be never happen and move_account() is done under
3646 * compound_lock(), so we don't have to take care of races.
3647 */
3648void mem_cgroup_split_huge_fixup(struct page *head)
3649{
3650 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3651 struct page_cgroup *pc;
3652 struct mem_cgroup *memcg;
3653 int i;
3654
3655 if (mem_cgroup_disabled())
3656 return;
3657
3658 memcg = head_pc->mem_cgroup;
3659 for (i = 1; i < HPAGE_PMD_NR; i++) {
3660 pc = head_pc + i;
3661 pc->mem_cgroup = memcg;
3662 smp_wmb();/* see __commit_charge() */
3663 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3664 }
3665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3666 HPAGE_PMD_NR);
3667}
3668#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3669
3670/**
3671 * mem_cgroup_move_account - move account of the page
3672 * @page: the page
3673 * @nr_pages: number of regular pages (>1 for huge pages)
3674 * @pc: page_cgroup of the page.
3675 * @from: mem_cgroup which the page is moved from.
3676 * @to: mem_cgroup which the page is moved to. @from != @to.
3677 *
3678 * The caller must confirm following.
3679 * - page is not on LRU (isolate_page() is useful.)
3680 * - compound_lock is held when nr_pages > 1
3681 *
3682 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3683 * from old cgroup.
3684 */
3685static int mem_cgroup_move_account(struct page *page,
3686 unsigned int nr_pages,
3687 struct page_cgroup *pc,
3688 struct mem_cgroup *from,
3689 struct mem_cgroup *to)
3690{
3691 unsigned long flags;
3692 int ret;
3693 bool anon = PageAnon(page);
3694
3695 VM_BUG_ON(from == to);
3696 VM_BUG_ON_PAGE(PageLRU(page), page);
3697 /*
3698 * The page is isolated from LRU. So, collapse function
3699 * will not handle this page. But page splitting can happen.
3700 * Do this check under compound_page_lock(). The caller should
3701 * hold it.
3702 */
3703 ret = -EBUSY;
3704 if (nr_pages > 1 && !PageTransHuge(page))
3705 goto out;
3706
3707 lock_page_cgroup(pc);
3708
3709 ret = -EINVAL;
3710 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3711 goto unlock;
3712
3713 move_lock_mem_cgroup(from, &flags);
3714
3715 if (!anon && page_mapped(page)) {
3716 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3717 nr_pages);
3718 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3719 nr_pages);
3720 }
3721
3722 if (PageWriteback(page)) {
3723 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3724 nr_pages);
3725 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3726 nr_pages);
3727 }
3728
3729 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3730
3731 /* caller should have done css_get */
3732 pc->mem_cgroup = to;
3733 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3734 move_unlock_mem_cgroup(from, &flags);
3735 ret = 0;
3736unlock:
3737 unlock_page_cgroup(pc);
3738 /*
3739 * check events
3740 */
3741 memcg_check_events(to, page);
3742 memcg_check_events(from, page);
3743out:
3744 return ret;
3745}
3746
3747/**
3748 * mem_cgroup_move_parent - moves page to the parent group
3749 * @page: the page to move
3750 * @pc: page_cgroup of the page
3751 * @child: page's cgroup
3752 *
3753 * move charges to its parent or the root cgroup if the group has no
3754 * parent (aka use_hierarchy==0).
3755 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3756 * mem_cgroup_move_account fails) the failure is always temporary and
3757 * it signals a race with a page removal/uncharge or migration. In the
3758 * first case the page is on the way out and it will vanish from the LRU
3759 * on the next attempt and the call should be retried later.
3760 * Isolation from the LRU fails only if page has been isolated from
3761 * the LRU since we looked at it and that usually means either global
3762 * reclaim or migration going on. The page will either get back to the
3763 * LRU or vanish.
3764 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3765 * (!PageCgroupUsed) or moved to a different group. The page will
3766 * disappear in the next attempt.
3767 */
3768static int mem_cgroup_move_parent(struct page *page,
3769 struct page_cgroup *pc,
3770 struct mem_cgroup *child)
3771{
3772 struct mem_cgroup *parent;
3773 unsigned int nr_pages;
3774 unsigned long uninitialized_var(flags);
3775 int ret;
3776
3777 VM_BUG_ON(mem_cgroup_is_root(child));
3778
3779 ret = -EBUSY;
3780 if (!get_page_unless_zero(page))
3781 goto out;
3782 if (isolate_lru_page(page))
3783 goto put;
3784
3785 nr_pages = hpage_nr_pages(page);
3786
3787 parent = parent_mem_cgroup(child);
3788 /*
3789 * If no parent, move charges to root cgroup.
3790 */
3791 if (!parent)
3792 parent = root_mem_cgroup;
3793
3794 if (nr_pages > 1) {
3795 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3796 flags = compound_lock_irqsave(page);
3797 }
3798
3799 ret = mem_cgroup_move_account(page, nr_pages,
3800 pc, child, parent);
3801 if (!ret)
3802 __mem_cgroup_cancel_local_charge(child, nr_pages);
3803
3804 if (nr_pages > 1)
3805 compound_unlock_irqrestore(page, flags);
3806 putback_lru_page(page);
3807put:
3808 put_page(page);
3809out:
3810 return ret;
3811}
3812
3813int mem_cgroup_charge_anon(struct page *page,
3814 struct mm_struct *mm, gfp_t gfp_mask)
3815{
3816 unsigned int nr_pages = 1;
3817 struct mem_cgroup *memcg;
3818 bool oom = true;
3819
3820 if (mem_cgroup_disabled())
3821 return 0;
3822
3823 VM_BUG_ON_PAGE(page_mapped(page), page);
3824 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3825 VM_BUG_ON(!mm);
3826
3827 if (PageTransHuge(page)) {
3828 nr_pages <<= compound_order(page);
3829 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3830 /*
3831 * Never OOM-kill a process for a huge page. The
3832 * fault handler will fall back to regular pages.
3833 */
3834 oom = false;
3835 }
3836
3837 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3838 if (!memcg)
3839 return -ENOMEM;
3840 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3841 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3842 return 0;
3843}
3844
3845/*
3846 * While swap-in, try_charge -> commit or cancel, the page is locked.
3847 * And when try_charge() successfully returns, one refcnt to memcg without
3848 * struct page_cgroup is acquired. This refcnt will be consumed by
3849 * "commit()" or removed by "cancel()"
3850 */
3851static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3852 struct page *page,
3853 gfp_t mask,
3854 struct mem_cgroup **memcgp)
3855{
3856 struct mem_cgroup *memcg = NULL;
3857 struct page_cgroup *pc;
3858 int ret;
3859
3860 pc = lookup_page_cgroup(page);
3861 /*
3862 * Every swap fault against a single page tries to charge the
3863 * page, bail as early as possible. shmem_unuse() encounters
3864 * already charged pages, too. The USED bit is protected by
3865 * the page lock, which serializes swap cache removal, which
3866 * in turn serializes uncharging.
3867 */
3868 if (PageCgroupUsed(pc))
3869 goto out;
3870 if (do_swap_account)
3871 memcg = try_get_mem_cgroup_from_page(page);
3872 if (!memcg)
3873 memcg = get_mem_cgroup_from_mm(mm);
3874 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3875 css_put(&memcg->css);
3876 if (ret == -EINTR)
3877 memcg = root_mem_cgroup;
3878 else if (ret)
3879 return ret;
3880out:
3881 *memcgp = memcg;
3882 return 0;
3883}
3884
3885int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3886 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3887{
3888 if (mem_cgroup_disabled()) {
3889 *memcgp = NULL;
3890 return 0;
3891 }
3892 /*
3893 * A racing thread's fault, or swapoff, may have already
3894 * updated the pte, and even removed page from swap cache: in
3895 * those cases unuse_pte()'s pte_same() test will fail; but
3896 * there's also a KSM case which does need to charge the page.
3897 */
3898 if (!PageSwapCache(page)) {
3899 struct mem_cgroup *memcg;
3900
3901 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3902 if (!memcg)
3903 return -ENOMEM;
3904 *memcgp = memcg;
3905 return 0;
3906 }
3907 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3908}
3909
3910void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3911{
3912 if (mem_cgroup_disabled())
3913 return;
3914 if (!memcg)
3915 return;
3916 __mem_cgroup_cancel_charge(memcg, 1);
3917}
3918
3919static void
3920__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3921 enum charge_type ctype)
3922{
3923 if (mem_cgroup_disabled())
3924 return;
3925 if (!memcg)
3926 return;
3927
3928 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3929 /*
3930 * Now swap is on-memory. This means this page may be
3931 * counted both as mem and swap....double count.
3932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3934 * may call delete_from_swap_cache() before reach here.
3935 */
3936 if (do_swap_account && PageSwapCache(page)) {
3937 swp_entry_t ent = {.val = page_private(page)};
3938 mem_cgroup_uncharge_swap(ent);
3939 }
3940}
3941
3942void mem_cgroup_commit_charge_swapin(struct page *page,
3943 struct mem_cgroup *memcg)
3944{
3945 __mem_cgroup_commit_charge_swapin(page, memcg,
3946 MEM_CGROUP_CHARGE_TYPE_ANON);
3947}
3948
3949int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3950 gfp_t gfp_mask)
3951{
3952 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3953 struct mem_cgroup *memcg;
3954 int ret;
3955
3956 if (mem_cgroup_disabled())
3957 return 0;
3958 if (PageCompound(page))
3959 return 0;
3960
3961 if (PageSwapCache(page)) { /* shmem */
3962 ret = __mem_cgroup_try_charge_swapin(mm, page,
3963 gfp_mask, &memcg);
3964 if (ret)
3965 return ret;
3966 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3967 return 0;
3968 }
3969
3970 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3971 if (!memcg)
3972 return -ENOMEM;
3973 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3974 return 0;
3975}
3976
3977static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3978 unsigned int nr_pages,
3979 const enum charge_type ctype)
3980{
3981 struct memcg_batch_info *batch = NULL;
3982 bool uncharge_memsw = true;
3983
3984 /* If swapout, usage of swap doesn't decrease */
3985 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3986 uncharge_memsw = false;
3987
3988 batch = ¤t->memcg_batch;
3989 /*
3990 * In usual, we do css_get() when we remember memcg pointer.
3991 * But in this case, we keep res->usage until end of a series of
3992 * uncharges. Then, it's ok to ignore memcg's refcnt.
3993 */
3994 if (!batch->memcg)
3995 batch->memcg = memcg;
3996 /*
3997 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3998 * In those cases, all pages freed continuously can be expected to be in
3999 * the same cgroup and we have chance to coalesce uncharges.
4000 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4001 * because we want to do uncharge as soon as possible.
4002 */
4003
4004 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4005 goto direct_uncharge;
4006
4007 if (nr_pages > 1)
4008 goto direct_uncharge;
4009
4010 /*
4011 * In typical case, batch->memcg == mem. This means we can
4012 * merge a series of uncharges to an uncharge of res_counter.
4013 * If not, we uncharge res_counter ony by one.
4014 */
4015 if (batch->memcg != memcg)
4016 goto direct_uncharge;
4017 /* remember freed charge and uncharge it later */
4018 batch->nr_pages++;
4019 if (uncharge_memsw)
4020 batch->memsw_nr_pages++;
4021 return;
4022direct_uncharge:
4023 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4024 if (uncharge_memsw)
4025 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4026 if (unlikely(batch->memcg != memcg))
4027 memcg_oom_recover(memcg);
4028}
4029
4030/*
4031 * uncharge if !page_mapped(page)
4032 */
4033static struct mem_cgroup *
4034__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4035 bool end_migration)
4036{
4037 struct mem_cgroup *memcg = NULL;
4038 unsigned int nr_pages = 1;
4039 struct page_cgroup *pc;
4040 bool anon;
4041
4042 if (mem_cgroup_disabled())
4043 return NULL;
4044
4045 if (PageTransHuge(page)) {
4046 nr_pages <<= compound_order(page);
4047 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4048 }
4049 /*
4050 * Check if our page_cgroup is valid
4051 */
4052 pc = lookup_page_cgroup(page);
4053 if (unlikely(!PageCgroupUsed(pc)))
4054 return NULL;
4055
4056 lock_page_cgroup(pc);
4057
4058 memcg = pc->mem_cgroup;
4059
4060 if (!PageCgroupUsed(pc))
4061 goto unlock_out;
4062
4063 anon = PageAnon(page);
4064
4065 switch (ctype) {
4066 case MEM_CGROUP_CHARGE_TYPE_ANON:
4067 /*
4068 * Generally PageAnon tells if it's the anon statistics to be
4069 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4070 * used before page reached the stage of being marked PageAnon.
4071 */
4072 anon = true;
4073 /* fallthrough */
4074 case MEM_CGROUP_CHARGE_TYPE_DROP:
4075 /* See mem_cgroup_prepare_migration() */
4076 if (page_mapped(page))
4077 goto unlock_out;
4078 /*
4079 * Pages under migration may not be uncharged. But
4080 * end_migration() /must/ be the one uncharging the
4081 * unused post-migration page and so it has to call
4082 * here with the migration bit still set. See the
4083 * res_counter handling below.
4084 */
4085 if (!end_migration && PageCgroupMigration(pc))
4086 goto unlock_out;
4087 break;
4088 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4089 if (!PageAnon(page)) { /* Shared memory */
4090 if (page->mapping && !page_is_file_cache(page))
4091 goto unlock_out;
4092 } else if (page_mapped(page)) /* Anon */
4093 goto unlock_out;
4094 break;
4095 default:
4096 break;
4097 }
4098
4099 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4100
4101 ClearPageCgroupUsed(pc);
4102 /*
4103 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4104 * freed from LRU. This is safe because uncharged page is expected not
4105 * to be reused (freed soon). Exception is SwapCache, it's handled by
4106 * special functions.
4107 */
4108
4109 unlock_page_cgroup(pc);
4110 /*
4111 * even after unlock, we have memcg->res.usage here and this memcg
4112 * will never be freed, so it's safe to call css_get().
4113 */
4114 memcg_check_events(memcg, page);
4115 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4116 mem_cgroup_swap_statistics(memcg, true);
4117 css_get(&memcg->css);
4118 }
4119 /*
4120 * Migration does not charge the res_counter for the
4121 * replacement page, so leave it alone when phasing out the
4122 * page that is unused after the migration.
4123 */
4124 if (!end_migration && !mem_cgroup_is_root(memcg))
4125 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4126
4127 return memcg;
4128
4129unlock_out:
4130 unlock_page_cgroup(pc);
4131 return NULL;
4132}
4133
4134void mem_cgroup_uncharge_page(struct page *page)
4135{
4136 /* early check. */
4137 if (page_mapped(page))
4138 return;
4139 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4140 /*
4141 * If the page is in swap cache, uncharge should be deferred
4142 * to the swap path, which also properly accounts swap usage
4143 * and handles memcg lifetime.
4144 *
4145 * Note that this check is not stable and reclaim may add the
4146 * page to swap cache at any time after this. However, if the
4147 * page is not in swap cache by the time page->mapcount hits
4148 * 0, there won't be any page table references to the swap
4149 * slot, and reclaim will free it and not actually write the
4150 * page to disk.
4151 */
4152 if (PageSwapCache(page))
4153 return;
4154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4155}
4156
4157void mem_cgroup_uncharge_cache_page(struct page *page)
4158{
4159 VM_BUG_ON_PAGE(page_mapped(page), page);
4160 VM_BUG_ON_PAGE(page->mapping, page);
4161 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4162}
4163
4164/*
4165 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4166 * In that cases, pages are freed continuously and we can expect pages
4167 * are in the same memcg. All these calls itself limits the number of
4168 * pages freed at once, then uncharge_start/end() is called properly.
4169 * This may be called prural(2) times in a context,
4170 */
4171
4172void mem_cgroup_uncharge_start(void)
4173{
4174 current->memcg_batch.do_batch++;
4175 /* We can do nest. */
4176 if (current->memcg_batch.do_batch == 1) {
4177 current->memcg_batch.memcg = NULL;
4178 current->memcg_batch.nr_pages = 0;
4179 current->memcg_batch.memsw_nr_pages = 0;
4180 }
4181}
4182
4183void mem_cgroup_uncharge_end(void)
4184{
4185 struct memcg_batch_info *batch = ¤t->memcg_batch;
4186
4187 if (!batch->do_batch)
4188 return;
4189
4190 batch->do_batch--;
4191 if (batch->do_batch) /* If stacked, do nothing. */
4192 return;
4193
4194 if (!batch->memcg)
4195 return;
4196 /*
4197 * This "batch->memcg" is valid without any css_get/put etc...
4198 * bacause we hide charges behind us.
4199 */
4200 if (batch->nr_pages)
4201 res_counter_uncharge(&batch->memcg->res,
4202 batch->nr_pages * PAGE_SIZE);
4203 if (batch->memsw_nr_pages)
4204 res_counter_uncharge(&batch->memcg->memsw,
4205 batch->memsw_nr_pages * PAGE_SIZE);
4206 memcg_oom_recover(batch->memcg);
4207 /* forget this pointer (for sanity check) */
4208 batch->memcg = NULL;
4209}
4210
4211#ifdef CONFIG_SWAP
4212/*
4213 * called after __delete_from_swap_cache() and drop "page" account.
4214 * memcg information is recorded to swap_cgroup of "ent"
4215 */
4216void
4217mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4218{
4219 struct mem_cgroup *memcg;
4220 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4221
4222 if (!swapout) /* this was a swap cache but the swap is unused ! */
4223 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4224
4225 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4226
4227 /*
4228 * record memcg information, if swapout && memcg != NULL,
4229 * css_get() was called in uncharge().
4230 */
4231 if (do_swap_account && swapout && memcg)
4232 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4233}
4234#endif
4235
4236#ifdef CONFIG_MEMCG_SWAP
4237/*
4238 * called from swap_entry_free(). remove record in swap_cgroup and
4239 * uncharge "memsw" account.
4240 */
4241void mem_cgroup_uncharge_swap(swp_entry_t ent)
4242{
4243 struct mem_cgroup *memcg;
4244 unsigned short id;
4245
4246 if (!do_swap_account)
4247 return;
4248
4249 id = swap_cgroup_record(ent, 0);
4250 rcu_read_lock();
4251 memcg = mem_cgroup_lookup(id);
4252 if (memcg) {
4253 /*
4254 * We uncharge this because swap is freed.
4255 * This memcg can be obsolete one. We avoid calling css_tryget
4256 */
4257 if (!mem_cgroup_is_root(memcg))
4258 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4259 mem_cgroup_swap_statistics(memcg, false);
4260 css_put(&memcg->css);
4261 }
4262 rcu_read_unlock();
4263}
4264
4265/**
4266 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4267 * @entry: swap entry to be moved
4268 * @from: mem_cgroup which the entry is moved from
4269 * @to: mem_cgroup which the entry is moved to
4270 *
4271 * It succeeds only when the swap_cgroup's record for this entry is the same
4272 * as the mem_cgroup's id of @from.
4273 *
4274 * Returns 0 on success, -EINVAL on failure.
4275 *
4276 * The caller must have charged to @to, IOW, called res_counter_charge() about
4277 * both res and memsw, and called css_get().
4278 */
4279static int mem_cgroup_move_swap_account(swp_entry_t entry,
4280 struct mem_cgroup *from, struct mem_cgroup *to)
4281{
4282 unsigned short old_id, new_id;
4283
4284 old_id = mem_cgroup_id(from);
4285 new_id = mem_cgroup_id(to);
4286
4287 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4288 mem_cgroup_swap_statistics(from, false);
4289 mem_cgroup_swap_statistics(to, true);
4290 /*
4291 * This function is only called from task migration context now.
4292 * It postpones res_counter and refcount handling till the end
4293 * of task migration(mem_cgroup_clear_mc()) for performance
4294 * improvement. But we cannot postpone css_get(to) because if
4295 * the process that has been moved to @to does swap-in, the
4296 * refcount of @to might be decreased to 0.
4297 *
4298 * We are in attach() phase, so the cgroup is guaranteed to be
4299 * alive, so we can just call css_get().
4300 */
4301 css_get(&to->css);
4302 return 0;
4303 }
4304 return -EINVAL;
4305}
4306#else
4307static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4308 struct mem_cgroup *from, struct mem_cgroup *to)
4309{
4310 return -EINVAL;
4311}
4312#endif
4313
4314/*
4315 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4316 * page belongs to.
4317 */
4318void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4319 struct mem_cgroup **memcgp)
4320{
4321 struct mem_cgroup *memcg = NULL;
4322 unsigned int nr_pages = 1;
4323 struct page_cgroup *pc;
4324 enum charge_type ctype;
4325
4326 *memcgp = NULL;
4327
4328 if (mem_cgroup_disabled())
4329 return;
4330
4331 if (PageTransHuge(page))
4332 nr_pages <<= compound_order(page);
4333
4334 pc = lookup_page_cgroup(page);
4335 lock_page_cgroup(pc);
4336 if (PageCgroupUsed(pc)) {
4337 memcg = pc->mem_cgroup;
4338 css_get(&memcg->css);
4339 /*
4340 * At migrating an anonymous page, its mapcount goes down
4341 * to 0 and uncharge() will be called. But, even if it's fully
4342 * unmapped, migration may fail and this page has to be
4343 * charged again. We set MIGRATION flag here and delay uncharge
4344 * until end_migration() is called
4345 *
4346 * Corner Case Thinking
4347 * A)
4348 * When the old page was mapped as Anon and it's unmap-and-freed
4349 * while migration was ongoing.
4350 * If unmap finds the old page, uncharge() of it will be delayed
4351 * until end_migration(). If unmap finds a new page, it's
4352 * uncharged when it make mapcount to be 1->0. If unmap code
4353 * finds swap_migration_entry, the new page will not be mapped
4354 * and end_migration() will find it(mapcount==0).
4355 *
4356 * B)
4357 * When the old page was mapped but migraion fails, the kernel
4358 * remaps it. A charge for it is kept by MIGRATION flag even
4359 * if mapcount goes down to 0. We can do remap successfully
4360 * without charging it again.
4361 *
4362 * C)
4363 * The "old" page is under lock_page() until the end of
4364 * migration, so, the old page itself will not be swapped-out.
4365 * If the new page is swapped out before end_migraton, our
4366 * hook to usual swap-out path will catch the event.
4367 */
4368 if (PageAnon(page))
4369 SetPageCgroupMigration(pc);
4370 }
4371 unlock_page_cgroup(pc);
4372 /*
4373 * If the page is not charged at this point,
4374 * we return here.
4375 */
4376 if (!memcg)
4377 return;
4378
4379 *memcgp = memcg;
4380 /*
4381 * We charge new page before it's used/mapped. So, even if unlock_page()
4382 * is called before end_migration, we can catch all events on this new
4383 * page. In the case new page is migrated but not remapped, new page's
4384 * mapcount will be finally 0 and we call uncharge in end_migration().
4385 */
4386 if (PageAnon(page))
4387 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4388 else
4389 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4390 /*
4391 * The page is committed to the memcg, but it's not actually
4392 * charged to the res_counter since we plan on replacing the
4393 * old one and only one page is going to be left afterwards.
4394 */
4395 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4396}
4397
4398/* remove redundant charge if migration failed*/
4399void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4400 struct page *oldpage, struct page *newpage, bool migration_ok)
4401{
4402 struct page *used, *unused;
4403 struct page_cgroup *pc;
4404 bool anon;
4405
4406 if (!memcg)
4407 return;
4408
4409 if (!migration_ok) {
4410 used = oldpage;
4411 unused = newpage;
4412 } else {
4413 used = newpage;
4414 unused = oldpage;
4415 }
4416 anon = PageAnon(used);
4417 __mem_cgroup_uncharge_common(unused,
4418 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4419 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4420 true);
4421 css_put(&memcg->css);
4422 /*
4423 * We disallowed uncharge of pages under migration because mapcount
4424 * of the page goes down to zero, temporarly.
4425 * Clear the flag and check the page should be charged.
4426 */
4427 pc = lookup_page_cgroup(oldpage);
4428 lock_page_cgroup(pc);
4429 ClearPageCgroupMigration(pc);
4430 unlock_page_cgroup(pc);
4431
4432 /*
4433 * If a page is a file cache, radix-tree replacement is very atomic
4434 * and we can skip this check. When it was an Anon page, its mapcount
4435 * goes down to 0. But because we added MIGRATION flage, it's not
4436 * uncharged yet. There are several case but page->mapcount check
4437 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4438 * check. (see prepare_charge() also)
4439 */
4440 if (anon)
4441 mem_cgroup_uncharge_page(used);
4442}
4443
4444/*
4445 * At replace page cache, newpage is not under any memcg but it's on
4446 * LRU. So, this function doesn't touch res_counter but handles LRU
4447 * in correct way. Both pages are locked so we cannot race with uncharge.
4448 */
4449void mem_cgroup_replace_page_cache(struct page *oldpage,
4450 struct page *newpage)
4451{
4452 struct mem_cgroup *memcg = NULL;
4453 struct page_cgroup *pc;
4454 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4455
4456 if (mem_cgroup_disabled())
4457 return;
4458
4459 pc = lookup_page_cgroup(oldpage);
4460 /* fix accounting on old pages */
4461 lock_page_cgroup(pc);
4462 if (PageCgroupUsed(pc)) {
4463 memcg = pc->mem_cgroup;
4464 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4465 ClearPageCgroupUsed(pc);
4466 }
4467 unlock_page_cgroup(pc);
4468
4469 /*
4470 * When called from shmem_replace_page(), in some cases the
4471 * oldpage has already been charged, and in some cases not.
4472 */
4473 if (!memcg)
4474 return;
4475 /*
4476 * Even if newpage->mapping was NULL before starting replacement,
4477 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4478 * LRU while we overwrite pc->mem_cgroup.
4479 */
4480 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4481}
4482
4483#ifdef CONFIG_DEBUG_VM
4484static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4485{
4486 struct page_cgroup *pc;
4487
4488 pc = lookup_page_cgroup(page);
4489 /*
4490 * Can be NULL while feeding pages into the page allocator for
4491 * the first time, i.e. during boot or memory hotplug;
4492 * or when mem_cgroup_disabled().
4493 */
4494 if (likely(pc) && PageCgroupUsed(pc))
4495 return pc;
4496 return NULL;
4497}
4498
4499bool mem_cgroup_bad_page_check(struct page *page)
4500{
4501 if (mem_cgroup_disabled())
4502 return false;
4503
4504 return lookup_page_cgroup_used(page) != NULL;
4505}
4506
4507void mem_cgroup_print_bad_page(struct page *page)
4508{
4509 struct page_cgroup *pc;
4510
4511 pc = lookup_page_cgroup_used(page);
4512 if (pc) {
4513 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4514 pc, pc->flags, pc->mem_cgroup);
4515 }
4516}
4517#endif
4518
4519static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4520 unsigned long long val)
4521{
4522 int retry_count;
4523 u64 memswlimit, memlimit;
4524 int ret = 0;
4525 int children = mem_cgroup_count_children(memcg);
4526 u64 curusage, oldusage;
4527 int enlarge;
4528
4529 /*
4530 * For keeping hierarchical_reclaim simple, how long we should retry
4531 * is depends on callers. We set our retry-count to be function
4532 * of # of children which we should visit in this loop.
4533 */
4534 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4535
4536 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4537
4538 enlarge = 0;
4539 while (retry_count) {
4540 if (signal_pending(current)) {
4541 ret = -EINTR;
4542 break;
4543 }
4544 /*
4545 * Rather than hide all in some function, I do this in
4546 * open coded manner. You see what this really does.
4547 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4548 */
4549 mutex_lock(&set_limit_mutex);
4550 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4551 if (memswlimit < val) {
4552 ret = -EINVAL;
4553 mutex_unlock(&set_limit_mutex);
4554 break;
4555 }
4556
4557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4558 if (memlimit < val)
4559 enlarge = 1;
4560
4561 ret = res_counter_set_limit(&memcg->res, val);
4562 if (!ret) {
4563 if (memswlimit == val)
4564 memcg->memsw_is_minimum = true;
4565 else
4566 memcg->memsw_is_minimum = false;
4567 }
4568 mutex_unlock(&set_limit_mutex);
4569
4570 if (!ret)
4571 break;
4572
4573 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4574 MEM_CGROUP_RECLAIM_SHRINK);
4575 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4576 /* Usage is reduced ? */
4577 if (curusage >= oldusage)
4578 retry_count--;
4579 else
4580 oldusage = curusage;
4581 }
4582 if (!ret && enlarge)
4583 memcg_oom_recover(memcg);
4584
4585 return ret;
4586}
4587
4588static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4589 unsigned long long val)
4590{
4591 int retry_count;
4592 u64 memlimit, memswlimit, oldusage, curusage;
4593 int children = mem_cgroup_count_children(memcg);
4594 int ret = -EBUSY;
4595 int enlarge = 0;
4596
4597 /* see mem_cgroup_resize_res_limit */
4598 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4599 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4600 while (retry_count) {
4601 if (signal_pending(current)) {
4602 ret = -EINTR;
4603 break;
4604 }
4605 /*
4606 * Rather than hide all in some function, I do this in
4607 * open coded manner. You see what this really does.
4608 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4609 */
4610 mutex_lock(&set_limit_mutex);
4611 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4612 if (memlimit > val) {
4613 ret = -EINVAL;
4614 mutex_unlock(&set_limit_mutex);
4615 break;
4616 }
4617 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4618 if (memswlimit < val)
4619 enlarge = 1;
4620 ret = res_counter_set_limit(&memcg->memsw, val);
4621 if (!ret) {
4622 if (memlimit == val)
4623 memcg->memsw_is_minimum = true;
4624 else
4625 memcg->memsw_is_minimum = false;
4626 }
4627 mutex_unlock(&set_limit_mutex);
4628
4629 if (!ret)
4630 break;
4631
4632 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4633 MEM_CGROUP_RECLAIM_NOSWAP |
4634 MEM_CGROUP_RECLAIM_SHRINK);
4635 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4636 /* Usage is reduced ? */
4637 if (curusage >= oldusage)
4638 retry_count--;
4639 else
4640 oldusage = curusage;
4641 }
4642 if (!ret && enlarge)
4643 memcg_oom_recover(memcg);
4644 return ret;
4645}
4646
4647unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4648 gfp_t gfp_mask,
4649 unsigned long *total_scanned)
4650{
4651 unsigned long nr_reclaimed = 0;
4652 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4653 unsigned long reclaimed;
4654 int loop = 0;
4655 struct mem_cgroup_tree_per_zone *mctz;
4656 unsigned long long excess;
4657 unsigned long nr_scanned;
4658
4659 if (order > 0)
4660 return 0;
4661
4662 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4663 /*
4664 * This loop can run a while, specially if mem_cgroup's continuously
4665 * keep exceeding their soft limit and putting the system under
4666 * pressure
4667 */
4668 do {
4669 if (next_mz)
4670 mz = next_mz;
4671 else
4672 mz = mem_cgroup_largest_soft_limit_node(mctz);
4673 if (!mz)
4674 break;
4675
4676 nr_scanned = 0;
4677 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4678 gfp_mask, &nr_scanned);
4679 nr_reclaimed += reclaimed;
4680 *total_scanned += nr_scanned;
4681 spin_lock(&mctz->lock);
4682
4683 /*
4684 * If we failed to reclaim anything from this memory cgroup
4685 * it is time to move on to the next cgroup
4686 */
4687 next_mz = NULL;
4688 if (!reclaimed) {
4689 do {
4690 /*
4691 * Loop until we find yet another one.
4692 *
4693 * By the time we get the soft_limit lock
4694 * again, someone might have aded the
4695 * group back on the RB tree. Iterate to
4696 * make sure we get a different mem.
4697 * mem_cgroup_largest_soft_limit_node returns
4698 * NULL if no other cgroup is present on
4699 * the tree
4700 */
4701 next_mz =
4702 __mem_cgroup_largest_soft_limit_node(mctz);
4703 if (next_mz == mz)
4704 css_put(&next_mz->memcg->css);
4705 else /* next_mz == NULL or other memcg */
4706 break;
4707 } while (1);
4708 }
4709 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4710 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4711 /*
4712 * One school of thought says that we should not add
4713 * back the node to the tree if reclaim returns 0.
4714 * But our reclaim could return 0, simply because due
4715 * to priority we are exposing a smaller subset of
4716 * memory to reclaim from. Consider this as a longer
4717 * term TODO.
4718 */
4719 /* If excess == 0, no tree ops */
4720 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4721 spin_unlock(&mctz->lock);
4722 css_put(&mz->memcg->css);
4723 loop++;
4724 /*
4725 * Could not reclaim anything and there are no more
4726 * mem cgroups to try or we seem to be looping without
4727 * reclaiming anything.
4728 */
4729 if (!nr_reclaimed &&
4730 (next_mz == NULL ||
4731 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4732 break;
4733 } while (!nr_reclaimed);
4734 if (next_mz)
4735 css_put(&next_mz->memcg->css);
4736 return nr_reclaimed;
4737}
4738
4739/**
4740 * mem_cgroup_force_empty_list - clears LRU of a group
4741 * @memcg: group to clear
4742 * @node: NUMA node
4743 * @zid: zone id
4744 * @lru: lru to to clear
4745 *
4746 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4747 * reclaim the pages page themselves - pages are moved to the parent (or root)
4748 * group.
4749 */
4750static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4751 int node, int zid, enum lru_list lru)
4752{
4753 struct lruvec *lruvec;
4754 unsigned long flags;
4755 struct list_head *list;
4756 struct page *busy;
4757 struct zone *zone;
4758
4759 zone = &NODE_DATA(node)->node_zones[zid];
4760 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4761 list = &lruvec->lists[lru];
4762
4763 busy = NULL;
4764 do {
4765 struct page_cgroup *pc;
4766 struct page *page;
4767
4768 spin_lock_irqsave(&zone->lru_lock, flags);
4769 if (list_empty(list)) {
4770 spin_unlock_irqrestore(&zone->lru_lock, flags);
4771 break;
4772 }
4773 page = list_entry(list->prev, struct page, lru);
4774 if (busy == page) {
4775 list_move(&page->lru, list);
4776 busy = NULL;
4777 spin_unlock_irqrestore(&zone->lru_lock, flags);
4778 continue;
4779 }
4780 spin_unlock_irqrestore(&zone->lru_lock, flags);
4781
4782 pc = lookup_page_cgroup(page);
4783
4784 if (mem_cgroup_move_parent(page, pc, memcg)) {
4785 /* found lock contention or "pc" is obsolete. */
4786 busy = page;
4787 cond_resched();
4788 } else
4789 busy = NULL;
4790 } while (!list_empty(list));
4791}
4792
4793/*
4794 * make mem_cgroup's charge to be 0 if there is no task by moving
4795 * all the charges and pages to the parent.
4796 * This enables deleting this mem_cgroup.
4797 *
4798 * Caller is responsible for holding css reference on the memcg.
4799 */
4800static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4801{
4802 int node, zid;
4803 u64 usage;
4804
4805 do {
4806 /* This is for making all *used* pages to be on LRU. */
4807 lru_add_drain_all();
4808 drain_all_stock_sync(memcg);
4809 mem_cgroup_start_move(memcg);
4810 for_each_node_state(node, N_MEMORY) {
4811 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4812 enum lru_list lru;
4813 for_each_lru(lru) {
4814 mem_cgroup_force_empty_list(memcg,
4815 node, zid, lru);
4816 }
4817 }
4818 }
4819 mem_cgroup_end_move(memcg);
4820 memcg_oom_recover(memcg);
4821 cond_resched();
4822
4823 /*
4824 * Kernel memory may not necessarily be trackable to a specific
4825 * process. So they are not migrated, and therefore we can't
4826 * expect their value to drop to 0 here.
4827 * Having res filled up with kmem only is enough.
4828 *
4829 * This is a safety check because mem_cgroup_force_empty_list
4830 * could have raced with mem_cgroup_replace_page_cache callers
4831 * so the lru seemed empty but the page could have been added
4832 * right after the check. RES_USAGE should be safe as we always
4833 * charge before adding to the LRU.
4834 */
4835 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4836 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4837 } while (usage > 0);
4838}
4839
4840static inline bool memcg_has_children(struct mem_cgroup *memcg)
4841{
4842 lockdep_assert_held(&memcg_create_mutex);
4843 /*
4844 * The lock does not prevent addition or deletion to the list
4845 * of children, but it prevents a new child from being
4846 * initialized based on this parent in css_online(), so it's
4847 * enough to decide whether hierarchically inherited
4848 * attributes can still be changed or not.
4849 */
4850 return memcg->use_hierarchy &&
4851 !list_empty(&memcg->css.cgroup->children);
4852}
4853
4854/*
4855 * Reclaims as many pages from the given memcg as possible and moves
4856 * the rest to the parent.
4857 *
4858 * Caller is responsible for holding css reference for memcg.
4859 */
4860static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4861{
4862 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4863 struct cgroup *cgrp = memcg->css.cgroup;
4864
4865 /* returns EBUSY if there is a task or if we come here twice. */
4866 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4867 return -EBUSY;
4868
4869 /* we call try-to-free pages for make this cgroup empty */
4870 lru_add_drain_all();
4871 /* try to free all pages in this cgroup */
4872 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4873 int progress;
4874
4875 if (signal_pending(current))
4876 return -EINTR;
4877
4878 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4879 false);
4880 if (!progress) {
4881 nr_retries--;
4882 /* maybe some writeback is necessary */
4883 congestion_wait(BLK_RW_ASYNC, HZ/10);
4884 }
4885
4886 }
4887 lru_add_drain();
4888 mem_cgroup_reparent_charges(memcg);
4889
4890 return 0;
4891}
4892
4893static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4894 unsigned int event)
4895{
4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897
4898 if (mem_cgroup_is_root(memcg))
4899 return -EINVAL;
4900 return mem_cgroup_force_empty(memcg);
4901}
4902
4903static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4904 struct cftype *cft)
4905{
4906 return mem_cgroup_from_css(css)->use_hierarchy;
4907}
4908
4909static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4910 struct cftype *cft, u64 val)
4911{
4912 int retval = 0;
4913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4914 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4915
4916 mutex_lock(&memcg_create_mutex);
4917
4918 if (memcg->use_hierarchy == val)
4919 goto out;
4920
4921 /*
4922 * If parent's use_hierarchy is set, we can't make any modifications
4923 * in the child subtrees. If it is unset, then the change can
4924 * occur, provided the current cgroup has no children.
4925 *
4926 * For the root cgroup, parent_mem is NULL, we allow value to be
4927 * set if there are no children.
4928 */
4929 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4930 (val == 1 || val == 0)) {
4931 if (list_empty(&memcg->css.cgroup->children))
4932 memcg->use_hierarchy = val;
4933 else
4934 retval = -EBUSY;
4935 } else
4936 retval = -EINVAL;
4937
4938out:
4939 mutex_unlock(&memcg_create_mutex);
4940
4941 return retval;
4942}
4943
4944
4945static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4946 enum mem_cgroup_stat_index idx)
4947{
4948 struct mem_cgroup *iter;
4949 long val = 0;
4950
4951 /* Per-cpu values can be negative, use a signed accumulator */
4952 for_each_mem_cgroup_tree(iter, memcg)
4953 val += mem_cgroup_read_stat(iter, idx);
4954
4955 if (val < 0) /* race ? */
4956 val = 0;
4957 return val;
4958}
4959
4960static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4961{
4962 u64 val;
4963
4964 if (!mem_cgroup_is_root(memcg)) {
4965 if (!swap)
4966 return res_counter_read_u64(&memcg->res, RES_USAGE);
4967 else
4968 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4969 }
4970
4971 /*
4972 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4973 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4974 */
4975 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4976 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4977
4978 if (swap)
4979 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4980
4981 return val << PAGE_SHIFT;
4982}
4983
4984static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4985 struct cftype *cft)
4986{
4987 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4988 u64 val;
4989 int name;
4990 enum res_type type;
4991
4992 type = MEMFILE_TYPE(cft->private);
4993 name = MEMFILE_ATTR(cft->private);
4994
4995 switch (type) {
4996 case _MEM:
4997 if (name == RES_USAGE)
4998 val = mem_cgroup_usage(memcg, false);
4999 else
5000 val = res_counter_read_u64(&memcg->res, name);
5001 break;
5002 case _MEMSWAP:
5003 if (name == RES_USAGE)
5004 val = mem_cgroup_usage(memcg, true);
5005 else
5006 val = res_counter_read_u64(&memcg->memsw, name);
5007 break;
5008 case _KMEM:
5009 val = res_counter_read_u64(&memcg->kmem, name);
5010 break;
5011 default:
5012 BUG();
5013 }
5014
5015 return val;
5016}
5017
5018#ifdef CONFIG_MEMCG_KMEM
5019/* should be called with activate_kmem_mutex held */
5020static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5021 unsigned long long limit)
5022{
5023 int err = 0;
5024 int memcg_id;
5025
5026 if (memcg_kmem_is_active(memcg))
5027 return 0;
5028
5029 /*
5030 * We are going to allocate memory for data shared by all memory
5031 * cgroups so let's stop accounting here.
5032 */
5033 memcg_stop_kmem_account();
5034
5035 /*
5036 * For simplicity, we won't allow this to be disabled. It also can't
5037 * be changed if the cgroup has children already, or if tasks had
5038 * already joined.
5039 *
5040 * If tasks join before we set the limit, a person looking at
5041 * kmem.usage_in_bytes will have no way to determine when it took
5042 * place, which makes the value quite meaningless.
5043 *
5044 * After it first became limited, changes in the value of the limit are
5045 * of course permitted.
5046 */
5047 mutex_lock(&memcg_create_mutex);
5048 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5049 err = -EBUSY;
5050 mutex_unlock(&memcg_create_mutex);
5051 if (err)
5052 goto out;
5053
5054 memcg_id = ida_simple_get(&kmem_limited_groups,
5055 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5056 if (memcg_id < 0) {
5057 err = memcg_id;
5058 goto out;
5059 }
5060
5061 /*
5062 * Make sure we have enough space for this cgroup in each root cache's
5063 * memcg_params.
5064 */
5065 err = memcg_update_all_caches(memcg_id + 1);
5066 if (err)
5067 goto out_rmid;
5068
5069 memcg->kmemcg_id = memcg_id;
5070 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5071 mutex_init(&memcg->slab_caches_mutex);
5072
5073 /*
5074 * We couldn't have accounted to this cgroup, because it hasn't got the
5075 * active bit set yet, so this should succeed.
5076 */
5077 err = res_counter_set_limit(&memcg->kmem, limit);
5078 VM_BUG_ON(err);
5079
5080 static_key_slow_inc(&memcg_kmem_enabled_key);
5081 /*
5082 * Setting the active bit after enabling static branching will
5083 * guarantee no one starts accounting before all call sites are
5084 * patched.
5085 */
5086 memcg_kmem_set_active(memcg);
5087out:
5088 memcg_resume_kmem_account();
5089 return err;
5090
5091out_rmid:
5092 ida_simple_remove(&kmem_limited_groups, memcg_id);
5093 goto out;
5094}
5095
5096static int memcg_activate_kmem(struct mem_cgroup *memcg,
5097 unsigned long long limit)
5098{
5099 int ret;
5100
5101 mutex_lock(&activate_kmem_mutex);
5102 ret = __memcg_activate_kmem(memcg, limit);
5103 mutex_unlock(&activate_kmem_mutex);
5104 return ret;
5105}
5106
5107static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5108 unsigned long long val)
5109{
5110 int ret;
5111
5112 if (!memcg_kmem_is_active(memcg))
5113 ret = memcg_activate_kmem(memcg, val);
5114 else
5115 ret = res_counter_set_limit(&memcg->kmem, val);
5116 return ret;
5117}
5118
5119static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5120{
5121 int ret = 0;
5122 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5123
5124 if (!parent)
5125 return 0;
5126
5127 mutex_lock(&activate_kmem_mutex);
5128 /*
5129 * If the parent cgroup is not kmem-active now, it cannot be activated
5130 * after this point, because it has at least one child already.
5131 */
5132 if (memcg_kmem_is_active(parent))
5133 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5134 mutex_unlock(&activate_kmem_mutex);
5135 return ret;
5136}
5137#else
5138static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5139 unsigned long long val)
5140{
5141 return -EINVAL;
5142}
5143#endif /* CONFIG_MEMCG_KMEM */
5144
5145/*
5146 * The user of this function is...
5147 * RES_LIMIT.
5148 */
5149static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5150 char *buffer)
5151{
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5153 enum res_type type;
5154 int name;
5155 unsigned long long val;
5156 int ret;
5157
5158 type = MEMFILE_TYPE(cft->private);
5159 name = MEMFILE_ATTR(cft->private);
5160
5161 switch (name) {
5162 case RES_LIMIT:
5163 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5164 ret = -EINVAL;
5165 break;
5166 }
5167 /* This function does all necessary parse...reuse it */
5168 ret = res_counter_memparse_write_strategy(buffer, &val);
5169 if (ret)
5170 break;
5171 if (type == _MEM)
5172 ret = mem_cgroup_resize_limit(memcg, val);
5173 else if (type == _MEMSWAP)
5174 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5175 else if (type == _KMEM)
5176 ret = memcg_update_kmem_limit(memcg, val);
5177 else
5178 return -EINVAL;
5179 break;
5180 case RES_SOFT_LIMIT:
5181 ret = res_counter_memparse_write_strategy(buffer, &val);
5182 if (ret)
5183 break;
5184 /*
5185 * For memsw, soft limits are hard to implement in terms
5186 * of semantics, for now, we support soft limits for
5187 * control without swap
5188 */
5189 if (type == _MEM)
5190 ret = res_counter_set_soft_limit(&memcg->res, val);
5191 else
5192 ret = -EINVAL;
5193 break;
5194 default:
5195 ret = -EINVAL; /* should be BUG() ? */
5196 break;
5197 }
5198 return ret;
5199}
5200
5201static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5202 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5203{
5204 unsigned long long min_limit, min_memsw_limit, tmp;
5205
5206 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5207 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5208 if (!memcg->use_hierarchy)
5209 goto out;
5210
5211 while (css_parent(&memcg->css)) {
5212 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5213 if (!memcg->use_hierarchy)
5214 break;
5215 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5216 min_limit = min(min_limit, tmp);
5217 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5218 min_memsw_limit = min(min_memsw_limit, tmp);
5219 }
5220out:
5221 *mem_limit = min_limit;
5222 *memsw_limit = min_memsw_limit;
5223}
5224
5225static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5226{
5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5228 int name;
5229 enum res_type type;
5230
5231 type = MEMFILE_TYPE(event);
5232 name = MEMFILE_ATTR(event);
5233
5234 switch (name) {
5235 case RES_MAX_USAGE:
5236 if (type == _MEM)
5237 res_counter_reset_max(&memcg->res);
5238 else if (type == _MEMSWAP)
5239 res_counter_reset_max(&memcg->memsw);
5240 else if (type == _KMEM)
5241 res_counter_reset_max(&memcg->kmem);
5242 else
5243 return -EINVAL;
5244 break;
5245 case RES_FAILCNT:
5246 if (type == _MEM)
5247 res_counter_reset_failcnt(&memcg->res);
5248 else if (type == _MEMSWAP)
5249 res_counter_reset_failcnt(&memcg->memsw);
5250 else if (type == _KMEM)
5251 res_counter_reset_failcnt(&memcg->kmem);
5252 else
5253 return -EINVAL;
5254 break;
5255 }
5256
5257 return 0;
5258}
5259
5260static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5261 struct cftype *cft)
5262{
5263 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5264}
5265
5266#ifdef CONFIG_MMU
5267static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5268 struct cftype *cft, u64 val)
5269{
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271
5272 if (val >= (1 << NR_MOVE_TYPE))
5273 return -EINVAL;
5274
5275 /*
5276 * No kind of locking is needed in here, because ->can_attach() will
5277 * check this value once in the beginning of the process, and then carry
5278 * on with stale data. This means that changes to this value will only
5279 * affect task migrations starting after the change.
5280 */
5281 memcg->move_charge_at_immigrate = val;
5282 return 0;
5283}
5284#else
5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5286 struct cftype *cft, u64 val)
5287{
5288 return -ENOSYS;
5289}
5290#endif
5291
5292#ifdef CONFIG_NUMA
5293static int memcg_numa_stat_show(struct seq_file *m, void *v)
5294{
5295 struct numa_stat {
5296 const char *name;
5297 unsigned int lru_mask;
5298 };
5299
5300 static const struct numa_stat stats[] = {
5301 { "total", LRU_ALL },
5302 { "file", LRU_ALL_FILE },
5303 { "anon", LRU_ALL_ANON },
5304 { "unevictable", BIT(LRU_UNEVICTABLE) },
5305 };
5306 const struct numa_stat *stat;
5307 int nid;
5308 unsigned long nr;
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5310
5311 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5312 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5313 seq_printf(m, "%s=%lu", stat->name, nr);
5314 for_each_node_state(nid, N_MEMORY) {
5315 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5316 stat->lru_mask);
5317 seq_printf(m, " N%d=%lu", nid, nr);
5318 }
5319 seq_putc(m, '\n');
5320 }
5321
5322 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5323 struct mem_cgroup *iter;
5324
5325 nr = 0;
5326 for_each_mem_cgroup_tree(iter, memcg)
5327 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5328 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5329 for_each_node_state(nid, N_MEMORY) {
5330 nr = 0;
5331 for_each_mem_cgroup_tree(iter, memcg)
5332 nr += mem_cgroup_node_nr_lru_pages(
5333 iter, nid, stat->lru_mask);
5334 seq_printf(m, " N%d=%lu", nid, nr);
5335 }
5336 seq_putc(m, '\n');
5337 }
5338
5339 return 0;
5340}
5341#endif /* CONFIG_NUMA */
5342
5343static inline void mem_cgroup_lru_names_not_uptodate(void)
5344{
5345 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5346}
5347
5348static int memcg_stat_show(struct seq_file *m, void *v)
5349{
5350 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5351 struct mem_cgroup *mi;
5352 unsigned int i;
5353
5354 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5355 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5356 continue;
5357 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5358 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5359 }
5360
5361 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5362 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5363 mem_cgroup_read_events(memcg, i));
5364
5365 for (i = 0; i < NR_LRU_LISTS; i++)
5366 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5367 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5368
5369 /* Hierarchical information */
5370 {
5371 unsigned long long limit, memsw_limit;
5372 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5373 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5374 if (do_swap_account)
5375 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5376 memsw_limit);
5377 }
5378
5379 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5380 long long val = 0;
5381
5382 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5383 continue;
5384 for_each_mem_cgroup_tree(mi, memcg)
5385 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5386 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5387 }
5388
5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5390 unsigned long long val = 0;
5391
5392 for_each_mem_cgroup_tree(mi, memcg)
5393 val += mem_cgroup_read_events(mi, i);
5394 seq_printf(m, "total_%s %llu\n",
5395 mem_cgroup_events_names[i], val);
5396 }
5397
5398 for (i = 0; i < NR_LRU_LISTS; i++) {
5399 unsigned long long val = 0;
5400
5401 for_each_mem_cgroup_tree(mi, memcg)
5402 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5403 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5404 }
5405
5406#ifdef CONFIG_DEBUG_VM
5407 {
5408 int nid, zid;
5409 struct mem_cgroup_per_zone *mz;
5410 struct zone_reclaim_stat *rstat;
5411 unsigned long recent_rotated[2] = {0, 0};
5412 unsigned long recent_scanned[2] = {0, 0};
5413
5414 for_each_online_node(nid)
5415 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5416 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5417 rstat = &mz->lruvec.reclaim_stat;
5418
5419 recent_rotated[0] += rstat->recent_rotated[0];
5420 recent_rotated[1] += rstat->recent_rotated[1];
5421 recent_scanned[0] += rstat->recent_scanned[0];
5422 recent_scanned[1] += rstat->recent_scanned[1];
5423 }
5424 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5425 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5426 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5427 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5428 }
5429#endif
5430
5431 return 0;
5432}
5433
5434static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5435 struct cftype *cft)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438
5439 return mem_cgroup_swappiness(memcg);
5440}
5441
5442static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5443 struct cftype *cft, u64 val)
5444{
5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5447
5448 if (val > 100 || !parent)
5449 return -EINVAL;
5450
5451 mutex_lock(&memcg_create_mutex);
5452
5453 /* If under hierarchy, only empty-root can set this value */
5454 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5455 mutex_unlock(&memcg_create_mutex);
5456 return -EINVAL;
5457 }
5458
5459 memcg->swappiness = val;
5460
5461 mutex_unlock(&memcg_create_mutex);
5462
5463 return 0;
5464}
5465
5466static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5467{
5468 struct mem_cgroup_threshold_ary *t;
5469 u64 usage;
5470 int i;
5471
5472 rcu_read_lock();
5473 if (!swap)
5474 t = rcu_dereference(memcg->thresholds.primary);
5475 else
5476 t = rcu_dereference(memcg->memsw_thresholds.primary);
5477
5478 if (!t)
5479 goto unlock;
5480
5481 usage = mem_cgroup_usage(memcg, swap);
5482
5483 /*
5484 * current_threshold points to threshold just below or equal to usage.
5485 * If it's not true, a threshold was crossed after last
5486 * call of __mem_cgroup_threshold().
5487 */
5488 i = t->current_threshold;
5489
5490 /*
5491 * Iterate backward over array of thresholds starting from
5492 * current_threshold and check if a threshold is crossed.
5493 * If none of thresholds below usage is crossed, we read
5494 * only one element of the array here.
5495 */
5496 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5497 eventfd_signal(t->entries[i].eventfd, 1);
5498
5499 /* i = current_threshold + 1 */
5500 i++;
5501
5502 /*
5503 * Iterate forward over array of thresholds starting from
5504 * current_threshold+1 and check if a threshold is crossed.
5505 * If none of thresholds above usage is crossed, we read
5506 * only one element of the array here.
5507 */
5508 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5509 eventfd_signal(t->entries[i].eventfd, 1);
5510
5511 /* Update current_threshold */
5512 t->current_threshold = i - 1;
5513unlock:
5514 rcu_read_unlock();
5515}
5516
5517static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5518{
5519 while (memcg) {
5520 __mem_cgroup_threshold(memcg, false);
5521 if (do_swap_account)
5522 __mem_cgroup_threshold(memcg, true);
5523
5524 memcg = parent_mem_cgroup(memcg);
5525 }
5526}
5527
5528static int compare_thresholds(const void *a, const void *b)
5529{
5530 const struct mem_cgroup_threshold *_a = a;
5531 const struct mem_cgroup_threshold *_b = b;
5532
5533 if (_a->threshold > _b->threshold)
5534 return 1;
5535
5536 if (_a->threshold < _b->threshold)
5537 return -1;
5538
5539 return 0;
5540}
5541
5542static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5543{
5544 struct mem_cgroup_eventfd_list *ev;
5545
5546 list_for_each_entry(ev, &memcg->oom_notify, list)
5547 eventfd_signal(ev->eventfd, 1);
5548 return 0;
5549}
5550
5551static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5552{
5553 struct mem_cgroup *iter;
5554
5555 for_each_mem_cgroup_tree(iter, memcg)
5556 mem_cgroup_oom_notify_cb(iter);
5557}
5558
5559static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5560 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5561{
5562 struct mem_cgroup_thresholds *thresholds;
5563 struct mem_cgroup_threshold_ary *new;
5564 u64 threshold, usage;
5565 int i, size, ret;
5566
5567 ret = res_counter_memparse_write_strategy(args, &threshold);
5568 if (ret)
5569 return ret;
5570
5571 mutex_lock(&memcg->thresholds_lock);
5572
5573 if (type == _MEM)
5574 thresholds = &memcg->thresholds;
5575 else if (type == _MEMSWAP)
5576 thresholds = &memcg->memsw_thresholds;
5577 else
5578 BUG();
5579
5580 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5581
5582 /* Check if a threshold crossed before adding a new one */
5583 if (thresholds->primary)
5584 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5585
5586 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5587
5588 /* Allocate memory for new array of thresholds */
5589 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5590 GFP_KERNEL);
5591 if (!new) {
5592 ret = -ENOMEM;
5593 goto unlock;
5594 }
5595 new->size = size;
5596
5597 /* Copy thresholds (if any) to new array */
5598 if (thresholds->primary) {
5599 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5600 sizeof(struct mem_cgroup_threshold));
5601 }
5602
5603 /* Add new threshold */
5604 new->entries[size - 1].eventfd = eventfd;
5605 new->entries[size - 1].threshold = threshold;
5606
5607 /* Sort thresholds. Registering of new threshold isn't time-critical */
5608 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5609 compare_thresholds, NULL);
5610
5611 /* Find current threshold */
5612 new->current_threshold = -1;
5613 for (i = 0; i < size; i++) {
5614 if (new->entries[i].threshold <= usage) {
5615 /*
5616 * new->current_threshold will not be used until
5617 * rcu_assign_pointer(), so it's safe to increment
5618 * it here.
5619 */
5620 ++new->current_threshold;
5621 } else
5622 break;
5623 }
5624
5625 /* Free old spare buffer and save old primary buffer as spare */
5626 kfree(thresholds->spare);
5627 thresholds->spare = thresholds->primary;
5628
5629 rcu_assign_pointer(thresholds->primary, new);
5630
5631 /* To be sure that nobody uses thresholds */
5632 synchronize_rcu();
5633
5634unlock:
5635 mutex_unlock(&memcg->thresholds_lock);
5636
5637 return ret;
5638}
5639
5640static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5641 struct eventfd_ctx *eventfd, const char *args)
5642{
5643 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5644}
5645
5646static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5647 struct eventfd_ctx *eventfd, const char *args)
5648{
5649 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5650}
5651
5652static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5653 struct eventfd_ctx *eventfd, enum res_type type)
5654{
5655 struct mem_cgroup_thresholds *thresholds;
5656 struct mem_cgroup_threshold_ary *new;
5657 u64 usage;
5658 int i, j, size;
5659
5660 mutex_lock(&memcg->thresholds_lock);
5661 if (type == _MEM)
5662 thresholds = &memcg->thresholds;
5663 else if (type == _MEMSWAP)
5664 thresholds = &memcg->memsw_thresholds;
5665 else
5666 BUG();
5667
5668 if (!thresholds->primary)
5669 goto unlock;
5670
5671 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5672
5673 /* Check if a threshold crossed before removing */
5674 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5675
5676 /* Calculate new number of threshold */
5677 size = 0;
5678 for (i = 0; i < thresholds->primary->size; i++) {
5679 if (thresholds->primary->entries[i].eventfd != eventfd)
5680 size++;
5681 }
5682
5683 new = thresholds->spare;
5684
5685 /* Set thresholds array to NULL if we don't have thresholds */
5686 if (!size) {
5687 kfree(new);
5688 new = NULL;
5689 goto swap_buffers;
5690 }
5691
5692 new->size = size;
5693
5694 /* Copy thresholds and find current threshold */
5695 new->current_threshold = -1;
5696 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5697 if (thresholds->primary->entries[i].eventfd == eventfd)
5698 continue;
5699
5700 new->entries[j] = thresholds->primary->entries[i];
5701 if (new->entries[j].threshold <= usage) {
5702 /*
5703 * new->current_threshold will not be used
5704 * until rcu_assign_pointer(), so it's safe to increment
5705 * it here.
5706 */
5707 ++new->current_threshold;
5708 }
5709 j++;
5710 }
5711
5712swap_buffers:
5713 /* Swap primary and spare array */
5714 thresholds->spare = thresholds->primary;
5715 /* If all events are unregistered, free the spare array */
5716 if (!new) {
5717 kfree(thresholds->spare);
5718 thresholds->spare = NULL;
5719 }
5720
5721 rcu_assign_pointer(thresholds->primary, new);
5722
5723 /* To be sure that nobody uses thresholds */
5724 synchronize_rcu();
5725unlock:
5726 mutex_unlock(&memcg->thresholds_lock);
5727}
5728
5729static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5730 struct eventfd_ctx *eventfd)
5731{
5732 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5733}
5734
5735static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5736 struct eventfd_ctx *eventfd)
5737{
5738 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5739}
5740
5741static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5742 struct eventfd_ctx *eventfd, const char *args)
5743{
5744 struct mem_cgroup_eventfd_list *event;
5745
5746 event = kmalloc(sizeof(*event), GFP_KERNEL);
5747 if (!event)
5748 return -ENOMEM;
5749
5750 spin_lock(&memcg_oom_lock);
5751
5752 event->eventfd = eventfd;
5753 list_add(&event->list, &memcg->oom_notify);
5754
5755 /* already in OOM ? */
5756 if (atomic_read(&memcg->under_oom))
5757 eventfd_signal(eventfd, 1);
5758 spin_unlock(&memcg_oom_lock);
5759
5760 return 0;
5761}
5762
5763static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5764 struct eventfd_ctx *eventfd)
5765{
5766 struct mem_cgroup_eventfd_list *ev, *tmp;
5767
5768 spin_lock(&memcg_oom_lock);
5769
5770 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5771 if (ev->eventfd == eventfd) {
5772 list_del(&ev->list);
5773 kfree(ev);
5774 }
5775 }
5776
5777 spin_unlock(&memcg_oom_lock);
5778}
5779
5780static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5781{
5782 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5783
5784 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5785 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5786 return 0;
5787}
5788
5789static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5790 struct cftype *cft, u64 val)
5791{
5792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5793 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5794
5795 /* cannot set to root cgroup and only 0 and 1 are allowed */
5796 if (!parent || !((val == 0) || (val == 1)))
5797 return -EINVAL;
5798
5799 mutex_lock(&memcg_create_mutex);
5800 /* oom-kill-disable is a flag for subhierarchy. */
5801 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5802 mutex_unlock(&memcg_create_mutex);
5803 return -EINVAL;
5804 }
5805 memcg->oom_kill_disable = val;
5806 if (!val)
5807 memcg_oom_recover(memcg);
5808 mutex_unlock(&memcg_create_mutex);
5809 return 0;
5810}
5811
5812#ifdef CONFIG_MEMCG_KMEM
5813static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5814{
5815 int ret;
5816
5817 memcg->kmemcg_id = -1;
5818 ret = memcg_propagate_kmem(memcg);
5819 if (ret)
5820 return ret;
5821
5822 return mem_cgroup_sockets_init(memcg, ss);
5823}
5824
5825static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5826{
5827 mem_cgroup_sockets_destroy(memcg);
5828}
5829
5830static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5831{
5832 if (!memcg_kmem_is_active(memcg))
5833 return;
5834
5835 /*
5836 * kmem charges can outlive the cgroup. In the case of slab
5837 * pages, for instance, a page contain objects from various
5838 * processes. As we prevent from taking a reference for every
5839 * such allocation we have to be careful when doing uncharge
5840 * (see memcg_uncharge_kmem) and here during offlining.
5841 *
5842 * The idea is that that only the _last_ uncharge which sees
5843 * the dead memcg will drop the last reference. An additional
5844 * reference is taken here before the group is marked dead
5845 * which is then paired with css_put during uncharge resp. here.
5846 *
5847 * Although this might sound strange as this path is called from
5848 * css_offline() when the referencemight have dropped down to 0
5849 * and shouldn't be incremented anymore (css_tryget would fail)
5850 * we do not have other options because of the kmem allocations
5851 * lifetime.
5852 */
5853 css_get(&memcg->css);
5854
5855 memcg_kmem_mark_dead(memcg);
5856
5857 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5858 return;
5859
5860 if (memcg_kmem_test_and_clear_dead(memcg))
5861 css_put(&memcg->css);
5862}
5863#else
5864static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865{
5866 return 0;
5867}
5868
5869static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5870{
5871}
5872
5873static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5874{
5875}
5876#endif
5877
5878/*
5879 * DO NOT USE IN NEW FILES.
5880 *
5881 * "cgroup.event_control" implementation.
5882 *
5883 * This is way over-engineered. It tries to support fully configurable
5884 * events for each user. Such level of flexibility is completely
5885 * unnecessary especially in the light of the planned unified hierarchy.
5886 *
5887 * Please deprecate this and replace with something simpler if at all
5888 * possible.
5889 */
5890
5891/*
5892 * Unregister event and free resources.
5893 *
5894 * Gets called from workqueue.
5895 */
5896static void memcg_event_remove(struct work_struct *work)
5897{
5898 struct mem_cgroup_event *event =
5899 container_of(work, struct mem_cgroup_event, remove);
5900 struct mem_cgroup *memcg = event->memcg;
5901
5902 remove_wait_queue(event->wqh, &event->wait);
5903
5904 event->unregister_event(memcg, event->eventfd);
5905
5906 /* Notify userspace the event is going away. */
5907 eventfd_signal(event->eventfd, 1);
5908
5909 eventfd_ctx_put(event->eventfd);
5910 kfree(event);
5911 css_put(&memcg->css);
5912}
5913
5914/*
5915 * Gets called on POLLHUP on eventfd when user closes it.
5916 *
5917 * Called with wqh->lock held and interrupts disabled.
5918 */
5919static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5920 int sync, void *key)
5921{
5922 struct mem_cgroup_event *event =
5923 container_of(wait, struct mem_cgroup_event, wait);
5924 struct mem_cgroup *memcg = event->memcg;
5925 unsigned long flags = (unsigned long)key;
5926
5927 if (flags & POLLHUP) {
5928 /*
5929 * If the event has been detached at cgroup removal, we
5930 * can simply return knowing the other side will cleanup
5931 * for us.
5932 *
5933 * We can't race against event freeing since the other
5934 * side will require wqh->lock via remove_wait_queue(),
5935 * which we hold.
5936 */
5937 spin_lock(&memcg->event_list_lock);
5938 if (!list_empty(&event->list)) {
5939 list_del_init(&event->list);
5940 /*
5941 * We are in atomic context, but cgroup_event_remove()
5942 * may sleep, so we have to call it in workqueue.
5943 */
5944 schedule_work(&event->remove);
5945 }
5946 spin_unlock(&memcg->event_list_lock);
5947 }
5948
5949 return 0;
5950}
5951
5952static void memcg_event_ptable_queue_proc(struct file *file,
5953 wait_queue_head_t *wqh, poll_table *pt)
5954{
5955 struct mem_cgroup_event *event =
5956 container_of(pt, struct mem_cgroup_event, pt);
5957
5958 event->wqh = wqh;
5959 add_wait_queue(wqh, &event->wait);
5960}
5961
5962/*
5963 * DO NOT USE IN NEW FILES.
5964 *
5965 * Parse input and register new cgroup event handler.
5966 *
5967 * Input must be in format '<event_fd> <control_fd> <args>'.
5968 * Interpretation of args is defined by control file implementation.
5969 */
5970static int memcg_write_event_control(struct cgroup_subsys_state *css,
5971 struct cftype *cft, char *buffer)
5972{
5973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5974 struct mem_cgroup_event *event;
5975 struct cgroup_subsys_state *cfile_css;
5976 unsigned int efd, cfd;
5977 struct fd efile;
5978 struct fd cfile;
5979 const char *name;
5980 char *endp;
5981 int ret;
5982
5983 efd = simple_strtoul(buffer, &endp, 10);
5984 if (*endp != ' ')
5985 return -EINVAL;
5986 buffer = endp + 1;
5987
5988 cfd = simple_strtoul(buffer, &endp, 10);
5989 if ((*endp != ' ') && (*endp != '\0'))
5990 return -EINVAL;
5991 buffer = endp + 1;
5992
5993 event = kzalloc(sizeof(*event), GFP_KERNEL);
5994 if (!event)
5995 return -ENOMEM;
5996
5997 event->memcg = memcg;
5998 INIT_LIST_HEAD(&event->list);
5999 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6000 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6001 INIT_WORK(&event->remove, memcg_event_remove);
6002
6003 efile = fdget(efd);
6004 if (!efile.file) {
6005 ret = -EBADF;
6006 goto out_kfree;
6007 }
6008
6009 event->eventfd = eventfd_ctx_fileget(efile.file);
6010 if (IS_ERR(event->eventfd)) {
6011 ret = PTR_ERR(event->eventfd);
6012 goto out_put_efile;
6013 }
6014
6015 cfile = fdget(cfd);
6016 if (!cfile.file) {
6017 ret = -EBADF;
6018 goto out_put_eventfd;
6019 }
6020
6021 /* the process need read permission on control file */
6022 /* AV: shouldn't we check that it's been opened for read instead? */
6023 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6024 if (ret < 0)
6025 goto out_put_cfile;
6026
6027 /*
6028 * Determine the event callbacks and set them in @event. This used
6029 * to be done via struct cftype but cgroup core no longer knows
6030 * about these events. The following is crude but the whole thing
6031 * is for compatibility anyway.
6032 *
6033 * DO NOT ADD NEW FILES.
6034 */
6035 name = cfile.file->f_dentry->d_name.name;
6036
6037 if (!strcmp(name, "memory.usage_in_bytes")) {
6038 event->register_event = mem_cgroup_usage_register_event;
6039 event->unregister_event = mem_cgroup_usage_unregister_event;
6040 } else if (!strcmp(name, "memory.oom_control")) {
6041 event->register_event = mem_cgroup_oom_register_event;
6042 event->unregister_event = mem_cgroup_oom_unregister_event;
6043 } else if (!strcmp(name, "memory.pressure_level")) {
6044 event->register_event = vmpressure_register_event;
6045 event->unregister_event = vmpressure_unregister_event;
6046 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6047 event->register_event = memsw_cgroup_usage_register_event;
6048 event->unregister_event = memsw_cgroup_usage_unregister_event;
6049 } else {
6050 ret = -EINVAL;
6051 goto out_put_cfile;
6052 }
6053
6054 /*
6055 * Verify @cfile should belong to @css. Also, remaining events are
6056 * automatically removed on cgroup destruction but the removal is
6057 * asynchronous, so take an extra ref on @css.
6058 */
6059 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6060 &memory_cgrp_subsys);
6061 ret = -EINVAL;
6062 if (IS_ERR(cfile_css))
6063 goto out_put_cfile;
6064 if (cfile_css != css) {
6065 css_put(cfile_css);
6066 goto out_put_cfile;
6067 }
6068
6069 ret = event->register_event(memcg, event->eventfd, buffer);
6070 if (ret)
6071 goto out_put_css;
6072
6073 efile.file->f_op->poll(efile.file, &event->pt);
6074
6075 spin_lock(&memcg->event_list_lock);
6076 list_add(&event->list, &memcg->event_list);
6077 spin_unlock(&memcg->event_list_lock);
6078
6079 fdput(cfile);
6080 fdput(efile);
6081
6082 return 0;
6083
6084out_put_css:
6085 css_put(css);
6086out_put_cfile:
6087 fdput(cfile);
6088out_put_eventfd:
6089 eventfd_ctx_put(event->eventfd);
6090out_put_efile:
6091 fdput(efile);
6092out_kfree:
6093 kfree(event);
6094
6095 return ret;
6096}
6097
6098static struct cftype mem_cgroup_files[] = {
6099 {
6100 .name = "usage_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6102 .read_u64 = mem_cgroup_read_u64,
6103 },
6104 {
6105 .name = "max_usage_in_bytes",
6106 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6107 .trigger = mem_cgroup_reset,
6108 .read_u64 = mem_cgroup_read_u64,
6109 },
6110 {
6111 .name = "limit_in_bytes",
6112 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6113 .write_string = mem_cgroup_write,
6114 .read_u64 = mem_cgroup_read_u64,
6115 },
6116 {
6117 .name = "soft_limit_in_bytes",
6118 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6119 .write_string = mem_cgroup_write,
6120 .read_u64 = mem_cgroup_read_u64,
6121 },
6122 {
6123 .name = "failcnt",
6124 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6125 .trigger = mem_cgroup_reset,
6126 .read_u64 = mem_cgroup_read_u64,
6127 },
6128 {
6129 .name = "stat",
6130 .seq_show = memcg_stat_show,
6131 },
6132 {
6133 .name = "force_empty",
6134 .trigger = mem_cgroup_force_empty_write,
6135 },
6136 {
6137 .name = "use_hierarchy",
6138 .flags = CFTYPE_INSANE,
6139 .write_u64 = mem_cgroup_hierarchy_write,
6140 .read_u64 = mem_cgroup_hierarchy_read,
6141 },
6142 {
6143 .name = "cgroup.event_control", /* XXX: for compat */
6144 .write_string = memcg_write_event_control,
6145 .flags = CFTYPE_NO_PREFIX,
6146 .mode = S_IWUGO,
6147 },
6148 {
6149 .name = "swappiness",
6150 .read_u64 = mem_cgroup_swappiness_read,
6151 .write_u64 = mem_cgroup_swappiness_write,
6152 },
6153 {
6154 .name = "move_charge_at_immigrate",
6155 .read_u64 = mem_cgroup_move_charge_read,
6156 .write_u64 = mem_cgroup_move_charge_write,
6157 },
6158 {
6159 .name = "oom_control",
6160 .seq_show = mem_cgroup_oom_control_read,
6161 .write_u64 = mem_cgroup_oom_control_write,
6162 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6163 },
6164 {
6165 .name = "pressure_level",
6166 },
6167#ifdef CONFIG_NUMA
6168 {
6169 .name = "numa_stat",
6170 .seq_show = memcg_numa_stat_show,
6171 },
6172#endif
6173#ifdef CONFIG_MEMCG_KMEM
6174 {
6175 .name = "kmem.limit_in_bytes",
6176 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6177 .write_string = mem_cgroup_write,
6178 .read_u64 = mem_cgroup_read_u64,
6179 },
6180 {
6181 .name = "kmem.usage_in_bytes",
6182 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6183 .read_u64 = mem_cgroup_read_u64,
6184 },
6185 {
6186 .name = "kmem.failcnt",
6187 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6188 .trigger = mem_cgroup_reset,
6189 .read_u64 = mem_cgroup_read_u64,
6190 },
6191 {
6192 .name = "kmem.max_usage_in_bytes",
6193 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6194 .trigger = mem_cgroup_reset,
6195 .read_u64 = mem_cgroup_read_u64,
6196 },
6197#ifdef CONFIG_SLABINFO
6198 {
6199 .name = "kmem.slabinfo",
6200 .seq_show = mem_cgroup_slabinfo_read,
6201 },
6202#endif
6203#endif
6204 { }, /* terminate */
6205};
6206
6207#ifdef CONFIG_MEMCG_SWAP
6208static struct cftype memsw_cgroup_files[] = {
6209 {
6210 .name = "memsw.usage_in_bytes",
6211 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6212 .read_u64 = mem_cgroup_read_u64,
6213 },
6214 {
6215 .name = "memsw.max_usage_in_bytes",
6216 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6217 .trigger = mem_cgroup_reset,
6218 .read_u64 = mem_cgroup_read_u64,
6219 },
6220 {
6221 .name = "memsw.limit_in_bytes",
6222 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6223 .write_string = mem_cgroup_write,
6224 .read_u64 = mem_cgroup_read_u64,
6225 },
6226 {
6227 .name = "memsw.failcnt",
6228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6229 .trigger = mem_cgroup_reset,
6230 .read_u64 = mem_cgroup_read_u64,
6231 },
6232 { }, /* terminate */
6233};
6234#endif
6235static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6236{
6237 struct mem_cgroup_per_node *pn;
6238 struct mem_cgroup_per_zone *mz;
6239 int zone, tmp = node;
6240 /*
6241 * This routine is called against possible nodes.
6242 * But it's BUG to call kmalloc() against offline node.
6243 *
6244 * TODO: this routine can waste much memory for nodes which will
6245 * never be onlined. It's better to use memory hotplug callback
6246 * function.
6247 */
6248 if (!node_state(node, N_NORMAL_MEMORY))
6249 tmp = -1;
6250 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6251 if (!pn)
6252 return 1;
6253
6254 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6255 mz = &pn->zoneinfo[zone];
6256 lruvec_init(&mz->lruvec);
6257 mz->usage_in_excess = 0;
6258 mz->on_tree = false;
6259 mz->memcg = memcg;
6260 }
6261 memcg->nodeinfo[node] = pn;
6262 return 0;
6263}
6264
6265static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6266{
6267 kfree(memcg->nodeinfo[node]);
6268}
6269
6270static struct mem_cgroup *mem_cgroup_alloc(void)
6271{
6272 struct mem_cgroup *memcg;
6273 size_t size;
6274
6275 size = sizeof(struct mem_cgroup);
6276 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6277
6278 memcg = kzalloc(size, GFP_KERNEL);
6279 if (!memcg)
6280 return NULL;
6281
6282 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6283 if (!memcg->stat)
6284 goto out_free;
6285 spin_lock_init(&memcg->pcp_counter_lock);
6286 return memcg;
6287
6288out_free:
6289 kfree(memcg);
6290 return NULL;
6291}
6292
6293/*
6294 * At destroying mem_cgroup, references from swap_cgroup can remain.
6295 * (scanning all at force_empty is too costly...)
6296 *
6297 * Instead of clearing all references at force_empty, we remember
6298 * the number of reference from swap_cgroup and free mem_cgroup when
6299 * it goes down to 0.
6300 *
6301 * Removal of cgroup itself succeeds regardless of refs from swap.
6302 */
6303
6304static void __mem_cgroup_free(struct mem_cgroup *memcg)
6305{
6306 int node;
6307
6308 mem_cgroup_remove_from_trees(memcg);
6309
6310 for_each_node(node)
6311 free_mem_cgroup_per_zone_info(memcg, node);
6312
6313 free_percpu(memcg->stat);
6314
6315 /*
6316 * We need to make sure that (at least for now), the jump label
6317 * destruction code runs outside of the cgroup lock. This is because
6318 * get_online_cpus(), which is called from the static_branch update,
6319 * can't be called inside the cgroup_lock. cpusets are the ones
6320 * enforcing this dependency, so if they ever change, we might as well.
6321 *
6322 * schedule_work() will guarantee this happens. Be careful if you need
6323 * to move this code around, and make sure it is outside
6324 * the cgroup_lock.
6325 */
6326 disarm_static_keys(memcg);
6327 kfree(memcg);
6328}
6329
6330/*
6331 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6332 */
6333struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6334{
6335 if (!memcg->res.parent)
6336 return NULL;
6337 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6338}
6339EXPORT_SYMBOL(parent_mem_cgroup);
6340
6341static void __init mem_cgroup_soft_limit_tree_init(void)
6342{
6343 struct mem_cgroup_tree_per_node *rtpn;
6344 struct mem_cgroup_tree_per_zone *rtpz;
6345 int tmp, node, zone;
6346
6347 for_each_node(node) {
6348 tmp = node;
6349 if (!node_state(node, N_NORMAL_MEMORY))
6350 tmp = -1;
6351 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6352 BUG_ON(!rtpn);
6353
6354 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6355
6356 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6357 rtpz = &rtpn->rb_tree_per_zone[zone];
6358 rtpz->rb_root = RB_ROOT;
6359 spin_lock_init(&rtpz->lock);
6360 }
6361 }
6362}
6363
6364static struct cgroup_subsys_state * __ref
6365mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6366{
6367 struct mem_cgroup *memcg;
6368 long error = -ENOMEM;
6369 int node;
6370
6371 memcg = mem_cgroup_alloc();
6372 if (!memcg)
6373 return ERR_PTR(error);
6374
6375 for_each_node(node)
6376 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6377 goto free_out;
6378
6379 /* root ? */
6380 if (parent_css == NULL) {
6381 root_mem_cgroup = memcg;
6382 res_counter_init(&memcg->res, NULL);
6383 res_counter_init(&memcg->memsw, NULL);
6384 res_counter_init(&memcg->kmem, NULL);
6385 }
6386
6387 memcg->last_scanned_node = MAX_NUMNODES;
6388 INIT_LIST_HEAD(&memcg->oom_notify);
6389 memcg->move_charge_at_immigrate = 0;
6390 mutex_init(&memcg->thresholds_lock);
6391 spin_lock_init(&memcg->move_lock);
6392 vmpressure_init(&memcg->vmpressure);
6393 INIT_LIST_HEAD(&memcg->event_list);
6394 spin_lock_init(&memcg->event_list_lock);
6395
6396 return &memcg->css;
6397
6398free_out:
6399 __mem_cgroup_free(memcg);
6400 return ERR_PTR(error);
6401}
6402
6403static int
6404mem_cgroup_css_online(struct cgroup_subsys_state *css)
6405{
6406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6407 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6408
6409 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6410 return -ENOSPC;
6411
6412 if (!parent)
6413 return 0;
6414
6415 mutex_lock(&memcg_create_mutex);
6416
6417 memcg->use_hierarchy = parent->use_hierarchy;
6418 memcg->oom_kill_disable = parent->oom_kill_disable;
6419 memcg->swappiness = mem_cgroup_swappiness(parent);
6420
6421 if (parent->use_hierarchy) {
6422 res_counter_init(&memcg->res, &parent->res);
6423 res_counter_init(&memcg->memsw, &parent->memsw);
6424 res_counter_init(&memcg->kmem, &parent->kmem);
6425
6426 /*
6427 * No need to take a reference to the parent because cgroup
6428 * core guarantees its existence.
6429 */
6430 } else {
6431 res_counter_init(&memcg->res, NULL);
6432 res_counter_init(&memcg->memsw, NULL);
6433 res_counter_init(&memcg->kmem, NULL);
6434 /*
6435 * Deeper hierachy with use_hierarchy == false doesn't make
6436 * much sense so let cgroup subsystem know about this
6437 * unfortunate state in our controller.
6438 */
6439 if (parent != root_mem_cgroup)
6440 memory_cgrp_subsys.broken_hierarchy = true;
6441 }
6442 mutex_unlock(&memcg_create_mutex);
6443
6444 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6445}
6446
6447/*
6448 * Announce all parents that a group from their hierarchy is gone.
6449 */
6450static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6451{
6452 struct mem_cgroup *parent = memcg;
6453
6454 while ((parent = parent_mem_cgroup(parent)))
6455 mem_cgroup_iter_invalidate(parent);
6456
6457 /*
6458 * if the root memcg is not hierarchical we have to check it
6459 * explicitely.
6460 */
6461 if (!root_mem_cgroup->use_hierarchy)
6462 mem_cgroup_iter_invalidate(root_mem_cgroup);
6463}
6464
6465static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6466{
6467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6468 struct mem_cgroup_event *event, *tmp;
6469 struct cgroup_subsys_state *iter;
6470
6471 /*
6472 * Unregister events and notify userspace.
6473 * Notify userspace about cgroup removing only after rmdir of cgroup
6474 * directory to avoid race between userspace and kernelspace.
6475 */
6476 spin_lock(&memcg->event_list_lock);
6477 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6478 list_del_init(&event->list);
6479 schedule_work(&event->remove);
6480 }
6481 spin_unlock(&memcg->event_list_lock);
6482
6483 kmem_cgroup_css_offline(memcg);
6484
6485 mem_cgroup_invalidate_reclaim_iterators(memcg);
6486
6487 /*
6488 * This requires that offlining is serialized. Right now that is
6489 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6490 */
6491 css_for_each_descendant_post(iter, css)
6492 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6493
6494 mem_cgroup_destroy_all_caches(memcg);
6495 vmpressure_cleanup(&memcg->vmpressure);
6496}
6497
6498static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6499{
6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501 /*
6502 * XXX: css_offline() would be where we should reparent all
6503 * memory to prepare the cgroup for destruction. However,
6504 * memcg does not do css_tryget() and res_counter charging
6505 * under the same RCU lock region, which means that charging
6506 * could race with offlining. Offlining only happens to
6507 * cgroups with no tasks in them but charges can show up
6508 * without any tasks from the swapin path when the target
6509 * memcg is looked up from the swapout record and not from the
6510 * current task as it usually is. A race like this can leak
6511 * charges and put pages with stale cgroup pointers into
6512 * circulation:
6513 *
6514 * #0 #1
6515 * lookup_swap_cgroup_id()
6516 * rcu_read_lock()
6517 * mem_cgroup_lookup()
6518 * css_tryget()
6519 * rcu_read_unlock()
6520 * disable css_tryget()
6521 * call_rcu()
6522 * offline_css()
6523 * reparent_charges()
6524 * res_counter_charge()
6525 * css_put()
6526 * css_free()
6527 * pc->mem_cgroup = dead memcg
6528 * add page to lru
6529 *
6530 * The bulk of the charges are still moved in offline_css() to
6531 * avoid pinning a lot of pages in case a long-term reference
6532 * like a swapout record is deferring the css_free() to long
6533 * after offlining. But this makes sure we catch any charges
6534 * made after offlining:
6535 */
6536 mem_cgroup_reparent_charges(memcg);
6537
6538 memcg_destroy_kmem(memcg);
6539 __mem_cgroup_free(memcg);
6540}
6541
6542#ifdef CONFIG_MMU
6543/* Handlers for move charge at task migration. */
6544#define PRECHARGE_COUNT_AT_ONCE 256
6545static int mem_cgroup_do_precharge(unsigned long count)
6546{
6547 int ret = 0;
6548 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6549 struct mem_cgroup *memcg = mc.to;
6550
6551 if (mem_cgroup_is_root(memcg)) {
6552 mc.precharge += count;
6553 /* we don't need css_get for root */
6554 return ret;
6555 }
6556 /* try to charge at once */
6557 if (count > 1) {
6558 struct res_counter *dummy;
6559 /*
6560 * "memcg" cannot be under rmdir() because we've already checked
6561 * by cgroup_lock_live_cgroup() that it is not removed and we
6562 * are still under the same cgroup_mutex. So we can postpone
6563 * css_get().
6564 */
6565 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6566 goto one_by_one;
6567 if (do_swap_account && res_counter_charge(&memcg->memsw,
6568 PAGE_SIZE * count, &dummy)) {
6569 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6570 goto one_by_one;
6571 }
6572 mc.precharge += count;
6573 return ret;
6574 }
6575one_by_one:
6576 /* fall back to one by one charge */
6577 while (count--) {
6578 if (signal_pending(current)) {
6579 ret = -EINTR;
6580 break;
6581 }
6582 if (!batch_count--) {
6583 batch_count = PRECHARGE_COUNT_AT_ONCE;
6584 cond_resched();
6585 }
6586 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6587 if (ret)
6588 /* mem_cgroup_clear_mc() will do uncharge later */
6589 return ret;
6590 mc.precharge++;
6591 }
6592 return ret;
6593}
6594
6595/**
6596 * get_mctgt_type - get target type of moving charge
6597 * @vma: the vma the pte to be checked belongs
6598 * @addr: the address corresponding to the pte to be checked
6599 * @ptent: the pte to be checked
6600 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6601 *
6602 * Returns
6603 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6604 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6605 * move charge. if @target is not NULL, the page is stored in target->page
6606 * with extra refcnt got(Callers should handle it).
6607 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6608 * target for charge migration. if @target is not NULL, the entry is stored
6609 * in target->ent.
6610 *
6611 * Called with pte lock held.
6612 */
6613union mc_target {
6614 struct page *page;
6615 swp_entry_t ent;
6616};
6617
6618enum mc_target_type {
6619 MC_TARGET_NONE = 0,
6620 MC_TARGET_PAGE,
6621 MC_TARGET_SWAP,
6622};
6623
6624static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6625 unsigned long addr, pte_t ptent)
6626{
6627 struct page *page = vm_normal_page(vma, addr, ptent);
6628
6629 if (!page || !page_mapped(page))
6630 return NULL;
6631 if (PageAnon(page)) {
6632 /* we don't move shared anon */
6633 if (!move_anon())
6634 return NULL;
6635 } else if (!move_file())
6636 /* we ignore mapcount for file pages */
6637 return NULL;
6638 if (!get_page_unless_zero(page))
6639 return NULL;
6640
6641 return page;
6642}
6643
6644#ifdef CONFIG_SWAP
6645static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6646 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6647{
6648 struct page *page = NULL;
6649 swp_entry_t ent = pte_to_swp_entry(ptent);
6650
6651 if (!move_anon() || non_swap_entry(ent))
6652 return NULL;
6653 /*
6654 * Because lookup_swap_cache() updates some statistics counter,
6655 * we call find_get_page() with swapper_space directly.
6656 */
6657 page = find_get_page(swap_address_space(ent), ent.val);
6658 if (do_swap_account)
6659 entry->val = ent.val;
6660
6661 return page;
6662}
6663#else
6664static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6665 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6666{
6667 return NULL;
6668}
6669#endif
6670
6671static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6672 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6673{
6674 struct page *page = NULL;
6675 struct address_space *mapping;
6676 pgoff_t pgoff;
6677
6678 if (!vma->vm_file) /* anonymous vma */
6679 return NULL;
6680 if (!move_file())
6681 return NULL;
6682
6683 mapping = vma->vm_file->f_mapping;
6684 if (pte_none(ptent))
6685 pgoff = linear_page_index(vma, addr);
6686 else /* pte_file(ptent) is true */
6687 pgoff = pte_to_pgoff(ptent);
6688
6689 /* page is moved even if it's not RSS of this task(page-faulted). */
6690#ifdef CONFIG_SWAP
6691 /* shmem/tmpfs may report page out on swap: account for that too. */
6692 if (shmem_mapping(mapping)) {
6693 page = find_get_entry(mapping, pgoff);
6694 if (radix_tree_exceptional_entry(page)) {
6695 swp_entry_t swp = radix_to_swp_entry(page);
6696 if (do_swap_account)
6697 *entry = swp;
6698 page = find_get_page(swap_address_space(swp), swp.val);
6699 }
6700 } else
6701 page = find_get_page(mapping, pgoff);
6702#else
6703 page = find_get_page(mapping, pgoff);
6704#endif
6705 return page;
6706}
6707
6708static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6709 unsigned long addr, pte_t ptent, union mc_target *target)
6710{
6711 struct page *page = NULL;
6712 struct page_cgroup *pc;
6713 enum mc_target_type ret = MC_TARGET_NONE;
6714 swp_entry_t ent = { .val = 0 };
6715
6716 if (pte_present(ptent))
6717 page = mc_handle_present_pte(vma, addr, ptent);
6718 else if (is_swap_pte(ptent))
6719 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6720 else if (pte_none(ptent) || pte_file(ptent))
6721 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6722
6723 if (!page && !ent.val)
6724 return ret;
6725 if (page) {
6726 pc = lookup_page_cgroup(page);
6727 /*
6728 * Do only loose check w/o page_cgroup lock.
6729 * mem_cgroup_move_account() checks the pc is valid or not under
6730 * the lock.
6731 */
6732 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6733 ret = MC_TARGET_PAGE;
6734 if (target)
6735 target->page = page;
6736 }
6737 if (!ret || !target)
6738 put_page(page);
6739 }
6740 /* There is a swap entry and a page doesn't exist or isn't charged */
6741 if (ent.val && !ret &&
6742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6743 ret = MC_TARGET_SWAP;
6744 if (target)
6745 target->ent = ent;
6746 }
6747 return ret;
6748}
6749
6750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6751/*
6752 * We don't consider swapping or file mapped pages because THP does not
6753 * support them for now.
6754 * Caller should make sure that pmd_trans_huge(pmd) is true.
6755 */
6756static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6757 unsigned long addr, pmd_t pmd, union mc_target *target)
6758{
6759 struct page *page = NULL;
6760 struct page_cgroup *pc;
6761 enum mc_target_type ret = MC_TARGET_NONE;
6762
6763 page = pmd_page(pmd);
6764 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6765 if (!move_anon())
6766 return ret;
6767 pc = lookup_page_cgroup(page);
6768 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6769 ret = MC_TARGET_PAGE;
6770 if (target) {
6771 get_page(page);
6772 target->page = page;
6773 }
6774 }
6775 return ret;
6776}
6777#else
6778static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6779 unsigned long addr, pmd_t pmd, union mc_target *target)
6780{
6781 return MC_TARGET_NONE;
6782}
6783#endif
6784
6785static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6786 unsigned long addr, unsigned long end,
6787 struct mm_walk *walk)
6788{
6789 struct vm_area_struct *vma = walk->private;
6790 pte_t *pte;
6791 spinlock_t *ptl;
6792
6793 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6794 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6795 mc.precharge += HPAGE_PMD_NR;
6796 spin_unlock(ptl);
6797 return 0;
6798 }
6799
6800 if (pmd_trans_unstable(pmd))
6801 return 0;
6802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6803 for (; addr != end; pte++, addr += PAGE_SIZE)
6804 if (get_mctgt_type(vma, addr, *pte, NULL))
6805 mc.precharge++; /* increment precharge temporarily */
6806 pte_unmap_unlock(pte - 1, ptl);
6807 cond_resched();
6808
6809 return 0;
6810}
6811
6812static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6813{
6814 unsigned long precharge;
6815 struct vm_area_struct *vma;
6816
6817 down_read(&mm->mmap_sem);
6818 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6819 struct mm_walk mem_cgroup_count_precharge_walk = {
6820 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6821 .mm = mm,
6822 .private = vma,
6823 };
6824 if (is_vm_hugetlb_page(vma))
6825 continue;
6826 walk_page_range(vma->vm_start, vma->vm_end,
6827 &mem_cgroup_count_precharge_walk);
6828 }
6829 up_read(&mm->mmap_sem);
6830
6831 precharge = mc.precharge;
6832 mc.precharge = 0;
6833
6834 return precharge;
6835}
6836
6837static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6838{
6839 unsigned long precharge = mem_cgroup_count_precharge(mm);
6840
6841 VM_BUG_ON(mc.moving_task);
6842 mc.moving_task = current;
6843 return mem_cgroup_do_precharge(precharge);
6844}
6845
6846/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6847static void __mem_cgroup_clear_mc(void)
6848{
6849 struct mem_cgroup *from = mc.from;
6850 struct mem_cgroup *to = mc.to;
6851 int i;
6852
6853 /* we must uncharge all the leftover precharges from mc.to */
6854 if (mc.precharge) {
6855 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6856 mc.precharge = 0;
6857 }
6858 /*
6859 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6860 * we must uncharge here.
6861 */
6862 if (mc.moved_charge) {
6863 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6864 mc.moved_charge = 0;
6865 }
6866 /* we must fixup refcnts and charges */
6867 if (mc.moved_swap) {
6868 /* uncharge swap account from the old cgroup */
6869 if (!mem_cgroup_is_root(mc.from))
6870 res_counter_uncharge(&mc.from->memsw,
6871 PAGE_SIZE * mc.moved_swap);
6872
6873 for (i = 0; i < mc.moved_swap; i++)
6874 css_put(&mc.from->css);
6875
6876 if (!mem_cgroup_is_root(mc.to)) {
6877 /*
6878 * we charged both to->res and to->memsw, so we should
6879 * uncharge to->res.
6880 */
6881 res_counter_uncharge(&mc.to->res,
6882 PAGE_SIZE * mc.moved_swap);
6883 }
6884 /* we've already done css_get(mc.to) */
6885 mc.moved_swap = 0;
6886 }
6887 memcg_oom_recover(from);
6888 memcg_oom_recover(to);
6889 wake_up_all(&mc.waitq);
6890}
6891
6892static void mem_cgroup_clear_mc(void)
6893{
6894 struct mem_cgroup *from = mc.from;
6895
6896 /*
6897 * we must clear moving_task before waking up waiters at the end of
6898 * task migration.
6899 */
6900 mc.moving_task = NULL;
6901 __mem_cgroup_clear_mc();
6902 spin_lock(&mc.lock);
6903 mc.from = NULL;
6904 mc.to = NULL;
6905 spin_unlock(&mc.lock);
6906 mem_cgroup_end_move(from);
6907}
6908
6909static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6910 struct cgroup_taskset *tset)
6911{
6912 struct task_struct *p = cgroup_taskset_first(tset);
6913 int ret = 0;
6914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6915 unsigned long move_charge_at_immigrate;
6916
6917 /*
6918 * We are now commited to this value whatever it is. Changes in this
6919 * tunable will only affect upcoming migrations, not the current one.
6920 * So we need to save it, and keep it going.
6921 */
6922 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6923 if (move_charge_at_immigrate) {
6924 struct mm_struct *mm;
6925 struct mem_cgroup *from = mem_cgroup_from_task(p);
6926
6927 VM_BUG_ON(from == memcg);
6928
6929 mm = get_task_mm(p);
6930 if (!mm)
6931 return 0;
6932 /* We move charges only when we move a owner of the mm */
6933 if (mm->owner == p) {
6934 VM_BUG_ON(mc.from);
6935 VM_BUG_ON(mc.to);
6936 VM_BUG_ON(mc.precharge);
6937 VM_BUG_ON(mc.moved_charge);
6938 VM_BUG_ON(mc.moved_swap);
6939 mem_cgroup_start_move(from);
6940 spin_lock(&mc.lock);
6941 mc.from = from;
6942 mc.to = memcg;
6943 mc.immigrate_flags = move_charge_at_immigrate;
6944 spin_unlock(&mc.lock);
6945 /* We set mc.moving_task later */
6946
6947 ret = mem_cgroup_precharge_mc(mm);
6948 if (ret)
6949 mem_cgroup_clear_mc();
6950 }
6951 mmput(mm);
6952 }
6953 return ret;
6954}
6955
6956static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6957 struct cgroup_taskset *tset)
6958{
6959 mem_cgroup_clear_mc();
6960}
6961
6962static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6963 unsigned long addr, unsigned long end,
6964 struct mm_walk *walk)
6965{
6966 int ret = 0;
6967 struct vm_area_struct *vma = walk->private;
6968 pte_t *pte;
6969 spinlock_t *ptl;
6970 enum mc_target_type target_type;
6971 union mc_target target;
6972 struct page *page;
6973 struct page_cgroup *pc;
6974
6975 /*
6976 * We don't take compound_lock() here but no race with splitting thp
6977 * happens because:
6978 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6979 * under splitting, which means there's no concurrent thp split,
6980 * - if another thread runs into split_huge_page() just after we
6981 * entered this if-block, the thread must wait for page table lock
6982 * to be unlocked in __split_huge_page_splitting(), where the main
6983 * part of thp split is not executed yet.
6984 */
6985 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6986 if (mc.precharge < HPAGE_PMD_NR) {
6987 spin_unlock(ptl);
6988 return 0;
6989 }
6990 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6991 if (target_type == MC_TARGET_PAGE) {
6992 page = target.page;
6993 if (!isolate_lru_page(page)) {
6994 pc = lookup_page_cgroup(page);
6995 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6996 pc, mc.from, mc.to)) {
6997 mc.precharge -= HPAGE_PMD_NR;
6998 mc.moved_charge += HPAGE_PMD_NR;
6999 }
7000 putback_lru_page(page);
7001 }
7002 put_page(page);
7003 }
7004 spin_unlock(ptl);
7005 return 0;
7006 }
7007
7008 if (pmd_trans_unstable(pmd))
7009 return 0;
7010retry:
7011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7012 for (; addr != end; addr += PAGE_SIZE) {
7013 pte_t ptent = *(pte++);
7014 swp_entry_t ent;
7015
7016 if (!mc.precharge)
7017 break;
7018
7019 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7020 case MC_TARGET_PAGE:
7021 page = target.page;
7022 if (isolate_lru_page(page))
7023 goto put;
7024 pc = lookup_page_cgroup(page);
7025 if (!mem_cgroup_move_account(page, 1, pc,
7026 mc.from, mc.to)) {
7027 mc.precharge--;
7028 /* we uncharge from mc.from later. */
7029 mc.moved_charge++;
7030 }
7031 putback_lru_page(page);
7032put: /* get_mctgt_type() gets the page */
7033 put_page(page);
7034 break;
7035 case MC_TARGET_SWAP:
7036 ent = target.ent;
7037 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7038 mc.precharge--;
7039 /* we fixup refcnts and charges later. */
7040 mc.moved_swap++;
7041 }
7042 break;
7043 default:
7044 break;
7045 }
7046 }
7047 pte_unmap_unlock(pte - 1, ptl);
7048 cond_resched();
7049
7050 if (addr != end) {
7051 /*
7052 * We have consumed all precharges we got in can_attach().
7053 * We try charge one by one, but don't do any additional
7054 * charges to mc.to if we have failed in charge once in attach()
7055 * phase.
7056 */
7057 ret = mem_cgroup_do_precharge(1);
7058 if (!ret)
7059 goto retry;
7060 }
7061
7062 return ret;
7063}
7064
7065static void mem_cgroup_move_charge(struct mm_struct *mm)
7066{
7067 struct vm_area_struct *vma;
7068
7069 lru_add_drain_all();
7070retry:
7071 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7072 /*
7073 * Someone who are holding the mmap_sem might be waiting in
7074 * waitq. So we cancel all extra charges, wake up all waiters,
7075 * and retry. Because we cancel precharges, we might not be able
7076 * to move enough charges, but moving charge is a best-effort
7077 * feature anyway, so it wouldn't be a big problem.
7078 */
7079 __mem_cgroup_clear_mc();
7080 cond_resched();
7081 goto retry;
7082 }
7083 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7084 int ret;
7085 struct mm_walk mem_cgroup_move_charge_walk = {
7086 .pmd_entry = mem_cgroup_move_charge_pte_range,
7087 .mm = mm,
7088 .private = vma,
7089 };
7090 if (is_vm_hugetlb_page(vma))
7091 continue;
7092 ret = walk_page_range(vma->vm_start, vma->vm_end,
7093 &mem_cgroup_move_charge_walk);
7094 if (ret)
7095 /*
7096 * means we have consumed all precharges and failed in
7097 * doing additional charge. Just abandon here.
7098 */
7099 break;
7100 }
7101 up_read(&mm->mmap_sem);
7102}
7103
7104static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7105 struct cgroup_taskset *tset)
7106{
7107 struct task_struct *p = cgroup_taskset_first(tset);
7108 struct mm_struct *mm = get_task_mm(p);
7109
7110 if (mm) {
7111 if (mc.to)
7112 mem_cgroup_move_charge(mm);
7113 mmput(mm);
7114 }
7115 if (mc.to)
7116 mem_cgroup_clear_mc();
7117}
7118#else /* !CONFIG_MMU */
7119static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7120 struct cgroup_taskset *tset)
7121{
7122 return 0;
7123}
7124static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7125 struct cgroup_taskset *tset)
7126{
7127}
7128static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7129 struct cgroup_taskset *tset)
7130{
7131}
7132#endif
7133
7134/*
7135 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7136 * to verify sane_behavior flag on each mount attempt.
7137 */
7138static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7139{
7140 /*
7141 * use_hierarchy is forced with sane_behavior. cgroup core
7142 * guarantees that @root doesn't have any children, so turning it
7143 * on for the root memcg is enough.
7144 */
7145 if (cgroup_sane_behavior(root_css->cgroup))
7146 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7147}
7148
7149struct cgroup_subsys memory_cgrp_subsys = {
7150 .css_alloc = mem_cgroup_css_alloc,
7151 .css_online = mem_cgroup_css_online,
7152 .css_offline = mem_cgroup_css_offline,
7153 .css_free = mem_cgroup_css_free,
7154 .can_attach = mem_cgroup_can_attach,
7155 .cancel_attach = mem_cgroup_cancel_attach,
7156 .attach = mem_cgroup_move_task,
7157 .bind = mem_cgroup_bind,
7158 .base_cftypes = mem_cgroup_files,
7159 .early_init = 0,
7160};
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static int __init enable_swap_account(char *s)
7164{
7165 if (!strcmp(s, "1"))
7166 really_do_swap_account = 1;
7167 else if (!strcmp(s, "0"))
7168 really_do_swap_account = 0;
7169 return 1;
7170}
7171__setup("swapaccount=", enable_swap_account);
7172
7173static void __init memsw_file_init(void)
7174{
7175 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7176}
7177
7178static void __init enable_swap_cgroup(void)
7179{
7180 if (!mem_cgroup_disabled() && really_do_swap_account) {
7181 do_swap_account = 1;
7182 memsw_file_init();
7183 }
7184}
7185
7186#else
7187static void __init enable_swap_cgroup(void)
7188{
7189}
7190#endif
7191
7192/*
7193 * subsys_initcall() for memory controller.
7194 *
7195 * Some parts like hotcpu_notifier() have to be initialized from this context
7196 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7197 * everything that doesn't depend on a specific mem_cgroup structure should
7198 * be initialized from here.
7199 */
7200static int __init mem_cgroup_init(void)
7201{
7202 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7203 enable_swap_cgroup();
7204 mem_cgroup_soft_limit_tree_init();
7205 memcg_stock_init();
7206 return 0;
7207}
7208subsys_initcall(mem_cgroup_init);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/mutex.h>
46#include <linux/rbtree.h>
47#include <linux/slab.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/eventfd.h>
52#include <linux/poll.h>
53#include <linux/sort.h>
54#include <linux/fs.h>
55#include <linux/seq_file.h>
56#include <linux/vmpressure.h>
57#include <linux/memremap.h>
58#include <linux/mm_inline.h>
59#include <linux/swap_cgroup.h>
60#include <linux/cpu.h>
61#include <linux/oom.h>
62#include <linux/lockdep.h>
63#include <linux/file.h>
64#include <linux/resume_user_mode.h>
65#include <linux/psi.h>
66#include <linux/seq_buf.h>
67#include <linux/sched/isolation.h>
68#include <linux/kmemleak.h>
69#include "internal.h"
70#include <net/sock.h>
71#include <net/ip.h>
72#include "slab.h"
73#include "swap.h"
74
75#include <linux/uaccess.h>
76
77#include <trace/events/vmscan.h>
78
79struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80EXPORT_SYMBOL(memory_cgrp_subsys);
81
82struct mem_cgroup *root_mem_cgroup __read_mostly;
83
84/* Active memory cgroup to use from an interrupt context */
85DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87
88/* Socket memory accounting disabled? */
89static bool cgroup_memory_nosocket __ro_after_init;
90
91/* Kernel memory accounting disabled? */
92static bool cgroup_memory_nokmem __ro_after_init;
93
94/* BPF memory accounting disabled? */
95static bool cgroup_memory_nobpf __ro_after_init;
96
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
105}
106
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
109
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
115struct mem_cgroup_tree_per_node {
116 struct rb_root rb_root;
117 struct rb_node *rb_rightmost;
118 spinlock_t lock;
119};
120
121struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
131};
132
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
136struct mem_cgroup_event {
137 /*
138 * memcg which the event belongs to.
139 */
140 struct mem_cgroup *memcg;
141 /*
142 * eventfd to signal userspace about the event.
143 */
144 struct eventfd_ctx *eventfd;
145 /*
146 * Each of these stored in a list by the cgroup.
147 */
148 struct list_head list;
149 /*
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
153 */
154 int (*register_event)(struct mem_cgroup *memcg,
155 struct eventfd_ctx *eventfd, const char *args);
156 /*
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
160 */
161 void (*unregister_event)(struct mem_cgroup *memcg,
162 struct eventfd_ctx *eventfd);
163 /*
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
166 */
167 poll_table pt;
168 wait_queue_head_t *wqh;
169 wait_queue_entry_t wait;
170 struct work_struct remove;
171};
172
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175
176/* Stuffs for move charges at task migration. */
177/*
178 * Types of charges to be moved.
179 */
180#define MOVE_ANON 0x1U
181#define MOVE_FILE 0x2U
182#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
183
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
186 spinlock_t lock; /* for from, to */
187 struct mm_struct *mm;
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
190 unsigned long flags;
191 unsigned long precharge;
192 unsigned long moved_charge;
193 unsigned long moved_swap;
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
196} mc = {
197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
200
201/*
202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
205#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
206#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207
208/* for encoding cft->private value on file */
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _KMEM,
213 _TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219
220/*
221 * Iteration constructs for visiting all cgroups (under a tree). If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
224 */
225#define for_each_mem_cgroup_tree(iter, root) \
226 for (iter = mem_cgroup_iter(root, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(root, iter, NULL))
229
230#define for_each_mem_cgroup(iter) \
231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(NULL, iter, NULL))
234
235static inline bool task_is_dying(void)
236{
237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 (current->flags & PF_EXITING);
239}
240
241/* Some nice accessors for the vmpressure. */
242struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243{
244 if (!memcg)
245 memcg = root_mem_cgroup;
246 return &memcg->vmpressure;
247}
248
249struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250{
251 return container_of(vmpr, struct mem_cgroup, vmpressure);
252}
253
254#define CURRENT_OBJCG_UPDATE_BIT 0
255#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256
257#ifdef CONFIG_MEMCG_KMEM
258static DEFINE_SPINLOCK(objcg_lock);
259
260bool mem_cgroup_kmem_disabled(void)
261{
262 return cgroup_memory_nokmem;
263}
264
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
267
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
273 unsigned long flags;
274
275 /*
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 *
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
291 *
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
294 */
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
298
299 if (nr_pages)
300 obj_cgroup_uncharge_pages(objcg, nr_pages);
301
302 spin_lock_irqsave(&objcg_lock, flags);
303 list_del(&objcg->list);
304 spin_unlock_irqrestore(&objcg_lock, flags);
305
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312 struct obj_cgroup *objcg;
313 int ret;
314
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 if (!objcg)
317 return NULL;
318
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 GFP_KERNEL);
321 if (ret) {
322 kfree(objcg);
323 return NULL;
324 }
325 INIT_LIST_HEAD(&objcg->list);
326 return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
331{
332 struct obj_cgroup *objcg, *iter;
333
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
336 spin_lock_irq(&objcg_lock);
337
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346 spin_unlock_irq(&objcg_lock);
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
357DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358EXPORT_SYMBOL(memcg_kmem_online_key);
359
360DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361EXPORT_SYMBOL(memcg_bpf_enabled_key);
362#endif
363
364/**
365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366 * @folio: folio of interest
367 *
368 * If memcg is bound to the default hierarchy, css of the memcg associated
369 * with @folio is returned. The returned css remains associated with @folio
370 * until it is released.
371 *
372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373 * is returned.
374 */
375struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376{
377 struct mem_cgroup *memcg = folio_memcg(folio);
378
379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380 memcg = root_mem_cgroup;
381
382 return &memcg->css;
383}
384
385/**
386 * page_cgroup_ino - return inode number of the memcg a page is charged to
387 * @page: the page
388 *
389 * Look up the closest online ancestor of the memory cgroup @page is charged to
390 * and return its inode number or 0 if @page is not charged to any cgroup. It
391 * is safe to call this function without holding a reference to @page.
392 *
393 * Note, this function is inherently racy, because there is nothing to prevent
394 * the cgroup inode from getting torn down and potentially reallocated a moment
395 * after page_cgroup_ino() returns, so it only should be used by callers that
396 * do not care (such as procfs interfaces).
397 */
398ino_t page_cgroup_ino(struct page *page)
399{
400 struct mem_cgroup *memcg;
401 unsigned long ino = 0;
402
403 rcu_read_lock();
404 /* page_folio() is racy here, but the entire function is racy anyway */
405 memcg = folio_memcg_check(page_folio(page));
406
407 while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 memcg = parent_mem_cgroup(memcg);
409 if (memcg)
410 ino = cgroup_ino(memcg->css.cgroup);
411 rcu_read_unlock();
412 return ino;
413}
414
415static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 struct mem_cgroup_tree_per_node *mctz,
417 unsigned long new_usage_in_excess)
418{
419 struct rb_node **p = &mctz->rb_root.rb_node;
420 struct rb_node *parent = NULL;
421 struct mem_cgroup_per_node *mz_node;
422 bool rightmost = true;
423
424 if (mz->on_tree)
425 return;
426
427 mz->usage_in_excess = new_usage_in_excess;
428 if (!mz->usage_in_excess)
429 return;
430 while (*p) {
431 parent = *p;
432 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433 tree_node);
434 if (mz->usage_in_excess < mz_node->usage_in_excess) {
435 p = &(*p)->rb_left;
436 rightmost = false;
437 } else {
438 p = &(*p)->rb_right;
439 }
440 }
441
442 if (rightmost)
443 mctz->rb_rightmost = &mz->tree_node;
444
445 rb_link_node(&mz->tree_node, parent, p);
446 rb_insert_color(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = true;
448}
449
450static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 struct mem_cgroup_tree_per_node *mctz)
452{
453 if (!mz->on_tree)
454 return;
455
456 if (&mz->tree_node == mctz->rb_rightmost)
457 mctz->rb_rightmost = rb_prev(&mz->tree_node);
458
459 rb_erase(&mz->tree_node, &mctz->rb_root);
460 mz->on_tree = false;
461}
462
463static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 struct mem_cgroup_tree_per_node *mctz)
465{
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 __mem_cgroup_remove_exceeded(mz, mctz);
470 spin_unlock_irqrestore(&mctz->lock, flags);
471}
472
473static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474{
475 unsigned long nr_pages = page_counter_read(&memcg->memory);
476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477 unsigned long excess = 0;
478
479 if (nr_pages > soft_limit)
480 excess = nr_pages - soft_limit;
481
482 return excess;
483}
484
485static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486{
487 unsigned long excess;
488 struct mem_cgroup_per_node *mz;
489 struct mem_cgroup_tree_per_node *mctz;
490
491 if (lru_gen_enabled()) {
492 if (soft_limit_excess(memcg))
493 lru_gen_soft_reclaim(memcg, nid);
494 return;
495 }
496
497 mctz = soft_limit_tree.rb_tree_per_node[nid];
498 if (!mctz)
499 return;
500 /*
501 * Necessary to update all ancestors when hierarchy is used.
502 * because their event counter is not touched.
503 */
504 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505 mz = memcg->nodeinfo[nid];
506 excess = soft_limit_excess(memcg);
507 /*
508 * We have to update the tree if mz is on RB-tree or
509 * mem is over its softlimit.
510 */
511 if (excess || mz->on_tree) {
512 unsigned long flags;
513
514 spin_lock_irqsave(&mctz->lock, flags);
515 /* if on-tree, remove it */
516 if (mz->on_tree)
517 __mem_cgroup_remove_exceeded(mz, mctz);
518 /*
519 * Insert again. mz->usage_in_excess will be updated.
520 * If excess is 0, no tree ops.
521 */
522 __mem_cgroup_insert_exceeded(mz, mctz, excess);
523 spin_unlock_irqrestore(&mctz->lock, flags);
524 }
525 }
526}
527
528static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529{
530 struct mem_cgroup_tree_per_node *mctz;
531 struct mem_cgroup_per_node *mz;
532 int nid;
533
534 for_each_node(nid) {
535 mz = memcg->nodeinfo[nid];
536 mctz = soft_limit_tree.rb_tree_per_node[nid];
537 if (mctz)
538 mem_cgroup_remove_exceeded(mz, mctz);
539 }
540}
541
542static struct mem_cgroup_per_node *
543__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544{
545 struct mem_cgroup_per_node *mz;
546
547retry:
548 mz = NULL;
549 if (!mctz->rb_rightmost)
550 goto done; /* Nothing to reclaim from */
551
552 mz = rb_entry(mctz->rb_rightmost,
553 struct mem_cgroup_per_node, tree_node);
554 /*
555 * Remove the node now but someone else can add it back,
556 * we will to add it back at the end of reclaim to its correct
557 * position in the tree.
558 */
559 __mem_cgroup_remove_exceeded(mz, mctz);
560 if (!soft_limit_excess(mz->memcg) ||
561 !css_tryget(&mz->memcg->css))
562 goto retry;
563done:
564 return mz;
565}
566
567static struct mem_cgroup_per_node *
568mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569{
570 struct mem_cgroup_per_node *mz;
571
572 spin_lock_irq(&mctz->lock);
573 mz = __mem_cgroup_largest_soft_limit_node(mctz);
574 spin_unlock_irq(&mctz->lock);
575 return mz;
576}
577
578/* Subset of vm_event_item to report for memcg event stats */
579static const unsigned int memcg_vm_event_stat[] = {
580 PGPGIN,
581 PGPGOUT,
582 PGSCAN_KSWAPD,
583 PGSCAN_DIRECT,
584 PGSCAN_KHUGEPAGED,
585 PGSTEAL_KSWAPD,
586 PGSTEAL_DIRECT,
587 PGSTEAL_KHUGEPAGED,
588 PGFAULT,
589 PGMAJFAULT,
590 PGREFILL,
591 PGACTIVATE,
592 PGDEACTIVATE,
593 PGLAZYFREE,
594 PGLAZYFREED,
595#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
596 ZSWPIN,
597 ZSWPOUT,
598 ZSWPWB,
599#endif
600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 THP_FAULT_ALLOC,
602 THP_COLLAPSE_ALLOC,
603 THP_SWPOUT,
604 THP_SWPOUT_FALLBACK,
605#endif
606};
607
608#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
609static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
610
611static void init_memcg_events(void)
612{
613 int i;
614
615 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
616 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
617}
618
619static inline int memcg_events_index(enum vm_event_item idx)
620{
621 return mem_cgroup_events_index[idx] - 1;
622}
623
624struct memcg_vmstats_percpu {
625 /* Stats updates since the last flush */
626 unsigned int stats_updates;
627
628 /* Cached pointers for fast iteration in memcg_rstat_updated() */
629 struct memcg_vmstats_percpu *parent;
630 struct memcg_vmstats *vmstats;
631
632 /* The above should fit a single cacheline for memcg_rstat_updated() */
633
634 /* Local (CPU and cgroup) page state & events */
635 long state[MEMCG_NR_STAT];
636 unsigned long events[NR_MEMCG_EVENTS];
637
638 /* Delta calculation for lockless upward propagation */
639 long state_prev[MEMCG_NR_STAT];
640 unsigned long events_prev[NR_MEMCG_EVENTS];
641
642 /* Cgroup1: threshold notifications & softlimit tree updates */
643 unsigned long nr_page_events;
644 unsigned long targets[MEM_CGROUP_NTARGETS];
645} ____cacheline_aligned;
646
647struct memcg_vmstats {
648 /* Aggregated (CPU and subtree) page state & events */
649 long state[MEMCG_NR_STAT];
650 unsigned long events[NR_MEMCG_EVENTS];
651
652 /* Non-hierarchical (CPU aggregated) page state & events */
653 long state_local[MEMCG_NR_STAT];
654 unsigned long events_local[NR_MEMCG_EVENTS];
655
656 /* Pending child counts during tree propagation */
657 long state_pending[MEMCG_NR_STAT];
658 unsigned long events_pending[NR_MEMCG_EVENTS];
659
660 /* Stats updates since the last flush */
661 atomic64_t stats_updates;
662};
663
664/*
665 * memcg and lruvec stats flushing
666 *
667 * Many codepaths leading to stats update or read are performance sensitive and
668 * adding stats flushing in such codepaths is not desirable. So, to optimize the
669 * flushing the kernel does:
670 *
671 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
672 * rstat update tree grow unbounded.
673 *
674 * 2) Flush the stats synchronously on reader side only when there are more than
675 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
676 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
677 * only for 2 seconds due to (1).
678 */
679static void flush_memcg_stats_dwork(struct work_struct *w);
680static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
681static u64 flush_last_time;
682
683#define FLUSH_TIME (2UL*HZ)
684
685/*
686 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
687 * not rely on this as part of an acquired spinlock_t lock. These functions are
688 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
689 * is sufficient.
690 */
691static void memcg_stats_lock(void)
692{
693 preempt_disable_nested();
694 VM_WARN_ON_IRQS_ENABLED();
695}
696
697static void __memcg_stats_lock(void)
698{
699 preempt_disable_nested();
700}
701
702static void memcg_stats_unlock(void)
703{
704 preempt_enable_nested();
705}
706
707
708static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
709{
710 return atomic64_read(&vmstats->stats_updates) >
711 MEMCG_CHARGE_BATCH * num_online_cpus();
712}
713
714static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
715{
716 struct memcg_vmstats_percpu *statc;
717 int cpu = smp_processor_id();
718
719 if (!val)
720 return;
721
722 cgroup_rstat_updated(memcg->css.cgroup, cpu);
723 statc = this_cpu_ptr(memcg->vmstats_percpu);
724 for (; statc; statc = statc->parent) {
725 statc->stats_updates += abs(val);
726 if (statc->stats_updates < MEMCG_CHARGE_BATCH)
727 continue;
728
729 /*
730 * If @memcg is already flush-able, increasing stats_updates is
731 * redundant. Avoid the overhead of the atomic update.
732 */
733 if (!memcg_vmstats_needs_flush(statc->vmstats))
734 atomic64_add(statc->stats_updates,
735 &statc->vmstats->stats_updates);
736 statc->stats_updates = 0;
737 }
738}
739
740static void do_flush_stats(struct mem_cgroup *memcg)
741{
742 if (mem_cgroup_is_root(memcg))
743 WRITE_ONCE(flush_last_time, jiffies_64);
744
745 cgroup_rstat_flush(memcg->css.cgroup);
746}
747
748/*
749 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
750 * @memcg: root of the subtree to flush
751 *
752 * Flushing is serialized by the underlying global rstat lock. There is also a
753 * minimum amount of work to be done even if there are no stat updates to flush.
754 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
755 * avoids unnecessary work and contention on the underlying lock.
756 */
757void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
758{
759 if (mem_cgroup_disabled())
760 return;
761
762 if (!memcg)
763 memcg = root_mem_cgroup;
764
765 if (memcg_vmstats_needs_flush(memcg->vmstats))
766 do_flush_stats(memcg);
767}
768
769void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
770{
771 /* Only flush if the periodic flusher is one full cycle late */
772 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
773 mem_cgroup_flush_stats(memcg);
774}
775
776static void flush_memcg_stats_dwork(struct work_struct *w)
777{
778 /*
779 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
780 * in latency-sensitive paths is as cheap as possible.
781 */
782 do_flush_stats(root_mem_cgroup);
783 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
784}
785
786unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
787{
788 long x = READ_ONCE(memcg->vmstats->state[idx]);
789#ifdef CONFIG_SMP
790 if (x < 0)
791 x = 0;
792#endif
793 return x;
794}
795
796static int memcg_page_state_unit(int item);
797
798/*
799 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
800 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
801 */
802static int memcg_state_val_in_pages(int idx, int val)
803{
804 int unit = memcg_page_state_unit(idx);
805
806 if (!val || unit == PAGE_SIZE)
807 return val;
808 else
809 return max(val * unit / PAGE_SIZE, 1UL);
810}
811
812/**
813 * __mod_memcg_state - update cgroup memory statistics
814 * @memcg: the memory cgroup
815 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
816 * @val: delta to add to the counter, can be negative
817 */
818void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
819{
820 if (mem_cgroup_disabled())
821 return;
822
823 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
824 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
825}
826
827/* idx can be of type enum memcg_stat_item or node_stat_item. */
828static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
829{
830 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
831
832#ifdef CONFIG_SMP
833 if (x < 0)
834 x = 0;
835#endif
836 return x;
837}
838
839void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841{
842 struct mem_cgroup_per_node *pn;
843 struct mem_cgroup *memcg;
844
845 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
846 memcg = pn->memcg;
847
848 /*
849 * The caller from rmap relies on disabled preemption because they never
850 * update their counter from in-interrupt context. For these two
851 * counters we check that the update is never performed from an
852 * interrupt context while other caller need to have disabled interrupt.
853 */
854 __memcg_stats_lock();
855 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
856 switch (idx) {
857 case NR_ANON_MAPPED:
858 case NR_FILE_MAPPED:
859 case NR_ANON_THPS:
860 case NR_SHMEM_PMDMAPPED:
861 case NR_FILE_PMDMAPPED:
862 WARN_ON_ONCE(!in_task());
863 break;
864 default:
865 VM_WARN_ON_IRQS_ENABLED();
866 }
867 }
868
869 /* Update memcg */
870 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
871
872 /* Update lruvec */
873 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
874
875 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
876 memcg_stats_unlock();
877}
878
879/**
880 * __mod_lruvec_state - update lruvec memory statistics
881 * @lruvec: the lruvec
882 * @idx: the stat item
883 * @val: delta to add to the counter, can be negative
884 *
885 * The lruvec is the intersection of the NUMA node and a cgroup. This
886 * function updates the all three counters that are affected by a
887 * change of state at this level: per-node, per-cgroup, per-lruvec.
888 */
889void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
890 int val)
891{
892 /* Update node */
893 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
894
895 /* Update memcg and lruvec */
896 if (!mem_cgroup_disabled())
897 __mod_memcg_lruvec_state(lruvec, idx, val);
898}
899
900void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
901 int val)
902{
903 struct mem_cgroup *memcg;
904 pg_data_t *pgdat = folio_pgdat(folio);
905 struct lruvec *lruvec;
906
907 rcu_read_lock();
908 memcg = folio_memcg(folio);
909 /* Untracked pages have no memcg, no lruvec. Update only the node */
910 if (!memcg) {
911 rcu_read_unlock();
912 __mod_node_page_state(pgdat, idx, val);
913 return;
914 }
915
916 lruvec = mem_cgroup_lruvec(memcg, pgdat);
917 __mod_lruvec_state(lruvec, idx, val);
918 rcu_read_unlock();
919}
920EXPORT_SYMBOL(__lruvec_stat_mod_folio);
921
922void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
923{
924 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
925 struct mem_cgroup *memcg;
926 struct lruvec *lruvec;
927
928 rcu_read_lock();
929 memcg = mem_cgroup_from_slab_obj(p);
930
931 /*
932 * Untracked pages have no memcg, no lruvec. Update only the
933 * node. If we reparent the slab objects to the root memcg,
934 * when we free the slab object, we need to update the per-memcg
935 * vmstats to keep it correct for the root memcg.
936 */
937 if (!memcg) {
938 __mod_node_page_state(pgdat, idx, val);
939 } else {
940 lruvec = mem_cgroup_lruvec(memcg, pgdat);
941 __mod_lruvec_state(lruvec, idx, val);
942 }
943 rcu_read_unlock();
944}
945
946/**
947 * __count_memcg_events - account VM events in a cgroup
948 * @memcg: the memory cgroup
949 * @idx: the event item
950 * @count: the number of events that occurred
951 */
952void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
953 unsigned long count)
954{
955 int index = memcg_events_index(idx);
956
957 if (mem_cgroup_disabled() || index < 0)
958 return;
959
960 memcg_stats_lock();
961 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
962 memcg_rstat_updated(memcg, count);
963 memcg_stats_unlock();
964}
965
966static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
967{
968 int index = memcg_events_index(event);
969
970 if (index < 0)
971 return 0;
972 return READ_ONCE(memcg->vmstats->events[index]);
973}
974
975static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
976{
977 int index = memcg_events_index(event);
978
979 if (index < 0)
980 return 0;
981
982 return READ_ONCE(memcg->vmstats->events_local[index]);
983}
984
985static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
986 int nr_pages)
987{
988 /* pagein of a big page is an event. So, ignore page size */
989 if (nr_pages > 0)
990 __count_memcg_events(memcg, PGPGIN, 1);
991 else {
992 __count_memcg_events(memcg, PGPGOUT, 1);
993 nr_pages = -nr_pages; /* for event */
994 }
995
996 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
997}
998
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
1001{
1002 unsigned long val, next;
1003
1004 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1005 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1006 /* from time_after() in jiffies.h */
1007 if ((long)(next - val) < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
1015 default:
1016 break;
1017 }
1018 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019 return true;
1020 }
1021 return false;
1022}
1023
1024/*
1025 * Check events in order.
1026 *
1027 */
1028static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1029{
1030 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1031 return;
1032
1033 /* threshold event is triggered in finer grain than soft limit */
1034 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035 MEM_CGROUP_TARGET_THRESH))) {
1036 bool do_softlimit;
1037
1038 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039 MEM_CGROUP_TARGET_SOFTLIMIT);
1040 mem_cgroup_threshold(memcg);
1041 if (unlikely(do_softlimit))
1042 mem_cgroup_update_tree(memcg, nid);
1043 }
1044}
1045
1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047{
1048 /*
1049 * mm_update_next_owner() may clear mm->owner to NULL
1050 * if it races with swapoff, page migration, etc.
1051 * So this can be called with p == NULL.
1052 */
1053 if (unlikely(!p))
1054 return NULL;
1055
1056 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1057}
1058EXPORT_SYMBOL(mem_cgroup_from_task);
1059
1060static __always_inline struct mem_cgroup *active_memcg(void)
1061{
1062 if (!in_task())
1063 return this_cpu_read(int_active_memcg);
1064 else
1065 return current->active_memcg;
1066}
1067
1068/**
1069 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1070 * @mm: mm from which memcg should be extracted. It can be NULL.
1071 *
1072 * Obtain a reference on mm->memcg and returns it if successful. If mm
1073 * is NULL, then the memcg is chosen as follows:
1074 * 1) The active memcg, if set.
1075 * 2) current->mm->memcg, if available
1076 * 3) root memcg
1077 * If mem_cgroup is disabled, NULL is returned.
1078 */
1079struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1080{
1081 struct mem_cgroup *memcg;
1082
1083 if (mem_cgroup_disabled())
1084 return NULL;
1085
1086 /*
1087 * Page cache insertions can happen without an
1088 * actual mm context, e.g. during disk probing
1089 * on boot, loopback IO, acct() writes etc.
1090 *
1091 * No need to css_get on root memcg as the reference
1092 * counting is disabled on the root level in the
1093 * cgroup core. See CSS_NO_REF.
1094 */
1095 if (unlikely(!mm)) {
1096 memcg = active_memcg();
1097 if (unlikely(memcg)) {
1098 /* remote memcg must hold a ref */
1099 css_get(&memcg->css);
1100 return memcg;
1101 }
1102 mm = current->mm;
1103 if (unlikely(!mm))
1104 return root_mem_cgroup;
1105 }
1106
1107 rcu_read_lock();
1108 do {
1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110 if (unlikely(!memcg))
1111 memcg = root_mem_cgroup;
1112 } while (!css_tryget(&memcg->css));
1113 rcu_read_unlock();
1114 return memcg;
1115}
1116EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1117
1118/**
1119 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1120 */
1121struct mem_cgroup *get_mem_cgroup_from_current(void)
1122{
1123 struct mem_cgroup *memcg;
1124
1125 if (mem_cgroup_disabled())
1126 return NULL;
1127
1128again:
1129 rcu_read_lock();
1130 memcg = mem_cgroup_from_task(current);
1131 if (!css_tryget(&memcg->css)) {
1132 rcu_read_unlock();
1133 goto again;
1134 }
1135 rcu_read_unlock();
1136 return memcg;
1137}
1138
1139/**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
1156struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157 struct mem_cgroup *prev,
1158 struct mem_cgroup_reclaim_cookie *reclaim)
1159{
1160 struct mem_cgroup_reclaim_iter *iter;
1161 struct cgroup_subsys_state *css = NULL;
1162 struct mem_cgroup *memcg = NULL;
1163 struct mem_cgroup *pos = NULL;
1164
1165 if (mem_cgroup_disabled())
1166 return NULL;
1167
1168 if (!root)
1169 root = root_mem_cgroup;
1170
1171 rcu_read_lock();
1172
1173 if (reclaim) {
1174 struct mem_cgroup_per_node *mz;
1175
1176 mz = root->nodeinfo[reclaim->pgdat->node_id];
1177 iter = &mz->iter;
1178
1179 /*
1180 * On start, join the current reclaim iteration cycle.
1181 * Exit when a concurrent walker completes it.
1182 */
1183 if (!prev)
1184 reclaim->generation = iter->generation;
1185 else if (reclaim->generation != iter->generation)
1186 goto out_unlock;
1187
1188 while (1) {
1189 pos = READ_ONCE(iter->position);
1190 if (!pos || css_tryget(&pos->css))
1191 break;
1192 /*
1193 * css reference reached zero, so iter->position will
1194 * be cleared by ->css_released. However, we should not
1195 * rely on this happening soon, because ->css_released
1196 * is called from a work queue, and by busy-waiting we
1197 * might block it. So we clear iter->position right
1198 * away.
1199 */
1200 (void)cmpxchg(&iter->position, pos, NULL);
1201 }
1202 } else if (prev) {
1203 pos = prev;
1204 }
1205
1206 if (pos)
1207 css = &pos->css;
1208
1209 for (;;) {
1210 css = css_next_descendant_pre(css, &root->css);
1211 if (!css) {
1212 /*
1213 * Reclaimers share the hierarchy walk, and a
1214 * new one might jump in right at the end of
1215 * the hierarchy - make sure they see at least
1216 * one group and restart from the beginning.
1217 */
1218 if (!prev)
1219 continue;
1220 break;
1221 }
1222
1223 /*
1224 * Verify the css and acquire a reference. The root
1225 * is provided by the caller, so we know it's alive
1226 * and kicking, and don't take an extra reference.
1227 */
1228 if (css == &root->css || css_tryget(css)) {
1229 memcg = mem_cgroup_from_css(css);
1230 break;
1231 }
1232 }
1233
1234 if (reclaim) {
1235 /*
1236 * The position could have already been updated by a competing
1237 * thread, so check that the value hasn't changed since we read
1238 * it to avoid reclaiming from the same cgroup twice.
1239 */
1240 (void)cmpxchg(&iter->position, pos, memcg);
1241
1242 if (pos)
1243 css_put(&pos->css);
1244
1245 if (!memcg)
1246 iter->generation++;
1247 }
1248
1249out_unlock:
1250 rcu_read_unlock();
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
1254 return memcg;
1255}
1256
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1264{
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269}
1270
1271static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1272 struct mem_cgroup *dead_memcg)
1273{
1274 struct mem_cgroup_reclaim_iter *iter;
1275 struct mem_cgroup_per_node *mz;
1276 int nid;
1277
1278 for_each_node(nid) {
1279 mz = from->nodeinfo[nid];
1280 iter = &mz->iter;
1281 cmpxchg(&iter->position, dead_memcg, NULL);
1282 }
1283}
1284
1285static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1286{
1287 struct mem_cgroup *memcg = dead_memcg;
1288 struct mem_cgroup *last;
1289
1290 do {
1291 __invalidate_reclaim_iterators(memcg, dead_memcg);
1292 last = memcg;
1293 } while ((memcg = parent_mem_cgroup(memcg)));
1294
1295 /*
1296 * When cgroup1 non-hierarchy mode is used,
1297 * parent_mem_cgroup() does not walk all the way up to the
1298 * cgroup root (root_mem_cgroup). So we have to handle
1299 * dead_memcg from cgroup root separately.
1300 */
1301 if (!mem_cgroup_is_root(last))
1302 __invalidate_reclaim_iterators(root_mem_cgroup,
1303 dead_memcg);
1304}
1305
1306/**
1307 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1308 * @memcg: hierarchy root
1309 * @fn: function to call for each task
1310 * @arg: argument passed to @fn
1311 *
1312 * This function iterates over tasks attached to @memcg or to any of its
1313 * descendants and calls @fn for each task. If @fn returns a non-zero
1314 * value, the function breaks the iteration loop. Otherwise, it will iterate
1315 * over all tasks and return 0.
1316 *
1317 * This function must not be called for the root memory cgroup.
1318 */
1319void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1320 int (*fn)(struct task_struct *, void *), void *arg)
1321{
1322 struct mem_cgroup *iter;
1323 int ret = 0;
1324
1325 BUG_ON(mem_cgroup_is_root(memcg));
1326
1327 for_each_mem_cgroup_tree(iter, memcg) {
1328 struct css_task_iter it;
1329 struct task_struct *task;
1330
1331 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1332 while (!ret && (task = css_task_iter_next(&it)))
1333 ret = fn(task, arg);
1334 css_task_iter_end(&it);
1335 if (ret) {
1336 mem_cgroup_iter_break(memcg, iter);
1337 break;
1338 }
1339 }
1340}
1341
1342#ifdef CONFIG_DEBUG_VM
1343void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1344{
1345 struct mem_cgroup *memcg;
1346
1347 if (mem_cgroup_disabled())
1348 return;
1349
1350 memcg = folio_memcg(folio);
1351
1352 if (!memcg)
1353 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1354 else
1355 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1356}
1357#endif
1358
1359/**
1360 * folio_lruvec_lock - Lock the lruvec for a folio.
1361 * @folio: Pointer to the folio.
1362 *
1363 * These functions are safe to use under any of the following conditions:
1364 * - folio locked
1365 * - folio_test_lru false
1366 * - folio_memcg_lock()
1367 * - folio frozen (refcount of 0)
1368 *
1369 * Return: The lruvec this folio is on with its lock held.
1370 */
1371struct lruvec *folio_lruvec_lock(struct folio *folio)
1372{
1373 struct lruvec *lruvec = folio_lruvec(folio);
1374
1375 spin_lock(&lruvec->lru_lock);
1376 lruvec_memcg_debug(lruvec, folio);
1377
1378 return lruvec;
1379}
1380
1381/**
1382 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1383 * @folio: Pointer to the folio.
1384 *
1385 * These functions are safe to use under any of the following conditions:
1386 * - folio locked
1387 * - folio_test_lru false
1388 * - folio_memcg_lock()
1389 * - folio frozen (refcount of 0)
1390 *
1391 * Return: The lruvec this folio is on with its lock held and interrupts
1392 * disabled.
1393 */
1394struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1395{
1396 struct lruvec *lruvec = folio_lruvec(folio);
1397
1398 spin_lock_irq(&lruvec->lru_lock);
1399 lruvec_memcg_debug(lruvec, folio);
1400
1401 return lruvec;
1402}
1403
1404/**
1405 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1406 * @folio: Pointer to the folio.
1407 * @flags: Pointer to irqsave flags.
1408 *
1409 * These functions are safe to use under any of the following conditions:
1410 * - folio locked
1411 * - folio_test_lru false
1412 * - folio_memcg_lock()
1413 * - folio frozen (refcount of 0)
1414 *
1415 * Return: The lruvec this folio is on with its lock held and interrupts
1416 * disabled.
1417 */
1418struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1419 unsigned long *flags)
1420{
1421 struct lruvec *lruvec = folio_lruvec(folio);
1422
1423 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1424 lruvec_memcg_debug(lruvec, folio);
1425
1426 return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @zid: zone id of the accounted pages
1434 * @nr_pages: positive when adding or negative when removing
1435 *
1436 * This function must be called under lru_lock, just before a page is added
1437 * to or just after a page is removed from an lru list.
1438 */
1439void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440 int zid, int nr_pages)
1441{
1442 struct mem_cgroup_per_node *mz;
1443 unsigned long *lru_size;
1444 long size;
1445
1446 if (mem_cgroup_disabled())
1447 return;
1448
1449 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1450 lru_size = &mz->lru_zone_size[zid][lru];
1451
1452 if (nr_pages < 0)
1453 *lru_size += nr_pages;
1454
1455 size = *lru_size;
1456 if (WARN_ONCE(size < 0,
1457 "%s(%p, %d, %d): lru_size %ld\n",
1458 __func__, lruvec, lru, nr_pages, size)) {
1459 VM_BUG_ON(1);
1460 *lru_size = 0;
1461 }
1462
1463 if (nr_pages > 0)
1464 *lru_size += nr_pages;
1465}
1466
1467/**
1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469 * @memcg: the memory cgroup
1470 *
1471 * Returns the maximum amount of memory @mem can be charged with, in
1472 * pages.
1473 */
1474static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475{
1476 unsigned long margin = 0;
1477 unsigned long count;
1478 unsigned long limit;
1479
1480 count = page_counter_read(&memcg->memory);
1481 limit = READ_ONCE(memcg->memory.max);
1482 if (count < limit)
1483 margin = limit - count;
1484
1485 if (do_memsw_account()) {
1486 count = page_counter_read(&memcg->memsw);
1487 limit = READ_ONCE(memcg->memsw.max);
1488 if (count < limit)
1489 margin = min(margin, limit - count);
1490 else
1491 margin = 0;
1492 }
1493
1494 return margin;
1495}
1496
1497/*
1498 * A routine for checking "mem" is under move_account() or not.
1499 *
1500 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1501 * moving cgroups. This is for waiting at high-memory pressure
1502 * caused by "move".
1503 */
1504static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1505{
1506 struct mem_cgroup *from;
1507 struct mem_cgroup *to;
1508 bool ret = false;
1509 /*
1510 * Unlike task_move routines, we access mc.to, mc.from not under
1511 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1512 */
1513 spin_lock(&mc.lock);
1514 from = mc.from;
1515 to = mc.to;
1516 if (!from)
1517 goto unlock;
1518
1519 ret = mem_cgroup_is_descendant(from, memcg) ||
1520 mem_cgroup_is_descendant(to, memcg);
1521unlock:
1522 spin_unlock(&mc.lock);
1523 return ret;
1524}
1525
1526static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1527{
1528 if (mc.moving_task && current != mc.moving_task) {
1529 if (mem_cgroup_under_move(memcg)) {
1530 DEFINE_WAIT(wait);
1531 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1532 /* moving charge context might have finished. */
1533 if (mc.moving_task)
1534 schedule();
1535 finish_wait(&mc.waitq, &wait);
1536 return true;
1537 }
1538 }
1539 return false;
1540}
1541
1542struct memory_stat {
1543 const char *name;
1544 unsigned int idx;
1545};
1546
1547static const struct memory_stat memory_stats[] = {
1548 { "anon", NR_ANON_MAPPED },
1549 { "file", NR_FILE_PAGES },
1550 { "kernel", MEMCG_KMEM },
1551 { "kernel_stack", NR_KERNEL_STACK_KB },
1552 { "pagetables", NR_PAGETABLE },
1553 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1554 { "percpu", MEMCG_PERCPU_B },
1555 { "sock", MEMCG_SOCK },
1556 { "vmalloc", MEMCG_VMALLOC },
1557 { "shmem", NR_SHMEM },
1558#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1559 { "zswap", MEMCG_ZSWAP_B },
1560 { "zswapped", MEMCG_ZSWAPPED },
1561#endif
1562 { "file_mapped", NR_FILE_MAPPED },
1563 { "file_dirty", NR_FILE_DIRTY },
1564 { "file_writeback", NR_WRITEBACK },
1565#ifdef CONFIG_SWAP
1566 { "swapcached", NR_SWAPCACHE },
1567#endif
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 { "anon_thp", NR_ANON_THPS },
1570 { "file_thp", NR_FILE_THPS },
1571 { "shmem_thp", NR_SHMEM_THPS },
1572#endif
1573 { "inactive_anon", NR_INACTIVE_ANON },
1574 { "active_anon", NR_ACTIVE_ANON },
1575 { "inactive_file", NR_INACTIVE_FILE },
1576 { "active_file", NR_ACTIVE_FILE },
1577 { "unevictable", NR_UNEVICTABLE },
1578 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1579 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1580
1581 /* The memory events */
1582 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1583 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1584 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1585 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1586 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1587 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1588 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1589};
1590
1591/* The actual unit of the state item, not the same as the output unit */
1592static int memcg_page_state_unit(int item)
1593{
1594 switch (item) {
1595 case MEMCG_PERCPU_B:
1596 case MEMCG_ZSWAP_B:
1597 case NR_SLAB_RECLAIMABLE_B:
1598 case NR_SLAB_UNRECLAIMABLE_B:
1599 return 1;
1600 case NR_KERNEL_STACK_KB:
1601 return SZ_1K;
1602 default:
1603 return PAGE_SIZE;
1604 }
1605}
1606
1607/* Translate stat items to the correct unit for memory.stat output */
1608static int memcg_page_state_output_unit(int item)
1609{
1610 /*
1611 * Workingset state is actually in pages, but we export it to userspace
1612 * as a scalar count of events, so special case it here.
1613 */
1614 switch (item) {
1615 case WORKINGSET_REFAULT_ANON:
1616 case WORKINGSET_REFAULT_FILE:
1617 case WORKINGSET_ACTIVATE_ANON:
1618 case WORKINGSET_ACTIVATE_FILE:
1619 case WORKINGSET_RESTORE_ANON:
1620 case WORKINGSET_RESTORE_FILE:
1621 case WORKINGSET_NODERECLAIM:
1622 return 1;
1623 default:
1624 return memcg_page_state_unit(item);
1625 }
1626}
1627
1628static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1629 int item)
1630{
1631 return memcg_page_state(memcg, item) *
1632 memcg_page_state_output_unit(item);
1633}
1634
1635static inline unsigned long memcg_page_state_local_output(
1636 struct mem_cgroup *memcg, int item)
1637{
1638 return memcg_page_state_local(memcg, item) *
1639 memcg_page_state_output_unit(item);
1640}
1641
1642static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1643{
1644 int i;
1645
1646 /*
1647 * Provide statistics on the state of the memory subsystem as
1648 * well as cumulative event counters that show past behavior.
1649 *
1650 * This list is ordered following a combination of these gradients:
1651 * 1) generic big picture -> specifics and details
1652 * 2) reflecting userspace activity -> reflecting kernel heuristics
1653 *
1654 * Current memory state:
1655 */
1656 mem_cgroup_flush_stats(memcg);
1657
1658 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1659 u64 size;
1660
1661 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1662 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1663
1664 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1665 size += memcg_page_state_output(memcg,
1666 NR_SLAB_RECLAIMABLE_B);
1667 seq_buf_printf(s, "slab %llu\n", size);
1668 }
1669 }
1670
1671 /* Accumulated memory events */
1672 seq_buf_printf(s, "pgscan %lu\n",
1673 memcg_events(memcg, PGSCAN_KSWAPD) +
1674 memcg_events(memcg, PGSCAN_DIRECT) +
1675 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1676 seq_buf_printf(s, "pgsteal %lu\n",
1677 memcg_events(memcg, PGSTEAL_KSWAPD) +
1678 memcg_events(memcg, PGSTEAL_DIRECT) +
1679 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1680
1681 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1682 if (memcg_vm_event_stat[i] == PGPGIN ||
1683 memcg_vm_event_stat[i] == PGPGOUT)
1684 continue;
1685
1686 seq_buf_printf(s, "%s %lu\n",
1687 vm_event_name(memcg_vm_event_stat[i]),
1688 memcg_events(memcg, memcg_vm_event_stat[i]));
1689 }
1690
1691 /* The above should easily fit into one page */
1692 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1693}
1694
1695static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1696
1697static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1698{
1699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1700 memcg_stat_format(memcg, s);
1701 else
1702 memcg1_stat_format(memcg, s);
1703 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1704}
1705
1706/**
1707 * mem_cgroup_print_oom_context: Print OOM information relevant to
1708 * memory controller.
1709 * @memcg: The memory cgroup that went over limit
1710 * @p: Task that is going to be killed
1711 *
1712 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1713 * enabled
1714 */
1715void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1716{
1717 rcu_read_lock();
1718
1719 if (memcg) {
1720 pr_cont(",oom_memcg=");
1721 pr_cont_cgroup_path(memcg->css.cgroup);
1722 } else
1723 pr_cont(",global_oom");
1724 if (p) {
1725 pr_cont(",task_memcg=");
1726 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1727 }
1728 rcu_read_unlock();
1729}
1730
1731/**
1732 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1733 * memory controller.
1734 * @memcg: The memory cgroup that went over limit
1735 */
1736void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1737{
1738 /* Use static buffer, for the caller is holding oom_lock. */
1739 static char buf[PAGE_SIZE];
1740 struct seq_buf s;
1741
1742 lockdep_assert_held(&oom_lock);
1743
1744 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1745 K((u64)page_counter_read(&memcg->memory)),
1746 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1747 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1748 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1749 K((u64)page_counter_read(&memcg->swap)),
1750 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1751 else {
1752 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1753 K((u64)page_counter_read(&memcg->memsw)),
1754 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1755 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1756 K((u64)page_counter_read(&memcg->kmem)),
1757 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1758 }
1759
1760 pr_info("Memory cgroup stats for ");
1761 pr_cont_cgroup_path(memcg->css.cgroup);
1762 pr_cont(":");
1763 seq_buf_init(&s, buf, sizeof(buf));
1764 memory_stat_format(memcg, &s);
1765 seq_buf_do_printk(&s, KERN_INFO);
1766}
1767
1768/*
1769 * Return the memory (and swap, if configured) limit for a memcg.
1770 */
1771unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1772{
1773 unsigned long max = READ_ONCE(memcg->memory.max);
1774
1775 if (do_memsw_account()) {
1776 if (mem_cgroup_swappiness(memcg)) {
1777 /* Calculate swap excess capacity from memsw limit */
1778 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1779
1780 max += min(swap, (unsigned long)total_swap_pages);
1781 }
1782 } else {
1783 if (mem_cgroup_swappiness(memcg))
1784 max += min(READ_ONCE(memcg->swap.max),
1785 (unsigned long)total_swap_pages);
1786 }
1787 return max;
1788}
1789
1790unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1791{
1792 return page_counter_read(&memcg->memory);
1793}
1794
1795static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1796 int order)
1797{
1798 struct oom_control oc = {
1799 .zonelist = NULL,
1800 .nodemask = NULL,
1801 .memcg = memcg,
1802 .gfp_mask = gfp_mask,
1803 .order = order,
1804 };
1805 bool ret = true;
1806
1807 if (mutex_lock_killable(&oom_lock))
1808 return true;
1809
1810 if (mem_cgroup_margin(memcg) >= (1 << order))
1811 goto unlock;
1812
1813 /*
1814 * A few threads which were not waiting at mutex_lock_killable() can
1815 * fail to bail out. Therefore, check again after holding oom_lock.
1816 */
1817 ret = task_is_dying() || out_of_memory(&oc);
1818
1819unlock:
1820 mutex_unlock(&oom_lock);
1821 return ret;
1822}
1823
1824static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1825 pg_data_t *pgdat,
1826 gfp_t gfp_mask,
1827 unsigned long *total_scanned)
1828{
1829 struct mem_cgroup *victim = NULL;
1830 int total = 0;
1831 int loop = 0;
1832 unsigned long excess;
1833 unsigned long nr_scanned;
1834 struct mem_cgroup_reclaim_cookie reclaim = {
1835 .pgdat = pgdat,
1836 };
1837
1838 excess = soft_limit_excess(root_memcg);
1839
1840 while (1) {
1841 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1842 if (!victim) {
1843 loop++;
1844 if (loop >= 2) {
1845 /*
1846 * If we have not been able to reclaim
1847 * anything, it might because there are
1848 * no reclaimable pages under this hierarchy
1849 */
1850 if (!total)
1851 break;
1852 /*
1853 * We want to do more targeted reclaim.
1854 * excess >> 2 is not to excessive so as to
1855 * reclaim too much, nor too less that we keep
1856 * coming back to reclaim from this cgroup
1857 */
1858 if (total >= (excess >> 2) ||
1859 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1860 break;
1861 }
1862 continue;
1863 }
1864 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1865 pgdat, &nr_scanned);
1866 *total_scanned += nr_scanned;
1867 if (!soft_limit_excess(root_memcg))
1868 break;
1869 }
1870 mem_cgroup_iter_break(root_memcg, victim);
1871 return total;
1872}
1873
1874#ifdef CONFIG_LOCKDEP
1875static struct lockdep_map memcg_oom_lock_dep_map = {
1876 .name = "memcg_oom_lock",
1877};
1878#endif
1879
1880static DEFINE_SPINLOCK(memcg_oom_lock);
1881
1882/*
1883 * Check OOM-Killer is already running under our hierarchy.
1884 * If someone is running, return false.
1885 */
1886static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1887{
1888 struct mem_cgroup *iter, *failed = NULL;
1889
1890 spin_lock(&memcg_oom_lock);
1891
1892 for_each_mem_cgroup_tree(iter, memcg) {
1893 if (iter->oom_lock) {
1894 /*
1895 * this subtree of our hierarchy is already locked
1896 * so we cannot give a lock.
1897 */
1898 failed = iter;
1899 mem_cgroup_iter_break(memcg, iter);
1900 break;
1901 } else
1902 iter->oom_lock = true;
1903 }
1904
1905 if (failed) {
1906 /*
1907 * OK, we failed to lock the whole subtree so we have
1908 * to clean up what we set up to the failing subtree
1909 */
1910 for_each_mem_cgroup_tree(iter, memcg) {
1911 if (iter == failed) {
1912 mem_cgroup_iter_break(memcg, iter);
1913 break;
1914 }
1915 iter->oom_lock = false;
1916 }
1917 } else
1918 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1919
1920 spin_unlock(&memcg_oom_lock);
1921
1922 return !failed;
1923}
1924
1925static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1926{
1927 struct mem_cgroup *iter;
1928
1929 spin_lock(&memcg_oom_lock);
1930 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1931 for_each_mem_cgroup_tree(iter, memcg)
1932 iter->oom_lock = false;
1933 spin_unlock(&memcg_oom_lock);
1934}
1935
1936static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1937{
1938 struct mem_cgroup *iter;
1939
1940 spin_lock(&memcg_oom_lock);
1941 for_each_mem_cgroup_tree(iter, memcg)
1942 iter->under_oom++;
1943 spin_unlock(&memcg_oom_lock);
1944}
1945
1946static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1947{
1948 struct mem_cgroup *iter;
1949
1950 /*
1951 * Be careful about under_oom underflows because a child memcg
1952 * could have been added after mem_cgroup_mark_under_oom.
1953 */
1954 spin_lock(&memcg_oom_lock);
1955 for_each_mem_cgroup_tree(iter, memcg)
1956 if (iter->under_oom > 0)
1957 iter->under_oom--;
1958 spin_unlock(&memcg_oom_lock);
1959}
1960
1961static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1962
1963struct oom_wait_info {
1964 struct mem_cgroup *memcg;
1965 wait_queue_entry_t wait;
1966};
1967
1968static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1969 unsigned mode, int sync, void *arg)
1970{
1971 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1972 struct mem_cgroup *oom_wait_memcg;
1973 struct oom_wait_info *oom_wait_info;
1974
1975 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976 oom_wait_memcg = oom_wait_info->memcg;
1977
1978 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1979 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1980 return 0;
1981 return autoremove_wake_function(wait, mode, sync, arg);
1982}
1983
1984static void memcg_oom_recover(struct mem_cgroup *memcg)
1985{
1986 /*
1987 * For the following lockless ->under_oom test, the only required
1988 * guarantee is that it must see the state asserted by an OOM when
1989 * this function is called as a result of userland actions
1990 * triggered by the notification of the OOM. This is trivially
1991 * achieved by invoking mem_cgroup_mark_under_oom() before
1992 * triggering notification.
1993 */
1994 if (memcg && memcg->under_oom)
1995 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1996}
1997
1998/*
1999 * Returns true if successfully killed one or more processes. Though in some
2000 * corner cases it can return true even without killing any process.
2001 */
2002static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2003{
2004 bool locked, ret;
2005
2006 if (order > PAGE_ALLOC_COSTLY_ORDER)
2007 return false;
2008
2009 memcg_memory_event(memcg, MEMCG_OOM);
2010
2011 /*
2012 * We are in the middle of the charge context here, so we
2013 * don't want to block when potentially sitting on a callstack
2014 * that holds all kinds of filesystem and mm locks.
2015 *
2016 * cgroup1 allows disabling the OOM killer and waiting for outside
2017 * handling until the charge can succeed; remember the context and put
2018 * the task to sleep at the end of the page fault when all locks are
2019 * released.
2020 *
2021 * On the other hand, in-kernel OOM killer allows for an async victim
2022 * memory reclaim (oom_reaper) and that means that we are not solely
2023 * relying on the oom victim to make a forward progress and we can
2024 * invoke the oom killer here.
2025 *
2026 * Please note that mem_cgroup_out_of_memory might fail to find a
2027 * victim and then we have to bail out from the charge path.
2028 */
2029 if (READ_ONCE(memcg->oom_kill_disable)) {
2030 if (current->in_user_fault) {
2031 css_get(&memcg->css);
2032 current->memcg_in_oom = memcg;
2033 current->memcg_oom_gfp_mask = mask;
2034 current->memcg_oom_order = order;
2035 }
2036 return false;
2037 }
2038
2039 mem_cgroup_mark_under_oom(memcg);
2040
2041 locked = mem_cgroup_oom_trylock(memcg);
2042
2043 if (locked)
2044 mem_cgroup_oom_notify(memcg);
2045
2046 mem_cgroup_unmark_under_oom(memcg);
2047 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2048
2049 if (locked)
2050 mem_cgroup_oom_unlock(memcg);
2051
2052 return ret;
2053}
2054
2055/**
2056 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2057 * @handle: actually kill/wait or just clean up the OOM state
2058 *
2059 * This has to be called at the end of a page fault if the memcg OOM
2060 * handler was enabled.
2061 *
2062 * Memcg supports userspace OOM handling where failed allocations must
2063 * sleep on a waitqueue until the userspace task resolves the
2064 * situation. Sleeping directly in the charge context with all kinds
2065 * of locks held is not a good idea, instead we remember an OOM state
2066 * in the task and mem_cgroup_oom_synchronize() has to be called at
2067 * the end of the page fault to complete the OOM handling.
2068 *
2069 * Returns %true if an ongoing memcg OOM situation was detected and
2070 * completed, %false otherwise.
2071 */
2072bool mem_cgroup_oom_synchronize(bool handle)
2073{
2074 struct mem_cgroup *memcg = current->memcg_in_oom;
2075 struct oom_wait_info owait;
2076 bool locked;
2077
2078 /* OOM is global, do not handle */
2079 if (!memcg)
2080 return false;
2081
2082 if (!handle)
2083 goto cleanup;
2084
2085 owait.memcg = memcg;
2086 owait.wait.flags = 0;
2087 owait.wait.func = memcg_oom_wake_function;
2088 owait.wait.private = current;
2089 INIT_LIST_HEAD(&owait.wait.entry);
2090
2091 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2092 mem_cgroup_mark_under_oom(memcg);
2093
2094 locked = mem_cgroup_oom_trylock(memcg);
2095
2096 if (locked)
2097 mem_cgroup_oom_notify(memcg);
2098
2099 schedule();
2100 mem_cgroup_unmark_under_oom(memcg);
2101 finish_wait(&memcg_oom_waitq, &owait.wait);
2102
2103 if (locked)
2104 mem_cgroup_oom_unlock(memcg);
2105cleanup:
2106 current->memcg_in_oom = NULL;
2107 css_put(&memcg->css);
2108 return true;
2109}
2110
2111/**
2112 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2113 * @victim: task to be killed by the OOM killer
2114 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2115 *
2116 * Returns a pointer to a memory cgroup, which has to be cleaned up
2117 * by killing all belonging OOM-killable tasks.
2118 *
2119 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2120 */
2121struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2122 struct mem_cgroup *oom_domain)
2123{
2124 struct mem_cgroup *oom_group = NULL;
2125 struct mem_cgroup *memcg;
2126
2127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2128 return NULL;
2129
2130 if (!oom_domain)
2131 oom_domain = root_mem_cgroup;
2132
2133 rcu_read_lock();
2134
2135 memcg = mem_cgroup_from_task(victim);
2136 if (mem_cgroup_is_root(memcg))
2137 goto out;
2138
2139 /*
2140 * If the victim task has been asynchronously moved to a different
2141 * memory cgroup, we might end up killing tasks outside oom_domain.
2142 * In this case it's better to ignore memory.group.oom.
2143 */
2144 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2145 goto out;
2146
2147 /*
2148 * Traverse the memory cgroup hierarchy from the victim task's
2149 * cgroup up to the OOMing cgroup (or root) to find the
2150 * highest-level memory cgroup with oom.group set.
2151 */
2152 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2153 if (READ_ONCE(memcg->oom_group))
2154 oom_group = memcg;
2155
2156 if (memcg == oom_domain)
2157 break;
2158 }
2159
2160 if (oom_group)
2161 css_get(&oom_group->css);
2162out:
2163 rcu_read_unlock();
2164
2165 return oom_group;
2166}
2167
2168void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2169{
2170 pr_info("Tasks in ");
2171 pr_cont_cgroup_path(memcg->css.cgroup);
2172 pr_cont(" are going to be killed due to memory.oom.group set\n");
2173}
2174
2175/**
2176 * folio_memcg_lock - Bind a folio to its memcg.
2177 * @folio: The folio.
2178 *
2179 * This function prevents unlocked LRU folios from being moved to
2180 * another cgroup.
2181 *
2182 * It ensures lifetime of the bound memcg. The caller is responsible
2183 * for the lifetime of the folio.
2184 */
2185void folio_memcg_lock(struct folio *folio)
2186{
2187 struct mem_cgroup *memcg;
2188 unsigned long flags;
2189
2190 /*
2191 * The RCU lock is held throughout the transaction. The fast
2192 * path can get away without acquiring the memcg->move_lock
2193 * because page moving starts with an RCU grace period.
2194 */
2195 rcu_read_lock();
2196
2197 if (mem_cgroup_disabled())
2198 return;
2199again:
2200 memcg = folio_memcg(folio);
2201 if (unlikely(!memcg))
2202 return;
2203
2204#ifdef CONFIG_PROVE_LOCKING
2205 local_irq_save(flags);
2206 might_lock(&memcg->move_lock);
2207 local_irq_restore(flags);
2208#endif
2209
2210 if (atomic_read(&memcg->moving_account) <= 0)
2211 return;
2212
2213 spin_lock_irqsave(&memcg->move_lock, flags);
2214 if (memcg != folio_memcg(folio)) {
2215 spin_unlock_irqrestore(&memcg->move_lock, flags);
2216 goto again;
2217 }
2218
2219 /*
2220 * When charge migration first begins, we can have multiple
2221 * critical sections holding the fast-path RCU lock and one
2222 * holding the slowpath move_lock. Track the task who has the
2223 * move_lock for folio_memcg_unlock().
2224 */
2225 memcg->move_lock_task = current;
2226 memcg->move_lock_flags = flags;
2227}
2228
2229static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2230{
2231 if (memcg && memcg->move_lock_task == current) {
2232 unsigned long flags = memcg->move_lock_flags;
2233
2234 memcg->move_lock_task = NULL;
2235 memcg->move_lock_flags = 0;
2236
2237 spin_unlock_irqrestore(&memcg->move_lock, flags);
2238 }
2239
2240 rcu_read_unlock();
2241}
2242
2243/**
2244 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2245 * @folio: The folio.
2246 *
2247 * This releases the binding created by folio_memcg_lock(). This does
2248 * not change the accounting of this folio to its memcg, but it does
2249 * permit others to change it.
2250 */
2251void folio_memcg_unlock(struct folio *folio)
2252{
2253 __folio_memcg_unlock(folio_memcg(folio));
2254}
2255
2256struct memcg_stock_pcp {
2257 local_lock_t stock_lock;
2258 struct mem_cgroup *cached; /* this never be root cgroup */
2259 unsigned int nr_pages;
2260
2261#ifdef CONFIG_MEMCG_KMEM
2262 struct obj_cgroup *cached_objcg;
2263 struct pglist_data *cached_pgdat;
2264 unsigned int nr_bytes;
2265 int nr_slab_reclaimable_b;
2266 int nr_slab_unreclaimable_b;
2267#endif
2268
2269 struct work_struct work;
2270 unsigned long flags;
2271#define FLUSHING_CACHED_CHARGE 0
2272};
2273static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2274 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2275};
2276static DEFINE_MUTEX(percpu_charge_mutex);
2277
2278#ifdef CONFIG_MEMCG_KMEM
2279static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2280static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2281 struct mem_cgroup *root_memcg);
2282static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2283
2284#else
2285static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2286{
2287 return NULL;
2288}
2289static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2290 struct mem_cgroup *root_memcg)
2291{
2292 return false;
2293}
2294static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2295{
2296}
2297#endif
2298
2299/**
2300 * consume_stock: Try to consume stocked charge on this cpu.
2301 * @memcg: memcg to consume from.
2302 * @nr_pages: how many pages to charge.
2303 *
2304 * The charges will only happen if @memcg matches the current cpu's memcg
2305 * stock, and at least @nr_pages are available in that stock. Failure to
2306 * service an allocation will refill the stock.
2307 *
2308 * returns true if successful, false otherwise.
2309 */
2310static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311{
2312 struct memcg_stock_pcp *stock;
2313 unsigned long flags;
2314 bool ret = false;
2315
2316 if (nr_pages > MEMCG_CHARGE_BATCH)
2317 return ret;
2318
2319 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2320
2321 stock = this_cpu_ptr(&memcg_stock);
2322 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2323 stock->nr_pages -= nr_pages;
2324 ret = true;
2325 }
2326
2327 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328
2329 return ret;
2330}
2331
2332/*
2333 * Returns stocks cached in percpu and reset cached information.
2334 */
2335static void drain_stock(struct memcg_stock_pcp *stock)
2336{
2337 struct mem_cgroup *old = READ_ONCE(stock->cached);
2338
2339 if (!old)
2340 return;
2341
2342 if (stock->nr_pages) {
2343 page_counter_uncharge(&old->memory, stock->nr_pages);
2344 if (do_memsw_account())
2345 page_counter_uncharge(&old->memsw, stock->nr_pages);
2346 stock->nr_pages = 0;
2347 }
2348
2349 css_put(&old->css);
2350 WRITE_ONCE(stock->cached, NULL);
2351}
2352
2353static void drain_local_stock(struct work_struct *dummy)
2354{
2355 struct memcg_stock_pcp *stock;
2356 struct obj_cgroup *old = NULL;
2357 unsigned long flags;
2358
2359 /*
2360 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2361 * drain_stock races is that we always operate on local CPU stock
2362 * here with IRQ disabled
2363 */
2364 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2365
2366 stock = this_cpu_ptr(&memcg_stock);
2367 old = drain_obj_stock(stock);
2368 drain_stock(stock);
2369 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2370
2371 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2372 if (old)
2373 obj_cgroup_put(old);
2374}
2375
2376/*
2377 * Cache charges(val) to local per_cpu area.
2378 * This will be consumed by consume_stock() function, later.
2379 */
2380static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2381{
2382 struct memcg_stock_pcp *stock;
2383
2384 stock = this_cpu_ptr(&memcg_stock);
2385 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2386 drain_stock(stock);
2387 css_get(&memcg->css);
2388 WRITE_ONCE(stock->cached, memcg);
2389 }
2390 stock->nr_pages += nr_pages;
2391
2392 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2393 drain_stock(stock);
2394}
2395
2396static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2397{
2398 unsigned long flags;
2399
2400 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2401 __refill_stock(memcg, nr_pages);
2402 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2403}
2404
2405/*
2406 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2407 * of the hierarchy under it.
2408 */
2409static void drain_all_stock(struct mem_cgroup *root_memcg)
2410{
2411 int cpu, curcpu;
2412
2413 /* If someone's already draining, avoid adding running more workers. */
2414 if (!mutex_trylock(&percpu_charge_mutex))
2415 return;
2416 /*
2417 * Notify other cpus that system-wide "drain" is running
2418 * We do not care about races with the cpu hotplug because cpu down
2419 * as well as workers from this path always operate on the local
2420 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2421 */
2422 migrate_disable();
2423 curcpu = smp_processor_id();
2424 for_each_online_cpu(cpu) {
2425 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426 struct mem_cgroup *memcg;
2427 bool flush = false;
2428
2429 rcu_read_lock();
2430 memcg = READ_ONCE(stock->cached);
2431 if (memcg && stock->nr_pages &&
2432 mem_cgroup_is_descendant(memcg, root_memcg))
2433 flush = true;
2434 else if (obj_stock_flush_required(stock, root_memcg))
2435 flush = true;
2436 rcu_read_unlock();
2437
2438 if (flush &&
2439 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2440 if (cpu == curcpu)
2441 drain_local_stock(&stock->work);
2442 else if (!cpu_is_isolated(cpu))
2443 schedule_work_on(cpu, &stock->work);
2444 }
2445 }
2446 migrate_enable();
2447 mutex_unlock(&percpu_charge_mutex);
2448}
2449
2450static int memcg_hotplug_cpu_dead(unsigned int cpu)
2451{
2452 struct memcg_stock_pcp *stock;
2453
2454 stock = &per_cpu(memcg_stock, cpu);
2455 drain_stock(stock);
2456
2457 return 0;
2458}
2459
2460static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 unsigned int nr_pages,
2462 gfp_t gfp_mask)
2463{
2464 unsigned long nr_reclaimed = 0;
2465
2466 do {
2467 unsigned long pflags;
2468
2469 if (page_counter_read(&memcg->memory) <=
2470 READ_ONCE(memcg->memory.high))
2471 continue;
2472
2473 memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475 psi_memstall_enter(&pflags);
2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 gfp_mask,
2478 MEMCG_RECLAIM_MAY_SWAP);
2479 psi_memstall_leave(&pflags);
2480 } while ((memcg = parent_mem_cgroup(memcg)) &&
2481 !mem_cgroup_is_root(memcg));
2482
2483 return nr_reclaimed;
2484}
2485
2486static void high_work_func(struct work_struct *work)
2487{
2488 struct mem_cgroup *memcg;
2489
2490 memcg = container_of(work, struct mem_cgroup, high_work);
2491 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2492}
2493
2494/*
2495 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2496 * enough to still cause a significant slowdown in most cases, while still
2497 * allowing diagnostics and tracing to proceed without becoming stuck.
2498 */
2499#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2500
2501/*
2502 * When calculating the delay, we use these either side of the exponentiation to
2503 * maintain precision and scale to a reasonable number of jiffies (see the table
2504 * below.
2505 *
2506 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2507 * overage ratio to a delay.
2508 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2509 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2510 * to produce a reasonable delay curve.
2511 *
2512 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2513 * reasonable delay curve compared to precision-adjusted overage, not
2514 * penalising heavily at first, but still making sure that growth beyond the
2515 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2516 * example, with a high of 100 megabytes:
2517 *
2518 * +-------+------------------------+
2519 * | usage | time to allocate in ms |
2520 * +-------+------------------------+
2521 * | 100M | 0 |
2522 * | 101M | 6 |
2523 * | 102M | 25 |
2524 * | 103M | 57 |
2525 * | 104M | 102 |
2526 * | 105M | 159 |
2527 * | 106M | 230 |
2528 * | 107M | 313 |
2529 * | 108M | 409 |
2530 * | 109M | 518 |
2531 * | 110M | 639 |
2532 * | 111M | 774 |
2533 * | 112M | 921 |
2534 * | 113M | 1081 |
2535 * | 114M | 1254 |
2536 * | 115M | 1439 |
2537 * | 116M | 1638 |
2538 * | 117M | 1849 |
2539 * | 118M | 2000 |
2540 * | 119M | 2000 |
2541 * | 120M | 2000 |
2542 * +-------+------------------------+
2543 */
2544 #define MEMCG_DELAY_PRECISION_SHIFT 20
2545 #define MEMCG_DELAY_SCALING_SHIFT 14
2546
2547static u64 calculate_overage(unsigned long usage, unsigned long high)
2548{
2549 u64 overage;
2550
2551 if (usage <= high)
2552 return 0;
2553
2554 /*
2555 * Prevent division by 0 in overage calculation by acting as if
2556 * it was a threshold of 1 page
2557 */
2558 high = max(high, 1UL);
2559
2560 overage = usage - high;
2561 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2562 return div64_u64(overage, high);
2563}
2564
2565static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2566{
2567 u64 overage, max_overage = 0;
2568
2569 do {
2570 overage = calculate_overage(page_counter_read(&memcg->memory),
2571 READ_ONCE(memcg->memory.high));
2572 max_overage = max(overage, max_overage);
2573 } while ((memcg = parent_mem_cgroup(memcg)) &&
2574 !mem_cgroup_is_root(memcg));
2575
2576 return max_overage;
2577}
2578
2579static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2580{
2581 u64 overage, max_overage = 0;
2582
2583 do {
2584 overage = calculate_overage(page_counter_read(&memcg->swap),
2585 READ_ONCE(memcg->swap.high));
2586 if (overage)
2587 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2588 max_overage = max(overage, max_overage);
2589 } while ((memcg = parent_mem_cgroup(memcg)) &&
2590 !mem_cgroup_is_root(memcg));
2591
2592 return max_overage;
2593}
2594
2595/*
2596 * Get the number of jiffies that we should penalise a mischievous cgroup which
2597 * is exceeding its memory.high by checking both it and its ancestors.
2598 */
2599static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2600 unsigned int nr_pages,
2601 u64 max_overage)
2602{
2603 unsigned long penalty_jiffies;
2604
2605 if (!max_overage)
2606 return 0;
2607
2608 /*
2609 * We use overage compared to memory.high to calculate the number of
2610 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2611 * fairly lenient on small overages, and increasingly harsh when the
2612 * memcg in question makes it clear that it has no intention of stopping
2613 * its crazy behaviour, so we exponentially increase the delay based on
2614 * overage amount.
2615 */
2616 penalty_jiffies = max_overage * max_overage * HZ;
2617 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2618 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2619
2620 /*
2621 * Factor in the task's own contribution to the overage, such that four
2622 * N-sized allocations are throttled approximately the same as one
2623 * 4N-sized allocation.
2624 *
2625 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2626 * larger the current charge patch is than that.
2627 */
2628 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2629}
2630
2631/*
2632 * Reclaims memory over the high limit. Called directly from
2633 * try_charge() (context permitting), as well as from the userland
2634 * return path where reclaim is always able to block.
2635 */
2636void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2637{
2638 unsigned long penalty_jiffies;
2639 unsigned long pflags;
2640 unsigned long nr_reclaimed;
2641 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2642 int nr_retries = MAX_RECLAIM_RETRIES;
2643 struct mem_cgroup *memcg;
2644 bool in_retry = false;
2645
2646 if (likely(!nr_pages))
2647 return;
2648
2649 memcg = get_mem_cgroup_from_mm(current->mm);
2650 current->memcg_nr_pages_over_high = 0;
2651
2652retry_reclaim:
2653 /*
2654 * Bail if the task is already exiting. Unlike memory.max,
2655 * memory.high enforcement isn't as strict, and there is no
2656 * OOM killer involved, which means the excess could already
2657 * be much bigger (and still growing) than it could for
2658 * memory.max; the dying task could get stuck in fruitless
2659 * reclaim for a long time, which isn't desirable.
2660 */
2661 if (task_is_dying())
2662 goto out;
2663
2664 /*
2665 * The allocating task should reclaim at least the batch size, but for
2666 * subsequent retries we only want to do what's necessary to prevent oom
2667 * or breaching resource isolation.
2668 *
2669 * This is distinct from memory.max or page allocator behaviour because
2670 * memory.high is currently batched, whereas memory.max and the page
2671 * allocator run every time an allocation is made.
2672 */
2673 nr_reclaimed = reclaim_high(memcg,
2674 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2675 gfp_mask);
2676
2677 /*
2678 * memory.high is breached and reclaim is unable to keep up. Throttle
2679 * allocators proactively to slow down excessive growth.
2680 */
2681 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2682 mem_find_max_overage(memcg));
2683
2684 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2685 swap_find_max_overage(memcg));
2686
2687 /*
2688 * Clamp the max delay per usermode return so as to still keep the
2689 * application moving forwards and also permit diagnostics, albeit
2690 * extremely slowly.
2691 */
2692 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2693
2694 /*
2695 * Don't sleep if the amount of jiffies this memcg owes us is so low
2696 * that it's not even worth doing, in an attempt to be nice to those who
2697 * go only a small amount over their memory.high value and maybe haven't
2698 * been aggressively reclaimed enough yet.
2699 */
2700 if (penalty_jiffies <= HZ / 100)
2701 goto out;
2702
2703 /*
2704 * If reclaim is making forward progress but we're still over
2705 * memory.high, we want to encourage that rather than doing allocator
2706 * throttling.
2707 */
2708 if (nr_reclaimed || nr_retries--) {
2709 in_retry = true;
2710 goto retry_reclaim;
2711 }
2712
2713 /*
2714 * Reclaim didn't manage to push usage below the limit, slow
2715 * this allocating task down.
2716 *
2717 * If we exit early, we're guaranteed to die (since
2718 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2719 * need to account for any ill-begotten jiffies to pay them off later.
2720 */
2721 psi_memstall_enter(&pflags);
2722 schedule_timeout_killable(penalty_jiffies);
2723 psi_memstall_leave(&pflags);
2724
2725out:
2726 css_put(&memcg->css);
2727}
2728
2729static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2730 unsigned int nr_pages)
2731{
2732 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2733 int nr_retries = MAX_RECLAIM_RETRIES;
2734 struct mem_cgroup *mem_over_limit;
2735 struct page_counter *counter;
2736 unsigned long nr_reclaimed;
2737 bool passed_oom = false;
2738 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2739 bool drained = false;
2740 bool raised_max_event = false;
2741 unsigned long pflags;
2742
2743retry:
2744 if (consume_stock(memcg, nr_pages))
2745 return 0;
2746
2747 if (!do_memsw_account() ||
2748 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2749 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2750 goto done_restock;
2751 if (do_memsw_account())
2752 page_counter_uncharge(&memcg->memsw, batch);
2753 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2754 } else {
2755 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2756 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2757 }
2758
2759 if (batch > nr_pages) {
2760 batch = nr_pages;
2761 goto retry;
2762 }
2763
2764 /*
2765 * Prevent unbounded recursion when reclaim operations need to
2766 * allocate memory. This might exceed the limits temporarily,
2767 * but we prefer facilitating memory reclaim and getting back
2768 * under the limit over triggering OOM kills in these cases.
2769 */
2770 if (unlikely(current->flags & PF_MEMALLOC))
2771 goto force;
2772
2773 if (unlikely(task_in_memcg_oom(current)))
2774 goto nomem;
2775
2776 if (!gfpflags_allow_blocking(gfp_mask))
2777 goto nomem;
2778
2779 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2780 raised_max_event = true;
2781
2782 psi_memstall_enter(&pflags);
2783 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784 gfp_mask, reclaim_options);
2785 psi_memstall_leave(&pflags);
2786
2787 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788 goto retry;
2789
2790 if (!drained) {
2791 drain_all_stock(mem_over_limit);
2792 drained = true;
2793 goto retry;
2794 }
2795
2796 if (gfp_mask & __GFP_NORETRY)
2797 goto nomem;
2798 /*
2799 * Even though the limit is exceeded at this point, reclaim
2800 * may have been able to free some pages. Retry the charge
2801 * before killing the task.
2802 *
2803 * Only for regular pages, though: huge pages are rather
2804 * unlikely to succeed so close to the limit, and we fall back
2805 * to regular pages anyway in case of failure.
2806 */
2807 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2808 goto retry;
2809 /*
2810 * At task move, charge accounts can be doubly counted. So, it's
2811 * better to wait until the end of task_move if something is going on.
2812 */
2813 if (mem_cgroup_wait_acct_move(mem_over_limit))
2814 goto retry;
2815
2816 if (nr_retries--)
2817 goto retry;
2818
2819 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2820 goto nomem;
2821
2822 /* Avoid endless loop for tasks bypassed by the oom killer */
2823 if (passed_oom && task_is_dying())
2824 goto nomem;
2825
2826 /*
2827 * keep retrying as long as the memcg oom killer is able to make
2828 * a forward progress or bypass the charge if the oom killer
2829 * couldn't make any progress.
2830 */
2831 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2832 get_order(nr_pages * PAGE_SIZE))) {
2833 passed_oom = true;
2834 nr_retries = MAX_RECLAIM_RETRIES;
2835 goto retry;
2836 }
2837nomem:
2838 /*
2839 * Memcg doesn't have a dedicated reserve for atomic
2840 * allocations. But like the global atomic pool, we need to
2841 * put the burden of reclaim on regular allocation requests
2842 * and let these go through as privileged allocations.
2843 */
2844 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2845 return -ENOMEM;
2846force:
2847 /*
2848 * If the allocation has to be enforced, don't forget to raise
2849 * a MEMCG_MAX event.
2850 */
2851 if (!raised_max_event)
2852 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2853
2854 /*
2855 * The allocation either can't fail or will lead to more memory
2856 * being freed very soon. Allow memory usage go over the limit
2857 * temporarily by force charging it.
2858 */
2859 page_counter_charge(&memcg->memory, nr_pages);
2860 if (do_memsw_account())
2861 page_counter_charge(&memcg->memsw, nr_pages);
2862
2863 return 0;
2864
2865done_restock:
2866 if (batch > nr_pages)
2867 refill_stock(memcg, batch - nr_pages);
2868
2869 /*
2870 * If the hierarchy is above the normal consumption range, schedule
2871 * reclaim on returning to userland. We can perform reclaim here
2872 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2873 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2874 * not recorded as it most likely matches current's and won't
2875 * change in the meantime. As high limit is checked again before
2876 * reclaim, the cost of mismatch is negligible.
2877 */
2878 do {
2879 bool mem_high, swap_high;
2880
2881 mem_high = page_counter_read(&memcg->memory) >
2882 READ_ONCE(memcg->memory.high);
2883 swap_high = page_counter_read(&memcg->swap) >
2884 READ_ONCE(memcg->swap.high);
2885
2886 /* Don't bother a random interrupted task */
2887 if (!in_task()) {
2888 if (mem_high) {
2889 schedule_work(&memcg->high_work);
2890 break;
2891 }
2892 continue;
2893 }
2894
2895 if (mem_high || swap_high) {
2896 /*
2897 * The allocating tasks in this cgroup will need to do
2898 * reclaim or be throttled to prevent further growth
2899 * of the memory or swap footprints.
2900 *
2901 * Target some best-effort fairness between the tasks,
2902 * and distribute reclaim work and delay penalties
2903 * based on how much each task is actually allocating.
2904 */
2905 current->memcg_nr_pages_over_high += batch;
2906 set_notify_resume(current);
2907 break;
2908 }
2909 } while ((memcg = parent_mem_cgroup(memcg)));
2910
2911 /*
2912 * Reclaim is set up above to be called from the userland
2913 * return path. But also attempt synchronous reclaim to avoid
2914 * excessive overrun while the task is still inside the
2915 * kernel. If this is successful, the return path will see it
2916 * when it rechecks the overage and simply bail out.
2917 */
2918 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2919 !(current->flags & PF_MEMALLOC) &&
2920 gfpflags_allow_blocking(gfp_mask))
2921 mem_cgroup_handle_over_high(gfp_mask);
2922 return 0;
2923}
2924
2925static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2926 unsigned int nr_pages)
2927{
2928 if (mem_cgroup_is_root(memcg))
2929 return 0;
2930
2931 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2932}
2933
2934/**
2935 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2936 * @memcg: memcg previously charged.
2937 * @nr_pages: number of pages previously charged.
2938 */
2939void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2940{
2941 if (mem_cgroup_is_root(memcg))
2942 return;
2943
2944 page_counter_uncharge(&memcg->memory, nr_pages);
2945 if (do_memsw_account())
2946 page_counter_uncharge(&memcg->memsw, nr_pages);
2947}
2948
2949static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2950{
2951 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2952 /*
2953 * Any of the following ensures page's memcg stability:
2954 *
2955 * - the page lock
2956 * - LRU isolation
2957 * - folio_memcg_lock()
2958 * - exclusive reference
2959 * - mem_cgroup_trylock_pages()
2960 */
2961 folio->memcg_data = (unsigned long)memcg;
2962}
2963
2964/**
2965 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2966 * @folio: folio to commit the charge to.
2967 * @memcg: memcg previously charged.
2968 */
2969void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2970{
2971 css_get(&memcg->css);
2972 commit_charge(folio, memcg);
2973
2974 local_irq_disable();
2975 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2976 memcg_check_events(memcg, folio_nid(folio));
2977 local_irq_enable();
2978}
2979
2980#ifdef CONFIG_MEMCG_KMEM
2981/*
2982 * The allocated objcg pointers array is not accounted directly.
2983 * Moreover, it should not come from DMA buffer and is not readily
2984 * reclaimable. So those GFP bits should be masked off.
2985 */
2986#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2987 __GFP_ACCOUNT | __GFP_NOFAIL)
2988
2989/*
2990 * mod_objcg_mlstate() may be called with irq enabled, so
2991 * mod_memcg_lruvec_state() should be used.
2992 */
2993static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2994 struct pglist_data *pgdat,
2995 enum node_stat_item idx, int nr)
2996{
2997 struct mem_cgroup *memcg;
2998 struct lruvec *lruvec;
2999
3000 rcu_read_lock();
3001 memcg = obj_cgroup_memcg(objcg);
3002 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3003 mod_memcg_lruvec_state(lruvec, idx, nr);
3004 rcu_read_unlock();
3005}
3006
3007int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
3008 gfp_t gfp, bool new_slab)
3009{
3010 unsigned int objects = objs_per_slab(s, slab);
3011 unsigned long memcg_data;
3012 void *vec;
3013
3014 gfp &= ~OBJCGS_CLEAR_MASK;
3015 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
3016 slab_nid(slab));
3017 if (!vec)
3018 return -ENOMEM;
3019
3020 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
3021 if (new_slab) {
3022 /*
3023 * If the slab is brand new and nobody can yet access its
3024 * memcg_data, no synchronization is required and memcg_data can
3025 * be simply assigned.
3026 */
3027 slab->memcg_data = memcg_data;
3028 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3029 /*
3030 * If the slab is already in use, somebody can allocate and
3031 * assign obj_cgroups in parallel. In this case the existing
3032 * objcg vector should be reused.
3033 */
3034 kfree(vec);
3035 return 0;
3036 }
3037
3038 kmemleak_not_leak(vec);
3039 return 0;
3040}
3041
3042static __always_inline
3043struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3044{
3045 /*
3046 * Slab objects are accounted individually, not per-page.
3047 * Memcg membership data for each individual object is saved in
3048 * slab->memcg_data.
3049 */
3050 if (folio_test_slab(folio)) {
3051 struct obj_cgroup **objcgs;
3052 struct slab *slab;
3053 unsigned int off;
3054
3055 slab = folio_slab(folio);
3056 objcgs = slab_objcgs(slab);
3057 if (!objcgs)
3058 return NULL;
3059
3060 off = obj_to_index(slab->slab_cache, slab, p);
3061 if (objcgs[off])
3062 return obj_cgroup_memcg(objcgs[off]);
3063
3064 return NULL;
3065 }
3066
3067 /*
3068 * folio_memcg_check() is used here, because in theory we can encounter
3069 * a folio where the slab flag has been cleared already, but
3070 * slab->memcg_data has not been freed yet
3071 * folio_memcg_check() will guarantee that a proper memory
3072 * cgroup pointer or NULL will be returned.
3073 */
3074 return folio_memcg_check(folio);
3075}
3076
3077/*
3078 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3079 *
3080 * A passed kernel object can be a slab object, vmalloc object or a generic
3081 * kernel page, so different mechanisms for getting the memory cgroup pointer
3082 * should be used.
3083 *
3084 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3085 * can not know for sure how the kernel object is implemented.
3086 * mem_cgroup_from_obj() can be safely used in such cases.
3087 *
3088 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3089 * cgroup_mutex, etc.
3090 */
3091struct mem_cgroup *mem_cgroup_from_obj(void *p)
3092{
3093 struct folio *folio;
3094
3095 if (mem_cgroup_disabled())
3096 return NULL;
3097
3098 if (unlikely(is_vmalloc_addr(p)))
3099 folio = page_folio(vmalloc_to_page(p));
3100 else
3101 folio = virt_to_folio(p);
3102
3103 return mem_cgroup_from_obj_folio(folio, p);
3104}
3105
3106/*
3107 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3108 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3109 * allocated using vmalloc().
3110 *
3111 * A passed kernel object must be a slab object or a generic kernel page.
3112 *
3113 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3114 * cgroup_mutex, etc.
3115 */
3116struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3117{
3118 if (mem_cgroup_disabled())
3119 return NULL;
3120
3121 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3122}
3123
3124static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3125{
3126 struct obj_cgroup *objcg = NULL;
3127
3128 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3129 objcg = rcu_dereference(memcg->objcg);
3130 if (likely(objcg && obj_cgroup_tryget(objcg)))
3131 break;
3132 objcg = NULL;
3133 }
3134 return objcg;
3135}
3136
3137static struct obj_cgroup *current_objcg_update(void)
3138{
3139 struct mem_cgroup *memcg;
3140 struct obj_cgroup *old, *objcg = NULL;
3141
3142 do {
3143 /* Atomically drop the update bit. */
3144 old = xchg(¤t->objcg, NULL);
3145 if (old) {
3146 old = (struct obj_cgroup *)
3147 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3148 if (old)
3149 obj_cgroup_put(old);
3150
3151 old = NULL;
3152 }
3153
3154 /* If new objcg is NULL, no reason for the second atomic update. */
3155 if (!current->mm || (current->flags & PF_KTHREAD))
3156 return NULL;
3157
3158 /*
3159 * Release the objcg pointer from the previous iteration,
3160 * if try_cmpxcg() below fails.
3161 */
3162 if (unlikely(objcg)) {
3163 obj_cgroup_put(objcg);
3164 objcg = NULL;
3165 }
3166
3167 /*
3168 * Obtain the new objcg pointer. The current task can be
3169 * asynchronously moved to another memcg and the previous
3170 * memcg can be offlined. So let's get the memcg pointer
3171 * and try get a reference to objcg under a rcu read lock.
3172 */
3173
3174 rcu_read_lock();
3175 memcg = mem_cgroup_from_task(current);
3176 objcg = __get_obj_cgroup_from_memcg(memcg);
3177 rcu_read_unlock();
3178
3179 /*
3180 * Try set up a new objcg pointer atomically. If it
3181 * fails, it means the update flag was set concurrently, so
3182 * the whole procedure should be repeated.
3183 */
3184 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
3185
3186 return objcg;
3187}
3188
3189__always_inline struct obj_cgroup *current_obj_cgroup(void)
3190{
3191 struct mem_cgroup *memcg;
3192 struct obj_cgroup *objcg;
3193
3194 if (in_task()) {
3195 memcg = current->active_memcg;
3196 if (unlikely(memcg))
3197 goto from_memcg;
3198
3199 objcg = READ_ONCE(current->objcg);
3200 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3201 objcg = current_objcg_update();
3202 /*
3203 * Objcg reference is kept by the task, so it's safe
3204 * to use the objcg by the current task.
3205 */
3206 return objcg;
3207 }
3208
3209 memcg = this_cpu_read(int_active_memcg);
3210 if (unlikely(memcg))
3211 goto from_memcg;
3212
3213 return NULL;
3214
3215from_memcg:
3216 objcg = NULL;
3217 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3218 /*
3219 * Memcg pointer is protected by scope (see set_active_memcg())
3220 * and is pinning the corresponding objcg, so objcg can't go
3221 * away and can be used within the scope without any additional
3222 * protection.
3223 */
3224 objcg = rcu_dereference_check(memcg->objcg, 1);
3225 if (likely(objcg))
3226 break;
3227 }
3228
3229 return objcg;
3230}
3231
3232struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3233{
3234 struct obj_cgroup *objcg;
3235
3236 if (!memcg_kmem_online())
3237 return NULL;
3238
3239 if (folio_memcg_kmem(folio)) {
3240 objcg = __folio_objcg(folio);
3241 obj_cgroup_get(objcg);
3242 } else {
3243 struct mem_cgroup *memcg;
3244
3245 rcu_read_lock();
3246 memcg = __folio_memcg(folio);
3247 if (memcg)
3248 objcg = __get_obj_cgroup_from_memcg(memcg);
3249 else
3250 objcg = NULL;
3251 rcu_read_unlock();
3252 }
3253 return objcg;
3254}
3255
3256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3257{
3258 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3259 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3260 if (nr_pages > 0)
3261 page_counter_charge(&memcg->kmem, nr_pages);
3262 else
3263 page_counter_uncharge(&memcg->kmem, -nr_pages);
3264 }
3265}
3266
3267
3268/*
3269 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3270 * @objcg: object cgroup to uncharge
3271 * @nr_pages: number of pages to uncharge
3272 */
3273static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3274 unsigned int nr_pages)
3275{
3276 struct mem_cgroup *memcg;
3277
3278 memcg = get_mem_cgroup_from_objcg(objcg);
3279
3280 memcg_account_kmem(memcg, -nr_pages);
3281 refill_stock(memcg, nr_pages);
3282
3283 css_put(&memcg->css);
3284}
3285
3286/*
3287 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3288 * @objcg: object cgroup to charge
3289 * @gfp: reclaim mode
3290 * @nr_pages: number of pages to charge
3291 *
3292 * Returns 0 on success, an error code on failure.
3293 */
3294static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3295 unsigned int nr_pages)
3296{
3297 struct mem_cgroup *memcg;
3298 int ret;
3299
3300 memcg = get_mem_cgroup_from_objcg(objcg);
3301
3302 ret = try_charge_memcg(memcg, gfp, nr_pages);
3303 if (ret)
3304 goto out;
3305
3306 memcg_account_kmem(memcg, nr_pages);
3307out:
3308 css_put(&memcg->css);
3309
3310 return ret;
3311}
3312
3313/**
3314 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3315 * @page: page to charge
3316 * @gfp: reclaim mode
3317 * @order: allocation order
3318 *
3319 * Returns 0 on success, an error code on failure.
3320 */
3321int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3322{
3323 struct obj_cgroup *objcg;
3324 int ret = 0;
3325
3326 objcg = current_obj_cgroup();
3327 if (objcg) {
3328 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3329 if (!ret) {
3330 obj_cgroup_get(objcg);
3331 page->memcg_data = (unsigned long)objcg |
3332 MEMCG_DATA_KMEM;
3333 return 0;
3334 }
3335 }
3336 return ret;
3337}
3338
3339/**
3340 * __memcg_kmem_uncharge_page: uncharge a kmem page
3341 * @page: page to uncharge
3342 * @order: allocation order
3343 */
3344void __memcg_kmem_uncharge_page(struct page *page, int order)
3345{
3346 struct folio *folio = page_folio(page);
3347 struct obj_cgroup *objcg;
3348 unsigned int nr_pages = 1 << order;
3349
3350 if (!folio_memcg_kmem(folio))
3351 return;
3352
3353 objcg = __folio_objcg(folio);
3354 obj_cgroup_uncharge_pages(objcg, nr_pages);
3355 folio->memcg_data = 0;
3356 obj_cgroup_put(objcg);
3357}
3358
3359void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3360 enum node_stat_item idx, int nr)
3361{
3362 struct memcg_stock_pcp *stock;
3363 struct obj_cgroup *old = NULL;
3364 unsigned long flags;
3365 int *bytes;
3366
3367 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368 stock = this_cpu_ptr(&memcg_stock);
3369
3370 /*
3371 * Save vmstat data in stock and skip vmstat array update unless
3372 * accumulating over a page of vmstat data or when pgdat or idx
3373 * changes.
3374 */
3375 if (READ_ONCE(stock->cached_objcg) != objcg) {
3376 old = drain_obj_stock(stock);
3377 obj_cgroup_get(objcg);
3378 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3379 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3380 WRITE_ONCE(stock->cached_objcg, objcg);
3381 stock->cached_pgdat = pgdat;
3382 } else if (stock->cached_pgdat != pgdat) {
3383 /* Flush the existing cached vmstat data */
3384 struct pglist_data *oldpg = stock->cached_pgdat;
3385
3386 if (stock->nr_slab_reclaimable_b) {
3387 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3388 stock->nr_slab_reclaimable_b);
3389 stock->nr_slab_reclaimable_b = 0;
3390 }
3391 if (stock->nr_slab_unreclaimable_b) {
3392 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3393 stock->nr_slab_unreclaimable_b);
3394 stock->nr_slab_unreclaimable_b = 0;
3395 }
3396 stock->cached_pgdat = pgdat;
3397 }
3398
3399 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3400 : &stock->nr_slab_unreclaimable_b;
3401 /*
3402 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3403 * cached locally at least once before pushing it out.
3404 */
3405 if (!*bytes) {
3406 *bytes = nr;
3407 nr = 0;
3408 } else {
3409 *bytes += nr;
3410 if (abs(*bytes) > PAGE_SIZE) {
3411 nr = *bytes;
3412 *bytes = 0;
3413 } else {
3414 nr = 0;
3415 }
3416 }
3417 if (nr)
3418 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3419
3420 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3421 if (old)
3422 obj_cgroup_put(old);
3423}
3424
3425static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3426{
3427 struct memcg_stock_pcp *stock;
3428 unsigned long flags;
3429 bool ret = false;
3430
3431 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3432
3433 stock = this_cpu_ptr(&memcg_stock);
3434 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3435 stock->nr_bytes -= nr_bytes;
3436 ret = true;
3437 }
3438
3439 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3440
3441 return ret;
3442}
3443
3444static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3445{
3446 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3447
3448 if (!old)
3449 return NULL;
3450
3451 if (stock->nr_bytes) {
3452 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3453 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3454
3455 if (nr_pages) {
3456 struct mem_cgroup *memcg;
3457
3458 memcg = get_mem_cgroup_from_objcg(old);
3459
3460 memcg_account_kmem(memcg, -nr_pages);
3461 __refill_stock(memcg, nr_pages);
3462
3463 css_put(&memcg->css);
3464 }
3465
3466 /*
3467 * The leftover is flushed to the centralized per-memcg value.
3468 * On the next attempt to refill obj stock it will be moved
3469 * to a per-cpu stock (probably, on an other CPU), see
3470 * refill_obj_stock().
3471 *
3472 * How often it's flushed is a trade-off between the memory
3473 * limit enforcement accuracy and potential CPU contention,
3474 * so it might be changed in the future.
3475 */
3476 atomic_add(nr_bytes, &old->nr_charged_bytes);
3477 stock->nr_bytes = 0;
3478 }
3479
3480 /*
3481 * Flush the vmstat data in current stock
3482 */
3483 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3484 if (stock->nr_slab_reclaimable_b) {
3485 mod_objcg_mlstate(old, stock->cached_pgdat,
3486 NR_SLAB_RECLAIMABLE_B,
3487 stock->nr_slab_reclaimable_b);
3488 stock->nr_slab_reclaimable_b = 0;
3489 }
3490 if (stock->nr_slab_unreclaimable_b) {
3491 mod_objcg_mlstate(old, stock->cached_pgdat,
3492 NR_SLAB_UNRECLAIMABLE_B,
3493 stock->nr_slab_unreclaimable_b);
3494 stock->nr_slab_unreclaimable_b = 0;
3495 }
3496 stock->cached_pgdat = NULL;
3497 }
3498
3499 WRITE_ONCE(stock->cached_objcg, NULL);
3500 /*
3501 * The `old' objects needs to be released by the caller via
3502 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3503 */
3504 return old;
3505}
3506
3507static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3508 struct mem_cgroup *root_memcg)
3509{
3510 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3511 struct mem_cgroup *memcg;
3512
3513 if (objcg) {
3514 memcg = obj_cgroup_memcg(objcg);
3515 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3516 return true;
3517 }
3518
3519 return false;
3520}
3521
3522static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3523 bool allow_uncharge)
3524{
3525 struct memcg_stock_pcp *stock;
3526 struct obj_cgroup *old = NULL;
3527 unsigned long flags;
3528 unsigned int nr_pages = 0;
3529
3530 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3531
3532 stock = this_cpu_ptr(&memcg_stock);
3533 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3534 old = drain_obj_stock(stock);
3535 obj_cgroup_get(objcg);
3536 WRITE_ONCE(stock->cached_objcg, objcg);
3537 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3538 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3539 allow_uncharge = true; /* Allow uncharge when objcg changes */
3540 }
3541 stock->nr_bytes += nr_bytes;
3542
3543 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3544 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3545 stock->nr_bytes &= (PAGE_SIZE - 1);
3546 }
3547
3548 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3549 if (old)
3550 obj_cgroup_put(old);
3551
3552 if (nr_pages)
3553 obj_cgroup_uncharge_pages(objcg, nr_pages);
3554}
3555
3556int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3557{
3558 unsigned int nr_pages, nr_bytes;
3559 int ret;
3560
3561 if (consume_obj_stock(objcg, size))
3562 return 0;
3563
3564 /*
3565 * In theory, objcg->nr_charged_bytes can have enough
3566 * pre-charged bytes to satisfy the allocation. However,
3567 * flushing objcg->nr_charged_bytes requires two atomic
3568 * operations, and objcg->nr_charged_bytes can't be big.
3569 * The shared objcg->nr_charged_bytes can also become a
3570 * performance bottleneck if all tasks of the same memcg are
3571 * trying to update it. So it's better to ignore it and try
3572 * grab some new pages. The stock's nr_bytes will be flushed to
3573 * objcg->nr_charged_bytes later on when objcg changes.
3574 *
3575 * The stock's nr_bytes may contain enough pre-charged bytes
3576 * to allow one less page from being charged, but we can't rely
3577 * on the pre-charged bytes not being changed outside of
3578 * consume_obj_stock() or refill_obj_stock(). So ignore those
3579 * pre-charged bytes as well when charging pages. To avoid a
3580 * page uncharge right after a page charge, we set the
3581 * allow_uncharge flag to false when calling refill_obj_stock()
3582 * to temporarily allow the pre-charged bytes to exceed the page
3583 * size limit. The maximum reachable value of the pre-charged
3584 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3585 * race.
3586 */
3587 nr_pages = size >> PAGE_SHIFT;
3588 nr_bytes = size & (PAGE_SIZE - 1);
3589
3590 if (nr_bytes)
3591 nr_pages += 1;
3592
3593 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3594 if (!ret && nr_bytes)
3595 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3596
3597 return ret;
3598}
3599
3600void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3601{
3602 refill_obj_stock(objcg, size, true);
3603}
3604
3605#endif /* CONFIG_MEMCG_KMEM */
3606
3607/*
3608 * Because page_memcg(head) is not set on tails, set it now.
3609 */
3610void split_page_memcg(struct page *head, int old_order, int new_order)
3611{
3612 struct folio *folio = page_folio(head);
3613 struct mem_cgroup *memcg = folio_memcg(folio);
3614 int i;
3615 unsigned int old_nr = 1 << old_order;
3616 unsigned int new_nr = 1 << new_order;
3617
3618 if (mem_cgroup_disabled() || !memcg)
3619 return;
3620
3621 for (i = new_nr; i < old_nr; i += new_nr)
3622 folio_page(folio, i)->memcg_data = folio->memcg_data;
3623
3624 if (folio_memcg_kmem(folio))
3625 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3626 else
3627 css_get_many(&memcg->css, old_nr / new_nr - 1);
3628}
3629
3630#ifdef CONFIG_SWAP
3631/**
3632 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3633 * @entry: swap entry to be moved
3634 * @from: mem_cgroup which the entry is moved from
3635 * @to: mem_cgroup which the entry is moved to
3636 *
3637 * It succeeds only when the swap_cgroup's record for this entry is the same
3638 * as the mem_cgroup's id of @from.
3639 *
3640 * Returns 0 on success, -EINVAL on failure.
3641 *
3642 * The caller must have charged to @to, IOW, called page_counter_charge() about
3643 * both res and memsw, and called css_get().
3644 */
3645static int mem_cgroup_move_swap_account(swp_entry_t entry,
3646 struct mem_cgroup *from, struct mem_cgroup *to)
3647{
3648 unsigned short old_id, new_id;
3649
3650 old_id = mem_cgroup_id(from);
3651 new_id = mem_cgroup_id(to);
3652
3653 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3654 mod_memcg_state(from, MEMCG_SWAP, -1);
3655 mod_memcg_state(to, MEMCG_SWAP, 1);
3656 return 0;
3657 }
3658 return -EINVAL;
3659}
3660#else
3661static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3662 struct mem_cgroup *from, struct mem_cgroup *to)
3663{
3664 return -EINVAL;
3665}
3666#endif
3667
3668static DEFINE_MUTEX(memcg_max_mutex);
3669
3670static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3671 unsigned long max, bool memsw)
3672{
3673 bool enlarge = false;
3674 bool drained = false;
3675 int ret;
3676 bool limits_invariant;
3677 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3678
3679 do {
3680 if (signal_pending(current)) {
3681 ret = -EINTR;
3682 break;
3683 }
3684
3685 mutex_lock(&memcg_max_mutex);
3686 /*
3687 * Make sure that the new limit (memsw or memory limit) doesn't
3688 * break our basic invariant rule memory.max <= memsw.max.
3689 */
3690 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3691 max <= memcg->memsw.max;
3692 if (!limits_invariant) {
3693 mutex_unlock(&memcg_max_mutex);
3694 ret = -EINVAL;
3695 break;
3696 }
3697 if (max > counter->max)
3698 enlarge = true;
3699 ret = page_counter_set_max(counter, max);
3700 mutex_unlock(&memcg_max_mutex);
3701
3702 if (!ret)
3703 break;
3704
3705 if (!drained) {
3706 drain_all_stock(memcg);
3707 drained = true;
3708 continue;
3709 }
3710
3711 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3712 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3713 ret = -EBUSY;
3714 break;
3715 }
3716 } while (true);
3717
3718 if (!ret && enlarge)
3719 memcg_oom_recover(memcg);
3720
3721 return ret;
3722}
3723
3724unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3725 gfp_t gfp_mask,
3726 unsigned long *total_scanned)
3727{
3728 unsigned long nr_reclaimed = 0;
3729 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3730 unsigned long reclaimed;
3731 int loop = 0;
3732 struct mem_cgroup_tree_per_node *mctz;
3733 unsigned long excess;
3734
3735 if (lru_gen_enabled())
3736 return 0;
3737
3738 if (order > 0)
3739 return 0;
3740
3741 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3742
3743 /*
3744 * Do not even bother to check the largest node if the root
3745 * is empty. Do it lockless to prevent lock bouncing. Races
3746 * are acceptable as soft limit is best effort anyway.
3747 */
3748 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3749 return 0;
3750
3751 /*
3752 * This loop can run a while, specially if mem_cgroup's continuously
3753 * keep exceeding their soft limit and putting the system under
3754 * pressure
3755 */
3756 do {
3757 if (next_mz)
3758 mz = next_mz;
3759 else
3760 mz = mem_cgroup_largest_soft_limit_node(mctz);
3761 if (!mz)
3762 break;
3763
3764 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3765 gfp_mask, total_scanned);
3766 nr_reclaimed += reclaimed;
3767 spin_lock_irq(&mctz->lock);
3768
3769 /*
3770 * If we failed to reclaim anything from this memory cgroup
3771 * it is time to move on to the next cgroup
3772 */
3773 next_mz = NULL;
3774 if (!reclaimed)
3775 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3776
3777 excess = soft_limit_excess(mz->memcg);
3778 /*
3779 * One school of thought says that we should not add
3780 * back the node to the tree if reclaim returns 0.
3781 * But our reclaim could return 0, simply because due
3782 * to priority we are exposing a smaller subset of
3783 * memory to reclaim from. Consider this as a longer
3784 * term TODO.
3785 */
3786 /* If excess == 0, no tree ops */
3787 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3788 spin_unlock_irq(&mctz->lock);
3789 css_put(&mz->memcg->css);
3790 loop++;
3791 /*
3792 * Could not reclaim anything and there are no more
3793 * mem cgroups to try or we seem to be looping without
3794 * reclaiming anything.
3795 */
3796 if (!nr_reclaimed &&
3797 (next_mz == NULL ||
3798 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3799 break;
3800 } while (!nr_reclaimed);
3801 if (next_mz)
3802 css_put(&next_mz->memcg->css);
3803 return nr_reclaimed;
3804}
3805
3806/*
3807 * Reclaims as many pages from the given memcg as possible.
3808 *
3809 * Caller is responsible for holding css reference for memcg.
3810 */
3811static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3812{
3813 int nr_retries = MAX_RECLAIM_RETRIES;
3814
3815 /* we call try-to-free pages for make this cgroup empty */
3816 lru_add_drain_all();
3817
3818 drain_all_stock(memcg);
3819
3820 /* try to free all pages in this cgroup */
3821 while (nr_retries && page_counter_read(&memcg->memory)) {
3822 if (signal_pending(current))
3823 return -EINTR;
3824
3825 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3826 MEMCG_RECLAIM_MAY_SWAP))
3827 nr_retries--;
3828 }
3829
3830 return 0;
3831}
3832
3833static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3834 char *buf, size_t nbytes,
3835 loff_t off)
3836{
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838
3839 if (mem_cgroup_is_root(memcg))
3840 return -EINVAL;
3841 return mem_cgroup_force_empty(memcg) ?: nbytes;
3842}
3843
3844static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3845 struct cftype *cft)
3846{
3847 return 1;
3848}
3849
3850static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3851 struct cftype *cft, u64 val)
3852{
3853 if (val == 1)
3854 return 0;
3855
3856 pr_warn_once("Non-hierarchical mode is deprecated. "
3857 "Please report your usecase to linux-mm@kvack.org if you "
3858 "depend on this functionality.\n");
3859
3860 return -EINVAL;
3861}
3862
3863static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864{
3865 unsigned long val;
3866
3867 if (mem_cgroup_is_root(memcg)) {
3868 /*
3869 * Approximate root's usage from global state. This isn't
3870 * perfect, but the root usage was always an approximation.
3871 */
3872 val = global_node_page_state(NR_FILE_PAGES) +
3873 global_node_page_state(NR_ANON_MAPPED);
3874 if (swap)
3875 val += total_swap_pages - get_nr_swap_pages();
3876 } else {
3877 if (!swap)
3878 val = page_counter_read(&memcg->memory);
3879 else
3880 val = page_counter_read(&memcg->memsw);
3881 }
3882 return val;
3883}
3884
3885enum {
3886 RES_USAGE,
3887 RES_LIMIT,
3888 RES_MAX_USAGE,
3889 RES_FAILCNT,
3890 RES_SOFT_LIMIT,
3891};
3892
3893static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3894 struct cftype *cft)
3895{
3896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 struct page_counter *counter;
3898
3899 switch (MEMFILE_TYPE(cft->private)) {
3900 case _MEM:
3901 counter = &memcg->memory;
3902 break;
3903 case _MEMSWAP:
3904 counter = &memcg->memsw;
3905 break;
3906 case _KMEM:
3907 counter = &memcg->kmem;
3908 break;
3909 case _TCP:
3910 counter = &memcg->tcpmem;
3911 break;
3912 default:
3913 BUG();
3914 }
3915
3916 switch (MEMFILE_ATTR(cft->private)) {
3917 case RES_USAGE:
3918 if (counter == &memcg->memory)
3919 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3920 if (counter == &memcg->memsw)
3921 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3922 return (u64)page_counter_read(counter) * PAGE_SIZE;
3923 case RES_LIMIT:
3924 return (u64)counter->max * PAGE_SIZE;
3925 case RES_MAX_USAGE:
3926 return (u64)counter->watermark * PAGE_SIZE;
3927 case RES_FAILCNT:
3928 return counter->failcnt;
3929 case RES_SOFT_LIMIT:
3930 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3931 default:
3932 BUG();
3933 }
3934}
3935
3936/*
3937 * This function doesn't do anything useful. Its only job is to provide a read
3938 * handler for a file so that cgroup_file_mode() will add read permissions.
3939 */
3940static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3941 __always_unused void *v)
3942{
3943 return -EINVAL;
3944}
3945
3946#ifdef CONFIG_MEMCG_KMEM
3947static int memcg_online_kmem(struct mem_cgroup *memcg)
3948{
3949 struct obj_cgroup *objcg;
3950
3951 if (mem_cgroup_kmem_disabled())
3952 return 0;
3953
3954 if (unlikely(mem_cgroup_is_root(memcg)))
3955 return 0;
3956
3957 objcg = obj_cgroup_alloc();
3958 if (!objcg)
3959 return -ENOMEM;
3960
3961 objcg->memcg = memcg;
3962 rcu_assign_pointer(memcg->objcg, objcg);
3963 obj_cgroup_get(objcg);
3964 memcg->orig_objcg = objcg;
3965
3966 static_branch_enable(&memcg_kmem_online_key);
3967
3968 memcg->kmemcg_id = memcg->id.id;
3969
3970 return 0;
3971}
3972
3973static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974{
3975 struct mem_cgroup *parent;
3976
3977 if (mem_cgroup_kmem_disabled())
3978 return;
3979
3980 if (unlikely(mem_cgroup_is_root(memcg)))
3981 return;
3982
3983 parent = parent_mem_cgroup(memcg);
3984 if (!parent)
3985 parent = root_mem_cgroup;
3986
3987 memcg_reparent_objcgs(memcg, parent);
3988
3989 /*
3990 * After we have finished memcg_reparent_objcgs(), all list_lrus
3991 * corresponding to this cgroup are guaranteed to remain empty.
3992 * The ordering is imposed by list_lru_node->lock taken by
3993 * memcg_reparent_list_lrus().
3994 */
3995 memcg_reparent_list_lrus(memcg, parent);
3996}
3997#else
3998static int memcg_online_kmem(struct mem_cgroup *memcg)
3999{
4000 return 0;
4001}
4002static void memcg_offline_kmem(struct mem_cgroup *memcg)
4003{
4004}
4005#endif /* CONFIG_MEMCG_KMEM */
4006
4007static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4008{
4009 int ret;
4010
4011 mutex_lock(&memcg_max_mutex);
4012
4013 ret = page_counter_set_max(&memcg->tcpmem, max);
4014 if (ret)
4015 goto out;
4016
4017 if (!memcg->tcpmem_active) {
4018 /*
4019 * The active flag needs to be written after the static_key
4020 * update. This is what guarantees that the socket activation
4021 * function is the last one to run. See mem_cgroup_sk_alloc()
4022 * for details, and note that we don't mark any socket as
4023 * belonging to this memcg until that flag is up.
4024 *
4025 * We need to do this, because static_keys will span multiple
4026 * sites, but we can't control their order. If we mark a socket
4027 * as accounted, but the accounting functions are not patched in
4028 * yet, we'll lose accounting.
4029 *
4030 * We never race with the readers in mem_cgroup_sk_alloc(),
4031 * because when this value change, the code to process it is not
4032 * patched in yet.
4033 */
4034 static_branch_inc(&memcg_sockets_enabled_key);
4035 memcg->tcpmem_active = true;
4036 }
4037out:
4038 mutex_unlock(&memcg_max_mutex);
4039 return ret;
4040}
4041
4042/*
4043 * The user of this function is...
4044 * RES_LIMIT.
4045 */
4046static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4047 char *buf, size_t nbytes, loff_t off)
4048{
4049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050 unsigned long nr_pages;
4051 int ret;
4052
4053 buf = strstrip(buf);
4054 ret = page_counter_memparse(buf, "-1", &nr_pages);
4055 if (ret)
4056 return ret;
4057
4058 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4059 case RES_LIMIT:
4060 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4061 ret = -EINVAL;
4062 break;
4063 }
4064 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4065 case _MEM:
4066 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4067 break;
4068 case _MEMSWAP:
4069 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4070 break;
4071 case _KMEM:
4072 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4073 "Writing any value to this file has no effect. "
4074 "Please report your usecase to linux-mm@kvack.org if you "
4075 "depend on this functionality.\n");
4076 ret = 0;
4077 break;
4078 case _TCP:
4079 ret = memcg_update_tcp_max(memcg, nr_pages);
4080 break;
4081 }
4082 break;
4083 case RES_SOFT_LIMIT:
4084 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4085 ret = -EOPNOTSUPP;
4086 } else {
4087 WRITE_ONCE(memcg->soft_limit, nr_pages);
4088 ret = 0;
4089 }
4090 break;
4091 }
4092 return ret ?: nbytes;
4093}
4094
4095static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4096 size_t nbytes, loff_t off)
4097{
4098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4099 struct page_counter *counter;
4100
4101 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4102 case _MEM:
4103 counter = &memcg->memory;
4104 break;
4105 case _MEMSWAP:
4106 counter = &memcg->memsw;
4107 break;
4108 case _KMEM:
4109 counter = &memcg->kmem;
4110 break;
4111 case _TCP:
4112 counter = &memcg->tcpmem;
4113 break;
4114 default:
4115 BUG();
4116 }
4117
4118 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4119 case RES_MAX_USAGE:
4120 page_counter_reset_watermark(counter);
4121 break;
4122 case RES_FAILCNT:
4123 counter->failcnt = 0;
4124 break;
4125 default:
4126 BUG();
4127 }
4128
4129 return nbytes;
4130}
4131
4132static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4133 struct cftype *cft)
4134{
4135 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4136}
4137
4138#ifdef CONFIG_MMU
4139static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4140 struct cftype *cft, u64 val)
4141{
4142 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143
4144 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4145 "Please report your usecase to linux-mm@kvack.org if you "
4146 "depend on this functionality.\n");
4147
4148 if (val & ~MOVE_MASK)
4149 return -EINVAL;
4150
4151 /*
4152 * No kind of locking is needed in here, because ->can_attach() will
4153 * check this value once in the beginning of the process, and then carry
4154 * on with stale data. This means that changes to this value will only
4155 * affect task migrations starting after the change.
4156 */
4157 memcg->move_charge_at_immigrate = val;
4158 return 0;
4159}
4160#else
4161static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
4163{
4164 return -ENOSYS;
4165}
4166#endif
4167
4168#ifdef CONFIG_NUMA
4169
4170#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4171#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4172#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4173
4174static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4175 int nid, unsigned int lru_mask, bool tree)
4176{
4177 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4178 unsigned long nr = 0;
4179 enum lru_list lru;
4180
4181 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4182
4183 for_each_lru(lru) {
4184 if (!(BIT(lru) & lru_mask))
4185 continue;
4186 if (tree)
4187 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4188 else
4189 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4190 }
4191 return nr;
4192}
4193
4194static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4195 unsigned int lru_mask,
4196 bool tree)
4197{
4198 unsigned long nr = 0;
4199 enum lru_list lru;
4200
4201 for_each_lru(lru) {
4202 if (!(BIT(lru) & lru_mask))
4203 continue;
4204 if (tree)
4205 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4206 else
4207 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4208 }
4209 return nr;
4210}
4211
4212static int memcg_numa_stat_show(struct seq_file *m, void *v)
4213{
4214 struct numa_stat {
4215 const char *name;
4216 unsigned int lru_mask;
4217 };
4218
4219 static const struct numa_stat stats[] = {
4220 { "total", LRU_ALL },
4221 { "file", LRU_ALL_FILE },
4222 { "anon", LRU_ALL_ANON },
4223 { "unevictable", BIT(LRU_UNEVICTABLE) },
4224 };
4225 const struct numa_stat *stat;
4226 int nid;
4227 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4228
4229 mem_cgroup_flush_stats(memcg);
4230
4231 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4232 seq_printf(m, "%s=%lu", stat->name,
4233 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4234 false));
4235 for_each_node_state(nid, N_MEMORY)
4236 seq_printf(m, " N%d=%lu", nid,
4237 mem_cgroup_node_nr_lru_pages(memcg, nid,
4238 stat->lru_mask, false));
4239 seq_putc(m, '\n');
4240 }
4241
4242 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4243
4244 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4245 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4246 true));
4247 for_each_node_state(nid, N_MEMORY)
4248 seq_printf(m, " N%d=%lu", nid,
4249 mem_cgroup_node_nr_lru_pages(memcg, nid,
4250 stat->lru_mask, true));
4251 seq_putc(m, '\n');
4252 }
4253
4254 return 0;
4255}
4256#endif /* CONFIG_NUMA */
4257
4258static const unsigned int memcg1_stats[] = {
4259 NR_FILE_PAGES,
4260 NR_ANON_MAPPED,
4261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 NR_ANON_THPS,
4263#endif
4264 NR_SHMEM,
4265 NR_FILE_MAPPED,
4266 NR_FILE_DIRTY,
4267 NR_WRITEBACK,
4268 WORKINGSET_REFAULT_ANON,
4269 WORKINGSET_REFAULT_FILE,
4270#ifdef CONFIG_SWAP
4271 MEMCG_SWAP,
4272 NR_SWAPCACHE,
4273#endif
4274};
4275
4276static const char *const memcg1_stat_names[] = {
4277 "cache",
4278 "rss",
4279#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280 "rss_huge",
4281#endif
4282 "shmem",
4283 "mapped_file",
4284 "dirty",
4285 "writeback",
4286 "workingset_refault_anon",
4287 "workingset_refault_file",
4288#ifdef CONFIG_SWAP
4289 "swap",
4290 "swapcached",
4291#endif
4292};
4293
4294/* Universal VM events cgroup1 shows, original sort order */
4295static const unsigned int memcg1_events[] = {
4296 PGPGIN,
4297 PGPGOUT,
4298 PGFAULT,
4299 PGMAJFAULT,
4300};
4301
4302static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4303{
4304 unsigned long memory, memsw;
4305 struct mem_cgroup *mi;
4306 unsigned int i;
4307
4308 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4309
4310 mem_cgroup_flush_stats(memcg);
4311
4312 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313 unsigned long nr;
4314
4315 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4316 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4317 }
4318
4319 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4320 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4321 memcg_events_local(memcg, memcg1_events[i]));
4322
4323 for (i = 0; i < NR_LRU_LISTS; i++)
4324 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4325 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4326 PAGE_SIZE);
4327
4328 /* Hierarchical information */
4329 memory = memsw = PAGE_COUNTER_MAX;
4330 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4331 memory = min(memory, READ_ONCE(mi->memory.max));
4332 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4333 }
4334 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4335 (u64)memory * PAGE_SIZE);
4336 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4337 (u64)memsw * PAGE_SIZE);
4338
4339 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4340 unsigned long nr;
4341
4342 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4343 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4344 (u64)nr);
4345 }
4346
4347 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4348 seq_buf_printf(s, "total_%s %llu\n",
4349 vm_event_name(memcg1_events[i]),
4350 (u64)memcg_events(memcg, memcg1_events[i]));
4351
4352 for (i = 0; i < NR_LRU_LISTS; i++)
4353 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4354 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4355 PAGE_SIZE);
4356
4357#ifdef CONFIG_DEBUG_VM
4358 {
4359 pg_data_t *pgdat;
4360 struct mem_cgroup_per_node *mz;
4361 unsigned long anon_cost = 0;
4362 unsigned long file_cost = 0;
4363
4364 for_each_online_pgdat(pgdat) {
4365 mz = memcg->nodeinfo[pgdat->node_id];
4366
4367 anon_cost += mz->lruvec.anon_cost;
4368 file_cost += mz->lruvec.file_cost;
4369 }
4370 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4371 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4372 }
4373#endif
4374}
4375
4376static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4377 struct cftype *cft)
4378{
4379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380
4381 return mem_cgroup_swappiness(memcg);
4382}
4383
4384static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4385 struct cftype *cft, u64 val)
4386{
4387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389 if (val > 200)
4390 return -EINVAL;
4391
4392 if (!mem_cgroup_is_root(memcg))
4393 WRITE_ONCE(memcg->swappiness, val);
4394 else
4395 WRITE_ONCE(vm_swappiness, val);
4396
4397 return 0;
4398}
4399
4400static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4401{
4402 struct mem_cgroup_threshold_ary *t;
4403 unsigned long usage;
4404 int i;
4405
4406 rcu_read_lock();
4407 if (!swap)
4408 t = rcu_dereference(memcg->thresholds.primary);
4409 else
4410 t = rcu_dereference(memcg->memsw_thresholds.primary);
4411
4412 if (!t)
4413 goto unlock;
4414
4415 usage = mem_cgroup_usage(memcg, swap);
4416
4417 /*
4418 * current_threshold points to threshold just below or equal to usage.
4419 * If it's not true, a threshold was crossed after last
4420 * call of __mem_cgroup_threshold().
4421 */
4422 i = t->current_threshold;
4423
4424 /*
4425 * Iterate backward over array of thresholds starting from
4426 * current_threshold and check if a threshold is crossed.
4427 * If none of thresholds below usage is crossed, we read
4428 * only one element of the array here.
4429 */
4430 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4431 eventfd_signal(t->entries[i].eventfd);
4432
4433 /* i = current_threshold + 1 */
4434 i++;
4435
4436 /*
4437 * Iterate forward over array of thresholds starting from
4438 * current_threshold+1 and check if a threshold is crossed.
4439 * If none of thresholds above usage is crossed, we read
4440 * only one element of the array here.
4441 */
4442 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4443 eventfd_signal(t->entries[i].eventfd);
4444
4445 /* Update current_threshold */
4446 t->current_threshold = i - 1;
4447unlock:
4448 rcu_read_unlock();
4449}
4450
4451static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4452{
4453 while (memcg) {
4454 __mem_cgroup_threshold(memcg, false);
4455 if (do_memsw_account())
4456 __mem_cgroup_threshold(memcg, true);
4457
4458 memcg = parent_mem_cgroup(memcg);
4459 }
4460}
4461
4462static int compare_thresholds(const void *a, const void *b)
4463{
4464 const struct mem_cgroup_threshold *_a = a;
4465 const struct mem_cgroup_threshold *_b = b;
4466
4467 if (_a->threshold > _b->threshold)
4468 return 1;
4469
4470 if (_a->threshold < _b->threshold)
4471 return -1;
4472
4473 return 0;
4474}
4475
4476static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4477{
4478 struct mem_cgroup_eventfd_list *ev;
4479
4480 spin_lock(&memcg_oom_lock);
4481
4482 list_for_each_entry(ev, &memcg->oom_notify, list)
4483 eventfd_signal(ev->eventfd);
4484
4485 spin_unlock(&memcg_oom_lock);
4486 return 0;
4487}
4488
4489static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4490{
4491 struct mem_cgroup *iter;
4492
4493 for_each_mem_cgroup_tree(iter, memcg)
4494 mem_cgroup_oom_notify_cb(iter);
4495}
4496
4497static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4498 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4499{
4500 struct mem_cgroup_thresholds *thresholds;
4501 struct mem_cgroup_threshold_ary *new;
4502 unsigned long threshold;
4503 unsigned long usage;
4504 int i, size, ret;
4505
4506 ret = page_counter_memparse(args, "-1", &threshold);
4507 if (ret)
4508 return ret;
4509
4510 mutex_lock(&memcg->thresholds_lock);
4511
4512 if (type == _MEM) {
4513 thresholds = &memcg->thresholds;
4514 usage = mem_cgroup_usage(memcg, false);
4515 } else if (type == _MEMSWAP) {
4516 thresholds = &memcg->memsw_thresholds;
4517 usage = mem_cgroup_usage(memcg, true);
4518 } else
4519 BUG();
4520
4521 /* Check if a threshold crossed before adding a new one */
4522 if (thresholds->primary)
4523 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4524
4525 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4526
4527 /* Allocate memory for new array of thresholds */
4528 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4529 if (!new) {
4530 ret = -ENOMEM;
4531 goto unlock;
4532 }
4533 new->size = size;
4534
4535 /* Copy thresholds (if any) to new array */
4536 if (thresholds->primary)
4537 memcpy(new->entries, thresholds->primary->entries,
4538 flex_array_size(new, entries, size - 1));
4539
4540 /* Add new threshold */
4541 new->entries[size - 1].eventfd = eventfd;
4542 new->entries[size - 1].threshold = threshold;
4543
4544 /* Sort thresholds. Registering of new threshold isn't time-critical */
4545 sort(new->entries, size, sizeof(*new->entries),
4546 compare_thresholds, NULL);
4547
4548 /* Find current threshold */
4549 new->current_threshold = -1;
4550 for (i = 0; i < size; i++) {
4551 if (new->entries[i].threshold <= usage) {
4552 /*
4553 * new->current_threshold will not be used until
4554 * rcu_assign_pointer(), so it's safe to increment
4555 * it here.
4556 */
4557 ++new->current_threshold;
4558 } else
4559 break;
4560 }
4561
4562 /* Free old spare buffer and save old primary buffer as spare */
4563 kfree(thresholds->spare);
4564 thresholds->spare = thresholds->primary;
4565
4566 rcu_assign_pointer(thresholds->primary, new);
4567
4568 /* To be sure that nobody uses thresholds */
4569 synchronize_rcu();
4570
4571unlock:
4572 mutex_unlock(&memcg->thresholds_lock);
4573
4574 return ret;
4575}
4576
4577static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4578 struct eventfd_ctx *eventfd, const char *args)
4579{
4580 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4581}
4582
4583static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4584 struct eventfd_ctx *eventfd, const char *args)
4585{
4586 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4587}
4588
4589static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4590 struct eventfd_ctx *eventfd, enum res_type type)
4591{
4592 struct mem_cgroup_thresholds *thresholds;
4593 struct mem_cgroup_threshold_ary *new;
4594 unsigned long usage;
4595 int i, j, size, entries;
4596
4597 mutex_lock(&memcg->thresholds_lock);
4598
4599 if (type == _MEM) {
4600 thresholds = &memcg->thresholds;
4601 usage = mem_cgroup_usage(memcg, false);
4602 } else if (type == _MEMSWAP) {
4603 thresholds = &memcg->memsw_thresholds;
4604 usage = mem_cgroup_usage(memcg, true);
4605 } else
4606 BUG();
4607
4608 if (!thresholds->primary)
4609 goto unlock;
4610
4611 /* Check if a threshold crossed before removing */
4612 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613
4614 /* Calculate new number of threshold */
4615 size = entries = 0;
4616 for (i = 0; i < thresholds->primary->size; i++) {
4617 if (thresholds->primary->entries[i].eventfd != eventfd)
4618 size++;
4619 else
4620 entries++;
4621 }
4622
4623 new = thresholds->spare;
4624
4625 /* If no items related to eventfd have been cleared, nothing to do */
4626 if (!entries)
4627 goto unlock;
4628
4629 /* Set thresholds array to NULL if we don't have thresholds */
4630 if (!size) {
4631 kfree(new);
4632 new = NULL;
4633 goto swap_buffers;
4634 }
4635
4636 new->size = size;
4637
4638 /* Copy thresholds and find current threshold */
4639 new->current_threshold = -1;
4640 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4641 if (thresholds->primary->entries[i].eventfd == eventfd)
4642 continue;
4643
4644 new->entries[j] = thresholds->primary->entries[i];
4645 if (new->entries[j].threshold <= usage) {
4646 /*
4647 * new->current_threshold will not be used
4648 * until rcu_assign_pointer(), so it's safe to increment
4649 * it here.
4650 */
4651 ++new->current_threshold;
4652 }
4653 j++;
4654 }
4655
4656swap_buffers:
4657 /* Swap primary and spare array */
4658 thresholds->spare = thresholds->primary;
4659
4660 rcu_assign_pointer(thresholds->primary, new);
4661
4662 /* To be sure that nobody uses thresholds */
4663 synchronize_rcu();
4664
4665 /* If all events are unregistered, free the spare array */
4666 if (!new) {
4667 kfree(thresholds->spare);
4668 thresholds->spare = NULL;
4669 }
4670unlock:
4671 mutex_unlock(&memcg->thresholds_lock);
4672}
4673
4674static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4675 struct eventfd_ctx *eventfd)
4676{
4677 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4678}
4679
4680static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4681 struct eventfd_ctx *eventfd)
4682{
4683 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4684}
4685
4686static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4687 struct eventfd_ctx *eventfd, const char *args)
4688{
4689 struct mem_cgroup_eventfd_list *event;
4690
4691 event = kmalloc(sizeof(*event), GFP_KERNEL);
4692 if (!event)
4693 return -ENOMEM;
4694
4695 spin_lock(&memcg_oom_lock);
4696
4697 event->eventfd = eventfd;
4698 list_add(&event->list, &memcg->oom_notify);
4699
4700 /* already in OOM ? */
4701 if (memcg->under_oom)
4702 eventfd_signal(eventfd);
4703 spin_unlock(&memcg_oom_lock);
4704
4705 return 0;
4706}
4707
4708static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4709 struct eventfd_ctx *eventfd)
4710{
4711 struct mem_cgroup_eventfd_list *ev, *tmp;
4712
4713 spin_lock(&memcg_oom_lock);
4714
4715 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4716 if (ev->eventfd == eventfd) {
4717 list_del(&ev->list);
4718 kfree(ev);
4719 }
4720 }
4721
4722 spin_unlock(&memcg_oom_lock);
4723}
4724
4725static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4726{
4727 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4728
4729 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4730 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4731 seq_printf(sf, "oom_kill %lu\n",
4732 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4733 return 0;
4734}
4735
4736static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4737 struct cftype *cft, u64 val)
4738{
4739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740
4741 /* cannot set to root cgroup and only 0 and 1 are allowed */
4742 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4743 return -EINVAL;
4744
4745 WRITE_ONCE(memcg->oom_kill_disable, val);
4746 if (!val)
4747 memcg_oom_recover(memcg);
4748
4749 return 0;
4750}
4751
4752#ifdef CONFIG_CGROUP_WRITEBACK
4753
4754#include <trace/events/writeback.h>
4755
4756static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4757{
4758 return wb_domain_init(&memcg->cgwb_domain, gfp);
4759}
4760
4761static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4762{
4763 wb_domain_exit(&memcg->cgwb_domain);
4764}
4765
4766static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4767{
4768 wb_domain_size_changed(&memcg->cgwb_domain);
4769}
4770
4771struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4772{
4773 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774
4775 if (!memcg->css.parent)
4776 return NULL;
4777
4778 return &memcg->cgwb_domain;
4779}
4780
4781/**
4782 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4783 * @wb: bdi_writeback in question
4784 * @pfilepages: out parameter for number of file pages
4785 * @pheadroom: out parameter for number of allocatable pages according to memcg
4786 * @pdirty: out parameter for number of dirty pages
4787 * @pwriteback: out parameter for number of pages under writeback
4788 *
4789 * Determine the numbers of file, headroom, dirty, and writeback pages in
4790 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4791 * is a bit more involved.
4792 *
4793 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4794 * headroom is calculated as the lowest headroom of itself and the
4795 * ancestors. Note that this doesn't consider the actual amount of
4796 * available memory in the system. The caller should further cap
4797 * *@pheadroom accordingly.
4798 */
4799void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4800 unsigned long *pheadroom, unsigned long *pdirty,
4801 unsigned long *pwriteback)
4802{
4803 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4804 struct mem_cgroup *parent;
4805
4806 mem_cgroup_flush_stats_ratelimited(memcg);
4807
4808 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4809 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4810 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4811 memcg_page_state(memcg, NR_ACTIVE_FILE);
4812
4813 *pheadroom = PAGE_COUNTER_MAX;
4814 while ((parent = parent_mem_cgroup(memcg))) {
4815 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4816 READ_ONCE(memcg->memory.high));
4817 unsigned long used = page_counter_read(&memcg->memory);
4818
4819 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4820 memcg = parent;
4821 }
4822}
4823
4824/*
4825 * Foreign dirty flushing
4826 *
4827 * There's an inherent mismatch between memcg and writeback. The former
4828 * tracks ownership per-page while the latter per-inode. This was a
4829 * deliberate design decision because honoring per-page ownership in the
4830 * writeback path is complicated, may lead to higher CPU and IO overheads
4831 * and deemed unnecessary given that write-sharing an inode across
4832 * different cgroups isn't a common use-case.
4833 *
4834 * Combined with inode majority-writer ownership switching, this works well
4835 * enough in most cases but there are some pathological cases. For
4836 * example, let's say there are two cgroups A and B which keep writing to
4837 * different but confined parts of the same inode. B owns the inode and
4838 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4839 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4840 * triggering background writeback. A will be slowed down without a way to
4841 * make writeback of the dirty pages happen.
4842 *
4843 * Conditions like the above can lead to a cgroup getting repeatedly and
4844 * severely throttled after making some progress after each
4845 * dirty_expire_interval while the underlying IO device is almost
4846 * completely idle.
4847 *
4848 * Solving this problem completely requires matching the ownership tracking
4849 * granularities between memcg and writeback in either direction. However,
4850 * the more egregious behaviors can be avoided by simply remembering the
4851 * most recent foreign dirtying events and initiating remote flushes on
4852 * them when local writeback isn't enough to keep the memory clean enough.
4853 *
4854 * The following two functions implement such mechanism. When a foreign
4855 * page - a page whose memcg and writeback ownerships don't match - is
4856 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4857 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4858 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4859 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4860 * foreign bdi_writebacks which haven't expired. Both the numbers of
4861 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4862 * limited to MEMCG_CGWB_FRN_CNT.
4863 *
4864 * The mechanism only remembers IDs and doesn't hold any object references.
4865 * As being wrong occasionally doesn't matter, updates and accesses to the
4866 * records are lockless and racy.
4867 */
4868void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4869 struct bdi_writeback *wb)
4870{
4871 struct mem_cgroup *memcg = folio_memcg(folio);
4872 struct memcg_cgwb_frn *frn;
4873 u64 now = get_jiffies_64();
4874 u64 oldest_at = now;
4875 int oldest = -1;
4876 int i;
4877
4878 trace_track_foreign_dirty(folio, wb);
4879
4880 /*
4881 * Pick the slot to use. If there is already a slot for @wb, keep
4882 * using it. If not replace the oldest one which isn't being
4883 * written out.
4884 */
4885 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4886 frn = &memcg->cgwb_frn[i];
4887 if (frn->bdi_id == wb->bdi->id &&
4888 frn->memcg_id == wb->memcg_css->id)
4889 break;
4890 if (time_before64(frn->at, oldest_at) &&
4891 atomic_read(&frn->done.cnt) == 1) {
4892 oldest = i;
4893 oldest_at = frn->at;
4894 }
4895 }
4896
4897 if (i < MEMCG_CGWB_FRN_CNT) {
4898 /*
4899 * Re-using an existing one. Update timestamp lazily to
4900 * avoid making the cacheline hot. We want them to be
4901 * reasonably up-to-date and significantly shorter than
4902 * dirty_expire_interval as that's what expires the record.
4903 * Use the shorter of 1s and dirty_expire_interval / 8.
4904 */
4905 unsigned long update_intv =
4906 min_t(unsigned long, HZ,
4907 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4908
4909 if (time_before64(frn->at, now - update_intv))
4910 frn->at = now;
4911 } else if (oldest >= 0) {
4912 /* replace the oldest free one */
4913 frn = &memcg->cgwb_frn[oldest];
4914 frn->bdi_id = wb->bdi->id;
4915 frn->memcg_id = wb->memcg_css->id;
4916 frn->at = now;
4917 }
4918}
4919
4920/* issue foreign writeback flushes for recorded foreign dirtying events */
4921void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4922{
4923 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4924 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4925 u64 now = jiffies_64;
4926 int i;
4927
4928 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4929 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4930
4931 /*
4932 * If the record is older than dirty_expire_interval,
4933 * writeback on it has already started. No need to kick it
4934 * off again. Also, don't start a new one if there's
4935 * already one in flight.
4936 */
4937 if (time_after64(frn->at, now - intv) &&
4938 atomic_read(&frn->done.cnt) == 1) {
4939 frn->at = 0;
4940 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4941 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4942 WB_REASON_FOREIGN_FLUSH,
4943 &frn->done);
4944 }
4945 }
4946}
4947
4948#else /* CONFIG_CGROUP_WRITEBACK */
4949
4950static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4951{
4952 return 0;
4953}
4954
4955static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4956{
4957}
4958
4959static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4960{
4961}
4962
4963#endif /* CONFIG_CGROUP_WRITEBACK */
4964
4965/*
4966 * DO NOT USE IN NEW FILES.
4967 *
4968 * "cgroup.event_control" implementation.
4969 *
4970 * This is way over-engineered. It tries to support fully configurable
4971 * events for each user. Such level of flexibility is completely
4972 * unnecessary especially in the light of the planned unified hierarchy.
4973 *
4974 * Please deprecate this and replace with something simpler if at all
4975 * possible.
4976 */
4977
4978/*
4979 * Unregister event and free resources.
4980 *
4981 * Gets called from workqueue.
4982 */
4983static void memcg_event_remove(struct work_struct *work)
4984{
4985 struct mem_cgroup_event *event =
4986 container_of(work, struct mem_cgroup_event, remove);
4987 struct mem_cgroup *memcg = event->memcg;
4988
4989 remove_wait_queue(event->wqh, &event->wait);
4990
4991 event->unregister_event(memcg, event->eventfd);
4992
4993 /* Notify userspace the event is going away. */
4994 eventfd_signal(event->eventfd);
4995
4996 eventfd_ctx_put(event->eventfd);
4997 kfree(event);
4998 css_put(&memcg->css);
4999}
5000
5001/*
5002 * Gets called on EPOLLHUP on eventfd when user closes it.
5003 *
5004 * Called with wqh->lock held and interrupts disabled.
5005 */
5006static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5007 int sync, void *key)
5008{
5009 struct mem_cgroup_event *event =
5010 container_of(wait, struct mem_cgroup_event, wait);
5011 struct mem_cgroup *memcg = event->memcg;
5012 __poll_t flags = key_to_poll(key);
5013
5014 if (flags & EPOLLHUP) {
5015 /*
5016 * If the event has been detached at cgroup removal, we
5017 * can simply return knowing the other side will cleanup
5018 * for us.
5019 *
5020 * We can't race against event freeing since the other
5021 * side will require wqh->lock via remove_wait_queue(),
5022 * which we hold.
5023 */
5024 spin_lock(&memcg->event_list_lock);
5025 if (!list_empty(&event->list)) {
5026 list_del_init(&event->list);
5027 /*
5028 * We are in atomic context, but cgroup_event_remove()
5029 * may sleep, so we have to call it in workqueue.
5030 */
5031 schedule_work(&event->remove);
5032 }
5033 spin_unlock(&memcg->event_list_lock);
5034 }
5035
5036 return 0;
5037}
5038
5039static void memcg_event_ptable_queue_proc(struct file *file,
5040 wait_queue_head_t *wqh, poll_table *pt)
5041{
5042 struct mem_cgroup_event *event =
5043 container_of(pt, struct mem_cgroup_event, pt);
5044
5045 event->wqh = wqh;
5046 add_wait_queue(wqh, &event->wait);
5047}
5048
5049/*
5050 * DO NOT USE IN NEW FILES.
5051 *
5052 * Parse input and register new cgroup event handler.
5053 *
5054 * Input must be in format '<event_fd> <control_fd> <args>'.
5055 * Interpretation of args is defined by control file implementation.
5056 */
5057static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5058 char *buf, size_t nbytes, loff_t off)
5059{
5060 struct cgroup_subsys_state *css = of_css(of);
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5062 struct mem_cgroup_event *event;
5063 struct cgroup_subsys_state *cfile_css;
5064 unsigned int efd, cfd;
5065 struct fd efile;
5066 struct fd cfile;
5067 struct dentry *cdentry;
5068 const char *name;
5069 char *endp;
5070 int ret;
5071
5072 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5073 return -EOPNOTSUPP;
5074
5075 buf = strstrip(buf);
5076
5077 efd = simple_strtoul(buf, &endp, 10);
5078 if (*endp != ' ')
5079 return -EINVAL;
5080 buf = endp + 1;
5081
5082 cfd = simple_strtoul(buf, &endp, 10);
5083 if ((*endp != ' ') && (*endp != '\0'))
5084 return -EINVAL;
5085 buf = endp + 1;
5086
5087 event = kzalloc(sizeof(*event), GFP_KERNEL);
5088 if (!event)
5089 return -ENOMEM;
5090
5091 event->memcg = memcg;
5092 INIT_LIST_HEAD(&event->list);
5093 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5094 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5095 INIT_WORK(&event->remove, memcg_event_remove);
5096
5097 efile = fdget(efd);
5098 if (!efile.file) {
5099 ret = -EBADF;
5100 goto out_kfree;
5101 }
5102
5103 event->eventfd = eventfd_ctx_fileget(efile.file);
5104 if (IS_ERR(event->eventfd)) {
5105 ret = PTR_ERR(event->eventfd);
5106 goto out_put_efile;
5107 }
5108
5109 cfile = fdget(cfd);
5110 if (!cfile.file) {
5111 ret = -EBADF;
5112 goto out_put_eventfd;
5113 }
5114
5115 /* the process need read permission on control file */
5116 /* AV: shouldn't we check that it's been opened for read instead? */
5117 ret = file_permission(cfile.file, MAY_READ);
5118 if (ret < 0)
5119 goto out_put_cfile;
5120
5121 /*
5122 * The control file must be a regular cgroup1 file. As a regular cgroup
5123 * file can't be renamed, it's safe to access its name afterwards.
5124 */
5125 cdentry = cfile.file->f_path.dentry;
5126 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5127 ret = -EINVAL;
5128 goto out_put_cfile;
5129 }
5130
5131 /*
5132 * Determine the event callbacks and set them in @event. This used
5133 * to be done via struct cftype but cgroup core no longer knows
5134 * about these events. The following is crude but the whole thing
5135 * is for compatibility anyway.
5136 *
5137 * DO NOT ADD NEW FILES.
5138 */
5139 name = cdentry->d_name.name;
5140
5141 if (!strcmp(name, "memory.usage_in_bytes")) {
5142 event->register_event = mem_cgroup_usage_register_event;
5143 event->unregister_event = mem_cgroup_usage_unregister_event;
5144 } else if (!strcmp(name, "memory.oom_control")) {
5145 event->register_event = mem_cgroup_oom_register_event;
5146 event->unregister_event = mem_cgroup_oom_unregister_event;
5147 } else if (!strcmp(name, "memory.pressure_level")) {
5148 event->register_event = vmpressure_register_event;
5149 event->unregister_event = vmpressure_unregister_event;
5150 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5151 event->register_event = memsw_cgroup_usage_register_event;
5152 event->unregister_event = memsw_cgroup_usage_unregister_event;
5153 } else {
5154 ret = -EINVAL;
5155 goto out_put_cfile;
5156 }
5157
5158 /*
5159 * Verify @cfile should belong to @css. Also, remaining events are
5160 * automatically removed on cgroup destruction but the removal is
5161 * asynchronous, so take an extra ref on @css.
5162 */
5163 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5164 &memory_cgrp_subsys);
5165 ret = -EINVAL;
5166 if (IS_ERR(cfile_css))
5167 goto out_put_cfile;
5168 if (cfile_css != css) {
5169 css_put(cfile_css);
5170 goto out_put_cfile;
5171 }
5172
5173 ret = event->register_event(memcg, event->eventfd, buf);
5174 if (ret)
5175 goto out_put_css;
5176
5177 vfs_poll(efile.file, &event->pt);
5178
5179 spin_lock_irq(&memcg->event_list_lock);
5180 list_add(&event->list, &memcg->event_list);
5181 spin_unlock_irq(&memcg->event_list_lock);
5182
5183 fdput(cfile);
5184 fdput(efile);
5185
5186 return nbytes;
5187
5188out_put_css:
5189 css_put(css);
5190out_put_cfile:
5191 fdput(cfile);
5192out_put_eventfd:
5193 eventfd_ctx_put(event->eventfd);
5194out_put_efile:
5195 fdput(efile);
5196out_kfree:
5197 kfree(event);
5198
5199 return ret;
5200}
5201
5202#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5203static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5204{
5205 /*
5206 * Deprecated.
5207 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5208 */
5209 return 0;
5210}
5211#endif
5212
5213static int memory_stat_show(struct seq_file *m, void *v);
5214
5215static struct cftype mem_cgroup_legacy_files[] = {
5216 {
5217 .name = "usage_in_bytes",
5218 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5219 .read_u64 = mem_cgroup_read_u64,
5220 },
5221 {
5222 .name = "max_usage_in_bytes",
5223 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5224 .write = mem_cgroup_reset,
5225 .read_u64 = mem_cgroup_read_u64,
5226 },
5227 {
5228 .name = "limit_in_bytes",
5229 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5230 .write = mem_cgroup_write,
5231 .read_u64 = mem_cgroup_read_u64,
5232 },
5233 {
5234 .name = "soft_limit_in_bytes",
5235 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5236 .write = mem_cgroup_write,
5237 .read_u64 = mem_cgroup_read_u64,
5238 },
5239 {
5240 .name = "failcnt",
5241 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5242 .write = mem_cgroup_reset,
5243 .read_u64 = mem_cgroup_read_u64,
5244 },
5245 {
5246 .name = "stat",
5247 .seq_show = memory_stat_show,
5248 },
5249 {
5250 .name = "force_empty",
5251 .write = mem_cgroup_force_empty_write,
5252 },
5253 {
5254 .name = "use_hierarchy",
5255 .write_u64 = mem_cgroup_hierarchy_write,
5256 .read_u64 = mem_cgroup_hierarchy_read,
5257 },
5258 {
5259 .name = "cgroup.event_control", /* XXX: for compat */
5260 .write = memcg_write_event_control,
5261 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5262 },
5263 {
5264 .name = "swappiness",
5265 .read_u64 = mem_cgroup_swappiness_read,
5266 .write_u64 = mem_cgroup_swappiness_write,
5267 },
5268 {
5269 .name = "move_charge_at_immigrate",
5270 .read_u64 = mem_cgroup_move_charge_read,
5271 .write_u64 = mem_cgroup_move_charge_write,
5272 },
5273 {
5274 .name = "oom_control",
5275 .seq_show = mem_cgroup_oom_control_read,
5276 .write_u64 = mem_cgroup_oom_control_write,
5277 },
5278 {
5279 .name = "pressure_level",
5280 .seq_show = mem_cgroup_dummy_seq_show,
5281 },
5282#ifdef CONFIG_NUMA
5283 {
5284 .name = "numa_stat",
5285 .seq_show = memcg_numa_stat_show,
5286 },
5287#endif
5288 {
5289 .name = "kmem.limit_in_bytes",
5290 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5291 .write = mem_cgroup_write,
5292 .read_u64 = mem_cgroup_read_u64,
5293 },
5294 {
5295 .name = "kmem.usage_in_bytes",
5296 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5297 .read_u64 = mem_cgroup_read_u64,
5298 },
5299 {
5300 .name = "kmem.failcnt",
5301 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5302 .write = mem_cgroup_reset,
5303 .read_u64 = mem_cgroup_read_u64,
5304 },
5305 {
5306 .name = "kmem.max_usage_in_bytes",
5307 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5308 .write = mem_cgroup_reset,
5309 .read_u64 = mem_cgroup_read_u64,
5310 },
5311#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5312 {
5313 .name = "kmem.slabinfo",
5314 .seq_show = mem_cgroup_slab_show,
5315 },
5316#endif
5317 {
5318 .name = "kmem.tcp.limit_in_bytes",
5319 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5320 .write = mem_cgroup_write,
5321 .read_u64 = mem_cgroup_read_u64,
5322 },
5323 {
5324 .name = "kmem.tcp.usage_in_bytes",
5325 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5326 .read_u64 = mem_cgroup_read_u64,
5327 },
5328 {
5329 .name = "kmem.tcp.failcnt",
5330 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5331 .write = mem_cgroup_reset,
5332 .read_u64 = mem_cgroup_read_u64,
5333 },
5334 {
5335 .name = "kmem.tcp.max_usage_in_bytes",
5336 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5337 .write = mem_cgroup_reset,
5338 .read_u64 = mem_cgroup_read_u64,
5339 },
5340 { }, /* terminate */
5341};
5342
5343/*
5344 * Private memory cgroup IDR
5345 *
5346 * Swap-out records and page cache shadow entries need to store memcg
5347 * references in constrained space, so we maintain an ID space that is
5348 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5349 * memory-controlled cgroups to 64k.
5350 *
5351 * However, there usually are many references to the offline CSS after
5352 * the cgroup has been destroyed, such as page cache or reclaimable
5353 * slab objects, that don't need to hang on to the ID. We want to keep
5354 * those dead CSS from occupying IDs, or we might quickly exhaust the
5355 * relatively small ID space and prevent the creation of new cgroups
5356 * even when there are much fewer than 64k cgroups - possibly none.
5357 *
5358 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5359 * be freed and recycled when it's no longer needed, which is usually
5360 * when the CSS is offlined.
5361 *
5362 * The only exception to that are records of swapped out tmpfs/shmem
5363 * pages that need to be attributed to live ancestors on swapin. But
5364 * those references are manageable from userspace.
5365 */
5366
5367#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5368static DEFINE_IDR(mem_cgroup_idr);
5369
5370static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5371{
5372 if (memcg->id.id > 0) {
5373 idr_remove(&mem_cgroup_idr, memcg->id.id);
5374 memcg->id.id = 0;
5375 }
5376}
5377
5378static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5379 unsigned int n)
5380{
5381 refcount_add(n, &memcg->id.ref);
5382}
5383
5384static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5385{
5386 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5387 mem_cgroup_id_remove(memcg);
5388
5389 /* Memcg ID pins CSS */
5390 css_put(&memcg->css);
5391 }
5392}
5393
5394static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5395{
5396 mem_cgroup_id_put_many(memcg, 1);
5397}
5398
5399/**
5400 * mem_cgroup_from_id - look up a memcg from a memcg id
5401 * @id: the memcg id to look up
5402 *
5403 * Caller must hold rcu_read_lock().
5404 */
5405struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5406{
5407 WARN_ON_ONCE(!rcu_read_lock_held());
5408 return idr_find(&mem_cgroup_idr, id);
5409}
5410
5411#ifdef CONFIG_SHRINKER_DEBUG
5412struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5413{
5414 struct cgroup *cgrp;
5415 struct cgroup_subsys_state *css;
5416 struct mem_cgroup *memcg;
5417
5418 cgrp = cgroup_get_from_id(ino);
5419 if (IS_ERR(cgrp))
5420 return ERR_CAST(cgrp);
5421
5422 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5423 if (css)
5424 memcg = container_of(css, struct mem_cgroup, css);
5425 else
5426 memcg = ERR_PTR(-ENOENT);
5427
5428 cgroup_put(cgrp);
5429
5430 return memcg;
5431}
5432#endif
5433
5434static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5435{
5436 struct mem_cgroup_per_node *pn;
5437
5438 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5439 if (!pn)
5440 return 1;
5441
5442 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5443 GFP_KERNEL_ACCOUNT);
5444 if (!pn->lruvec_stats_percpu) {
5445 kfree(pn);
5446 return 1;
5447 }
5448
5449 lruvec_init(&pn->lruvec);
5450 pn->memcg = memcg;
5451
5452 memcg->nodeinfo[node] = pn;
5453 return 0;
5454}
5455
5456static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5457{
5458 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5459
5460 if (!pn)
5461 return;
5462
5463 free_percpu(pn->lruvec_stats_percpu);
5464 kfree(pn);
5465}
5466
5467static void __mem_cgroup_free(struct mem_cgroup *memcg)
5468{
5469 int node;
5470
5471 if (memcg->orig_objcg)
5472 obj_cgroup_put(memcg->orig_objcg);
5473
5474 for_each_node(node)
5475 free_mem_cgroup_per_node_info(memcg, node);
5476 kfree(memcg->vmstats);
5477 free_percpu(memcg->vmstats_percpu);
5478 kfree(memcg);
5479}
5480
5481static void mem_cgroup_free(struct mem_cgroup *memcg)
5482{
5483 lru_gen_exit_memcg(memcg);
5484 memcg_wb_domain_exit(memcg);
5485 __mem_cgroup_free(memcg);
5486}
5487
5488static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5489{
5490 struct memcg_vmstats_percpu *statc, *pstatc;
5491 struct mem_cgroup *memcg;
5492 int node, cpu;
5493 int __maybe_unused i;
5494 long error = -ENOMEM;
5495
5496 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5497 if (!memcg)
5498 return ERR_PTR(error);
5499
5500 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5501 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5502 if (memcg->id.id < 0) {
5503 error = memcg->id.id;
5504 goto fail;
5505 }
5506
5507 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5508 if (!memcg->vmstats)
5509 goto fail;
5510
5511 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5512 GFP_KERNEL_ACCOUNT);
5513 if (!memcg->vmstats_percpu)
5514 goto fail;
5515
5516 for_each_possible_cpu(cpu) {
5517 if (parent)
5518 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5519 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5520 statc->parent = parent ? pstatc : NULL;
5521 statc->vmstats = memcg->vmstats;
5522 }
5523
5524 for_each_node(node)
5525 if (alloc_mem_cgroup_per_node_info(memcg, node))
5526 goto fail;
5527
5528 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5529 goto fail;
5530
5531 INIT_WORK(&memcg->high_work, high_work_func);
5532 INIT_LIST_HEAD(&memcg->oom_notify);
5533 mutex_init(&memcg->thresholds_lock);
5534 spin_lock_init(&memcg->move_lock);
5535 vmpressure_init(&memcg->vmpressure);
5536 INIT_LIST_HEAD(&memcg->event_list);
5537 spin_lock_init(&memcg->event_list_lock);
5538 memcg->socket_pressure = jiffies;
5539#ifdef CONFIG_MEMCG_KMEM
5540 memcg->kmemcg_id = -1;
5541 INIT_LIST_HEAD(&memcg->objcg_list);
5542#endif
5543#ifdef CONFIG_CGROUP_WRITEBACK
5544 INIT_LIST_HEAD(&memcg->cgwb_list);
5545 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5546 memcg->cgwb_frn[i].done =
5547 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5548#endif
5549#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5550 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5551 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5552 memcg->deferred_split_queue.split_queue_len = 0;
5553#endif
5554 lru_gen_init_memcg(memcg);
5555 return memcg;
5556fail:
5557 mem_cgroup_id_remove(memcg);
5558 __mem_cgroup_free(memcg);
5559 return ERR_PTR(error);
5560}
5561
5562static struct cgroup_subsys_state * __ref
5563mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5564{
5565 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5566 struct mem_cgroup *memcg, *old_memcg;
5567
5568 old_memcg = set_active_memcg(parent);
5569 memcg = mem_cgroup_alloc(parent);
5570 set_active_memcg(old_memcg);
5571 if (IS_ERR(memcg))
5572 return ERR_CAST(memcg);
5573
5574 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5575 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5576#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5577 memcg->zswap_max = PAGE_COUNTER_MAX;
5578 WRITE_ONCE(memcg->zswap_writeback,
5579 !parent || READ_ONCE(parent->zswap_writeback));
5580#endif
5581 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5582 if (parent) {
5583 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5584 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5585
5586 page_counter_init(&memcg->memory, &parent->memory);
5587 page_counter_init(&memcg->swap, &parent->swap);
5588 page_counter_init(&memcg->kmem, &parent->kmem);
5589 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5590 } else {
5591 init_memcg_events();
5592 page_counter_init(&memcg->memory, NULL);
5593 page_counter_init(&memcg->swap, NULL);
5594 page_counter_init(&memcg->kmem, NULL);
5595 page_counter_init(&memcg->tcpmem, NULL);
5596
5597 root_mem_cgroup = memcg;
5598 return &memcg->css;
5599 }
5600
5601 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5602 static_branch_inc(&memcg_sockets_enabled_key);
5603
5604#if defined(CONFIG_MEMCG_KMEM)
5605 if (!cgroup_memory_nobpf)
5606 static_branch_inc(&memcg_bpf_enabled_key);
5607#endif
5608
5609 return &memcg->css;
5610}
5611
5612static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5613{
5614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615
5616 if (memcg_online_kmem(memcg))
5617 goto remove_id;
5618
5619 /*
5620 * A memcg must be visible for expand_shrinker_info()
5621 * by the time the maps are allocated. So, we allocate maps
5622 * here, when for_each_mem_cgroup() can't skip it.
5623 */
5624 if (alloc_shrinker_info(memcg))
5625 goto offline_kmem;
5626
5627 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5628 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5629 FLUSH_TIME);
5630 lru_gen_online_memcg(memcg);
5631
5632 /* Online state pins memcg ID, memcg ID pins CSS */
5633 refcount_set(&memcg->id.ref, 1);
5634 css_get(css);
5635
5636 /*
5637 * Ensure mem_cgroup_from_id() works once we're fully online.
5638 *
5639 * We could do this earlier and require callers to filter with
5640 * css_tryget_online(). But right now there are no users that
5641 * need earlier access, and the workingset code relies on the
5642 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5643 * publish it here at the end of onlining. This matches the
5644 * regular ID destruction during offlining.
5645 */
5646 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5647
5648 return 0;
5649offline_kmem:
5650 memcg_offline_kmem(memcg);
5651remove_id:
5652 mem_cgroup_id_remove(memcg);
5653 return -ENOMEM;
5654}
5655
5656static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5657{
5658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659 struct mem_cgroup_event *event, *tmp;
5660
5661 /*
5662 * Unregister events and notify userspace.
5663 * Notify userspace about cgroup removing only after rmdir of cgroup
5664 * directory to avoid race between userspace and kernelspace.
5665 */
5666 spin_lock_irq(&memcg->event_list_lock);
5667 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5668 list_del_init(&event->list);
5669 schedule_work(&event->remove);
5670 }
5671 spin_unlock_irq(&memcg->event_list_lock);
5672
5673 page_counter_set_min(&memcg->memory, 0);
5674 page_counter_set_low(&memcg->memory, 0);
5675
5676 zswap_memcg_offline_cleanup(memcg);
5677
5678 memcg_offline_kmem(memcg);
5679 reparent_shrinker_deferred(memcg);
5680 wb_memcg_offline(memcg);
5681 lru_gen_offline_memcg(memcg);
5682
5683 drain_all_stock(memcg);
5684
5685 mem_cgroup_id_put(memcg);
5686}
5687
5688static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5689{
5690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5691
5692 invalidate_reclaim_iterators(memcg);
5693 lru_gen_release_memcg(memcg);
5694}
5695
5696static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5697{
5698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5699 int __maybe_unused i;
5700
5701#ifdef CONFIG_CGROUP_WRITEBACK
5702 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5703 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5704#endif
5705 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5706 static_branch_dec(&memcg_sockets_enabled_key);
5707
5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5709 static_branch_dec(&memcg_sockets_enabled_key);
5710
5711#if defined(CONFIG_MEMCG_KMEM)
5712 if (!cgroup_memory_nobpf)
5713 static_branch_dec(&memcg_bpf_enabled_key);
5714#endif
5715
5716 vmpressure_cleanup(&memcg->vmpressure);
5717 cancel_work_sync(&memcg->high_work);
5718 mem_cgroup_remove_from_trees(memcg);
5719 free_shrinker_info(memcg);
5720 mem_cgroup_free(memcg);
5721}
5722
5723/**
5724 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5725 * @css: the target css
5726 *
5727 * Reset the states of the mem_cgroup associated with @css. This is
5728 * invoked when the userland requests disabling on the default hierarchy
5729 * but the memcg is pinned through dependency. The memcg should stop
5730 * applying policies and should revert to the vanilla state as it may be
5731 * made visible again.
5732 *
5733 * The current implementation only resets the essential configurations.
5734 * This needs to be expanded to cover all the visible parts.
5735 */
5736static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5737{
5738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739
5740 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5741 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5742 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5743 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5744 page_counter_set_min(&memcg->memory, 0);
5745 page_counter_set_low(&memcg->memory, 0);
5746 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5747 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5748 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5749 memcg_wb_domain_size_changed(memcg);
5750}
5751
5752static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5753{
5754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5756 struct memcg_vmstats_percpu *statc;
5757 long delta, delta_cpu, v;
5758 int i, nid;
5759
5760 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5761
5762 for (i = 0; i < MEMCG_NR_STAT; i++) {
5763 /*
5764 * Collect the aggregated propagation counts of groups
5765 * below us. We're in a per-cpu loop here and this is
5766 * a global counter, so the first cycle will get them.
5767 */
5768 delta = memcg->vmstats->state_pending[i];
5769 if (delta)
5770 memcg->vmstats->state_pending[i] = 0;
5771
5772 /* Add CPU changes on this level since the last flush */
5773 delta_cpu = 0;
5774 v = READ_ONCE(statc->state[i]);
5775 if (v != statc->state_prev[i]) {
5776 delta_cpu = v - statc->state_prev[i];
5777 delta += delta_cpu;
5778 statc->state_prev[i] = v;
5779 }
5780
5781 /* Aggregate counts on this level and propagate upwards */
5782 if (delta_cpu)
5783 memcg->vmstats->state_local[i] += delta_cpu;
5784
5785 if (delta) {
5786 memcg->vmstats->state[i] += delta;
5787 if (parent)
5788 parent->vmstats->state_pending[i] += delta;
5789 }
5790 }
5791
5792 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5793 delta = memcg->vmstats->events_pending[i];
5794 if (delta)
5795 memcg->vmstats->events_pending[i] = 0;
5796
5797 delta_cpu = 0;
5798 v = READ_ONCE(statc->events[i]);
5799 if (v != statc->events_prev[i]) {
5800 delta_cpu = v - statc->events_prev[i];
5801 delta += delta_cpu;
5802 statc->events_prev[i] = v;
5803 }
5804
5805 if (delta_cpu)
5806 memcg->vmstats->events_local[i] += delta_cpu;
5807
5808 if (delta) {
5809 memcg->vmstats->events[i] += delta;
5810 if (parent)
5811 parent->vmstats->events_pending[i] += delta;
5812 }
5813 }
5814
5815 for_each_node_state(nid, N_MEMORY) {
5816 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5817 struct mem_cgroup_per_node *ppn = NULL;
5818 struct lruvec_stats_percpu *lstatc;
5819
5820 if (parent)
5821 ppn = parent->nodeinfo[nid];
5822
5823 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5824
5825 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5826 delta = pn->lruvec_stats.state_pending[i];
5827 if (delta)
5828 pn->lruvec_stats.state_pending[i] = 0;
5829
5830 delta_cpu = 0;
5831 v = READ_ONCE(lstatc->state[i]);
5832 if (v != lstatc->state_prev[i]) {
5833 delta_cpu = v - lstatc->state_prev[i];
5834 delta += delta_cpu;
5835 lstatc->state_prev[i] = v;
5836 }
5837
5838 if (delta_cpu)
5839 pn->lruvec_stats.state_local[i] += delta_cpu;
5840
5841 if (delta) {
5842 pn->lruvec_stats.state[i] += delta;
5843 if (ppn)
5844 ppn->lruvec_stats.state_pending[i] += delta;
5845 }
5846 }
5847 }
5848 statc->stats_updates = 0;
5849 /* We are in a per-cpu loop here, only do the atomic write once */
5850 if (atomic64_read(&memcg->vmstats->stats_updates))
5851 atomic64_set(&memcg->vmstats->stats_updates, 0);
5852}
5853
5854#ifdef CONFIG_MMU
5855/* Handlers for move charge at task migration. */
5856static int mem_cgroup_do_precharge(unsigned long count)
5857{
5858 int ret;
5859
5860 /* Try a single bulk charge without reclaim first, kswapd may wake */
5861 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5862 if (!ret) {
5863 mc.precharge += count;
5864 return ret;
5865 }
5866
5867 /* Try charges one by one with reclaim, but do not retry */
5868 while (count--) {
5869 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5870 if (ret)
5871 return ret;
5872 mc.precharge++;
5873 cond_resched();
5874 }
5875 return 0;
5876}
5877
5878union mc_target {
5879 struct folio *folio;
5880 swp_entry_t ent;
5881};
5882
5883enum mc_target_type {
5884 MC_TARGET_NONE = 0,
5885 MC_TARGET_PAGE,
5886 MC_TARGET_SWAP,
5887 MC_TARGET_DEVICE,
5888};
5889
5890static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5891 unsigned long addr, pte_t ptent)
5892{
5893 struct page *page = vm_normal_page(vma, addr, ptent);
5894
5895 if (!page)
5896 return NULL;
5897 if (PageAnon(page)) {
5898 if (!(mc.flags & MOVE_ANON))
5899 return NULL;
5900 } else {
5901 if (!(mc.flags & MOVE_FILE))
5902 return NULL;
5903 }
5904 get_page(page);
5905
5906 return page;
5907}
5908
5909#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5910static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5911 pte_t ptent, swp_entry_t *entry)
5912{
5913 struct page *page = NULL;
5914 swp_entry_t ent = pte_to_swp_entry(ptent);
5915
5916 if (!(mc.flags & MOVE_ANON))
5917 return NULL;
5918
5919 /*
5920 * Handle device private pages that are not accessible by the CPU, but
5921 * stored as special swap entries in the page table.
5922 */
5923 if (is_device_private_entry(ent)) {
5924 page = pfn_swap_entry_to_page(ent);
5925 if (!get_page_unless_zero(page))
5926 return NULL;
5927 return page;
5928 }
5929
5930 if (non_swap_entry(ent))
5931 return NULL;
5932
5933 /*
5934 * Because swap_cache_get_folio() updates some statistics counter,
5935 * we call find_get_page() with swapper_space directly.
5936 */
5937 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5938 entry->val = ent.val;
5939
5940 return page;
5941}
5942#else
5943static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5944 pte_t ptent, swp_entry_t *entry)
5945{
5946 return NULL;
5947}
5948#endif
5949
5950static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5951 unsigned long addr, pte_t ptent)
5952{
5953 unsigned long index;
5954 struct folio *folio;
5955
5956 if (!vma->vm_file) /* anonymous vma */
5957 return NULL;
5958 if (!(mc.flags & MOVE_FILE))
5959 return NULL;
5960
5961 /* folio is moved even if it's not RSS of this task(page-faulted). */
5962 /* shmem/tmpfs may report page out on swap: account for that too. */
5963 index = linear_page_index(vma, addr);
5964 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5965 if (IS_ERR(folio))
5966 return NULL;
5967 return folio_file_page(folio, index);
5968}
5969
5970/**
5971 * mem_cgroup_move_account - move account of the folio
5972 * @folio: The folio.
5973 * @compound: charge the page as compound or small page
5974 * @from: mem_cgroup which the folio is moved from.
5975 * @to: mem_cgroup which the folio is moved to. @from != @to.
5976 *
5977 * The folio must be locked and not on the LRU.
5978 *
5979 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5980 * from old cgroup.
5981 */
5982static int mem_cgroup_move_account(struct folio *folio,
5983 bool compound,
5984 struct mem_cgroup *from,
5985 struct mem_cgroup *to)
5986{
5987 struct lruvec *from_vec, *to_vec;
5988 struct pglist_data *pgdat;
5989 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5990 int nid, ret;
5991
5992 VM_BUG_ON(from == to);
5993 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5994 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5995 VM_BUG_ON(compound && !folio_test_large(folio));
5996
5997 ret = -EINVAL;
5998 if (folio_memcg(folio) != from)
5999 goto out;
6000
6001 pgdat = folio_pgdat(folio);
6002 from_vec = mem_cgroup_lruvec(from, pgdat);
6003 to_vec = mem_cgroup_lruvec(to, pgdat);
6004
6005 folio_memcg_lock(folio);
6006
6007 if (folio_test_anon(folio)) {
6008 if (folio_mapped(folio)) {
6009 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6010 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6011 if (folio_test_pmd_mappable(folio)) {
6012 __mod_lruvec_state(from_vec, NR_ANON_THPS,
6013 -nr_pages);
6014 __mod_lruvec_state(to_vec, NR_ANON_THPS,
6015 nr_pages);
6016 }
6017 }
6018 } else {
6019 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6020 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6021
6022 if (folio_test_swapbacked(folio)) {
6023 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6024 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6025 }
6026
6027 if (folio_mapped(folio)) {
6028 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6029 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6030 }
6031
6032 if (folio_test_dirty(folio)) {
6033 struct address_space *mapping = folio_mapping(folio);
6034
6035 if (mapping_can_writeback(mapping)) {
6036 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6037 -nr_pages);
6038 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6039 nr_pages);
6040 }
6041 }
6042 }
6043
6044#ifdef CONFIG_SWAP
6045 if (folio_test_swapcache(folio)) {
6046 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6047 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6048 }
6049#endif
6050 if (folio_test_writeback(folio)) {
6051 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6052 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6053 }
6054
6055 /*
6056 * All state has been migrated, let's switch to the new memcg.
6057 *
6058 * It is safe to change page's memcg here because the page
6059 * is referenced, charged, isolated, and locked: we can't race
6060 * with (un)charging, migration, LRU putback, or anything else
6061 * that would rely on a stable page's memory cgroup.
6062 *
6063 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6064 * to save space. As soon as we switch page's memory cgroup to a
6065 * new memcg that isn't locked, the above state can change
6066 * concurrently again. Make sure we're truly done with it.
6067 */
6068 smp_mb();
6069
6070 css_get(&to->css);
6071 css_put(&from->css);
6072
6073 folio->memcg_data = (unsigned long)to;
6074
6075 __folio_memcg_unlock(from);
6076
6077 ret = 0;
6078 nid = folio_nid(folio);
6079
6080 local_irq_disable();
6081 mem_cgroup_charge_statistics(to, nr_pages);
6082 memcg_check_events(to, nid);
6083 mem_cgroup_charge_statistics(from, -nr_pages);
6084 memcg_check_events(from, nid);
6085 local_irq_enable();
6086out:
6087 return ret;
6088}
6089
6090/**
6091 * get_mctgt_type - get target type of moving charge
6092 * @vma: the vma the pte to be checked belongs
6093 * @addr: the address corresponding to the pte to be checked
6094 * @ptent: the pte to be checked
6095 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6096 *
6097 * Context: Called with pte lock held.
6098 * Return:
6099 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6100 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6101 * move charge. If @target is not NULL, the folio is stored in target->folio
6102 * with extra refcnt taken (Caller should release it).
6103 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6104 * target for charge migration. If @target is not NULL, the entry is
6105 * stored in target->ent.
6106 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6107 * thus not on the lru. For now such page is charged like a regular page
6108 * would be as it is just special memory taking the place of a regular page.
6109 * See Documentations/vm/hmm.txt and include/linux/hmm.h
6110 */
6111static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6112 unsigned long addr, pte_t ptent, union mc_target *target)
6113{
6114 struct page *page = NULL;
6115 struct folio *folio;
6116 enum mc_target_type ret = MC_TARGET_NONE;
6117 swp_entry_t ent = { .val = 0 };
6118
6119 if (pte_present(ptent))
6120 page = mc_handle_present_pte(vma, addr, ptent);
6121 else if (pte_none_mostly(ptent))
6122 /*
6123 * PTE markers should be treated as a none pte here, separated
6124 * from other swap handling below.
6125 */
6126 page = mc_handle_file_pte(vma, addr, ptent);
6127 else if (is_swap_pte(ptent))
6128 page = mc_handle_swap_pte(vma, ptent, &ent);
6129
6130 if (page)
6131 folio = page_folio(page);
6132 if (target && page) {
6133 if (!folio_trylock(folio)) {
6134 folio_put(folio);
6135 return ret;
6136 }
6137 /*
6138 * page_mapped() must be stable during the move. This
6139 * pte is locked, so if it's present, the page cannot
6140 * become unmapped. If it isn't, we have only partial
6141 * control over the mapped state: the page lock will
6142 * prevent new faults against pagecache and swapcache,
6143 * so an unmapped page cannot become mapped. However,
6144 * if the page is already mapped elsewhere, it can
6145 * unmap, and there is nothing we can do about it.
6146 * Alas, skip moving the page in this case.
6147 */
6148 if (!pte_present(ptent) && page_mapped(page)) {
6149 folio_unlock(folio);
6150 folio_put(folio);
6151 return ret;
6152 }
6153 }
6154
6155 if (!page && !ent.val)
6156 return ret;
6157 if (page) {
6158 /*
6159 * Do only loose check w/o serialization.
6160 * mem_cgroup_move_account() checks the page is valid or
6161 * not under LRU exclusion.
6162 */
6163 if (folio_memcg(folio) == mc.from) {
6164 ret = MC_TARGET_PAGE;
6165 if (folio_is_device_private(folio) ||
6166 folio_is_device_coherent(folio))
6167 ret = MC_TARGET_DEVICE;
6168 if (target)
6169 target->folio = folio;
6170 }
6171 if (!ret || !target) {
6172 if (target)
6173 folio_unlock(folio);
6174 folio_put(folio);
6175 }
6176 }
6177 /*
6178 * There is a swap entry and a page doesn't exist or isn't charged.
6179 * But we cannot move a tail-page in a THP.
6180 */
6181 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6182 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6183 ret = MC_TARGET_SWAP;
6184 if (target)
6185 target->ent = ent;
6186 }
6187 return ret;
6188}
6189
6190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6191/*
6192 * We don't consider PMD mapped swapping or file mapped pages because THP does
6193 * not support them for now.
6194 * Caller should make sure that pmd_trans_huge(pmd) is true.
6195 */
6196static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6197 unsigned long addr, pmd_t pmd, union mc_target *target)
6198{
6199 struct page *page = NULL;
6200 struct folio *folio;
6201 enum mc_target_type ret = MC_TARGET_NONE;
6202
6203 if (unlikely(is_swap_pmd(pmd))) {
6204 VM_BUG_ON(thp_migration_supported() &&
6205 !is_pmd_migration_entry(pmd));
6206 return ret;
6207 }
6208 page = pmd_page(pmd);
6209 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6210 folio = page_folio(page);
6211 if (!(mc.flags & MOVE_ANON))
6212 return ret;
6213 if (folio_memcg(folio) == mc.from) {
6214 ret = MC_TARGET_PAGE;
6215 if (target) {
6216 folio_get(folio);
6217 if (!folio_trylock(folio)) {
6218 folio_put(folio);
6219 return MC_TARGET_NONE;
6220 }
6221 target->folio = folio;
6222 }
6223 }
6224 return ret;
6225}
6226#else
6227static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6228 unsigned long addr, pmd_t pmd, union mc_target *target)
6229{
6230 return MC_TARGET_NONE;
6231}
6232#endif
6233
6234static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6235 unsigned long addr, unsigned long end,
6236 struct mm_walk *walk)
6237{
6238 struct vm_area_struct *vma = walk->vma;
6239 pte_t *pte;
6240 spinlock_t *ptl;
6241
6242 ptl = pmd_trans_huge_lock(pmd, vma);
6243 if (ptl) {
6244 /*
6245 * Note their can not be MC_TARGET_DEVICE for now as we do not
6246 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6247 * this might change.
6248 */
6249 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6250 mc.precharge += HPAGE_PMD_NR;
6251 spin_unlock(ptl);
6252 return 0;
6253 }
6254
6255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6256 if (!pte)
6257 return 0;
6258 for (; addr != end; pte++, addr += PAGE_SIZE)
6259 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6260 mc.precharge++; /* increment precharge temporarily */
6261 pte_unmap_unlock(pte - 1, ptl);
6262 cond_resched();
6263
6264 return 0;
6265}
6266
6267static const struct mm_walk_ops precharge_walk_ops = {
6268 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6269 .walk_lock = PGWALK_RDLOCK,
6270};
6271
6272static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6273{
6274 unsigned long precharge;
6275
6276 mmap_read_lock(mm);
6277 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6278 mmap_read_unlock(mm);
6279
6280 precharge = mc.precharge;
6281 mc.precharge = 0;
6282
6283 return precharge;
6284}
6285
6286static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6287{
6288 unsigned long precharge = mem_cgroup_count_precharge(mm);
6289
6290 VM_BUG_ON(mc.moving_task);
6291 mc.moving_task = current;
6292 return mem_cgroup_do_precharge(precharge);
6293}
6294
6295/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6296static void __mem_cgroup_clear_mc(void)
6297{
6298 struct mem_cgroup *from = mc.from;
6299 struct mem_cgroup *to = mc.to;
6300
6301 /* we must uncharge all the leftover precharges from mc.to */
6302 if (mc.precharge) {
6303 mem_cgroup_cancel_charge(mc.to, mc.precharge);
6304 mc.precharge = 0;
6305 }
6306 /*
6307 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6308 * we must uncharge here.
6309 */
6310 if (mc.moved_charge) {
6311 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6312 mc.moved_charge = 0;
6313 }
6314 /* we must fixup refcnts and charges */
6315 if (mc.moved_swap) {
6316 /* uncharge swap account from the old cgroup */
6317 if (!mem_cgroup_is_root(mc.from))
6318 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6319
6320 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6321
6322 /*
6323 * we charged both to->memory and to->memsw, so we
6324 * should uncharge to->memory.
6325 */
6326 if (!mem_cgroup_is_root(mc.to))
6327 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6328
6329 mc.moved_swap = 0;
6330 }
6331 memcg_oom_recover(from);
6332 memcg_oom_recover(to);
6333 wake_up_all(&mc.waitq);
6334}
6335
6336static void mem_cgroup_clear_mc(void)
6337{
6338 struct mm_struct *mm = mc.mm;
6339
6340 /*
6341 * we must clear moving_task before waking up waiters at the end of
6342 * task migration.
6343 */
6344 mc.moving_task = NULL;
6345 __mem_cgroup_clear_mc();
6346 spin_lock(&mc.lock);
6347 mc.from = NULL;
6348 mc.to = NULL;
6349 mc.mm = NULL;
6350 spin_unlock(&mc.lock);
6351
6352 mmput(mm);
6353}
6354
6355static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356{
6357 struct cgroup_subsys_state *css;
6358 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6359 struct mem_cgroup *from;
6360 struct task_struct *leader, *p;
6361 struct mm_struct *mm;
6362 unsigned long move_flags;
6363 int ret = 0;
6364
6365 /* charge immigration isn't supported on the default hierarchy */
6366 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6367 return 0;
6368
6369 /*
6370 * Multi-process migrations only happen on the default hierarchy
6371 * where charge immigration is not used. Perform charge
6372 * immigration if @tset contains a leader and whine if there are
6373 * multiple.
6374 */
6375 p = NULL;
6376 cgroup_taskset_for_each_leader(leader, css, tset) {
6377 WARN_ON_ONCE(p);
6378 p = leader;
6379 memcg = mem_cgroup_from_css(css);
6380 }
6381 if (!p)
6382 return 0;
6383
6384 /*
6385 * We are now committed to this value whatever it is. Changes in this
6386 * tunable will only affect upcoming migrations, not the current one.
6387 * So we need to save it, and keep it going.
6388 */
6389 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6390 if (!move_flags)
6391 return 0;
6392
6393 from = mem_cgroup_from_task(p);
6394
6395 VM_BUG_ON(from == memcg);
6396
6397 mm = get_task_mm(p);
6398 if (!mm)
6399 return 0;
6400 /* We move charges only when we move a owner of the mm */
6401 if (mm->owner == p) {
6402 VM_BUG_ON(mc.from);
6403 VM_BUG_ON(mc.to);
6404 VM_BUG_ON(mc.precharge);
6405 VM_BUG_ON(mc.moved_charge);
6406 VM_BUG_ON(mc.moved_swap);
6407
6408 spin_lock(&mc.lock);
6409 mc.mm = mm;
6410 mc.from = from;
6411 mc.to = memcg;
6412 mc.flags = move_flags;
6413 spin_unlock(&mc.lock);
6414 /* We set mc.moving_task later */
6415
6416 ret = mem_cgroup_precharge_mc(mm);
6417 if (ret)
6418 mem_cgroup_clear_mc();
6419 } else {
6420 mmput(mm);
6421 }
6422 return ret;
6423}
6424
6425static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6426{
6427 if (mc.to)
6428 mem_cgroup_clear_mc();
6429}
6430
6431static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6432 unsigned long addr, unsigned long end,
6433 struct mm_walk *walk)
6434{
6435 int ret = 0;
6436 struct vm_area_struct *vma = walk->vma;
6437 pte_t *pte;
6438 spinlock_t *ptl;
6439 enum mc_target_type target_type;
6440 union mc_target target;
6441 struct folio *folio;
6442
6443 ptl = pmd_trans_huge_lock(pmd, vma);
6444 if (ptl) {
6445 if (mc.precharge < HPAGE_PMD_NR) {
6446 spin_unlock(ptl);
6447 return 0;
6448 }
6449 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6450 if (target_type == MC_TARGET_PAGE) {
6451 folio = target.folio;
6452 if (folio_isolate_lru(folio)) {
6453 if (!mem_cgroup_move_account(folio, true,
6454 mc.from, mc.to)) {
6455 mc.precharge -= HPAGE_PMD_NR;
6456 mc.moved_charge += HPAGE_PMD_NR;
6457 }
6458 folio_putback_lru(folio);
6459 }
6460 folio_unlock(folio);
6461 folio_put(folio);
6462 } else if (target_type == MC_TARGET_DEVICE) {
6463 folio = target.folio;
6464 if (!mem_cgroup_move_account(folio, true,
6465 mc.from, mc.to)) {
6466 mc.precharge -= HPAGE_PMD_NR;
6467 mc.moved_charge += HPAGE_PMD_NR;
6468 }
6469 folio_unlock(folio);
6470 folio_put(folio);
6471 }
6472 spin_unlock(ptl);
6473 return 0;
6474 }
6475
6476retry:
6477 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6478 if (!pte)
6479 return 0;
6480 for (; addr != end; addr += PAGE_SIZE) {
6481 pte_t ptent = ptep_get(pte++);
6482 bool device = false;
6483 swp_entry_t ent;
6484
6485 if (!mc.precharge)
6486 break;
6487
6488 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6489 case MC_TARGET_DEVICE:
6490 device = true;
6491 fallthrough;
6492 case MC_TARGET_PAGE:
6493 folio = target.folio;
6494 /*
6495 * We can have a part of the split pmd here. Moving it
6496 * can be done but it would be too convoluted so simply
6497 * ignore such a partial THP and keep it in original
6498 * memcg. There should be somebody mapping the head.
6499 */
6500 if (folio_test_large(folio))
6501 goto put;
6502 if (!device && !folio_isolate_lru(folio))
6503 goto put;
6504 if (!mem_cgroup_move_account(folio, false,
6505 mc.from, mc.to)) {
6506 mc.precharge--;
6507 /* we uncharge from mc.from later. */
6508 mc.moved_charge++;
6509 }
6510 if (!device)
6511 folio_putback_lru(folio);
6512put: /* get_mctgt_type() gets & locks the page */
6513 folio_unlock(folio);
6514 folio_put(folio);
6515 break;
6516 case MC_TARGET_SWAP:
6517 ent = target.ent;
6518 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6519 mc.precharge--;
6520 mem_cgroup_id_get_many(mc.to, 1);
6521 /* we fixup other refcnts and charges later. */
6522 mc.moved_swap++;
6523 }
6524 break;
6525 default:
6526 break;
6527 }
6528 }
6529 pte_unmap_unlock(pte - 1, ptl);
6530 cond_resched();
6531
6532 if (addr != end) {
6533 /*
6534 * We have consumed all precharges we got in can_attach().
6535 * We try charge one by one, but don't do any additional
6536 * charges to mc.to if we have failed in charge once in attach()
6537 * phase.
6538 */
6539 ret = mem_cgroup_do_precharge(1);
6540 if (!ret)
6541 goto retry;
6542 }
6543
6544 return ret;
6545}
6546
6547static const struct mm_walk_ops charge_walk_ops = {
6548 .pmd_entry = mem_cgroup_move_charge_pte_range,
6549 .walk_lock = PGWALK_RDLOCK,
6550};
6551
6552static void mem_cgroup_move_charge(void)
6553{
6554 lru_add_drain_all();
6555 /*
6556 * Signal folio_memcg_lock() to take the memcg's move_lock
6557 * while we're moving its pages to another memcg. Then wait
6558 * for already started RCU-only updates to finish.
6559 */
6560 atomic_inc(&mc.from->moving_account);
6561 synchronize_rcu();
6562retry:
6563 if (unlikely(!mmap_read_trylock(mc.mm))) {
6564 /*
6565 * Someone who are holding the mmap_lock might be waiting in
6566 * waitq. So we cancel all extra charges, wake up all waiters,
6567 * and retry. Because we cancel precharges, we might not be able
6568 * to move enough charges, but moving charge is a best-effort
6569 * feature anyway, so it wouldn't be a big problem.
6570 */
6571 __mem_cgroup_clear_mc();
6572 cond_resched();
6573 goto retry;
6574 }
6575 /*
6576 * When we have consumed all precharges and failed in doing
6577 * additional charge, the page walk just aborts.
6578 */
6579 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6580 mmap_read_unlock(mc.mm);
6581 atomic_dec(&mc.from->moving_account);
6582}
6583
6584static void mem_cgroup_move_task(void)
6585{
6586 if (mc.to) {
6587 mem_cgroup_move_charge();
6588 mem_cgroup_clear_mc();
6589 }
6590}
6591
6592#else /* !CONFIG_MMU */
6593static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6594{
6595 return 0;
6596}
6597static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6598{
6599}
6600static void mem_cgroup_move_task(void)
6601{
6602}
6603#endif
6604
6605#ifdef CONFIG_MEMCG_KMEM
6606static void mem_cgroup_fork(struct task_struct *task)
6607{
6608 /*
6609 * Set the update flag to cause task->objcg to be initialized lazily
6610 * on the first allocation. It can be done without any synchronization
6611 * because it's always performed on the current task, so does
6612 * current_objcg_update().
6613 */
6614 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6615}
6616
6617static void mem_cgroup_exit(struct task_struct *task)
6618{
6619 struct obj_cgroup *objcg = task->objcg;
6620
6621 objcg = (struct obj_cgroup *)
6622 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6623 if (objcg)
6624 obj_cgroup_put(objcg);
6625
6626 /*
6627 * Some kernel allocations can happen after this point,
6628 * but let's ignore them. It can be done without any synchronization
6629 * because it's always performed on the current task, so does
6630 * current_objcg_update().
6631 */
6632 task->objcg = NULL;
6633}
6634#endif
6635
6636#ifdef CONFIG_LRU_GEN
6637static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6638{
6639 struct task_struct *task;
6640 struct cgroup_subsys_state *css;
6641
6642 /* find the first leader if there is any */
6643 cgroup_taskset_for_each_leader(task, css, tset)
6644 break;
6645
6646 if (!task)
6647 return;
6648
6649 task_lock(task);
6650 if (task->mm && READ_ONCE(task->mm->owner) == task)
6651 lru_gen_migrate_mm(task->mm);
6652 task_unlock(task);
6653}
6654#else
6655static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6656#endif /* CONFIG_LRU_GEN */
6657
6658#ifdef CONFIG_MEMCG_KMEM
6659static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6660{
6661 struct task_struct *task;
6662 struct cgroup_subsys_state *css;
6663
6664 cgroup_taskset_for_each(task, css, tset) {
6665 /* atomically set the update bit */
6666 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6667 }
6668}
6669#else
6670static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6671#endif /* CONFIG_MEMCG_KMEM */
6672
6673#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6674static void mem_cgroup_attach(struct cgroup_taskset *tset)
6675{
6676 mem_cgroup_lru_gen_attach(tset);
6677 mem_cgroup_kmem_attach(tset);
6678}
6679#endif
6680
6681static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6682{
6683 if (value == PAGE_COUNTER_MAX)
6684 seq_puts(m, "max\n");
6685 else
6686 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6687
6688 return 0;
6689}
6690
6691static u64 memory_current_read(struct cgroup_subsys_state *css,
6692 struct cftype *cft)
6693{
6694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6695
6696 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6697}
6698
6699static u64 memory_peak_read(struct cgroup_subsys_state *css,
6700 struct cftype *cft)
6701{
6702 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6703
6704 return (u64)memcg->memory.watermark * PAGE_SIZE;
6705}
6706
6707static int memory_min_show(struct seq_file *m, void *v)
6708{
6709 return seq_puts_memcg_tunable(m,
6710 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6711}
6712
6713static ssize_t memory_min_write(struct kernfs_open_file *of,
6714 char *buf, size_t nbytes, loff_t off)
6715{
6716 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717 unsigned long min;
6718 int err;
6719
6720 buf = strstrip(buf);
6721 err = page_counter_memparse(buf, "max", &min);
6722 if (err)
6723 return err;
6724
6725 page_counter_set_min(&memcg->memory, min);
6726
6727 return nbytes;
6728}
6729
6730static int memory_low_show(struct seq_file *m, void *v)
6731{
6732 return seq_puts_memcg_tunable(m,
6733 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6734}
6735
6736static ssize_t memory_low_write(struct kernfs_open_file *of,
6737 char *buf, size_t nbytes, loff_t off)
6738{
6739 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6740 unsigned long low;
6741 int err;
6742
6743 buf = strstrip(buf);
6744 err = page_counter_memparse(buf, "max", &low);
6745 if (err)
6746 return err;
6747
6748 page_counter_set_low(&memcg->memory, low);
6749
6750 return nbytes;
6751}
6752
6753static int memory_high_show(struct seq_file *m, void *v)
6754{
6755 return seq_puts_memcg_tunable(m,
6756 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6757}
6758
6759static ssize_t memory_high_write(struct kernfs_open_file *of,
6760 char *buf, size_t nbytes, loff_t off)
6761{
6762 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6763 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6764 bool drained = false;
6765 unsigned long high;
6766 int err;
6767
6768 buf = strstrip(buf);
6769 err = page_counter_memparse(buf, "max", &high);
6770 if (err)
6771 return err;
6772
6773 page_counter_set_high(&memcg->memory, high);
6774
6775 for (;;) {
6776 unsigned long nr_pages = page_counter_read(&memcg->memory);
6777 unsigned long reclaimed;
6778
6779 if (nr_pages <= high)
6780 break;
6781
6782 if (signal_pending(current))
6783 break;
6784
6785 if (!drained) {
6786 drain_all_stock(memcg);
6787 drained = true;
6788 continue;
6789 }
6790
6791 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6792 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6793
6794 if (!reclaimed && !nr_retries--)
6795 break;
6796 }
6797
6798 memcg_wb_domain_size_changed(memcg);
6799 return nbytes;
6800}
6801
6802static int memory_max_show(struct seq_file *m, void *v)
6803{
6804 return seq_puts_memcg_tunable(m,
6805 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6806}
6807
6808static ssize_t memory_max_write(struct kernfs_open_file *of,
6809 char *buf, size_t nbytes, loff_t off)
6810{
6811 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6812 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6813 bool drained = false;
6814 unsigned long max;
6815 int err;
6816
6817 buf = strstrip(buf);
6818 err = page_counter_memparse(buf, "max", &max);
6819 if (err)
6820 return err;
6821
6822 xchg(&memcg->memory.max, max);
6823
6824 for (;;) {
6825 unsigned long nr_pages = page_counter_read(&memcg->memory);
6826
6827 if (nr_pages <= max)
6828 break;
6829
6830 if (signal_pending(current))
6831 break;
6832
6833 if (!drained) {
6834 drain_all_stock(memcg);
6835 drained = true;
6836 continue;
6837 }
6838
6839 if (nr_reclaims) {
6840 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6841 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6842 nr_reclaims--;
6843 continue;
6844 }
6845
6846 memcg_memory_event(memcg, MEMCG_OOM);
6847 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6848 break;
6849 }
6850
6851 memcg_wb_domain_size_changed(memcg);
6852 return nbytes;
6853}
6854
6855/*
6856 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6857 * if any new events become available.
6858 */
6859static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6860{
6861 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6862 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6863 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6864 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6865 seq_printf(m, "oom_kill %lu\n",
6866 atomic_long_read(&events[MEMCG_OOM_KILL]));
6867 seq_printf(m, "oom_group_kill %lu\n",
6868 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6869}
6870
6871static int memory_events_show(struct seq_file *m, void *v)
6872{
6873 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6874
6875 __memory_events_show(m, memcg->memory_events);
6876 return 0;
6877}
6878
6879static int memory_events_local_show(struct seq_file *m, void *v)
6880{
6881 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6882
6883 __memory_events_show(m, memcg->memory_events_local);
6884 return 0;
6885}
6886
6887static int memory_stat_show(struct seq_file *m, void *v)
6888{
6889 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6890 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6891 struct seq_buf s;
6892
6893 if (!buf)
6894 return -ENOMEM;
6895 seq_buf_init(&s, buf, PAGE_SIZE);
6896 memory_stat_format(memcg, &s);
6897 seq_puts(m, buf);
6898 kfree(buf);
6899 return 0;
6900}
6901
6902#ifdef CONFIG_NUMA
6903static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6904 int item)
6905{
6906 return lruvec_page_state(lruvec, item) *
6907 memcg_page_state_output_unit(item);
6908}
6909
6910static int memory_numa_stat_show(struct seq_file *m, void *v)
6911{
6912 int i;
6913 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6914
6915 mem_cgroup_flush_stats(memcg);
6916
6917 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6918 int nid;
6919
6920 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6921 continue;
6922
6923 seq_printf(m, "%s", memory_stats[i].name);
6924 for_each_node_state(nid, N_MEMORY) {
6925 u64 size;
6926 struct lruvec *lruvec;
6927
6928 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6929 size = lruvec_page_state_output(lruvec,
6930 memory_stats[i].idx);
6931 seq_printf(m, " N%d=%llu", nid, size);
6932 }
6933 seq_putc(m, '\n');
6934 }
6935
6936 return 0;
6937}
6938#endif
6939
6940static int memory_oom_group_show(struct seq_file *m, void *v)
6941{
6942 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6943
6944 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6945
6946 return 0;
6947}
6948
6949static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6950 char *buf, size_t nbytes, loff_t off)
6951{
6952 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953 int ret, oom_group;
6954
6955 buf = strstrip(buf);
6956 if (!buf)
6957 return -EINVAL;
6958
6959 ret = kstrtoint(buf, 0, &oom_group);
6960 if (ret)
6961 return ret;
6962
6963 if (oom_group != 0 && oom_group != 1)
6964 return -EINVAL;
6965
6966 WRITE_ONCE(memcg->oom_group, oom_group);
6967
6968 return nbytes;
6969}
6970
6971static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6972 size_t nbytes, loff_t off)
6973{
6974 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6975 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6976 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6977 unsigned int reclaim_options;
6978 int err;
6979
6980 buf = strstrip(buf);
6981 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6982 if (err)
6983 return err;
6984
6985 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6986 while (nr_reclaimed < nr_to_reclaim) {
6987 /* Will converge on zero, but reclaim enforces a minimum */
6988 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
6989 unsigned long reclaimed;
6990
6991 if (signal_pending(current))
6992 return -EINTR;
6993
6994 /*
6995 * This is the final attempt, drain percpu lru caches in the
6996 * hope of introducing more evictable pages for
6997 * try_to_free_mem_cgroup_pages().
6998 */
6999 if (!nr_retries)
7000 lru_add_drain_all();
7001
7002 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7003 batch_size, GFP_KERNEL, reclaim_options);
7004
7005 if (!reclaimed && !nr_retries--)
7006 return -EAGAIN;
7007
7008 nr_reclaimed += reclaimed;
7009 }
7010
7011 return nbytes;
7012}
7013
7014static struct cftype memory_files[] = {
7015 {
7016 .name = "current",
7017 .flags = CFTYPE_NOT_ON_ROOT,
7018 .read_u64 = memory_current_read,
7019 },
7020 {
7021 .name = "peak",
7022 .flags = CFTYPE_NOT_ON_ROOT,
7023 .read_u64 = memory_peak_read,
7024 },
7025 {
7026 .name = "min",
7027 .flags = CFTYPE_NOT_ON_ROOT,
7028 .seq_show = memory_min_show,
7029 .write = memory_min_write,
7030 },
7031 {
7032 .name = "low",
7033 .flags = CFTYPE_NOT_ON_ROOT,
7034 .seq_show = memory_low_show,
7035 .write = memory_low_write,
7036 },
7037 {
7038 .name = "high",
7039 .flags = CFTYPE_NOT_ON_ROOT,
7040 .seq_show = memory_high_show,
7041 .write = memory_high_write,
7042 },
7043 {
7044 .name = "max",
7045 .flags = CFTYPE_NOT_ON_ROOT,
7046 .seq_show = memory_max_show,
7047 .write = memory_max_write,
7048 },
7049 {
7050 .name = "events",
7051 .flags = CFTYPE_NOT_ON_ROOT,
7052 .file_offset = offsetof(struct mem_cgroup, events_file),
7053 .seq_show = memory_events_show,
7054 },
7055 {
7056 .name = "events.local",
7057 .flags = CFTYPE_NOT_ON_ROOT,
7058 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7059 .seq_show = memory_events_local_show,
7060 },
7061 {
7062 .name = "stat",
7063 .seq_show = memory_stat_show,
7064 },
7065#ifdef CONFIG_NUMA
7066 {
7067 .name = "numa_stat",
7068 .seq_show = memory_numa_stat_show,
7069 },
7070#endif
7071 {
7072 .name = "oom.group",
7073 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7074 .seq_show = memory_oom_group_show,
7075 .write = memory_oom_group_write,
7076 },
7077 {
7078 .name = "reclaim",
7079 .flags = CFTYPE_NS_DELEGATABLE,
7080 .write = memory_reclaim,
7081 },
7082 { } /* terminate */
7083};
7084
7085struct cgroup_subsys memory_cgrp_subsys = {
7086 .css_alloc = mem_cgroup_css_alloc,
7087 .css_online = mem_cgroup_css_online,
7088 .css_offline = mem_cgroup_css_offline,
7089 .css_released = mem_cgroup_css_released,
7090 .css_free = mem_cgroup_css_free,
7091 .css_reset = mem_cgroup_css_reset,
7092 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7093 .can_attach = mem_cgroup_can_attach,
7094#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7095 .attach = mem_cgroup_attach,
7096#endif
7097 .cancel_attach = mem_cgroup_cancel_attach,
7098 .post_attach = mem_cgroup_move_task,
7099#ifdef CONFIG_MEMCG_KMEM
7100 .fork = mem_cgroup_fork,
7101 .exit = mem_cgroup_exit,
7102#endif
7103 .dfl_cftypes = memory_files,
7104 .legacy_cftypes = mem_cgroup_legacy_files,
7105 .early_init = 0,
7106};
7107
7108/*
7109 * This function calculates an individual cgroup's effective
7110 * protection which is derived from its own memory.min/low, its
7111 * parent's and siblings' settings, as well as the actual memory
7112 * distribution in the tree.
7113 *
7114 * The following rules apply to the effective protection values:
7115 *
7116 * 1. At the first level of reclaim, effective protection is equal to
7117 * the declared protection in memory.min and memory.low.
7118 *
7119 * 2. To enable safe delegation of the protection configuration, at
7120 * subsequent levels the effective protection is capped to the
7121 * parent's effective protection.
7122 *
7123 * 3. To make complex and dynamic subtrees easier to configure, the
7124 * user is allowed to overcommit the declared protection at a given
7125 * level. If that is the case, the parent's effective protection is
7126 * distributed to the children in proportion to how much protection
7127 * they have declared and how much of it they are utilizing.
7128 *
7129 * This makes distribution proportional, but also work-conserving:
7130 * if one cgroup claims much more protection than it uses memory,
7131 * the unused remainder is available to its siblings.
7132 *
7133 * 4. Conversely, when the declared protection is undercommitted at a
7134 * given level, the distribution of the larger parental protection
7135 * budget is NOT proportional. A cgroup's protection from a sibling
7136 * is capped to its own memory.min/low setting.
7137 *
7138 * 5. However, to allow protecting recursive subtrees from each other
7139 * without having to declare each individual cgroup's fixed share
7140 * of the ancestor's claim to protection, any unutilized -
7141 * "floating" - protection from up the tree is distributed in
7142 * proportion to each cgroup's *usage*. This makes the protection
7143 * neutral wrt sibling cgroups and lets them compete freely over
7144 * the shared parental protection budget, but it protects the
7145 * subtree as a whole from neighboring subtrees.
7146 *
7147 * Note that 4. and 5. are not in conflict: 4. is about protecting
7148 * against immediate siblings whereas 5. is about protecting against
7149 * neighboring subtrees.
7150 */
7151static unsigned long effective_protection(unsigned long usage,
7152 unsigned long parent_usage,
7153 unsigned long setting,
7154 unsigned long parent_effective,
7155 unsigned long siblings_protected)
7156{
7157 unsigned long protected;
7158 unsigned long ep;
7159
7160 protected = min(usage, setting);
7161 /*
7162 * If all cgroups at this level combined claim and use more
7163 * protection than what the parent affords them, distribute
7164 * shares in proportion to utilization.
7165 *
7166 * We are using actual utilization rather than the statically
7167 * claimed protection in order to be work-conserving: claimed
7168 * but unused protection is available to siblings that would
7169 * otherwise get a smaller chunk than what they claimed.
7170 */
7171 if (siblings_protected > parent_effective)
7172 return protected * parent_effective / siblings_protected;
7173
7174 /*
7175 * Ok, utilized protection of all children is within what the
7176 * parent affords them, so we know whatever this child claims
7177 * and utilizes is effectively protected.
7178 *
7179 * If there is unprotected usage beyond this value, reclaim
7180 * will apply pressure in proportion to that amount.
7181 *
7182 * If there is unutilized protection, the cgroup will be fully
7183 * shielded from reclaim, but we do return a smaller value for
7184 * protection than what the group could enjoy in theory. This
7185 * is okay. With the overcommit distribution above, effective
7186 * protection is always dependent on how memory is actually
7187 * consumed among the siblings anyway.
7188 */
7189 ep = protected;
7190
7191 /*
7192 * If the children aren't claiming (all of) the protection
7193 * afforded to them by the parent, distribute the remainder in
7194 * proportion to the (unprotected) memory of each cgroup. That
7195 * way, cgroups that aren't explicitly prioritized wrt each
7196 * other compete freely over the allowance, but they are
7197 * collectively protected from neighboring trees.
7198 *
7199 * We're using unprotected memory for the weight so that if
7200 * some cgroups DO claim explicit protection, we don't protect
7201 * the same bytes twice.
7202 *
7203 * Check both usage and parent_usage against the respective
7204 * protected values. One should imply the other, but they
7205 * aren't read atomically - make sure the division is sane.
7206 */
7207 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7208 return ep;
7209 if (parent_effective > siblings_protected &&
7210 parent_usage > siblings_protected &&
7211 usage > protected) {
7212 unsigned long unclaimed;
7213
7214 unclaimed = parent_effective - siblings_protected;
7215 unclaimed *= usage - protected;
7216 unclaimed /= parent_usage - siblings_protected;
7217
7218 ep += unclaimed;
7219 }
7220
7221 return ep;
7222}
7223
7224/**
7225 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7226 * @root: the top ancestor of the sub-tree being checked
7227 * @memcg: the memory cgroup to check
7228 *
7229 * WARNING: This function is not stateless! It can only be used as part
7230 * of a top-down tree iteration, not for isolated queries.
7231 */
7232void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7233 struct mem_cgroup *memcg)
7234{
7235 unsigned long usage, parent_usage;
7236 struct mem_cgroup *parent;
7237
7238 if (mem_cgroup_disabled())
7239 return;
7240
7241 if (!root)
7242 root = root_mem_cgroup;
7243
7244 /*
7245 * Effective values of the reclaim targets are ignored so they
7246 * can be stale. Have a look at mem_cgroup_protection for more
7247 * details.
7248 * TODO: calculation should be more robust so that we do not need
7249 * that special casing.
7250 */
7251 if (memcg == root)
7252 return;
7253
7254 usage = page_counter_read(&memcg->memory);
7255 if (!usage)
7256 return;
7257
7258 parent = parent_mem_cgroup(memcg);
7259
7260 if (parent == root) {
7261 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7262 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7263 return;
7264 }
7265
7266 parent_usage = page_counter_read(&parent->memory);
7267
7268 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7269 READ_ONCE(memcg->memory.min),
7270 READ_ONCE(parent->memory.emin),
7271 atomic_long_read(&parent->memory.children_min_usage)));
7272
7273 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7274 READ_ONCE(memcg->memory.low),
7275 READ_ONCE(parent->memory.elow),
7276 atomic_long_read(&parent->memory.children_low_usage)));
7277}
7278
7279static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7280 gfp_t gfp)
7281{
7282 int ret;
7283
7284 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7285 if (ret)
7286 goto out;
7287
7288 mem_cgroup_commit_charge(folio, memcg);
7289out:
7290 return ret;
7291}
7292
7293int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7294{
7295 struct mem_cgroup *memcg;
7296 int ret;
7297
7298 memcg = get_mem_cgroup_from_mm(mm);
7299 ret = charge_memcg(folio, memcg, gfp);
7300 css_put(&memcg->css);
7301
7302 return ret;
7303}
7304
7305/**
7306 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7307 * @memcg: memcg to charge.
7308 * @gfp: reclaim mode.
7309 * @nr_pages: number of pages to charge.
7310 *
7311 * This function is called when allocating a huge page folio to determine if
7312 * the memcg has the capacity for it. It does not commit the charge yet,
7313 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7314 *
7315 * Once we have obtained the hugetlb folio, we can call
7316 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7317 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7318 * of try_charge().
7319 *
7320 * Returns 0 on success. Otherwise, an error code is returned.
7321 */
7322int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7323 long nr_pages)
7324{
7325 /*
7326 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7327 * but do not attempt to commit charge later (or cancel on error) either.
7328 */
7329 if (mem_cgroup_disabled() || !memcg ||
7330 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7331 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7332 return -EOPNOTSUPP;
7333
7334 if (try_charge(memcg, gfp, nr_pages))
7335 return -ENOMEM;
7336
7337 return 0;
7338}
7339
7340/**
7341 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7342 * @folio: folio to charge.
7343 * @mm: mm context of the victim
7344 * @gfp: reclaim mode
7345 * @entry: swap entry for which the folio is allocated
7346 *
7347 * This function charges a folio allocated for swapin. Please call this before
7348 * adding the folio to the swapcache.
7349 *
7350 * Returns 0 on success. Otherwise, an error code is returned.
7351 */
7352int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7353 gfp_t gfp, swp_entry_t entry)
7354{
7355 struct mem_cgroup *memcg;
7356 unsigned short id;
7357 int ret;
7358
7359 if (mem_cgroup_disabled())
7360 return 0;
7361
7362 id = lookup_swap_cgroup_id(entry);
7363 rcu_read_lock();
7364 memcg = mem_cgroup_from_id(id);
7365 if (!memcg || !css_tryget_online(&memcg->css))
7366 memcg = get_mem_cgroup_from_mm(mm);
7367 rcu_read_unlock();
7368
7369 ret = charge_memcg(folio, memcg, gfp);
7370
7371 css_put(&memcg->css);
7372 return ret;
7373}
7374
7375/*
7376 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7377 * @entry: swap entry for which the page is charged
7378 *
7379 * Call this function after successfully adding the charged page to swapcache.
7380 *
7381 * Note: This function assumes the page for which swap slot is being uncharged
7382 * is order 0 page.
7383 */
7384void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7385{
7386 /*
7387 * Cgroup1's unified memory+swap counter has been charged with the
7388 * new swapcache page, finish the transfer by uncharging the swap
7389 * slot. The swap slot would also get uncharged when it dies, but
7390 * it can stick around indefinitely and we'd count the page twice
7391 * the entire time.
7392 *
7393 * Cgroup2 has separate resource counters for memory and swap,
7394 * so this is a non-issue here. Memory and swap charge lifetimes
7395 * correspond 1:1 to page and swap slot lifetimes: we charge the
7396 * page to memory here, and uncharge swap when the slot is freed.
7397 */
7398 if (!mem_cgroup_disabled() && do_memsw_account()) {
7399 /*
7400 * The swap entry might not get freed for a long time,
7401 * let's not wait for it. The page already received a
7402 * memory+swap charge, drop the swap entry duplicate.
7403 */
7404 mem_cgroup_uncharge_swap(entry, 1);
7405 }
7406}
7407
7408struct uncharge_gather {
7409 struct mem_cgroup *memcg;
7410 unsigned long nr_memory;
7411 unsigned long pgpgout;
7412 unsigned long nr_kmem;
7413 int nid;
7414};
7415
7416static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7417{
7418 memset(ug, 0, sizeof(*ug));
7419}
7420
7421static void uncharge_batch(const struct uncharge_gather *ug)
7422{
7423 unsigned long flags;
7424
7425 if (ug->nr_memory) {
7426 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7427 if (do_memsw_account())
7428 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7429 if (ug->nr_kmem)
7430 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7431 memcg_oom_recover(ug->memcg);
7432 }
7433
7434 local_irq_save(flags);
7435 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7436 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7437 memcg_check_events(ug->memcg, ug->nid);
7438 local_irq_restore(flags);
7439
7440 /* drop reference from uncharge_folio */
7441 css_put(&ug->memcg->css);
7442}
7443
7444static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7445{
7446 long nr_pages;
7447 struct mem_cgroup *memcg;
7448 struct obj_cgroup *objcg;
7449
7450 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7451
7452 /*
7453 * Nobody should be changing or seriously looking at
7454 * folio memcg or objcg at this point, we have fully
7455 * exclusive access to the folio.
7456 */
7457 if (folio_memcg_kmem(folio)) {
7458 objcg = __folio_objcg(folio);
7459 /*
7460 * This get matches the put at the end of the function and
7461 * kmem pages do not hold memcg references anymore.
7462 */
7463 memcg = get_mem_cgroup_from_objcg(objcg);
7464 } else {
7465 memcg = __folio_memcg(folio);
7466 }
7467
7468 if (!memcg)
7469 return;
7470
7471 if (ug->memcg != memcg) {
7472 if (ug->memcg) {
7473 uncharge_batch(ug);
7474 uncharge_gather_clear(ug);
7475 }
7476 ug->memcg = memcg;
7477 ug->nid = folio_nid(folio);
7478
7479 /* pairs with css_put in uncharge_batch */
7480 css_get(&memcg->css);
7481 }
7482
7483 nr_pages = folio_nr_pages(folio);
7484
7485 if (folio_memcg_kmem(folio)) {
7486 ug->nr_memory += nr_pages;
7487 ug->nr_kmem += nr_pages;
7488
7489 folio->memcg_data = 0;
7490 obj_cgroup_put(objcg);
7491 } else {
7492 /* LRU pages aren't accounted at the root level */
7493 if (!mem_cgroup_is_root(memcg))
7494 ug->nr_memory += nr_pages;
7495 ug->pgpgout++;
7496
7497 folio->memcg_data = 0;
7498 }
7499
7500 css_put(&memcg->css);
7501}
7502
7503void __mem_cgroup_uncharge(struct folio *folio)
7504{
7505 struct uncharge_gather ug;
7506
7507 /* Don't touch folio->lru of any random page, pre-check: */
7508 if (!folio_memcg(folio))
7509 return;
7510
7511 uncharge_gather_clear(&ug);
7512 uncharge_folio(folio, &ug);
7513 uncharge_batch(&ug);
7514}
7515
7516void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7517{
7518 struct uncharge_gather ug;
7519 unsigned int i;
7520
7521 uncharge_gather_clear(&ug);
7522 for (i = 0; i < folios->nr; i++)
7523 uncharge_folio(folios->folios[i], &ug);
7524 if (ug.memcg)
7525 uncharge_batch(&ug);
7526}
7527
7528/**
7529 * mem_cgroup_replace_folio - Charge a folio's replacement.
7530 * @old: Currently circulating folio.
7531 * @new: Replacement folio.
7532 *
7533 * Charge @new as a replacement folio for @old. @old will
7534 * be uncharged upon free. This is only used by the page cache
7535 * (in replace_page_cache_folio()).
7536 *
7537 * Both folios must be locked, @new->mapping must be set up.
7538 */
7539void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7540{
7541 struct mem_cgroup *memcg;
7542 long nr_pages = folio_nr_pages(new);
7543 unsigned long flags;
7544
7545 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7546 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7547 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7548 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7549
7550 if (mem_cgroup_disabled())
7551 return;
7552
7553 /* Page cache replacement: new folio already charged? */
7554 if (folio_memcg(new))
7555 return;
7556
7557 memcg = folio_memcg(old);
7558 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7559 if (!memcg)
7560 return;
7561
7562 /* Force-charge the new page. The old one will be freed soon */
7563 if (!mem_cgroup_is_root(memcg)) {
7564 page_counter_charge(&memcg->memory, nr_pages);
7565 if (do_memsw_account())
7566 page_counter_charge(&memcg->memsw, nr_pages);
7567 }
7568
7569 css_get(&memcg->css);
7570 commit_charge(new, memcg);
7571
7572 local_irq_save(flags);
7573 mem_cgroup_charge_statistics(memcg, nr_pages);
7574 memcg_check_events(memcg, folio_nid(new));
7575 local_irq_restore(flags);
7576}
7577
7578/**
7579 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7580 * @old: Currently circulating folio.
7581 * @new: Replacement folio.
7582 *
7583 * Transfer the memcg data from the old folio to the new folio for migration.
7584 * The old folio's data info will be cleared. Note that the memory counters
7585 * will remain unchanged throughout the process.
7586 *
7587 * Both folios must be locked, @new->mapping must be set up.
7588 */
7589void mem_cgroup_migrate(struct folio *old, struct folio *new)
7590{
7591 struct mem_cgroup *memcg;
7592
7593 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7594 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7595 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7596 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7597
7598 if (mem_cgroup_disabled())
7599 return;
7600
7601 memcg = folio_memcg(old);
7602 /*
7603 * Note that it is normal to see !memcg for a hugetlb folio.
7604 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7605 * was not selected.
7606 */
7607 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7608 if (!memcg)
7609 return;
7610
7611 /* Transfer the charge and the css ref */
7612 commit_charge(new, memcg);
7613 /*
7614 * If the old folio is a large folio and is in the split queue, it needs
7615 * to be removed from the split queue now, in case getting an incorrect
7616 * split queue in destroy_large_folio() after the memcg of the old folio
7617 * is cleared.
7618 *
7619 * In addition, the old folio is about to be freed after migration, so
7620 * removing from the split queue a bit earlier seems reasonable.
7621 */
7622 if (folio_test_large(old) && folio_test_large_rmappable(old))
7623 folio_undo_large_rmappable(old);
7624 old->memcg_data = 0;
7625}
7626
7627DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7628EXPORT_SYMBOL(memcg_sockets_enabled_key);
7629
7630void mem_cgroup_sk_alloc(struct sock *sk)
7631{
7632 struct mem_cgroup *memcg;
7633
7634 if (!mem_cgroup_sockets_enabled)
7635 return;
7636
7637 /* Do not associate the sock with unrelated interrupted task's memcg. */
7638 if (!in_task())
7639 return;
7640
7641 rcu_read_lock();
7642 memcg = mem_cgroup_from_task(current);
7643 if (mem_cgroup_is_root(memcg))
7644 goto out;
7645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7646 goto out;
7647 if (css_tryget(&memcg->css))
7648 sk->sk_memcg = memcg;
7649out:
7650 rcu_read_unlock();
7651}
7652
7653void mem_cgroup_sk_free(struct sock *sk)
7654{
7655 if (sk->sk_memcg)
7656 css_put(&sk->sk_memcg->css);
7657}
7658
7659/**
7660 * mem_cgroup_charge_skmem - charge socket memory
7661 * @memcg: memcg to charge
7662 * @nr_pages: number of pages to charge
7663 * @gfp_mask: reclaim mode
7664 *
7665 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7666 * @memcg's configured limit, %false if it doesn't.
7667 */
7668bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7669 gfp_t gfp_mask)
7670{
7671 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7672 struct page_counter *fail;
7673
7674 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7675 memcg->tcpmem_pressure = 0;
7676 return true;
7677 }
7678 memcg->tcpmem_pressure = 1;
7679 if (gfp_mask & __GFP_NOFAIL) {
7680 page_counter_charge(&memcg->tcpmem, nr_pages);
7681 return true;
7682 }
7683 return false;
7684 }
7685
7686 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7687 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7688 return true;
7689 }
7690
7691 return false;
7692}
7693
7694/**
7695 * mem_cgroup_uncharge_skmem - uncharge socket memory
7696 * @memcg: memcg to uncharge
7697 * @nr_pages: number of pages to uncharge
7698 */
7699void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7700{
7701 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7702 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7703 return;
7704 }
7705
7706 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7707
7708 refill_stock(memcg, nr_pages);
7709}
7710
7711static int __init cgroup_memory(char *s)
7712{
7713 char *token;
7714
7715 while ((token = strsep(&s, ",")) != NULL) {
7716 if (!*token)
7717 continue;
7718 if (!strcmp(token, "nosocket"))
7719 cgroup_memory_nosocket = true;
7720 if (!strcmp(token, "nokmem"))
7721 cgroup_memory_nokmem = true;
7722 if (!strcmp(token, "nobpf"))
7723 cgroup_memory_nobpf = true;
7724 }
7725 return 1;
7726}
7727__setup("cgroup.memory=", cgroup_memory);
7728
7729/*
7730 * subsys_initcall() for memory controller.
7731 *
7732 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7733 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7734 * basically everything that doesn't depend on a specific mem_cgroup structure
7735 * should be initialized from here.
7736 */
7737static int __init mem_cgroup_init(void)
7738{
7739 int cpu, node;
7740
7741 /*
7742 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7743 * used for per-memcg-per-cpu caching of per-node statistics. In order
7744 * to work fine, we should make sure that the overfill threshold can't
7745 * exceed S32_MAX / PAGE_SIZE.
7746 */
7747 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7748
7749 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7750 memcg_hotplug_cpu_dead);
7751
7752 for_each_possible_cpu(cpu)
7753 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7754 drain_local_stock);
7755
7756 for_each_node(node) {
7757 struct mem_cgroup_tree_per_node *rtpn;
7758
7759 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7760
7761 rtpn->rb_root = RB_ROOT;
7762 rtpn->rb_rightmost = NULL;
7763 spin_lock_init(&rtpn->lock);
7764 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7765 }
7766
7767 return 0;
7768}
7769subsys_initcall(mem_cgroup_init);
7770
7771#ifdef CONFIG_SWAP
7772static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7773{
7774 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7775 /*
7776 * The root cgroup cannot be destroyed, so it's refcount must
7777 * always be >= 1.
7778 */
7779 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7780 VM_BUG_ON(1);
7781 break;
7782 }
7783 memcg = parent_mem_cgroup(memcg);
7784 if (!memcg)
7785 memcg = root_mem_cgroup;
7786 }
7787 return memcg;
7788}
7789
7790/**
7791 * mem_cgroup_swapout - transfer a memsw charge to swap
7792 * @folio: folio whose memsw charge to transfer
7793 * @entry: swap entry to move the charge to
7794 *
7795 * Transfer the memsw charge of @folio to @entry.
7796 */
7797void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7798{
7799 struct mem_cgroup *memcg, *swap_memcg;
7800 unsigned int nr_entries;
7801 unsigned short oldid;
7802
7803 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7804 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7805
7806 if (mem_cgroup_disabled())
7807 return;
7808
7809 if (!do_memsw_account())
7810 return;
7811
7812 memcg = folio_memcg(folio);
7813
7814 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7815 if (!memcg)
7816 return;
7817
7818 /*
7819 * In case the memcg owning these pages has been offlined and doesn't
7820 * have an ID allocated to it anymore, charge the closest online
7821 * ancestor for the swap instead and transfer the memory+swap charge.
7822 */
7823 swap_memcg = mem_cgroup_id_get_online(memcg);
7824 nr_entries = folio_nr_pages(folio);
7825 /* Get references for the tail pages, too */
7826 if (nr_entries > 1)
7827 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7828 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7829 nr_entries);
7830 VM_BUG_ON_FOLIO(oldid, folio);
7831 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7832
7833 folio->memcg_data = 0;
7834
7835 if (!mem_cgroup_is_root(memcg))
7836 page_counter_uncharge(&memcg->memory, nr_entries);
7837
7838 if (memcg != swap_memcg) {
7839 if (!mem_cgroup_is_root(swap_memcg))
7840 page_counter_charge(&swap_memcg->memsw, nr_entries);
7841 page_counter_uncharge(&memcg->memsw, nr_entries);
7842 }
7843
7844 /*
7845 * Interrupts should be disabled here because the caller holds the
7846 * i_pages lock which is taken with interrupts-off. It is
7847 * important here to have the interrupts disabled because it is the
7848 * only synchronisation we have for updating the per-CPU variables.
7849 */
7850 memcg_stats_lock();
7851 mem_cgroup_charge_statistics(memcg, -nr_entries);
7852 memcg_stats_unlock();
7853 memcg_check_events(memcg, folio_nid(folio));
7854
7855 css_put(&memcg->css);
7856}
7857
7858/**
7859 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7860 * @folio: folio being added to swap
7861 * @entry: swap entry to charge
7862 *
7863 * Try to charge @folio's memcg for the swap space at @entry.
7864 *
7865 * Returns 0 on success, -ENOMEM on failure.
7866 */
7867int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7868{
7869 unsigned int nr_pages = folio_nr_pages(folio);
7870 struct page_counter *counter;
7871 struct mem_cgroup *memcg;
7872 unsigned short oldid;
7873
7874 if (do_memsw_account())
7875 return 0;
7876
7877 memcg = folio_memcg(folio);
7878
7879 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7880 if (!memcg)
7881 return 0;
7882
7883 if (!entry.val) {
7884 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7885 return 0;
7886 }
7887
7888 memcg = mem_cgroup_id_get_online(memcg);
7889
7890 if (!mem_cgroup_is_root(memcg) &&
7891 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7892 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7893 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7894 mem_cgroup_id_put(memcg);
7895 return -ENOMEM;
7896 }
7897
7898 /* Get references for the tail pages, too */
7899 if (nr_pages > 1)
7900 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7901 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7902 VM_BUG_ON_FOLIO(oldid, folio);
7903 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7904
7905 return 0;
7906}
7907
7908/**
7909 * __mem_cgroup_uncharge_swap - uncharge swap space
7910 * @entry: swap entry to uncharge
7911 * @nr_pages: the amount of swap space to uncharge
7912 */
7913void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7914{
7915 struct mem_cgroup *memcg;
7916 unsigned short id;
7917
7918 id = swap_cgroup_record(entry, 0, nr_pages);
7919 rcu_read_lock();
7920 memcg = mem_cgroup_from_id(id);
7921 if (memcg) {
7922 if (!mem_cgroup_is_root(memcg)) {
7923 if (do_memsw_account())
7924 page_counter_uncharge(&memcg->memsw, nr_pages);
7925 else
7926 page_counter_uncharge(&memcg->swap, nr_pages);
7927 }
7928 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7929 mem_cgroup_id_put_many(memcg, nr_pages);
7930 }
7931 rcu_read_unlock();
7932}
7933
7934long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7935{
7936 long nr_swap_pages = get_nr_swap_pages();
7937
7938 if (mem_cgroup_disabled() || do_memsw_account())
7939 return nr_swap_pages;
7940 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7941 nr_swap_pages = min_t(long, nr_swap_pages,
7942 READ_ONCE(memcg->swap.max) -
7943 page_counter_read(&memcg->swap));
7944 return nr_swap_pages;
7945}
7946
7947bool mem_cgroup_swap_full(struct folio *folio)
7948{
7949 struct mem_cgroup *memcg;
7950
7951 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7952
7953 if (vm_swap_full())
7954 return true;
7955 if (do_memsw_account())
7956 return false;
7957
7958 memcg = folio_memcg(folio);
7959 if (!memcg)
7960 return false;
7961
7962 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7963 unsigned long usage = page_counter_read(&memcg->swap);
7964
7965 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7966 usage * 2 >= READ_ONCE(memcg->swap.max))
7967 return true;
7968 }
7969
7970 return false;
7971}
7972
7973static int __init setup_swap_account(char *s)
7974{
7975 bool res;
7976
7977 if (!kstrtobool(s, &res) && !res)
7978 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7979 "in favor of configuring swap control via cgroupfs. "
7980 "Please report your usecase to linux-mm@kvack.org if you "
7981 "depend on this functionality.\n");
7982 return 1;
7983}
7984__setup("swapaccount=", setup_swap_account);
7985
7986static u64 swap_current_read(struct cgroup_subsys_state *css,
7987 struct cftype *cft)
7988{
7989 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7990
7991 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7992}
7993
7994static u64 swap_peak_read(struct cgroup_subsys_state *css,
7995 struct cftype *cft)
7996{
7997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7998
7999 return (u64)memcg->swap.watermark * PAGE_SIZE;
8000}
8001
8002static int swap_high_show(struct seq_file *m, void *v)
8003{
8004 return seq_puts_memcg_tunable(m,
8005 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8006}
8007
8008static ssize_t swap_high_write(struct kernfs_open_file *of,
8009 char *buf, size_t nbytes, loff_t off)
8010{
8011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8012 unsigned long high;
8013 int err;
8014
8015 buf = strstrip(buf);
8016 err = page_counter_memparse(buf, "max", &high);
8017 if (err)
8018 return err;
8019
8020 page_counter_set_high(&memcg->swap, high);
8021
8022 return nbytes;
8023}
8024
8025static int swap_max_show(struct seq_file *m, void *v)
8026{
8027 return seq_puts_memcg_tunable(m,
8028 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8029}
8030
8031static ssize_t swap_max_write(struct kernfs_open_file *of,
8032 char *buf, size_t nbytes, loff_t off)
8033{
8034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8035 unsigned long max;
8036 int err;
8037
8038 buf = strstrip(buf);
8039 err = page_counter_memparse(buf, "max", &max);
8040 if (err)
8041 return err;
8042
8043 xchg(&memcg->swap.max, max);
8044
8045 return nbytes;
8046}
8047
8048static int swap_events_show(struct seq_file *m, void *v)
8049{
8050 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8051
8052 seq_printf(m, "high %lu\n",
8053 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8054 seq_printf(m, "max %lu\n",
8055 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8056 seq_printf(m, "fail %lu\n",
8057 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8058
8059 return 0;
8060}
8061
8062static struct cftype swap_files[] = {
8063 {
8064 .name = "swap.current",
8065 .flags = CFTYPE_NOT_ON_ROOT,
8066 .read_u64 = swap_current_read,
8067 },
8068 {
8069 .name = "swap.high",
8070 .flags = CFTYPE_NOT_ON_ROOT,
8071 .seq_show = swap_high_show,
8072 .write = swap_high_write,
8073 },
8074 {
8075 .name = "swap.max",
8076 .flags = CFTYPE_NOT_ON_ROOT,
8077 .seq_show = swap_max_show,
8078 .write = swap_max_write,
8079 },
8080 {
8081 .name = "swap.peak",
8082 .flags = CFTYPE_NOT_ON_ROOT,
8083 .read_u64 = swap_peak_read,
8084 },
8085 {
8086 .name = "swap.events",
8087 .flags = CFTYPE_NOT_ON_ROOT,
8088 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8089 .seq_show = swap_events_show,
8090 },
8091 { } /* terminate */
8092};
8093
8094static struct cftype memsw_files[] = {
8095 {
8096 .name = "memsw.usage_in_bytes",
8097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8098 .read_u64 = mem_cgroup_read_u64,
8099 },
8100 {
8101 .name = "memsw.max_usage_in_bytes",
8102 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8103 .write = mem_cgroup_reset,
8104 .read_u64 = mem_cgroup_read_u64,
8105 },
8106 {
8107 .name = "memsw.limit_in_bytes",
8108 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8109 .write = mem_cgroup_write,
8110 .read_u64 = mem_cgroup_read_u64,
8111 },
8112 {
8113 .name = "memsw.failcnt",
8114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8115 .write = mem_cgroup_reset,
8116 .read_u64 = mem_cgroup_read_u64,
8117 },
8118 { }, /* terminate */
8119};
8120
8121#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8122/**
8123 * obj_cgroup_may_zswap - check if this cgroup can zswap
8124 * @objcg: the object cgroup
8125 *
8126 * Check if the hierarchical zswap limit has been reached.
8127 *
8128 * This doesn't check for specific headroom, and it is not atomic
8129 * either. But with zswap, the size of the allocation is only known
8130 * once compression has occurred, and this optimistic pre-check avoids
8131 * spending cycles on compression when there is already no room left
8132 * or zswap is disabled altogether somewhere in the hierarchy.
8133 */
8134bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8135{
8136 struct mem_cgroup *memcg, *original_memcg;
8137 bool ret = true;
8138
8139 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8140 return true;
8141
8142 original_memcg = get_mem_cgroup_from_objcg(objcg);
8143 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8144 memcg = parent_mem_cgroup(memcg)) {
8145 unsigned long max = READ_ONCE(memcg->zswap_max);
8146 unsigned long pages;
8147
8148 if (max == PAGE_COUNTER_MAX)
8149 continue;
8150 if (max == 0) {
8151 ret = false;
8152 break;
8153 }
8154
8155 /*
8156 * mem_cgroup_flush_stats() ignores small changes. Use
8157 * do_flush_stats() directly to get accurate stats for charging.
8158 */
8159 do_flush_stats(memcg);
8160 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8161 if (pages < max)
8162 continue;
8163 ret = false;
8164 break;
8165 }
8166 mem_cgroup_put(original_memcg);
8167 return ret;
8168}
8169
8170/**
8171 * obj_cgroup_charge_zswap - charge compression backend memory
8172 * @objcg: the object cgroup
8173 * @size: size of compressed object
8174 *
8175 * This forces the charge after obj_cgroup_may_zswap() allowed
8176 * compression and storage in zwap for this cgroup to go ahead.
8177 */
8178void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8179{
8180 struct mem_cgroup *memcg;
8181
8182 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8183 return;
8184
8185 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8186
8187 /* PF_MEMALLOC context, charging must succeed */
8188 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8189 VM_WARN_ON_ONCE(1);
8190
8191 rcu_read_lock();
8192 memcg = obj_cgroup_memcg(objcg);
8193 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8194 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8195 rcu_read_unlock();
8196}
8197
8198/**
8199 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8200 * @objcg: the object cgroup
8201 * @size: size of compressed object
8202 *
8203 * Uncharges zswap memory on page in.
8204 */
8205void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8206{
8207 struct mem_cgroup *memcg;
8208
8209 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8210 return;
8211
8212 obj_cgroup_uncharge(objcg, size);
8213
8214 rcu_read_lock();
8215 memcg = obj_cgroup_memcg(objcg);
8216 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8217 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8218 rcu_read_unlock();
8219}
8220
8221bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8222{
8223 /* if zswap is disabled, do not block pages going to the swapping device */
8224 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8225}
8226
8227static u64 zswap_current_read(struct cgroup_subsys_state *css,
8228 struct cftype *cft)
8229{
8230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8231
8232 mem_cgroup_flush_stats(memcg);
8233 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8234}
8235
8236static int zswap_max_show(struct seq_file *m, void *v)
8237{
8238 return seq_puts_memcg_tunable(m,
8239 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8240}
8241
8242static ssize_t zswap_max_write(struct kernfs_open_file *of,
8243 char *buf, size_t nbytes, loff_t off)
8244{
8245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8246 unsigned long max;
8247 int err;
8248
8249 buf = strstrip(buf);
8250 err = page_counter_memparse(buf, "max", &max);
8251 if (err)
8252 return err;
8253
8254 xchg(&memcg->zswap_max, max);
8255
8256 return nbytes;
8257}
8258
8259static int zswap_writeback_show(struct seq_file *m, void *v)
8260{
8261 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8262
8263 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8264 return 0;
8265}
8266
8267static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8268 char *buf, size_t nbytes, loff_t off)
8269{
8270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8271 int zswap_writeback;
8272 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8273
8274 if (parse_ret)
8275 return parse_ret;
8276
8277 if (zswap_writeback != 0 && zswap_writeback != 1)
8278 return -EINVAL;
8279
8280 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8281 return nbytes;
8282}
8283
8284static struct cftype zswap_files[] = {
8285 {
8286 .name = "zswap.current",
8287 .flags = CFTYPE_NOT_ON_ROOT,
8288 .read_u64 = zswap_current_read,
8289 },
8290 {
8291 .name = "zswap.max",
8292 .flags = CFTYPE_NOT_ON_ROOT,
8293 .seq_show = zswap_max_show,
8294 .write = zswap_max_write,
8295 },
8296 {
8297 .name = "zswap.writeback",
8298 .seq_show = zswap_writeback_show,
8299 .write = zswap_writeback_write,
8300 },
8301 { } /* terminate */
8302};
8303#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8304
8305static int __init mem_cgroup_swap_init(void)
8306{
8307 if (mem_cgroup_disabled())
8308 return 0;
8309
8310 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8311 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8312#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8313 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8314#endif
8315 return 0;
8316}
8317subsys_initcall(mem_cgroup_swap_init);
8318
8319#endif /* CONFIG_SWAP */